WO2021192870A1 - Gas adsorbent and gas sensor - Google Patents

Gas adsorbent and gas sensor Download PDF

Info

Publication number
WO2021192870A1
WO2021192870A1 PCT/JP2021/008247 JP2021008247W WO2021192870A1 WO 2021192870 A1 WO2021192870 A1 WO 2021192870A1 JP 2021008247 W JP2021008247 W JP 2021008247W WO 2021192870 A1 WO2021192870 A1 WO 2021192870A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas adsorbent
polymer
adsorbent
electrode
Prior art date
Application number
PCT/JP2021/008247
Other languages
French (fr)
Japanese (ja)
Inventor
沖 明男
松澤 伸行
達人 安藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021192870A1 publication Critical patent/WO2021192870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • This disclosure generally relates to gas adsorbents and gas sensors. More specifically, the present disclosure relates to a gas adsorbent that adsorbs a gas containing at least a volatile organic compound to be detected, and a gas sensor including the gas adsorbent.
  • Patent Document 1 describes an electrically insulating base material containing a pair of conductive wires arranged in a circular shape in parallel, a chemically sensitive polymer (gas adsorbent) in contact with the pair of conductive wires, and the chemically sensitive polymer.
  • a chemistry register gas sensor
  • a chemically sensitive polymer adsorbs a volatile organic compound or the like in a gas
  • the electric resistance value changes.
  • volatile organic compounds and the like in the gas can be detected based on the change in the electric resistance value of the chemi-register.
  • An object of the present disclosure is to provide a gas adsorbent and a gas sensor whose detection accuracy of a volatile organic compound to be detected can be easily improved.
  • the gas adsorbent according to one aspect of the present disclosure is electrically connected to an electrode in the gas sensor.
  • the gas sensor detects a gas containing at least a volatile organic compound to be detected.
  • the gas adsorbent contains conductive particles and a polymer.
  • the polymer contains molecules having an oxygen gas permeability coefficient of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the gas sensor according to one aspect of the present disclosure includes the gas adsorbent and the electrode electrically connected to the gas adsorbent.
  • FIG. 1 is a cross-sectional view showing an outline of a gas sensor including a gas adsorbent according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view showing an outline of the gas sensor of the above.
  • FIG. 3 is a plan view showing an outline when the gas adsorbent is removed from the gas sensor of the above.
  • FIG. 4 is an explanatory diagram of the operating principle of the gas sensor as described above, and is a schematic view showing a state before the volatile organic compound is adsorbed on the gas adsorbent.
  • FIG. 5 is an explanatory diagram of the operating principle of the gas sensor as described above, and is a schematic view showing a state after the volatile organic compound is adsorbed on the gas adsorbent.
  • FIG. 1 is a cross-sectional view showing an outline of a gas sensor including a gas adsorbent according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view showing an outline of the gas sensor of the above.
  • FIG. 6 is a correlation diagram between the rate of change in electrical resistance and the gas permeability coefficient of oxygen in the same gas sensor.
  • FIG. 7 is a plan view showing an outline of a gas sensor according to a modified example of the embodiment of the present disclosure.
  • FIG. 8 is a plan view showing an outline when the gas adsorbent is removed from the gas sensor of the above.
  • the gas sensor 100 of the present embodiment contains at least a gas containing the volatile organic compound A1 to be detected when exposed to an atmosphere containing the volatile organic compound A1 to be detected (see FIG. 4). It is configured to detect.
  • the gas sensor 100 of the present embodiment includes a gas adsorbent 1 and an electrode 2 (see FIG. 1) that is electrically connected to the gas adsorbent 1.
  • the gas sensor 100 includes a pair of electrodes 2 (see FIG. 3).
  • the gas adsorbent 1 is electrically connected to the electrode 2 by having a part of the gas adsorbent 1 directly in contact with the part of the electrode 2.
  • the gas adsorbent 1 can be electrically connected to the electrode 2 as long as the intermediate member has conductivity even when the intermediate member is arranged between the gas adsorbent 1 and the electrode 2. ..
  • an insulator such as a polymer 12 is likely to be interposed between the conductive particles 11, and it is presumed that the electrical resistance of the gas adsorbent 1 changes.
  • the alternate long and short dash line representing the surface of the gas adsorbent 1 represents the state before the gas adsorbent 1 expands
  • the solid line representing the surface of the gas adsorbent 1 represents the gas adsorbent 1. Represents the state after expansion.
  • the curve drawn in the polymer 12 represents the polymer chain.
  • the gas sensor 100 can detect the volatile organic compound A1 to be detected by utilizing the change in the electric resistance of the gas adsorbent 1.
  • the gas sensor 100 can measure the change in the electrical resistance of the gas adsorbent 1 by measuring the change in the current while applying a voltage between the pair of electrodes 2, and as a result, the gas adsorbent 1 can be used. It is possible to detect the adsorbed volatile organic compound A1 to be detected.
  • the gas adsorbent 1 contains the conductive particles 11 and the polymer 12.
  • the "polymer” referred to in the present disclosure is a molecule having a large relative molecular weight, and has a structure composed of a large number of repetitions of a unit obtained substantially or conceptually from a molecule having a small relative molecular weight. In other words, it is a polymer molecule.
  • the polymer 12 contains a molecule (hereinafter, also referred to as “specific molecule”) having a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the gas permeability coefficient has a temperature dependence.
  • the gas permeability coefficient of oxygen B1 described below represents a value when the atmospheric temperature is 25 degrees.
  • the polymer 12 may be composed of only specific molecules, or may be composed of a mixture of specific molecules and other molecules.
  • the present embodiment since the polymer 12 does not easily permeate the oxygen B1 as described above, the gas adsorbent 1 adsorbs the volatile organic compound A1 while making it difficult to adsorb the oxygen B1. ing. Therefore, the present embodiment has an advantage that the detection accuracy of the volatile organic compound A1 to be detected is likely to be improved as compared with the gas adsorbent 1 which does not contain a specific molecule.
  • gas adsorbent 1 and the gas sensor 100 of the present embodiment will be described in detail with reference to FIGS. 1 to 3.
  • one gas sensor 100 in a sensor array composed of a plurality of types of gas sensors 100 will be described.
  • the following description may be similarly applied to other gas sensors 100 in the sensor array.
  • the gas sensor 100 includes a gas adsorbent 1, a pair of electrodes 2, and a base material 3.
  • An electrode 2 is formed on the base material 3.
  • the gas adsorbent 1 is arranged on the base material 3. That is, the gas adsorbent 1 is arranged on the surface of the base material 3.
  • the "surface of the base material” referred to in the present disclosure refers to one side of the base material 3 in the thickness direction that is exposed to the gas containing the volatile organic compound A1 to be detected.
  • the plurality of types of gas sensors 100 form one sensor array.
  • base material 3 the location where one gas sensor 100 is arranged on one base material. That is, when a plurality of types of gas sensors 100 are arranged on one base material, the one base material includes a plurality of "base materials 3" corresponding to the plurality of types of gas sensors 100.
  • FIG. 1 is a cross-sectional view taken along the line X1-X1 of FIG.
  • one electrode 2 of the pair of electrodes 2 is represented by a first main piece 211 (described later) included in the first electrode 21, and the other electrode 2 is included in the second electrode 22. It is represented by a second main piece 221 (described later).
  • the gas adsorbent 1 is in the form of a film (film shape), and when the gas adsorbent 1 (gas sensor 100) is exposed to the gas, it adsorbs the volatile organic compound A1 to be detected contained in the gas. It is configured in.
  • the volatile organic compound A1 may include, for example, ketones, amines, alcohols, aromatic hydrocarbons, aldehydes (eg nonanal), esters, organic acids, methyl mercaptans, or disulfides.
  • the gas adsorbent 1 contains conductive particles 11 and a polymer 12 having gas adsorbability.
  • the conductive particles 11 are dispersed in the polymer 12. That is, in the present embodiment, the aggregates of the conductive particles 11 are not concentrated in a part of the polymer 12, but are dispersed throughout the polymer 12.
  • gas adsorptive refers to the property of adsorbing the volatile organic compound A1 to be detected contained in the gas when exposed to the gas. It can be determined based on common general technical knowledge that the polymer 12 has gas adsorptivity. For example, when the gas-derived volatile organic compound A1 is detected by exposing the polymer 12 to a gas and then analyzing the polymer 12 with a gas chromatograph mass spectrometer, the polymer 12 has gas adsorptivity. Can be judged to be.
  • the conductive particles 11 include, for example, at least one or more materials selected from carbon materials, metals, semiconductors, surface-modified nanoparticles and the like.
  • the carbon material may include, for example, carbon black, carbon nanotubes, carbon nanohorns, graphene, graphene nanoribbons, fullerenes, graphite and the like.
  • the metal may include, for example, gold, platinum, iridium, rhodium, palladium, silver, copper, bismuth, antimony, aluminum, titanium, stainless steel, nickel alloys and the like.
  • the semiconductor may include, for example, silicon, germanium, gallium arsenide, gallium phosphide, indium phosphide, gallium nitride, silicon carbide (silicon carbide) and the like. Further, the semiconductor may also include an oxide semiconductor such as IGZO, zinc oxide, or tin oxide, or an organic semiconductor such as pentacene, anthracene, or polythiophene. Materials used for surface modification of nanoparticles can include polyethylene glycol, polymethylmethacrylate, polyethylene oxide, polyvinylpyrrolidone, oligonucleotides, antibodies, peptides and the like.
  • the conductive particles 11 preferably contain a carbon material, particularly carbon black. This is because carbon black is inexpensive as compared with other materials and has excellent properties for detecting the volatile organic compound A1.
  • the polymer 12 is selected according to the type of the volatile organic compound A1 to be adsorbed by the gas adsorbent 1 and / or the type of the conductive particles 11 contained in the gas adsorbent 1.
  • the polymer 12 is, for example, an organic polymer and may contain at least one or more molecules selected from, for example, polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride, polyvinyl fluoride and the like. These molecules (specific molecules) have a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the polymer 12 preferably contains, as a specific molecule, a molecule having a gas permeability coefficient of oxygen B1 of 0.1 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the polymer 12 satisfying this condition may contain at least one or more molecules selected from polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride and the like.
  • the pair of electrodes 2 are all made of, for example, gold or platinum. Both the first electrode 21 and the second electrode 22 are arranged in the base material 3 in a form of being embedded in the base material 3.
  • the first electrode 21 has a first main piece 211 and a first terminal 212, as shown in FIG.
  • the second electrode 22 has a second main piece 221 and a second terminal 222.
  • the first main piece 211 and the second main piece 221 are both annular in a plan view.
  • the diameter dimension of the second main piece 221 is larger than the diameter dimension of the first main piece 211.
  • the first main piece 211 is arranged inside the second main piece 221.
  • the first terminal 212 has a rectangular shape having a length in the left-right direction in a plan view, and is directed from one end (right end in FIG. 3) of the first main piece 211 toward the outside of the base material 3 (right side in FIG. 3). It is protruding.
  • One end of the first terminal 212 is electrically connected to the first pad 31 provided on the surface of the base material 3.
  • the second terminal 222 has a rectangular shape having a length in the left-right direction in a plan view, and is from one end (right end in FIG. 3) of the second main piece 221 toward the outside of the base material 3 (right side in FIG. 3). It is protruding.
  • One end of the second terminal 222 is electrically connected to the second pad 32 provided on the surface of the base material 3. Therefore, by applying a voltage or passing a current to the first pad 31 and the second pad 32, a current flows through the conductive path including the first electrode 21, the second electrode 22, and the gas adsorbent 1.
  • the first electrode 21 and the second electrode 22 are gass through an opening 30 provided in the base material 3 (here, an insulating film 33 described later) as shown in FIG. It is in contact with the adsorbent 1.
  • the first electrode 21 is in contact with the gas adsorbent 1 through the opening 30, but the second electrode 22 is also in contact with the gas adsorbent 1 through the opening 30. That is, the electrode 2 and the gas adsorbent 1 are mechanically and electrically connected through an opening 30 provided in the base material 3.
  • the electrode 2 and the gas adsorbent 1 are mechanically and electrically separated by the base material 3.
  • a plurality of openings 30 are provided dispersed in a portion of the base material 3 facing the first electrode 21. Further, as shown in FIG. 3, a plurality of openings 30 (four in FIG. 3) are provided dispersed in a portion of the base material 3 facing the second electrode 22.
  • the electrode 2 is electrically connected to the gas adsorbent 1 through the opening 30, it is compared with the case where the entire electrode 2 is electrically connected to the gas adsorbent 1. Therefore, the conductive path that can exist between the pair of electrodes 2 can be limited. As a result, in the present embodiment, an effect of reducing noise can be expected as compared with the case where the entire electrode 2 is electrically connected to the gas adsorbent 1.
  • the base material 3 is plate-shaped and is formed of a material having electrical insulation.
  • the base material 3 is formed of an inorganic material such as silicon dioxide (SiO 2).
  • An insulating film 33 formed of an electrically insulating material is arranged on the surface of the base material 3. The insulating film 33 covers the entire surface of the base material 3 except for the plurality of openings 30.
  • the gas sensor 100 by applying a voltage or passing an electric current between the first pad 31 and the second pad 32, the conductive path including the first electrode 21, the second electrode 22, and the gas adsorbent 1 is formed. , A current corresponding to the electric resistance of the gas adsorbent 1 flows. Therefore, by measuring this current, it is possible to measure the change in the electric resistance of the gas adsorbent 1. Then, based on the change in the electric resistance of the gas adsorbent 1, it is possible to detect the volatile organic compound A1 adsorbed on the gas adsorbent 1.
  • the volatile organic compound A1 adsorbed on the gas adsorbent 1 is detected by measuring the current flowing through the conductive path while a constant voltage is applied between the first pad 31 and the second pad 32. Is possible. Further, for example, the volatile organic compound A1 adsorbed on the gas adsorbent 1 is also detected by measuring the amount of voltage drop in the conductive path while a constant current is passed through the first pad 31 and the second pad 32. It is possible.
  • the gas adsorbent 1 is formed by applying a solution to a portion of the surface of the base material 3 facing the first main piece 211 of the first electrode 21 and the second main piece 221 of the second electrode 22.
  • the solution is a mixed solution containing conductive particles 11 and a polymer 12, which are materials constituting the gas adsorbent 1, and also containing a solvent.
  • the solvent dissolves or disperses the polymer 12 and disperses the conductive particles 11.
  • the solvent may contain at least one component selected from, for example, dimethyl sulfoxide, dimethylformamide, toluene, chloroform, acetone, acetonitrile, methanol, ethanol, isopropanol, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
  • the solution is applied to the surface of the base material 3 by using, for example, an inkjet method or a dispensing method.
  • a film-like molded body is formed on the surface of the base material 3.
  • the molded product is heat-treated to volatilize the solvent contained in the molded product.
  • the gas adsorbent 1 is formed on the surface of the base material 3.
  • FIG. 6 shows the experimental results of measuring the resistance change rate of various experimental materials (gas adsorbent 1) having different gas permeability coefficients of oxygen B1 of the polymer 12.
  • the conductive particles 11 are carbon black.
  • each of the plurality of circles has a one-to-one correspondence with a plurality of types of experimental materials.
  • the vertical axis represents the resistance change rate and the horizontal axis represents the gas permeability coefficient of oxygen B1.
  • the "resistance change rate" referred to in the present disclosure is the electricity of the gas adsorbent 1 in the state of adsorbing the volatile organic compound A1 with respect to the electric resistance of the gas adsorbent 1 in the state of not adsorbing the volatile organic compound A1. It represents the degree of change in resistance and is an actually measured value.
  • the gas permeability coefficient of oxygen B1 is a theoretical value calculated by executing a simulation based on the molecular structure of the polymer 12.
  • the gas permeability coefficient of oxygen B1 and the gas permeability coefficient of the volatile organic compound A1 have a positive correlation. Therefore, as the gas permeability coefficient of oxygen B1 decreases, the gas permeability coefficient of the volatile organic compound A1 also decreases. In other words, it is considered that the more difficult it is for oxygen B1 to be adsorbed on the gas adsorbent 1, the more difficult it is for the volatile organic compound A1 to be adsorbed on the gas adsorbent 1.
  • the inventors of the present application have adopted the polymer 12 containing molecules having a gas permeation coefficient of oxygen B1 of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less as described above. It was found that the electric resistance of the gas adsorbent 1 is likely to change even though the gas permeation coefficient of the volatile organic compound A1 is small.
  • the detection accuracy of the volatile organic compound A1 in the gas adsorbent 1 depends on the measurement accuracy of the electrical resistance of the gas adsorbent 1. Therefore, it can be said that the larger the resistance change rate, the higher the detection accuracy of the volatile organic compound A1 in the gas adsorbent 1.
  • the gas permeability coefficient of oxygen B1 of the polymer 12 is 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less (particularly 0.1 [cm 3). ⁇ Cm / m 2 ⁇ day ⁇ atm] or less), the resistance change rate is increasing.
  • the polymer 12 contains a molecule (specific molecule) having a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the polymer 12 may have a polar group.
  • the polar group may include a carboxyl group, a hydroxy group, a nitrile group, a ketone group, an amino group, an imino group, a benzyl group, a cyano group, a nitro group and the like.
  • an effect of suppressing the adsorption of oxygen B1 to the gas adsorbent 1 can be expected as compared with the case where the polymer 12 does not have a polar group.
  • the gas adsorbent 1 is formed in a circular shape in a plan view, but the present invention is not limited to this embodiment.
  • the gas adsorbent 1 may be formed in a rectangular shape in a plan view.
  • the first main piece 211 of the first electrode 21 has a rectangular shape having a length in the left-right direction in a plan view, similarly to the first terminal 212.
  • the second main piece 221 of the second electrode 22 has a rectangular shape having a length in the left-right direction in a plan view, similarly to the second terminal 222.
  • a rectangular opening 30 having a length in the left-right direction in a plan view is provided at a position of the base material 3 facing the first main piece 211 and the second main piece 221.
  • the gas adsorbent 1 having a rectangular shape in a plan view is arranged on the base material 3 so as to cover these openings 30.
  • the gas adsorbent 1 is not limited to a circular shape and a rectangular shape in a plan view, and may be formed in another shape.
  • the gas permeability coefficient of oxygen B1 is represented by [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm], but is not limited to this.
  • the unit of pressure in the gas permeability coefficient may be expressed as [Hg], [bar], or [Pa] instead of [atm].
  • the unit of length in the gas permeability coefficient may be [m], [in], or [mil].
  • the unit of time in the gas permeability coefficient may be [s].
  • the conductive particles 11 do not have to be dispersed in the polymer 12.
  • a layer containing the conductive particles 11 and a layer containing the polymer 12 may be separated, and a layer containing the conductive particles 11 may be formed on the layer containing the polymer 12.
  • the gas adsorbent 1 is partially in contact with the electrode 2 through the opening 30 in a plan view, but the present invention is not limited to this embodiment.
  • the gas adsorbent 1 may be entirely in contact with the electrode 2 in a plan view.
  • the gas adsorbent (1) is electrically connected to the electrode (2) in the gas sensor (100).
  • the gas sensor (100) detects a gas containing at least the volatile organic compound (A1) to be detected.
  • the gas adsorbent (1) contains conductive particles (11) and a polymer (12).
  • the polymer (12) contains molecules having a gas permeability coefficient of oxygen (B1) of 0.15 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ atm] or less.
  • the polymer (12) has a gas permeability coefficient of oxygen (B1) of 0.1 [cm 3 ⁇ cm / m 2 ⁇ day ⁇ . atm] Contains the following molecules.
  • the conductive particles (11) are dispersed in the polymer (12).
  • the polymer (12) has a polar group.
  • the gas sensor (100) according to the fifth aspect includes a gas adsorbent (1) according to any one of the first to fourth aspects, an electrode (2) electrically connected to the gas adsorbent (1), and an electrode (2). To be equipped with.
  • the gas sensor (100) according to the sixth aspect further includes the base material (3) on which the electrode (2) is formed in the fifth aspect.
  • the gas adsorbent (1) is arranged on the base material (3).
  • the electrode (2) and the gas adsorbent (1) are electrically connected to each other through an opening (30) provided in the base material (3).
  • the configurations according to the second to fourth aspects are not essential configurations for the gas adsorbent (1) and can be omitted as appropriate. Further, the configuration according to the sixth aspect is not an essential configuration for the gas sensor (100) and can be omitted as appropriate.

Abstract

The present invention addresses the problem of easily enhancing the detection accuracy of a volatile organic compound, which is a substance to be detected. According to the present invention, a gas adsorbent (1) is electrically connected to an electrode (2) of a gas sensor (100). The gas sensor (100) detects a gas that contains at least a volatile organic compound, which is a substance to be detected. The gas adsorbent (1) comprises conductive particles (11) and a polymer (12). The polymer (12) contains molecules that have an oxygen gas permeability coefficient of 0.15 (cm3·cm/m2·day·atom) or less.

Description

ガス吸着体、及びガスセンサGas adsorbent and gas sensor
 本開示は、一般にガス吸着体、及びガスセンサに関する。より詳細には、本開示は、少なくとも検出対象の揮発性有機化合物を含むガスを吸着するガス吸着体、及びガス吸着体を備えるガスセンサに関する。 This disclosure generally relates to gas adsorbents and gas sensors. More specifically, the present disclosure relates to a gas adsorbent that adsorbs a gas containing at least a volatile organic compound to be detected, and a gas sensor including the gas adsorbent.
 特許文献1には、並行するように円形状に配置された一対の導電線を含む電気絶縁性基材と、一対の導電線に接触する化学感受性ポリマー(ガス吸着体)と、この化学感受性ポリマー中に分散する炭素粒子とを含むケミレジスタ(ガスセンサ)が、開示されている。このケミレジスタにおいては、化学感受性ポリマーがガス中の揮発性有機化合物等を吸着すると、電気抵抗値の変化が生じる。このケミレジスタを用いると、ケミレジスタの電気抵抗値の変化に基づいて、ガス中の揮発性有機化合物等を検出できる。 Patent Document 1 describes an electrically insulating base material containing a pair of conductive wires arranged in a circular shape in parallel, a chemically sensitive polymer (gas adsorbent) in contact with the pair of conductive wires, and the chemically sensitive polymer. A chemistry register (gas sensor) containing carbon particles dispersed therein is disclosed. In this chemi-register, when a chemically sensitive polymer adsorbs a volatile organic compound or the like in a gas, the electric resistance value changes. When this chemi-register is used, volatile organic compounds and the like in the gas can be detected based on the change in the electric resistance value of the chemi-register.
特開2004-340945号公報Japanese Unexamined Patent Publication No. 2004-340945
 本開示は、検出対象の揮発性有機化合物の検出精度が向上しやすいガス吸着体、及びガスセンサを提供することを目的とする。 An object of the present disclosure is to provide a gas adsorbent and a gas sensor whose detection accuracy of a volatile organic compound to be detected can be easily improved.
 本開示の一態様に係るガス吸着体は、ガスセンサにおける電極に電気的に接続される。前記ガスセンサは、少なくとも検出対象の揮発性有機化合物を含むガスを検出する。前記ガス吸着体は、導電性粒子と、高分子と、を含む。前記高分子は、酸素の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の分子を含む。 The gas adsorbent according to one aspect of the present disclosure is electrically connected to an electrode in the gas sensor. The gas sensor detects a gas containing at least a volatile organic compound to be detected. The gas adsorbent contains conductive particles and a polymer. The polymer contains molecules having an oxygen gas permeability coefficient of 0.15 [cm 3 · cm / m 2 · day · atm] or less.
 本開示の一態様に係るガスセンサは、上記のガス吸着体と、前記ガス吸着体に電気的に接続される前記電極と、を備える。 The gas sensor according to one aspect of the present disclosure includes the gas adsorbent and the electrode electrically connected to the gas adsorbent.
図1は、本開示の一実施形態に係るガス吸着体を備えたガスセンサの概要を示す断面図である。FIG. 1 is a cross-sectional view showing an outline of a gas sensor including a gas adsorbent according to an embodiment of the present disclosure. 図2は、同上のガスセンサの概要を示す平面図である。FIG. 2 is a plan view showing an outline of the gas sensor of the above. 図3は、同上のガスセンサにおいてガス吸着体を除いた場合の概要を示す平面図である。FIG. 3 is a plan view showing an outline when the gas adsorbent is removed from the gas sensor of the above. 図4は、同上のガスセンサの動作原理の説明図であって、揮発性有機化合物がガス吸着体に吸着される前の状態を示す概要図である。FIG. 4 is an explanatory diagram of the operating principle of the gas sensor as described above, and is a schematic view showing a state before the volatile organic compound is adsorbed on the gas adsorbent. 図5は、同上のガスセンサの動作原理の説明図であって、揮発性有機化合物がガス吸着体に吸着された後の状態を示す概要図である。FIG. 5 is an explanatory diagram of the operating principle of the gas sensor as described above, and is a schematic view showing a state after the volatile organic compound is adsorbed on the gas adsorbent. 図6は、同上のガスセンサにおける電気抵抗の変化率と酸素の気体透過係数との相関図である。FIG. 6 is a correlation diagram between the rate of change in electrical resistance and the gas permeability coefficient of oxygen in the same gas sensor. 図7は、本開示の一実施形態の変形例に係るガスセンサの概要を示す平面図である。FIG. 7 is a plan view showing an outline of a gas sensor according to a modified example of the embodiment of the present disclosure. 図8は、同上のガスセンサにおいてガス吸着体を除いた場合の概要を示す平面図である。FIG. 8 is a plan view showing an outline when the gas adsorbent is removed from the gas sensor of the above.
 (1)概要
 以下、本実施形態のガス吸着体1(図1参照)、及びガス吸着体1を備えたガスセンサ100(図1参照)について図面を参照して説明する。ただし、下記の実施形態は、本開示の様々な実施形態の一部に過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
(1) Outline Hereinafter, the gas adsorbent 1 (see FIG. 1) and the gas sensor 100 provided with the gas adsorbent 1 (see FIG. 1) of the present embodiment will be described with reference to the drawings. However, the following embodiments are only part of the various embodiments of the present disclosure. The following embodiments can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved. Further, each figure described in the following embodiment is a schematic view, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio. ..
 本実施形態のガスセンサ100は、検出対象の揮発性有機化合物(Volatile Organic Compounds)A1(図4参照)が含まれる雰囲気に晒された場合に、少なくとも検出対象の揮発性有機化合物A1を含むガスを検出するように構成されている。本実施形態のガスセンサ100は、ガス吸着体1と、ガス吸着体1に電気的に接続される電極2(図1参照)と、を備えている。本実施形態では、ガスセンサ100は、電極2を一対備えている(図3参照)。 The gas sensor 100 of the present embodiment contains at least a gas containing the volatile organic compound A1 to be detected when exposed to an atmosphere containing the volatile organic compound A1 to be detected (see FIG. 4). It is configured to detect. The gas sensor 100 of the present embodiment includes a gas adsorbent 1 and an electrode 2 (see FIG. 1) that is electrically connected to the gas adsorbent 1. In this embodiment, the gas sensor 100 includes a pair of electrodes 2 (see FIG. 3).
 本実施形態では、ガス吸着体1は、その一部が電極2の一部に直接的に接することにより、電極2と電気的に接続されている。もちろん、ガス吸着体1は、ガス吸着体1と電極2との間に中間部材が配置されている場合でも、中間部材が導電性を有していれば、電極2と電気的に接続され得る。 In the present embodiment, the gas adsorbent 1 is electrically connected to the electrode 2 by having a part of the gas adsorbent 1 directly in contact with the part of the electrode 2. Of course, the gas adsorbent 1 can be electrically connected to the electrode 2 as long as the intermediate member has conductivity even when the intermediate member is arranged between the gas adsorbent 1 and the electrode 2. ..
 ガスセンサ100においては、ガスに含まれる揮発性有機化合物A1がガス吸着体1に吸着すると、ガス吸着体1に電気抵抗の変化が生じる。この現象について、以下、図4及び図5を用いて推察する。図4に示すように、ガス吸着体1に揮発性有機化合物A1が吸着していない状態においては、ガス吸着体1に含まれる導電性粒子11は、隣り合う導電性粒子11間の距離が比較的短くなっている。この状態で、ガス吸着体1に揮発性有機化合物A1が吸着すると、図5に示すように、吸着した揮発性有機化合物A1に応じてガス吸着体1が膨張し、隣り合う導電性粒子11間の距離が長くなる。これにより、導電性粒子11間に高分子12等の絶縁物が介在しやすくなるため、ガス吸着体1の電気抵抗が変化する、と推察される。なお、図5においては、ガス吸着体1の表面を表す二点鎖線は、ガス吸着体1が膨張する前の状態を表しており、ガス吸着体1の表面を表す実線は、ガス吸着体1が膨張した後の状態を表している。また、図5において、高分子12中に描かれている曲線は、高分子鎖を表している。 In the gas sensor 100, when the volatile organic compound A1 contained in the gas is adsorbed on the gas adsorbent 1, the electric resistance of the gas adsorbent 1 changes. This phenomenon will be inferred with reference to FIGS. 4 and 5 below. As shown in FIG. 4, in a state where the volatile organic compound A1 is not adsorbed on the gas adsorbent 1, the conductive particles 11 contained in the gas adsorbent 1 are compared in the distance between the adjacent conductive particles 11. It is getting shorter. When the volatile organic compound A1 is adsorbed on the gas adsorbent 1 in this state, the gas adsorbent 1 expands according to the adsorbed volatile organic compound A1 as shown in FIG. The distance becomes longer. As a result, an insulator such as a polymer 12 is likely to be interposed between the conductive particles 11, and it is presumed that the electrical resistance of the gas adsorbent 1 changes. In FIG. 5, the alternate long and short dash line representing the surface of the gas adsorbent 1 represents the state before the gas adsorbent 1 expands, and the solid line representing the surface of the gas adsorbent 1 represents the gas adsorbent 1. Represents the state after expansion. Further, in FIG. 5, the curve drawn in the polymer 12 represents the polymer chain.
 したがって、ガスセンサ100は、ガス吸着体1の電気抵抗の変化を利用して、検出対象の揮発性有機化合物A1を検出することが可能である。例えば、ガスセンサ100は、一対の電極2間に電圧を印加した状態で電流の変化を測定することにより、ガス吸着体1の電気抵抗の変化を測定することができ、結果としてガス吸着体1に吸着した検出対象の揮発性有機化合物A1を検出することが可能である。 Therefore, the gas sensor 100 can detect the volatile organic compound A1 to be detected by utilizing the change in the electric resistance of the gas adsorbent 1. For example, the gas sensor 100 can measure the change in the electrical resistance of the gas adsorbent 1 by measuring the change in the current while applying a voltage between the pair of electrodes 2, and as a result, the gas adsorbent 1 can be used. It is possible to detect the adsorbed volatile organic compound A1 to be detected.
 ガス吸着体1は、図1に示すように、導電性粒子11と、高分子12と、を含んでいる。本開示でいう「高分子」は、相対分子質量の大きい分子で、相対分子質量の小さい分子から実質的又は概念的に得られる単位の多数回の繰返しで構成された構造を有しており、言い換えればポリマー分子である。そして、高分子12は、酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の分子(以下、「特定分子」ともいう)を含んでいる。なお、気体透過係数は、温度依存性を有している。以下で説明する酸素B1の気体透過係数は、いずれも雰囲気温度が25度の場合の値を表している。なお、高分子12は、特定分子のみで構成されていてもよいし、特定分子と他の分子とが混在して構成されていてもよい。 As shown in FIG. 1, the gas adsorbent 1 contains the conductive particles 11 and the polymer 12. The "polymer" referred to in the present disclosure is a molecule having a large relative molecular weight, and has a structure composed of a large number of repetitions of a unit obtained substantially or conceptually from a molecule having a small relative molecular weight. In other words, it is a polymer molecule. The polymer 12 contains a molecule (hereinafter, also referred to as “specific molecule”) having a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 · cm / m 2 · day · atm] or less. The gas permeability coefficient has a temperature dependence. The gas permeability coefficient of oxygen B1 described below represents a value when the atmospheric temperature is 25 degrees. The polymer 12 may be composed of only specific molecules, or may be composed of a mixture of specific molecules and other molecules.
 上述のように、本実施形態では、ガス吸着体1は、上記のように高分子12が酸素B1を透過しにくいため、揮発性有機化合物A1を吸着する一方で、酸素B1を吸着しにくくなっている。したがって、本実施形態では、特定分子を含まないガス吸着体1と比較して、検出対象の揮発性有機化合物A1の検出精度が向上しやすい、という利点がある。 As described above, in the present embodiment, since the polymer 12 does not easily permeate the oxygen B1 as described above, the gas adsorbent 1 adsorbs the volatile organic compound A1 while making it difficult to adsorb the oxygen B1. ing. Therefore, the present embodiment has an advantage that the detection accuracy of the volatile organic compound A1 to be detected is likely to be improved as compared with the gas adsorbent 1 which does not contain a specific molecule.
 (2)詳細
 以下、本実施形態のガス吸着体1及びガスセンサ100について図1~図3を参照して詳しく説明する。以下では、複数種類のガスセンサ100で構成されるセンサアレイにおける1つのガスセンサ100に着目して説明する。以下の説明は、センサアレイにおける他のガスセンサ100においても同様に適用し得る。
(2) Details Hereinafter, the gas adsorbent 1 and the gas sensor 100 of the present embodiment will be described in detail with reference to FIGS. 1 to 3. In the following, one gas sensor 100 in a sensor array composed of a plurality of types of gas sensors 100 will be described. The following description may be similarly applied to other gas sensors 100 in the sensor array.
 ガスセンサ100は、図1に示すように、ガス吸着体1と、一対の電極2と、基材3と、を備えている。基材3には、電極2が形成されている。そして、ガス吸着体1は、基材3上に配置されている。つまり、ガス吸着体1は、基材3の表面に配置されている。本開示でいう「基材の表面」は、基材3の厚さ方向における2面のうち、検出対象の揮発性有機化合物A1を含むガスに晒される一面をいう。 As shown in FIG. 1, the gas sensor 100 includes a gas adsorbent 1, a pair of electrodes 2, and a base material 3. An electrode 2 is formed on the base material 3. The gas adsorbent 1 is arranged on the base material 3. That is, the gas adsorbent 1 is arranged on the surface of the base material 3. The "surface of the base material" referred to in the present disclosure refers to one side of the base material 3 in the thickness direction that is exposed to the gas containing the volatile organic compound A1 to be detected.
 ここで、1つの基材には、1つのガスセンサ100が配置される場合の他、複数種類のガスセンサ100が配置される場合がある。後者の場合、複数種類のガスセンサ100は、1つのセンサアレイを構成することになる。以下では、特に断りの無い限り、1つの基材において1つのガスセンサ100が配置される箇所を「基材3」という。つまり、1つの基材に複数種類のガスセンサ100が配置される場合、この1つの基材には複数種類のガスセンサ100と各々対応する複数の「基材3」が含まれることになる。 Here, in addition to the case where one gas sensor 100 is arranged on one base material, there are cases where a plurality of types of gas sensors 100 are arranged. In the latter case, the plurality of types of gas sensors 100 form one sensor array. In the following, unless otherwise specified, the location where one gas sensor 100 is arranged on one base material is referred to as “base material 3”. That is, when a plurality of types of gas sensors 100 are arranged on one base material, the one base material includes a plurality of "base materials 3" corresponding to the plurality of types of gas sensors 100.
 また、以下では、一対の電極2のうち一方の電極2を「第1電極21」、他方の電極2を「第2電極22」ともいう。なお、図1は、図2のX1-X1線での断面図である。図1では、一対の電極2のうちの一方の電極2は、第1電極21の有する第1主片211(後述する)で表されており、他方の電極2は、第2電極22の有する第2主片221(後述する)で表されている。 In the following, one of the pair of electrodes 2 will also be referred to as a "first electrode 21" and the other electrode 2 as a "second electrode 22". Note that FIG. 1 is a cross-sectional view taken along the line X1-X1 of FIG. In FIG. 1, one electrode 2 of the pair of electrodes 2 is represented by a first main piece 211 (described later) included in the first electrode 21, and the other electrode 2 is included in the second electrode 22. It is represented by a second main piece 221 (described later).
 ガス吸着体1は、膜状(フィルム状)であって、ガス吸着体1(ガスセンサ100)がガスに晒された場合に、ガス中に含まれる検出対象の揮発性有機化合物A1を吸着するように構成されている。揮発性有機化合物A1は、一例として、ケトン類、アミン類、アルコール類、芳香族炭化水素類、アルデヒド類(例えば、ノナナール)、エステル類、有機酸、メチルメルカプタン、又はジスルフィドを含み得る。 The gas adsorbent 1 is in the form of a film (film shape), and when the gas adsorbent 1 (gas sensor 100) is exposed to the gas, it adsorbs the volatile organic compound A1 to be detected contained in the gas. It is configured in. The volatile organic compound A1 may include, for example, ketones, amines, alcohols, aromatic hydrocarbons, aldehydes (eg nonanal), esters, organic acids, methyl mercaptans, or disulfides.
 ガス吸着体1は、導電性粒子11と、ガス吸着性を有する高分子12と、を含んでいる。本実施形態では、導電性粒子11は、高分子12に分散されている。つまり、本実施形態では、導電性粒子11の集合が高分子12の一部に集中しているのではなく、高分子12の全体にわたって分散している。 The gas adsorbent 1 contains conductive particles 11 and a polymer 12 having gas adsorbability. In this embodiment, the conductive particles 11 are dispersed in the polymer 12. That is, in the present embodiment, the aggregates of the conductive particles 11 are not concentrated in a part of the polymer 12, but are dispersed throughout the polymer 12.
 本開示でいう「ガス吸着性」とは、ガスに晒された場合にガス中に含まれる検出対象の揮発性有機化合物A1を吸着する性質をいう。高分子12がガス吸着性を有することは、技術常識に基づいて判断され得る。例えば、高分子12をガスに晒してから、高分子12をガスクロマトグラフ質量分析計で分析することでガス由来の揮発性有機化合物A1が検出される場合、高分子12がガス吸着性を有していると判断され得る。 The term "gas adsorptive" as used in the present disclosure refers to the property of adsorbing the volatile organic compound A1 to be detected contained in the gas when exposed to the gas. It can be determined based on common general technical knowledge that the polymer 12 has gas adsorptivity. For example, when the gas-derived volatile organic compound A1 is detected by exposing the polymer 12 to a gas and then analyzing the polymer 12 with a gas chromatograph mass spectrometer, the polymer 12 has gas adsorptivity. Can be judged to be.
 導電性粒子11は、例えば、炭素材料、金属、半導体、又は表面修飾したナノ粒子等から選択される少なくとも1種類以上の材料を含む。炭素材料は、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラフェン、グラフェンナノリボン、フラーレン、又はグラファイト等を含み得る。金属は、例えば、金、白金、イリジウム、ロジウム、パラジウム、銀、銅、ビスマス、アンチモン、アルミニウム、チタン、ステンレス、又はニッケル合金等を含み得る。半導体は、例えば、シリコン、ゲルマニウム、ヒ化ガリウム、リン化ガリウム、リン化インジウム、窒化ガリウム、又は炭化ケイ素(炭化シリコン)等を含み得る。また、半導体は、IGZO、酸化亜鉛、若しくは酸化スズ等の酸化物半導体、又はペンタセン、アントラセン、若しくはポリチオフェン等の有機半導体等も含み得る。ナノ粒子の表面修飾に用いる材料は、ポリエチレングリコール、ポリメチルメタクリレート、ポリエチレンオキシド、ポリビニルピロリドン、オリゴヌクレオチド、抗体、又はペプチド等を含み得る。 The conductive particles 11 include, for example, at least one or more materials selected from carbon materials, metals, semiconductors, surface-modified nanoparticles and the like. The carbon material may include, for example, carbon black, carbon nanotubes, carbon nanohorns, graphene, graphene nanoribbons, fullerenes, graphite and the like. The metal may include, for example, gold, platinum, iridium, rhodium, palladium, silver, copper, bismuth, antimony, aluminum, titanium, stainless steel, nickel alloys and the like. The semiconductor may include, for example, silicon, germanium, gallium arsenide, gallium phosphide, indium phosphide, gallium nitride, silicon carbide (silicon carbide) and the like. Further, the semiconductor may also include an oxide semiconductor such as IGZO, zinc oxide, or tin oxide, or an organic semiconductor such as pentacene, anthracene, or polythiophene. Materials used for surface modification of nanoparticles can include polyethylene glycol, polymethylmethacrylate, polyethylene oxide, polyvinylpyrrolidone, oligonucleotides, antibodies, peptides and the like.
 なお、導電性粒子11としては、炭素材料、特にはカーボンブラックを含んでいるのが好ましい。カーボンブラックは、他の材料と比較して安価であり、揮発性有機化合物A1を検出する特性にも優れているからである。 The conductive particles 11 preferably contain a carbon material, particularly carbon black. This is because carbon black is inexpensive as compared with other materials and has excellent properties for detecting the volatile organic compound A1.
 高分子12は、ガス吸着体1が吸着すべき揮発性有機化合物A1の種類、及び/又はガス吸着体1に含まれる導電性粒子11の種類等に応じて選択される。高分子12は、一例として有機高分子であって、例えばポリビニルアルコール、ポリアクリロニトリル、ポリ塩化ビニリデン、又はポリフッ化ビニル等から選択される少なくとも1種類以上の分子を含み得る。これらの分子(特定分子)は、酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下である。特に、本実施形態では、高分子12は、特定分子として、酸素B1の気体透過係数が0.1〔cm・cm/m・day・atm〕以下の分子を含んでいるのが好ましい。この条件を満たす高分子12は、一例として、ポリビニルアルコール、ポリアクリロニトリル、又はポリ塩化ビニリデン等から選択される少なくとも1種類以上の分子を含み得る。 The polymer 12 is selected according to the type of the volatile organic compound A1 to be adsorbed by the gas adsorbent 1 and / or the type of the conductive particles 11 contained in the gas adsorbent 1. The polymer 12 is, for example, an organic polymer and may contain at least one or more molecules selected from, for example, polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride, polyvinyl fluoride and the like. These molecules (specific molecules) have a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 · cm / m 2 · day · atm] or less. In particular, in the present embodiment, the polymer 12 preferably contains, as a specific molecule, a molecule having a gas permeability coefficient of oxygen B1 of 0.1 [cm 3 · cm / m 2 · day · atm] or less. As an example, the polymer 12 satisfying this condition may contain at least one or more molecules selected from polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride and the like.
 一対の電極2(第1電極21及び第2電極22)は、いずれも例えば金又は白金により形成されている。第1電極21及び第2電極22は、いずれも基材3に埋め込まれた形で基材3に配置されている。本実施形態では、第1電極21は、図3に示すように、第1主片211と、第1端子212と、を有している。第2電極22は、図3に示すように、第2主片221と、第2端子222と、を有している。 The pair of electrodes 2 (first electrode 21 and second electrode 22) are all made of, for example, gold or platinum. Both the first electrode 21 and the second electrode 22 are arranged in the base material 3 in a form of being embedded in the base material 3. In the present embodiment, the first electrode 21 has a first main piece 211 and a first terminal 212, as shown in FIG. As shown in FIG. 3, the second electrode 22 has a second main piece 221 and a second terminal 222.
 第1主片211及び第2主片221は、いずれも平面視で円環状である。第2主片221の径寸法は、第1主片211の径寸法よりも大きくなっている。平面視において、第1主片211は、第2主片221の内側に配置されている。 The first main piece 211 and the second main piece 221 are both annular in a plan view. The diameter dimension of the second main piece 221 is larger than the diameter dimension of the first main piece 211. In a plan view, the first main piece 211 is arranged inside the second main piece 221.
 第1端子212は、平面視で左右方向に長さを有する矩形状であって、第1主片211の一端(図3における右端)から基材3の外側(図3における右側)に向かって突出している。第1端子212の一端は、基材3の表面に設けられた第1パッド31に電気的に接続されている。第2端子222は、平面視で左右方向に長さを有する矩形状であって、第2主片221の一端(図3における右端)から基材3の外側(図3における右側)に向かって突出している。第2端子222の一端は、基材3の表面に設けられた第2パッド32に電気的に接続されている。したがって、第1パッド31及び第2パッド32に電圧を印加、又は電流を流すことにより、第1電極21、第2電極22、及びガス吸着体1を含む導電路に電流が流れる。 The first terminal 212 has a rectangular shape having a length in the left-right direction in a plan view, and is directed from one end (right end in FIG. 3) of the first main piece 211 toward the outside of the base material 3 (right side in FIG. 3). It is protruding. One end of the first terminal 212 is electrically connected to the first pad 31 provided on the surface of the base material 3. The second terminal 222 has a rectangular shape having a length in the left-right direction in a plan view, and is from one end (right end in FIG. 3) of the second main piece 221 toward the outside of the base material 3 (right side in FIG. 3). It is protruding. One end of the second terminal 222 is electrically connected to the second pad 32 provided on the surface of the base material 3. Therefore, by applying a voltage or passing a current to the first pad 31 and the second pad 32, a current flows through the conductive path including the first electrode 21, the second electrode 22, and the gas adsorbent 1.
 本実施形態では、第1電極21及び第2電極22(つまり、電極2)は、図1に示すように、基材3(ここでは、後述する絶縁膜33)に設けられた開口30を通してガス吸着体1と接している。図1では、第1電極21のみが開口30を通してガス吸着体1と接しているが、第2電極22も開口30を通してガス吸着体1と接している。つまり、電極2とガス吸着体1とは、基材3に設けられた開口30を通して機械的かつ電気的に接続されている。一方、基材3において開口30が設けられていない部位では、電極2とガス吸着体1とは、基材3により機械的かつ電気的に隔てられている。開口30は、図3に示すように、基材3における第1電極21と対向する部位に分散して複数(図3では3つ)設けられている。また、開口30は、図3に示すように、基材3における第2電極22と対向する部位に分散して複数(図3では4つ)設けられている。 In the present embodiment, the first electrode 21 and the second electrode 22 (that is, the electrode 2) are gass through an opening 30 provided in the base material 3 (here, an insulating film 33 described later) as shown in FIG. It is in contact with the adsorbent 1. In FIG. 1, only the first electrode 21 is in contact with the gas adsorbent 1 through the opening 30, but the second electrode 22 is also in contact with the gas adsorbent 1 through the opening 30. That is, the electrode 2 and the gas adsorbent 1 are mechanically and electrically connected through an opening 30 provided in the base material 3. On the other hand, in the portion of the base material 3 where the opening 30 is not provided, the electrode 2 and the gas adsorbent 1 are mechanically and electrically separated by the base material 3. As shown in FIG. 3, a plurality of openings 30 (three in FIG. 3) are provided dispersed in a portion of the base material 3 facing the first electrode 21. Further, as shown in FIG. 3, a plurality of openings 30 (four in FIG. 3) are provided dispersed in a portion of the base material 3 facing the second electrode 22.
 上述のように、本実施形態では、電極2が開口30を通してガス吸着体1と電気的に接続されていることから、電極2の全体がガス吸着体1と電気的に接続される場合と比較して、一対の電極2間に存在し得る導電路を制限することができる。その結果、本実施形態では、電極2の全体がガス吸着体1と電気的に接続される場合と比較して、ノイズの低減を図る効果が期待できる。 As described above, in the present embodiment, since the electrode 2 is electrically connected to the gas adsorbent 1 through the opening 30, it is compared with the case where the entire electrode 2 is electrically connected to the gas adsorbent 1. Therefore, the conductive path that can exist between the pair of electrodes 2 can be limited. As a result, in the present embodiment, an effect of reducing noise can be expected as compared with the case where the entire electrode 2 is electrically connected to the gas adsorbent 1.
 基材3は、板状であって、電気絶縁性を有する材料により形成されている。本実施形態では、基材3は、例えば二酸化ケイ素(SiO)等の無機材料により形成されている。基材3の表面には、電気絶縁性を有する材料により形成された絶縁膜33が配置されている。絶縁膜33は、複数の開口30を除いて、基材3の表面の全体を覆っている。 The base material 3 is plate-shaped and is formed of a material having electrical insulation. In the present embodiment, the base material 3 is formed of an inorganic material such as silicon dioxide (SiO 2). An insulating film 33 formed of an electrically insulating material is arranged on the surface of the base material 3. The insulating film 33 covers the entire surface of the base material 3 except for the plurality of openings 30.
 ガスセンサ100においては、第1パッド31と第2パッド32との間に電圧を印加する、又は電流を流すことにより、第1電極21、第2電極22、及びガス吸着体1を含む導電路に、ガス吸着体1の電気抵抗に応じた電流が流れる。したがって、この電流を測定することにより、ガス吸着体1の電気抵抗の変化を測定することが可能である。そして、このガス吸着体1の電気抵抗の変化に基づいて、ガス吸着体1に吸着した揮発性有機化合物A1を検出することが可能である。例えば、第1パッド31と第2パッド32との間に一定電圧を印加した状態で上記導電路を流れる電流を測定することにより、ガス吸着体1に吸着した揮発性有機化合物A1を検出することが可能である。また、例えば、第1パッド31及び第2パッド32に一定電流を流した状態で上記導電路における電圧降下量を測定することによっても、ガス吸着体1に吸着した揮発性有機化合物A1を検出することが可能である。 In the gas sensor 100, by applying a voltage or passing an electric current between the first pad 31 and the second pad 32, the conductive path including the first electrode 21, the second electrode 22, and the gas adsorbent 1 is formed. , A current corresponding to the electric resistance of the gas adsorbent 1 flows. Therefore, by measuring this current, it is possible to measure the change in the electric resistance of the gas adsorbent 1. Then, based on the change in the electric resistance of the gas adsorbent 1, it is possible to detect the volatile organic compound A1 adsorbed on the gas adsorbent 1. For example, the volatile organic compound A1 adsorbed on the gas adsorbent 1 is detected by measuring the current flowing through the conductive path while a constant voltage is applied between the first pad 31 and the second pad 32. Is possible. Further, for example, the volatile organic compound A1 adsorbed on the gas adsorbent 1 is also detected by measuring the amount of voltage drop in the conductive path while a constant current is passed through the first pad 31 and the second pad 32. It is possible.
 (3)製造方法
 以下、本実施形態のガス吸着体1(ガスセンサ100)の製造方法について簡潔に説明する。以下では、基材3には既に一対の電極2が配置されている、と仮定する。また、以下では、ガスセンサ100の製造方法のうち、主としてガス吸着体1を形成する過程について説明する。
(3) Manufacturing Method Hereinafter, the manufacturing method of the gas adsorbent 1 (gas sensor 100) of the present embodiment will be briefly described. In the following, it is assumed that a pair of electrodes 2 are already arranged on the base material 3. Further, in the following, among the methods for manufacturing the gas sensor 100, the process of forming the gas adsorbent 1 will be mainly described.
 ガス吸着体1は、基材3の表面において、第1電極21の第1主片211及び第2電極22の第2主片221と対向する箇所に溶液を塗布することで形成される。溶液は、ガス吸着体1を構成する材料である導電性粒子11及び高分子12を含む他、溶剤を含む混合液である。溶剤は、高分子12を溶解又は分散させ、かつ、導電性粒子11を分散させる。溶剤は、例えばジメチルスルホキシド、ジメチルホルムアミド、トルエン、クロロホルム、アセトン、アセトニトリル、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、酢酸エチル、又は酢酸ブチル等から選択される少なくとも1種類の成分を含み得る。 The gas adsorbent 1 is formed by applying a solution to a portion of the surface of the base material 3 facing the first main piece 211 of the first electrode 21 and the second main piece 221 of the second electrode 22. The solution is a mixed solution containing conductive particles 11 and a polymer 12, which are materials constituting the gas adsorbent 1, and also containing a solvent. The solvent dissolves or disperses the polymer 12 and disperses the conductive particles 11. The solvent may contain at least one component selected from, for example, dimethyl sulfoxide, dimethylformamide, toluene, chloroform, acetone, acetonitrile, methanol, ethanol, isopropanol, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
 具体的には、例えばインクジェット法又はディスペンス法等の方法を用いて、基材3の表面に溶液を塗布する。これにより、基材3の表面には、膜状の成形体が形成される。次に、成形体に熱処理を施すことで、成形体中に含まれる溶剤を揮発させる。これにより、基材3の表面にガス吸着体1が形成される。 Specifically, the solution is applied to the surface of the base material 3 by using, for example, an inkjet method or a dispensing method. As a result, a film-like molded body is formed on the surface of the base material 3. Next, the molded product is heat-treated to volatilize the solvent contained in the molded product. As a result, the gas adsorbent 1 is formed on the surface of the base material 3.
 以下、本実施形態のガス吸着体1(ガスセンサ100)の利点について、図6を参照して説明する。図6は、高分子12の酸素B1の気体透過係数が互いに異なる種々の実験材料(ガス吸着体1)について抵抗変化率を測定した実験結果を表している。各実験材料に対する実験は、いずれも同じ条件下で行われている。各実験材料において、導電性粒子11はカーボンブラックである。図6において、複数の丸印は、それぞれ複数種類の実験材料と1対1に対応している。また、図6において、縦軸が抵抗変化率、横軸が酸素B1の気体透過係数を表している。 Hereinafter, the advantages of the gas adsorbent 1 (gas sensor 100) of the present embodiment will be described with reference to FIG. FIG. 6 shows the experimental results of measuring the resistance change rate of various experimental materials (gas adsorbent 1) having different gas permeability coefficients of oxygen B1 of the polymer 12. Experiments on each experimental material are carried out under the same conditions. In each experimental material, the conductive particles 11 are carbon black. In FIG. 6, each of the plurality of circles has a one-to-one correspondence with a plurality of types of experimental materials. Further, in FIG. 6, the vertical axis represents the resistance change rate and the horizontal axis represents the gas permeability coefficient of oxygen B1.
 本開示でいう「抵抗変化率」は、揮発性有機化合物A1を吸着していない状態でのガス吸着体1の電気抵抗に対する、揮発性有機化合物A1を吸着した状態でのガス吸着体1の電気抵抗の変化の度合いを表しており、実測値である。また、酸素B1の気体透過係数は、高分子12の分子構造に基づいて、シミュレーションを実行することにより算出された理論値である。 The "resistance change rate" referred to in the present disclosure is the electricity of the gas adsorbent 1 in the state of adsorbing the volatile organic compound A1 with respect to the electric resistance of the gas adsorbent 1 in the state of not adsorbing the volatile organic compound A1. It represents the degree of change in resistance and is an actually measured value. The gas permeability coefficient of oxygen B1 is a theoretical value calculated by executing a simulation based on the molecular structure of the polymer 12.
 図6に示すように、酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕よりも大きい実験材料においては、抵抗変化率は0.2〔%〕で殆ど変動していない。一方、酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の実験材料においては、酸素B1の気体透過係数が小さくなる程、抵抗変化率が指数関数的に増大している。特に、抵抗変換率は、酸素B1の気体透過係数が0.1〔cm・cm/m・day・atm〕以下の領域において顕著に増大している。 As shown in FIG. 6, in the experimental material in which the gas permeability coefficient of oxygen B1 is larger than 0.15 [cm 3 · cm / m 2 · day · atm], the resistance change rate is 0.2 [%], which is almost the same. It has not changed. On the other hand, in the gas permeability coefficient of oxygen B1 is 0.15 [cm 3 · cm / m 2 · day · atm ] The following experimental materials, as the gas permeability coefficient of oxygen B1 decreases, the resistance change rate of exponential function Is increasing. In particular, the resistance conversion rate is remarkably increased in the region where the gas permeability coefficient of oxygen B1 is 0.1 [cm 3 · cm / m 2 · day · atm] or less.
 上記の現象について、以下、検討する。酸素B1がガス吸着体1に吸着すると、導電性粒子11の表面が酸素B1により酸化されると考えられる。そして、導電性粒子11の表面に酸化物が形成されることにより、導電性粒子11に通電しにくくなり、ガス吸着体1の電気抵抗が変化しにくくなる、と推察される。したがって、高分子12の酸素B1の気体透過係数が小さくなればなる程、ガス吸着体1に酸素B1が吸着しにくくなるため、導電性粒子11の表面が酸化されにくくなり、結果としてガス吸着体1の電気抵抗が変化しやすくなる、と推察される。 The above phenomenon will be examined below. When oxygen B1 is adsorbed on the gas adsorbent 1, it is considered that the surface of the conductive particles 11 is oxidized by oxygen B1. It is presumed that the formation of oxides on the surface of the conductive particles 11 makes it difficult to energize the conductive particles 11 and makes it difficult for the electrical resistance of the gas adsorbent 1 to change. Therefore, the smaller the gas permeation coefficient of oxygen B1 of the polymer 12, the more difficult it is for oxygen B1 to be adsorbed on the gas adsorbent 1, so that the surface of the conductive particles 11 is less likely to be oxidized, and as a result, the gas adsorbent It is presumed that the electrical resistance of 1 is likely to change.
 ところで、酸素B1の気体透過係数と、揮発性有機化合物A1の気体透過係数とは、正の相関を有している。したがって、酸素B1の気体透過係数が小さくなれば、揮発性有機化合物A1の気体透過係数も小さくなる。言い換えれば、酸素B1がガス吸着体1に吸着しにくくなればなる程、揮発性有機化合物A1もガス吸着体1に吸着しにくくなる、と考えられる。しかしながら、本願の発明者等は、上述のように酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の分子を含む高分子12を採用することで、揮発性有機化合物A1の気体透過係数が小さくなっているにも関わらず、ガス吸着体1の電気抵抗が変化しやすくなる、という知見を得た。 By the way, the gas permeability coefficient of oxygen B1 and the gas permeability coefficient of the volatile organic compound A1 have a positive correlation. Therefore, as the gas permeability coefficient of oxygen B1 decreases, the gas permeability coefficient of the volatile organic compound A1 also decreases. In other words, it is considered that the more difficult it is for oxygen B1 to be adsorbed on the gas adsorbent 1, the more difficult it is for the volatile organic compound A1 to be adsorbed on the gas adsorbent 1. However, the inventors of the present application have adopted the polymer 12 containing molecules having a gas permeation coefficient of oxygen B1 of 0.15 [cm 3 · cm / m 2 · day · atm] or less as described above. It was found that the electric resistance of the gas adsorbent 1 is likely to change even though the gas permeation coefficient of the volatile organic compound A1 is small.
 ここで、ガス吸着体1における揮発性有機化合物A1の検出精度は、ガス吸着体1の電気抵抗の測定精度に依存する。したがって、抵抗変化率が大きければ大きい程、ガス吸着体1における揮発性有機化合物A1の検出精度が高い、と言える。そして、本実施形態では、上述のように、高分子12の酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下(特には、0.1〔cm・cm/m・day・atm〕以下)である場合に、抵抗変化率が増大している。 Here, the detection accuracy of the volatile organic compound A1 in the gas adsorbent 1 depends on the measurement accuracy of the electrical resistance of the gas adsorbent 1. Therefore, it can be said that the larger the resistance change rate, the higher the detection accuracy of the volatile organic compound A1 in the gas adsorbent 1. Then, in the present embodiment, as described above, the gas permeability coefficient of oxygen B1 of the polymer 12 is 0.15 [cm 3 · cm / m 2 · day · atm] or less (particularly 0.1 [cm 3). · Cm / m 2 · day · atm] or less), the resistance change rate is increasing.
 このため、本実施形態では、高分子12に酸素B1の気体透過係数が0.15〔cm・cm/m・day・atm〕以下である分子(特定分子)が含まれていることから、検出対象の揮発性有機化合物A1の検出精度が向上しやすい、という利点がある。 Therefore, in the present embodiment, the polymer 12 contains a molecule (specific molecule) having a gas permeability coefficient of oxygen B1 of 0.15 [cm 3 · cm / m 2 · day · atm] or less. There is an advantage that the detection accuracy of the volatile organic compound A1 to be detected can be easily improved.
 (4)変形例
 上述の実施形態は、本開示の様々な実施形態の一つにすぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
(4) Modified Example The above-described embodiment is only one of the various embodiments of the present disclosure. The above-described embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved. Hereinafter, modifications of the above-described embodiment will be listed. The modifications described below can be applied in combination as appropriate.
 上述の実施形態において、高分子12は、極性基を有していてもよい。極性基は、カルボキシル基、ヒドロキシ基、ニトリル基、ケトン基、アミノ基、イミノ基、ベンソイル基、シアノ基、又はニトロ基等を含み得る。この態様では、高分子12が極性基を有していない場合と比較して、酸素B1がガス吸着体1に吸着するのを抑制する効果が期待できる。 In the above-described embodiment, the polymer 12 may have a polar group. The polar group may include a carboxyl group, a hydroxy group, a nitrile group, a ketone group, an amino group, an imino group, a benzyl group, a cyano group, a nitro group and the like. In this aspect, an effect of suppressing the adsorption of oxygen B1 to the gas adsorbent 1 can be expected as compared with the case where the polymer 12 does not have a polar group.
 上述の実施形態では、ガス吸着体1は、平面視で円形状に構成されているが、この態様には限らない。例えば、図7及び図8に示すように、ガス吸着体1は、平面視で矩形状に構成されていてもよい。 In the above-described embodiment, the gas adsorbent 1 is formed in a circular shape in a plan view, but the present invention is not limited to this embodiment. For example, as shown in FIGS. 7 and 8, the gas adsorbent 1 may be formed in a rectangular shape in a plan view.
 図7及び図8に示す例では、第1電極21の第1主片211は、第1端子212と同様に、平面視で左右方向に長さを有する矩形状である。また、第2電極22の第2主片221は、第2端子222と同様に、平面視で左右方向に長さを有する矩形状である。さらに、基材3において第1主片211及び第2主片221と対向する箇所には、それぞれ平面視で左右方向に長さを有する矩形状の開口30が設けられている。そして、これらの開口30を覆うように、平面視で矩形状のガス吸着体1が基材3に配置されている。もちろん、ガス吸着体1は、平面視で円形状及び矩形状に限らず、他の形状で構成されていてもよい。 In the examples shown in FIGS. 7 and 8, the first main piece 211 of the first electrode 21 has a rectangular shape having a length in the left-right direction in a plan view, similarly to the first terminal 212. Further, the second main piece 221 of the second electrode 22 has a rectangular shape having a length in the left-right direction in a plan view, similarly to the second terminal 222. Further, a rectangular opening 30 having a length in the left-right direction in a plan view is provided at a position of the base material 3 facing the first main piece 211 and the second main piece 221. Then, the gas adsorbent 1 having a rectangular shape in a plan view is arranged on the base material 3 so as to cover these openings 30. Of course, the gas adsorbent 1 is not limited to a circular shape and a rectangular shape in a plan view, and may be formed in another shape.
 上述の実施形態では、酸素B1の気体透過係数は〔cm・cm/m・day・atm〕で表されているが、これに限らない。例えば、気体透過係数における圧力の単位は、〔atm〕ではなく〔Hg〕、〔bar〕、又は〔Pa〕で表されてもよい。また、例えば、気体透過係数における長さの単位は、〔m〕であってもよいし、〔in〕又は〔mil〕であってもよい。さらに、例えば、気体透過係数における時間の単位は、〔s〕であってもよい。他の単位で気体透過係数を表す場合、酸素B1の気体透過係数は、変換後の単位に応じた値に変換される。 In the above-described embodiment, the gas permeability coefficient of oxygen B1 is represented by [cm 3 · cm / m 2 · day · atm], but is not limited to this. For example, the unit of pressure in the gas permeability coefficient may be expressed as [Hg], [bar], or [Pa] instead of [atm]. Further, for example, the unit of length in the gas permeability coefficient may be [m], [in], or [mil]. Further, for example, the unit of time in the gas permeability coefficient may be [s]. When the gas permeability coefficient is expressed in another unit, the gas permeability coefficient of oxygen B1 is converted into a value corresponding to the converted unit.
 上述の実施形態において、導電性粒子11は、高分子12に分散されていなくてもよい。例えば、導電性粒子11を含む層と高分子12を含む層とが分かれており、高分子12を含む層の上に、導電性粒子11を含む層が形成されていてもよい。 In the above-described embodiment, the conductive particles 11 do not have to be dispersed in the polymer 12. For example, a layer containing the conductive particles 11 and a layer containing the polymer 12 may be separated, and a layer containing the conductive particles 11 may be formed on the layer containing the polymer 12.
 上述の実施形態において、ガス吸着体1は、平面視で一部が開口30を通して電極2と接しているが、この態様には限らない。例えば、ガス吸着体1は、平面視で全体が電極2と接していてもよい。 In the above-described embodiment, the gas adsorbent 1 is partially in contact with the electrode 2 through the opening 30 in a plan view, but the present invention is not limited to this embodiment. For example, the gas adsorbent 1 may be entirely in contact with the electrode 2 in a plan view.
 (まとめ)
 以上述べたように、第1の態様に係るガス吸着体(1)は、ガスセンサ(100)における電極(2)に電気的に接続される。ガスセンサ(100)は、少なくとも検出対象の揮発性有機化合物(A1)を含むガスを検出する。ガス吸着体(1)は、導電性粒子(11)と、高分子(12)と、を含む。高分子(12)は、酸素(B1)の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の分子を含む。
(summary)
As described above, the gas adsorbent (1) according to the first aspect is electrically connected to the electrode (2) in the gas sensor (100). The gas sensor (100) detects a gas containing at least the volatile organic compound (A1) to be detected. The gas adsorbent (1) contains conductive particles (11) and a polymer (12). The polymer (12) contains molecules having a gas permeability coefficient of oxygen (B1) of 0.15 [cm 3 · cm / m 2 · day · atm] or less.
 この態様によれば、検出対象の揮発性有機化合物(A1)の検出精度が向上しやすい、という利点がある。 According to this aspect, there is an advantage that the detection accuracy of the volatile organic compound (A1) to be detected can be easily improved.
 第2の態様に係るガス吸着体(1)では、第1の態様において、高分子(12)は、酸素(B1)の気体透過係数が0.1〔cm・cm/m・day・atm〕以下の分子を含む。 In the gas adsorbent (1) according to the second aspect, in the first aspect, the polymer (12) has a gas permeability coefficient of oxygen (B1) of 0.1 [cm 3 · cm / m 2 · day ·. atm] Contains the following molecules.
 この態様によれば、酸素(B1)の吸着を抑制しやすくなるので、検出対象の揮発性有機化合物(A1)の検出精度が更に向上しやすい、という利点がある。 According to this aspect, since the adsorption of oxygen (B1) can be easily suppressed, there is an advantage that the detection accuracy of the volatile organic compound (A1) to be detected can be further improved.
 第3の態様に係るガス吸着体(1)では、第1又は第2の態様において、導電性粒子(11)は、高分子(12)に分散されている。 In the gas adsorbent (1) according to the third aspect, in the first or second aspect, the conductive particles (11) are dispersed in the polymer (12).
 この態様によれば、揮発性有機化合物(A1)がガス吸着体(1)のいずれの部位に吸着した場合でもガス吸着体(1)の電気抵抗が変化しやすくなる、という利点がある。 According to this aspect, there is an advantage that the electric resistance of the gas adsorbent (1) is likely to change regardless of where the volatile organic compound (A1) is adsorbed on the gas adsorbent (1).
 第4の態様に係るガス吸着体(1)では、第1~第3のいずれかの態様において、高分子(12)は、極性基を有する。 In the gas adsorbent (1) according to the fourth aspect, in any one of the first to third aspects, the polymer (12) has a polar group.
 この態様によれば、酸素(B1)の吸着を抑制しやすくなるので、検出対象の揮発性有機化合物(A1)の検出精度が更に向上しやすい、という利点がある。 According to this aspect, since the adsorption of oxygen (B1) can be easily suppressed, there is an advantage that the detection accuracy of the volatile organic compound (A1) to be detected can be further improved.
 第5の態様に係るガスセンサ(100)は、第1~第4のいずれかの態様のガス吸着体(1)と、ガス吸着体(1)に電気的に接続される電極(2)と、を備える。 The gas sensor (100) according to the fifth aspect includes a gas adsorbent (1) according to any one of the first to fourth aspects, an electrode (2) electrically connected to the gas adsorbent (1), and an electrode (2). To be equipped with.
 この態様によれば、検出対象の揮発性有機化合物(A1)の検出精度が向上しやすい、という利点がある。 According to this aspect, there is an advantage that the detection accuracy of the volatile organic compound (A1) to be detected can be easily improved.
 第6の態様に係るガスセンサ(100)は、第5の態様において、電極(2)が形成された基材(3)を更に備える。ガス吸着体(1)は、基材(3)上に配置されている。電極(2)とガス吸着体(1)とは、基材(3)に設けられた開口(30)を通して電気的に接続されている。 The gas sensor (100) according to the sixth aspect further includes the base material (3) on which the electrode (2) is formed in the fifth aspect. The gas adsorbent (1) is arranged on the base material (3). The electrode (2) and the gas adsorbent (1) are electrically connected to each other through an opening (30) provided in the base material (3).
 この態様によれば、電極(2)の全体がガス吸着体(1)と電気的に接続される場合と比較して、ノイズの低減を図る効果が期待できる、という利点がある。 According to this aspect, there is an advantage that the effect of reducing noise can be expected as compared with the case where the entire electrode (2) is electrically connected to the gas adsorbent (1).
 第2~第4の態様に係る構成については、ガス吸着体(1)に必須の構成ではなく、適宜省略可能である。また、第6の態様に係る構成については、ガスセンサ(100)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to fourth aspects are not essential configurations for the gas adsorbent (1) and can be omitted as appropriate. Further, the configuration according to the sixth aspect is not an essential configuration for the gas sensor (100) and can be omitted as appropriate.
 100 ガスセンサ
 1 ガス吸着体
 11 導電性粒子
 12 高分子
 2 電極
 3 基材
 30 開口
 A1 揮発性有機化合物
 B1 酸素
100 Gas sensor 1 Gas adsorbent 11 Conductive particles 12 Polymer 2 Electrode 3 Base material 30 Opening A1 Volatile organic compound B1 Oxygen

Claims (6)

  1.  少なくとも検出対象の揮発性有機化合物を含むガスを検出するガスセンサにおける電極に電気的に接続され、
     導電性粒子と、
     酸素の気体透過係数が0.15〔cm・cm/m・day・atm〕以下の分子を含む高分子と、を含む、
     ガス吸着体。
    Electrically connected to electrodes in a gas sensor that detects at least a gas containing volatile organic compounds to be detected
    With conductive particles
    A polymer containing a molecule having an oxygen gas permeability coefficient of 0.15 [cm 3 · cm / m 2 · day · atm] or less, and the like.
    Gas adsorbent.
  2.  前記高分子は、前記酸素の気体透過係数が0.1〔cm・cm/m・day・atm〕以下の分子を含む、
     請求項1記載のガス吸着体。
    The polymer contains molecules having a gas permeability coefficient of oxygen of 0.1 [cm 3 · cm / m 2 · day · atm] or less.
    The gas adsorbent according to claim 1.
  3.  前記導電性粒子は、前記高分子に分散されている、
     請求項1又は2に記載のガス吸着体。
    The conductive particles are dispersed in the polymer.
    The gas adsorbent according to claim 1 or 2.
  4.  前記高分子は、極性基を有する、
     請求項1~3のいずれか1項に記載のガス吸着体。
    The polymer has a polar group.
    The gas adsorbent according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載のガス吸着体と、
     前記ガス吸着体に電気的に接続される前記電極と、を備える、
     ガスセンサ。
    The gas adsorbent according to any one of claims 1 to 4 and
    The electrode comprising the electrode electrically connected to the gas adsorbent.
    Gas sensor.
  6.  前記電極が形成された基材を更に備え、
     前記ガス吸着体は、前記基材上に配置され、
     前記電極と前記ガス吸着体とは、前記基材に設けられた開口を通して電気的に接続されている、
     請求項5記載のガスセンサ。
    Further provided with a base material on which the electrodes are formed,
    The gas adsorbent is placed on the substrate and
    The electrode and the gas adsorbent are electrically connected through an opening provided in the base material.
    The gas sensor according to claim 5.
PCT/JP2021/008247 2020-03-25 2021-03-03 Gas adsorbent and gas sensor WO2021192870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055051 2020-03-25
JP2020-055051 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192870A1 true WO2021192870A1 (en) 2021-09-30

Family

ID=77892489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008247 WO2021192870A1 (en) 2020-03-25 2021-03-03 Gas adsorbent and gas sensor

Country Status (1)

Country Link
WO (1) WO2021192870A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532420A (en) * 2001-06-07 2004-10-21 ペラテック リミティド Analytical device for test fluid containing conductive polymer composition
JP2004340945A (en) * 2003-04-11 2004-12-02 Therm-O-Disc Inc Steam sensor and material for the same
JP2010164344A (en) * 2009-01-13 2010-07-29 Nitto Denko Corp Substance detecting sensor
WO2019021890A1 (en) * 2017-07-25 2019-01-31 昭和電工株式会社 Gas-barrier resin composition and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532420A (en) * 2001-06-07 2004-10-21 ペラテック リミティド Analytical device for test fluid containing conductive polymer composition
JP2004340945A (en) * 2003-04-11 2004-12-02 Therm-O-Disc Inc Steam sensor and material for the same
JP2010164344A (en) * 2009-01-13 2010-07-29 Nitto Denko Corp Substance detecting sensor
WO2019021890A1 (en) * 2017-07-25 2019-01-31 昭和電工株式会社 Gas-barrier resin composition and use thereof

Similar Documents

Publication Publication Date Title
Jung et al. Humidity‐tolerant single‐stranded DNA‐functionalized graphene probe for medical applications of exhaled breath analysis
US10024831B2 (en) Graphene gas sensor for measuring the concentration of carbon dioxide in gas environments
Wei et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature
US6894359B2 (en) Sensitivity control for nanotube sensors
Pandey et al. Pd-doped reduced graphene oxide sensing films for H2 detection
Zhang et al. Electrochemically functionalized single‐walled carbon nanotube gas sensor
US10247689B2 (en) Low concentration ammonia nanosensor
JP5424794B2 (en) Chemical sensors using thin-film sensing members
Moon et al. All villi-like metal oxide nanostructures-based chemiresistive electronic nose for an exhaled breath analyzer
KR101817334B1 (en) High sensitive gas sensor in high humidity based on carbon-nano materials
Li et al. Polyaniline–chitosan nanocomposite: high performance hydrogen sensor from new principle
WO2004059298A1 (en) Miniaturized gas sensors featuring electrical breakdown in the vicinity of carbon nanotube tips
WO2020031909A1 (en) Mems type semiconductor gas detection element
US9418857B2 (en) Sensor component for a gas and/or liquid sensor, production method for a sensor component for a gas and/or liquid sensor, and method for detecting at least one material in a gaseous and/or liquid medium
EP2362216A1 (en) Carbon nanotube SB-FET hydrogen sensor and methods for its manufacture and operation
JPWO2018186268A1 (en) Gas sensor
Kim et al. Single-walled carbon nanotube-based chemi-capacitive sensor for hexane and ammonia
US8389325B2 (en) Selective functionalization by joule effect thermal activation
JP6035087B2 (en) Gas sensor, gas measuring device, and gas sensor manufacturing method
WO2021192870A1 (en) Gas adsorbent and gas sensor
Donato et al. Novel carbon nanotubes-based hybrid composites for sensing applications
Cobianu et al. Room temperature chemiresistive ethanol detection by ternary nanocomposites of oxidized single wall carbon nanohorn (ox-SWCNH)
WO2019151129A1 (en) Adsorber, concentrator and detection device
Ionete et al. SWCNT-Pt-P 2 O 5-Based Sensor for Humidity Measurements
JP2023042090A (en) gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP