WO2021192823A1 - Tapered tem horn antenna - Google Patents

Tapered tem horn antenna Download PDF

Info

Publication number
WO2021192823A1
WO2021192823A1 PCT/JP2021/007641 JP2021007641W WO2021192823A1 WO 2021192823 A1 WO2021192823 A1 WO 2021192823A1 JP 2021007641 W JP2021007641 W JP 2021007641W WO 2021192823 A1 WO2021192823 A1 WO 2021192823A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
antenna
tem horn
antenna element
region
Prior art date
Application number
PCT/JP2021/007641
Other languages
French (fr)
Japanese (ja)
Inventor
勝茂 張間
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2021192823A1 publication Critical patent/WO2021192823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Definitions

  • the present invention relates to a tapered TEM horn antenna used for EMC tests such as proximity radiation immunity test.
  • Non-Patent Document 1 The international standard proximity radiation immunity test stipulates the use of a TEM horn antenna (Non-Patent Document 1).
  • This TEM horn antenna is composed of a pair of metal plates arranged so as to face each other, and it is necessary to consider matching of the characteristic impedances of the feeding portion and the opening in order to reduce the influence of reflection.
  • Non-Patent Documents 2 and 3 a linear taper TEM horn antenna that is resistance-loaded on a plate having a linear spread is known. Further, an exponential taper TEM horn antenna that does not require resistance loading by applying an exponential taper transmission line to a plate structure is also known (Non-Patent Documents 4 and 5).
  • the conventional linear taper TEM horn antenna has a problem that the radiation efficiency is lowered due to the resistance loaded on the plate.
  • the conventional exponential taper TEM horn antenna has a problem due to the structure that there is a frequency band in which the maximum gain direction and the front direction of the antenna do not match.
  • the conventional linear taper TEM horn antenna and the exponential taper TEM horn antenna have an antenna length of half a wavelength or more of the lower limit frequency, and therefore become large in the 300 MHz band or less.
  • an object of the present invention is to provide a tapered TEM horn antenna having high radiation efficiency over a wide frequency band, good reflection characteristics and radiation characteristics, and a small size.
  • the tapered TEM horn antenna according to the present invention is a tapered TEM horn antenna including a pair of antenna elements arranged to face each other and a feeding portion connected to one end of the pair of antenna elements. Therefore, the antenna element is a narrowing portion that expands in the width direction in a linear taper shape from one end to the opening formed on the opposite side of the one end, and narrows in the width direction from both ends of the opening toward the center.
  • the pair of antenna elements had a curved taper shape represented by an exponential function and spread in the height direction from one end to the opening.
  • a hybrid structure having a linear taper shape and a curved taper shape that matches the characteristic impedance of the taper transmission line so that the characteristic impedance changes continuously is adopted, and predetermined from both ends of the opening. Removed the size area.
  • impedance matching due to resistance loading is not required, and the maximum gain direction and the front direction of the antenna can be matched. Therefore, the tapered TEM horn antenna has high radiation efficiency over a wide frequency band, has good reflection characteristics and radiation characteristics, and can be miniaturized.
  • FIG. 1 It is a schematic block diagram of the taper TEM horn antenna which concerns on embodiment, (a) shows after removing a region, (b) shows before removing a region.
  • A is a plan view of the tapered TEM horn antenna according to the embodiment, and (b) is a side view of the tapered TEM horn antenna. It is explanatory drawing explaining the region to remove from the antenna element in embodiment.
  • A) to (c) are plan views which show another example of a taper TEM horn antenna.
  • (A) is a graph showing the gain characteristics in the examples
  • (b) is a graph showing the gain characteristics in the comparative examples.
  • (A) is a graph showing the reflection characteristics in the examples
  • (b) is a graph showing the reflection characteristics in the comparative examples
  • (A) to (f) are graphs showing the electric field distribution at a typical test frequency at a location 10 cm away from the opening surface of the antenna in the embodiment.
  • tapered TEM horn antenna 1 the configuration of the tapered TEM horn antenna 1 according to the embodiment will be described.
  • FIG. 1 (a) tapered TEM horn antenna 1, the opposed pair of antenna elements which are arranged 10 (10 1, 10 2), which is connected to one end of the pair of antenna elements 10 feed A unit 20 is provided.
  • the horizontal direction is defined as the X axis
  • the vertical direction is defined as the Y axis
  • the depth direction is defined as the D axis. That is, it is a three-dimensional coordinate system in which the horizontal direction, the vertical direction, and the depth direction are orthogonal to each other.
  • the antenna element before forming the narrowing portion 14 described later is described as “antenna element 90”
  • the antenna element after forming the narrowing portion 14 is described as “antenna element 10”.
  • the antenna element 10 and the antenna element 90 will be described separately as needed.
  • the antenna element 90 is shown by a broken line. Further, when the two antenna elements are described together, it is simply described as “antenna element 10".
  • the pair of antenna elements 10 are arranged so that the two antenna elements 10 1 and 102 face each other and emit electromagnetic waves. That is, the flat surfaces of the two antenna elements 10 1 and 102 are arranged so as to face each other. Further, the two antenna elements 10 1 and 10 2 have the same shape and the same size.
  • the antenna element 10 can be formed of a metal plate such as aluminum, copper, or brass, and its thickness is 0.7 mm.
  • the feeding portion 20 is connected to one end portion 11, and the opening 12 is formed on the opposite side of the one end portion 11 in the depth direction.
  • the XY plane in the opening 12 will be referred to as an “opening surface”.
  • the antenna element 10 has a hybrid structure having a linear taper shape and a curved taper shape so that the characteristic impedance continuously changes from the feeding portion 20 to the opening portion 12.
  • the antenna element 10 has a linear taper shape from one end 11 toward the opening 12 in the horizontal direction. It has spread to. That is, the closer the one end portion 11 to the opening portion 12 in the depth direction, the wider the width of the antenna element 90 becomes linearly. Further, as shown in FIG.
  • the antenna element 10 is formed with a narrowing portion 14 narrowing in the width direction from both end sides to the center side of the opening 12. That is, in the antenna element 10, the width reduction portion 14 is formed so that the width of the antenna element 10 becomes narrower from the vicinity of the center to the opening 12 in the depth direction.
  • the width reduction portion 14 can be formed on the antenna element 10 by removing the region 13 having a predetermined size from both ends of the antenna element 90.
  • each of the antenna elements 10 1, 10 2 in total from both ends four locations, triangular regions 13 1-13 4 is removed.
  • the entire region 13 1-13 4 are the same shape and the same size.
  • the power feeding unit 20 is connected to one end 11 of the antenna element 10 and supplies electric power of electromagnetic waves radiated by the antenna element 10.
  • the power supply unit 20 the coaxial feeding section and the like which are connected to the respective antenna elements 10 1, 10 2.
  • the total length L of the antenna element 10 represents the length from one end 11 to the opening 12 in the depth direction.
  • the total width W of the antenna element 10 before removing the region 13 is equivalent to the total width of the antenna element 90, and represents the width of the opening 12 in the horizontal direction.
  • the total height H of the antenna element 10 represents the height of the opening 12 in the vertical direction.
  • the width w (d) of the antenna element 10 before removing the region 13 is equivalent to the width of the antenna element 90, and the following equation (1) And expressed by equation (2).
  • the distance d represents the distance from one end portion 11 to an arbitrary position in the depth direction.
  • the antenna elements 10 1, 10 2 of the spacing h (d) is an exponential function (exactly as shown in the following equation (3) to (5) Is the product of the exponential function and the linear function).
  • the tapered TEM horn antenna 1 has the characteristic impedance Z (d) of the exponential taper transmission line at an arbitrary distance d.
  • the distance h (d) between the two antenna elements 10 1 and 102 uses the characteristic impedance Z (d) of the exponential taper transmission line and the width w (d) represented by a linear taber shape. It is represented by the above equation (3).
  • the width w (d) and the interval h (d) of the antenna element 10 can be determined so that the characteristic impedance of the antenna maintains the characteristic impedance of the tapered transmission line.
  • the region 13 to be removed from both ends of the antenna element 10 will be described with reference to FIG.
  • the region 13 is removed from the left end 12 L of the antenna element 10 in order to make the drawing easier to see.
  • the right end 12 R of the antenna element 10 is also removed in the same manner as the left end 12 L (not shown in FIG. 3).
  • the antenna element 10 is shown by a broken line, and the feeding unit 20 is not shown.
  • the region 13 is a region having a minimum region R min or more and a maximum region R max or less.
  • the region 13 up to the line is removed.
  • the antenna element 10 can be linearly removed within the range illustrated by the hatching in FIG.
  • the antenna element 10 is located w c becomes scalene hexagonal shape in the case of less than 50% of the opening width W, the position w c is the scalene pentagonal shape when 50% of the aperture width W.
  • the antenna element 10 may be removed in a curved shape as long as it is within the range shown by the hatching in FIG. As shown in FIG. 4B, the concave curved region 13 may be removed from both ends of the antenna element 10. In this case, the antenna element 10 is formed with a width reduction portion 14 that swells in the horizontal direction. Further, as shown in FIG. 4C, the convex curved region 13 may be removed from both ends of the antenna element 10. In this case, the antenna element 10 is formed with a width reduction portion 14 that contracts in the horizontal direction.
  • the method of manufacturing the antenna element 10 is arbitrary. For example, the region 13 may be cut off from both ends of the antenna element 90 of FIG. 1 (b).
  • the tapered TEM horn antenna 1 According to the tapered TEM horn antenna 1 according to the embodiment, a hybrid structure having a linear tapered shape and a curved tapered shape is adopted, and regions 13 of a predetermined size are removed from both ends of the opening 12, so that the characteristic impedance matching can be performed. No resistance loading is required, and the maximum gain direction can be matched with the front direction of the antenna. As a result, the tapered TEM horn antenna 1 has high radiation efficiency over a wide frequency band, has good reflection characteristics and radiation characteristics, and can be miniaturized.
  • the total length of the antenna element is 56 cm.
  • the total length L of the antenna element 10 is reduced to less than half, and the size can be significantly reduced as compared with the conventional case.
  • the taper TEM horn antenna provided with the antenna element 90 will be described as a comparative example.
  • the tapered TEM horn antenna according to the comparative example has the same configuration as that of the embodiment except that the region 13 is not removed from the antenna element 90.
  • FIGS. 5 and 6 The characteristics (gain characteristics, reflection characteristics) of the tapered TEM horn antenna 1 according to the embodiment are shown in FIGS. 5 and 6. These gain characteristics and reflection characteristics are calculation results (simulation results) by the finite integration method.
  • FIG. 5A is a graph showing the gain characteristics in the examples
  • FIG. 5B is a graph showing the gain characteristics in the comparative examples.
  • the horizontal axis is the frequency and the vertical axis is the gain.
  • the gain in the front direction of the antenna at each frequency is shown by a solid line, and the maximum gain at each frequency is shown by a broken line.
  • the solid line and the broken line overlap in all frequency bands, and the maximum gain is obtained in the front direction.
  • the tapered TEM horn antenna 1 according to the embodiment has directivity without beam cracking.
  • the solid line and the broken line are deviated in the frequency band of about 4 GHz to 6 GHz, and the maximum gain is not obtained in the front direction of the antenna.
  • FIG. 6A is a graph showing the reflection characteristics in the examples
  • FIG. 6B is a graph showing the reflection characteristics in the comparative examples.
  • the horizontal axis is the frequency and the vertical axis is the voltage standing wave ratio (VSWR: Voltage Standing Wave Ratio).
  • VSWR Voltage Standing Wave Ratio
  • FIG. 6 the standard limit value for the antenna of the proximity radiation immunity test is shown by a broken line.
  • VSWR is less than the standard limit value in all frequency bands, which completely satisfies the standard of the proximity radiation immunity test.
  • FIG. 6B in the comparative example, there is a frequency band in which VSWR exceeds the standard limit value.
  • the tapered TEM horn antenna 1 according to the embodiment completely satisfies the standard of the proximity radiation immunity test.
  • FIG. 7 is a graph showing the electric field distribution at a typical test frequency at a location 10 cm away from the opening surface of the antenna.
  • the horizontal axis represents the horizontal position
  • the vertical axis represents the vertical position
  • 0 cm represents the center of the opening 12 of the antenna element 10.
  • a good electric field irradiation region without failure can be formed in the vicinity of the antenna in the entire frequency band.
  • a sufficiently wide electric field irradiation region is secured in the high frequency band, which is important in the proximity radiation immunity test.
  • the tapered TEM horn antenna 1 according to the embodiment has high radiation efficiency because it does not require resistance loading, and has reflection characteristics that satisfy the specifications of the proximity radiation immunity test at all test frequencies. Further, the tapered TEM horn antenna 1 according to the embodiment has directivity without beam cracking and has radiation characteristics capable of forming a good electric field irradiation region in the vicinity of the antenna. As described above, the tapered TEM horn antenna 1 according to the embodiment is considered to be most suitable as a small antenna for EMC testing.

Abstract

Provided is a tapered TEM horn antenna which has high radiation efficiency across a wide frequency band, which has favorable reflection characteristics and radiation characteristics, and which is small. A tapered TEM horn antenna (1) is provided with a pair of antenna elements (10,10)that expand, from an end section (11) to an opening section (12), in the height direction in a curved tapered shape expressed by an exponential function.

Description

テーパーTEMホーンアンテナTapered TEM horn antenna
 本発明は、近接放射イミュニティ試験等のEMC試験に用いるテーパーTEMホーンアンテナに関する。 The present invention relates to a tapered TEM horn antenna used for EMC tests such as proximity radiation immunity test.
 国際規格の近接放射イミュニティ試験では、TEMホーンアンテナの使用を規定している(非特許文献1)。このTEMホーンアンテナは、対向して配置された一対の金属プレートからなり、反射の影響を低減するために、給電部及び開口部の特性インピーダンスの整合を考慮する必要がある。 The international standard proximity radiation immunity test stipulates the use of a TEM horn antenna (Non-Patent Document 1). This TEM horn antenna is composed of a pair of metal plates arranged so as to face each other, and it is necessary to consider matching of the characteristic impedances of the feeding portion and the opening in order to reduce the influence of reflection.
 従来、直線状の広がりを有するプレートに抵抗装荷した直線テーパーTEMホーンアンテナが知られている(非特許文献2,3)。また、指数関数テーパー伝送線路をプレート構造に適用することで、抵抗装荷を不要とした指数関数テーパーTEMホーンアンテナも知られている(非特許文献4,5)。 Conventionally, a linear taper TEM horn antenna that is resistance-loaded on a plate having a linear spread is known (Non-Patent Documents 2 and 3). Further, an exponential taper TEM horn antenna that does not require resistance loading by applying an exponential taper transmission line to a plate structure is also known (Non-Patent Documents 4 and 5).
 しかし、従来の直線テーパーTEMホーンアンテナは、プレート上に装荷された抵抗のため、放射効率が低下するという問題がある。また、従来の指数関数テーパーTEMホーンアンテナは、最大利得方向とアンテナの正面方向とが一致しない周波数帯が存在するという構造に起因する問題がある。さらに、従来の直線テーパーTEMホーンアンテナ及び指数関数テーパーTEMホーンアンテナは、下限周波数の半波長以上のアンテナ長となるため、300MHz帯以下で大型化してしまう。 However, the conventional linear taper TEM horn antenna has a problem that the radiation efficiency is lowered due to the resistance loaded on the plate. Further, the conventional exponential taper TEM horn antenna has a problem due to the structure that there is a frequency band in which the maximum gain direction and the front direction of the antenna do not match. Further, the conventional linear taper TEM horn antenna and the exponential taper TEM horn antenna have an antenna length of half a wavelength or more of the lower limit frequency, and therefore become large in the 300 MHz band or less.
 そこで、本発明は、広い周波数帯域にわたって放射効率が高く、良好な反射特性及び放射特性を有し、かつ、小型なテーパーTEMホーンアンテナを提供することを課題とする。 Therefore, an object of the present invention is to provide a tapered TEM horn antenna having high radiation efficiency over a wide frequency band, good reflection characteristics and radiation characteristics, and a small size.
 前記課題を解決するため、本発明に係るテーパーTEMホーンアンテナは、対向して配置された一対のアンテナ素子と、一対のアンテナ素子の一端部に接続された給電部とを備えるテーパーTEMホーンアンテナであって、アンテナ素子は、一端部から一端部の反対側に形成された開口部に向けて直線テーパー状で幅方向に広がり、開口部の両端側から中央側に幅方向で狭くなる減幅部が形成され、一対のアンテナ素子は、一端部から開口部まで、指数関数で表される曲線テーパー状で高さ方向に広がる構成とした。 In order to solve the above problems, the tapered TEM horn antenna according to the present invention is a tapered TEM horn antenna including a pair of antenna elements arranged to face each other and a feeding portion connected to one end of the pair of antenna elements. Therefore, the antenna element is a narrowing portion that expands in the width direction in a linear taper shape from one end to the opening formed on the opposite side of the one end, and narrows in the width direction from both ends of the opening toward the center. Was formed, and the pair of antenna elements had a curved taper shape represented by an exponential function and spread in the height direction from one end to the opening.
 かかるテーパーTEMホーンアンテナによれば、特性インピーダンスが連続的に変化するようにテーパー伝送線路の特性インピーダンスに一致させた直線テーパー状及び曲線テーパー状からなるハイブリッド構造を採用し、開口部の両端から所定サイズの領域を除去した。これにより、テーパーTEMホーンアンテナによれば、抵抗装荷によるインピーダンス整合が必要なく、最大利得方向とアンテナの正面方向とを一致させることができる。従って、テーパーTEMホーンアンテナによれば、広い周波数帯域にわたって放射効率が高く、良好な反射特性及び放射特性を有し、かつ、小型化を図ることができる。 According to such a tapered TEM horn antenna, a hybrid structure having a linear taper shape and a curved taper shape that matches the characteristic impedance of the taper transmission line so that the characteristic impedance changes continuously is adopted, and predetermined from both ends of the opening. Removed the size area. As a result, according to the tapered TEM horn antenna, impedance matching due to resistance loading is not required, and the maximum gain direction and the front direction of the antenna can be matched. Therefore, the tapered TEM horn antenna has high radiation efficiency over a wide frequency band, has good reflection characteristics and radiation characteristics, and can be miniaturized.
 本発明によれば、広い周波数帯域にわたって放射効率が高く、良好な反射特性及び放射特性を有し、かつ、小型なテーパーTEMホーンアンテナを実現することができる。 According to the present invention, it is possible to realize a compact tapered TEM horn antenna having high radiation efficiency over a wide frequency band, good reflection characteristics and radiation characteristics.
実施形態に係るテーパーTEMホーンアンテナの概略構成図であり、(a)は領域を除去した後を示し、(b)は領域を除去する前を示す。It is a schematic block diagram of the taper TEM horn antenna which concerns on embodiment, (a) shows after removing a region, (b) shows before removing a region. (a)は実施形態に係るテーパーTEMホーンアンテナの平面図であり、(b)はテーパーTEMホーンアンテナの側面図である。(A) is a plan view of the tapered TEM horn antenna according to the embodiment, and (b) is a side view of the tapered TEM horn antenna. 実施形態において、アンテナ素子から除去する領域を説明する説明図である。It is explanatory drawing explaining the region to remove from the antenna element in embodiment. (a)~(c)は、テーパーTEMホーンアンテナの別例を示す平面図である。(A) to (c) are plan views which show another example of a taper TEM horn antenna. (a)は実施例における利得特性を示すグラフであり、(b)は比較例における利得特性を示すグラフである。(A) is a graph showing the gain characteristics in the examples, and (b) is a graph showing the gain characteristics in the comparative examples. (a)は実施例における反射特性を示すグラフであり、(b)は比較例における反射特性を示すグラフである。(A) is a graph showing the reflection characteristics in the examples, and (b) is a graph showing the reflection characteristics in the comparative examples. (a)~(f)は、実施例においてアンテナの開口面から10cm離れた場所で代表的な試験周波数における電界分布を示すグラフである。(A) to (f) are graphs showing the electric field distribution at a typical test frequency at a location 10 cm away from the opening surface of the antenna in the embodiment.
 以下、本発明の実施形態について図面を参照して説明する。但し、以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、実施形態において、同一の手段には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. Further, in the embodiment, the same means may be designated by the same reference numerals and the description thereof may be omitted.
[テーパーTEMホーンアンテナの構成]
 以下、実施形態に係るテーパーTEMホーンアンテナ1の構成を説明する。
 図1(a)に示すように、テーパーTEMホーンアンテナ1は、対向して配置された一対のアンテナ素子10(10,10)と、一対のアンテナ素子10の一端部に接続された給電部20とを備える。
[Configuration of taper TEM horn antenna]
Hereinafter, the configuration of the tapered TEM horn antenna 1 according to the embodiment will be described.
As shown in FIG. 1 (a), tapered TEM horn antenna 1, the opposed pair of antenna elements which are arranged 10 (10 1, 10 2), which is connected to one end of the pair of antenna elements 10 feed A unit 20 is provided.
 以後、水平方向(幅方向)をX軸、垂直方向(高さ方向)をY軸、及び、奥行方向をD軸とする。すなわち、水平方向、垂直方向及び奥行方向が互いに直交する3次元座標系となる。
 また、後記する減幅部14を形成する前のアンテナ素子を「アンテナ素子90」と記載し、減幅部14を形成した後のアンテナ素子を「アンテナ素子10」と記載する。以後、必要に応じて、アンテナ素子10とアンテナ素子90とを区別して説明する。また、図1(a)及び図2(a)では、アンテナ素子90を破線で図示した。
 また、2枚のアンテナ素子をまとめて説明する場合、単に「アンテナ素子10」と記載する。
Hereinafter, the horizontal direction (width direction) is defined as the X axis, the vertical direction (height direction) is defined as the Y axis, and the depth direction is defined as the D axis. That is, it is a three-dimensional coordinate system in which the horizontal direction, the vertical direction, and the depth direction are orthogonal to each other.
Further, the antenna element before forming the narrowing portion 14 described later is described as "antenna element 90", and the antenna element after forming the narrowing portion 14 is described as "antenna element 10". Hereinafter, the antenna element 10 and the antenna element 90 will be described separately as needed. Further, in FIGS. 1 (a) and 2 (a), the antenna element 90 is shown by a broken line.
Further, when the two antenna elements are described together, it is simply described as "antenna element 10".
 一対のアンテナ素子10は、2枚のアンテナ素子10,10が対向するように配置されており、電磁波を放射するものである。つまり、2枚のアンテナ素子10,10の平坦面が、互いに向き合うように配置されている。また、2枚のアンテナ素子10,10は、同一形状及び同一サイズである。例えば、アンテナ素子10は、アルミニウム、銅、黄銅などの金属プレートで形成可能であり、その厚さが0.7mmである。 The pair of antenna elements 10 are arranged so that the two antenna elements 10 1 and 102 face each other and emit electromagnetic waves. That is, the flat surfaces of the two antenna elements 10 1 and 102 are arranged so as to face each other. Further, the two antenna elements 10 1 and 10 2 have the same shape and the same size. For example, the antenna element 10 can be formed of a metal plate such as aluminum, copper, or brass, and its thickness is 0.7 mm.
 アンテナ素子10は、一端部11に給電部20が接続されており、奥行方向で一端部11の反対側に開口部12が形成されている。以後、開口部12におけるX-Y平面を「開口面」と記載する。 In the antenna element 10, the feeding portion 20 is connected to one end portion 11, and the opening 12 is formed on the opposite side of the one end portion 11 in the depth direction. Hereinafter, the XY plane in the opening 12 will be referred to as an “opening surface”.
 ここで、アンテナ素子10は、給電部20から開口部12まで特性インピーダンスが連続的に変化するように、直線テーパー状及び曲線テーパー状からなるハイブリッド構造を有する。具体的には、図2(a)に示すように、テーパーTEMホーンアンテナ1を垂直方向から見た場合、アンテナ素子10は、一端部11から開口部12に向けて、直線テーパー状で水平方向に広がっている。つまり、奥行方向で一端部11から開口部12に近づくほど、アンテナ素子90の幅が直線状に広くなる。また、図2(b)に示すように、テーパーTEMホーンアンテナ1を水平方向から見た場合、アンテナ素子10,10の間隔は、一端部11から開口部12まで、指数関数で表される曲線テーパー状で垂直方向に広くなる。つまり、奥行方向で一端部11から開口部12に近づくほど、アンテナ素子10,10の間隔が曲線状に広くなる。 Here, the antenna element 10 has a hybrid structure having a linear taper shape and a curved taper shape so that the characteristic impedance continuously changes from the feeding portion 20 to the opening portion 12. Specifically, as shown in FIG. 2A, when the tapered TEM horn antenna 1 is viewed from the vertical direction, the antenna element 10 has a linear taper shape from one end 11 toward the opening 12 in the horizontal direction. It has spread to. That is, the closer the one end portion 11 to the opening portion 12 in the depth direction, the wider the width of the antenna element 90 becomes linearly. Further, as shown in FIG. 2 (b), when viewed tapered TEM horn antenna 1 from the horizontal spacing of the antenna elements 10 1, 10 2, from one end 11 to the opening 12 is represented by an exponential function Curve taper and widen in the vertical direction. That is, from one end 11 in the depth direction closer to the opening 12, the spacing of the antenna elements 10 1, 10 2 is widely curved.
 さらに、図1(a)及び図2(a)に示すように、アンテナ素子10は、開口部12の両端側から中央側に幅方向で狭くなる減幅部14が形成されている。つまり、アンテナ素子10は、奥行方向で中央付近から開口部12にかけて、アンテナ素子10の幅が狭くなるように減幅部14が形成されている。ここでは、アンテナ素子90の両端から所定サイズの領域13を除去することで、アンテナ素子10に減幅部14を形成できる。本実施形態では、各アンテナ素子10,10の両端から合計4カ所、三角形状の領域13~13が除去されている。なお、全領域13~13は、同一形状及び同一サイズである。 Further, as shown in FIGS. 1A and 2A, the antenna element 10 is formed with a narrowing portion 14 narrowing in the width direction from both end sides to the center side of the opening 12. That is, in the antenna element 10, the width reduction portion 14 is formed so that the width of the antenna element 10 becomes narrower from the vicinity of the center to the opening 12 in the depth direction. Here, the width reduction portion 14 can be formed on the antenna element 10 by removing the region 13 having a predetermined size from both ends of the antenna element 90. In this embodiment, each of the antenna elements 10 1, 10 2 in total from both ends four locations, triangular regions 13 1-13 4 is removed. Incidentally, the entire region 13 1-13 4 are the same shape and the same size.
 給電部20は、アンテナ素子10の一端部11に接続されており、アンテナ素子10が放射する電磁波の電力を給電するものである。例えば、給電部20としては、アンテナ素子10,10のそれぞれに接続された同軸給電部があげられる。 The power feeding unit 20 is connected to one end 11 of the antenna element 10 and supplies electric power of electromagnetic waves radiated by the antenna element 10. For example, the power supply unit 20, the coaxial feeding section and the like which are connected to the respective antenna elements 10 1, 10 2.
[アンテナ素子の構造]
 以下、アンテナ素子10の構造について詳細に説明する。
 以後、アンテナ素子10の全長、全幅及び全高をそれぞれL、W、Hとして説明する。なお、アンテナ素子10の全長Lは、奥行方向における一端部11から開口部12まで長さを表す。また、領域13を除去する前のアンテナ素子10の全幅Wは、アンテナ素子90の全幅と等価であり、水平方向における開口部12の幅を表す。また、アンテナ素子10の全高Hは、垂直方向における開口部12の高さを表す。
[Antenna element structure]
Hereinafter, the structure of the antenna element 10 will be described in detail.
Hereinafter, the overall length, width, and height of the antenna element 10 will be described as L, W, and H, respectively. The total length L of the antenna element 10 represents the length from one end 11 to the opening 12 in the depth direction. Further, the total width W of the antenna element 10 before removing the region 13 is equivalent to the total width of the antenna element 90, and represents the width of the opening 12 in the horizontal direction. Further, the total height H of the antenna element 10 represents the height of the opening 12 in the vertical direction.
 図2(a)に示すように、任意の距離dにおいて、領域13を除去する前のアンテナ素子10の幅w(d)は、アンテナ素子90の幅と等価であり、以下の式(1)及び式(2)で表される。なお、一端部11の幅w=w(0)であり、開口部12の幅W=w=w(L)である。また、距離dは、奥行方向における一端部11から任意位置までの距離を表す。 As shown in FIG. 2A, at an arbitrary distance d, the width w (d) of the antenna element 10 before removing the region 13 is equivalent to the width of the antenna element 90, and the following equation (1) And expressed by equation (2). The width w 0 = w (0) of the one end portion 11 and the width W = w L = w (L) of the opening 12. Further, the distance d represents the distance from one end portion 11 to an arbitrary position in the depth direction.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図2(b)に示すように、任意の距離dにおいて、アンテナ素子10,10の間隔h(d)は、以下の式(3)~式(5)に示すように指数関数(正確には、指数関数と一次関数との積)で表される。なお、一端部11における入力インピーダンスZ=Z(0)であり、開口部12における特性インピーダンスZ=Z(L)である。 As shown in FIG. 2 (b), at any distance d, the antenna elements 10 1, 10 2 of the spacing h (d) is an exponential function (exactly as shown in the following equation (3) to (5) Is the product of the exponential function and the linear function). The input impedance Z 0 = Z (0) at the one end portion 11 and the characteristic impedance Z L = Z (L) at the opening 12.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、テーパーTEMホーンアンテナ1は、前記した式(4)に示すように、任意の距離dにおいて、指数関数テーパー伝送線路の特性インピーダンスZ(d)を有する。ここで、微小幅を有する多数の平行平板でアンテナ素子10を構成する場合を考える。この場合、2枚のアンテナ素子10,10の間隔h(d)は、指数関数テーパー伝送線路の特性インピーダンスZ(d)と、直線テーバ状で表される幅w(d)とを用いて、前記した式(3)で表される。 That is, as shown in the above equation (4), the tapered TEM horn antenna 1 has the characteristic impedance Z (d) of the exponential taper transmission line at an arbitrary distance d. Here, consider a case where the antenna element 10 is composed of a large number of parallel flat plates having a minute width. In this case, the distance h (d) between the two antenna elements 10 1 and 102 uses the characteristic impedance Z (d) of the exponential taper transmission line and the width w (d) represented by a linear taber shape. It is represented by the above equation (3).
 このようにして、テーパーTEMホーンアンテナ1では、アンテナの特性インピーダンスがテーパー伝送線路の特性インピーダンスを維持するように、アンテナ素子10の幅w(d)及び間隔h(d)を決定できる。 In this way, in the tapered TEM horn antenna 1, the width w (d) and the interval h (d) of the antenna element 10 can be determined so that the characteristic impedance of the antenna maintains the characteristic impedance of the tapered transmission line.
 以下、図3を参照し、アンテナ素子10の両端から除去する領域13を説明する。なお、図3では、図面を見やすくするために、アンテナ素子10の左端12から領域13を除去することとして説明する。当然ながら、アンテナ素子10の右端12も左端12と同様に除去することは言うまでもない(図3不図示)。また、図3では、図面を見やすくするために、アンテナ素子10を破線で図示すると共に、給電部20の図示を省略した。 Hereinafter, the region 13 to be removed from both ends of the antenna element 10 will be described with reference to FIG. In FIG. 3, the region 13 is removed from the left end 12 L of the antenna element 10 in order to make the drawing easier to see. Needless to say, the right end 12 R of the antenna element 10 is also removed in the same manner as the left end 12 L (not shown in FIG. 3). Further, in FIG. 3, in order to make the drawing easier to see, the antenna element 10 is shown by a broken line, and the feeding unit 20 is not shown.
 図3に示すように、領域13は、最小領域Rmin以上、かつ、最大領域Rmax以下となる領域である。ここで、最小領域Rminは、アンテナ素子10の左端12から開口幅Wの20%の位置wminで、開口面に対してθ=60°となる境界線Lminまでの領域である。また、最大領域Rmaxは、アンテナ素子10の左端12から開口幅Wの50%の位置wmaxで、開口面に対してθ=60°となる境界線Lmaxまでの領域である。すなわち、アンテナ素子10の左端12から、最大領域Rmaxと最小領域Rminとの差分となる範囲内(図3にハッチングで図示した範囲内)で除去すればよい。 As shown in FIG. 3, the region 13 is a region having a minimum region R min or more and a maximum region R max or less. Here, the minimum region R min is a region from the left end 12 L of the antenna element 10 to the boundary line L min where θ = 60 ° with respect to the opening surface at the position w min at 20% of the opening width W. The maximum region R max is a region from the left end 12 L of the antenna element 10 to the boundary line L max where θ = 60 ° with respect to the aperture surface at the position w max of 50% of the aperture width W. That is, it may be removed from the left end 12 L of the antenna element 10 within a range that is the difference between the maximum region R max and the minimum region R min (within the range shown by hatching in FIG. 3).
 例えば、図2(a)のアンテナ素子10は、その両端から図3のハッチングで図示した範囲内である開口幅Wの37%の位置wで開口面に対してθ=50°となる境界線までの領域13を除去している。また、図4(a)に示すように、アンテナ素子10は、その両端から開口幅Wの46%の位置で開口面に対してθ=43°となる境界線までの領域13を除去してもよい。このように、アンテナ素子10は、図3のハッチングで図示した範囲内で直線状に除去できる。なお、アンテナ素子10は、位置wが開口幅Wの50%未満の場合に不等辺6角形状となり、位置wが開口幅Wの50%のときに不等辺5角形状となる。 For example, the antenna element 10 of FIG. 2A has a boundary where θ = 50 ° with respect to the opening surface at a position w c of 37% of the opening width W within the range shown by hatching in FIG. 3 from both ends thereof. The region 13 up to the line is removed. Further, as shown in FIG. 4A, the antenna element 10 removes the region 13 from both ends thereof to the boundary line where θ = 43 ° with respect to the opening surface at a position of 46% of the opening width W. May be good. In this way, the antenna element 10 can be linearly removed within the range illustrated by the hatching in FIG. The antenna element 10 is located w c becomes scalene hexagonal shape in the case of less than 50% of the opening width W, the position w c is the scalene pentagonal shape when 50% of the aperture width W.
 また、アンテナ素子10は、図3のハッチングで図示した範囲内であれば、曲線状に除去してもよい。図4(b)に示すように、アンテナ素子10の両端から、凹曲線状の領域13を除去してもよい。この場合、アンテナ素子10は、水平方向に膨らむような減幅部14が形成される。また、図4(c)に示すように、アンテナ素子10の両端から、凸曲線状の領域13を除去してもよい。この場合、アンテナ素子10は、水平方向で縮まるような減幅部14が形成される。
 なお、アンテナ素子10の製造方法は、任意である。例えば、図1(b)のアンテナ素子90の両端から領域13を切去すればよい。
Further, the antenna element 10 may be removed in a curved shape as long as it is within the range shown by the hatching in FIG. As shown in FIG. 4B, the concave curved region 13 may be removed from both ends of the antenna element 10. In this case, the antenna element 10 is formed with a width reduction portion 14 that swells in the horizontal direction. Further, as shown in FIG. 4C, the convex curved region 13 may be removed from both ends of the antenna element 10. In this case, the antenna element 10 is formed with a width reduction portion 14 that contracts in the horizontal direction.
The method of manufacturing the antenna element 10 is arbitrary. For example, the region 13 may be cut off from both ends of the antenna element 90 of FIG. 1 (b).
[作用・効果]
 実施形態に係るテーパーTEMホーンアンテナ1によれば、直線テーパー状及び曲線テーパー状からなるハイブリッド構造を採用し、開口部12の両端から所定サイズの領域13を除去したので、特性インピーダンス整合のための抵抗装荷が必要なく、最大利得方向とアンテナの正面方向とを一致させることができる。これにより、テーパーTEMホーンアンテナ1によれば、広い周波数帯域にわたって放射効率が高く、良好な反射特性及び放射特性を有し、かつ、小型化を図ることができる。
[Action / Effect]
According to the tapered TEM horn antenna 1 according to the embodiment, a hybrid structure having a linear tapered shape and a curved tapered shape is adopted, and regions 13 of a predetermined size are removed from both ends of the opening 12, so that the characteristic impedance matching can be performed. No resistance loading is required, and the maximum gain direction can be matched with the front direction of the antenna. As a result, the tapered TEM horn antenna 1 has high radiation efficiency over a wide frequency band, has good reflection characteristics and radiation characteristics, and can be miniaturized.
 以下、実施例として、図1(a)のテーパーTEMホーンアンテナ1の評価結果について説明する。本実施例では、アンテナ素子10の全長L=全高H=全幅W=24.5cmという条件で、テーパーTEMホーンアンテナ1の特性を最適化した。具体的には、テーパーTEMホーンアンテナ1は、開口幅Wの37%の位置wで開口面に対してθ=50°となる境界線までの領域13を、アンテナ素子10の両端から除去した。また、給電部20の入力インピーダンスを50Ωとして、開口部12の特性インピーダンスを377Ωとする。 Hereinafter, as an example, the evaluation result of the tapered TEM horn antenna 1 of FIG. 1A will be described. In this embodiment, the characteristics of the tapered TEM horn antenna 1 are optimized under the condition that the total length L of the antenna element 10 = the total height H = the total width W = 24.5 cm. Specifically, in the tapered TEM horn antenna 1, the region 13 up to the boundary line where θ = 50 ° with respect to the opening surface at the position w c at 37% of the opening width W is removed from both ends of the antenna element 10. .. Further, the input impedance of the feeding unit 20 is 50Ω, and the characteristic impedance of the opening 12 is 377Ω.
 例えば、従来の指数関数テーパーTEMホーンアンテナでは、アンテナ素子の全長が56cmである。これに対し、テーパーTEMホーンアンテナ1では、アンテナ素子10の全長Lが半分以下となり、従来よりも大幅に小型化できる。 For example, in the conventional exponential taper TEM horn antenna, the total length of the antenna element is 56 cm. On the other hand, in the tapered TEM horn antenna 1, the total length L of the antenna element 10 is reduced to less than half, and the size can be significantly reduced as compared with the conventional case.
 ここで、図1(b)に示すように、アンテナ素子90を備えるテーパーTEMホーンアンテナを比較例として説明を続ける。なお、比較例に係るテーパーTEMホーンアンテナは、アンテナ素子90から領域13を除去していない以外、実施例と同一構成である。 Here, as shown in FIG. 1 (b), the taper TEM horn antenna provided with the antenna element 90 will be described as a comparative example. The tapered TEM horn antenna according to the comparative example has the same configuration as that of the embodiment except that the region 13 is not removed from the antenna element 90.
 実施例に係るテーパーTEMホーンアンテナ1の特性(利得特性、反射特性)を図5及び図6に示した。なお、これら利得特性及び反射特性は、有限積分法による計算結果(シミュレーション結果)である。
 図5(a)は実施例における利得特性を示すグラフであり、図5(b)は比較例における利得特性を示すグラフである。また、図5では、横軸が周波数であり、縦軸が利得である。また、図5では、各周波数におけるアンテナの正面方向の利得を実線で図示し、各周波数における最大利得を破線で図示した。
The characteristics (gain characteristics, reflection characteristics) of the tapered TEM horn antenna 1 according to the embodiment are shown in FIGS. 5 and 6. These gain characteristics and reflection characteristics are calculation results (simulation results) by the finite integration method.
FIG. 5A is a graph showing the gain characteristics in the examples, and FIG. 5B is a graph showing the gain characteristics in the comparative examples. Further, in FIG. 5, the horizontal axis is the frequency and the vertical axis is the gain. Further, in FIG. 5, the gain in the front direction of the antenna at each frequency is shown by a solid line, and the maximum gain at each frequency is shown by a broken line.
 図5(a)に示すように、実施例では、全周波数帯域において、実線及び破線が重なっており、正面方向で最大利得となっている。このように、実施例に係るテーパーTEMホーンアンテナ1は、ビーム割れのない指向性を有する。一方、図5(b)に示すように、比較例では、約4GHz~6GHzの周波数帯域において、実線及び破線がずれており、アンテナの正面方向で最大利得となっていない。 As shown in FIG. 5A, in the embodiment, the solid line and the broken line overlap in all frequency bands, and the maximum gain is obtained in the front direction. As described above, the tapered TEM horn antenna 1 according to the embodiment has directivity without beam cracking. On the other hand, as shown in FIG. 5B, in the comparative example, the solid line and the broken line are deviated in the frequency band of about 4 GHz to 6 GHz, and the maximum gain is not obtained in the front direction of the antenna.
 図6(a)は実施例における反射特性を示すグラフであり、図6(b)は比較例における反射特性を示すグラフである。また、図6では、横軸が周波数であり、縦軸が電圧定在波比(VSWR:Voltage Standing Wave Ratio)である。また、図6では、近接放射イミュニティ試験のアンテナに関する規格制限値を破線で図示した。 FIG. 6A is a graph showing the reflection characteristics in the examples, and FIG. 6B is a graph showing the reflection characteristics in the comparative examples. Further, in FIG. 6, the horizontal axis is the frequency and the vertical axis is the voltage standing wave ratio (VSWR: Voltage Standing Wave Ratio). Further, in FIG. 6, the standard limit value for the antenna of the proximity radiation immunity test is shown by a broken line.
 図6(a)に示すように、実施例では、全周波数帯域でVSWRが規格制限値未満であり、近接放射イミュニティ試験の規格を完全に満足している。一方、図6(b)に示すように、比較例では、VSWRが規格制限値を超える周波数帯域が存在している。このように、実施例に係るテーパーTEMホーンアンテナ1は、近接放射イミュニティ試験の規格を完全に満足している。 As shown in FIG. 6A, in the embodiment, VSWR is less than the standard limit value in all frequency bands, which completely satisfies the standard of the proximity radiation immunity test. On the other hand, as shown in FIG. 6B, in the comparative example, there is a frequency band in which VSWR exceeds the standard limit value. As described above, the tapered TEM horn antenna 1 according to the embodiment completely satisfies the standard of the proximity radiation immunity test.
 近接放射イミュニティ試験では、照射面の電界均一領域を電界最大値から4dBの範囲と規定している。図7は、アンテナの開口面から10cm離れた場所での代表的な試験周波数における電界分布を示すグラフである。図7では、横軸が水平方向の位置であり、縦軸が垂直方向の位置であり、0cmがアンテナ素子10の開口部12の中心を表す。なお、この電解分布は、シミュレーションによる計算例である。 In the proximity radiation immunity test, the uniform electric field region of the irradiation surface is defined as the range of 4 dB from the maximum electric field value. FIG. 7 is a graph showing the electric field distribution at a typical test frequency at a location 10 cm away from the opening surface of the antenna. In FIG. 7, the horizontal axis represents the horizontal position, the vertical axis represents the vertical position, and 0 cm represents the center of the opening 12 of the antenna element 10. This electrolytic distribution is a calculation example by simulation.
 図7(a)~(f)に示すように、実施例では、全周波数帯域でアンテナ近傍において破綻のない良好な電界照射領域を形成できている。図7(f)に示すように、近接放射イミュニティ試験で重要な高周波数帯域において、十分な広さの電界照射領域が確保されている。 As shown in FIGS. 7A to 7F, in the embodiment, a good electric field irradiation region without failure can be formed in the vicinity of the antenna in the entire frequency band. As shown in FIG. 7 (f), a sufficiently wide electric field irradiation region is secured in the high frequency band, which is important in the proximity radiation immunity test.
 以上のように、実施例に係るテーパーTEMホーンアンテナ1は、抵抗装荷が不要なので高い放射効率を有し、全試験周波数で近接放射イミュニティ試験の規格を満足する反射特性を有する。さらに、実施例に係るテーパーTEMホーンアンテナ1は、ビーム割れのない指向性を有し、アンテナ近傍において良好な電界照射領域を形成可能となる放射特性を有する。このように、実施例に係るテーパーTEMホーンアンテナ1は、EMC試験用の小型アンテナとして最適であると考えられる。 As described above, the tapered TEM horn antenna 1 according to the embodiment has high radiation efficiency because it does not require resistance loading, and has reflection characteristics that satisfy the specifications of the proximity radiation immunity test at all test frequencies. Further, the tapered TEM horn antenna 1 according to the embodiment has directivity without beam cracking and has radiation characteristics capable of forming a good electric field irradiation region in the vicinity of the antenna. As described above, the tapered TEM horn antenna 1 according to the embodiment is considered to be most suitable as a small antenna for EMC testing.
1 テーパーTEMホーンアンテナ
10,10,10 アンテナ素子
11 一端部
12 開口部
13 除去領域
14 減幅部
20 給電部
90,90,90 アンテナ素子
1 Tapered TEM horn antenna 10 , 10 1 , 10 2 Antenna element 11 One end 12 Opening 13 Removal area 14 Narrowing part 20 Feeding part 90, 90 1 , 90 2 Antenna element

Claims (5)

  1.  対向して配置された一対のアンテナ素子と、前記一対のアンテナ素子の一端部に接続された給電部とを備えるテーパーTEMホーンアンテナであって、
     前記アンテナ素子は、前記一端部から前記一端部の反対側に形成された開口部に向けて直線テーパー状で幅方向に広がり、前記開口部の両端側から中央側に幅方向で狭くなる減幅部が形成され、
     前記一対のアンテナ素子は、前記一端部から前記開口部まで、指数関数で表される曲線テーパー状で高さ方向に広がることを特徴とするテーパーTEMホーンアンテナ。
    A tapered TEM horn antenna including a pair of antenna elements arranged to face each other and a feeding portion connected to one end of the pair of antenna elements.
    The antenna element has a linear taper shape that spreads in the width direction from one end to the opening formed on the opposite side of the one end, and narrows in the width direction from both ends of the opening toward the center. The part is formed,
    The pair of antenna elements is a tapered TEM horn antenna characterized in that it extends from one end to the opening in a curved taper shape represented by an exponential function in the height direction.
  2.  前記アンテナ素子は、前記開口部の両端から所定サイズの領域を除去することで、前記減幅部が形成されたことを特徴とする請求項1に記載のテーパーTEMホーンアンテナ。 The tapered TEM horn antenna according to claim 1, wherein the antenna element has a narrowed portion formed by removing a region having a predetermined size from both ends of the opening.
  3.  前記領域は、前記開口部の両端から前記開口部の開口幅20%の位置で開口面に対して60°となる境界線までの最小領域以上、かつ、前記開口部の両端から前記開口幅50%の位置で前記開口面に対して60°となる境界線までの最大領域以下であることを特徴とする請求項2に記載のテーパーTEMホーンアンテナ。 The region is equal to or greater than the minimum region from both ends of the opening to the boundary line at 60 ° with respect to the opening surface at a position of 20% of the opening width of the opening, and the opening width is 50 from both ends of the opening. The tapered TEM horn antenna according to claim 2, wherein the area is equal to or less than the maximum region up to the boundary line which is 60 ° with respect to the opening surface at the% position.
  4.  奥行方向における前記一端部からの距離dと、前記一端部から前記開口部までの全長Lと、前記一端部における前記アンテナ素子の幅wと、前記領域を除去する前の前記アンテナ素子の全幅wとが含まれる式(1)及び式(2)を用いて、
    Figure JPOXMLDOC01-appb-M000001
     前記領域を除去する前の前記アンテナ素子の幅w(d)が表されることを特徴とする請求項2又は請求項3に記載のテーパーTEMホーンアンテナ。
    The distance d from the one end in the depth direction, the total length L from the one end to the opening, the width w 0 of the antenna element at the one end, and the total width of the antenna element before removing the region. Using equations (1) and (2) that include w L,
    Figure JPOXMLDOC01-appb-M000001
    The tapered TEM horn antenna according to claim 2 or 3, wherein the width w (d) of the antenna element before removing the region is represented.
  5.  前記一端部における入力インピーダンスZと、前記開口部における特性インピーダンスZとが含まれる式(3)~(5)を用いて、
    Figure JPOXMLDOC01-appb-M000002
     前記一対のアンテナ素子の間隔h(d)が表されることを特徴とする請求項4に記載のテーパーTEMホーンアンテナ。
    Using equations (3) to (5) including the input impedance Z 0 at one end and the characteristic impedance Z L at the opening,
    Figure JPOXMLDOC01-appb-M000002
    The tapered TEM horn antenna according to claim 4, wherein the distance h (d) between the pair of antenna elements is represented.
PCT/JP2021/007641 2020-03-26 2021-03-01 Tapered tem horn antenna WO2021192823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055420 2020-03-26
JP2020055420A JP2021158467A (en) 2020-03-26 2020-03-26 Taper tem horn antenna

Publications (1)

Publication Number Publication Date
WO2021192823A1 true WO2021192823A1 (en) 2021-09-30

Family

ID=77890133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007641 WO2021192823A1 (en) 2020-03-26 2021-03-01 Tapered tem horn antenna

Country Status (2)

Country Link
JP (1) JP2021158467A (en)
WO (1) WO2021192823A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037969A (en) * 2016-09-02 2018-03-08 国立研究開発法人情報通信研究機構 Tapered TEM horn antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037969A (en) * 2016-09-02 2018-03-08 国立研究開発法人情報通信研究機構 Tapered TEM horn antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMERI, AHMED ABBAS H. ET AL.: "Study About TEM Horn Size Reduction for UltraWideband Radar Application", 2011 GERMAN MICROWAVE CONFERENCE, 2 May 2011 (2011-05-02), XP055861656 *
HARIMA, KATSUSHIGE: "Study of Improved TEM Horn Antenna for EMC Measurement", PROCEEDINGS OF THE 2016 IEICE SOCIETY CONFERENCE (1), 6 September 2016 (2016-09-06), pages 244 *

Also Published As

Publication number Publication date
JP2021158467A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
EP2805378B1 (en) Dual ridge horn antenna
Paulotto et al. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas
US8773312B1 (en) Magnetic pseudo-conductor conformal antennas
US5428364A (en) Wide band dipole radiating element with a slot line feed having a Klopfenstein impedance taper
CN109560375B (en) Periodic orthogonal meander line leaky-wave antenna
Elwi et al. A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications
Madhav et al. Fractal shaped Sierpinski on EBG structured ground plane
Botello-Perez et al. Design and simulation of a 1 to 14 GHz broadband electromagnetic compatibility DRGH antenna
JP2018037969A (en) Tapered TEM horn antenna
Mallahzadeh et al. Modified TEM horn antenna for broadband applications
CN111969308A (en) Periodic leaky-wave antenna
Mahmud et al. A miniaturized directional antenna for microwave breast imaging applications
Abbas-Azimi et al. Design and optimisation of a high-frequency EMC wideband horn antenna
Belen et al. UWB gain enhancement of horn antennas using miniaturized frequency selective surface
Harima et al. Evaluation of a TEM horn antenna for radiated immunity tests in close proximity
Genc et al. The comparison of the characteristics of the double-ridged horn antennas depending the geometry of ridge profiles for wideband application
Karshenas et al. Modified TEM horn antenna for wideband applications
WO2021192823A1 (en) Tapered tem horn antenna
US10014584B1 (en) Slotted antenna with uniaxial dielectric covering
Kumar et al. Design of coplanar waveguide-feed pentagonal-cut ultra-wide bandwidth fractal antenna and its backscattering
KR101890363B1 (en) Antenna apparatus
RU2686876C1 (en) Tem-horn
Kumar et al. SIW resonator fed horn mounted compact DRA with enhanced gain for multiband applications
Harima Numerical estimation for TEM horn antennas with transmission line taper shapes
Abbas-Azimi et al. Sensitivity analysis of a 1 to 18 GHz broadband DRGH antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774830

Country of ref document: EP

Kind code of ref document: A1