WO2021192599A1 - Heat conductive film, heating device, and gas turbine engine - Google Patents

Heat conductive film, heating device, and gas turbine engine Download PDF

Info

Publication number
WO2021192599A1
WO2021192599A1 PCT/JP2021/003075 JP2021003075W WO2021192599A1 WO 2021192599 A1 WO2021192599 A1 WO 2021192599A1 JP 2021003075 W JP2021003075 W JP 2021003075W WO 2021192599 A1 WO2021192599 A1 WO 2021192599A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
conductive film
plane direction
nacelle
gas turbine
Prior art date
Application number
PCT/JP2021/003075
Other languages
French (fr)
Japanese (ja)
Inventor
航介 池田
直元 石川
竹史 船津
大山 健一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021192599A1 publication Critical patent/WO2021192599A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications

Definitions

  • the present disclosure relates to heat conductive films, heating devices and gas turbine engines.
  • a composite material including an insulating layer, a conductive layer, and a heat conductive layer is known (see, for example, Patent Document 1).
  • the heat conductive layer contains a resin and hexagonal boron nitride.
  • hexagonal boron nitride as a heat conductive filler generates heat when an electric current is passed through the conductive layer.
  • the nacelle part of the gas turbine engine of an aircraft is provided with an anti-icing device to suppress icing.
  • the nacelle is constructed using a composite material.
  • the anti-icing device for example, it is conceivable to use the composite material of Patent Document 1.
  • the composite material of Patent Document 1 functions as a heat conductive film.
  • the heat conductive film has a low thermal conductivity in the laminating direction, so that the surface temperature of the composite material is required. It is difficult to raise it to.
  • the heat conductive film of the present disclosure includes a graphene sheet extending in the in-plane direction and a resin sheet provided by laminating the graphene sheet in the out-of-plane direction orthogonal to the in-plane direction.
  • a plurality of the resin sheets are laminated and formed into a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction.
  • the heating device of the present disclosure is provided on one surface side of a composite material to be heated, and on the other surface side of the heat conductive film according to claim 1 or 2, sandwiching the composite material. , A heating unit for heating the heat conductive film.
  • the gas turbine engine of the present disclosure is a gas turbine engine including the above heating device as an anti-icing device, and is provided with an engine main body, a nacelle for storing the engine main body, and the anti-icing device provided on the intake side of the nacelle.
  • the nacelle is provided with an intake port that is an annular opening on the intake side, and the anti-icing device has a first heat conductive film provided on the upstream end surface of the intake port.
  • the first heat conductive film is provided in an annular shape along the circumferential direction of the intake port, which has an out-of-plane direction in the thickness direction and is annular.
  • heat transfer having directivity can be performed.
  • FIG. 1 is a perspective view schematically showing an aircraft equipped with the anti-icing device according to the first embodiment.
  • FIG. 2 is a one-sided cross-sectional view schematically showing the periphery of the nacelle provided with the anti-icing device according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing an example of the heat conductive film according to the first embodiment.
  • FIG. 4 is a front view of the nacelle as viewed from the intake side.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4 schematically showing a heat conductive film provided on the nacelle.
  • FIG. 6 is an explanatory diagram showing an example of the heat conductive film according to the second embodiment.
  • FIG. 7 is a graph showing changes in the in-plane direction and the out-of-plane direction of the heat conductive film according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing an example of the heat conductive film according to the third embodiment.
  • FIG. 1 is a perspective view schematically showing an aircraft equipped with the anti-icing device according to the first embodiment.
  • FIG. 2 is a one-sided cross-sectional view schematically showing the periphery of the nacelle provided with the anti-icing device according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing an example of the heat conductive film according to the first embodiment.
  • FIG. 4 is a front view of the nacelle as viewed from the intake side.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4 schematically showing a heat conductive film provided on the nacelle.
  • the heat conductive film 21 according to the first embodiment is applied to an anti-icing device 20 that suppresses icing in the nacelle 11 of the gas turbine engine 10 of the aircraft 1.
  • Aircraft 1 will be described with reference to FIG.
  • Aircraft 1 includes an airframe 5 and a gas turbine engine 10 attached to a main wing 6 of the airframe 5.
  • the gas turbine engine 10 is a thrust generator that generates the thrust of the aircraft 1.
  • the gas turbine engine 10 includes a nacelle 11, an engine body 12, and an anti-icing device 20.
  • the nacelle 11 stores the engine body 12.
  • the nacelle 11 is provided on the outside of the engine body 12 and is a casing that covers the engine body 12.
  • the nacelle 11 is formed in a cylindrical shape, and an intake port 15 and an exhaust port (not shown) are formed.
  • the intake port 15 has a circular opening.
  • the nacelle 11 is constructed using a composite material containing a resin and reinforcing fibers.
  • the anti-icing device 20 is provided on the intake side of the nacelle 11.
  • the anti-icing device 20 is a heating device that heats and melts the ice adhering around the intake port 15 of the nacelle 11.
  • the shape of the portion on the intake side of the nacelle 11 on which the anti-icing device 20 is provided will be described.
  • the portion of the nacelle 11 on the intake side is formed in a ring shape so as to form an intake port 15 having a circular opening.
  • the portion of the nacelle 11 on the intake side is formed in a U shape in a cross section cut along a plane orthogonal to the circumferential direction. That is, the cross-sectional shape of the intake side portion of the nacelle 11 has the intake side as the top, one end extending toward the exhaust side of the inner peripheral surface, and the other end toward the exhaust side of the outer peripheral surface. Is postponed.
  • the anti-icing device 20 includes a plurality of heat conductive films 21, an induction heating unit 22, and a power supply 23.
  • the heat conductive film 21 is a film having directivity in the direction of heat transfer. As shown in FIG. 3, the heat conductive film 21 is formed by alternately laminating graphene sheets 25 and resin sheets 26.
  • the graphene sheet 25 is formed in a sheet shape extending in a predetermined in-plane direction, and the direction of heat transfer is the in-plane direction.
  • the resin sheet 26 is formed in the form of a sheet extending in a predetermined in-plane direction, and is composed of a thermoplastic resin or a thermosetting resin.
  • the graphene sheet 25 and the resin sheet 26 are laminated in the out-of-plane direction.
  • the heat conductive film 21 generates heat when the graphene sheet 25 is induced and heated by the induction heating unit 22.
  • the directivity of the heat conductive film 21 in the direction of heat transfer changes depending on whether the thickness direction of the laminated graphene sheet 25 and the resin sheet 26 is the in-plane direction or the out-of-plane direction.
  • FIG. 3 shows three-dimensional coordinates including the X direction, the Y direction, and the Z direction.
  • the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction. That is, the thickness direction of the heat conductive film 21 is the out-of-plane direction of the laminated graphene sheet 25 and the resin sheet 26.
  • the heat conductive film 21 is difficult to transfer heat in the X direction and the Y direction on the heating surface, and transfers heat in the Z direction. do.
  • the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the Y direction. That is, the thickness direction of the heat conductive film 21 is the in-plane direction of the XZ planes of the laminated graphene sheet 25 and the resin sheet 26.
  • the heat conductive film 21 transfers heat in the X direction and the Z direction on the heating surface, but it is difficult to transfer heat in the Y direction. It has become.
  • the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the X direction. That is, the thickness direction of the heat conductive film 21 is the in-plane direction of the YZ plane of the laminated graphene sheet 25 and the resin sheet 26.
  • the heat conductive film 21 transfers heat in the Y direction and the Z direction on the heating surface, but it is difficult to transfer heat in the X direction. It has become.
  • a plurality of heat conductive films 21 as described above are arranged on the outer surface side of the nacelle 11. Specifically, the plurality of heat conductive films 21 are provided on both sides (downstream side) of the first heat conductive film 21a provided on the top portion (single point chain line in FIG. 4) on the intake side and the first heat conductive film 21a.
  • the second heat conductive film 21b to be obtained is included.
  • the first heat conductive film 21a is provided on the upstream end surface of the intake port 15 and is arranged along the top of the intake side to form an annular shape as shown in FIG.
  • the thickness direction of the first heat conductive film 21a is the direction connecting the inner surface and the outer surface of the nacelle 11, and the laminating direction of the graphene sheet 25 and the resin sheet 26 is along the outer surface of the nacelle 11.
  • the direction is the direction connecting the inner peripheral surface and the outer peripheral surface of the nacelle 11. Therefore, the first heat conductive film 21a having an annular shape transfers heat in the circumferential direction on the outer surface of the nacelle 11.
  • the second heat conductive film 21b has a substantially cylindrical shape by being arranged along the inner peripheral surface side and the outer peripheral surface side, respectively.
  • the thickness direction of the second heat conductive film 21b is the direction connecting the inner surface and the outer surface of the nacelle 11, and the graphene sheet 25 and the resin sheet 26 are laminated in the inner and outer surfaces of the nacelle 11. It is the direction to connect. Therefore, the second heat conductive film 21b, which has a substantially cylindrical shape, transfers heat on the outer surface of the nacelle 11 in the direction connecting the inner surface and the outer surface.
  • the induction heating unit 22 is provided on the opposite side of the heat conductive film 21 with the nacelle 11 interposed therebetween.
  • the induction heating unit 22 heats the heat conductive film 21 by induction heating.
  • the induction heating unit 22 irradiates the heat conductive film 21 with, for example, a high-frequency electromagnetic wave.
  • the power supply 23 is electrically connected to the induction heating unit 22 and applies a voltage to the induction heating unit 22.
  • the power supply 23 applies a high frequency voltage to the induction heating unit 22.
  • the above-mentioned anti-icing device 20 irradiates the heat conductive film 21 with high-frequency electromagnetic waves from the induction heating unit 22 by applying a high-frequency voltage from the power supply 23 to the induction heating unit 22.
  • the heat conductive film 21 When the heat conductive film 21 is irradiated with high-frequency electromagnetic waves, it generates heat due to induction heating.
  • the ring-shaped first heat conductive film 21a transfers heat in the circumferential direction to raise the temperature of the intake port 15 of the nacelle 11 along the circumferential direction.
  • cylindrical second heat conductive film 21b transfers heat from the inside toward the inner peripheral surface side and from the inner side toward the outer peripheral surface, thereby transmitting heat to the inner peripheral surface on the intake side of the nacelle 11 and the inner peripheral surface.
  • the temperature of the outer peripheral surface is raised along the circumferential direction.
  • FIG. 6 is an explanatory diagram showing an example of the heat conductive film according to the second embodiment.
  • FIG. 7 is a graph showing changes in the in-plane direction and the out-of-plane direction of the heat conductive film according to the second embodiment.
  • the heat conductive film (first heat conductive film) 27 is provided on the outer surface side of the nacelle 11, and the heat conductive film 27 is laminated in the direction from the top of the nacelle 11 to both sides thereof. It changes continuously.
  • the Z direction is the thickness direction of the heat conductive film 27, and the X direction is an orthogonal direction orthogonal to the thickness direction.
  • the heat conductive film 27 of the second embodiment is at the top of the nacelle 11 on the intake side, and the graphene sheet 25 and the resin sheet 26 are laminated in a direction perpendicular to the heat conductive film 21. It has become. That is, the laminating direction of the graphene sheet 25 and the resin sheet 26 is the X direction, and the angle ⁇ formed by the laminating direction with respect to the X direction is 0 °. In other words, since the graphene sheet 25 and the resin sheet 26 are laminated in the X direction, the angle ⁇ formed by the stacking direction with respect to the Z direction is 90 °.
  • the graphene sheet 25 and the resin sheet 26 are laminated in a direction along the thickness direction of the heat conductive film 27. It has become. That is, the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction, and the angle ⁇ formed by the stacking direction with respect to the X direction is 90 °. In other words, since the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction, the angle ⁇ formed by the stacking direction with respect to the Z direction is 0 °.
  • the vertical axis thereof is the value of sin ⁇ based on the angle ⁇ formed by the stacking direction with respect to the X direction or Z.
  • the horizontal axis thereof is a position, the position of the top of the nacelle 11 on the intake side is zero, and the positions of the ends on both sides (away from the top) of the nacelle 11 are L.
  • the heat conductive film 27 is continuously displaced so that the value of sin ⁇ (dotted line) changes from 0 to 1 as the stacking direction with respect to the X direction goes from the top to the end.
  • the heat conductive film 27 is continuously displaced so that the value of sin ⁇ (solid line) becomes 1 to 0 as the stacking direction with respect to the Z direction goes from the top to the end.
  • the heat conductive film 27 of the second embodiment preferably transfers heat in the circumferential direction of the nacelle 11 by continuously displacing the laminating direction from the top to the end of the nacelle 11. be able to.
  • FIG. 8 is a cross-sectional view showing an example of the heat conductive film according to the third embodiment.
  • the heat conductive film 31 of the third embodiment further includes an adhesive layer 32 between the graphene sheet 25 and the resin sheet 26 of the heat conductive films 21 of the first and second embodiments.
  • the adhesive layer 32 joins the graphene sheet 25 and the resin sheet 26 and functions as a heat insulating layer. Therefore, in the heat conductive film 31, the heat transfer in the laminating direction is suppressed by the adhesive layer 32, so that the heat can be easily transferred in the in-plane direction, and the directivity in the heat transfer direction can be improved. It will be possible to increase it further.
  • the heat conductive films 21, 31 and the heating device (ice-proof device 20) and the gas turbine engine 10 described in the embodiment are grasped as follows, for example.
  • the heat conductive films 21 and 31 according to the first aspect are a resin sheet 26 provided by laminating a graphene sheet 25 extending in the in-plane direction and the graphene sheet 25 in the out-of-plane direction orthogonal to the in-plane direction.
  • the graphene sheet 25 and the resin sheet 26 are laminated in plurality, and are formed in a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction.
  • directivity can be given in the direction of heat transfer. Therefore, since the heat conductive film 21 having directivity can be arranged according to the mode of the object to be heated, it is possible to efficiently raise the temperature by heating the heat conductive film 21.
  • an adhesive layer 32 provided between the graphene sheet 25 and the resin sheet 26 is further provided in the out-of-plane direction.
  • the adhesive layer 32 functions as a heat insulating layer, so that the directivity related to the heat transfer of the heat conductive film 21 can be further improved.
  • the heating device (ice-proof device 20) is the heat conductive films 21 and 31 provided on one side of the composite material (nacell 11) to be heated, and the composite material.
  • a heating unit (induction heating unit 22) for heating the heat conductive films 21 and 31 is provided on the other surface side of the film.
  • the heating unit is the induction heating unit 22, but it may be a magnetic field heating unit that performs magnetic field heating.
  • the gas turbine engine 10 is a gas turbine engine 10 including the above heating device as an ice prevention device 20, and includes an engine body 12, a nacelle 11 for storing the engine body 12, and the nacelle 11.
  • the nacelle 11 is provided with an intake port 15 which is an annular opening on the intake side, and the ice prevention device 20 is provided on the upstream side of the intake port 15.
  • the first heat conductive film 21a provided on the end face is provided, and the thickness direction of the first heat conductive film 21a is the out-of-plane direction, and the first heat conductive film 21a is in the circumferential direction of the intake port 15 which is annular. It is provided in a ring along the line.
  • the adhesion of ice on the intake side in the nacelle 11 of the gas turbine engine 10 can be quickly heated and melted by the anti-icing device 20.
  • the anti-icing device 20 further includes a second heat conductive film 21b provided on the downstream side of the first heat conductive film 21a, and the second heat conductive film 21b is formed by the second heat conductive film 21b.
  • the thickness direction is the in-plane direction, and the intake port 15 is provided in an annular shape along the circumferential direction of the intake port 15.
  • the ice that could not be completely melted by the first heat conductive film 21a can be melted by the second heat conductive film 21b.
  • the first heat conductive film 27 is continuously displaced in the out-of-plane direction (lamination direction) with respect to the thickness direction as the distance from the intake port 15 of the nacelle 11 increases.
  • the first heat conductive film 27 preferably displaces the laminating direction of the first heat conductive film 27 in a predetermined direction of the nacelle 11 by continuously displacing the laminating direction as the distance from the intake port 15 of the nacelle 11 increases. It can be carried out.
  • Aircraft Aircraft 5 Airframe 6 Main wings 10 Gas turbine engine 11 Nacelle 12 Engine body 15 Intake port 20 Anti-icing device 21 Heat conduction film (Embodiment 1) 22 Induction heating unit 23 Power supply 25 Graphene sheet 26 Resin sheet 27 Heat conductive film (Embodiment 2) 31 Thermal conductive film (Embodiment 3) 32 Adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Wind Motors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • General Induction Heating (AREA)

Abstract

A heat conductive film comprises a graphene sheet extending in the in-plane direction and a resin sheet provided by being laminated in the out-of-plane direction orthogonal to the in-plane direction of the graphene sheet, a plurality of graphene sheets and resin sheets being laminated and also formed in a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction. The heat conductive film may further include an adhesive layer provided between the graphene sheet and the resin sheet in the out-of-plane direction. Further, a heating device includes the heat conductive film provided on one surface side of the composite material to be heated, and a heating unit that is provided on the other surface side of the composite material and heats the heat conductive film.

Description

熱伝導フィルム、加熱装置及びガスタービンエンジンHeat conductive film, heating device and gas turbine engine
 本開示は、熱伝導フィルム、加熱装置及びガスタービンエンジンに関するものである。 The present disclosure relates to heat conductive films, heating devices and gas turbine engines.
 従来、絶縁層と、導電層と、熱伝導層とを備える複合材料が知られている(例えば、特許文献1参照)。熱伝導層は、樹脂及び六方晶窒化ホウ素を含むものとなっている。この複合材料は、導電層に電流を流すことで、熱伝導フィラーとしての六方晶窒化ホウ素が発熱する。 Conventionally, a composite material including an insulating layer, a conductive layer, and a heat conductive layer is known (see, for example, Patent Document 1). The heat conductive layer contains a resin and hexagonal boron nitride. In this composite material, hexagonal boron nitride as a heat conductive filler generates heat when an electric current is passed through the conductive layer.
米国特許第8752279号明細書U.S. Pat. No. 8,752,279
 ところで、航空機のガスタービンエンジンのナセル部分には、着氷を抑制するための防氷装置が設けられる。ナセルは複合材を用いて構成される。防氷装置として、例えば、特許文献1の複合材料を用いることが考えられる。特許文献1の複合材料は、熱伝導フィルムとして機能する。特許文献1の熱伝導フィルムにより、樹脂及び強化繊維を含むナセル等の複合材を加熱する場合、熱伝導フィルムは、積層方向への熱伝導率が低いことから、複合材の表面温度を要求温度に上昇させることが困難である。 By the way, the nacelle part of the gas turbine engine of an aircraft is provided with an anti-icing device to suppress icing. The nacelle is constructed using a composite material. As the anti-icing device, for example, it is conceivable to use the composite material of Patent Document 1. The composite material of Patent Document 1 functions as a heat conductive film. When a composite material such as a nacelle containing a resin and reinforcing fibers is heated by the heat conductive film of Patent Document 1, the heat conductive film has a low thermal conductivity in the laminating direction, so that the surface temperature of the composite material is required. It is difficult to raise it to.
 そこで、本開示は、指向性を有する熱伝達を行うことができる熱伝導フィルム、加熱装置及びガスタービンエンジンを提供することを課題とする。 Therefore, it is an object of the present disclosure to provide a heat conductive film, a heating device, and a gas turbine engine capable of performing directional heat transfer.
 本開示の熱伝導フィルムは、面内方向に延在するグラフェンシートと、前記グラフェンシートの前記面内方向に直交する面外方向に積層して設けられる樹脂シートと、を備え、前記グラフェンシート及び前記樹脂シートは、複数積層されると共に、前記面内方向または前記面外方向を厚さ方向としてシート状に形成される。 The heat conductive film of the present disclosure includes a graphene sheet extending in the in-plane direction and a resin sheet provided by laminating the graphene sheet in the out-of-plane direction orthogonal to the in-plane direction. A plurality of the resin sheets are laminated and formed into a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction.
 本開示の加熱装置は、加熱対象となる複合材を挟んで一方の面側に設けられる、請求項1または2に記載の熱伝導フィルムと、前記複合材を挟んで他方の面側に設けられ、前記熱伝導フィルムを加熱する加熱部と、を備える。 The heating device of the present disclosure is provided on one surface side of a composite material to be heated, and on the other surface side of the heat conductive film according to claim 1 or 2, sandwiching the composite material. , A heating unit for heating the heat conductive film.
 本開示のガスタービンエンジンは、上記の加熱装置を防氷装置として備えるガスタービンエンジンであって、エンジン本体と、前記エンジン本体を格納するナセルと、前記ナセルの吸気側に設けられる前記防氷装置と、を備え、前記ナセルは、吸気側において環状の開口となる吸気口が設けられ、前記防氷装置は、前記吸気口の上流側端面に設けられる第1の熱伝導フィルムを有し、前記第1の熱伝導フィルムは、前記厚さ方向が前記面外方向となっており、環状となる前記吸気口の周方向に沿って環状に設けられる。 The gas turbine engine of the present disclosure is a gas turbine engine including the above heating device as an anti-icing device, and is provided with an engine main body, a nacelle for storing the engine main body, and the anti-icing device provided on the intake side of the nacelle. The nacelle is provided with an intake port that is an annular opening on the intake side, and the anti-icing device has a first heat conductive film provided on the upstream end surface of the intake port. The first heat conductive film is provided in an annular shape along the circumferential direction of the intake port, which has an out-of-plane direction in the thickness direction and is annular.
 本開示によれば、指向性を有する熱伝達を行うことができる。 According to the present disclosure, heat transfer having directivity can be performed.
図1は、実施形態1に係る防氷装置を備えた航空機を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an aircraft equipped with the anti-icing device according to the first embodiment. 図2は、実施形態1に係る防氷装置が設けられたナセル周りを模式的に示す片側断面図である。FIG. 2 is a one-sided cross-sectional view schematically showing the periphery of the nacelle provided with the anti-icing device according to the first embodiment. 図3は、実施形態1に係る熱伝導フィルムの一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of the heat conductive film according to the first embodiment. 図4は、ナセルを吸気側から見たときの正面図である。FIG. 4 is a front view of the nacelle as viewed from the intake side. 図5は、ナセルに設けられる熱伝導フィルムを模式的に示す、図4のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4 schematically showing a heat conductive film provided on the nacelle. 図6は、実施形態2に係る熱伝導フィルムの一例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of the heat conductive film according to the second embodiment. 図7は、実施形態2に係る熱伝導フィルムの面内方向及び面外方向の変化を示すグラフである。FIG. 7 is a graph showing changes in the in-plane direction and the out-of-plane direction of the heat conductive film according to the second embodiment. 図8は、実施形態3に係る熱伝導フィルムの一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of the heat conductive film according to the third embodiment.
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same. Further, the components described below can be appropriately combined, and when there are a plurality of embodiments, each embodiment can be combined.
[実施形態1]
 図1は、実施形態1に係る防氷装置を備えた航空機を模式的に示す斜視図である。図2は、実施形態1に係る防氷装置が設けられたナセル周りを模式的に示す片側断面図である。図3は、実施形態1に係る熱伝導フィルムの一例を示す説明図である。図4は、ナセルを吸気側から見たときの正面図である。図5は、ナセルに設けられる熱伝導フィルムを模式的に示す、図4のA-A断面図である。図1に示すように、実施形態1に係る熱伝導フィルム21は、航空機1のガスタービンエンジン10のナセル11における着氷を抑制する防氷装置20に適用されている。
[Embodiment 1]
FIG. 1 is a perspective view schematically showing an aircraft equipped with the anti-icing device according to the first embodiment. FIG. 2 is a one-sided cross-sectional view schematically showing the periphery of the nacelle provided with the anti-icing device according to the first embodiment. FIG. 3 is an explanatory diagram showing an example of the heat conductive film according to the first embodiment. FIG. 4 is a front view of the nacelle as viewed from the intake side. FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4 schematically showing a heat conductive film provided on the nacelle. As shown in FIG. 1, the heat conductive film 21 according to the first embodiment is applied to an anti-icing device 20 that suppresses icing in the nacelle 11 of the gas turbine engine 10 of the aircraft 1.
 図1を参照して、航空機1について説明する。航空機1は、機体5と、機体5の主翼6に取り付けられるガスタービンエンジン10と、を備えている。ガスタービンエンジン10は、航空機1の推力を発生させる推力発生装置となっている。ガスタービンエンジン10は、ナセル11と、エンジン本体12と、防氷装置20と、を備える。 Aircraft 1 will be described with reference to FIG. Aircraft 1 includes an airframe 5 and a gas turbine engine 10 attached to a main wing 6 of the airframe 5. The gas turbine engine 10 is a thrust generator that generates the thrust of the aircraft 1. The gas turbine engine 10 includes a nacelle 11, an engine body 12, and an anti-icing device 20.
 ナセル11は、エンジン本体12を格納する。ナセル11は、エンジン本体12の外側に設けられ、エンジン本体12を被覆するケーシングとなっている。ナセル11は、円筒形状に形成されており、吸気口15と排気口(図示省略)とが形成されている。吸気口15は、円形の開口となっている。ナセル11は、樹脂及び強化繊維を含む複合材を用いて構成されている。 The nacelle 11 stores the engine body 12. The nacelle 11 is provided on the outside of the engine body 12 and is a casing that covers the engine body 12. The nacelle 11 is formed in a cylindrical shape, and an intake port 15 and an exhaust port (not shown) are formed. The intake port 15 has a circular opening. The nacelle 11 is constructed using a composite material containing a resin and reinforcing fibers.
 防氷装置20は、図2に示すように、ナセル11の吸気側に設けられる。防氷装置20は、ナセル11の吸気口15周りに付着する氷を加熱して溶融させる加熱装置である。防氷装置20が設けられるナセル11の吸気側の部位の形状について説明する。ナセル11の吸気側の部位は、円形開口となる吸気口15を形成するように、円環形状に形成されている。また、ナセル11の吸気側の部位は、周方向に直交する面で切った断面において、U字状に形成されている。つまり、ナセル11の吸気側の部位の断面形状は、吸気側を頂部とし、一方の端部が内周面の排気側へ向かって延在し、他方の端部が外周面の排気側へ向かって延在している。 As shown in FIG. 2, the anti-icing device 20 is provided on the intake side of the nacelle 11. The anti-icing device 20 is a heating device that heats and melts the ice adhering around the intake port 15 of the nacelle 11. The shape of the portion on the intake side of the nacelle 11 on which the anti-icing device 20 is provided will be described. The portion of the nacelle 11 on the intake side is formed in a ring shape so as to form an intake port 15 having a circular opening. Further, the portion of the nacelle 11 on the intake side is formed in a U shape in a cross section cut along a plane orthogonal to the circumferential direction. That is, the cross-sectional shape of the intake side portion of the nacelle 11 has the intake side as the top, one end extending toward the exhaust side of the inner peripheral surface, and the other end toward the exhaust side of the outer peripheral surface. Is postponed.
 防氷装置20は、複数の熱伝導フィルム21と、誘導加熱部22と、電源23と、を有する。 The anti-icing device 20 includes a plurality of heat conductive films 21, an induction heating unit 22, and a power supply 23.
 熱伝導フィルム21は、熱を伝達する方向に指向性をもたせたフィルムとなっている。図3に示すように、熱伝導フィルム21は、グラフェンシート25と、樹脂シート26と、を交互に積層したものとなっている。グラフェンシート25は、所定の面内方向に延在するシート状に形成され、熱を伝達する方向が面内方向となっている。樹脂シート26は、所定の面内方向に延在するシート状に形成されており、熱可塑性樹脂または熱硬化性樹脂を含んで構成されている。グラフェンシート25と樹脂シート26とは、その面外方向に積層される。 The heat conductive film 21 is a film having directivity in the direction of heat transfer. As shown in FIG. 3, the heat conductive film 21 is formed by alternately laminating graphene sheets 25 and resin sheets 26. The graphene sheet 25 is formed in a sheet shape extending in a predetermined in-plane direction, and the direction of heat transfer is the in-plane direction. The resin sheet 26 is formed in the form of a sheet extending in a predetermined in-plane direction, and is composed of a thermoplastic resin or a thermosetting resin. The graphene sheet 25 and the resin sheet 26 are laminated in the out-of-plane direction.
 熱伝導フィルム21は、誘導加熱部22によりグラフェンシート25が誘導加熱されることで発熱する。熱伝導フィルム21は、その厚み方向が、積層したグラフェンシート25及び樹脂シート26の面内方向または面外方向であるかに応じて、熱を伝達する方向の指向性が変化する。図3は、X方向、Y方向、Z方向を含む三次元座標となっている。 The heat conductive film 21 generates heat when the graphene sheet 25 is induced and heated by the induction heating unit 22. The directivity of the heat conductive film 21 in the direction of heat transfer changes depending on whether the thickness direction of the laminated graphene sheet 25 and the resin sheet 26 is the in-plane direction or the out-of-plane direction. FIG. 3 shows three-dimensional coordinates including the X direction, the Y direction, and the Z direction.
 図3の上方側の図に示すように、熱伝導フィルム21は、その厚み方向がZ方向となっており、グラフェンシート25及び樹脂シート26は、積層方向がZ方向となっている。つまり、熱伝導フィルム21は、厚み方向が、積層したグラフェンシート25及び樹脂シート26の面外方向となっている。この熱伝導フィルム21を加熱対象となる加熱面に設けた場合、熱伝導フィルム21は、加熱面において、X方向及びY方向へ熱を伝達し難いものとなっており、Z方向に熱を伝達する。 As shown in the upper view of FIG. 3, the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction. That is, the thickness direction of the heat conductive film 21 is the out-of-plane direction of the laminated graphene sheet 25 and the resin sheet 26. When the heat conductive film 21 is provided on the heating surface to be heated, the heat conductive film 21 is difficult to transfer heat in the X direction and the Y direction on the heating surface, and transfers heat in the Z direction. do.
 図3の真ん中の図に示すように、熱伝導フィルム21は、その厚み方向がZ方向となっており、グラフェンシート25及び樹脂シート26は、積層方向がY方向となっている。つまり、熱伝導フィルム21は、厚み方向が、積層したグラフェンシート25及び樹脂シート26のXZ面の面内方向となっている。この熱伝導フィルム21を加熱対象となる加熱面に設けた場合、熱伝導フィルム21は、加熱面において、X方向及びZ方向に熱を伝達する一方で、Y方向へ熱を伝達し難いものとなっている。 As shown in the middle figure of FIG. 3, the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the Y direction. That is, the thickness direction of the heat conductive film 21 is the in-plane direction of the XZ planes of the laminated graphene sheet 25 and the resin sheet 26. When the heat conductive film 21 is provided on the heating surface to be heated, the heat conductive film 21 transfers heat in the X direction and the Z direction on the heating surface, but it is difficult to transfer heat in the Y direction. It has become.
 図3の下方側の図に示すように、熱伝導フィルム21は、その厚み方向がZ方向となっており、グラフェンシート25及び樹脂シート26は、積層方向がX方向となっている。つまり、熱伝導フィルム21は、厚み方向が、積層したグラフェンシート25及び樹脂シート26のYZ面の面内方向となっている。この熱伝導フィルム21を加熱対象となる加熱面に設けた場合、熱伝導フィルム21は、加熱面において、Y方向及びZ方向に熱を伝達する一方で、X方向へ熱を伝達し難いものとなっている。 As shown in the lower view of FIG. 3, the thickness direction of the heat conductive film 21 is the Z direction, and the graphene sheet 25 and the resin sheet 26 are laminated in the X direction. That is, the thickness direction of the heat conductive film 21 is the in-plane direction of the YZ plane of the laminated graphene sheet 25 and the resin sheet 26. When the heat conductive film 21 is provided on the heating surface to be heated, the heat conductive film 21 transfers heat in the Y direction and the Z direction on the heating surface, but it is difficult to transfer heat in the X direction. It has become.
 図4及び図5に示すように、上記のような熱伝導フィルム21は、ナセル11の外表面側に複数配置される。具体的に、複数の熱伝導フィルム21は、吸気側の頂部(図4の一点鎖線)に設けられる第1の熱伝導フィルム21aと、第1の熱伝導フィルム21aの両側(下流側)に設けられる第2の熱伝導フィルム21bとを含む。 As shown in FIGS. 4 and 5, a plurality of heat conductive films 21 as described above are arranged on the outer surface side of the nacelle 11. Specifically, the plurality of heat conductive films 21 are provided on both sides (downstream side) of the first heat conductive film 21a provided on the top portion (single point chain line in FIG. 4) on the intake side and the first heat conductive film 21a. The second heat conductive film 21b to be obtained is included.
 第1の熱伝導フィルム21aは、吸気口15の上流側端面に設けられており、吸気側の頂部に沿って配置されることで、図4に示すように円環形状となっている。第1の熱伝導フィルム21aは、その厚み方向がナセル11の内側と外表面とを結ぶ方向となっており、グラフェンシート25及び樹脂シート26は、その積層方向が、ナセル11の外表面に沿う方向で、かつ、ナセル11の内周面と外周面とを結ぶ方向となっている。このため、円環形状となる第1の熱伝導フィルム21aは、ナセル11の外表面において、周方向に熱を伝達する。 The first heat conductive film 21a is provided on the upstream end surface of the intake port 15 and is arranged along the top of the intake side to form an annular shape as shown in FIG. The thickness direction of the first heat conductive film 21a is the direction connecting the inner surface and the outer surface of the nacelle 11, and the laminating direction of the graphene sheet 25 and the resin sheet 26 is along the outer surface of the nacelle 11. The direction is the direction connecting the inner peripheral surface and the outer peripheral surface of the nacelle 11. Therefore, the first heat conductive film 21a having an annular shape transfers heat in the circumferential direction on the outer surface of the nacelle 11.
 第2の熱伝導フィルム21bは、内周面側及び外周面側に沿ってそれぞれ配置されることで、略円筒形状となっている。第2の熱伝導フィルム21bは、その厚み方向がナセル11の内側と外表面とを結ぶ方向となっており、グラフェンシート25及び樹脂シート26は、その積層方向がナセル11の内側と外表面とを結ぶ方向となっている。このため、略円筒形状となる第2の熱伝導フィルム21bは、ナセル11の外表面において、内側と外表面とを結ぶ方向に熱を伝達する。 The second heat conductive film 21b has a substantially cylindrical shape by being arranged along the inner peripheral surface side and the outer peripheral surface side, respectively. The thickness direction of the second heat conductive film 21b is the direction connecting the inner surface and the outer surface of the nacelle 11, and the graphene sheet 25 and the resin sheet 26 are laminated in the inner and outer surfaces of the nacelle 11. It is the direction to connect. Therefore, the second heat conductive film 21b, which has a substantially cylindrical shape, transfers heat on the outer surface of the nacelle 11 in the direction connecting the inner surface and the outer surface.
 誘導加熱部22は、ナセル11を挟んで、熱伝導フィルム21の反対側に設けられている。誘導加熱部22は、熱伝導フィルム21を誘導加熱により加熱する。誘導加熱部22は、熱伝導フィルム21に対して、例えば、高周波の電磁波を照射する。 The induction heating unit 22 is provided on the opposite side of the heat conductive film 21 with the nacelle 11 interposed therebetween. The induction heating unit 22 heats the heat conductive film 21 by induction heating. The induction heating unit 22 irradiates the heat conductive film 21 with, for example, a high-frequency electromagnetic wave.
 電源23は、誘導加熱部22に電気的に接続され、誘導加熱部22に電圧を印加する。電源23は、誘導加熱部22に対して、高周波の電圧を印加する。 The power supply 23 is electrically connected to the induction heating unit 22 and applies a voltage to the induction heating unit 22. The power supply 23 applies a high frequency voltage to the induction heating unit 22.
 上記の防氷装置20は、電源23から誘導加熱部22に対して、高周波の電圧が印加されることで、誘導加熱部22から熱伝導フィルム21に対して、高周波の電磁波を照射する。熱伝導フィルム21は、高周波の電磁波が照射されると、誘導加熱により発熱する。このとき、円環形状の第1の熱伝導フィルム21aは、周方向に熱を伝達することで、ナセル11の吸気口15を周方向に沿って昇温する。また、円筒形状の第2の熱伝導フィルム21bは、内側から内周面側へ向かう方向、及び内側から外周面へ向かう方向に熱を伝達することで、ナセル11の吸気側の内周面及び外周面を周方向に沿って昇温する。 The above-mentioned anti-icing device 20 irradiates the heat conductive film 21 with high-frequency electromagnetic waves from the induction heating unit 22 by applying a high-frequency voltage from the power supply 23 to the induction heating unit 22. When the heat conductive film 21 is irradiated with high-frequency electromagnetic waves, it generates heat due to induction heating. At this time, the ring-shaped first heat conductive film 21a transfers heat in the circumferential direction to raise the temperature of the intake port 15 of the nacelle 11 along the circumferential direction. Further, the cylindrical second heat conductive film 21b transfers heat from the inside toward the inner peripheral surface side and from the inner side toward the outer peripheral surface, thereby transmitting heat to the inner peripheral surface on the intake side of the nacelle 11 and the inner peripheral surface. The temperature of the outer peripheral surface is raised along the circumferential direction.
[実施形態2]
 次に、図6及び図7を参照して、実施形態2に係る熱伝導フィルム27について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図6は、実施形態2に係る熱伝導フィルムの一例を示す説明図である。図7は、実施形態2に係る熱伝導フィルムの面内方向及び面外方向の変化を示すグラフである。
[Embodiment 2]
Next, the heat conductive film 27 according to the second embodiment will be described with reference to FIGS. 6 and 7. In the second embodiment, in order to avoid duplicate description, the parts different from the first embodiment will be described, and the parts having the same configuration as that of the first embodiment will be described with the same reference numerals. FIG. 6 is an explanatory diagram showing an example of the heat conductive film according to the second embodiment. FIG. 7 is a graph showing changes in the in-plane direction and the out-of-plane direction of the heat conductive film according to the second embodiment.
 実施形態2では、ナセル11の外表面側に、熱伝導フィルム(第1の熱伝導フィルム)27を設けると共に、熱伝導フィルム27は、その積層方向が、ナセル11の頂部からその両側に向かって連続的に変化するものとなっている。 In the second embodiment, the heat conductive film (first heat conductive film) 27 is provided on the outer surface side of the nacelle 11, and the heat conductive film 27 is laminated in the direction from the top of the nacelle 11 to both sides thereof. It changes continuously.
 図6において、Z方向は、熱伝導フィルム27の厚み方向となっており、X方向は、厚み方向に直交する直交方向となっている。図6に示すように、実施形態2の熱伝導フィルム27は、ナセル11の吸気側における頂部において、グラフェンシート25及び樹脂シート26は、その積層方向が、熱伝導フィルム21の直交方向に沿う方向となっている。つまり、グラフェンシート25及び樹脂シート26の積層方向はX方向となっており、X方向に対して積層方向が為す角度θは、0°となっている。換言すれば、グラフェンシート25及び樹脂シート26の積層方向はX方向となっていることから、Z方向に対して積層方向が為す角度θは、90°となっている。 In FIG. 6, the Z direction is the thickness direction of the heat conductive film 27, and the X direction is an orthogonal direction orthogonal to the thickness direction. As shown in FIG. 6, the heat conductive film 27 of the second embodiment is at the top of the nacelle 11 on the intake side, and the graphene sheet 25 and the resin sheet 26 are laminated in a direction perpendicular to the heat conductive film 21. It has become. That is, the laminating direction of the graphene sheet 25 and the resin sheet 26 is the X direction, and the angle θ formed by the laminating direction with respect to the X direction is 0 °. In other words, since the graphene sheet 25 and the resin sheet 26 are laminated in the X direction, the angle θ formed by the stacking direction with respect to the Z direction is 90 °.
 また、実施形態2の熱伝導フィルム27は、ナセル11の吸気口15から遠ざかる側の端部において、グラフェンシート25及び樹脂シート26は、その積層方向が、熱伝導フィルム27の厚み方向に沿う方向となっている。つまり、グラフェンシート25及び樹脂シート26の積層方向はZ方向となっており、X方向に対して積層方向が為す角度θは、90°となっている。換言すれば、グラフェンシート25及び樹脂シート26の積層方向はZ方向となっていることから、Z方向に対して積層方向が為す角度θは、0°となっている。 Further, in the heat conductive film 27 of the second embodiment, at the end of the nacelle 11 on the side away from the intake port 15, the graphene sheet 25 and the resin sheet 26 are laminated in a direction along the thickness direction of the heat conductive film 27. It has become. That is, the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction, and the angle θ formed by the stacking direction with respect to the X direction is 90 °. In other words, since the graphene sheet 25 and the resin sheet 26 are laminated in the Z direction, the angle θ formed by the stacking direction with respect to the Z direction is 0 °.
 図7は、その縦軸が、X方向またはZに対して積層方向が為す角度θに基づく、sinθの値である。また、図7は、その横軸が、位置となっており、ナセル11の吸気側における頂部の位置をゼロとし、頂部に対して両側(遠ざかる側)の端部の位置をLとしている。図7に示すように、熱伝導フィルム27は、X方向に対する積層方向が、頂部から端部へ向かうにつれて、sinθの値(点線)が0から1となるように、連続的に変位する。同様に、熱伝導フィルム27は、Z方向に対する積層方向が、頂部から端部へ向かうにつれて、sinθの値(実線)が1から0となるように、連続的に変位する。 In FIG. 7, the vertical axis thereof is the value of sin θ based on the angle θ formed by the stacking direction with respect to the X direction or Z. Further, in FIG. 7, the horizontal axis thereof is a position, the position of the top of the nacelle 11 on the intake side is zero, and the positions of the ends on both sides (away from the top) of the nacelle 11 are L. As shown in FIG. 7, the heat conductive film 27 is continuously displaced so that the value of sin θ (dotted line) changes from 0 to 1 as the stacking direction with respect to the X direction goes from the top to the end. Similarly, the heat conductive film 27 is continuously displaced so that the value of sin θ (solid line) becomes 1 to 0 as the stacking direction with respect to the Z direction goes from the top to the end.
 このように、実施形態2の熱伝導フィルム27は、その積層方向を、ナセル11の頂部から端部へ向かって連続的に変位させることにより、ナセル11の周方向への熱伝達を好適に行うことができる。 As described above, the heat conductive film 27 of the second embodiment preferably transfers heat in the circumferential direction of the nacelle 11 by continuously displacing the laminating direction from the top to the end of the nacelle 11. be able to.
[実施形態3]
 次に、図8を参照して、実施形態3に係る熱伝導フィルム31について説明する。なお、実施形態3では、重複した記載を避けるべく、実施形態1及び2と異なる部分について説明し、実施形態1及び2と同様の構成である部分については、同じ符号を付して説明する。図8は、実施形態3に係る熱伝導フィルムの一例を示す断面図である。
[Embodiment 3]
Next, the heat conductive film 31 according to the third embodiment will be described with reference to FIG. In the third embodiment, in order to avoid duplicate description, the parts different from the first and second embodiments will be described, and the parts having the same configuration as those of the first and second embodiments will be described with the same reference numerals. FIG. 8 is a cross-sectional view showing an example of the heat conductive film according to the third embodiment.
 実施形態3の熱伝導フィルム31は、実施形態1及び2の熱伝導フィルム21におけるグラフェンシート25と樹脂シート26との間に接着剤層32をさらに備えたものとなっている。接着剤層32は、グラフェンシート25と樹脂シート26とを接合すると共に、断熱層として機能している。このため、熱伝導フィルム31は、接着剤層32により積層方向への熱の伝達を抑制されることで、面内方向へ熱を伝達し易いものとなり、熱を伝達する方向への指向性をより高めることが可能となる。 The heat conductive film 31 of the third embodiment further includes an adhesive layer 32 between the graphene sheet 25 and the resin sheet 26 of the heat conductive films 21 of the first and second embodiments. The adhesive layer 32 joins the graphene sheet 25 and the resin sheet 26 and functions as a heat insulating layer. Therefore, in the heat conductive film 31, the heat transfer in the laminating direction is suppressed by the adhesive layer 32, so that the heat can be easily transferred in the in-plane direction, and the directivity in the heat transfer direction can be improved. It will be possible to increase it further.
 以上のように、実施形態に記載の熱伝導フィルム21,31、加熱装置(防氷装置20)及びガスタービンエンジン10は、例えば、以下のように把握される。 As described above, the heat conductive films 21, 31 and the heating device (ice-proof device 20) and the gas turbine engine 10 described in the embodiment are grasped as follows, for example.
 第1の態様に係る熱伝導フィルム21,31は、面内方向に延在するグラフェンシート25と、前記グラフェンシート25の前記面内方向に直交する面外方向に積層して設けられる樹脂シート26と、を備え、前記グラフェンシート25及び前記樹脂シート26は、複数積層されると共に、前記面内方向または前記面外方向を厚さ方向としてシート状に形成される。 The heat conductive films 21 and 31 according to the first aspect are a resin sheet 26 provided by laminating a graphene sheet 25 extending in the in-plane direction and the graphene sheet 25 in the out-of-plane direction orthogonal to the in-plane direction. The graphene sheet 25 and the resin sheet 26 are laminated in plurality, and are formed in a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction.
 この構成によれば、熱を伝達する方向に指向性を持たせることができる。このため、加熱対象物の態様に応じて、指向性を有する熱伝導フィルム21を配置することができるため、熱伝導フィルム21の加熱による温度上昇を効率よく行うことが可能となる。 According to this configuration, directivity can be given in the direction of heat transfer. Therefore, since the heat conductive film 21 having directivity can be arranged according to the mode of the object to be heated, it is possible to efficiently raise the temperature by heating the heat conductive film 21.
 第2の態様として、前記面外方向において、前記グラフェンシート25と前記樹脂シート26との間に設けられる接着剤層32を、さらに備える。 As a second aspect, an adhesive layer 32 provided between the graphene sheet 25 and the resin sheet 26 is further provided in the out-of-plane direction.
 この構成によれば、接着剤層32が断熱層として機能することで、熱伝導フィルム21の熱伝達に係るさらなる指向性の向上を図ることができる。 According to this configuration, the adhesive layer 32 functions as a heat insulating layer, so that the directivity related to the heat transfer of the heat conductive film 21 can be further improved.
 第3の態様に係る加熱装置(防氷装置20)は、加熱対象となる複合材(ナセル11)を挟んで一方の面側に設けられる、上記の熱伝導フィルム21,31と、前記複合材を挟んで他方の面側に設けられ、前記熱伝導フィルム21,31を加熱する加熱部(誘導加熱部22)と、を備える。 The heating device (ice-proof device 20) according to the third aspect is the heat conductive films 21 and 31 provided on one side of the composite material (nacell 11) to be heated, and the composite material. A heating unit (induction heating unit 22) for heating the heat conductive films 21 and 31 is provided on the other surface side of the film.
 この構成によれば、加熱対象が複合材である場合、熱伝導フィルム21,31により複合材の一方側の面(例えば、ナセル11の外表面)を直接加熱することができる。このため、複合材の内部に熱を伝達することなく、複合材の一方側の面を迅速に加熱することができる。なお、実施形態1及び2では、加熱部を誘導加熱部22としたが、磁場加熱を行う磁場加熱部としてもよい。 According to this configuration, when the heating target is a composite material, one surface of the composite material (for example, the outer surface of the nacelle 11) can be directly heated by the heat conductive films 21 and 31. Therefore, one surface of the composite material can be quickly heated without transferring heat to the inside of the composite material. In the first and second embodiments, the heating unit is the induction heating unit 22, but it may be a magnetic field heating unit that performs magnetic field heating.
 第4の態様に係るガスタービンエンジン10は、上記の加熱装置を防氷装置20として備えるガスタービンエンジン10であって、エンジン本体12と、前記エンジン本体12を格納するナセル11と、前記ナセル11の吸気側に設けられる前記防氷装置20と、を備え、前記ナセル11は、吸気側において環状の開口となる吸気口15が設けられ、前記防氷装置20は、前記吸気口15の上流側端面に設けられる第1の熱伝導フィルム21aを有し、前記第1の熱伝導フィルム21aは、前記厚さ方向が前記面外方向となっており、環状となる前記吸気口15の周方向に沿って環状に設けられる。 The gas turbine engine 10 according to the fourth aspect is a gas turbine engine 10 including the above heating device as an ice prevention device 20, and includes an engine body 12, a nacelle 11 for storing the engine body 12, and the nacelle 11. The nacelle 11 is provided with an intake port 15 which is an annular opening on the intake side, and the ice prevention device 20 is provided on the upstream side of the intake port 15. The first heat conductive film 21a provided on the end face is provided, and the thickness direction of the first heat conductive film 21a is the out-of-plane direction, and the first heat conductive film 21a is in the circumferential direction of the intake port 15 which is annular. It is provided in a ring along the line.
 この構成によれば、ガスタービンエンジン10のナセル11における吸気側の氷の付着を、防氷装置20により迅速に加熱して溶融させることができる。 According to this configuration, the adhesion of ice on the intake side in the nacelle 11 of the gas turbine engine 10 can be quickly heated and melted by the anti-icing device 20.
 第5の態様として、前記防氷装置20は、前記第1の熱伝導フィルム21aの下流側に設けられる第2の熱伝導フィルム21bを、さらに有し、前記第2の熱伝導フィルム21bは、前記厚さ方向が面内方向となっており、環状となる前記吸気口15の周方向に沿って環状に設けられる。 As a fifth aspect, the anti-icing device 20 further includes a second heat conductive film 21b provided on the downstream side of the first heat conductive film 21a, and the second heat conductive film 21b is formed by the second heat conductive film 21b. The thickness direction is the in-plane direction, and the intake port 15 is provided in an annular shape along the circumferential direction of the intake port 15.
 この構成によれば、第1の熱伝導フィルム21aで溶融しきれなかった氷を、第2の熱伝導フィルム21bにより溶融させることができる。 According to this configuration, the ice that could not be completely melted by the first heat conductive film 21a can be melted by the second heat conductive film 21b.
 第6の態様として、前記第1の熱伝導フィルム27は、前記ナセル11の前記吸気口15から遠ざかるにつれて、前記厚さ方向に対して前記面外方向(積層方向)が連続的に変位する。 As a sixth aspect, the first heat conductive film 27 is continuously displaced in the out-of-plane direction (lamination direction) with respect to the thickness direction as the distance from the intake port 15 of the nacelle 11 increases.
 この構成によれば、第1の熱伝導フィルム27は、その積層方向を、ナセル11の吸気口15から遠ざかるにつれて連続的に変位させることにより、ナセル11の所定の方向への熱伝達を好適に行うことができる。 According to this configuration, the first heat conductive film 27 preferably displaces the laminating direction of the first heat conductive film 27 in a predetermined direction of the nacelle 11 by continuously displacing the laminating direction as the distance from the intake port 15 of the nacelle 11 increases. It can be carried out.
 1 航空機
 5 機体
 6 主翼
 10 ガスタービンエンジン
 11 ナセル
 12 エンジン本体
 15 吸気口
 20 防氷装置
 21 熱伝導フィルム(実施形態1)
 22 誘導加熱部
 23 電源
 25 グラフェンシート
 26 樹脂シート
 27 熱伝導フィルム(実施形態2)
 31 熱伝導フィルム(実施形態3)
 32 接着剤層
1 Aircraft 5 Airframe 6 Main wings 10 Gas turbine engine 11 Nacelle 12 Engine body 15 Intake port 20 Anti-icing device 21 Heat conduction film (Embodiment 1)
22 Induction heating unit 23 Power supply 25 Graphene sheet 26 Resin sheet 27 Heat conductive film (Embodiment 2)
31 Thermal conductive film (Embodiment 3)
32 Adhesive layer

Claims (6)

  1.  面内方向に延在するグラフェンシートと、
     前記グラフェンシートの前記面内方向に直交する面外方向に積層して設けられる樹脂シートと、を備え、
     前記グラフェンシート及び前記樹脂シートは、複数積層されると共に、前記面内方向または前記面外方向を厚さ方向としてシート状に形成される熱伝導フィルム。
    Graphene sheet extending in the in-plane direction and
    A resin sheet provided by laminating the graphene sheet in the out-of-plane direction orthogonal to the in-plane direction is provided.
    A heat conductive film in which a plurality of the graphene sheets and the resin sheet are laminated and formed in a sheet shape with the in-plane direction or the out-of-plane direction as the thickness direction.
  2.  前記面外方向において、前記グラフェンシートと前記樹脂シートとの間に設けられる接着剤層を、さらに備える請求項1に記載の熱伝導フィルム。 The heat conductive film according to claim 1, further comprising an adhesive layer provided between the graphene sheet and the resin sheet in the out-of-plane direction.
  3.  加熱対象となる複合材を挟んで一方の面側に設けられる、請求項1または2に記載の熱伝導フィルムと、
     前記複合材を挟んで他方の面側に設けられ、前記熱伝導フィルムを加熱する加熱部と、を備える加熱装置。
    The heat conductive film according to claim 1 or 2, which is provided on one side of the composite material to be heated.
    A heating device including a heating unit provided on the other surface side of the composite material and for heating the heat conductive film.
  4.  請求項3に記載の加熱装置を防氷装置として備えるガスタービンエンジンであって、
     エンジン本体と、
     前記エンジン本体を格納するナセルと、
     前記ナセルの吸気側に設けられる前記防氷装置と、を備え、
     前記ナセルは、吸気側において環状の開口となる吸気口が設けられ、
     前記防氷装置は、前記吸気口の上流側端面に設けられる第1の熱伝導フィルムを有し、
     前記第1の熱伝導フィルムは、前記厚さ方向が前記面外方向となっており、環状となる前記吸気口の周方向に沿って環状に設けられるガスタービンエンジン。
    A gas turbine engine including the heating device according to claim 3 as an anti-icing device.
    With the engine body
    The nacelle that stores the engine body and
    The anti-icing device provided on the intake side of the nacelle is provided.
    The nacelle is provided with an intake port that serves as an annular opening on the intake side.
    The anti-icing device has a first heat conductive film provided on the upstream end surface of the intake port.
    The first heat conductive film is a gas turbine engine in which the thickness direction is the out-of-plane direction and is provided in an annular shape along the circumferential direction of the intake port which is annular.
  5.  前記防氷装置は、前記第1の熱伝導フィルムの下流側に設けられる第2の熱伝導フィルムを、さらに有し、
     前記第2の熱伝導フィルムは、前記厚さ方向が面内方向となっており、環状となる前記吸気口の周方向に沿って環状に設けられる請求項4に記載のガスタービンエンジン。
    The anti-icing device further includes a second heat conductive film provided on the downstream side of the first heat conductive film.
    The gas turbine engine according to claim 4, wherein the second heat conductive film is provided in an annular shape along the circumferential direction of the intake port, which has an in-plane direction in the thickness direction and is annular.
  6.  前記第1の熱伝導フィルムは、前記ナセルの前記吸気口から遠ざかるにつれて、前記厚さ方向に対して前記面外方向が連続的に変位する請求項4に記載のガスタービンエンジン。 The gas turbine engine according to claim 4, wherein the first heat conductive film continuously displaces the out-of-plane direction with respect to the thickness direction as the distance from the intake port of the nacelle increases.
PCT/JP2021/003075 2020-03-27 2021-01-28 Heat conductive film, heating device, and gas turbine engine WO2021192599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-058962 2020-03-27
JP2020058962A JP2021158029A (en) 2020-03-27 2020-03-27 Heat conductive film, heating device, and gas turbine engine

Publications (1)

Publication Number Publication Date
WO2021192599A1 true WO2021192599A1 (en) 2021-09-30

Family

ID=77891766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003075 WO2021192599A1 (en) 2020-03-27 2021-01-28 Heat conductive film, heating device, and gas turbine engine

Country Status (2)

Country Link
JP (1) JP2021158029A (en)
WO (1) WO2021192599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115165959A (en) * 2022-07-07 2022-10-11 广东墨睿科技有限公司 Thermal simulation test method, device and system
WO2023111469A1 (en) * 2021-12-17 2023-06-22 Safran Nacelles Air intake lip for a nacelle of an aircraft propulsion assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023670A (en) * 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
EP3153409A1 (en) * 2015-10-05 2017-04-12 Airbus Defence and Space, S.A. Ice protection device and method
JP2017071079A (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Heat conductive sheet, heat conductive sheet laminate and heat conductive sheet molded product
WO2018159909A1 (en) * 2017-02-28 2018-09-07 서울대학교산학협력단 Heating system and heating element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023670A (en) * 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
EP3153409A1 (en) * 2015-10-05 2017-04-12 Airbus Defence and Space, S.A. Ice protection device and method
JP2017071079A (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Heat conductive sheet, heat conductive sheet laminate and heat conductive sheet molded product
WO2018159909A1 (en) * 2017-02-28 2018-09-07 서울대학교산학협력단 Heating system and heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023111469A1 (en) * 2021-12-17 2023-06-22 Safran Nacelles Air intake lip for a nacelle of an aircraft propulsion assembly
CN115165959A (en) * 2022-07-07 2022-10-11 广东墨睿科技有限公司 Thermal simulation test method, device and system
CN115165959B (en) * 2022-07-07 2023-05-02 广东墨睿科技有限公司 Thermal simulation test method, device and system

Also Published As

Publication number Publication date
JP2021158029A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2021192599A1 (en) Heat conductive film, heating device, and gas turbine engine
US8683807B2 (en) Jet engine exhaust nozzle flow effector
CN103582758B (en) Wind turbine blade and related manufacture method
JP6887576B1 (en) Composite aircraft structure with integrated heating elements
US10792891B2 (en) Polymer matrix-ceramic matrix hybrid composites for high thermal applications
EP1820943B1 (en) Electrothermal heater assembly for anti-icing and deicing a component, corresponding gas turbine engine component and method of forming a heater assembly
CA2609119C (en) Strained capable conductive/resistive composite hybrid heater for thermal anti-ice device
WO2013128682A1 (en) Fiber-reinforced plastic heating element and wind power generating device comprising said heating element
US20150295287A1 (en) Temperature control device for an electrical energy supply unit
JP2016107624A (en) Composite material structure having junction of composite material and metal and method for manufacturing the same
US9931809B2 (en) Composite material structure and method of manufacturing composite material structure
KR101901094B1 (en) Radar absorbing composite sheet for high temperature and articles comprising the same
BR112020005356A2 (en) methods for making an electrothermal heating mat and an ice-protected apparatus, an electrothermal heating mat, and an ice-protected apparatus.
US20200361612A1 (en) Resistive heated aircraft component and method for manufacturing said aircraft component
EP3407678A1 (en) Method of making complex carbon nanotube sheets
EP3002100B1 (en) Systems and methods for curing complex fiber-reinforced composite structures
JP6278924B2 (en) Method for manufacturing flying radome
EP3836747A1 (en) Conformal thin film heaters for angle of attack sensors
EP3297394B1 (en) Nano alumina fabric protection ply for de-icers
US11805573B2 (en) Flexible resistor
JP3899858B2 (en) Flying radome
EP4112448A1 (en) Integrated microwave thermal anti-icing system
Turner et al. Jet Engine Exhaust Nozzle Flow Effector
JP3787989B2 (en) Honeycomb sandwich panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776616

Country of ref document: EP

Kind code of ref document: A1