WO2021192699A1 - Article inspection device and article inspection method - Google Patents
Article inspection device and article inspection method Download PDFInfo
- Publication number
- WO2021192699A1 WO2021192699A1 PCT/JP2021/005091 JP2021005091W WO2021192699A1 WO 2021192699 A1 WO2021192699 A1 WO 2021192699A1 JP 2021005091 W JP2021005091 W JP 2021005091W WO 2021192699 A1 WO2021192699 A1 WO 2021192699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspected
- ray
- delay
- delay time
- article inspection
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/12—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
Definitions
- the present invention relates to an article inspection device and an article inspection method for inspecting an object to be inspected using electromagnetic waves such as X-rays.
- the article inspection device irradiates an object to be inspected such as raw meat, fish, processed food, and medicine with electromagnetic waves such as X-rays, and based on the amount of electromagnetic waves transmitted through the object to be inspected, the presence or absence of foreign matter and a seal. It is a device that performs various inspections such as the presence or absence of defective parts and the presence or absence of missing parts.
- Patent Document 1 As a conventional article inspection device of this type, the one described in Patent Document 1 is known.
- the article inspection apparatus described in Patent Document 1 includes a prism or a half mirror that divides an output image of an X-ray image intensifier into three, and three cameras having a time-delayed integrated CCD image sensor. By taking the divided output images with three cameras and making the delay time (charge transfer speed of the CCD image sensor) in the time delay integration different for each of the three cameras, three images with different delay times are acquired. It has become.
- this article inspection device a plurality of foreign substances exist at different positions in the thickness direction in the object to be inspected, and the apparent speed of the foreign substances depends on the position in the thickness direction due to the expansion of the X-ray of the point light source. Even if they are different, it is possible to acquire multiple images synchronized with the speed at multiple positions in the thickness direction, and it is possible to detect foreign matter without image blur in any of the multiple images. Can be improved.
- the output image is optically divided by a prism or a half mirror, and a plurality of cameras according to the number of divisions are required, so that there is no foreign matter.
- the number of acquired multiple images to be inspected, such as, has been greatly restricted.
- the number of delay times set cannot be changed flexibly.
- the present invention has been made to solve the above-mentioned conventional problems, and it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral and improve the inspection accuracy. It is an object of the present invention to provide an inspection device and an article inspection method.
- the article inspection device is an article inspection device that uses a time-delayed integration process for inspecting an object to be inspected, and includes an irradiation unit (11) that irradiates a moving object (W) with electromagnetic waves, and the subject.
- a detection unit (15) that detects the electromagnetic wave affected by the object to be inspected by a plurality of detection elements (15a) arranged in the main scanning direction orthogonal to the movement direction of the inspection object and the movement direction, and predetermined
- a delay time setting unit (36) that sets a plurality of delay times (2t, 3t, ...) Based on the reference delay time (t) of the above, and a plurality of the delay times of the detection data detected by the detection unit. It is characterized in that it includes a TDI image generation unit (36) that performs a time delay integration process of adding using the data and generates a plurality of TDI images according to the delay time.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
- the irradiation unit may irradiate the moving object to be inspected with electromagnetic waves that spread radially.
- the irradiation unit may irradiate the object to be inspected, which is composed of a moving fluid, with an electromagnetic wave.
- the TDI image corresponding to a plurality of positions in the height direction of the inspected object W is affected by the non-uniformity of the velocity distribution (image blur). ) Can be avoided and the foreign matter can be obtained in a clearly reflected state, so that the inspection accuracy can be improved.
- the article inspection device is characterized in that the delay time setting unit sets a plurality of the delay times by multiplying a predetermined reference delay time by a natural number (n times).
- the article inspection method is an article inspection method that uses a time-delayed integration process for inspecting an object to be inspected, and includes an irradiation step of irradiating a moving object (W) with an electromagnetic wave (X-ray) and the above-mentioned.
- a time delay integration process for adding the detection data detected in the detection step using the plurality of delay times. Is performed, and the TDI image generation step of generating a plurality of TDI images according to the plurality of delay times is provided.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
- the moving object to be inspected may be irradiated with electromagnetic waves that spread radially in the irradiation step.
- the object to be inspected composed of a moving fluid may be irradiated with electromagnetic waves in the irradiation step.
- the TDI image corresponding to a plurality of positions in the height direction of the inspected object W is affected by the non-uniformity of the velocity distribution (image blur). ) Can be avoided and the foreign matter can be obtained in a clearly reflected state, so that the inspection accuracy can be improved.
- the present invention can provide an article inspection device and an article inspection method capable of suppressing the limitation of the delay time used for the calculation of the time delay integral and improving the inspection accuracy.
- This embodiment illustrates a case where the present invention is applied to an X-ray inspection device as an article inspection device.
- the X-ray inspection apparatus according to the present embodiment is incorporated into, for example, a part of a transport line, and irradiates an object (article) to be inspected sequentially transported from the upstream side with X-rays as electromagnetic waves. Based on the amount of X-rays transmitted through the object to be inspected, various inspections such as the presence or absence of foreign matter, the presence or absence of defective seals, and the presence or absence of missing items are performed and the product is carried out to the downstream side.
- X-rays are used as electromagnetic waves in the present embodiment, the present invention is not limited to X-rays, and other electromagnetic waves such as radio waves, microwaves, visible light, and infrared light can be used. ..
- the X-ray inspection device 1 of the present embodiment includes a transport unit 2, an X-ray irradiation unit 3, and an X-ray detection unit 4.
- the transport unit 2 transports the object W to be inspected on the transport path.
- the transport unit 2 is composed of a belt conveyor (see FIG. 3) having a transport belt 2a arranged horizontally with respect to the main body of the apparatus, or a pipe 5 through which an inspected object W made of a fluid flows.
- the transport unit 2 includes a transport belt 2a made of a material (an element other than an element having a large atomic weight) that easily transmits X-rays, and is not shown when the object W to be inspected is inspected.
- the transport belt 2a is driven at a preset transport speed by the rotation of the drive motor based on the control of the transport control unit.
- the object W to be inspected carried in from the carry-in inlet is conveyed toward the carry-out outlet side in the transport direction (direction indicated by the arrow X).
- the transport direction is the moving direction of the object W to be inspected.
- the X-ray irradiation unit 3 includes a housing that constitutes an X-ray irradiation side unit provided on the upper side of the transport path of the object W to be inspected, and an X-ray irradiation unit 11 and a collimator 13 are provided in the housing. There is.
- An irradiation opening window 3b for irradiating X-rays from the X-ray irradiation unit 11 toward the X-ray line sensor 15 described later is formed on the bottom surface of the housing of the X-ray irradiation unit 3.
- the irradiation opening window 3b is formed, for example, in a rectangular shape in a width direction (direction indicated by an arrow Y) orthogonal to the transport direction on a plane in the transport direction.
- the X-ray inspection device 1 of the present embodiment is provided with a goodwill-shaped shielding curtain 3a on the carry-in entrance side and the carry-out exit side of the lower part of the housing of the X-ray irradiation unit 3. This makes it possible to reliably prevent the leakage of X-rays from the device to the outside.
- the X-ray irradiation unit 11 irradiates the object W to be inspected, which is transported on the transport path in the transport direction from the carry-in inlet to the carry-out port, with X-rays, and targets electrons accelerated by applying a voltage. It is made to collide and X-rays are generated.
- the X-ray irradiation unit 11 has a configuration in which a cylindrical X-ray tube 11b provided inside a metal box body 11a forming a substantially rectangular parallelepiped is immersed in insulating oil.
- the X-ray tube 11b is provided with its longitudinal direction on a plane in the transport direction of the object W to be inspected in the transport direction (or a direction orthogonal to the transport direction).
- the X-ray tube 11b is composed of a cathode 11c and an anode target 11e supported by a support 11d arranged so as to face each other at a predetermined distance, and an electron beam from the cathode 11c is irradiated to the anode target 11e. Generating X-rays.
- the X-rays generated by the anode target 11e as the X-ray generation source spread radially around the anode target 11e. This X-ray is emitted from the emission window 11f via the collimator 13 toward the X-ray line sensor 15 described later in a screen shape.
- the exit window 11f is formed, for example, in a rectangular shape in a direction orthogonal to the transport direction on a plane in the transport direction of the object W to be inspected.
- the collimeter 13 is provided below the X-ray irradiation unit 11, and irradiates the X-ray irradiation region on the X-ray line sensor 15, which will be described later, in other words, from the X-ray tube 11b toward the X-ray line sensor 15. It has, for example, a rectangular slit 13a for limiting the path of the X-rays to be generated. In this way, the X-ray irradiation unit 3 irradiates the object W to be inspected with a part of X-rays (electromagnetic waves) that spread radially.
- the X-ray detection unit 4 includes a housing constituting an X-ray detection side unit provided on the lower side of the transport surface of the object W to be inspected so as to face the X-ray irradiation unit 3 at a predetermined distance in the height direction.
- An X-ray line sensor 15 is provided in the housing.
- the X-ray line sensor 15 uses a row of detection elements in which a plurality of detection elements 15a are arranged in a straight line in a direction (Y direction) orthogonal to the transport direction on a plane in the transport direction of the object W to be inspected in the transport direction (X direction). ) Are arranged in multiple stages (multiple rows).
- the direction (Y direction) orthogonal to the transport direction of the object W to be inspected is the main scanning direction of the X-ray line sensor 15.
- the X-ray line sensor 15 is configured as a multi-stage X-ray line sensor having a plurality of stages of detection element trains.
- the multi-stage X-ray sensor for example, a TDI (Time Delayed Integration) type X-ray sensor or a TDS (Time Delay Summation) type X-ray sensor can be used.
- the X-ray line sensor 15 detects the X-rays transmitted through the inspected object W and the conveying belt 2a by the plurality of detection elements 15a, and repeatedly outputs the detected detection data as the inspected object W is conveyed.
- the output of the X-ray line sensor 15 is used for various inspections such as the presence / absence of foreign matter mixed in the object W to be inspected, the presence / absence of defective seals, and the presence / absence of missing parts.
- the X-ray line sensor 15 faces the X-ray irradiation unit 11 with the transport belt 2a interposed therebetween.
- each detection element is composed of a scintillator (not shown) and a light receiving element such as a photodiode in close contact with each other.
- X-rays are converted into light by a scintillator, and this light is received by the light receiving element and converted into an electric signal.
- it is designed to be output as X-ray transmission data.
- each detection element may use a semiconductor such as cadmium telluride (CdTe) to directly and efficiently convert X-rays into electric signals by a photon counting method.
- a semiconductor such as cadmium telluride (CdTe) to directly and efficiently convert X-rays into electric signals by a photon counting method.
- CdTe cadmium telluride
- At least one of the X-ray tube 11b, the collimator 13 and the X-ray line sensor 15 may be movably configured so that the X-ray irradiation area for the X-ray line sensor 15 can be adjusted.
- the X-rays detected by the X-ray line sensor 15 are not limited to the X-rays that have passed through the object W to be inspected.
- the detection target of the X-ray line sensor 15 is not only the X-ray transmitted through the inspected object W and attenuated, but also the X-ray reflected by the X-ray inspected object W or the X-ray generated by interacting with the inspected object W. Also includes new electromagnetic waves.
- the new electromagnetic wave generated by interaction is, for example, fluorescence generated by an object to be inspected.
- the X-ray line sensor 15 detects an electromagnetic wave affected by the object W to be inspected.
- a sensor for example, a photodetector
- a case where X-rays transmitted through the object W to be inspected is detected and the object W to be inspected is inspected based on the amount of the X-ray transmission is illustrated.
- the X-ray inspection device 1 is provided with a touch panel 35.
- the touch panel 35 displays an image of the detection data of the object W to be inspected, an inspection result, and the like. Further, on the touch panel 35, the user performs an input operation of various set values and the like, a function selection operation, and the like.
- the X-ray inspection device 1 includes a control circuit 36, and the control circuit 36 controls the operation of the X-ray inspection device 1.
- the control contents of the control circuit 36 include an image processing operation such as foreign matter emphasis on the detection data output by the X-ray line sensor 15, an operation of determining the inspection result of the object W to be inspected, and a display content of the touch panel 35. The operation etc. are included.
- the operation of the control circuit 36 includes a delay time setting operation (see FIG. 8) and a measurement operation (see FIG. 9), which will be described later.
- the X-ray line sensor 15 When the element size and element pitch of the detection element 15a of the X-ray line sensor 15 is D and the moving speed (conveying speed) of the object W to be inspected is v, the X-ray line sensor 15 is used for the time delay integration (TDI) calculation.
- the X-ray inspection device 1 can perform the time delay integration in synchronization with the moving speed of the object W to be inspected and the foreign matter in it, which is equivalent to the case where the exposure time is increased. A clear TDI image can be obtained, and foreign matter can be detected accurately.
- the TDI image is an image generated by a time delay integration process in which detection data of a plurality of detection elements 15a of the X-ray line sensor 15 are added using a plurality of delay times.
- the X-ray inspection apparatus 1 generates a plurality of TDI images according to a plurality of delay times.
- the magnified imaging will be explained. Since the X-ray inspection apparatus 1 irradiates the X-ray to be inspected with X-rays spreading radially instead of parallel X-rays, a state of magnified imaging occurs as shown in FIG. In the magnified imaging, the foreign matter m2 existing at the bottom of the object W to be inspected is detected in the actual size with the apparent moving speed from the X-ray line sensor 15 equal to the transport speed. The foreign matter m1 existing in the upper part of the above is in a state where the apparent moving speed is high and the foreign matter m1 is magnified and detected.
- the foreign matter m1 has a size magnified ⁇ times. Detected.
- the apparent moving speed of the foreign matter m1 from the X-ray line sensor 15 is ⁇ v, which is a value obtained by multiplying the actual moving speed v of the transport belt 2a and the object W to be inspected by the enlargement ratio ⁇ .
- ⁇ v is a value obtained by multiplying the actual moving speed v of the transport belt 2a and the object W to be inspected by the enlargement ratio ⁇ .
- the apparent moving speed of the foreign matter in the inspected object W is non-uniform, and the moving speed is increased toward the upper part in the inspected object W.
- Magnified imaging can be an advantage in that foreign matter can be magnified and detected. For example, by intentionally bringing the object W to be inspected close to the X-ray irradiation unit 11, it is possible to magnify and detect a foreign substance smaller than the detection element 15a.
- the delay time of the time delay integration so as to match the position of the foreign matter to be detected, the foreign matter can be detected satisfactorily while maintaining the advantages of magnified imaging.
- the X-ray inspection device 1 as the article inspection device includes the X-ray irradiation unit 11 that irradiates the moving object W with X-rays as electromagnetic waves that spread radially, and the X-ray irradiation unit 11 to be inspected.
- An X-ray line that detects X-rays affected by the object W to be inspected by a plurality of detection elements 15a arranged in the main scanning direction (Y direction) and the movement direction orthogonal to the moving direction (X direction) of the object W. It includes a sensor 15.
- the X-ray inspection device 1 includes a delay time setting unit and a control circuit 36 as a TDI image generation unit.
- the control circuit 36 sets a plurality of delay times based on a predetermined reference delay time t, and performs a time delay integration process of adding the detection data detected by the X-ray line sensor 15 using the plurality of delay times. Generate a plurality of TDI images according to a plurality of delay times.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
- control circuit 36 as the delay time setting unit sets a plurality of delay times by multiplying the predetermined reference delay time t by a natural number (n times).
- the X-ray inspection apparatus 1 has an irradiation step of irradiating the moving object W with electromagnetic waves that spread radially, and a main scanning direction and a moving direction orthogonal to the moving direction of the object W to be inspected.
- a detection step of detecting an electromagnetic wave affected by the object W to be inspected by a plurality of arranged detection elements is performed.
- the X-ray inspection device 1 uses the delay time setting step of setting a plurality of delay times based on a predetermined reference delay time by the control circuit 36, and the detection data detected in the detection step using the plurality of delay times.
- a time delay integration process for adding is performed, and a TDI image generation step of generating a plurality of TDI images corresponding to a plurality of delay times is performed.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
- the detection of foreign matter in the fluid flowing through the piping will be described.
- a case where the inspected object W, which is a fluid, moves in the pipe 5 is examined.
- the moving speed (flow velocity) of each part of the object W to be inspected is non-uniform.
- the moving speed of the object W to be inspected becomes maximum in the central portion of the flow path, and becomes 0 in the vicinity of the inner wall of the pipe 5 due to the viscosity of the fluid. Therefore, even if the X-ray is parallel light instead of radial light, the same problem of image blurring as in magnified imaging occurs.
- the moving speed of each part of the object W to be inspected can be calculated from a mathematical formula.
- the maximum value of the moving speed is u (max)
- the pipe length is L
- the height from the bottom of the pipe is s
- the diameter is 2a
- u (max) can be calculated from the viscosity coefficient of the object W to be inspected and the flow path pressure gradient ( ⁇ P / ⁇ L), where P is the pressure in the pipe 5.
- the influence of the magnified imaging is also exerted when the fluid object W to be inspected moves in the pipe 5, the actual moving speed of the foreign matter in consideration of the influence of the magnified imaging is non-uniform as shown in FIG. 5C.
- the maximum value exists at a higher position than in FIG. 5B.
- the case where the fluid moves in the closed flow path in the pipe 5 is illustrated, but the flow path in which the fluid moves is not limited to the pipe 5.
- a fluid that moves in a flow path having an open portion such as a tub or a U-shaped groove, or a fluid that does not have a wall surface forming a flow path around it such as a liquid that freely falls in the air also rubs against air.
- the moving speed of each part in the fluid is non-uniform depending on the presence or absence of the fluid, and the present invention can be applied to the case where these fluids are to be inspected.
- the method of simplifying the delay time will be explained.
- a combination process of holding and addition can be used.
- the reference known delay time By holding the detection data before the calculation of the time delay integration and adding it to the detection data after the reference known delay time (reference delay time t), the reference known delay time (reference delay time t) can be obtained.
- Detection data corresponding to a delay time of 2t, 3t, etc. multiplied by a natural number can be calculated, and these detection data can be used for actual inspection.
- This method has the limitation that the delay time is limited to a natural number of times the reference delay time, but it is possible to easily perform the combination processing of retention and addition for the detected data of the digital value, and it is suitable for the photon counting method. Suitable.
- FIG. 6 shows a case where two values are added from the upper detection data when the delay time is the reference delay time t to obtain the lower detection data with the delay time of 2t.
- the delay time after the natural number of times depends on what value is used as the reference delay time t.
- the delay time that can actually be used to calculate the time delay integration is determined.
- the velocity range of the foreign matter to be detected is a range between the known minimum velocity Vmin and the maximum velocity Vmax, and a plurality of delay time setting methods suitable for Vmin and Vmax will be examined.
- the pitch of the detection element is D and the natural number is n
- the delay time setting operation by the X-ray inspection device 1 will be described.
- the delay time setting operation is an operation of determining a reference delay time used for setting a plurality of delay times.
- the control circuit 36 sets the speed range in step S11.
- the control circuit 36 specifies a speed range based on the known minimum speed Vmin and maximum speed Vmax.
- the minimum speed Vmin and the maximum speed Vmax a value input by the user from the touch panel 35 or a value estimated by the control circuit 36 is used.
- the control circuit 36 can calculate the estimated values of the minimum speed Vmin and the maximum speed Vmax based on the enlargement ratio ⁇ , the height of the object W to be inspected, the average flow velocity, the pressure loss, and the like.
- the control circuit 36 may perform estimation with respect to the minimum speed, the maximum speed, and the values on which the estimation is based by using the values stored in advance for each type of the object W to be inspected.
- control circuit 36 sets the reference delay time in step S12.
- control circuit 36 sets the reference delay time by a predetermined calculation formula.
- the measurement operation by the X-ray inspection device 1 will be described.
- the measurement operation is an operation in which a plurality of delay times are set, time delay integration is executed using the delay times, and a plurality of TDI images to be inspected are calculated from the detected data.
- the control circuit 36 measures with the reference delay time t in step S21.
- the control circuit 36 generates delay times 2t, 3t, ... By multiplying the reference delay time t by a natural number in step S22, and generates a plurality of TDI images corresponding to each of these delay times.
- the TDI image created in step S22 is used as a target for quality determination such as the presence or absence of foreign matter, and the determination result is displayed on the touch panel 35.
- the plurality of TDI images generated in step S22 are images in which foreign matter at a position corresponding to the delay time used is clearly captured, and the sharpness is different for each of the plurality of TDI images, so that an advantageous TDI image can be obtained. It can be used to make a pass / fail judgment. Further, since the number of delay times and the number of TDI images are not restricted by the device configuration, they can be flexibly changed.
- the X-ray inspection device 1 as the article inspection device moves the X-ray irradiation unit 11 that irradiates the inspected object W made of moving fluid with electromagnetic waves and the inspected object W.
- An X-ray line sensor 15 that detects X-rays affected by the object W to be inspected by a plurality of detection elements 15a arranged in the main scanning direction (Y direction) and the moving direction orthogonal to the direction (X direction). It has.
- the X-ray inspection device 1 includes a delay time setting unit and a control circuit 36 as a TDI image generation unit.
- the control circuit 36 sets a plurality of delay times based on a predetermined reference delay time t, and performs a time delay integration process of adding the detection data detected by the X-ray line sensor 15 using the plurality of delay times. Generate a plurality of TDI images according to a plurality of delay times.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
- control circuit 36 as the delay time setting unit sets a plurality of delay times by multiplying the predetermined reference delay time t by a natural number (n times).
- the X-ray inspection apparatus 1 has an irradiation step of irradiating an object W made of a moving fluid with an electromagnetic wave, and a main scanning direction and a moving direction orthogonal to the moving direction of the object W to be inspected.
- a detection step of detecting an electromagnetic wave affected by the object W to be inspected by a plurality of arranged detection elements is performed.
- the X-ray inspection device 1 uses the delay time setting step of setting a plurality of delay times based on a predetermined reference delay time by the control circuit 36, and the detection data detected in the detection step using the plurality of delay times.
- a time delay integration process for adding is performed, and a TDI image generation step of generating a plurality of TDI images corresponding to a plurality of delay times is performed.
- TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
An X-ray inspection device 1 as this article inspection device is provided with: an X-ray irradiation unit 11 that irradiates a moving article W to be inspected with an X-ray which is an electromagnetic wave; and an X-ray line sensor 15 that detects an X-ray affected by the article W to be inspected by means of a plurality of detection elements 15a arranged in a main scanning direction (Y direction) orthogonal to the moving direction (X direction) of the article W to be inspected and in the moving direction. The X-ray inspection device 1 is provided with a control circuit 36 that serves as a delay time setting unit and a TDI image generation unit. The control circuit 36 sets a plurality of delay times on the basis of a prescribed reference delay time t, executes a time delay integration process for adding detection data detected by the X-ray line sensor 15 by using the delay times, and generates a plurality of TDI images corresponding to the delay times.
Description
本発明は、X線等の電磁波を用いて被検査物の検査を行う物品検査装置および物品検査方法に関する。
The present invention relates to an article inspection device and an article inspection method for inspecting an object to be inspected using electromagnetic waves such as X-rays.
物品検査装置は、例えば、生肉、魚、加工食品、医薬などの被検査物にX線等の電磁波を照射し、被検査物を透過する電磁波の透過量等に基づいて異物混入の有無、シール部不良の有無、欠品の有無などの各種検査を行う装置である。
The article inspection device irradiates an object to be inspected such as raw meat, fish, processed food, and medicine with electromagnetic waves such as X-rays, and based on the amount of electromagnetic waves transmitted through the object to be inspected, the presence or absence of foreign matter and a seal. It is a device that performs various inspections such as the presence or absence of defective parts and the presence or absence of missing parts.
従来のこの種の物品検査装置として特許文献1に記載されたものが知られている。特許文献1に記載の物品検査装置は、X線イメージインテンシファイアーの出力画像を3分割するプリズムまたはハーフミラーと、時間遅延積分型のCCD撮像素子を有する3つのカメラとを備えており、3分割された出力画像を3つのカメラで撮影し、時間遅延積分における遅延時間(CCD撮像素子の電荷転送速度)を3つのカメラごとに異ならせることにより、遅延時間の異なる3つの画像を取得するようになっている。
As a conventional article inspection device of this type, the one described in Patent Document 1 is known. The article inspection apparatus described in Patent Document 1 includes a prism or a half mirror that divides an output image of an X-ray image intensifier into three, and three cameras having a time-delayed integrated CCD image sensor. By taking the divided output images with three cameras and making the delay time (charge transfer speed of the CCD image sensor) in the time delay integration different for each of the three cameras, three images with different delay times are acquired. It has become.
この物品検査装置によれば、被検査物中の厚み方向の異なる位置に複数の異物が存在し、点光源のX線が拡大することにより異物の見かけ上の速度がその厚み方向の位置に応じて異なる場合であっても、厚み方向の複数の位置での速度に同期した複数の画像を取得でき、複数の画像の何れかで画像ぼけのない異物を検出可能になるため、異物検出精度を向上することができる。
According to this article inspection device, a plurality of foreign substances exist at different positions in the thickness direction in the object to be inspected, and the apparent speed of the foreign substances depends on the position in the thickness direction due to the expansion of the X-ray of the point light source. Even if they are different, it is possible to acquire multiple images synchronized with the speed at multiple positions in the thickness direction, and it is possible to detect foreign matter without image blur in any of the multiple images. Can be improved.
しかしながら、特許文献1に記載の物品検査装置にあっては、出力画像をプリズムまたはハーフミラーによって光学的に分割しており、かつ、分割数に応じた複数のカメラが必要なため、異物の有無等の検査対象となる複数の画像の取得数が大きく制約されてしまっていた。また、遅延時間の設定個数も柔軟に変更することができなかった。
However, in the article inspection device described in Patent Document 1, the output image is optically divided by a prism or a half mirror, and a plurality of cameras according to the number of divisions are required, so that there is no foreign matter. The number of acquired multiple images to be inspected, such as, has been greatly restricted. In addition, the number of delay times set cannot be changed flexibly.
そこで、本発明は、前述のような従来の問題を解決するためになされたもので、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる物品検査装置および物品検査方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral and improve the inspection accuracy. It is an object of the present invention to provide an inspection device and an article inspection method.
本発明に係る物品検査装置は、被検査物の検査に時間遅延積分処理を用いる物品検査装置であって、移動する被検査物(W)に電磁波を照射する照射部(11)と、前記被検査物の移動方向に直交する主走査方向と前記移動方向とに配列された複数の検出素子(15a)により前記被検査物の影響を受けた前記電磁波を検出する検出部(15)と、所定の基準遅延時間(t)に基づいて複数の遅延時間(2t、3t、・・・)を設定する遅延時間設定部(36)と、前記検出部が検出した検出データを複数の前記遅延時間を用いて加算する時間遅延積分処理を実施し、複数の前記遅延時間に応じた複数のTDI画像を生成するTDI画像生成部(36)と、を備えることを特徴とする。
The article inspection device according to the present invention is an article inspection device that uses a time-delayed integration process for inspecting an object to be inspected, and includes an irradiation unit (11) that irradiates a moving object (W) with electromagnetic waves, and the subject. A detection unit (15) that detects the electromagnetic wave affected by the object to be inspected by a plurality of detection elements (15a) arranged in the main scanning direction orthogonal to the movement direction of the inspection object and the movement direction, and predetermined A delay time setting unit (36) that sets a plurality of delay times (2t, 3t, ...) Based on the reference delay time (t) of the above, and a plurality of the delay times of the detection data detected by the detection unit. It is characterized in that it includes a TDI image generation unit (36) that performs a time delay integration process of adding using the data and generates a plurality of TDI images according to the delay time.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
本発明に係る物品検査装置において、前記照射部は、移動する前記被検査物に放射状に広がる電磁波を照射してもよい。
In the article inspection device according to the present invention, the irradiation unit may irradiate the moving object to be inspected with electromagnetic waves that spread radially.
これにより、異物を拡大して検出できる。また、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。
This makes it possible to magnify and detect foreign matter. Further, since the TDI image corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where the foreign matter is clearly reflected while avoiding the influence of the enlargement of the X-ray, the inspection accuracy can be improved. can.
本発明に係る物品検査装置において、前記照射部は、移動する流体からなる前記被検査物に電磁波を照射してもよい。
In the article inspection device according to the present invention, the irradiation unit may irradiate the object to be inspected, which is composed of a moving fluid, with an electromagnetic wave.
被検査物Wが非一様の速度分布を有する流体であっても、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、速度分布の非一様性による影響(画像ボケ)の影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。
Even if the inspected object W is a fluid having a non-uniform velocity distribution, the TDI image corresponding to a plurality of positions in the height direction of the inspected object W is affected by the non-uniformity of the velocity distribution (image blur). ) Can be avoided and the foreign matter can be obtained in a clearly reflected state, so that the inspection accuracy can be improved.
本発明に係る物品検査装置は、前記遅延時間設定部は、所定の基準遅延時間を自然数倍(n倍)することにより複数の前記遅延時間を設定することを特徴とする。
The article inspection device according to the present invention is characterized in that the delay time setting unit sets a plurality of the delay times by multiplying a predetermined reference delay time by a natural number (n times).
これにより、基準遅延時間から複数の遅延時間を算出する演算をデジタルデータ上で容易に行うことができる。
As a result, the calculation of calculating a plurality of delay times from the reference delay time can be easily performed on the digital data.
本発明に係る物品検査方法は、被検査物の検査に時間遅延積分処理を用いる物品検査方法であって、移動する被検査物(W)に電磁波(X線)を照射する照射ステップと、前記被検査物の移動方向に直交する主走査方向と前記移動方向とに配列された複数の検出素子により前記被検査物の影響を受けた前記電磁波を検出する検出ステップと、所定の基準遅延時間(t)に基づいて複数の遅延時間(2t、3t、・・・)を設定する遅延時間設定ステップと、前記検出ステップで検出した検出データを複数の前記遅延時間を用いて加算する時間遅延積分処理を実施し、複数の前記遅延時間に応じた複数のTDI画像を生成するTDI画像生成ステップと、を備えることを特徴とする。
The article inspection method according to the present invention is an article inspection method that uses a time-delayed integration process for inspecting an object to be inspected, and includes an irradiation step of irradiating a moving object (W) with an electromagnetic wave (X-ray) and the above-mentioned. A detection step of detecting the electromagnetic wave affected by the object to be inspected by a plurality of detection elements arranged in the main scanning direction orthogonal to the moving direction of the object to be inspected and a predetermined reference delay time ( A delay time setting step for setting a plurality of delay times (2t, 3t, ...) Based on t), and a time delay integration process for adding the detection data detected in the detection step using the plurality of delay times. Is performed, and the TDI image generation step of generating a plurality of TDI images according to the plurality of delay times is provided.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
本発明に係る物品検査方法は、前記照射ステップにおいて、移動する前記被検査物に放射状に広がる電磁波を照射してもよい。
In the article inspection method according to the present invention, the moving object to be inspected may be irradiated with electromagnetic waves that spread radially in the irradiation step.
これにより、異物を拡大して検出できる。また、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。
This makes it possible to magnify and detect foreign matter. Further, since the TDI image corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where the foreign matter is clearly reflected while avoiding the influence of the enlargement of the X-ray, the inspection accuracy can be improved. can.
本発明に係る物品検査方法は、前記照射ステップにおいて、移動する流体からなる前記被検査物に電磁波を照射してもよい。
In the article inspection method according to the present invention, the object to be inspected composed of a moving fluid may be irradiated with electromagnetic waves in the irradiation step.
被検査物Wが非一様の速度分布を有する流体であっても、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、速度分布の非一様性による影響(画像ボケ)の影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。
Even if the inspected object W is a fluid having a non-uniform velocity distribution, the TDI image corresponding to a plurality of positions in the height direction of the inspected object W is affected by the non-uniformity of the velocity distribution (image blur). ) Can be avoided and the foreign matter can be obtained in a clearly reflected state, so that the inspection accuracy can be improved.
本発明は、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる物品検査装置および物品検査方法を提供することができる。
The present invention can provide an article inspection device and an article inspection method capable of suppressing the limitation of the delay time used for the calculation of the time delay integral and improving the inspection accuracy.
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings.
本実施の形態は、物品検査装置としてのX線検査装置に本発明を適用した場合を例示している。本実施の形態に係るX線検査装置は、例えば搬送ラインの一部に組み込まれ、上流側から順次搬送されてくる被検査物(物品)に対して電磁波としてのX線を照射し、そのときに被検査物を透過するX線透過量等に基づいて異物混入の有無、シール部不良の有無、欠品の有無などの各種検査を行って下流側に搬出するものである。なお、本実施の形態では電磁波としてX線を用いているが、本発明はX線に限定されるものではなく、電波、マイクロ波、可視光、赤外光など他の電磁波を用いることができる。
This embodiment illustrates a case where the present invention is applied to an X-ray inspection device as an article inspection device. The X-ray inspection apparatus according to the present embodiment is incorporated into, for example, a part of a transport line, and irradiates an object (article) to be inspected sequentially transported from the upstream side with X-rays as electromagnetic waves. Based on the amount of X-rays transmitted through the object to be inspected, various inspections such as the presence or absence of foreign matter, the presence or absence of defective seals, and the presence or absence of missing items are performed and the product is carried out to the downstream side. Although X-rays are used as electromagnetic waves in the present embodiment, the present invention is not limited to X-rays, and other electromagnetic waves such as radio waves, microwaves, visible light, and infrared light can be used. ..
図1に示すように、本実施の形態のX線検査装置1は、搬送部2、X線照射ユニット3、X線検出ユニット4を備えている。
As shown in FIG. 1, the X-ray inspection device 1 of the present embodiment includes a transport unit 2, an X-ray irradiation unit 3, and an X-ray detection unit 4.
搬送部2は、検査対象の被検査物Wを搬送路上に搬送する。搬送部2は、装置本体に対して水平に配置された搬送ベルト2aを有するベルトコンベア(図3参照)、または流体からなる被検査物Wが流れる配管5から構成されている。
The transport unit 2 transports the object W to be inspected on the transport path. The transport unit 2 is composed of a belt conveyor (see FIG. 3) having a transport belt 2a arranged horizontally with respect to the main body of the apparatus, or a pipe 5 through which an inspected object W made of a fluid flows.
図2、図3において、搬送部2は、X線を透過しやすい材料(原子量の大きい元素以外の元素)からなる搬送ベルト2aを備え、被検査物Wの検査を行うときに、不図示の搬送制御部の制御に基づく駆動モータの回転により予め設定される搬送速度で搬送ベルト2aを駆動する。これにより、搬入口から搬入された被検査物Wは搬出口側に向けて、搬送方向(矢印Xで示す方向)に搬送される。搬送方向は被検査物Wの移動方向である。
In FIGS. 2 and 3, the transport unit 2 includes a transport belt 2a made of a material (an element other than an element having a large atomic weight) that easily transmits X-rays, and is not shown when the object W to be inspected is inspected. The transport belt 2a is driven at a preset transport speed by the rotation of the drive motor based on the control of the transport control unit. As a result, the object W to be inspected carried in from the carry-in inlet is conveyed toward the carry-out outlet side in the transport direction (direction indicated by the arrow X). The transport direction is the moving direction of the object W to be inspected.
X線照射ユニット3は、被検査物Wの搬送路の上部側に設けられるX線照射側のユニットを構成する筐体を備え、筐体内にはX線照射部11、コリメータ13が設けられている。
The X-ray irradiation unit 3 includes a housing that constitutes an X-ray irradiation side unit provided on the upper side of the transport path of the object W to be inspected, and an X-ray irradiation unit 11 and a collimator 13 are provided in the housing. There is.
X線照射ユニット3の筐体底面には、X線照射部11からのX線を後述するX線ラインセンサ15に向けて照射するための照射開口窓3bが形成されている。この照射開口窓3bは、搬送方向の平面上で搬送方向と直交する幅方向(矢印Yで示す方向)に例えば矩形状に形成される。
An irradiation opening window 3b for irradiating X-rays from the X-ray irradiation unit 11 toward the X-ray line sensor 15 described later is formed on the bottom surface of the housing of the X-ray irradiation unit 3. The irradiation opening window 3b is formed, for example, in a rectangular shape in a width direction (direction indicated by an arrow Y) orthogonal to the transport direction on a plane in the transport direction.
なお、本実施の形態のX線検査装置1は、のれん状の遮蔽カーテン3aをX線照射ユニット3の筐体下部の搬入口側と搬出口側に備えている。これにより、装置から外部へのX線の漏洩を確実に防止することができる。
The X-ray inspection device 1 of the present embodiment is provided with a goodwill-shaped shielding curtain 3a on the carry-in entrance side and the carry-out exit side of the lower part of the housing of the X-ray irradiation unit 3. This makes it possible to reliably prevent the leakage of X-rays from the device to the outside.
X線照射部11は、搬入口から搬出口に向かって搬送方向に搬送路上を搬送される被検査物WにX線を照射するものであり、電圧を印加して加速させた電子をターゲットに射突させてX線を発生させている。
The X-ray irradiation unit 11 irradiates the object W to be inspected, which is transported on the transport path in the transport direction from the carry-in inlet to the carry-out port, with X-rays, and targets electrons accelerated by applying a voltage. It is made to collide and X-rays are generated.
詳しくは、X線照射部11は、略直方体をなす金属製の箱体11aの内部に設けられる円筒状のX線管11bを絶縁油により浸漬した構成である。X線管11bは、その長手方向が被検査物Wの搬送方向の平面上で搬送方向(又は搬送方向と直交する方向)に設けられている。
Specifically, the X-ray irradiation unit 11 has a configuration in which a cylindrical X-ray tube 11b provided inside a metal box body 11a forming a substantially rectangular parallelepiped is immersed in insulating oil. The X-ray tube 11b is provided with its longitudinal direction on a plane in the transport direction of the object W to be inspected in the transport direction (or a direction orthogonal to the transport direction).
X線管11bは、陰極11cと支持体11dに支持された陽極ターゲット11eとを所定距離をおいて対向配置したものから構成されており、陰極11cからの電子ビームを陽極ターゲット11eに照射させてX線を生成している。
The X-ray tube 11b is composed of a cathode 11c and an anode target 11e supported by a support 11d arranged so as to face each other at a predetermined distance, and an electron beam from the cathode 11c is irradiated to the anode target 11e. Generating X-rays.
X線発生源としての陽極ターゲット11eが生成したX線は、陽極ターゲット11eを中心として放射状に広がる。このX線は、コリメータ13を介して出射窓11fから後述するX線ラインセンサ15に向けてスクリーン状にして照射される。なお、出射窓11fは、被検査物Wの搬送方向の平面上で搬送方向と直交する方向に例えば矩形状に形成される。
The X-rays generated by the anode target 11e as the X-ray generation source spread radially around the anode target 11e. This X-ray is emitted from the emission window 11f via the collimator 13 toward the X-ray line sensor 15 described later in a screen shape. The exit window 11f is formed, for example, in a rectangular shape in a direction orthogonal to the transport direction on a plane in the transport direction of the object W to be inspected.
コリメータ13は、X線照射部11の下方に位置して設けられ、後述するX線ラインセンサ15上のX線の照射領域、言い換えれば、X線管11bからX線ラインセンサ15に向かって照射されるX線の進路を制限するための例えば矩形状のスリット13aを有している。このように、X線照射ユニット3は、放射状に広がるX線(電磁波)の一部を被検査物Wに照射している。
The collimeter 13 is provided below the X-ray irradiation unit 11, and irradiates the X-ray irradiation region on the X-ray line sensor 15, which will be described later, in other words, from the X-ray tube 11b toward the X-ray line sensor 15. It has, for example, a rectangular slit 13a for limiting the path of the X-rays to be generated. In this way, the X-ray irradiation unit 3 irradiates the object W to be inspected with a part of X-rays (electromagnetic waves) that spread radially.
X線検出ユニット4は、被検査物Wの搬送面の下部側にX線照射ユニット3と高さ方向に所定距離離れて対向して設けられるX線検出側のユニットを構成する筐体を備えており、筐体内にはX線ラインセンサ15が設けられている。
The X-ray detection unit 4 includes a housing constituting an X-ray detection side unit provided on the lower side of the transport surface of the object W to be inspected so as to face the X-ray irradiation unit 3 at a predetermined distance in the height direction. An X-ray line sensor 15 is provided in the housing.
X線ラインセンサ15は、被検査物Wの搬送方向の平面上で搬送方向と直交する方向(Y方向)に複数の検出素子15aを一直線上に配置した検出素子列を、搬送方向(X方向)に複数段(複数列)配置したものである。ここで、被検査物Wの搬送方向と直交する方向(Y方向)は、X線ラインセンサ15の主走査方向である。
The X-ray line sensor 15 uses a row of detection elements in which a plurality of detection elements 15a are arranged in a straight line in a direction (Y direction) orthogonal to the transport direction on a plane in the transport direction of the object W to be inspected in the transport direction (X direction). ) Are arranged in multiple stages (multiple rows). Here, the direction (Y direction) orthogonal to the transport direction of the object W to be inspected is the main scanning direction of the X-ray line sensor 15.
このように、X線ラインセンサ15は、検出素子列を複数段有する多段式のX線ラインセンサとして構成されている。多段式のX線ラインセンサとしては、例えば、TDI(Time Delayed Integration:時間遅延積分)式またはTDS(Time Delay Summation)式のX線センサを用いることができる。
As described above, the X-ray line sensor 15 is configured as a multi-stage X-ray line sensor having a plurality of stages of detection element trains. As the multi-stage X-ray sensor, for example, a TDI (Time Delayed Integration) type X-ray sensor or a TDS (Time Delay Summation) type X-ray sensor can be used.
X線ラインセンサ15は、複数の検出素子15aによって被検査物Wおよび搬送ベルト2aを透過するX線を検出し、この検出した検出データを被検査物Wの搬送に伴って繰り返し出力する。
The X-ray line sensor 15 detects the X-rays transmitted through the inspected object W and the conveying belt 2a by the plurality of detection elements 15a, and repeatedly outputs the detected detection data as the inspected object W is conveyed.
このX線ラインセンサ15の出力は、被検査物Wの異物混入の有無、シール部不良の有無、欠品の有無などの各種検査を行う際に用いられる。X線ラインセンサ15は、搬送ベルト2aを挟んでX線照射部11と対向している。
The output of the X-ray line sensor 15 is used for various inspections such as the presence / absence of foreign matter mixed in the object W to be inspected, the presence / absence of defective seals, and the presence / absence of missing parts. The X-ray line sensor 15 faces the X-ray irradiation unit 11 with the transport belt 2a interposed therebetween.
一例として、各検出素子は、図示しないシンチレータとフォトダイオード等の受光素子とを密着したものから構成され、X線をシンチレータで光に変換し、この光を受光素子で受光して電気信号に変換し、X線透過データとして出力するようになっている。
As an example, each detection element is composed of a scintillator (not shown) and a light receiving element such as a photodiode in close contact with each other. X-rays are converted into light by a scintillator, and this light is received by the light receiving element and converted into an electric signal. However, it is designed to be output as X-ray transmission data.
他の例として、各検出素子は、テルル化カドミウム(CdTe)等の半導体を用いて、フォトンカウンティングの手法によりX線を直接的に効率良く電気信号に変換するようになっていてもよい。
As another example, each detection element may use a semiconductor such as cadmium telluride (CdTe) to directly and efficiently convert X-rays into electric signals by a photon counting method.
X線ラインセンサ15に対するX線の照射領域を調整できるようにするため、X線管11b、コリメータ13およびX線ラインセンサ15の少なくとも1つを移動可能に構成してもよい。なお、X線ラインセンサ15が検出するX線は、被検査物Wを透過したX線に限定されない。X線ラインセンサ15の検出対象には、被検査物Wを透過して減衰したX線だけでなく、X線被検査物Wを反射したX線、または被検査物Wと相互作用して発生する新たな電磁波も含まれる。相互作用して発生する新たな電磁波とは、例えば被検査物が発生させる蛍光である。言い換えれば、X線ラインセンサ15は、被検査物Wの影響を受けた電磁波を検出するものである。被検査物Wの影響を受けた電磁波がX線でない場合(例えば蛍光)は、その電磁波に対応するセンサ(例えば光検出器)を用いることができる。本実施例では、被検査物Wを透過したX線を検出してそのX線透過量に基づいて被検査物Wを検査する場合を例示している。
At least one of the X-ray tube 11b, the collimator 13 and the X-ray line sensor 15 may be movably configured so that the X-ray irradiation area for the X-ray line sensor 15 can be adjusted. The X-rays detected by the X-ray line sensor 15 are not limited to the X-rays that have passed through the object W to be inspected. The detection target of the X-ray line sensor 15 is not only the X-ray transmitted through the inspected object W and attenuated, but also the X-ray reflected by the X-ray inspected object W or the X-ray generated by interacting with the inspected object W. Also includes new electromagnetic waves. The new electromagnetic wave generated by interaction is, for example, fluorescence generated by an object to be inspected. In other words, the X-ray line sensor 15 detects an electromagnetic wave affected by the object W to be inspected. When the electromagnetic wave affected by the object W to be inspected is not X-ray (for example, fluorescence), a sensor (for example, a photodetector) corresponding to the electromagnetic wave can be used. In this embodiment, a case where X-rays transmitted through the object W to be inspected is detected and the object W to be inspected is inspected based on the amount of the X-ray transmission is illustrated.
X線検査装置1はタッチパネル35を備えている。タッチパネル35は、被検査物Wの検出データの画像、検査結果等を表示する。また、タッチパネル35には、ユーザにより各種の設定値等の入力操作や、機能の選択操作等が行われる。
The X-ray inspection device 1 is provided with a touch panel 35. The touch panel 35 displays an image of the detection data of the object W to be inspected, an inspection result, and the like. Further, on the touch panel 35, the user performs an input operation of various set values and the like, a function selection operation, and the like.
X線検査装置1は制御回路36を備えており、制御回路36は、X線検査装置1の動作を制御する。制御回路36の制御内容には、X線ラインセンサ15が出力した検出データに対する異物強調等の画像処理動作と、被検査物Wの検査結果を判定する動作と、タッチパネル35の表示内容を生成する動作等が含まれている。また、制御回路36の動作には、後述する遅延時間設定動作(図8参照)および測定動作(図9参照)が含まれている。
The X-ray inspection device 1 includes a control circuit 36, and the control circuit 36 controls the operation of the X-ray inspection device 1. The control contents of the control circuit 36 include an image processing operation such as foreign matter emphasis on the detection data output by the X-ray line sensor 15, an operation of determining the inspection result of the object W to be inspected, and a display content of the touch panel 35. The operation etc. are included. The operation of the control circuit 36 includes a delay time setting operation (see FIG. 8) and a measurement operation (see FIG. 9), which will be described later.
X線ラインセンサ15の検出素子15aの素子サイズおよび素子ピッチをD、被検査物Wの移動速度(搬送速度)をvとしたとき、X線ラインセンサ15において時間遅延積分(TDI)演算に用いる最適な遅延時間τは、τ=D/vの数式から求めることができる。最適な遅延時間τを用いることにより、X線検査装置1が被検査物Wおよびその中の異物の移動速度と同期して時間遅延積分を行うことができるため、露光時間を増やした場合と同等の明瞭なTDI画像を取得でき、異物を精度よく検出できる。ここで、TDI画像とは、X線ラインセンサ15の複数の検出素子15aの検出データを複数の遅延時間を用いて加算する時間遅延積分処理によって生成した画像である。X線検査装置1は、複数の遅延時間に応じた複数のTDI画像を生成する。
When the element size and element pitch of the detection element 15a of the X-ray line sensor 15 is D and the moving speed (conveying speed) of the object W to be inspected is v, the X-ray line sensor 15 is used for the time delay integration (TDI) calculation. The optimum delay time τ can be obtained from the formula of τ = D / v. By using the optimum delay time τ, the X-ray inspection device 1 can perform the time delay integration in synchronization with the moving speed of the object W to be inspected and the foreign matter in it, which is equivalent to the case where the exposure time is increased. A clear TDI image can be obtained, and foreign matter can be detected accurately. Here, the TDI image is an image generated by a time delay integration process in which detection data of a plurality of detection elements 15a of the X-ray line sensor 15 are added using a plurality of delay times. The X-ray inspection apparatus 1 generates a plurality of TDI images according to a plurality of delay times.
拡大撮像について説明する。X線検査装置1は、平行X線ではなく、放射状に広がるX線を被検査物Wに照射しているため、図3に示すように、拡大撮像の状態が発生する。拡大撮像とは、被検査物Wの中の底部に存在する異物m2はX線ラインセンサ15からの見かけ上の移動速度が搬送速度と等しく実寸方で検出されるが、被検査物Wの中の上部に存在する異物m1は見かけ上の移動速度が速くかつ拡大して検出される状態である。例えば、X線照射部11と異物m1との距離をrとし、X線照射部11とX線ラインセンサ15との距離Rをαrと表したとき、異物m1はα倍に拡大した大きさで検出される。このときの拡大率αはα=R/rの数式から求めることができる。
The magnified imaging will be explained. Since the X-ray inspection apparatus 1 irradiates the X-ray to be inspected with X-rays spreading radially instead of parallel X-rays, a state of magnified imaging occurs as shown in FIG. In the magnified imaging, the foreign matter m2 existing at the bottom of the object W to be inspected is detected in the actual size with the apparent moving speed from the X-ray line sensor 15 equal to the transport speed. The foreign matter m1 existing in the upper part of the above is in a state where the apparent moving speed is high and the foreign matter m1 is magnified and detected. For example, when the distance between the X-ray irradiation unit 11 and the foreign matter m1 is r and the distance R between the X-ray irradiation unit 11 and the X-ray line sensor 15 is αr, the foreign matter m1 has a size magnified α times. Detected. The enlargement ratio α at this time can be obtained from the mathematical formula of α = R / r.
また、X線ラインセンサ15からの異物m1の見かけ上の移動速度はαvとなり、搬送ベルト2aおよび被検査物Wの実際の移動速度vに拡大率αを乗算した値となる。このように、被検査物W中の異物の見かけ上の移動速度は非一様であり、被検査物W中の上部ほど移動速度が拡大される。
Further, the apparent moving speed of the foreign matter m1 from the X-ray line sensor 15 is αv, which is a value obtained by multiplying the actual moving speed v of the transport belt 2a and the object W to be inspected by the enlargement ratio α. As described above, the apparent moving speed of the foreign matter in the inspected object W is non-uniform, and the moving speed is increased toward the upper part in the inspected object W.
拡大撮像は、異物を拡大して検出できる点で利点となり得る。例えば、意図的に被検査物WをX線照射部11に近接させることにより、検出素子15aよりも小さな異物を拡大して検出することが可能となる。
Magnified imaging can be an advantage in that foreign matter can be magnified and detected. For example, by intentionally bringing the object W to be inspected close to the X-ray irradiation unit 11, it is possible to magnify and detect a foreign substance smaller than the detection element 15a.
一方、時間遅延積分の演算に用いる遅延時間が高さ方向(Z方向)の異物の位置に適合していない検査画像は、画像中の異物がぼけた状態となり、異物検出精度を損なってしまう。
On the other hand, in the inspection image in which the delay time used for the calculation of the time delay integration does not match the position of the foreign matter in the height direction (Z direction), the foreign matter in the image becomes blurred and the foreign matter detection accuracy is impaired.
したがって、拡大撮像の状態においては、拡大率αに応じてX線ラインセンサ15のスキャンレート(遅延時間の逆数)を増やす必要がある。また、時間遅延積分の演算に用いる遅延時間も変更する必要がある。
Therefore, in the state of magnified imaging, it is necessary to increase the scan rate (reciprocal of the delay time) of the X-ray line sensor 15 according to the magnifying power α. It is also necessary to change the delay time used in the calculation of the time delay integral.
ここで、被検査物Wの底面での拡大率αは、X線照射部11と被検査物Wの底面との距離をr'としたとき、α=R/r'の数式から求めることができる。また、被検査物Wの上面での拡大率αは、被検査物Wの高さをhとしたとき、α=R/(r'-h)の数式から求めることができる。
Here, the magnification α on the bottom surface of the object W to be inspected can be obtained from the mathematical formula α = R / r'when the distance between the X-ray irradiation unit 11 and the bottom surface of the object W to be inspected is r'. can. Further, the enlargement ratio α on the upper surface of the inspected object W can be obtained from the mathematical formula of α = R / (r'−h), where h is the height of the inspected object W.
また、異物の高さ方向(Z方向)におけるX線ラインセンサ15からの距離をzとしたとき、高さ方向(z方向)における拡大率分布α(z)は、α(z)=R/(R-z)の数式から求めることができる。また、高さ方向での速度分布v(z)は、v(z)=vα(z)の数式から求めることができる。
Further, when the distance from the X-ray line sensor 15 in the height direction (Z direction) of the foreign matter is z, the enlargement ratio distribution α (z) in the height direction (z direction) is α (z) = R /. It can be obtained from the mathematical formula (Rz). Further, the velocity distribution v (z) in the height direction can be obtained from the mathematical formula of v (z) = vα (z).
したがって、検出対象の異物位置に適合するように時間遅延積分の遅延時間を設定することにより、拡大撮像の利点を保ったまま、異物を良好に検出できる。
Therefore, by setting the delay time of the time delay integration so as to match the position of the foreign matter to be detected, the foreign matter can be detected satisfactorily while maintaining the advantages of magnified imaging.
以上説明したように、本実施例では、物品検査装置としてのX線検査装置1は、移動する被検査物Wに放射状に広がる電磁波としてのX線を照射するX線照射部11と、被検査物Wの移動方向(X方向)に直交する主走査方向(Y方向)と移動方向とに配列された複数の検出素子15aにより被検査物Wの影響を受けたX線を検出するX線ラインセンサ15と、を備えている。そして、X線検査装置1は遅延時間設定部およびTDI画像生成部としての制御回路36を備えている。制御回路36は、所定の基準遅延時間tに基づいて複数の遅延時間を設定し、X線ラインセンサ15が検出した検出データを複数の遅延時間を用いて加算する時間遅延積分処理を実施し、複数の遅延時間に応じた複数のTDI画像を生成する。
As described above, in the present embodiment, the X-ray inspection device 1 as the article inspection device includes the X-ray irradiation unit 11 that irradiates the moving object W with X-rays as electromagnetic waves that spread radially, and the X-ray irradiation unit 11 to be inspected. An X-ray line that detects X-rays affected by the object W to be inspected by a plurality of detection elements 15a arranged in the main scanning direction (Y direction) and the movement direction orthogonal to the moving direction (X direction) of the object W. It includes a sensor 15. The X-ray inspection device 1 includes a delay time setting unit and a control circuit 36 as a TDI image generation unit. The control circuit 36 sets a plurality of delay times based on a predetermined reference delay time t, and performs a time delay integration process of adding the detection data detected by the X-ray line sensor 15 using the plurality of delay times. Generate a plurality of TDI images according to a plurality of delay times.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
また、本実施例において、遅延時間設定部としての制御回路36は、所定の基準遅延時間tを自然数倍(n倍)することにより複数の遅延時間を設定している。
Further, in the present embodiment, the control circuit 36 as the delay time setting unit sets a plurality of delay times by multiplying the predetermined reference delay time t by a natural number (n times).
これにより、基準遅延時間から複数の遅延時間を算出する演算をデジタルデータ上で容易に行うことができる。
As a result, the calculation of calculating a plurality of delay times from the reference delay time can be easily performed on the digital data.
また、本実施例では、X線検査装置1は、移動する被検査物Wに放射状に広がる電磁波を照射する照射ステップと、被検査物Wの移動方向に直交する主走査方向と移動方向とに配列された複数の検出素子により被検査物Wの影響を受けた電磁波を検出する検出ステップと、を実施する。そして、X線検査装置1は、制御回路36によって、所定の基準遅延時間に基づいて複数の遅延時間を設定する遅延時間設定ステップと、検出ステップで検出した検出データを複数の遅延時間を用いて加算する時間遅延積分処理を実施し、複数の遅延時間に応じた複数のTDI画像を生成するTDI画像生成ステップと、を実施する。
Further, in the present embodiment, the X-ray inspection apparatus 1 has an irradiation step of irradiating the moving object W with electromagnetic waves that spread radially, and a main scanning direction and a moving direction orthogonal to the moving direction of the object W to be inspected. A detection step of detecting an electromagnetic wave affected by the object W to be inspected by a plurality of arranged detection elements is performed. Then, the X-ray inspection device 1 uses the delay time setting step of setting a plurality of delay times based on a predetermined reference delay time by the control circuit 36, and the detection data detected in the detection step using the plurality of delay times. A time delay integration process for adding is performed, and a TDI image generation step of generating a plurality of TDI images corresponding to a plurality of delay times is performed.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
次に、配管を流れる流体中の異物検出について説明する。図4に示すように、配管5の中を流体である被検査物Wが移動する場合を検討する。この場合、被検査物Wの各部の移動速度(流速)は、非一様である。被検査物Wの移動速度は、流路の中央部において最大となり、配管5の内壁の近傍では流体の粘性によって0となる。このため、仮にX線が放射状光でなく平行光であった場合でも、拡大撮像と同様の画像ボケの問題が生じる。
Next, the detection of foreign matter in the fluid flowing through the piping will be described. As shown in FIG. 4, a case where the inspected object W, which is a fluid, moves in the pipe 5 is examined. In this case, the moving speed (flow velocity) of each part of the object W to be inspected is non-uniform. The moving speed of the object W to be inspected becomes maximum in the central portion of the flow path, and becomes 0 in the vicinity of the inner wall of the pipe 5 due to the viscosity of the fluid. Therefore, even if the X-ray is parallel light instead of radial light, the same problem of image blurring as in magnified imaging occurs.
被検査物Wの各部の移動速度は数式から求めることができる。一例として、移動速度の最大値をu(max)、配管の管路長をL、管路内最下部からの高さをs、直径を2aとしたとき、被検査物Wの速度分布u(s)は、u(s)=u(max)s(2a-s)/a^2の数式から求めることができる(^2は二乗を表す)。また、u(max)は、配管5内の圧力をPとしたとき、被検査物Wの粘性係数と流路圧力勾配(ΔP/ΔL)とから算出できる。前述の拡大撮像による影響は、配管5の中を被検査物Wが移動する場合にも及ぶ。
The moving speed of each part of the object W to be inspected can be calculated from a mathematical formula. As an example, when the maximum value of the moving speed is u (max), the pipe length is L, the height from the bottom of the pipe is s, and the diameter is 2a, the speed distribution u ( s) can be obtained from the formula u (s) = u (max) s (2as) / a ^ 2 (^ 2 represents the square). Further, u (max) can be calculated from the viscosity coefficient of the object W to be inspected and the flow path pressure gradient (ΔP / ΔL), where P is the pressure in the pipe 5. The effect of the above-mentioned magnified imaging extends to the case where the object W to be inspected moves in the pipe 5.
速度分布について説明する。図3に示すように搬送ベルト2aからなる搬送経路を固体の被検査物Wが移動する場合の異物の移動速度は、図5Aに示すように非一様であり、高さzが大きいほど速くなる。また、図4に示すように配管5からなる搬送経路を流体の被検査物Wが移動する場合の異物の移動速度は、図5Bに示すように非一様であり、高さzが配管5の中央部の高さのときに最大となり、配管5の内壁の近傍で0となる。さらに、配管5内を流体の被検査物Wが移動する場合にも拡大撮像の影響が及ぶため、拡大撮像の影響を考慮した実際の異物の移動速度は、図5Cに示すように非一様の分布となり、図5Bと比較してより高い位置に最大値が存在している。なお、本実施例では配管5内の閉じられた流路を流体が移動する場合を例示しているが、流体が移動する流路は配管5に限定されるものではない。例えば、桶やU字溝のように開放部を有する流路を移動する流体や、空中を自由落下する液体のように周囲に流路を構成する壁面がない状態の流体も、空気との摩擦の有無により流体中の各部の移動速度が非一様であり、これらの流体を検査対象とする場合にも本発明は適用できる。
Explain the velocity distribution. As shown in FIG. 3, when the solid object W moves along the transport path including the transport belt 2a, the moving speed of the foreign matter is non-uniform as shown in FIG. 5A, and the larger the height z, the faster the moving speed. Become. Further, as shown in FIG. 4, the moving speed of the foreign matter when the fluid to be inspected W moves along the transport path including the pipe 5 is non-uniform as shown in FIG. 5B, and the height z is the pipe 5. It becomes maximum at the height of the central part of the pipe 5, and becomes 0 near the inner wall of the pipe 5. Further, since the influence of the magnified imaging is also exerted when the fluid object W to be inspected moves in the pipe 5, the actual moving speed of the foreign matter in consideration of the influence of the magnified imaging is non-uniform as shown in FIG. 5C. The maximum value exists at a higher position than in FIG. 5B. In this embodiment, the case where the fluid moves in the closed flow path in the pipe 5 is illustrated, but the flow path in which the fluid moves is not limited to the pipe 5. For example, a fluid that moves in a flow path having an open portion such as a tub or a U-shaped groove, or a fluid that does not have a wall surface forming a flow path around it such as a liquid that freely falls in the air also rubs against air. The moving speed of each part in the fluid is non-uniform depending on the presence or absence of the fluid, and the present invention can be applied to the case where these fluids are to be inspected.
遅延時間の簡略化の手法について説明する。複数の遅延時間を非一様の速度分布に適合するように設定する手法として、図6に示すように、保持と加算の組み合わせ処理を用いることができる。時間遅延積分の演算前の検出データを保持し、基準となる既知の遅延時間(基準遅延時間t)後の検出データに加算することにより、基準となる既知の遅延時間(基準遅延時間t)を自然数倍した2t、3t等の遅延時間に相当する検出データを算出し、これらの検出データを実際の検査に用いることができる。この手法は、遅延時間が基準遅延時間の自然数倍に制限されるという制約があるが、デジタル値の検出データに対して保持と加算の組み合わせ処理を容易に行うことができ、フォトンカウンティング方式に好適である。図6は、遅延時間が基準遅延時間tであるときの上段の検出データから2つの値を足し合わせして、遅延時間が2tの下段の検出データを得る場合を表している。
The method of simplifying the delay time will be explained. As a method of setting a plurality of delay times so as to match a non-uniform velocity distribution, as shown in FIG. 6, a combination process of holding and addition can be used. By holding the detection data before the calculation of the time delay integration and adding it to the detection data after the reference known delay time (reference delay time t), the reference known delay time (reference delay time t) can be obtained. Detection data corresponding to a delay time of 2t, 3t, etc. multiplied by a natural number can be calculated, and these detection data can be used for actual inspection. This method has the limitation that the delay time is limited to a natural number of times the reference delay time, but it is possible to easily perform the combination processing of retention and addition for the detected data of the digital value, and it is suitable for the photon counting method. Suitable. FIG. 6 shows a case where two values are added from the upper detection data when the delay time is the reference delay time t to obtain the lower detection data with the delay time of 2t.
複数の遅延時間の設定手法について説明する。上述したように基準遅延時間tを自然数倍(2t、3t、等)した遅延時間を設定する場合、基準遅延時間tとしてどのような値を用いるかにより、自然数倍後の遅延時間のうち実際に時間遅延積分の演算に使用可能な遅延時間が決定される。以下では、検出対象の異物の速度範囲がいずれも既知の最小速度Vminから最大速度Vmaxの間の範囲であり、VminおよびVmaxに適合する複数の遅延時間の設定手法を検討する。検出素子のピッチをD、自然数をnとするとき、対応可能な速度はv=D/ntであり、自然数nの逆数に比例する。また、自然数nの逆数は、n=1のとき(1/1)とn=2のとき(1/2)との間が特別に間隔が広い。そのため、図7Aに示すように、Vmax=D/tに設定することで使用可能な複数の遅延時間を無駄なく設定できる。一方、この場合、使用しない速度領域も広くなり、使用可能な遅延時間の個数が少なくなる。使用可能な遅延時間の個数が少ないと、画像ボケのない異物が表されたTDI画像の取得数が少なくなってしまう。
Explain how to set multiple delay times. When setting a delay time obtained by multiplying the reference delay time t by a natural number (2t, 3t, etc.) as described above, the delay time after the natural number of times depends on what value is used as the reference delay time t. The delay time that can actually be used to calculate the time delay integration is determined. In the following, the velocity range of the foreign matter to be detected is a range between the known minimum velocity Vmin and the maximum velocity Vmax, and a plurality of delay time setting methods suitable for Vmin and Vmax will be examined. When the pitch of the detection element is D and the natural number is n, the corresponding speed is v = D / nt, which is proportional to the reciprocal of the natural number n. Further, the reciprocal of the natural number n has a particularly wide interval between when n = 1 (1/1) and when n = 2 (1/2). Therefore, as shown in FIG. 7A, a plurality of usable delay times can be set without waste by setting Vmax = D / t. On the other hand, in this case, the unused speed range is widened, and the number of available delay times is reduced. If the number of available delay times is small, the number of acquired TDI images showing foreign matter without image blurring will be small.
そこで、図7Bに示すように、Vmax=D/2tに設定することで、VminとVmaxとの範囲内により多くの遅延時間を比較的均一間隔で設定することができる。なお、図7Bに示す例では、基準遅延時間tのときのTDI画像(D/tの画像)は、VminとVmaxとの範囲外のため使用しない。
Therefore, as shown in FIG. 7B, by setting Vmax = D / 2t, a larger delay time can be set within the range of Vmin and Vmax at relatively uniform intervals. In the example shown in FIG. 7B, the TDI image (D / t image) at the reference delay time t is not used because it is out of the range of Vmin and Vmax.
X線検査装置1による遅延時間設定動作について説明する。遅延時間設定動作は、複数の遅延時間の設定に用いる基準遅延時間を決定する動作である。
The delay time setting operation by the X-ray inspection device 1 will be described. The delay time setting operation is an operation of determining a reference delay time used for setting a plurality of delay times.
図8において、制御回路36は、ステップS11で速度範囲を設定する。ここでは、制御回路36は、既知の最小速度Vminおよび最大速度Vmaxに基づいて速度範囲を指定する。最小速度Vminおよび最大速度Vmaxは、ユーザがタッチパネル35から入力した値または制御回路36が推定した値が用いられる。制御回路36は、拡大率α、被検査物Wの高さ、平均流速、圧力損失等に基づいて、最小速度Vminおよび最大速度Vmaxの推定値を演算することができる。制御回路36は、最小速度、最大速度およびその推定の基となる値について、被検査物Wの種類ごとに予め記憶されている値を用いることで推定を実施してもよい。
In FIG. 8, the control circuit 36 sets the speed range in step S11. Here, the control circuit 36 specifies a speed range based on the known minimum speed Vmin and maximum speed Vmax. As the minimum speed Vmin and the maximum speed Vmax, a value input by the user from the touch panel 35 or a value estimated by the control circuit 36 is used. The control circuit 36 can calculate the estimated values of the minimum speed Vmin and the maximum speed Vmax based on the enlargement ratio α, the height of the object W to be inspected, the average flow velocity, the pressure loss, and the like. The control circuit 36 may perform estimation with respect to the minimum speed, the maximum speed, and the values on which the estimation is based by using the values stored in advance for each type of the object W to be inspected.
次いで、制御回路36は、ステップS12で基準遅延時間を設定する。ここでは、制御回路36は、所定の計算式により基準遅延時間を設定する。
Next, the control circuit 36 sets the reference delay time in step S12. Here, the control circuit 36 sets the reference delay time by a predetermined calculation formula.
X線検査装置1による測定動作について説明する。測定動作は、複数の遅延時間を設定し、その遅延時間を用いて時間遅延積分を実行し、検出データから検査対象の複数のTDI画像を演算する動作である。
The measurement operation by the X-ray inspection device 1 will be described. The measurement operation is an operation in which a plurality of delay times are set, time delay integration is executed using the delay times, and a plurality of TDI images to be inspected are calculated from the detected data.
図9において、制御回路36は、ステップS21で基準遅延時間tにより測定を行う。次いで、制御回路36は、ステップS22で基準遅延時間tを自然数倍した遅延時間2t、3t、・・・を生成し、これらの遅延時間にそれぞれ応じた複数のTDI画像を生成する。ステップS22で作成されたTDI画像は異物の有無等の良否判定の対象として用いられ、判定結果がタッチパネル35に表示される。ステップS22で生成された複数のTDI画像は、使用した遅延時間に対応する位置の異物が鮮明に写された画像であり、複数のTDI画像ごとに鮮明度が異なっており、有利なTDI画像を用いて良否判定を行うことができる。また、遅延時間の数およびTDI画像の数は、装置構成による制約を受けないため、柔軟に変更することができる。
In FIG. 9, the control circuit 36 measures with the reference delay time t in step S21. Next, the control circuit 36 generates delay times 2t, 3t, ... By multiplying the reference delay time t by a natural number in step S22, and generates a plurality of TDI images corresponding to each of these delay times. The TDI image created in step S22 is used as a target for quality determination such as the presence or absence of foreign matter, and the determination result is displayed on the touch panel 35. The plurality of TDI images generated in step S22 are images in which foreign matter at a position corresponding to the delay time used is clearly captured, and the sharpness is different for each of the plurality of TDI images, so that an advantageous TDI image can be obtained. It can be used to make a pass / fail judgment. Further, since the number of delay times and the number of TDI images are not restricted by the device configuration, they can be flexibly changed.
以上説明したように、本実施例では、物品検査装置としてのX線検査装置1は、移動する流体からなる被検査物Wに電磁波を照射するX線照射部11と、被検査物Wの移動方向(X方向)に直交する主走査方向(Y方向)と移動方向とに配列された複数の検出素子15aにより被検査物Wの影響を受けたX線を検出するX線ラインセンサ15と、を備えている。そして、X線検査装置1は遅延時間設定部およびTDI画像生成部としての制御回路36を備えている。制御回路36は、所定の基準遅延時間tに基づいて複数の遅延時間を設定し、X線ラインセンサ15が検出した検出データを複数の遅延時間を用いて加算する時間遅延積分処理を実施し、複数の遅延時間に応じた複数のTDI画像を生成する。
As described above, in the present embodiment, the X-ray inspection device 1 as the article inspection device moves the X-ray irradiation unit 11 that irradiates the inspected object W made of moving fluid with electromagnetic waves and the inspected object W. An X-ray line sensor 15 that detects X-rays affected by the object W to be inspected by a plurality of detection elements 15a arranged in the main scanning direction (Y direction) and the moving direction orthogonal to the direction (X direction). It has. The X-ray inspection device 1 includes a delay time setting unit and a control circuit 36 as a TDI image generation unit. The control circuit 36 sets a plurality of delay times based on a predetermined reference delay time t, and performs a time delay integration process of adding the detection data detected by the X-ray line sensor 15 using the plurality of delay times. Generate a plurality of TDI images according to a plurality of delay times.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
また、本実施例において、遅延時間設定部としての制御回路36は、所定の基準遅延時間tを自然数倍(n倍)することにより複数の遅延時間を設定している。
Further, in the present embodiment, the control circuit 36 as the delay time setting unit sets a plurality of delay times by multiplying the predetermined reference delay time t by a natural number (n times).
これにより、基準遅延時間から複数の遅延時間を算出する演算をデジタルデータ上で容易に行うことができる。
As a result, the calculation of calculating a plurality of delay times from the reference delay time can be easily performed on the digital data.
また、本実施例では、X線検査装置1は、移動する流体からなる被検査物Wに電磁波を照射する照射ステップと、被検査物Wの移動方向に直交する主走査方向と移動方向とに配列された複数の検出素子により被検査物Wの影響を受けた電磁波を検出する検出ステップと、を実施する。そして、X線検査装置1は、制御回路36によって、所定の基準遅延時間に基づいて複数の遅延時間を設定する遅延時間設定ステップと、検出ステップで検出した検出データを複数の遅延時間を用いて加算する時間遅延積分処理を実施し、複数の遅延時間に応じた複数のTDI画像を生成するTDI画像生成ステップと、を実施する。
Further, in the present embodiment, the X-ray inspection apparatus 1 has an irradiation step of irradiating an object W made of a moving fluid with an electromagnetic wave, and a main scanning direction and a moving direction orthogonal to the moving direction of the object W to be inspected. A detection step of detecting an electromagnetic wave affected by the object W to be inspected by a plurality of arranged detection elements is performed. Then, the X-ray inspection device 1 uses the delay time setting step of setting a plurality of delay times based on a predetermined reference delay time by the control circuit 36, and the detection data detected in the detection step using the plurality of delay times. A time delay integration process for adding is performed, and a TDI image generation step of generating a plurality of TDI images corresponding to a plurality of delay times is performed.
これにより、被検査物Wの高さ方向の複数の位置に対応するTDI画像を、X線の拡大による影響を回避して異物が鮮明に映った状態で取得できるので、検査精度を向上させることができる。また、複数の遅延時間を用いた時間遅延積分により複数のTDI画像を取得しており、X線出力画像をプリズム等により光学的に分割する必要がないため、時間遅延積分の演算に用いる遅延時間の値や数が制約されることを抑制できる。この結果、時間遅延積分の演算に用いる遅延時間が制約されることを抑制でき、検査精度を向上させることができる。
As a result, TDI images corresponding to a plurality of positions in the height direction of the object W to be inspected can be acquired in a state where foreign matter is clearly reflected while avoiding the influence of X-ray enlargement, so that the inspection accuracy can be improved. Can be done. Further, since a plurality of TDI images are acquired by time delay integration using a plurality of delay times and it is not necessary to optically divide the X-ray output image by a prism or the like, the delay time used for the calculation of the time delay integration is performed. It is possible to suppress the restriction of the value and number of. As a result, it is possible to suppress the limitation of the delay time used in the calculation of the time delay integral, and it is possible to improve the inspection accuracy.
以上、最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。
Although the best form has been described above, the present invention is not limited by the description and drawings in this form. That is, it goes without saying that all other forms, examples, operational techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.
1 X線検査装置(物品検査装置)
5 配管
11 X線照射部(照射部)
15 X線ラインセンサ(検出部)
15a 検出素子
36 制御回路(遅延時間設定部、TDI画像生成部)
W 被検査物
1 X-ray inspection equipment (article inspection equipment)
5 Piping 11 X-ray irradiation part (irradiation part)
15 X-ray line sensor (detector)
15a Detection element 36 Control circuit (delay time setting unit, TDI image generation unit)
W Inspected object
5 配管
11 X線照射部(照射部)
15 X線ラインセンサ(検出部)
15a 検出素子
36 制御回路(遅延時間設定部、TDI画像生成部)
W 被検査物
1 X-ray inspection equipment (article inspection equipment)
5 Piping 11 X-ray irradiation part (irradiation part)
15 X-ray line sensor (detector)
W Inspected object
Claims (7)
- 被検査物の検査に時間遅延積分処理を用いる物品検査装置であって、
移動する被検査物に電磁波を照射する照射部と、
前記被検査物の移動方向に直交する主走査方向と前記移動方向とに配列された複数の検出素子により前記被検査物の影響を受けた前記電磁波を検出する検出部と、
所定の基準遅延時間に基づいて複数の遅延時間を設定する遅延時間設定部と、
前記検出部が検出した検出データを複数の前記遅延時間を用いて加算する時間遅延積分処理を実施し、複数の前記遅延時間に応じた複数のTDI画像を生成するTDI画像生成部と、を備えることを特徴とする物品検査装置。 An article inspection device that uses time-delayed integration processing to inspect the object to be inspected.
An irradiation part that irradiates a moving object to be inspected with electromagnetic waves,
A detection unit that detects the electromagnetic wave affected by the inspected object by a plurality of detection elements arranged in the main scanning direction orthogonal to the moving direction of the inspected object and the moving direction.
A delay time setting unit that sets multiple delay times based on a predetermined reference delay time,
A TDI image generation unit is provided, which performs a time delay integration process of adding the detection data detected by the detection unit using a plurality of the delay times, and generates a plurality of TDI images according to the plurality of delay times. An article inspection device characterized by the fact that. - 前記照射部は、移動する前記被検査物に放射状に広がる電磁波を照射することを特徴とする請求項1に記載の物品検査装置。 The article inspection device according to claim 1, wherein the irradiation unit irradiates the moving object to be inspected with electromagnetic waves that spread radially.
- 前記照射部は、移動する流体からなる前記被検査物に電磁波を照射することを特徴とする請求項1または請求項2に記載の物品検査装置。 The article inspection device according to claim 1 or 2, wherein the irradiation unit irradiates the object to be inspected, which is made of a moving fluid, with an electromagnetic wave.
- 前記遅延時間設定部は、所定の基準遅延時間を自然数倍することにより複数の前記遅延時間を設定することを特徴とする請求項1~3のいずれか一項に記載の物品検査装置。 The article inspection device according to any one of claims 1 to 3, wherein the delay time setting unit sets a plurality of the delay times by multiplying a predetermined reference delay time by a natural number.
- 被検査物の検査に時間遅延積分処理を用いる物品検査方法であって、
移動する被検査物に電磁波を照射する照射ステップと、
前記被検査物の移動方向に直交する主走査方向と前記移動方向とに配列された複数の検出素子により前記被検査物の影響を受けた前記電磁波を検出する検出ステップと、
所定の基準遅延時間に基づいて複数の遅延時間を設定する遅延時間設定ステップと、
前記検出ステップで検出した検出データを複数の前記遅延時間を用いて加算する時間遅延積分処理を実施し、複数の前記遅延時間に応じた複数のTDI画像を生成するTDI画像生成ステップと、を備えることを特徴とする物品検査方法。 This is an article inspection method that uses time delay integration processing to inspect the object to be inspected.
An irradiation step that irradiates a moving object to be inspected with electromagnetic waves,
A detection step of detecting the electromagnetic wave affected by the inspected object by a plurality of detection elements arranged in the main scanning direction orthogonal to the moving direction of the inspected object and the moving direction.
A delay time setting step that sets multiple delay times based on a predetermined reference delay time, and
It includes a TDI image generation step of performing a time delay integration process of adding the detection data detected in the detection step using a plurality of the delay times and generating a plurality of TDI images according to the plurality of the delay times. An article inspection method characterized by the fact that. - 前記照射ステップにおいて、移動する前記被検査物に放射状に広がる電磁波を照射することを特徴とする請求項5に記載の物品検査方法。 The article inspection method according to claim 5, wherein in the irradiation step, the moving object to be inspected is irradiated with electromagnetic waves that spread radially.
- 前記照射ステップにおいて、移動する流体からなる前記被検査物に電磁波を照射することを特徴とする請求項5または請求項6に記載の物品検査方法。
The article inspection method according to claim 5 or 6, wherein in the irradiation step, the object to be inspected composed of a moving fluid is irradiated with an electromagnetic wave.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-054856 | 2020-03-25 | ||
JP2020054856A JP7530193B2 (en) | 2020-03-25 | 2020-03-25 | Article inspection device and article inspection method |
JP2020054857A JP7530194B2 (en) | 2020-03-25 | 2020-03-25 | Article inspection device and article inspection method |
JP2020-054857 | 2020-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192699A1 true WO2021192699A1 (en) | 2021-09-30 |
Family
ID=77890122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005091 WO2021192699A1 (en) | 2020-03-25 | 2021-02-10 | Article inspection device and article inspection method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021192699A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0627249A (en) * | 1992-07-13 | 1994-02-04 | Toshiba Corp | Radiation detector |
JP2006170713A (en) * | 2004-12-14 | 2006-06-29 | Anritsu Sanki System Co Ltd | X-rays foreign matter detecting apparatus |
JP2015190940A (en) * | 2014-03-28 | 2015-11-02 | アンリツ産機システム株式会社 | X-ray inspection apparatus |
-
2021
- 2021-02-10 WO PCT/JP2021/005091 patent/WO2021192699A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0627249A (en) * | 1992-07-13 | 1994-02-04 | Toshiba Corp | Radiation detector |
JP2006170713A (en) * | 2004-12-14 | 2006-06-29 | Anritsu Sanki System Co Ltd | X-rays foreign matter detecting apparatus |
JP2015190940A (en) * | 2014-03-28 | 2015-11-02 | アンリツ産機システム株式会社 | X-ray inspection apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011064642A (en) | Radiation detection device | |
JP3678730B2 (en) | X-ray foreign matter inspection method and apparatus | |
US20160041110A1 (en) | X-ray transmission inspection apparatus and extraneous substance detecting method | |
JP2011242374A (en) | X-ray inspector | |
JP6663374B2 (en) | X-ray inspection equipment | |
WO2021192699A1 (en) | Article inspection device and article inspection method | |
KR20150134033A (en) | X-Ray Apparatus for Detecting a Flaw of Small Sized Article Continuously | |
JP7060446B2 (en) | X-ray line sensor and X-ray foreign matter detection device using it | |
JP7530194B2 (en) | Article inspection device and article inspection method | |
JP7530193B2 (en) | Article inspection device and article inspection method | |
JP6450075B2 (en) | X-ray inspection equipment | |
JP2009080030A (en) | X-ray inspection device | |
JPH11316198A (en) | Radiation detector | |
JP2007127611A (en) | Foreign matter detection apparatus | |
JP5620801B2 (en) | X-ray foreign object detection device | |
JP2011099725A (en) | Article inspection apparatus | |
JP7153525B2 (en) | X-ray inspection device | |
KR20160105753A (en) | X-Ray Apparatus for Detecting a Flaw of Small Sized Article Continuously | |
JP2012194100A (en) | X-ray foreign substance detection apparatus | |
JP2022013497A (en) | X-ray analysis device | |
WO2024024296A1 (en) | X-ray inspection device and x-ray inspection method | |
JP6401504B2 (en) | X-ray inspection equipment | |
JP2015184242A (en) | X-ray inspection device | |
JP2021120640A (en) | X-ray inspection device | |
Rettenberger et al. | Multi-Source-CT for inline inspection of extruded profiles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21774297 Country of ref document: EP Kind code of ref document: A1 |
|
WA | Withdrawal of international application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21774297 Country of ref document: EP Kind code of ref document: A1 |