WO2021192586A1 - Control device, control method, and node system - Google Patents

Control device, control method, and node system Download PDF

Info

Publication number
WO2021192586A1
WO2021192586A1 PCT/JP2021/002801 JP2021002801W WO2021192586A1 WO 2021192586 A1 WO2021192586 A1 WO 2021192586A1 JP 2021002801 W JP2021002801 W JP 2021002801W WO 2021192586 A1 WO2021192586 A1 WO 2021192586A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
state
control device
master
slave
Prior art date
Application number
PCT/JP2021/002801
Other languages
French (fr)
Japanese (ja)
Inventor
竜太 堀江
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021192586A1 publication Critical patent/WO2021192586A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the technology disclosed in the present specification (hereinafter referred to as "the present disclosure”) relates to a control device and a control method for controlling each node in a system composed of a plurality of interlocking nodes, and a node system.
  • a master-slave system is basically composed of a combination of a master-side device and a slave-side device.
  • the master side device and the slave side device are interconnected via, for example, a wired or wireless communication medium, and the instruction input by the operator to the master side device is transferred via the communication medium, and the slave side device receives the instruction.
  • the drive of the robot, manipulator, etc. is controlled according to the instructions given.
  • the image of the camera that captures the operation of the robot or manipulator on the slave side is transferred via the communication medium, and the received image is displayed on the display on the master side device. Therefore, the operator can input the following instruction to the master side device while checking the image captured by the camera.
  • a master-slave system for example, bilateral feedback control is adopted between the master-side device and the slave-side device in order to match the input by the operator with the position of the robot or manipulator and the state of force. (See Patent Document 1).
  • the master-side device and the slave-side device in the master-slave system are independent devices, but they operate in cooperation with each other.
  • a control system that synchronizes a master-side device and a slave-side device by adopting a PLL (Phase Locked Loop) method has been proposed (see Patent Document 2).
  • An object of the present disclosure is to provide a control device and a control method for mutually monitoring the state of each node and controlling the operation of the own node in a system composed of a plurality of interlocking nodes, and a node system.
  • the first aspect of the present disclosure is a control device that controls one node in a system consisting of a plurality of nodes.
  • a holding unit that holds the state of its own node, Input section for inputting the status of other nodes,
  • a determination unit that determines the state of the own node based on the state of the own node held in the holding unit and the state of another node input from the input unit. It is a control device provided with.
  • the holding unit holds the state of its own node until a state release signal is input. Further, the input unit invalidates the input of the state of the other node for a predetermined dead time period after the state release signal is input.
  • the dead time is set based on the transmission delay between the nodes in the system.
  • the control device further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit.
  • the own node includes a plurality of drive units, and controls the output of control signals to each drive unit based on the determination result of the integrated determination unit.
  • the second aspect of the present disclosure is a control method for controlling one node in a system composed of a plurality of nodes.
  • a retention step that retains the state of its own node, Input steps to enter the status of other nodes,
  • the third aspect of the present disclosure is Consists of multiple nodes, at least some of them Based on the holding unit that holds the state of the own node, the input unit that inputs the state of the other node, the state of the own node held in the holding unit, and the state of the other node input from the input unit. Equipped with a monitoring device equipped with a judgment unit that determines the status of the own node, It is a node system.
  • system here means a logical assembly of a plurality of devices (or functional modules that realize a specific function), and each device or functional module is in a single housing. It does not matter whether or not it is.
  • a control device that mutually monitors the state of each node and controls the operation of the own node by interlocking with the state of another node at high speed and with low delay.
  • a control method as well as a node system can be provided.
  • FIG. 1 is a diagram showing a configuration example of the appearance of the surgery support system 1.
  • FIG. 2 is a diagram illustrating the configuration of the appearance of the surgery support system 1.
  • FIG. 3 is a diagram showing a configuration example of the mutual monitoring system 300.
  • FIG. 4 is a diagram showing the network topology of the surgery support system 1 shown in FIG.
  • FIG. 5 is a diagram showing a configuration example of the mutual monitoring system 500.
  • FIG. 6 is a diagram showing a configuration example of the condition monitoring device 600.
  • FIG. 7 is a flowchart showing a safe operation flow in the node equipped with the condition monitoring device 600 shown in FIG.
  • FIG. 8 is a diagram showing a modified example of the network topology of the dual arm surgery support system.
  • FIG. 1 is a diagram showing a configuration example of the appearance of the surgery support system 1.
  • FIG. 2 is a diagram illustrating the configuration of the appearance of the surgery support system 1.
  • FIG. 3 is a diagram showing a configuration example of the mutual monitoring system 300
  • FIG. 9 is a diagram showing still another configuration example of the network topology of the surgery support system.
  • FIG. 10 is a diagram showing still another configuration example of the network topology of the surgery support system.
  • FIG. 11 is a diagram showing a state in which a delay measurement pulse output from one node returns back and forth between the nodes in the mutual monitoring system.
  • FIG. 12 is a diagram showing a timing chart for transmitting and receiving delay measurement pulses in a mutual monitoring system.
  • FIG. 13 is a diagram showing a network topology of a dual arm surgery support system.
  • FIG. 14 is a diagram showing an operation mode and communication conditions of the surgery support system shown in FIG.
  • FIG. 15 is a diagram showing a circuit configuration common to the safety torque off determination unit 621, the brake release determination unit 623, and the laser output on determination unit 625.
  • FIG. 1 shows a configuration example of the appearance of the surgery support system 1 as an example of the master-slave system.
  • the illustrated surgery support system 1 is a dual-arm master-slave system.
  • the patient 12 is laid on his back on the operating table 11.
  • a right-hand slave device 13 is installed on the right side of the operating table 11, and a left-hand slave device 14 is installed on the left side of the operating table 11.
  • a treatment tool including forceps, a pneumoperitoneum tube, an energy treatment tool, tweezers, a retractor, or the like is attached to the tips of the right-hand slave device 13 and the left-hand slave device 14, respectively.
  • the right hand master device 16 for remotely controlling the right hand slave device 13 and the left hand slave device 14 for remote control are used.
  • the left-hand master device 17 is arranged respectively.
  • An operation unit 18 held by the operator with the right hand is attached to the tip of the right-hand master device 16, and an operation unit 19 held by the operator with the left hand is attached to the tip of the left-hand master device 17.
  • a camera unit 20 to which a camera for capturing the state of the affected area of the patient is attached to the tip is installed.
  • the camera may be a stereo camera, and the camera unit 20 may capture a 3D image.
  • the camera unit 20 may be operated by an operation unit operated by the operator to perform at least one of camera operations such as shooting angle, distance, and focus adjustment (in this case, the operation target by the right-hand or left-hand master device). , It is necessary to switch from the corresponding slave device to the camera unit), and the camera unit 20 may operate autonomously.
  • a monitor 21 is installed in the vicinity of the operation table 15. An image of the affected area taken by the camera unit 20 is projected on the monitor 21. When the camera unit 20 shoots with a stereo camera, a 3D image is displayed on the monitor 21.
  • the operator operates the right-hand master device 16 with the right hand and the left hand while observing the state of the treatment tool and the affected area at the tips of the right-hand slave device 13 and the left-hand slave device 14 displayed on the monitor 21. Operate the left-hand master device 17 with.
  • the right-hand slave device 13 and the left-hand slave device 14 move in synchronization with the movements of the right-hand master device 16 and the left-hand master device 17, respectively.
  • the operator operates the right-hand master device 16 and the left-hand master device 17 with respect to the patient 12 on the operating table 11 with respect to the right-hand slave device 13 and the left-hand slave device. Remote surgery can be performed using 14.
  • FIG. 2 schematically shows an example of the functional configuration of the surgery support system 1.
  • the surgery support system 1 is a dual-arm master-slave system, but it is assumed that bilateral feedback control is applied.
  • a camera unit 20 to which a camera (stereo camera) for capturing the state of the affected area of the patient is attached to the tip is installed above the operating table 11.
  • the camera may be, for example, a microscope, an endoscope, or an endoscope.
  • the CCU (Camera Control Unit) 123 processes the image captured by the camera and transfers it to the master side.
  • a monitor 21 is installed near the operation table 15. The monitor 21 displays an image of the affected area taken by the camera unit 20. When the camera unit 20 shoots with a stereo camera, the monitor 21 displays a 3D image.
  • the operator operates the right-hand master device 16 with the right hand and the left hand while observing the state of the treatment tool and the affected area at the tips of the right-hand slave device 13 and the left-hand slave device 14 displayed on the monitor 21. Operate the left-hand master device 17 with.
  • the right-hand master control device 111 and the control PC (Personal Computer) 113 generate a control signal of the right-hand slave device 13 according to the amount of operation of the right-hand master device 16 by the operator, and generate the control signal of the right-hand slave device 13 to the right-hand slave control device 121. Forward. Further, the left-hand master control device 112 and the control PC 113 generate a control signal of the left-hand slave device 14 according to the amount of operation of the left-hand master device 17 by the operator, and transfer the control signal to the left-hand slave control device 122.
  • the left-hand master control device 112 and the control PC 113 generate a control signal of the left-hand slave device 14 according to the amount of operation of the left-hand master device 17 by the operator, and transfer the control signal to the left-hand slave control device 122.
  • the control PC 113 passes through each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122, and then the right-hand master device 16, the left-hand master device 17, and the right-hand master device 17.
  • the motion control calculation of the slave device 13 for the left hand and the slave device 14 for the left hand is performed.
  • the control PC 113 reads the detection values of the encoders and force sensors mounted on the master device and the slave device, calculates the current command value of the motor, and performs calculations for controlling the electromagnetic brake of the motor. conduct.
  • the right-hand slave control device 121 controls the drive of the right-hand slave device 13 based on the control signal received from the right-hand master control device 111. Further, the left-hand slave control device 122 controls the drive of the left-hand slave device 14 based on the control signal received from the left-hand master control device 112.
  • the right-hand slave device 13 and the left-hand slave device 14 move in synchronization with the movements of the right-hand master device 16 and the left-hand master device 17, respectively.
  • the operator operates the right-hand master device 16 and the left-hand master device 17 with respect to the patient 12 on the operating table 11 with respect to the right-hand slave device 13 and the left-hand slave device. Remote surgery can be performed using 14.
  • the master and slave are usually placed at a distance of about 10 m. However, the master and the slave may be separated by more than that (for example, several tens of km).
  • An optical fiber cable 130 is used for the connection between the master and the slave.
  • another communication medium such as a coaxial cable or an Ethernet (registered trademark) cable may be used to connect the master and the slave.
  • the surgery support system 1 is basically a synchronous system in which each part operates in synchronization, except for safety monitoring.
  • the control PC 113 supplies control signals to each part in the surgery support system 1. Then, the control software of each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122 operates synchronously based on the control signal from the control PC 113. do.
  • the surgery support system 1 is basically a synchronized system, and is a master (right-hand master control device 111 and left-hand master control device 112) and a slave (right-hand slave control device 121 and left-hand slave control device 122). ),
  • the camera (CCU123), and the control PC 113 are synchronized at the clock level by an external synchronization circuit.
  • the surgery support system 1 is configured by an asynchronous circuit that does not use a communication protocol for safety monitoring for the purpose of performing mutual monitoring between a master and a slave at high speed.
  • the right-hand master control device 111, the left-hand master control device 112, the control PC 113, the right-hand slave control device 121, the left-hand slave control device 122, and the CCU 123 are individually configured. It is assumed that an emergency stop switch will be installed. Then, when the emergency stop switch of any one of these devices is pressed, all the other devices are also stopped asynchronously at high speed and with low delay.
  • FIG. 3 shows a configuration example of the mutual monitoring system 300 applied to the surgery support system 1.
  • the mutual monitoring system 300 is incorporated into a combination of a plurality of devices for which emergency stop operations should be linked at high speed and with low delay, such as between 112.
  • FIG. 3 for convenience of explanation, it is simplified and drawn as a configuration example of the mutual monitoring system 300 in the case where one master side safety monitoring device 310 and one slave side safety monitoring device 320 are combined.
  • the master side safety monitoring device 310 is, for example, either the right hand master control device 111 or the left hand master control device 112, and the slave side safety monitoring device 320 is, for example, the right hand slave control device 121 or the left hand slave control device 122. Is one of.
  • the transmitting side performs PS conversion for parallel serial conversion of the transmission data. It is equipped with an EO (Electrical / Optical) converter that converts an electric signal into an optical signal, and an OE (Optical / Electrical) converter that converts an optical signal into an electric signal on the receiving side and SP conversion that converts received data in serial parallel. It may be equipped with a vessel.
  • the configuration of the master side safety monitoring device 310 will be described.
  • the stop switch for example, emergency stop switch
  • the stop signal for example, emergency stop signal
  • the master state determination unit 313 via the latch (LAT) 312.
  • the state in which the emergency stop switch is pressed remains held by the latch 312 even if the emergency stop switch is released.
  • the latch 312 releases the emergency stop state of the emergency stop switch by the latch release signal 314. Therefore, the emergency stop signal 311 continues to be input to the master state determination unit 313 until the emergency stop switch is pressed once and the latch release signal 314 is input. It is assumed that the latch release signal 314 is output from, for example, the higher-level software of the master-side safety monitoring device 310.
  • the higher-level software monitors the state of each part in the master in the return sequence of the master-side safety monitoring device 310, and determines whether or not it is possible to recover from the emergency stop.
  • a sensor for monitoring the state of each part may be arranged in the master.
  • the higher-level software may determine whether or not it is possible to recover from an emergency stop based on an instruction input from the outside such as an operator.
  • the higher-level software outputs a latch release signal 314 when it is determined that the emergency stop state may be restored.
  • the master-side safety monitoring device 310 operates asynchronously with the slave-side safety monitoring device 320, but the higher-level software that controls the return sequence is synchronized with the slave-side higher-level software based on the control signal from the control PC 113. Works like this.
  • the status signal 327 (described later) of the slave side safety monitoring device 320 is propagated via the optical fiber cable 130 and input to the master side safety monitoring device 310.
  • the status signal 327 of the slave-side safety monitoring device 320 is propagated via the optical fiber cable 130.
  • the laser beam signal emitted from one of the optical modules of the master-side safety monitoring device 310 and the slave-side safety monitoring device 320 passes through the optical fiber cable 130 and is received and processed by the other, thereby monitoring the master-side safety. Communication between the device 310 and the slave-side safety monitoring device 320 is realized. If unnecessary laser light is irradiated from the device in the open state where the optical fiber cable 130 is disconnected, there is a risk of an accident due to exposure.
  • the wiring length of the optical fiber cable 130 is substantially equal to the distance between the master side safety monitoring device 310 and the slave side safety monitoring device 320, for example, about 10 m. Therefore, there is a transmission delay of about 1 to 10 microseconds before the status signal 327 of the slave-side safety monitoring device 320 propagates to the master-side safety monitoring device 310.
  • This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130.
  • the master state determination unit 313 is composed of an AND (logical product) gate, and takes a logical product of the emergency stop signal 311 and the state signal 327 of the slave side safety monitoring device 320 to obtain a negated state in which the master itself has made an emergency stop.
  • a status signal 317 indicating which of the asserted states in which the emergency stop has been released is output to the controlled device in the master safety monitoring device 310.
  • the master state determination unit 313 receives a negated state signal 317 when an emergency stop signal 311 is input or when a state signal indicating a negated state (for example, an emergency stop state) is input from the slave side safety monitoring device 320. Is output.
  • the control target device for example, the right-hand master device 16 and the left-hand master device 17
  • the control target device in the master stops the operation in the negate state and starts or restarts the operation in the assert state.
  • the slave side safety monitoring device 320 can make the slave emergency stop in conjunction with the emergency stop on the master side. ..
  • the status signal 327 transmitted from the slave-side safety monitoring device 320 is input to the master status determination unit 313 via the switch 315.
  • the dead time (DET) detection unit 316 detects that a predetermined dead time elapses after the latch release signal 314 is input when the master returns from the emergency stop.
  • the switch 315 switches from off to on based on the result of the dead time detection unit 316 detecting that the dead time has elapsed since the latch was released. Therefore, the switch 315 is in the off state from the release of the latch until the dead time elapses, and the master state determination unit 313 ignores the state signal 327 of the slave side safety monitoring device 320 until the dead time elapses. Disable.
  • the dead time is a time during which the master status determination unit 313 does not perform status determination on the master side when returning from an emergency stop. In other words, it means a time during which the master-side safety monitoring device 310 does not perform safety monitoring and becomes a dead zone.
  • a transmission delay corresponding to the wiring length of the optical fiber cable 130 occurs.
  • This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130. For example, if the wiring length of the optical fiber cable 130 is 10 m, there is a transmission delay of about 1 to 10 microseconds. That is, there is a transmission delay before the slave side safety monitoring device 320 notifies the master side safety monitoring device 310 that the slave side has returned from the emergency stop.
  • a dead time (DET) consisting of a minimum time linked to the transmission delay time (or the wiring length of the optical fiber cable 130) is set in the dead time detection unit 316, and the dead time is set after the latch is released in the master.
  • the switch 315 is turned off to provide a dead zone for the status signal 327 of the slave-side safety monitoring device 320.
  • the switch 315 and the dead time detection unit 316 form a return circuit 318 (a region filled in gray in FIG. 3) that provides a dead time when the master returns from an emergency stop.
  • the return circuit 318 includes a storage element such as a register for setting a dead time, a delay circuit for invalidating an input by the dead time, and the like.
  • the master side safety monitoring device 310 Next, the operation of the master side safety monitoring device 310 will be described. Once the emergency stop switch is pressed, the latch 312 holds the state in which the emergency stop switch is pressed. Then, the master state determination unit 313 takes the logical product of the emergency stop signal 311 and the state signal 327 from the slave side safety monitoring device 320, and sets the state signal 317 as the state signal 317, and the master itself is in the negate state in which the emergency stop is performed. Outputs a negate signal indicating.
  • the master state determination unit 313 logically ANDs the emergency stop signal 311 with the state signal 327 from the slave side safety monitoring device 320.
  • a state signal 317 a negate signal indicating that the master itself is in an emergency stopped negate state is output.
  • the control target device in the master (for example, the right-hand master device 16 and the left-hand master device 17) stops the operation in response to the determination result of the negate state by the master state determination unit 313. Further, the negated state signal 317 output from the master state determination unit 313 is also transmitted to the slave side.
  • the state in which the emergency stop switch is pressed remains held by the latch 312 even if the emergency stop switch is released.
  • the higher-level software running in the master determines whether it is okay to return from the emergency stop state to the normal operating state. Then, when the host software determines that the master can recover from the emergency stop, it outputs a latch release signal 314 to release the emergency stop state held by the latch 312. As a result, the emergency stop signal 311 indicating the release of the emergency stop is input to the master state determination unit 313.
  • the dead time (DET) detection unit 316 detects that a predetermined dead time has elapsed since the latch release signal 314 was input.
  • the dead time is set to a minimum value linked to the transmission delay time (or the wiring length of the optical fiber cable 130) (described above).
  • the switch 315 is in the off state from the release of the latch until the dead time elapses, and the master state determination unit 313 ignores the state signal 327 of the slave side safety monitoring device 320 until the dead time elapses. That is, the switch 315 is turned off until the dead time elapses after the latch 312 is released in the master, and a dead zone for the status signal 327 of the slave side safety monitoring device 320 is provided.
  • the switch 315 switches from off to on based on the result that the dead time detection unit 316 detects that the dead time has elapsed since the latch was released.
  • the master state determination unit 313 takes the logical product of the inputs and states the assert state.
  • the signal 317 is output.
  • the controlled target device for example, the right-hand master device 16 and the left-hand master device 17
  • the master and the slave can work together to recover from the emergency stop.
  • the assert state state signal 317 output from the master state determination unit 313 is also transmitted to the slave side.
  • the configuration of the slave-side safety monitoring device 320 is almost the same as that of the master-side safety monitoring device 310.
  • the emergency stop signal 321 is input to the slave state determination unit 323 via the latch (LAT) 322.
  • the latch 322 holds the emergency stop state until the latch release signal 324 is input from the host software.
  • the higher-level software monitors the state of each part in the slave and determines whether or not it is possible to recover from the emergency stop.
  • a sensor for monitoring the state of each part may be arranged in the master.
  • the higher-level software may determine whether or not it is possible to recover from an emergency stop based on an instruction input from the outside such as an operator.
  • the higher-level software outputs a latch release signal 324 when it is determined that the emergency stop state may be restored.
  • the slave-side safety monitoring device 320 operates asynchronously with the master-side safety monitoring device 310, but the higher-level software that controls the return sequence is synchronized with the higher-level software on the master side based on the control signal from the control PC 113. Works like this.
  • the status signal 317 (described above) of the master side safety monitoring device 310 is propagated via the optical fiber cable 130 and input to the slave side safety monitoring device 320.
  • the wiring length of the optical fiber cable 130 is, for example, about 10 m, and there is a transmission delay of about 1 to 10 microseconds until the status signal 317 of the master side safety monitoring device 310 propagates to the slave side safety monitoring device 320. be.
  • This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130.
  • the slave state determination unit 323 is composed of an AND (logical product) gate, and takes a logical product of the emergency stop signal 321 and the state signal 317 of the master side safety monitoring device 310 to obtain a negated state in which the slave itself has stopped in an emergency.
  • a status signal 327 indicating which of the asserted states in which the emergency stop has been released is output to the controlled device in the slave-side safety monitoring device 320.
  • the slave state determination unit 323 receives a negated state signal 327 when an emergency stop signal 321 is input or when a state signal indicating a negated state (for example, an emergency stop state) is input from the master side safety monitoring device 310. Is output.
  • the control target device for example, the right-hand slave device 13 and the left-hand slave device 14
  • the slave side safety monitoring device 320 can make the master stop in an emergency in conjunction with the emergency stop on the slave side. ..
  • the status signal 317 transmitted from the master side safety monitoring device 310 is input to the slave status determination unit 323 via the switch 325.
  • the dead time (DET) detection unit 326 detects that a predetermined dead time elapses after the latch release signal 324 is input when the slave returns from the emergency stop.
  • the switch 325 switches from off to on based on the result of the dead time detection unit 326 detecting that the dead time has elapsed since the latch was released. Therefore, the switch 325 is in the off state from the release of the latch until the dead time elapses, and the slave state determination unit 323 ignores the state signal 317 of the master side safety monitoring device 310 until the dead time elapses. ..
  • the dead time means a time during which the slave-side safety monitoring device 320 does not perform safety monitoring and becomes a dead zone, and a value linked to the transmission delay between the master and the slave is set (same as above).
  • the switch 325 and the dead time detection unit 326 constitute a return circuit 328 (a region filled in gray in FIG. 3) that provides a dead time when the slave returns from an emergency stop.
  • the return circuit 328 includes a storage element such as a register for setting a dead time, a delay circuit for invalidating an input by the dead time, and the like.
  • the slave side safety monitoring device 320 Next, the operation of the slave side safety monitoring device 320 will be described.
  • the latch 322 holds the state in which the emergency stop switch is pressed.
  • the slave state determination unit 323 takes the logical product of the emergency stop signal 321 and the state signal 317 from the master side safety monitoring device 310, and sets the state signal 327 as a negate state in which the slave itself has stopped in an emergency. Outputs a negate signal indicating.
  • the slave state determination unit 323 logically ANDs the emergency stop signal 321 with the state signal 317 from the master side safety monitoring device 310.
  • a state signal 327 a negate signal indicating that the slave itself is in an emergency stopped negate state is output.
  • the control target device in the slave stops the operation in response to the determination result of the negate state by the slave state determination unit 323. Further, the negated state signal 327 output from the slave state determination unit 323 is also transmitted to the master side.
  • the state in which the emergency stop switch is pressed remains held in the latch 322 even if the emergency stop switch is released.
  • the host software running in the slave determines whether it is okay to return from the emergency stop state to the normal operating state. Then, when the host software determines that the master can recover from the emergency stop, it outputs a latch release signal 324 to release the emergency stop state held by the latch 322. As a result, the emergency stop signal 321 indicating the release of the emergency stop is input to the slave state determination unit 323.
  • the dead time (DET) detection unit 326 detects that a predetermined dead time has elapsed since the latch release signal 324 was input.
  • the dead time is set to a minimum value linked to the transmission delay time (or the wiring length of the optical fiber cable 130) (described above).
  • the switch 325 is in the off state from the release of the latch until the dead time elapses, and the slave state determination unit 323 ignores the state signal 317 of the master side safety monitoring device 310 until the dead time elapses. That is, the switch 325 is turned off until the dead time elapses after the latch 322 is released in the slave, and a dead zone for the status signal 317 of the master side safety monitoring device 310 is provided.
  • the switch 325 switches from off to on based on the result that the dead time detection unit 326 detects that the dead time has elapsed since the latch was released.
  • the slave state determination unit 323 takes the logical product of the inputs and states the assert state.
  • the signal 327 is output.
  • the controlled target device for example, the right-handed slave device 13 and the left-handed slave device 14
  • the assert state state signal 337 output from the slave state determination unit 323 is also transmitted to the master side.
  • the master and the slave can each be asynchronously and at high speed in an emergency stop, and when one of the master and the slave is in an emergency stop, the other Can also be asynchronously linked at high speed to make an emergency stop. Further, when the master and the slave recover from the emergency stop, a dead time of a value linked to the transmission delay between the master and the slave is provided so that the states of each other can be confirmed. As a result, it is possible to avoid a situation in which one of the master and the slave returns first and the other returns later, and both can return in tandem.
  • the master side safety monitoring device 310 and the slave side safety monitoring device 320 may basically have the same configuration.
  • the master-side safety monitoring device 310 and the slave-side safety monitoring device 320 can each be configured by any one of an FPGA (Field Programmable Gate Array), a gate IC (Integrated Circuit), a processor, or a combination thereof.
  • FPGA Field Programmable Gate Array
  • gate IC Integrated Circuit
  • processor or a combination thereof.
  • FIG. 3 shows a mutual monitoring system 300 incorporated in a two-node system consisting of a combination of one master and one slave for simplification.
  • the surgery support system 1 shown in FIGS. 1 and 2 is a dual-arm master-slave system, and is a right-hand master control device 111, a left-hand master control device 112, a right-hand slave control device 121, and a left-hand master control device 121. It consists of four nodes of the slave control device 122.
  • the surgery support system 1 when any one of the four nodes of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122 is in an emergency stop, The remaining three nodes also need to be asynchronously linked at high speed to make an emergency stop. Further, when these four nodes recover from the emergency stop, it is necessary to set a dead time of a value linked with the maximum transmission delay between the nodes and confirm each other's states.
  • FIG. 4 schematically shows the network topology of the surgery support system 1 shown in FIG.
  • the network topology shown has a tree structure.
  • the right-hand master control device 111 (M1) and the right-hand slave control device 121 (S1) are interconnected via the optical fiber cable 130, and the left-hand master control device 121 (M2) and the left-hand master control device 121 (M2) are connected to each other.
  • the slave control device 122 (S2) is interconnected via the optical fiber cable 130.
  • the right-hand master control device 111 (M1) and the left-hand master control device 112 (M2) are interconnected, and the right-hand master control device 111 (M1) and the control PC 113 are interconnected. ..
  • the network topology of the node system to which this disclosure applies is basically a tree structure.
  • the transmission delay between the right-hand master controller 111 (M1) and the right-hand slave controller 121 (S1) is D 1
  • the transmission delay between the right-hand slave control device 121 (S1) and the left-hand slave control device 122 (S2) is D 3 .
  • the maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance. In the network topology shown in FIG. 4, the route is the right-hand master control device 111 connected to the control PC 113, and the node at the longest distance from this route is the left-hand slave control device 122 (S2). Therefore, in the node system having the network topology shown in FIG. 4, if the fiber length between the master and the slave is the same, the maximum transmission delay is D 2 + D 3 .
  • FIG. 5 schematically shows a configuration example of the mutual monitoring system 500 incorporated in the surgery support system 1.
  • the surgery support system 1 is a right-hand master control device 111, a left-hand master control device 112, a right-hand slave control device 121, and a left-hand slave control device 122, which are connected by the network topology shown in FIG. It is assumed to be composed of 4 nodes. However, in FIG. 5, the control PC 113 is not shown.
  • the right-hand master control device 111 and the right-hand slave control device 121, and the left-hand master control device 112 and the left-hand slave control device 122 are interconnected via the optical fiber cable 130 as described above.
  • the communication medium that interconnects the right-hand master control device 111 and the left-hand master control device 112, and the right-hand slave control device 121 and the left-hand slave control device 122 is not particularly limited.
  • a mutual monitoring subsystem 501 is arranged between the right-hand master control device 111 and the right-hand slave control device 121. Further, a mutual monitoring subsystem 502 is arranged between the right-hand master control device 111 and the left-hand master control device 112. Further, a mutual monitoring subsystem 503 is arranged between the left-hand master control device 112 and the left-hand slave control device 122.
  • each of the mutual monitoring subsystems 501 to 503 has the same configuration as the mutual monitoring system 300 shown in FIG. 3, detailed description thereof will be omitted here.
  • a dead time linked to the maximum transmission delay of the surgery support system 1 is set in the dead time detection units of the mutual monitoring subsystems 501 to 503. If the fiber length between the master and slave is the same, the maximum transmission delay of the surgical support system 1 is D 2 + D 3 . If the fiber length is unknown, it is necessary to check the maximum transmission delay using a delay time measurement circuit. The details of the delay time measurement circuit will be described later.
  • the safety monitoring state of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 502 is shared.
  • the status signal output by the status determination unit on the mutual monitoring subsystem 501 side is input to the status determination unit on the mutual monitoring subsystem 502 side in the right-hand master control device 111, and the mutual monitoring subsystem 502 side is input to the status determination unit.
  • the safety monitoring status of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 502 is shared. Can be done.
  • the safety monitoring state of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 503 is shared.
  • the connection is omitted in FIG. 5, in the right-hand slave control device 121, the status signal output by the status determination unit on the mutual monitoring subsystem 501 side is input to the status determination unit on the mutual monitoring subsystem 503 side, and the mutual monitoring subsystem 503 is input to each other.
  • the status signal output by the status determination unit on the monitoring subsystem 503 side is input to the status determination unit on the mutual monitoring subsystem 501 side
  • the safety monitoring status of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 503 is shared. Can be done.
  • the mutual monitoring system 500 shown in FIG. 5 when any one of the four nodes is in an emergency stop, the remaining three nodes can be asynchronously and at high speed in an emergency stop. Further, according to the mutual monitoring system 500, when these four nodes recover from an emergency stop, a dead time of a value linked with the maximum transmission delay between the nodes is set, and each other's status is confirmed. Can be done.
  • FIG. 3 shows the master side safety monitoring device 310 and the slave side safety monitoring device 320 that perform an emergency stop asynchronously and interlockingly in response to the operation of the emergency stop switch on each of the master side and the slave side.
  • the basic configuration example of is shown.
  • On each of the master side and the slave side in addition to the safety state based on the operation of the emergency stop switch, various states are monitored, the operation is stopped, and the stopped state is released to restore the operation. There is a need.
  • the safety monitoring circuits 310 and 320 shown in FIG. 3 have a basic configuration for monitoring only the status signals of the emergency stop switch and other nodes.
  • various states such as an abnormality in the motor drive circuit, an abnormality signal from the control PC 113, and a cable connection state.
  • the state to be monitored differs depending on the controlled device such as the master and the slave.
  • FIG. 6 shows a configuration example of a condition monitoring device 600 configured to monitor various states of the controlled device in addition to the safety state based on the operation of the emergency stop switch.
  • the status determination unit 601 includes a UI (User Interface) switch signal 602, a motor drive circuit status signal 605, a Watch Dog signal 606 indicating the status of the host software, and communication.
  • a communication ALIVE signal 607 or the like indicating the connection state of the cable is input. Since the configuration and operation of the safety monitoring device 603 have already been described with reference to FIG. 3, detailed description thereof will be omitted here.
  • the Watch Dog signal 606 is output when an abnormal state of the software is detected. Further, the communication ALIVE signal 607 is output when an abnormality occurs in the cable connecting the own node and another node.
  • the state determination unit 601 is composed of an AND gate, and takes the logical product of the input signals 601 to 607, ... Output.
  • the safety torque off (Safe Torque Off) determination unit 621 takes a logical product of the overall status signal 610 output from the status determination unit 601 and the safety torque off release signal 611 output from the host software, and motors (not shown).
  • a safety torque off release signal 622 is output to indicate whether or not to release the safety torque off.
  • the brake release determination unit 623 takes a logical product of the overall state signal 610 output from the state determination unit 601 and the brake release signal 612 output from the host software, and electromagnetically transmits the motor (not shown) to the motor (not shown).
  • a brake release signal 624 indicating whether or not to release the brake is output.
  • the laser output on determination unit 625 takes a logical product of the overall state signal 610 output from the state determination unit 601 and the laser output on signal 613 output from the host software, and outputs the laser output on to a laser (not shown). Outputs a laser output on signal 626 indicating whether or not to turn on.
  • the higher-level software carefully decides whether to turn on the laser output in order to avoid exposure due to unnecessary laser light output.
  • the condition monitoring device 600 can be equipped on each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122.
  • the safety torque off determination unit 621, the brake release determination unit 623, and the laser output on determination unit 625 are all composed of AND gates, but the state determination unit 601 is hardware-like based on the states of the own node and other nodes. It is common in that it takes the logical product of the state signal determined to be safe or not and the control signal from the host software and outputs the control signal to the device (see FIG. 15).
  • the devices referred to here are a motor drive circuit, an electromagnetic brake of a motor, a laser light module, and the like.
  • the UI switch signal 602, the motor drive circuit state signal 605, the Watch Dog signal 606, and the communication ALIVE signal 607 are all directly connected to the state determination unit 601 (or). Although it is input (via a buffer), each of these signals is provided with a latch on the transmission path and connected to the input terminal of the state determination unit 601. It may be configured to hold the state of the latch until.
  • FIG. 7 shows a safe operation flow in the node equipped with the condition monitoring device 600 shown in FIG. 6 in the form of a flowchart.
  • the illustrated safe operation flow is performed by higher-level software running on the node.
  • the node referred to here corresponds to at least one of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122.
  • the initial setting is performed on the control PC 113 (step S701).
  • the initial setting process includes the process of acquiring information necessary for detecting dead time such as cable length or maximum propagation time in the node system, and whether the master-slave system is dual-armed or single-armed (in other words,). , The number of nodes in the system) is acquired. Each node in the node system acquires the information of the initial setting performed by the control PC 113.
  • step S702 the state in the own node is read (step S702).
  • the node includes the condition monitoring device 600 shown in FIG. 6, it reads the UI switch signal 602, the emergency stop switch signal 604, the motor drive circuit state signal 605, the Watch Dog signal 606, the communication ALIVE signal 607, and so on. Then, it is checked whether or not an abnormality has occurred in the own node (step S703).
  • a safety sequence is executed in this node (step S709).
  • the content of the safety sequence is arbitrary and may differ from node to node. The details of the safety sequence will be omitted here.
  • step S703 if no abnormality is detected from the signal read in the own node (No in step S703), the dead time in the safety monitoring device is set based on the information acquired in the initial setting in step S701 (No in step S703). Step S704). Subsequently, the state of the other node is read (step S705), and it is checked whether or not an abnormality has occurred in any of the other nodes (step S706).
  • step S709 If an abnormality is detected in any of the other nodes (Yes in step S706), a safety sequence is executed in this node (step S709).
  • the content of the safety sequence is arbitrary.
  • this node is the own node and the other by the safety monitoring device shown in FIG. 3 or the condition monitoring device shown in FIG. Steady monitoring of the node of (step S707) is started. Then, when an abnormality is detected in either the own node or the other node (Yes in step S708), a safety sequence is executed in this node (step S709).
  • the content of the safety sequence is arbitrary.
  • FIG. 4 shows the network topology of the dual arm surgery support system 1 shown in FIG.
  • FIG. 8 shows a modified example of the network topology of the dual arm surgery support system.
  • the right-hand master control device (M1) and the right-hand slave control device (S1) are interconnected, and the right-hand master control device (M1) and the left-hand master control device (M2) are included in the master. Is interconnected, and the left-hand master control device (M2) and the left-hand slave control device (S2) are interconnected.
  • the transmission delay between the right-hand master controller (M1) and the right-hand slave controller (S1) is D 1
  • the transmission delay between the right-hand master controller (M1) and the left-hand master controller (M2) is D 2
  • D 3 be the transmission delay between the left-hand master controller (M2) and the left-hand slave controller (S2).
  • the maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance.
  • the route is the left-hand master control device (M2) connected to the control PC. If the fiber length between the master and slave is the same, the node at the longest distance from this route is the right-hand slave controller (S1), and the maximum transmission delay of the node system shown in FIG. 8 is D 1 + D 2 Is. If the fiber length is unknown, it is necessary to use a delay time measurement circuit to find out the maximum transmission delay of the node system shown in FIG. The details of the delay time measurement circuit will be described later.
  • FIG. 9 shows yet another configuration example of the network topology of the surgery support system.
  • the surgery support system is a three-armed system including a first to third master and a first to third slave (neither is shown), and is a first master control device (M1) that controls the first master. ), The second master control device (M2) that controls the second master, the third master control device (M3) that controls the third master, and the first slave control device (M3) that controls the first slave.
  • S1, a second slave control device (S2) that controls the second slave, and a third slave control device (S3) that controls the third slave are assumed.
  • S1 a second slave control device (S2) that controls the second slave
  • S3 third slave control device
  • the first master control device (M1) and the second master control device (M2) are interconnected in the master, and the second master control device (M2) and the third master control device (M2) are connected.
  • the master control unit (M3) is interconnected.
  • the first master control device (M1) is interconnected with the first slave control device (S1)
  • the second master control device (M2) is interconnected with the second slave control device (S2)
  • the second master control device (M2) is interconnected with the second slave control device (S2).
  • the third master control device (M3) has a tree structure in which it is interconnected with the third slave control device (S3).
  • the transmission delay between the first master control device (M1) and the first slave control device (S1) is D 1
  • D 2 the transmission delay between the second master controller (M2) and the second slave controller (S2) is D 3
  • the second master controller (M2) and the third master controller (M3) the transmission delay between D 4
  • the maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance.
  • the route is a third master control device (M3) connected to the control PC.
  • the node at the longest distance from this route is the first slave controller (S1), and the maximum transmission delay of the node system shown in FIG. 9 is D 1 + D. 2 + D 4 . If the fiber length is unknown, it is necessary to use a delay time measurement circuit to find out the maximum transmission delay of the node system shown in FIG. The details of the delay time measurement circuit will be described later.
  • FIGS. 8 and 9 show the network topology of the surgery support system in which the master and the slave have a one-to-one correspondence.
  • a surgical support system in which a plurality of slaves are connected to one master or one slave is connected to a plurality of masters is also envisioned.
  • S1 shows a network topology in which a second slave control device (S2) for controlling two slaves (not shown) is connected in series.
  • the dead time detection unit in the safety monitoring device is set with a dead time of a value linked to the maximum transmission delay in the node system.
  • the delay time depends on the length of the cable connecting the nodes. Therefore, the transmission delay between the nodes can be estimated by using the wiring length or delay time measurement circuit.
  • the cable length can be estimated based on the level of the light emitted from one node and received by the other node.
  • the transmission delay can be estimated based on the round trip time until the delay measurement pulse that reaches the other node returns to the one node by outputting the delay measurement pulse from one node.
  • a delay measurement circuit can be incorporated in the return circuit to output a delay measurement pulse.
  • FIG. 11 shows how the delay measurement pulse output from one node reciprocates between the nodes and returns.
  • FIG. 12 shows a timing chart when the delay measurement pulse incorporated in the return circuit transmits the delay measurement pulse and receives the delay measurement pulse returned from the other node.
  • FIG. 12 shows the delay time due to the transmission delay between the nodes.
  • the transmission delay between nodes can be estimated.
  • the transmission delay may be automatically measured, and the dead time linked to the transmission delay may be automatically set in the safety monitoring circuit of each node.
  • the dead time based on the measurement result of the transmission delay between the nodes may be manually set in the safety monitoring circuit of each node.
  • the right-hand master control device (M1) and the right-hand slave control device (S1) are interconnected, and the right-hand master control device (M1) and the left-hand master control device (M2) are included in the master.
  • M1 Are interconnected, and the left-hand master control device (M2) and the left-hand slave control device (S2) are interconnected.
  • It has three operation modes: R) mode, single arm (L) mode in which the master and slave for the left hand operate, dual arm mode in which the master and slave for both hands operate, and a stop mode in which all operations are stopped. .
  • the control PC is interconnected with the right-hand master control device (M1), and the right-hand master control device (M1) is the root of the tree structure.
  • the cable connecting the right-hand master control device (M1) and the right-hand slave control device (S1) is C1
  • the cable connecting the right-hand master control device (M1) and the left-hand master control device (M2) is connected.
  • C2 the cable connecting the left-hand master control device (M2) and the left-hand slave control device (S2) is referred to as C3.
  • the communication conditions of the cables C1 to C3 in each operation mode of the single arm (R) mode, the single arm (L) mode, the double arm mode, and the stop mode are as shown in FIG.
  • the single arm (R) mode only the cable C1 connecting the right-hand master control device (M1) and the right-hand slave control device (S1) needs to be connected.
  • the single arm (L) mode the cable C3 connecting the left-hand master control device (M2) and the left-hand slave control device (S2) is connected, and the left-hand master control device (M2) is the root. It is necessary that the connection state is turned on with the right-hand master control device (M1). Further, in the dual arm mode, all the cables C1 to C3 are in the connected state. On the other hand, in the stop mode, all cables C1 to C3 are in the connection state off.
  • the operation support system In the control PC connected to the right-hand master control device (M1), for example, in the initial setting executed in step S701 of the safe operation flow shown in FIG. 7, the operation support system simply sets the operation support system based on the connection state between the nodes. Mode switching such as arm (R) mode, single arm (L) mode, double arm mode, and stop mode is performed. Then, the drive conditions of the drive units such as the motors, brakes, and lasers of the master device and the slave device are determined according to the operation mode. Further, since the maximum transmission delay is determined according to the determined operation mode, a dead time linked to the transmission delay according to the operation mode is set in the dead time detector in the safety monitoring device (see FIG. 3). do.
  • Mode switching such as arm (R) mode, single arm (L) mode, double arm mode, and stop mode is performed.
  • the drive conditions of the drive units such as the motors, brakes, and lasers of the master device and the slave device are determined according to the operation mode. Further, since the maximum transmission delay is
  • the cable length is shortened. Therefore, by switching the dead time set in the safety monitoring device to a short value according to the cable length, The recovery time from an emergency stop can be shortened.
  • a dead time linked to the cable length connecting the nodes or the maximum transmission delay is set in the safety monitoring device of each node. Therefore, each node can make an emergency stop asynchronously and at high speed, and other nodes can also make an emergency stop asynchronously at high speed, and a dead time is set when returning from the emergency stop to change the state between the nodes. You can check each other. Further, the return time can be shortened by setting a short dead time according to the mode switching of the node system (for example, when switching from the dual arm mode to the single arm mode).
  • the mode of the node system can be automatically switched (for example, switching between the dual arm mode, the single arm mode, and the stop mode in the surgical support system) by inserting / removing or disconnecting the cable connecting the nodes.
  • the present specification has mainly described embodiments in which the present disclosure is applied to a master-slave type surgical support system, the gist of the present disclosure is not limited to this.
  • the present disclosure can be similarly applied to master-slave systems used in various industrial fields other than medical treatment.
  • the scope of application of the present disclosure is not limited to the master-slave system, and the same applies to various types of systems in which a master-slave relationship is not necessarily established between each node, which consists of a plurality of interlocking nodes.
  • the present disclosure can be applied.
  • the present disclosure may also have the following configuration.
  • a control device that controls one node in a system consisting of a plurality of nodes.
  • a holding unit that holds the state of its own node, Input section for inputting the status of other nodes,
  • a determination unit that determines the state of the own node based on the state of the own node held in the holding unit and the state of another node input from the input unit.
  • a control device comprising.
  • the holding unit holds the state of its own node until a state release signal is input.
  • the input unit invalidates the input of the state of another node for a predetermined dead time period after the state release signal is input.
  • the control device according to (1) above.
  • the holding unit holds the state indicated by the emergency stop signal based on the operation of the emergency stop switch of the own node, and holds the state in response to the emergency stop release signal from the software executed on the own node.
  • the dead time is set based on the transmission delay between the nodes in the system.
  • the dead time is set based on the wiring length of the cable connecting the nodes in the system.
  • (6) The dead time is set based on the wiring length of the cable connecting the nodes in the system or the measurement result by the delay time measurement circuit between the nodes.
  • the delay time measuring circuit estimates the transmission delay between nodes based on the round trip time of the signal between the nodes.
  • the dead time is set according to the switching of the operation mode of the system based on the connection state between the nodes.
  • a storage element for setting a dead time in the input unit, or a delay circuit for invalidating the input by the dead time is provided.
  • the control device according to any one of (2) to (8) above. It further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit.
  • the own node includes a plurality of drive units and includes a plurality of drive units.
  • the output of the control signal to each drive unit is controlled based on the determination result of the integrated determination unit.
  • the control device according to (10) above.
  • (12) A control method for controlling one node in a system consisting of a plurality of nodes.
  • a retention step that retains the state of its own node, Input steps to enter the status of other nodes
  • a determination step for determining the state of the own node based on the state of the own node held in the holding step and the state of another node input in the input step, and Control method having.
  • (13) Consists of multiple nodes, at least some of them Based on the holding unit that holds the state of the own node, the input unit that inputs the state of the other node, the state of the own node held in the holding unit, and the state of the other node input from the input unit. Equipped with a monitoring device equipped with a judgment unit that determines the status of the own node, Node system. (14) The holding unit holds the state of its own node until a state release signal is input. The input unit invalidates the input of the state of another node for a predetermined dead time period after the state release signal is input. The node system according to (13) above.
  • the holding unit holds the state indicated by the emergency stop signal based on the operation of the emergency stop switch of the own node, and holds the state in response to the emergency stop release signal from the software executed on the own node. unlock, The node system according to (14) above.
  • the dead time is set based on the transmission delay between the nodes in the system.
  • the dead time is set according to the switching of the operation mode of the system based on the connection state between the nodes.
  • the input unit includes a storage element for setting a dead time, or a delay circuit for invalidating the input by the dead time.
  • the own node includes a plurality of drive units, and the at least a part of the nodes control the output of the control signal to each drive unit based on the determination result of the integrated determination unit.
  • the node system according to (19) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided is a control device for, in a system including a plurality of nodes that work together, mutually monitoring the state of each node and controlling the operation of its own node. A control device that controls one node in a system including a plurality of nodes comprises: a holding unit which holds the state of its own node; an input unit which inputs the state of another node; and a determination unit which determines the state of the own node, on the basis of the state of the own node held in the holding unit and the state of the other node input from the input unit. The input unit invalidates the input of the state of the other node for a predetermined dead time period after a state release signal is input.

Description

制御装置及び制御方法、並びにノードシステムControl devices and control methods, as well as node systems
 本明細書で開示する技術(以下、「本開示」とする)は、連動する複数のノードからなるシステムにおけるノード毎の制御を行う制御装置及び制御方法、並びにノードシステムに関する。 The technology disclosed in the present specification (hereinafter referred to as "the present disclosure") relates to a control device and a control method for controlling each node in a system composed of a plurality of interlocking nodes, and a node system.
 医療分野では、マスタスレーブ方式の手術支援システムが導入されつつある。その他のさまざまな産業分野においても、マスタスレーブ方式の遠隔操作システムが普及してきている。マスタスレーブ方式のシステムは、基本的に、マスタ側装置とスレーブ側装置の組み合わせで構成される。マスタ側装置とスレーブ側装置は、例えば有線又は無線の通信媒体を介して相互接続されており、オペレータがマスタ側装置に対して入力した指示は通信媒体を介して転送され、スレーブ側装置は受信した指示に従って、ロボットやマニピュレータなどの駆動を制御する。また、スレーブ側でのロボットやマニピュレータなどの動作を撮影したカメラの映像は通信媒体を介して転送され、マスタ側装置では受信した映像をディスプレイに表示する。したがって、オペレータは、カメラで撮影した映像を確認しながら、マスタ側装置に対して次の指示を入力することができる。 In the medical field, a master-slave type surgery support system is being introduced. Master-slave remote control systems are becoming widespread in various other industrial fields as well. A master-slave system is basically composed of a combination of a master-side device and a slave-side device. The master side device and the slave side device are interconnected via, for example, a wired or wireless communication medium, and the instruction input by the operator to the master side device is transferred via the communication medium, and the slave side device receives the instruction. The drive of the robot, manipulator, etc. is controlled according to the instructions given. In addition, the image of the camera that captures the operation of the robot or manipulator on the slave side is transferred via the communication medium, and the received image is displayed on the display on the master side device. Therefore, the operator can input the following instruction to the master side device while checking the image captured by the camera.
 マスタスレーブ方式のシステムでは、例えば、マスタ側装置とスレーブ側装置の間で、オペレータによる入力とロボットやマニピュレータの位置、及び力の状態を一致させるために、バイラテラル方式のフィードバック制御が採用される(特許文献1を参照のこと)。 In a master-slave system, for example, bilateral feedback control is adopted between the master-side device and the slave-side device in order to match the input by the operator with the position of the robot or manipulator and the state of force. (See Patent Document 1).
 マスタスレーブ方式のシステムにおけるマスタ側装置とスレーブ側装置は、それぞれ独立した装置であるが、協調して動作する。例えば、PLL(Phase Locked Loop)方式を採用してマスタ側装置とスレーブ側装置の同期をとる制御システムが提案されている(特許文献2を参照のこと)。 The master-side device and the slave-side device in the master-slave system are independent devices, but they operate in cooperation with each other. For example, a control system that synchronizes a master-side device and a slave-side device by adopting a PLL (Phase Locked Loop) method has been proposed (see Patent Document 2).
 また、マスタ側装置とスレーブ側装置のいずれか一方が非常停止した場合には、他方の停止を補償する必要がある。例えば、マスタ側装置とスレーブ側装置の各々に安全回路を設けて、マスタ側装置とスレーブ側装置が相互監視するロボットシステムが提案されている(特許文献3を参照のこと)。 Also, if either the master side device or the slave side device makes an emergency stop, it is necessary to compensate for the other stop. For example, a robot system has been proposed in which safety circuits are provided in each of the master-side device and the slave-side device to mutually monitor the master-side device and the slave-side device (see Patent Document 3).
特開2019-130602号公報Japanese Unexamined Patent Publication No. 2019-13602 特開2006-244264号公報Japanese Unexamined Patent Publication No. 2006-244264 特開2017-100212号公報JP-A-2017-100212
 本開示の目的は、連動する複数のノードからなるシステムにおいて、各ノードの状態を相互監視して自ノードの動作を制御する制御装置及び制御方法、並びにノードシステムを提供することにある。 An object of the present disclosure is to provide a control device and a control method for mutually monitoring the state of each node and controlling the operation of the own node in a system composed of a plurality of interlocking nodes, and a node system.
 本開示の第1の側面は、複数のノードからなるシステムにおける1つのノードを制御する制御装置であって、
 自ノードの状態を保持する保持部と、
 他のノードの状態を入力する入力部と、
 前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて、自ノードの状態を判定する判定部と、
を具備する制御装置である。
The first aspect of the present disclosure is a control device that controls one node in a system consisting of a plurality of nodes.
A holding unit that holds the state of its own node,
Input section for inputting the status of other nodes,
A determination unit that determines the state of the own node based on the state of the own node held in the holding unit and the state of another node input from the input unit.
It is a control device provided with.
 前記保持部は、状態解除信号が入力されるまで自ノードの状態を保持する。また、前記入力部は、前記状態解除信号が入力されてから所定のデッドタイムの期間だけ他ノードの状態の入力を無効化する。前記システムにおけるノード間の伝送遅延に基づいた前記デッドタイムが設定される。 The holding unit holds the state of its own node until a state release signal is input. Further, the input unit invalidates the input of the state of the other node for a predetermined dead time period after the state release signal is input. The dead time is set based on the transmission delay between the nodes in the system.
 第1の側面に係る制御装置は、自ノード内の複数種類の状態と、前記判定部が判定した状態を統合して判定する統合判定部をさらに備える。自ノードは複数の駆動部を含み、前記統合判定部の判定結果に基づいて各駆動部への制御信号の出力を制御する。 The control device according to the first aspect further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit. The own node includes a plurality of drive units, and controls the output of control signals to each drive unit based on the determination result of the integrated determination unit.
 また、本開示の第2の側面は、複数のノードからなるシステムにおける1つのノードを制御する制御方法であって、
 自ノードの状態を保持する保持ステップと、
 他のノードの状態を入力する入力ステップと、
 前記保持ステップにおいて保持された自ノードの状態と前記入力ステップにおいて入力された他のノードの状態に基づいて、自ノードの状態を判定する判定ステップと、
を有する制御方法である。
The second aspect of the present disclosure is a control method for controlling one node in a system composed of a plurality of nodes.
A retention step that retains the state of its own node,
Input steps to enter the status of other nodes,
A determination step for determining the state of the own node based on the state of the own node held in the holding step and the state of another node input in the input step, and
It is a control method having.
 また、本開示の第3の側面は、
 複数のノードからなり、少なくとも一部のノードは、
 自ノードの状態を保持する保持部と、他のノードの状態を入力する入力部と、前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて自ノードの状態を判定する判定部を備えた監視装置を装備する、
ノードシステムである。
In addition, the third aspect of the present disclosure is
Consists of multiple nodes, at least some of them
Based on the holding unit that holds the state of the own node, the input unit that inputs the state of the other node, the state of the own node held in the holding unit, and the state of the other node input from the input unit. Equipped with a monitoring device equipped with a judgment unit that determines the status of the own node,
It is a node system.
 但し、ここで言う「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。 However, the "system" here means a logical assembly of a plurality of devices (or functional modules that realize a specific function), and each device or functional module is in a single housing. It does not matter whether or not it is.
 本開示によれば、連動する複数のノードからなるシステムにおいて、各ノードの状態を相互監視して、他のノードの状態に高速且つ低遅延で連動して自ノードの動作を制御する制御装置及び制御方法、並びにノードシステムを提供することができる。 According to the present disclosure, in a system consisting of a plurality of interlocking nodes, a control device that mutually monitors the state of each node and controls the operation of the own node by interlocking with the state of another node at high speed and with low delay. A control method as well as a node system can be provided.
 なお、本明細書に記載された効果は、あくまでも例示であり、本開示によりもたらされる効果はこれに限定されるものではない。また、本開示が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in the present specification are merely examples, and the effects brought about by the present disclosure are not limited thereto. In addition to the above effects, the present disclosure may have additional effects.
 本開示のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Still other objectives, features and advantages of the present disclosure will be clarified by more detailed description based on embodiments and accompanying drawings described below.
図1は、手術支援システム1の外観の構成例を示した図である。FIG. 1 is a diagram showing a configuration example of the appearance of the surgery support system 1. 図2は、手術支援システム1の外観の構成例示した図である。FIG. 2 is a diagram illustrating the configuration of the appearance of the surgery support system 1. 図3は、相互監視システム300の構成例を示した図である。FIG. 3 is a diagram showing a configuration example of the mutual monitoring system 300. 図4は、図2に示した手術支援システム1のネットワークトポロジーを示した図である。FIG. 4 is a diagram showing the network topology of the surgery support system 1 shown in FIG. 図5は、相互監視システム500の構成例を示した図である。FIG. 5 is a diagram showing a configuration example of the mutual monitoring system 500. 図6は、状態監視装置600の構成例を示した図である。FIG. 6 is a diagram showing a configuration example of the condition monitoring device 600. 図7は、図6に示した状態監視装置600を装備するノードにおける安全動作フローを示したフローチャートである。FIG. 7 is a flowchart showing a safe operation flow in the node equipped with the condition monitoring device 600 shown in FIG. 図8は、双腕の手術支援システムのネットワークトポロジーの変形例を示した図である。FIG. 8 is a diagram showing a modified example of the network topology of the dual arm surgery support system. 図9は、手術支援システムのネットワークトポロジーのさらに他の構成例を示した図である。FIG. 9 is a diagram showing still another configuration example of the network topology of the surgery support system. 図10は、手術支援システムのネットワークトポロジーのさらに他の構成例を示した図である。FIG. 10 is a diagram showing still another configuration example of the network topology of the surgery support system. 図11は、相互監視システムにおいて一方のノードから出力した遅延計測パルスがノード間を往復して帰ってくる様子を示した図である。FIG. 11 is a diagram showing a state in which a delay measurement pulse output from one node returns back and forth between the nodes in the mutual monitoring system. 図12は、相互監視システムにおいて遅延計測パルスを送受信するタイミングチャートを示した図である。FIG. 12 is a diagram showing a timing chart for transmitting and receiving delay measurement pulses in a mutual monitoring system. 図13は、双腕の手術支援システムのネットワークトポロジーを示した図である。FIG. 13 is a diagram showing a network topology of a dual arm surgery support system. 図14は、図13に示した手術支援システムの動作モードと通信条件を示した図である。FIG. 14 is a diagram showing an operation mode and communication conditions of the surgery support system shown in FIG. 図15は、安全トルクオフ判定部621、ブレーキ解除判定部623、及びレーザ出力オン判定部625が共通する回路構成を示した図である。FIG. 15 is a diagram showing a circuit configuration common to the safety torque off determination unit 621, the brake release determination unit 623, and the laser output on determination unit 625.
 以下、図面を参照しながら本開示に係る技術について、以下の順に従って説明する。 Hereinafter, the technology according to the present disclosure will be described in the following order with reference to the drawings.
A.システム構成
B.相互監視システム
C.多ノードシステムに組み込まれる相互監視システム
D.状態監視装置の詳細構成
E.安全動作フロー 
F.ノードシステムの変形例
G.デッドタイムの設定
H.動作モードと通信条件
I.効果
A. System configuration B. Mutual monitoring system C.I. Mutual monitoring system built into a multi-node system D. Detailed configuration of the condition monitoring device E. Safe operation flow
F. Modification example of node system G. Dead time setting H. Operation mode and communication conditions I. effect
A.システム構成
 図1には、マスタスレーブシステムの一例としての手術支援システム1の外観の構成例を示している。図示の手術支援システム1は、双腕のマスタスレーブシステムである。手術台11には、患者12が仰向けに寝かせられている。また、手術台11の右側には右手用スレーブ装置13が設置され、手術台11の左側には左手用スレーブ装置14が設置されている。右手用スレーブ装置13及び左手用スレーブ装置14の先端には、鉗子や気腹チューブ、エネルギー処置具、攝子、レトラクタなどのうちいずれかからなる処置具がそれぞれ取り付けられている。
A. System Configuration FIG. 1 shows a configuration example of the appearance of the surgery support system 1 as an example of the master-slave system. The illustrated surgery support system 1 is a dual-arm master-slave system. The patient 12 is laid on his back on the operating table 11. A right-hand slave device 13 is installed on the right side of the operating table 11, and a left-hand slave device 14 is installed on the left side of the operating table 11. A treatment tool including forceps, a pneumoperitoneum tube, an energy treatment tool, tweezers, a retractor, or the like is attached to the tips of the right-hand slave device 13 and the left-hand slave device 14, respectively.
 また、手術台1から離間した場所にある操作台15の右側及び左側には、右手用スレーブ装置13を遠隔操作するための右手用マスタ装置16と、左手用スレーブ装置14を遠隔操作するために左手用マスタ装置17がそれぞれ配設されている。右手用マスタ装置16の先端には、オペレータが右手で保持する操作部18が取り付けられ、左手用マスタ装置17の先端には、オペレータが左手で保持する操作部19が取り付けられている。 Further, on the right side and the left side of the operation table 15 located away from the operating table 1, the right hand master device 16 for remotely controlling the right hand slave device 13 and the left hand slave device 14 for remote control are used. The left-hand master device 17 is arranged respectively. An operation unit 18 held by the operator with the right hand is attached to the tip of the right-hand master device 16, and an operation unit 19 held by the operator with the left hand is attached to the tip of the left-hand master device 17.
 また、手術台11の上方には、患者の患部の様子を撮像するカメラが先端に取り付けられたカメラ部20が設置されている。カメラはステレオカメラで、カメラ部20は3D映像を撮影するようにしてもよい。カメラ部20はオペレータが操作する操作部によって操作され撮影角度や距離、フォーカス調整などのカメラ操作のうち少なくとも1つが行われてもよいし(この場合、右手用又は左手用マスタ装置による操作対象を、対応するスレーブ装置からカメラ部へ切り替える操作が必要となる)、カメラ部20が自律的に動作してもよい。一方、操作台15の近傍にはモニタ21が設置されている。モニタ21には、カメラ部20により撮影した患部の映像が映し出される。カメラ部20がステレオカメラで撮影する場合には、モニタ21には3D映像が表示される。 Further, above the operating table 11, a camera unit 20 to which a camera for capturing the state of the affected area of the patient is attached to the tip is installed. The camera may be a stereo camera, and the camera unit 20 may capture a 3D image. The camera unit 20 may be operated by an operation unit operated by the operator to perform at least one of camera operations such as shooting angle, distance, and focus adjustment (in this case, the operation target by the right-hand or left-hand master device). , It is necessary to switch from the corresponding slave device to the camera unit), and the camera unit 20 may operate autonomously. On the other hand, a monitor 21 is installed in the vicinity of the operation table 15. An image of the affected area taken by the camera unit 20 is projected on the monitor 21. When the camera unit 20 shoots with a stereo camera, a 3D image is displayed on the monitor 21.
 オペレータ(術者)は、モニタ21に映し出された右手用スレーブ装置13及び左手用スレーブ装置14の先端の処置具並びに患部の様子を見ながら、右手で右手用マスタ装置16を操作するとともに、左手で左手用マスタ装置17を操作する。右手用スレーブ装置13及び左手用スレーブ装置14は、それぞれ右手用マスタ装置16及び左手用マスタ装置17の動きに同期した動きをする。このようにして、オペレータ(術者)は、右手用マスタ装置16と左手用マスタ装置17を操作することによって、手術台11上の患者12に対して、右手用スレーブ装置13及び左手用スレーブ装置14を使って遠隔手術を行うことができる。 The operator (operator) operates the right-hand master device 16 with the right hand and the left hand while observing the state of the treatment tool and the affected area at the tips of the right-hand slave device 13 and the left-hand slave device 14 displayed on the monitor 21. Operate the left-hand master device 17 with. The right-hand slave device 13 and the left-hand slave device 14 move in synchronization with the movements of the right-hand master device 16 and the left-hand master device 17, respectively. In this way, the operator (operator) operates the right-hand master device 16 and the left-hand master device 17 with respect to the patient 12 on the operating table 11 with respect to the right-hand slave device 13 and the left-hand slave device. Remote surgery can be performed using 14.
 図2には、手術支援システム1の機能的構成例を概略的に示している。手術支援システム1は、双腕のマスタスレーブシステムであるが、バイラテラル方式のフィードバック制御が適用されることを想定している。 FIG. 2 schematically shows an example of the functional configuration of the surgery support system 1. The surgery support system 1 is a dual-arm master-slave system, but it is assumed that bilateral feedback control is applied.
 スレーブ側では、手術台11の上方に、患者の患部の様子を撮像するカメラ(ステレオカメラ)が先端に取り付けられたカメラ部20が設置されている。カメラは例えば顕微鏡や外視鏡、内視鏡であってもよい。CCU(Camera Control Unit)123は、カメラの撮影画像を処理して、マスタ側に転送する。マスタ側では、操作台15の近傍にモニタ21が設置されている。モニタ21は、カメラ部20により撮影した患部の映像を映し出す。カメラ部20がステレオカメラで撮影する場合には、モニタ21は3D映像を表示する。 On the slave side, a camera unit 20 to which a camera (stereo camera) for capturing the state of the affected area of the patient is attached to the tip is installed above the operating table 11. The camera may be, for example, a microscope, an endoscope, or an endoscope. The CCU (Camera Control Unit) 123 processes the image captured by the camera and transfers it to the master side. On the master side, a monitor 21 is installed near the operation table 15. The monitor 21 displays an image of the affected area taken by the camera unit 20. When the camera unit 20 shoots with a stereo camera, the monitor 21 displays a 3D image.
 オペレータ(術者)は、モニタ21に映し出された右手用スレーブ装置13及び左手用スレーブ装置14の先端の処置具並びに患部の様子を見ながら、右手で右手用マスタ装置16を操作するとともに、左手で左手用マスタ装置17を操作する。 The operator (operator) operates the right-hand master device 16 with the right hand and the left hand while observing the state of the treatment tool and the affected area at the tips of the right-hand slave device 13 and the left-hand slave device 14 displayed on the monitor 21. Operate the left-hand master device 17 with.
 右手用マスタ制御装置111及び制御PC(Personal Computer)113は、オペレータが右手用マスタ装置16を操作した量に応じた右手用スレーブ装置13の制御信号を生成して、右手用スレーブ制御装置121に転送する。また、左手用マスタ制御装置112及び制御PC113は、オペレータが左手用マスタ装置17を操作した量に応じた左手用スレーブ装置14の制御信号を生成して、左手用スレーブ制御装置122に転送する。 The right-hand master control device 111 and the control PC (Personal Computer) 113 generate a control signal of the right-hand slave device 13 according to the amount of operation of the right-hand master device 16 by the operator, and generate the control signal of the right-hand slave device 13 to the right-hand slave control device 121. Forward. Further, the left-hand master control device 112 and the control PC 113 generate a control signal of the left-hand slave device 14 according to the amount of operation of the left-hand master device 17 by the operator, and transfer the control signal to the left-hand slave control device 122.
 なお、CCU123からモニタ21への映像信号の転送と、マスタ制御装置111及び112からスレーブ制御装置121及び122への制御信号の転送は、同期がとれているものとする。 It is assumed that the transfer of the video signal from the CCU 123 to the monitor 21 and the transfer of the control signal from the master control devices 111 and 112 to the slave control devices 121 and 122 are synchronized.
 制御PC113は、右手用マスタ制御装置111、左手用マスタ制御装置112、右手用スレーブ制御装置121、左手用スレーブ制御装置122の各々を介して、右手用マスタ装置16、左手用マスタ装置17、右手用スレーブ装置13、左手用スレーブ装置14の運動制御演算を行う。具体的には、制御PC113は、これらマスタ装置及びスレーブ装置に搭載されたエンコーダや力センサの検出値を読み込んで、モータの電流指令値の計算や、モータの電磁ブレーキの制御のための演算を行う。 The control PC 113 passes through each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122, and then the right-hand master device 16, the left-hand master device 17, and the right-hand master device 17. The motion control calculation of the slave device 13 for the left hand and the slave device 14 for the left hand is performed. Specifically, the control PC 113 reads the detection values of the encoders and force sensors mounted on the master device and the slave device, calculates the current command value of the motor, and performs calculations for controlling the electromagnetic brake of the motor. conduct.
 右手用スレーブ制御装置121は、右手用マスタ制御装置111から受信した制御信号に基づいて、右手用スレーブ装置13の駆動を制御する。また、左手用スレーブ制御装置122は、左手用マスタ制御装置112から受信した制御信号に基づいて、左手用スレーブ装置14の駆動を制御する。 The right-hand slave control device 121 controls the drive of the right-hand slave device 13 based on the control signal received from the right-hand master control device 111. Further, the left-hand slave control device 122 controls the drive of the left-hand slave device 14 based on the control signal received from the left-hand master control device 112.
 したがって、右手用スレーブ装置13及び左手用スレーブ装置14は、それぞれ右手用マスタ装置16及び左手用マスタ装置17の動きに同期した動きをする。このようにして、オペレータ(術者)は、右手用マスタ装置16と左手用マスタ装置17を操作することによって、手術台11上の患者12に対して、右手用スレーブ装置13及び左手用スレーブ装置14を使って遠隔手術を行うことができる。 Therefore, the right-hand slave device 13 and the left-hand slave device 14 move in synchronization with the movements of the right-hand master device 16 and the left-hand master device 17, respectively. In this way, the operator (operator) operates the right-hand master device 16 and the left-hand master device 17 with respect to the patient 12 on the operating table 11 with respect to the right-hand slave device 13 and the left-hand slave device. Remote surgery can be performed using 14.
 マスタとスレーブは、通常、10m程度離れた位置に配置される。但し、それ以上(例えば数10km)マスタとスレーブが離れていてもよい。マスタとスレーブ間の接続には光ファイバケーブル130が使用される。但し、同軸ケーブルやEthernet(登録商標)ケーブルなど別の通信メディアを使用してマスタとスレーブ間を接続してもよい。 The master and slave are usually placed at a distance of about 10 m. However, the master and the slave may be separated by more than that (for example, several tens of km). An optical fiber cable 130 is used for the connection between the master and the slave. However, another communication medium such as a coaxial cable or an Ethernet (registered trademark) cable may be used to connect the master and the slave.
 手術支援システム1は、安全監視を除いては、基本的には各部が同期して動作する同期システムである。制御PC113は、手術支援システム1内の各部に制御信号を供給する。そして、右手用マスタ制御装置111、左手用マスタ制御装置112、右手用スレーブ制御装置121、左手用スレーブ制御装置122の各々の制御ソフトウェアは、制御PC113からの制御信号に基づいて、同期的に動作する。 The surgery support system 1 is basically a synchronous system in which each part operates in synchronization, except for safety monitoring. The control PC 113 supplies control signals to each part in the surgery support system 1. Then, the control software of each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122 operates synchronously based on the control signal from the control PC 113. do.
B.相互監視システム
 図1並びに図2に示した手術支援システム1の構成において、マスタ装置16及び17とスレーブ装置13及び14は、連動して協調動作するが、基本的には互いに独立した装置であり、各々に個別に非常停止スイッチ(図1及び図2には図示しない)が設置されることが想定される。マスタ装置16及び17を操作するオペレータ(術者)は、マスタ装置16及び17のいずれか一方に故障や動作の不具合が起きたことに気づくと、その装置の非常停止スイッチを押して停止させるが、他方のマスタ装置及びスレーブ装置13及び14もこれに高速に応答して低遅延で停止させる必要がある。また、手術台1付近で手術を補助する手術助手などは、スレーブ装置13及び14のいずれか一方に故障や動作の不具合が起きたことに気づくと、その装置の非常停止スイッチを押して停止させるが、他方のスレーブ装置及びマスタ装置16及び17もこれに高速に応答して低遅延で停止させる必要がある。
B. Mutual monitoring system In the configuration of the surgery support system 1 shown in FIGS. 1 and 2, the master devices 16 and 17 and the slave devices 13 and 14 cooperate with each other, but are basically independent devices. , It is assumed that an emergency stop switch (not shown in FIGS. 1 and 2) is individually installed in each of them. When the operator (operator) who operates the master devices 16 and 17 notices that one of the master devices 16 and 17 has a failure or a malfunction, he presses the emergency stop switch of the device to stop the device. The other master device and slave devices 13 and 14 also need to respond to this at high speed and stop with a low delay. Further, when a surgical assistant or the like who assists the operation near the operating table 1 notices that one of the slave devices 13 and 14 has a failure or a malfunction, he / she presses the emergency stop switch of the device to stop the operation. The other slave device and master devices 16 and 17 also need to respond to this at high speed and stop with low delay.
 手術支援システム1は、基本的には同期がとれたシステムであり、マスタ(右手用マスタ制御装置111及び左手用マスタ制御装置112)とスレーブ(右手用スレーブ制御装置121及び左手用スレーブ制御装置122)、カメラ(CCU123)、並びに制御PC113は、外部同期回路によりクロックレベルで同期がとられている。 The surgery support system 1 is basically a synchronized system, and is a master (right-hand master control device 111 and left-hand master control device 112) and a slave (right-hand slave control device 121 and left-hand slave control device 122). ), The camera (CCU123), and the control PC 113 are synchronized at the clock level by an external synchronization circuit.
 他方、例えばマスタ又はスレーブのいずれか一方で非常停止スイッチが押されたときには、他方も高速に応答して低遅延で連動して停止させる必要がある。例えばイーサキャットやメカトロリンクといった通信プロトコルを利用して同期方式でマスタ及びスレーブ双方の安全監視を行おうとすると、1kHzといった制御周期で非常停止スイッチが押されたことを検出して、マスタ及びスレーブの双方を停止させることができるが、高速、低遅延とは言い難い。このため、本開示に係る手術支援システム1は、高速でマスタとスレーブ間で相互監視を行うことを目的として、安全監視に関しては、通信プロトコルを用いない非同期回路で構成されている。 On the other hand, for example, when the emergency stop switch is pressed on either the master or the slave, it is necessary for the other to respond at high speed and stop in conjunction with a low delay. For example, when attempting to perform safety monitoring of both the master and slave in a synchronous manner using a communication protocol such as Ethercat or Mechatrolink, it is detected that the emergency stop switch is pressed in a control cycle of 1 kHz, and the master and slave Both can be stopped, but it is hard to say that it is high speed and low delay. Therefore, the surgery support system 1 according to the present disclosure is configured by an asynchronous circuit that does not use a communication protocol for safety monitoring for the purpose of performing mutual monitoring between a master and a slave at high speed.
 図2に示す手術支援システム1の構成では、右手用マスタ制御装置111、左手用マスタ制御装置112、制御PC113、右手用スレーブ制御装置121、左手用スレーブ制御装置122、及びCCU123の各々に、個別の非常停止スイッチが設置されることが想定される。そして、これらのうちいずれか1つの装置の非常停止スイッチが押されると、その他のすべての装置も、非同期で高速且つ低遅延で連動して停止される。 In the configuration of the surgery support system 1 shown in FIG. 2, the right-hand master control device 111, the left-hand master control device 112, the control PC 113, the right-hand slave control device 121, the left-hand slave control device 122, and the CCU 123 are individually configured. It is assumed that an emergency stop switch will be installed. Then, when the emergency stop switch of any one of these devices is pressed, all the other devices are also stopped asynchronously at high speed and with low delay.
 図3には、手術支援システム1に適用される相互監視システム300の構成例を示している。実際の手術支援システム1では、右手用マスタ制御装置111と右手用スレーブ制御装置121間、右手用マスタ制御装置111と左手用スレーブ制御装置122間、右手用マスタ制御装置111と左手用マスタ制御装置112間など、非常停止動作を高速且つ低遅延で連動させるべき複数の装置の組み合わせに対して、相互監視システム300が組み込まれることが想定される。但し、図3では、説明の便宜上、1つのマスタ側安全監視装置310及び1つのスレーブ側安全監視装置320の組み合わせからなる場合の相互監視システム300の構成例に簡素化して描いている。マスタ側安全監視装置310は、例えば右手用マスタ制御装置111又は左手用マスタ制御装置112のいずれかであり、スレーブ側安全監視装置320は、例えば右手用スレーブ制御装置121又は左手用スレーブ制御装置122のいずれかである。なお、図2及び図3では簡素化のため図示を省略したが、伝送メディアに光ファイバケーブル130を利用する場合、実際の回路構成では、例えば、送信側は伝送データをパラレルシリアル変換するPS変換器及び電気信号を光信号に変換するEO(Electrical/Optical)変換器を備え、受信側では光信号を電気信号に変換するOE(Optical/Electrical)変換器及び受信データをシリアルパラレル変換するSP変換器を備えてもよい。 FIG. 3 shows a configuration example of the mutual monitoring system 300 applied to the surgery support system 1. In the actual surgery support system 1, between the right-hand master control device 111 and the right-hand slave control device 121, between the right-hand master control device 111 and the left-hand slave control device 122, and between the right-hand master control device 111 and the left-hand master control device. It is assumed that the mutual monitoring system 300 is incorporated into a combination of a plurality of devices for which emergency stop operations should be linked at high speed and with low delay, such as between 112. However, in FIG. 3, for convenience of explanation, it is simplified and drawn as a configuration example of the mutual monitoring system 300 in the case where one master side safety monitoring device 310 and one slave side safety monitoring device 320 are combined. The master side safety monitoring device 310 is, for example, either the right hand master control device 111 or the left hand master control device 112, and the slave side safety monitoring device 320 is, for example, the right hand slave control device 121 or the left hand slave control device 122. Is one of. Although not shown in FIGS. 2 and 3 for simplification, when the optical fiber cable 130 is used as the transmission medium, in the actual circuit configuration, for example, the transmitting side performs PS conversion for parallel serial conversion of the transmission data. It is equipped with an EO (Electrical / Optical) converter that converts an electric signal into an optical signal, and an OE (Optical / Electrical) converter that converts an optical signal into an electric signal on the receiving side and SP conversion that converts received data in serial parallel. It may be equipped with a vessel.
 まず、マスタ側安全監視装置310の構成について説明する。マスタ側安全監視装置310では、停止スイッチ(例えば非常停止スイッチ)が押されたときに停止信号(例えば非常停止信号)311が、ラッチ(LAT)312を介して、マスタ状態判定部313に入力される。 First, the configuration of the master side safety monitoring device 310 will be described. In the master side safety monitoring device 310, when the stop switch (for example, emergency stop switch) is pressed, the stop signal (for example, emergency stop signal) 311 is input to the master state determination unit 313 via the latch (LAT) 312. NS.
 非常停止スイッチが一度押されると、非常停止スイッチを解除しても、非常停止スイッチが押された状態がラッチ312に保持されたままである。ラッチ312は、ラッチ解除信号314によって非常停止スイッチの非常停止状態を解除する。したがって、非常停止スイッチが一度押されて、ラッチ解除信号314が入力されるまでの間、マスタ状態判定部313には、非常停止信号311が入力され続ける。ラッチ解除信号314は、例えば、マスタ側安全監視装置310の上位ソフトウェアから出力されることを想定している。上位ソフトウェアは、マスタ側安全監視装置310の復帰シーケンスにおいて、マスタ内の各部の状態を監視して、非常停止から復帰可能かどうかを判定する。各部の状態を監視するためのセンサがマスタ内に配置されていてもよい。あるいは、上位ソフトウェアは、オペレータなど外部から入力される指示に基づいて、非常停止から復帰可能かどうかを判定するようにしてもよい。上位ソフトウェアは、非常停止状態から復帰してよいと判定したときには、ラッチ解除信号314を出力する。なお、マスタ側安全監視装置310は、スレーブ側安全監視装置320とは非同期で動作するが、復帰シーケンスを制御する上位ソフトウェアは、スレーブ側の上位ソフトウェアとともに、制御PC113からの制御信号に基づいて同期的に動作する。 Once the emergency stop switch is pressed, the state in which the emergency stop switch is pressed remains held by the latch 312 even if the emergency stop switch is released. The latch 312 releases the emergency stop state of the emergency stop switch by the latch release signal 314. Therefore, the emergency stop signal 311 continues to be input to the master state determination unit 313 until the emergency stop switch is pressed once and the latch release signal 314 is input. It is assumed that the latch release signal 314 is output from, for example, the higher-level software of the master-side safety monitoring device 310. The higher-level software monitors the state of each part in the master in the return sequence of the master-side safety monitoring device 310, and determines whether or not it is possible to recover from the emergency stop. A sensor for monitoring the state of each part may be arranged in the master. Alternatively, the higher-level software may determine whether or not it is possible to recover from an emergency stop based on an instruction input from the outside such as an operator. The higher-level software outputs a latch release signal 314 when it is determined that the emergency stop state may be restored. The master-side safety monitoring device 310 operates asynchronously with the slave-side safety monitoring device 320, but the higher-level software that controls the return sequence is synchronized with the slave-side higher-level software based on the control signal from the control PC 113. Works like this.
 また、スレーブ側安全監視装置320の状態信号327(後述)が、光ファイバケーブル130を介して伝搬され、マスタ側安全監視装置310にも入力される。スレーブ側安全監視装置320の状態信号327は、光ファイバケーブル130を介して伝搬される。マスタ側安全監視装置310及びスレーブ側安全監視装置320の一方の光モジュールから照射されたレーザ光の信号が、光ファイバケーブル130内を通過して、他方で受信処理することで、マスタ側安全監視装置310とスレーブ側安全監視装置320間の通信が実現する。光ファイバケーブル130が外れた開放状態で装置から不要なレーザ光が照射されると、被ばくによる事故が発生する危険がある。 Further, the status signal 327 (described later) of the slave side safety monitoring device 320 is propagated via the optical fiber cable 130 and input to the master side safety monitoring device 310. The status signal 327 of the slave-side safety monitoring device 320 is propagated via the optical fiber cable 130. The laser beam signal emitted from one of the optical modules of the master-side safety monitoring device 310 and the slave-side safety monitoring device 320 passes through the optical fiber cable 130 and is received and processed by the other, thereby monitoring the master-side safety. Communication between the device 310 and the slave-side safety monitoring device 320 is realized. If unnecessary laser light is irradiated from the device in the open state where the optical fiber cable 130 is disconnected, there is a risk of an accident due to exposure.
 なお、光ファイバケーブル130の配線長は、マスタ側安全監視装置310とスレーブ側安全監視装置320間の距離にほぼ等しく、例えば10m程度である。したがって、スレーブ側安全監視装置320の状態信号327がマスタ側安全監視装置310に伝搬するまでの間には、1~10マイクロ秒程度の伝送遅延がある。この伝送遅延には、光ファイバケーブル130を介したデータ送受信時におけるPS-SP変換やEO-OE変換での遅延時間が含まれる。 The wiring length of the optical fiber cable 130 is substantially equal to the distance between the master side safety monitoring device 310 and the slave side safety monitoring device 320, for example, about 10 m. Therefore, there is a transmission delay of about 1 to 10 microseconds before the status signal 327 of the slave-side safety monitoring device 320 propagates to the master-side safety monitoring device 310. This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130.
 マスタ状態判定部313は、AND(論理積)ゲートで構成され、非常停止信号311と、スレーブ側安全監視装置320の状態信号327との論理積をとって、マスタ自身が非常停止したネゲート状態又は非常停止が解除されたアサート状態のいずれであるかを示す状態信号317を、マスタ側安全監視装置310内の制御対象装置に出力する。マスタ状態判定部313は、非常停止信号311が入力されたとき、又は、スレーブ側安全監視装置320からネゲート状態(例えば非常停止状態)を示す状態信号が入力されたときには、ネゲート状態の状態信号317を出力する。そして、マスタ内の制御対象装置(例えば、右手用マスタ装置16、左手用マスタ装置17)は、ネゲート状態では動作を停止させ、アサート状態では動作を開始又は再開する。また、マスタ状態判定部313から出力される状態信号317は、スレーブ側にも伝送されるので、スレーブ側安全監視装置320は、マスタ側の非常停止に連動してスレーブを非常停止させることができる。 The master state determination unit 313 is composed of an AND (logical product) gate, and takes a logical product of the emergency stop signal 311 and the state signal 327 of the slave side safety monitoring device 320 to obtain a negated state in which the master itself has made an emergency stop. A status signal 317 indicating which of the asserted states in which the emergency stop has been released is output to the controlled device in the master safety monitoring device 310. The master state determination unit 313 receives a negated state signal 317 when an emergency stop signal 311 is input or when a state signal indicating a negated state (for example, an emergency stop state) is input from the slave side safety monitoring device 320. Is output. Then, the control target device (for example, the right-hand master device 16 and the left-hand master device 17) in the master stops the operation in the negate state and starts or restarts the operation in the assert state. Further, since the status signal 317 output from the master status determination unit 313 is also transmitted to the slave side, the slave side safety monitoring device 320 can make the slave emergency stop in conjunction with the emergency stop on the master side. ..
 但し、スレーブ側安全監視装置320から伝送される状態信号327は、スイッチ315を介してマスタ状態判定部313に入力される。また、デッドタイム(DET)検出部316は、マスタが非常停止から復帰する際に、ラッチ解除信号314が入力されてから所定のデッドタイムが経過するのを検出する。スイッチ315は、デッドタイム検出部316がラッチ解除からデッドタイムが経過したことを検出した結果に基づいて、オフからオンに切り替わる。したがって、ラッチ解除からデッドタイムが経過するまでの間はスイッチ315がオフ状態であり、マスタ状態判定部313は、デッドタイムが経過までの間はスレーブ側安全監視装置320の状態信号327を無視又は無効化する。 However, the status signal 327 transmitted from the slave-side safety monitoring device 320 is input to the master status determination unit 313 via the switch 315. Further, the dead time (DET) detection unit 316 detects that a predetermined dead time elapses after the latch release signal 314 is input when the master returns from the emergency stop. The switch 315 switches from off to on based on the result of the dead time detection unit 316 detecting that the dead time has elapsed since the latch was released. Therefore, the switch 315 is in the off state from the release of the latch until the dead time elapses, and the master state determination unit 313 ignores the state signal 327 of the slave side safety monitoring device 320 until the dead time elapses. Disable.
 ここで、デッドタイムは、非常停止からの復帰時に、マスタ状態判定部313がマスタ側の状態判定を行わない時間である。言い換えれば、マスタ側安全監視装置310が安全監視を行わない不感帯となる時間を意味する。スレーブ側安全監視装置320の状態信号327がマスタ側安全監視装置310に届くまでには、光ファイバケーブル130の配線長に応じた伝送遅延が生じる。この伝送遅延には、光ファイバケーブル130を介したデータ送受信時におけるPS-SP変換やEO-OE変換での遅延時間が含まれる。例えば、光ファイバケーブル130の配線長が10mであれば、1~10マイクロ秒程度の伝送遅延がある。すなわち、スレーブ側が非常停止から復帰したことがスレーブ側安全監視装置320からマスタ側安全監視装置310に通知されるまでには、伝送遅延がある。 Here, the dead time is a time during which the master status determination unit 313 does not perform status determination on the master side when returning from an emergency stop. In other words, it means a time during which the master-side safety monitoring device 310 does not perform safety monitoring and becomes a dead zone. By the time the status signal 327 of the slave-side safety monitoring device 320 reaches the master-side safety monitoring device 310, a transmission delay corresponding to the wiring length of the optical fiber cable 130 occurs. This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130. For example, if the wiring length of the optical fiber cable 130 is 10 m, there is a transmission delay of about 1 to 10 microseconds. That is, there is a transmission delay before the slave side safety monitoring device 320 notifies the master side safety monitoring device 310 that the slave side has returned from the emergency stop.
 デッドタイム検出部316に、伝送遅延時間(又は、光ファイバケーブル130の配線長)に連動した最小限の時間からなるデッドタイム(DET)を設定して、マスタ内でラッチが解除されてからデッドタイムが経過するまではスイッチ315をオフにして、スレーブ側安全監視装置320の状態信号327に対する不感帯を設ける。これによって、マスタ側だけが非常停止から復帰する状況を回避して、マスタとスレーブが連動して非常停止から復帰できるようにすることができる。スイッチ315とデッドタイム検出部316は、マスタが非常停止から復帰するときのデッドタイムを設ける復帰回路318(図3中、グレーで塗り潰した領域)を構成する。復帰回路318は、デッドタイムを設定するためのレジスタなどの記憶要素や、入力をデッドタイムだけ無効化するための遅延回路などを備えている。 A dead time (DET) consisting of a minimum time linked to the transmission delay time (or the wiring length of the optical fiber cable 130) is set in the dead time detection unit 316, and the dead time is set after the latch is released in the master. Until the time elapses, the switch 315 is turned off to provide a dead zone for the status signal 327 of the slave-side safety monitoring device 320. As a result, it is possible to avoid the situation where only the master side recovers from the emergency stop, and the master and the slave can work together to recover from the emergency stop. The switch 315 and the dead time detection unit 316 form a return circuit 318 (a region filled in gray in FIG. 3) that provides a dead time when the master returns from an emergency stop. The return circuit 318 includes a storage element such as a register for setting a dead time, a delay circuit for invalidating an input by the dead time, and the like.
 続いて、マスタ側安全監視装置310の動作について説明する。非常停止スイッチが一度押されると、非常停止スイッチが押された状態がラッチ312に保持される。そして、マスタ状態判定部313は、非常停止信号311と、スレーブ側安全監視装置320からの状態信号327との論理積をとって、状態信号317として、マスタ自身が非常停止したネゲート状態であることを示すネゲート信号を出力する。 Next, the operation of the master side safety monitoring device 310 will be described. Once the emergency stop switch is pressed, the latch 312 holds the state in which the emergency stop switch is pressed. Then, the master state determination unit 313 takes the logical product of the emergency stop signal 311 and the state signal 327 from the slave side safety monitoring device 320, and sets the state signal 317 as the state signal 317, and the master itself is in the negate state in which the emergency stop is performed. Outputs a negate signal indicating.
 また、スレーブ側安全監視装置320の状態信号327がアサート状態からネゲート状態に転じると、マスタ状態判定部313は、非常停止信号311と、スレーブ側安全監視装置320からの状態信号327との論理積をとって、状態信号317として、マスタ自身が非常停止したネゲート状態であることを示すネゲート信号を出力する。 Further, when the state signal 327 of the slave side safety monitoring device 320 changes from the assert state to the negate state, the master state determination unit 313 logically ANDs the emergency stop signal 311 with the state signal 327 from the slave side safety monitoring device 320. As a state signal 317, a negate signal indicating that the master itself is in an emergency stopped negate state is output.
 マスタ内の制御対象装置(例えば、右手用マスタ装置16、左手用マスタ装置17)は、マスタ状態判定部313によるネゲート状態の判定結果に応答して、動作を停止する。また、マスタ状態判定部313から出力されるネゲート状態の状態信号317は、スレーブ側にも伝送される。 The control target device in the master (for example, the right-hand master device 16 and the left-hand master device 17) stops the operation in response to the determination result of the negate state by the master state determination unit 313. Further, the negated state signal 317 output from the master state determination unit 313 is also transmitted to the slave side.
 マスタ側で非常停止スイッチが一度押されると、非常停止スイッチを解除しても、非常停止スイッチが押された状態がラッチ312に保持されたままである。マスタ内で実行中の上位ソフトウェアは、非常停止状態から通常の動作状態に復帰してよいかどうかを判定する。そして、上位ソフトウェアは、マスタが非常停止から復帰可能であると判定すると、ラッチ解除信号314を出力して、ラッチ312が保持する非常停止状態を解除する。その結果、非常停止解除を示す非常停止信号311が、マスタ状態判定部313に入力される。 Once the emergency stop switch is pressed on the master side, the state in which the emergency stop switch is pressed remains held by the latch 312 even if the emergency stop switch is released. The higher-level software running in the master determines whether it is okay to return from the emergency stop state to the normal operating state. Then, when the host software determines that the master can recover from the emergency stop, it outputs a latch release signal 314 to release the emergency stop state held by the latch 312. As a result, the emergency stop signal 311 indicating the release of the emergency stop is input to the master state determination unit 313.
 デッドタイム(DET)検出部316は、ラッチ解除信号314が入力されてから所定のデッドタイムが経過するのを検出する。デッドタイムには、伝送遅延時間(又は、光ファイバケーブル130の配線長)に連動した最小限の値が設定される(前述)。ラッチ解除からデッドタイムが経過するまでの間はスイッチ315がオフ状態であり、マスタ状態判定部313は、デッドタイムが経過までの間はスレーブ側安全監視装置320の状態信号327を無視する。すなわち、マスタ内でラッチ312が解除されてからデッドタイムが経過するまではスイッチ315をオフにして、スレーブ側安全監視装置320の状態信号327に対する不感帯を設ける。 The dead time (DET) detection unit 316 detects that a predetermined dead time has elapsed since the latch release signal 314 was input. The dead time is set to a minimum value linked to the transmission delay time (or the wiring length of the optical fiber cable 130) (described above). The switch 315 is in the off state from the release of the latch until the dead time elapses, and the master state determination unit 313 ignores the state signal 327 of the slave side safety monitoring device 320 until the dead time elapses. That is, the switch 315 is turned off until the dead time elapses after the latch 312 is released in the master, and a dead zone for the status signal 327 of the slave side safety monitoring device 320 is provided.
 その後、デッドタイム検出部316がラッチ解除からデッドタイムが経過したことを検出した結果に基づいて、スイッチ315はオフからオンに切り替わる。この時点で、スレーブ側安全監視装置320からアサート状態の状態信号327がマスタ状態判定部313に入力される場合には、マスタ状態判定部313は、入力の論理積をとって、アサート状態の状態信号317を出力する。その結果、マスタ内の制御対象装置(例えば、右手用マスタ装置16、左手用マスタ装置17)は動作を開始又は再開する。これによって、マスタ側だけが非常停止から復帰する状況を回避して、マスタとスレーブが連動して非常停止から復帰できるようにすることができる。また、マスタ状態判定部313から出力されるアサート状態の状態信号317は、スレーブ側にも伝送される。 After that, the switch 315 switches from off to on based on the result that the dead time detection unit 316 detects that the dead time has elapsed since the latch was released. At this point, when the state signal 327 in the assert state is input from the slave side safety monitoring device 320 to the master state determination unit 313, the master state determination unit 313 takes the logical product of the inputs and states the assert state. The signal 317 is output. As a result, the controlled target device (for example, the right-hand master device 16 and the left-hand master device 17) in the master starts or restarts the operation. As a result, it is possible to avoid the situation where only the master side recovers from the emergency stop, and the master and the slave can work together to recover from the emergency stop. Further, the assert state state signal 317 output from the master state determination unit 313 is also transmitted to the slave side.
 続いて、スレーブ側安全監視装置320の構成について説明する。スレーブ側安全監視装置320の構成は、マスタ側安全監視装置310とほぼ同じである。非常停止スイッチが押されたときに非常停止信号321が、ラッチ(LAT)322を介して、スレーブ状態判定部323に入力される。ラッチ322は、非常停止スイッチが一度押されると、上位ソフトウェアからラッチ解除信号324が入力されるまでは、非常停止状態を保持する。上位ソフトウェアは、スレーブ側安全監視装置320の復帰シーケンスにおいて、スレーブ内の各部の状態を監視して、非常停止から復帰可能かどうかを判定する。各部の状態を監視するためのセンサがマスタ内に配置されていてもよい。あるいは、上位ソフトウェアは、オペレータなど外部から入力される指示に基づいて、非常停止から復帰可能かどうかを判定するようにしてもよい。上位ソフトウェアは、非常停止状態から復帰してよいと判定したときには、ラッチ解除信号324を出力する。なお、スレーブ側安全監視装置320は、マスタ側安全監視装置310とは非同期で動作するが、復帰シーケンスを制御する上位ソフトウェアは、マスタ側の上位ソフトウェアとともに、制御PC113からの制御信号に基づいて同期的に動作する。 Next, the configuration of the slave-side safety monitoring device 320 will be described. The configuration of the slave-side safety monitoring device 320 is almost the same as that of the master-side safety monitoring device 310. When the emergency stop switch is pressed, the emergency stop signal 321 is input to the slave state determination unit 323 via the latch (LAT) 322. Once the emergency stop switch is pressed, the latch 322 holds the emergency stop state until the latch release signal 324 is input from the host software. In the return sequence of the slave-side safety monitoring device 320, the higher-level software monitors the state of each part in the slave and determines whether or not it is possible to recover from the emergency stop. A sensor for monitoring the state of each part may be arranged in the master. Alternatively, the higher-level software may determine whether or not it is possible to recover from an emergency stop based on an instruction input from the outside such as an operator. The higher-level software outputs a latch release signal 324 when it is determined that the emergency stop state may be restored. The slave-side safety monitoring device 320 operates asynchronously with the master-side safety monitoring device 310, but the higher-level software that controls the return sequence is synchronized with the higher-level software on the master side based on the control signal from the control PC 113. Works like this.
 また、マスタ側安全監視装置310の状態信号317(前述)が、光ファイバケーブル130を介して伝搬され、スレーブ側安全監視装置320にも入力される。光ファイバケーブル130の配線長は例えば10m程度であり、マスタ側安全監視装置310の状態信号317がスレーブ側安全監視装置320に伝搬するまでの間には、1~10マイクロ秒程度の伝送遅延がある。この伝送遅延には、光ファイバケーブル130を介したデータ送受信時におけるPS-SP変換やEO-OE変換での遅延時間が含まれる。 Further, the status signal 317 (described above) of the master side safety monitoring device 310 is propagated via the optical fiber cable 130 and input to the slave side safety monitoring device 320. The wiring length of the optical fiber cable 130 is, for example, about 10 m, and there is a transmission delay of about 1 to 10 microseconds until the status signal 317 of the master side safety monitoring device 310 propagates to the slave side safety monitoring device 320. be. This transmission delay includes a delay time in PS-SP conversion and EO-OE conversion during data transmission / reception via the optical fiber cable 130.
 スレーブ状態判定部323は、AND(論理積)ゲートで構成され、非常停止信号321と、マスタ側安全監視装置310の状態信号317との論理積をとって、スレーブ自身が非常停止したネゲート状態又は非常停止が解除されたアサート状態のいずれであるかを示す状態信号327を、スレーブ側安全監視装置320内の制御対象装置に出力する。スレーブ状態判定部323は、非常停止信号321が入力されたとき、又は、マスタ側安全監視装置310からネゲート状態(例えば非常停止状態)を示す状態信号が入力されたときには、ネゲート状態の状態信号327を出力する。そして、スレーブ内の制御対象装置(例えば、右手用スレーブ装置13、左手用スレーブ装置14)は、ネゲート状態では動作を停止させ、アサート状態では動作を開始又は再開する。また、スレーブ状態判定部323から出力される状態信号327は、マスタ側にも伝送されるので、スレーブ側安全監視装置320は、スレーブ側の非常停止に連動してマスタを非常停止させることができる。 The slave state determination unit 323 is composed of an AND (logical product) gate, and takes a logical product of the emergency stop signal 321 and the state signal 317 of the master side safety monitoring device 310 to obtain a negated state in which the slave itself has stopped in an emergency. A status signal 327 indicating which of the asserted states in which the emergency stop has been released is output to the controlled device in the slave-side safety monitoring device 320. The slave state determination unit 323 receives a negated state signal 327 when an emergency stop signal 321 is input or when a state signal indicating a negated state (for example, an emergency stop state) is input from the master side safety monitoring device 310. Is output. Then, the control target device (for example, the right-hand slave device 13 and the left-hand slave device 14) in the slave stops the operation in the negate state and starts or restarts the operation in the assert state. Further, since the state signal 327 output from the slave state determination unit 323 is also transmitted to the master side, the slave side safety monitoring device 320 can make the master stop in an emergency in conjunction with the emergency stop on the slave side. ..
 但し、マスタ側安全監視装置310から伝送される状態信号317は、スイッチ325を介してスレーブ状態判定部323に入力される。また、デッドタイム(DET)検出部326は、スレーブが非常停止から復帰する際に、ラッチ解除信号324が入力されてから所定のデッドタイムが経過するのを検出する。スイッチ325は、デッドタイム検出部326がラッチ解除からデッドタイムが経過したことを検出した結果に基づいて、オフからオンに切り替わる。したがって、ラッチ解除からデッドタイムが経過するまでの間はスイッチ325がオフ状態であり、スレーブ状態判定部323は、デッドタイムが経過までの間はマスタ側安全監視装置310の状態信号317を無視する。デッドタイムは、スレーブ側安全監視装置320が安全監視を行わない不感帯となる時間を意味し、マスタとスレーブ間の伝送遅延に連動した値が設定される(同上)。スイッチ325とデッドタイム検出部326は、スレーブが非常停止から復帰するときのデッドタイムを設ける復帰回路328(図3中、グレーで塗り潰した領域)を構成する。復帰回路328は、デッドタイムを設定するためのレジスタなどの記憶要素や、入力をデッドタイムだけ無効化するための遅延回路などを備えている。 However, the status signal 317 transmitted from the master side safety monitoring device 310 is input to the slave status determination unit 323 via the switch 325. Further, the dead time (DET) detection unit 326 detects that a predetermined dead time elapses after the latch release signal 324 is input when the slave returns from the emergency stop. The switch 325 switches from off to on based on the result of the dead time detection unit 326 detecting that the dead time has elapsed since the latch was released. Therefore, the switch 325 is in the off state from the release of the latch until the dead time elapses, and the slave state determination unit 323 ignores the state signal 317 of the master side safety monitoring device 310 until the dead time elapses. .. The dead time means a time during which the slave-side safety monitoring device 320 does not perform safety monitoring and becomes a dead zone, and a value linked to the transmission delay between the master and the slave is set (same as above). The switch 325 and the dead time detection unit 326 constitute a return circuit 328 (a region filled in gray in FIG. 3) that provides a dead time when the slave returns from an emergency stop. The return circuit 328 includes a storage element such as a register for setting a dead time, a delay circuit for invalidating an input by the dead time, and the like.
 続いて、スレーブ側安全監視装置320の動作について説明する。非常停止スイッチが一度押されると、非常停止スイッチが押された状態がラッチ322に保持される。そして、スレーブ状態判定部323は、非常停止信号321と、マスタ側安全監視装置310からの状態信号317との論理積をとって、状態信号327として、スレーブ自身が非常停止したネゲート状態であることを示すネゲート信号を出力する。 Next, the operation of the slave side safety monitoring device 320 will be described. Once the emergency stop switch is pressed, the latch 322 holds the state in which the emergency stop switch is pressed. Then, the slave state determination unit 323 takes the logical product of the emergency stop signal 321 and the state signal 317 from the master side safety monitoring device 310, and sets the state signal 327 as a negate state in which the slave itself has stopped in an emergency. Outputs a negate signal indicating.
 また、マスタ側安全監視装置310の状態信号317がアサート状態からネゲート状態に転じると、スレーブ状態判定部323は、非常停止信号321と、マスタ側安全監視装置310からの状態信号317との論理積をとって、状態信号327として、スレーブ自身が非常停止したネゲート状態であることを示すネゲート信号を出力する。 Further, when the state signal 317 of the master side safety monitoring device 310 changes from the assert state to the negate state, the slave state determination unit 323 logically ANDs the emergency stop signal 321 with the state signal 317 from the master side safety monitoring device 310. As a state signal 327, a negate signal indicating that the slave itself is in an emergency stopped negate state is output.
 スレーブ内の制御対象装置(例えば、右手用スレーブ装置13、左手用スレーブ装置14)は、スレーブ状態判定部323によるネゲート状態の判定結果に応答して、動作を停止する。また、スレーブ状態判定部323から出力されるネゲート状態の状態信号327は、マスタ側にも伝送される。 The control target device in the slave (for example, the right-hand slave device 13 and the left-hand slave device 14) stops the operation in response to the determination result of the negate state by the slave state determination unit 323. Further, the negated state signal 327 output from the slave state determination unit 323 is also transmitted to the master side.
 スレーブ側で非常停止スイッチが一度押されると、非常停止スイッチを解除しても、非常停止スイッチが押された状態がラッチ322に保持されたままである。スレーブ内で実行中の上位ソフトウェアは、非常停止状態から通常の動作状態に復帰してよいかどうかを判定する。そして、上位ソフトウェアは、マスタが非常停止から復帰可能であると判定すると、ラッチ解除信号324を出力して、ラッチ322が保持する非常停止状態を解除する。その結果、非常停止解除を示す非常停止信号321が、スレーブ状態判定部323に入力される。 Once the emergency stop switch is pressed on the slave side, the state in which the emergency stop switch is pressed remains held in the latch 322 even if the emergency stop switch is released. The host software running in the slave determines whether it is okay to return from the emergency stop state to the normal operating state. Then, when the host software determines that the master can recover from the emergency stop, it outputs a latch release signal 324 to release the emergency stop state held by the latch 322. As a result, the emergency stop signal 321 indicating the release of the emergency stop is input to the slave state determination unit 323.
 デッドタイム(DET)検出部326は、ラッチ解除信号324が入力されてから所定のデッドタイムが経過するのを検出する。デッドタイムには、伝送遅延時間(又は、光ファイバケーブル130の配線長)に連動した最小限の値が設定される(前述)。ラッチ解除からデッドタイムが経過するまでの間はスイッチ325がオフ状態であり、スレーブ状態判定部323は、デッドタイムが経過までの間はマスタ側安全監視装置310の状態信号317を無視する。すなわち、スレーブ内でラッチ322が解除されてからデッドタイムが経過するまではスイッチ325をオフにして、マスタ側安全監視装置310の状態信号317に対する不感帯を設ける。 The dead time (DET) detection unit 326 detects that a predetermined dead time has elapsed since the latch release signal 324 was input. The dead time is set to a minimum value linked to the transmission delay time (or the wiring length of the optical fiber cable 130) (described above). The switch 325 is in the off state from the release of the latch until the dead time elapses, and the slave state determination unit 323 ignores the state signal 317 of the master side safety monitoring device 310 until the dead time elapses. That is, the switch 325 is turned off until the dead time elapses after the latch 322 is released in the slave, and a dead zone for the status signal 317 of the master side safety monitoring device 310 is provided.
 その後、デッドタイム検出部326がラッチ解除からデッドタイムが経過したことを検出した結果に基づいて、スイッチ325はオフからオンに切り替わる。この時点で、マスタ側安全監視装置310からアサート状態の状態信号317がスレーブ状態判定部323に入力される場合には、スレーブ状態判定部323は、入力の論理積をとって、アサート状態の状態信号327を出力する。その結果、スレーブ内の制御対象装置(例えば、右手用スレーブ装置13、左手用スレーブ装置14)は動作を開始又は再開する。これによって、スレーブ側だけが非常停止から復帰する状況を回避して、マスタとスレーブが連動して非常停止から復帰できるようにすることができる。また、スレーブ状態判定部323から出力されるアサート状態の状態信号337は、マスタ側にも伝送される。 After that, the switch 325 switches from off to on based on the result that the dead time detection unit 326 detects that the dead time has elapsed since the latch was released. At this point, when the assert state state signal 317 is input from the master side safety monitoring device 310 to the slave state determination unit 323, the slave state determination unit 323 takes the logical product of the inputs and states the assert state. The signal 327 is output. As a result, the controlled target device (for example, the right-handed slave device 13 and the left-handed slave device 14) in the slave starts or restarts the operation. As a result, it is possible to avoid the situation where only the slave side recovers from the emergency stop, and the master and the slave can work together to recover from the emergency stop. Further, the assert state state signal 337 output from the slave state determination unit 323 is also transmitted to the master side.
 したがって、図3に示すような相互監視システム300によれば、マスタとスレーブはそれぞれ非同期で高速に非常停止することが可能であり、また、マスタとスレーブのいずれか一方が非常停止したときには、他方も非同期で高速に連動して非常停止することができる。また、マスタ及びスレーブが非常停止から復帰する際には、マスタとスレーブ間の伝送遅延に連動した値のデッドタイムを設けてお互いの状態を確認し合うようにしている。これによって、マスタとスレーブの一方が先に復帰して他方が遅れて復帰するような状況を回避して、双方が連動して復帰できるようになっている。 Therefore, according to the mutual monitoring system 300 as shown in FIG. 3, the master and the slave can each be asynchronously and at high speed in an emergency stop, and when one of the master and the slave is in an emergency stop, the other Can also be asynchronously linked at high speed to make an emergency stop. Further, when the master and the slave recover from the emergency stop, a dead time of a value linked to the transmission delay between the master and the slave is provided so that the states of each other can be confirmed. As a result, it is possible to avoid a situation in which one of the master and the slave returns first and the other returns later, and both can return in tandem.
 マスタ側安全監視装置310とスレーブ側安全監視装置320は、基本的には同一の構成でよい。なお、マスタ側安全監視装置310並びにスレーブ側安全監視装置320は、それぞれはFPGA(Field Programmable Gate Array)、ゲートIC(Integrated Circuit)、プロセッサのいずれか又はこれらの組み合わせによって構成することができる。 The master side safety monitoring device 310 and the slave side safety monitoring device 320 may basically have the same configuration. The master-side safety monitoring device 310 and the slave-side safety monitoring device 320 can each be configured by any one of an FPGA (Field Programmable Gate Array), a gate IC (Integrated Circuit), a processor, or a combination thereof.
C.多ノードシステムに組み込まれる相互監視システム
 図3には、簡素化のため、1つのマスタと1つのスレーブの組み合わせからなる2ノードシステムに組み込まれる相互監視システム300を示した。これに対し、図1並びに図2に示した手術支援システム1は、双腕のマスタスレーブシステムであり、右手用マスタ制御装置111及び左手用マスタ制御装置112と右手用スレーブ制御装置121及び左手用スレーブ制御装置122の4ノードからなる。
C. Mutual monitoring system incorporated in a multi-node system FIG. 3 shows a mutual monitoring system 300 incorporated in a two-node system consisting of a combination of one master and one slave for simplification. On the other hand, the surgery support system 1 shown in FIGS. 1 and 2 is a dual-arm master-slave system, and is a right-hand master control device 111, a left-hand master control device 112, a right-hand slave control device 121, and a left-hand master control device 121. It consists of four nodes of the slave control device 122.
 手術支援システム1では、右手用マスタ制御装置111及び左手用マスタ制御装置112と右手用スレーブ制御装置121及び左手用スレーブ制御装置122の4ノードのうちいずれか1つのノードが非常停止したときに、残りの3つのノードも非同期で高速に連動して非常停止する必要がある。また、これら4つのノードが非常停止から復帰する際には、ノード間の最大の伝送遅延の連動した値のデッドタイムを設けて、お互いの状態を確認し合う必要がある。 In the surgery support system 1, when any one of the four nodes of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122 is in an emergency stop, The remaining three nodes also need to be asynchronously linked at high speed to make an emergency stop. Further, when these four nodes recover from the emergency stop, it is necessary to set a dead time of a value linked with the maximum transmission delay between the nodes and confirm each other's states.
 図4には、図2に示した手術支援システム1のネットワークトポロジーを模式的に示している。図示のネットワークトポロジーはツリー構造からなる。具体的には、右手用マスタ制御装置111(M1)と右手用スレーブ制御装置121(S1)が光ファイバケーブル130を介して相互接続されるとともに、左手用マスタ制御装置121(M2)と左手用スレーブ制御装置122(S2)が光ファイバケーブル130を介して相互接続されている。また、マスタ内では、右手用マスタ制御装置111(M1)と左手用マスタ制御装置112(M2)が相互接続されるとともに、右手用マスタ制御装置111(M1)と制御PC113が相互接続されている。本開示が適用されるノードシステムのネットワークトポロジーは、基本的にはツリー構造とする。 FIG. 4 schematically shows the network topology of the surgery support system 1 shown in FIG. The network topology shown has a tree structure. Specifically, the right-hand master control device 111 (M1) and the right-hand slave control device 121 (S1) are interconnected via the optical fiber cable 130, and the left-hand master control device 121 (M2) and the left-hand master control device 121 (M2) are connected to each other. The slave control device 122 (S2) is interconnected via the optical fiber cable 130. Further, in the master, the right-hand master control device 111 (M1) and the left-hand master control device 112 (M2) are interconnected, and the right-hand master control device 111 (M1) and the control PC 113 are interconnected. .. The network topology of the node system to which this disclosure applies is basically a tree structure.
 右手用マスタ制御装置111(M1)と右手用スレーブ制御装置121(S1)間の伝送遅延をD1、右手用マスタ制御装置111(M1)と左手用マスタ制御装置112(M2)間の伝送遅延をD2、右手用スレーブ制御装置121(S1)と左手用スレーブ制御装置122(S2)間の伝送遅延をD3とする。ツリー構造のノードシステムにおける最大の伝送遅延は、ルートから最長距離となるノードまでの伝送遅延である。図4に示すネットワークトポロジーにおいて、ルートは、制御PC113に接続されている右手用マスタ制御装置111であり、このルートから最長距離にあるノードは左手用スレーブ制御装置122(S2)である。したがって、図4に示すネットワークトポロジーからなるノードシステムでは、マスタとスレーブ間のファイバ長が同じであるならば、最大の伝送遅延はD2+D3ということになる。 The transmission delay between the right-hand master controller 111 (M1) and the right-hand slave controller 121 (S1) is D 1 , and the transmission delay between the right-hand master controller 111 (M1) and the left-hand master controller 112 (M2). Is D 2 , and the transmission delay between the right-hand slave control device 121 (S1) and the left-hand slave control device 122 (S2) is D 3 . The maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance. In the network topology shown in FIG. 4, the route is the right-hand master control device 111 connected to the control PC 113, and the node at the longest distance from this route is the left-hand slave control device 122 (S2). Therefore, in the node system having the network topology shown in FIG. 4, if the fiber length between the master and the slave is the same, the maximum transmission delay is D 2 + D 3 .
 図5には、手術支援システム1に組み込まれた相互監視システム500の構成例を模式的に示している。ここでは、手術支援システム1は、図4に示したネットワークトポロジーにより接続される、右手用マスタ制御装置111、左手用マスタ制御装置112、右手用スレーブ制御装置121、及び左手用スレーブ制御装置122の4ノードで構成されることを想定している。但し、図5では制御PC113の図示を省略している。右手用マスタ制御装置111と右手用スレーブ制御装置121間、並びに左手用マスタ制御装置112と左手用スレーブ制御装置122間は、上述したように光ファイバケーブル130を介して相互接続されている。右手用マスタ制御装置111と左手用マスタ制御装置112間、並びに右手用スレーブ制御装置121と左手用スレーブ制御装置122間を相互接続する通信メディアは特に限定されない。 FIG. 5 schematically shows a configuration example of the mutual monitoring system 500 incorporated in the surgery support system 1. Here, the surgery support system 1 is a right-hand master control device 111, a left-hand master control device 112, a right-hand slave control device 121, and a left-hand slave control device 122, which are connected by the network topology shown in FIG. It is assumed to be composed of 4 nodes. However, in FIG. 5, the control PC 113 is not shown. The right-hand master control device 111 and the right-hand slave control device 121, and the left-hand master control device 112 and the left-hand slave control device 122 are interconnected via the optical fiber cable 130 as described above. The communication medium that interconnects the right-hand master control device 111 and the left-hand master control device 112, and the right-hand slave control device 121 and the left-hand slave control device 122 is not particularly limited.
 右手用マスタ制御装置111と右手用スレーブ制御装置121間には、相互監視サブシステム501が配設されている。また、右手用マスタ制御装置111と左手用マスタ制御装置112間には、相互監視サブシステム502が配設されている。また、左手用マスタ制御装置112と左手用スレーブ制御装置122間には、相互監視サブシステム503が配設されている。 A mutual monitoring subsystem 501 is arranged between the right-hand master control device 111 and the right-hand slave control device 121. Further, a mutual monitoring subsystem 502 is arranged between the right-hand master control device 111 and the left-hand master control device 112. Further, a mutual monitoring subsystem 503 is arranged between the left-hand master control device 112 and the left-hand slave control device 122.
 各相互監視サブシステム501~503は、図3に示した相互監視システム300と同一の構成であるので、ここでは詳細な説明を省略する。但し、各相互監視サブシステム501~503のデッドタイム検出部には、手術支援システム1の最大の伝送遅延に連動したデッドタイムが設定される。マスタとスレーブ間のファイバ長が同じであるならば、手術支援システム1の最大の伝送遅延はD2+D3である。ファイバ長が不明ならば、遅延時間計測回路を用いて最大の伝送遅延を調べる必要がある。遅延時間計測回路の詳細については後述する。 Since each of the mutual monitoring subsystems 501 to 503 has the same configuration as the mutual monitoring system 300 shown in FIG. 3, detailed description thereof will be omitted here. However, a dead time linked to the maximum transmission delay of the surgery support system 1 is set in the dead time detection units of the mutual monitoring subsystems 501 to 503. If the fiber length between the master and slave is the same, the maximum transmission delay of the surgical support system 1 is D 2 + D 3 . If the fiber length is unknown, it is necessary to check the maximum transmission delay using a delay time measurement circuit. The details of the delay time measurement circuit will be described later.
 右手用マスタ制御装置111内では、相互監視サブシステム501と相互監視サブシステム502の安全監視状態を共有する。図5では結線を省略したが、右手用マスタ制御装置111内で、相互監視サブシステム501側の状態判定部が出力する状態信号を相互監視サブシステム502側の状態判定部に入力するとともに、相互監視サブシステム502側の状態判定部が出力する状態信号を相互監視サブシステム501側の状態判定部に入力することにより、相互監視サブシステム501と相互監視サブシステム502の安全監視状態を共有することができる。 In the right-hand master control device 111, the safety monitoring state of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 502 is shared. Although the connection is omitted in FIG. 5, the status signal output by the status determination unit on the mutual monitoring subsystem 501 side is input to the status determination unit on the mutual monitoring subsystem 502 side in the right-hand master control device 111, and the mutual monitoring subsystem 502 side is input to the status determination unit. By inputting the status signal output by the status determination unit on the monitoring subsystem 502 side to the status determination unit on the mutual monitoring subsystem 501 side, the safety monitoring status of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 502 is shared. Can be done.
 同様に、右手用スレーブ制御装置121内では、相互監視サブシステム501と相互監視サブシステム503の安全監視状態を共有する。図5では結線を省略したが、右手用スレーブ制御装置121内で、相互監視サブシステム501側の状態判定部が出力する状態信号を相互監視サブシステム503側の状態判定部に入力するとともに、相互監視サブシステム503側の状態判定部が出力する状態信号を相互監視サブシステム501側の状態判定部に入力することにより、相互監視サブシステム501と相互監視サブシステム503の安全監視状態を共有することができる。 Similarly, in the right-hand slave control device 121, the safety monitoring state of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 503 is shared. Although the connection is omitted in FIG. 5, in the right-hand slave control device 121, the status signal output by the status determination unit on the mutual monitoring subsystem 501 side is input to the status determination unit on the mutual monitoring subsystem 503 side, and the mutual monitoring subsystem 503 is input to each other. By inputting the status signal output by the status determination unit on the monitoring subsystem 503 side to the status determination unit on the mutual monitoring subsystem 501 side, the safety monitoring status of the mutual monitoring subsystem 501 and the mutual monitoring subsystem 503 is shared. Can be done.
 したがって、図5に示す相互監視システム500によれば、4ノードのうちいずれか1つのノードが非常停止したときに、残りの3つのノードも非同期で高速に連動して非常停止することができる。また、相互監視システム500によれば、これら4つのノードが非常停止から復帰する際には、ノード間の最大の伝送遅延の連動した値のデッドタイムを設けて、お互いの状態を確認し合うことができる。 Therefore, according to the mutual monitoring system 500 shown in FIG. 5, when any one of the four nodes is in an emergency stop, the remaining three nodes can be asynchronously and at high speed in an emergency stop. Further, according to the mutual monitoring system 500, when these four nodes recover from an emergency stop, a dead time of a value linked with the maximum transmission delay between the nodes is set, and each other's status is confirmed. Can be done.
D.状態監視装置の詳細構成
 図3には、マスタ側及びスレーブ側の各々において、非常停止スイッチの操作に応答して非同期且つ連動して非常停止するマスタ側安全監視装置310とスレーブ側安全監視装置320の基本的な構成例を示した。実際には、マスタ側及びスレーブ側の各々では、非常停止スイッチの操作に基づく安全状態の他に、さまざまな状態を監視して、動作を停止し、且つ停止状態を解除して動作を復帰させる必要がある。
D. Detailed configuration of the condition monitoring device FIG. 3 shows the master side safety monitoring device 310 and the slave side safety monitoring device 320 that perform an emergency stop asynchronously and interlockingly in response to the operation of the emergency stop switch on each of the master side and the slave side. The basic configuration example of is shown. Actually, on each of the master side and the slave side, in addition to the safety state based on the operation of the emergency stop switch, various states are monitored, the operation is stopped, and the stopped state is released to restore the operation. There is a need.
 図3に示した安全監視回路310及び320では、非常停止スイッチと他のノードの状態信号のみを監視する基本的な構成である。実際のマスタ制御装置やスレーブ制御装置では、非常停止スイッチ以外にも、モータ駆動回路の異常、制御PC113から異常信号、ケーブルの接続状態など、さまざまな状態を監視する必要がある。もちろん、マスタやスレーブなど制御対象装置毎に監視すべき状態が異なることも想定される。 The safety monitoring circuits 310 and 320 shown in FIG. 3 have a basic configuration for monitoring only the status signals of the emergency stop switch and other nodes. In an actual master control device or slave control device, in addition to the emergency stop switch, it is necessary to monitor various states such as an abnormality in the motor drive circuit, an abnormality signal from the control PC 113, and a cable connection state. Of course, it is assumed that the state to be monitored differs depending on the controlled device such as the master and the slave.
 図6には、非常停止スイッチの操作に基づく安全状態の他に、制御対象装置のさまざまな状態を監視するように構成された状態監視装置600の構成例を示している。 FIG. 6 shows a configuration example of a condition monitoring device 600 configured to monitor various states of the controlled device in addition to the safety state based on the operation of the emergency stop switch.
 状態判定部601には、安全監視装置603から出力される状態信号604の他に、UI(User Interface)スイッチ信号602、モータ駆動回路状態信号605、上位ソフトウェアの状態を示すWatch Dog信号606、通信ケーブルの接続状態を示す通信ALIVE信号607などが入力される。安全監視装置603の構成及び動作は、図3を参照しながら既に説明したので、ここでは詳細な説明を省略する。Watch Dog信号606は、ソフトウェアの異常状態が検出されたときに出力される。また、通信ALIVE信号607は、自ノードと他のノードを接続するケーブルに異常が発生したときに出力される。 In addition to the status signal 604 output from the safety monitoring device 603, the status determination unit 601 includes a UI (User Interface) switch signal 602, a motor drive circuit status signal 605, a Watch Dog signal 606 indicating the status of the host software, and communication. A communication ALIVE signal 607 or the like indicating the connection state of the cable is input. Since the configuration and operation of the safety monitoring device 603 have already been described with reference to FIG. 3, detailed description thereof will be omitted here. The Watch Dog signal 606 is output when an abnormal state of the software is detected. Further, the communication ALIVE signal 607 is output when an abnormality occurs in the cable connecting the own node and another node.
 状態判定部601は、ANDゲートで構成され、上述した入力信号601~607、…の論理積をとって、制御対象装置全体がネゲート状態又はアサート状態のいずれであるかを示す全体状態信号610を出力する。 The state determination unit 601 is composed of an AND gate, and takes the logical product of the input signals 601 to 607, ... Output.
 安全トルクオフ(Safe Torque Off)判定部621は、状態判定部601から出力される全体状態信号610と、上位ソフトウェアから出力される安全トルクオフ解除信号611との論理積をとって、モータ(図示しない)に対して安全トルクオフを解除するか否かを指示する安全トルクオフ解除信号622を出力する。 The safety torque off (Safe Torque Off) determination unit 621 takes a logical product of the overall status signal 610 output from the status determination unit 601 and the safety torque off release signal 611 output from the host software, and motors (not shown). A safety torque off release signal 622 is output to indicate whether or not to release the safety torque off.
 ブレーキ解除判定部623は、状態判定部601から出力される全体状態信号610と、上位ソフトウェアから出力されるブレーキ解除信号612との論理積をとって、モータ(図示しない)に対してモータの電磁ブレーキを解除するか否かを指示するブレーキ解除信号624を出力する。 The brake release determination unit 623 takes a logical product of the overall state signal 610 output from the state determination unit 601 and the brake release signal 612 output from the host software, and electromagnetically transmits the motor (not shown) to the motor (not shown). A brake release signal 624 indicating whether or not to release the brake is output.
 レーザ出力オン判定部625は、状態判定部601から出力される全体状態信号610と、上位ソフトウェアから出力されるレーザ出力オン信号613との論理積をとって、レーザ(図示しない)に対して出力をオンにするか否かを指示するレーザ出力オン信号626を出力する。上位ソフトウェアは、不要なレーザ光の出力による被ばくを回避するために、レーザ出力をオンするかどうかを慎重に判断する。 The laser output on determination unit 625 takes a logical product of the overall state signal 610 output from the state determination unit 601 and the laser output on signal 613 output from the host software, and outputs the laser output on to a laser (not shown). Outputs a laser output on signal 626 indicating whether or not to turn on. The higher-level software carefully decides whether to turn on the laser output in order to avoid exposure due to unnecessary laser light output.
 状態監視装置600は、右手用マスタ制御装置111、左手用マスタ制御装置112、右手用スレーブ制御装置121、左手用スレーブ制御装置122の各々に装備することができる。 The condition monitoring device 600 can be equipped on each of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122.
 安全トルクオフ判定部621、ブレーキ解除判定部623、及びレーザ出力オン判定部625はいずれも、ANDゲートで構成されるが、状態判定部601が自ノードと他のノードの状態に基づいてハードウェア的に安全かどうかを判定した状態信号と、上位ソフトウェアからの制御信号との論理積をとって、デバイスへの制御信号を出力するという点で共通する(図15を参照のこと)。ここで言うデバイスは、モータ駆動回路、モータの電磁ブレーキ、レーザ光モジュールなどである。 The safety torque off determination unit 621, the brake release determination unit 623, and the laser output on determination unit 625 are all composed of AND gates, but the state determination unit 601 is hardware-like based on the states of the own node and other nodes. It is common in that it takes the logical product of the state signal determined to be safe or not and the control signal from the host software and outputs the control signal to the device (see FIG. 15). The devices referred to here are a motor drive circuit, an electromagnetic brake of a motor, a laser light module, and the like.
 なお、図6に示す状態監視装置600の構成例では、UIスイッチ信号602、モータ駆動回路状態信号605、Watch Dog信号606、及び通信ALIVE信号607はいずれも、状態判定部601に直接(又は、バッファを介して)入力されているが、これらの信号の伝送路上にそれぞれラッチを配設して状態判定部601の入力端子に接続し、且つ、上位ソフトウェアの慎重な判断によるラッチ解除指示があるまではラッチの状態を保持するように構成してもよい。 In the configuration example of the state monitoring device 600 shown in FIG. 6, the UI switch signal 602, the motor drive circuit state signal 605, the Watch Dog signal 606, and the communication ALIVE signal 607 are all directly connected to the state determination unit 601 (or). Although it is input (via a buffer), each of these signals is provided with a latch on the transmission path and connected to the input terminal of the state determination unit 601. It may be configured to hold the state of the latch until.
E.安全動作フロー 
 図7には、図6に示した状態監視装置600を装備するノードにおける安全動作フローをフローチャートの形式で示している。図示の安全動作フローは、ノードにおいて実行される上位ソフトウェアによって実施される。ここで言うノードは、右手用マスタ制御装置111、左手用マスタ制御装置112、右手用スレーブ制御装置121、及び左手用スレーブ制御装置122のうち少なくとも1つに相当する。
E. Safe operation flow
FIG. 7 shows a safe operation flow in the node equipped with the condition monitoring device 600 shown in FIG. 6 in the form of a flowchart. The illustrated safe operation flow is performed by higher-level software running on the node. The node referred to here corresponds to at least one of the right-hand master control device 111, the left-hand master control device 112, the right-hand slave control device 121, and the left-hand slave control device 122.
 まず、制御PC113で初期設定が実施される(ステップS701)。初期設定処理には、ノードシステムにおけるケーブル長又は最大伝搬時間などのデッドタイムを検出するために必要な情報を取得する処理や、マスタスレーブシステムが双腕又は単腕のいずれであるか(言い換えれば、システム内のノード数)に関する情報を取得する処理が実施される。ノードシステム内の各ノードは、制御PC113が実施した初期設定の情報を取得する。 First, the initial setting is performed on the control PC 113 (step S701). The initial setting process includes the process of acquiring information necessary for detecting dead time such as cable length or maximum propagation time in the node system, and whether the master-slave system is dual-armed or single-armed (in other words,). , The number of nodes in the system) is acquired. Each node in the node system acquires the information of the initial setting performed by the control PC 113.
 次いで、自ノード内の状態の読み取りが実施される(ステップS702)。ノードが図6に示した状態監視装置600を備える場合には、UIスイッチ信号602、非常停止スイッチ信号604、モータ駆動回路状態信号605、Watch Dog信号606、通信ALIVE信号607、…を読み取る。そして、自ノード内で異常が発生していないかどうかをチェックする(ステップS703)。 Next, the state in the own node is read (step S702). When the node includes the condition monitoring device 600 shown in FIG. 6, it reads the UI switch signal 602, the emergency stop switch signal 604, the motor drive circuit state signal 605, the Watch Dog signal 606, the communication ALIVE signal 607, and so on. Then, it is checked whether or not an abnormality has occurred in the own node (step S703).
 ここで、自ノード内で読み取った信号から異常が検出された場合には(ステップS703のYes)、このノードにおいて安全シーケンスを実施する(ステップS709)。安全シーケンスの内容は任意であり、ノード毎に異なることも想定される。ここでは安全シーケンスの詳細については説明を省略する。 Here, if an abnormality is detected from the signal read in the own node (Yes in step S703), a safety sequence is executed in this node (step S709). The content of the safety sequence is arbitrary and may differ from node to node. The details of the safety sequence will be omitted here.
 一方、自ノード内で読み取った信号から異常が検出されなかった場合には(ステップS703のNo)、ステップS701の初期設定において取得した情報に基づいて、安全監視装置内のデッドタイムを設定する(ステップS704)。続いて、他のノードの状態の読み取りを行って(ステップS705)、他のいずれかのノードにおいて異常が発生していないかどうかをチェックする(ステップS706)。 On the other hand, if no abnormality is detected from the signal read in the own node (No in step S703), the dead time in the safety monitoring device is set based on the information acquired in the initial setting in step S701 (No in step S703). Step S704). Subsequently, the state of the other node is read (step S705), and it is checked whether or not an abnormality has occurred in any of the other nodes (step S706).
 他のいずれかのノードにおいて異常が検出された場合には(ステップS706のYes)、このノードにおいて安全シーケンスを実施する(ステップS709)。安全シーケンスの内容は任意である。 If an abnormality is detected in any of the other nodes (Yes in step S706), a safety sequence is executed in this node (step S709). The content of the safety sequence is arbitrary.
 自ノード及び他のノードのいずれでも異常が検出されない場合には(ステップS706のNo)、このノードは、図3に示した安全監視装置又は図6に示した状態監視装置により、自ノード及び他のノードの定常監視を開始する(ステップS707)。そして、自ノード及び他のノードのうちいずれかで異常が検出された場合には(ステップS708のYes)、このノードにおいて安全シーケンスを実施する(ステップS709)。安全シーケンスの内容は任意である。 If no abnormality is detected in either the own node or the other node (No in step S706), this node is the own node and the other by the safety monitoring device shown in FIG. 3 or the condition monitoring device shown in FIG. Steady monitoring of the node of (step S707) is started. Then, when an abnormality is detected in either the own node or the other node (Yes in step S708), a safety sequence is executed in this node (step S709). The content of the safety sequence is arbitrary.
F.ノードシステムの変形例
 図4には、図2に示した双腕の手術支援システム1のネットワークトポロジーを示した。図8には、双腕の手術支援システムのネットワークトポロジーの変形例を示している。図8に示すネットワークトポロジーは、右手用マスタ制御装置(M1)と右手用スレーブ制御装置(S1)が相互接続され、マスタ内では右手用マスタ制御装置(M1)と左手用マスタ制御装置(M2)が相互接続され、さらに左手用マスタ制御装置(M2)と左手用スレーブ制御装置(S2)が相互接続される、というツリー構造からなる。
F. Modification example of the node system FIG. 4 shows the network topology of the dual arm surgery support system 1 shown in FIG. FIG. 8 shows a modified example of the network topology of the dual arm surgery support system. In the network topology shown in FIG. 8, the right-hand master control device (M1) and the right-hand slave control device (S1) are interconnected, and the right-hand master control device (M1) and the left-hand master control device (M2) are included in the master. Is interconnected, and the left-hand master control device (M2) and the left-hand slave control device (S2) are interconnected.
 右手用マスタ制御装置(M1)と右手用スレーブ制御装置(S1)間の伝送遅延をD1、右手用マスタ制御装置(M1)と左手用マスタ制御装置(M2)間の伝送遅延をD2、左手用マスタ制御装置(M2)と左手用スレーブ制御装置(S2)間の伝送遅延をD3とする。ツリー構造のノードシステムにおける最大の伝送遅延は、ルートから最長距離となるノードまでの伝送遅延である。図8に示すネットワークトポロジーにおいて、ルートは、制御PCに接続されている左手用マスタ制御装置(M2)である。マスタとスレーブ間のファイバ長が同じであるならば、このルートから最長距離にあるノードは右手用スレーブ制御装置(S1)であり、図8に示すノードシステムの最大の伝送遅延はD1+D2である。ファイバ長が不明ならば、遅延時間計測回路を用いて図8に示すノードシステムの最大の伝送遅延を調べる必要がある。遅延時間計測回路の詳細については後述する。 The transmission delay between the right-hand master controller (M1) and the right-hand slave controller (S1) is D 1 , the transmission delay between the right-hand master controller (M1) and the left-hand master controller (M2) is D 2 , Let D 3 be the transmission delay between the left-hand master controller (M2) and the left-hand slave controller (S2). The maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance. In the network topology shown in FIG. 8, the route is the left-hand master control device (M2) connected to the control PC. If the fiber length between the master and slave is the same, the node at the longest distance from this route is the right-hand slave controller (S1), and the maximum transmission delay of the node system shown in FIG. 8 is D 1 + D 2 Is. If the fiber length is unknown, it is necessary to use a delay time measurement circuit to find out the maximum transmission delay of the node system shown in FIG. The details of the delay time measurement circuit will be described later.
 図9には、手術支援システムのネットワークトポロジーのさらに他の構成例を示している。手術支援システムは、第1乃至第3のマスタ及び第1乃至第3のスレーブ(いずれも図示しない)を備える3腕のシステムであり、第1のマスタを制御する第1のマスタ制御装置(M1)、第2のマスタを制御する第2のマスタ制御装置(M2)、第3のマスタを制御する第3のマスタ制御装置(M3)、第1のスレーブを制御する第1のスレーブ制御装置(S1)、第2のスレーブを制御する第2のスレーブ制御装置(S2)、第3のスレーブを制御する第3のスレーブ制御装置(S3)を想定している。そして、図9に示すネットワークトポロジーは、マスタ内では第1のマスタ制御装置(M1)と第2のマスタ制御装置(M2)が相互接続され、第2のマスタ制御装置(M2)と第3のマスタ制御装置(M3)が相互接続されている。そして、第1のマスタ制御装置(M1)は第1のスレーブ制御装置(S1)と相互接続され、第2のマスタ制御装置(M2)は第2のスレーブ制御装置(S2)と相互接続され、第3のマスタ制御装置(M3)は第3のスレーブ制御装置(S3)と相互接続される、というツリー構造からなる。 FIG. 9 shows yet another configuration example of the network topology of the surgery support system. The surgery support system is a three-armed system including a first to third master and a first to third slave (neither is shown), and is a first master control device (M1) that controls the first master. ), The second master control device (M2) that controls the second master, the third master control device (M3) that controls the third master, and the first slave control device (M3) that controls the first slave. S1), a second slave control device (S2) that controls the second slave, and a third slave control device (S3) that controls the third slave are assumed. In the network topology shown in FIG. 9, the first master control device (M1) and the second master control device (M2) are interconnected in the master, and the second master control device (M2) and the third master control device (M2) are connected. The master control unit (M3) is interconnected. Then, the first master control device (M1) is interconnected with the first slave control device (S1), the second master control device (M2) is interconnected with the second slave control device (S2), and the second master control device (M2) is interconnected with the second slave control device (S2). The third master control device (M3) has a tree structure in which it is interconnected with the third slave control device (S3).
 第1のマスタ制御装置(M1)と第1のスレーブ制御装置(S1)間の伝送遅延をD1、第1のマスタ制御装置(M1)と第2のマスタ制御装置(M2)間の伝送遅延をD2、第2のマスタ制御装置(M2)と第2のスレーブ制御装置(S2)間の伝送遅延をD3、第2のマスタ制御装置(M2)と第3のマスタ制御装置(M3)間の伝送遅延をD4、第3のマスタ制御装置(M3)と第3のスレーブ制御装置(S3)間の伝送遅延をD5とする。ツリー構造のノードシステムにおける最大の伝送遅延は、ルートから最長距離となるノードまでの伝送遅延である。図9に示すネットワークトポロジーにおいて、ルートは、制御PCに接続されている第3のマスタ制御装置(M3)である。マスタとスレーブ間のファイバ長が同じであるならば、このルートから最長距離にあるノードは第1のスレーブ制御装置(S1)であり、図9に示すノードシステムの最大の伝送遅延はD1+D2+D4である。ファイバ長が不明ならば、遅延時間計測回路を用いて図9に示すノードシステムの最大の伝送遅延を調べる必要がある。遅延時間計測回路の詳細については後述する。 The transmission delay between the first master control device (M1) and the first slave control device (S1) is D 1 , and the transmission delay between the first master control device (M1) and the second master control device (M2). D 2 , the transmission delay between the second master controller (M2) and the second slave controller (S2) is D 3 , the second master controller (M2) and the third master controller (M3) the transmission delay between D 4, the transmission delay between the third master controller and (M3) third slave controller (S3) and D 5. The maximum transmission delay in a tree-structured node system is the transmission delay from the root to the node that is the longest distance. In the network topology shown in FIG. 9, the route is a third master control device (M3) connected to the control PC. If the fiber length between the master and slave is the same, the node at the longest distance from this route is the first slave controller (S1), and the maximum transmission delay of the node system shown in FIG. 9 is D 1 + D. 2 + D 4 . If the fiber length is unknown, it is necessary to use a delay time measurement circuit to find out the maximum transmission delay of the node system shown in FIG. The details of the delay time measurement circuit will be described later.
 なお、図8及び図9はいずれも、マスタとスレーブが1対1に対応する手術支援システムのネットワークトポロジーを示している。1つのマスタに複数のスレーブが接続され、又は複数のマスタに1つのスレーブが接続されるという手術支援システムも想定される。図10には、第1のマスタ(図示しない)を制御する第1のマスタ制御装置(M1)に、第1のスレーブ(図示しない)を制御する第1のスレーブ制御装置(S1)、並びに第2のスレーブ(図示しない)を制御する第2のスレーブ制御装置(S2)が直列接続されているネットワークトポロジーを示している。 Note that both FIGS. 8 and 9 show the network topology of the surgery support system in which the master and the slave have a one-to-one correspondence. A surgical support system in which a plurality of slaves are connected to one master or one slave is connected to a plurality of masters is also envisioned. In FIG. 10, a first master control device (M1) that controls a first master (not shown), a first slave control device (S1) that controls a first slave (not shown), and a first slave control device (S1) are shown. It shows a network topology in which a second slave control device (S2) for controlling two slaves (not shown) is connected in series.
G.デッドタイムの設定
 上述したように、安全監視装置内のデッドタイム検出部には、ノードシステムにおける最大の伝送遅延に連動した値のデッドタイムが設定される。遅延時間はノード間を接続するケーブルの配線長に依存する。したがって、配線長や遅延時間計測回路を用いて、ノード間の伝送遅延を推定することができる。
G. Dead Time Setting As described above, the dead time detection unit in the safety monitoring device is set with a dead time of a value linked to the maximum transmission delay in the node system. The delay time depends on the length of the cable connecting the nodes. Therefore, the transmission delay between the nodes can be estimated by using the wiring length or delay time measurement circuit.
 ノード間が光ファイバケーブルを使って接続される場合には、一方のノードから発光した光を他方のノードで受光した光のレベルに基づいて、ケーブル長を推定することができる。 When the nodes are connected using an optical fiber cable, the cable length can be estimated based on the level of the light emitted from one node and received by the other node.
 また、一方のノードから遅延計測パルスを出力し、他方のノードに到達した遅延計測パルスが一方のノードに戻るまでのラウンドトリップ時間に基づいて、伝送遅延を推定することができる。例えば、図3に示した相互監視システム300において、復帰回路内に遅延計測回路を組み込んで、遅延計測パルスを出力するように構成することができる。図11には、一方のノードから出力した遅延計測パルスがノード間を往復して帰ってくる様子を示している。また、図12には、復帰回路に組み込まれた遅延計測回路において、遅延計測パルスを送信して、他方のノードから戻ってくる遅延計測パルスを受信するときのタイミングチャートを示している。図12には、ノード間の伝送遅延による遅延時間を示している。 In addition, the transmission delay can be estimated based on the round trip time until the delay measurement pulse that reaches the other node returns to the one node by outputting the delay measurement pulse from one node. For example, in the mutual monitoring system 300 shown in FIG. 3, a delay measurement circuit can be incorporated in the return circuit to output a delay measurement pulse. FIG. 11 shows how the delay measurement pulse output from one node reciprocates between the nodes and returns. Further, FIG. 12 shows a timing chart when the delay measurement pulse incorporated in the return circuit transmits the delay measurement pulse and receives the delay measurement pulse returned from the other node. FIG. 12 shows the delay time due to the transmission delay between the nodes.
 要するに、一方のノードから照射したレーザ光の他方のノードでの受光レベルに基づいてケーブル長を計測する方法や、遅延計測パルスのラウンドトリップ時間に基づいて遅延時間を計測する方法などを使用して、ノード間の伝送遅延を推定することができる。ノードシステムでは、伝送遅延を自動計測し、且つ伝送遅延に連動したデッドタイムを各ノードの安全監視回路に自動で設定するようにしてもよい。もちろん、ノード間の伝送遅延の計測結果に基づくデッドタイムを、手動で各ノードの安全監視回路に設定するようにしてもよい。 In short, using a method of measuring the cable length based on the received level of the laser beam emitted from one node at the other node, a method of measuring the delay time based on the round trip time of the delay measurement pulse, and the like. , The transmission delay between nodes can be estimated. In the node system, the transmission delay may be automatically measured, and the dead time linked to the transmission delay may be automatically set in the safety monitoring circuit of each node. Of course, the dead time based on the measurement result of the transmission delay between the nodes may be manually set in the safety monitoring circuit of each node.
H.動作モードと通信条件
 ケーブルで接続された複数のノードからなるノードシステムでは、ノード間のケーブル接続状態から動作モードの切り替えが行われる。
H. Operation mode and communication conditions In a node system consisting of a plurality of nodes connected by a cable, the operation mode is switched from the cable connection state between the nodes.
 例えば、図13に示すような、右手用マスタ制御装置(M1)と右手用スレーブ制御装置(S1)が相互接続され、マスタ内では右手用マスタ制御装置(M1)と左手用マスタ制御装置(M2)が相互接続され、さらに左手用マスタ制御装置(M2)と左手用スレーブ制御装置(S2)が相互接続される、双腕の手術支援システムでは、右手用のマスタ及びスレーブが動作する単腕(R)モードと、左手用のマスタ及びスレーブが動作する単腕(L)モードと、両手のマスタ及びスレーブが動作する双腕モードの3つの動作モードと、すべての動作が停止した停止モードを有する。但し、制御PCは右手用マスタ制御装置(M1)と相互接続しており、右手用マスタ制御装置(M1)がツリー構造のルートとする。 For example, as shown in FIG. 13, the right-hand master control device (M1) and the right-hand slave control device (S1) are interconnected, and the right-hand master control device (M1) and the left-hand master control device (M2) are included in the master. ) Are interconnected, and the left-hand master control device (M2) and the left-hand slave control device (S2) are interconnected. It has three operation modes: R) mode, single arm (L) mode in which the master and slave for the left hand operate, dual arm mode in which the master and slave for both hands operate, and a stop mode in which all operations are stopped. .. However, the control PC is interconnected with the right-hand master control device (M1), and the right-hand master control device (M1) is the root of the tree structure.
 図13において、右手用マスタ制御装置(M1)と右手用スレーブ制御装置(S1)を接続するケーブルをC1、右手用マスタ制御装置(M1)と左手用マスタ制御装置(M2)を接続するケーブルをC2、左手用マスタ制御装置(M2)と左手用スレーブ制御装置(S2)を接続するケーブルをC3とする。単腕(R)モード、単腕(L)モード、双腕モード、停止モードの各動作モードにおける各ケーブルC1~C3の通信条件は、図14に示す通りとなる。 In FIG. 13, the cable connecting the right-hand master control device (M1) and the right-hand slave control device (S1) is C1, and the cable connecting the right-hand master control device (M1) and the left-hand master control device (M2) is connected. C2, the cable connecting the left-hand master control device (M2) and the left-hand slave control device (S2) is referred to as C3. The communication conditions of the cables C1 to C3 in each operation mode of the single arm (R) mode, the single arm (L) mode, the double arm mode, and the stop mode are as shown in FIG.
 単腕(R)モードでは、右手用マスタ制御装置(M1)と右手用スレーブ制御装置(S1)を接続するケーブルC1のみが接続状態オンであればよい。単腕(L)モードでは、左手用マスタ制御装置(M2)と左手用スレーブ制御装置(S2)を接続するケーブルC3が接続状態オンであるとともに、左手用マスタ制御装置(M2)がルートである右手用マスタ制御装置(M1)とも接続状態オンである必要がある。また、双腕モードでは、すべてのケーブルC1~C3が接続状態オンである。他方、停止モードでは、すべてのケーブルC1~C3は接続状態オフである。 In the single arm (R) mode, only the cable C1 connecting the right-hand master control device (M1) and the right-hand slave control device (S1) needs to be connected. In the single arm (L) mode, the cable C3 connecting the left-hand master control device (M2) and the left-hand slave control device (S2) is connected, and the left-hand master control device (M2) is the root. It is necessary that the connection state is turned on with the right-hand master control device (M1). Further, in the dual arm mode, all the cables C1 to C3 are in the connected state. On the other hand, in the stop mode, all cables C1 to C3 are in the connection state off.
 右手用マスタ制御装置(M1)に接続されている制御PCは、例えば図7に示した安全動作フローのステップS701で実行する初期設定において、ノード間の接続状態に基づいて、手術支援システムが単腕(R)モード、単腕(L)モード、双腕モード、停止モードなどのモード切り替えを行う。そして、動作モードに応じて、マスタ装置及びスレーブ装置のモータやブレーキ、レーザなどの駆動部の駆動条件を決定する。また、決定した動作モードに応じて最大の伝送遅延が決まるので、安全監視装置(図3を参照のこと)内のデッドタイム検出部に、動作モードに応じた伝送遅延に連動するデッドタイムを設定する。 In the control PC connected to the right-hand master control device (M1), for example, in the initial setting executed in step S701 of the safe operation flow shown in FIG. 7, the operation support system simply sets the operation support system based on the connection state between the nodes. Mode switching such as arm (R) mode, single arm (L) mode, double arm mode, and stop mode is performed. Then, the drive conditions of the drive units such as the motors, brakes, and lasers of the master device and the slave device are determined according to the operation mode. Further, since the maximum transmission delay is determined according to the determined operation mode, a dead time linked to the transmission delay according to the operation mode is set in the dead time detector in the safety monitoring device (see FIG. 3). do.
 例えば、手術支援システムが双腕モードから単腕(R)モードに切り替わったときには、ケーブル長が短縮されるので、安全監視装置に設定するデッドタイムをケーブル長に応じた短い値に切り替えることによって、非常停止からの復帰時間を短縮することができる。 For example, when the surgery support system is switched from the dual arm mode to the single arm (R) mode, the cable length is shortened. Therefore, by switching the dead time set in the safety monitoring device to a short value according to the cable length, The recovery time from an emergency stop can be shortened.
I.効果
 本開示を手術支援システム又はノードシステムに適用することによって得られる効果についてまとめておく。
I. Effects The effects obtained by applying this disclosure to a surgical support system or node system are summarized.
(1)非同期式の相互監視システムにおいて、各ノードの安全監視装置に、ノード間を接続するケーブル長又は最大の伝送遅延に連動したデッドタイムを設定する。したがって、各ノードはそれぞれ非同期で高速に非常停止し、他のノードも非同期で高速に連動して非常停止することができ、且つ、非常停止からの復帰時にはデッドタイムを設けてノード間で状態を確認し合うことができる。また、ノードシステムのモード切り替え(例えば、双腕モードから単腕モードに切り替えたとき)に応じて短いデッドタイムを設定することで、復帰時間を短縮することができる。 (1) In an asynchronous mutual monitoring system, a dead time linked to the cable length connecting the nodes or the maximum transmission delay is set in the safety monitoring device of each node. Therefore, each node can make an emergency stop asynchronously and at high speed, and other nodes can also make an emergency stop asynchronously at high speed, and a dead time is set when returning from the emergency stop to change the state between the nodes. You can check each other. Further, the return time can be shortened by setting a short dead time according to the mode switching of the node system (for example, when switching from the dual arm mode to the single arm mode).
(2)ノード間を接続するケーブルの挿抜や断線に連動して、各ノードの状態監視回路(図6を参照のこと)が切り替わる。これによって、モータの暴走や電磁ブレーキの忘れ、開放状態にある光ファイバケーブルからの不要なレーザ光照射による被ばくを回避することができる。 (2) The condition monitoring circuit (see FIG. 6) of each node is switched in conjunction with the insertion / removal or disconnection of the cable connecting the nodes. As a result, it is possible to avoid runaway of the motor, forgetting of the electromagnetic brake, and exposure due to unnecessary laser light irradiation from the optical fiber cable in the open state.
(3)ノード間を接続するケーブルの挿抜や断線によって、ノードシステムのモード切り替え(例えば、手術支援システムにおける双腕モード、単腕モード、停止モードの切り替え)を自動的に行うことができる。 (3) The mode of the node system can be automatically switched (for example, switching between the dual arm mode, the single arm mode, and the stop mode in the surgical support system) by inserting / removing or disconnecting the cable connecting the nodes.
 以上、特定の実施形態を参照しながら、本開示について詳細に説明してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present disclosure has been described in detail with reference to the specific embodiment. However, it is self-evident that a person skilled in the art can modify or substitute the embodiment without departing from the gist of the present disclosure.
 本明細書では、本開示をマスタスレーブ方式の手術支援システムに適用した実施形態を中心に説明してきたが、本開示の要旨はこれに限定されるものではない。医療以外のさまざまな産業分野で使用されるマスタスレーブシステムにも同様に本開示を適用することができる。また、本開示の適用対象はマスタスレーブシステムには限定されず、連動する複数のノードからなり、必ずしも各ノードの間にマスタとスレーブの関係が成立しない、さまざまなタイプのシステムに対して同様に本開示を適用することができる。 Although the present specification has mainly described embodiments in which the present disclosure is applied to a master-slave type surgical support system, the gist of the present disclosure is not limited to this. The present disclosure can be similarly applied to master-slave systems used in various industrial fields other than medical treatment. Further, the scope of application of the present disclosure is not limited to the master-slave system, and the same applies to various types of systems in which a master-slave relationship is not necessarily established between each node, which consists of a plurality of interlocking nodes. The present disclosure can be applied.
 要するに、例示という形態により本開示について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本開示の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present disclosure has been described in the form of an example, and the contents of the present specification should not be interpreted in a limited manner. In order to judge the gist of this disclosure, the scope of claims should be taken into consideration.
 なお、本開示は、以下のような構成をとることも可能である。
(1)複数のノードからなるシステムにおける1つのノードを制御する制御装置であって、
 自ノードの状態を保持する保持部と、
 他のノードの状態を入力する入力部と、
 前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて、自ノードの状態を判定する判定部と、
を具備する制御装置。
(2)前記保持部は、状態解除信号が入力されるまで自ノードの状態を保持し、
 前記入力部は、前記状態解除信号が入力されてから所定のデッドタイムの期間だけ他ノードの状態の入力を無効化する、
上記(1)に記載の制御装置。
(3)前記保持部は、自ノードの非常停止スイッチの操作に基づく非常停止信号が示す状態を保持し、自ノードで実行されるソフトウェアからの非常停止解除信号に応じて、保持している状態を解除する、
上記(2)に記載の制御装置。
(4)前記システムにおけるノード間の伝送遅延に基づいた前記デッドタイムが設定される、
上記(1)乃至(3)のいずれかに記載の制御装置。
(5)前記システムにおけるノード間を接続するケーブルの配線長に基づいた前記デッドタイムが設定される、
上記(4)に記載の制御装置。
(6)前記システムにおけるノード間を接続するケーブルの配線長又はノード間の遅延時間計測回路による計測結果に基づいた前記デッドタイムが設定される、
上記(4)又は(5)のいずれかに記載の制御装置。
(7)前記遅延時間計測回路は、ノード間の信号のラウンドトリップ時間に基づいてノード間の伝送遅延を推定する、
上記(6)に記載の制御装置。
(8)ノード間の接続状態に基づく前記システムの動作モードの切り替えに応じて前記デッドタイムが設定される、
上記(4)乃至(7)のいずれかに記載の制御装置。
(9)前記入力部においてデッドタイムを設定する記憶要素、又は入力をデッドタイムだけ無効化するための遅延回路を備える、
上記(2)乃至(8)のいずれかに記載の制御装置。
(10)自ノード内の複数種類の状態と、前記判定部が判定した状態を統合して判定する統合判定部をさらに備える、
上記(1)乃至(9)のいずれかに記載の制御装置。
(11)自ノードは複数の駆動部を含み、
 前記統合判定部の判定結果に基づいて各駆動部への制御信号の出力を制御する、
上記(10)に記載の制御装置。
(12)複数のノードからなるシステムにおける1つのノードを制御する制御方法であって、
 自ノードの状態を保持する保持ステップと、
 他のノードの状態を入力する入力ステップと、
 前記保持ステップにおいて保持された自ノードの状態と前記入力ステップにおいて入力された他のノードの状態に基づいて、自ノードの状態を判定する判定ステップと、
を有する制御方法。
(13)複数のノードからなり、少なくとも一部のノードは、
 自ノードの状態を保持する保持部と、他のノードの状態を入力する入力部と、前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて自ノードの状態を判定する判定部を備えた監視装置を装備する、
ノードシステム。
(14)前記保持部は、状態解除信号が入力されるまで自ノードの状態を保持し、
 前記入力部は、前記状態解除信号が入力されてから所定のデッドタイムの期間だけ他ノードの状態の入力を無効化する、
上記(13)に記載のノードシステム。
(15)前記保持部は、自ノードの非常停止スイッチの操作に基づく非常停止信号が示す状態を保持し、自ノードで実行されるソフトウェアからの非常停止解除信号に応じて保持している状態を解除する、
上記(14)に記載のノードシステム。
(16)前記システムにおけるノード間の伝送遅延に基づいた前記デッドタイムが設定される、
上記(13)乃至(15)に記載のノードシステム。
(17)ノード間の接続状態に基づく前記システムの動作モードの切り替えに応じて前記デッドタイムが設定される、
上記(16)に記載のノードシステム。
(18)前記入力部においてデッドタイムを設定する記憶要素、又は入力をデッドタイムだけ無効化するための遅延回路を備える、
上記(14)乃至(17)に記載のノードシステム。
(19)自ノード内の複数種類の状態と、前記判定部が判定した状態を統合して判定する統合判定部をさらに備える、
上記(13)乃至(18)のいずれかに記載の制御装置。
(20)前記少なくとも一部のノードは、自ノードは複数の駆動部を含み、前記統合判定部の判定結果に基づいて各駆動部への制御信号の出力を制御する、
上記(19)に記載のノードシステム。
The present disclosure may also have the following configuration.
(1) A control device that controls one node in a system consisting of a plurality of nodes.
A holding unit that holds the state of its own node,
Input section for inputting the status of other nodes,
A determination unit that determines the state of the own node based on the state of the own node held in the holding unit and the state of another node input from the input unit.
A control device comprising.
(2) The holding unit holds the state of its own node until a state release signal is input.
The input unit invalidates the input of the state of another node for a predetermined dead time period after the state release signal is input.
The control device according to (1) above.
(3) The holding unit holds the state indicated by the emergency stop signal based on the operation of the emergency stop switch of the own node, and holds the state in response to the emergency stop release signal from the software executed on the own node. Release,
The control device according to (2) above.
(4) The dead time is set based on the transmission delay between the nodes in the system.
The control device according to any one of (1) to (3) above.
(5) The dead time is set based on the wiring length of the cable connecting the nodes in the system.
The control device according to (4) above.
(6) The dead time is set based on the wiring length of the cable connecting the nodes in the system or the measurement result by the delay time measurement circuit between the nodes.
The control device according to any one of (4) and (5) above.
(7) The delay time measuring circuit estimates the transmission delay between nodes based on the round trip time of the signal between the nodes.
The control device according to (6) above.
(8) The dead time is set according to the switching of the operation mode of the system based on the connection state between the nodes.
The control device according to any one of (4) to (7) above.
(9) A storage element for setting a dead time in the input unit, or a delay circuit for invalidating the input by the dead time is provided.
The control device according to any one of (2) to (8) above.
(10) It further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit.
The control device according to any one of (1) to (9) above.
(11) The own node includes a plurality of drive units and includes a plurality of drive units.
The output of the control signal to each drive unit is controlled based on the determination result of the integrated determination unit.
The control device according to (10) above.
(12) A control method for controlling one node in a system consisting of a plurality of nodes.
A retention step that retains the state of its own node,
Input steps to enter the status of other nodes,
A determination step for determining the state of the own node based on the state of the own node held in the holding step and the state of another node input in the input step, and
Control method having.
(13) Consists of multiple nodes, at least some of them
Based on the holding unit that holds the state of the own node, the input unit that inputs the state of the other node, the state of the own node held in the holding unit, and the state of the other node input from the input unit. Equipped with a monitoring device equipped with a judgment unit that determines the status of the own node,
Node system.
(14) The holding unit holds the state of its own node until a state release signal is input.
The input unit invalidates the input of the state of another node for a predetermined dead time period after the state release signal is input.
The node system according to (13) above.
(15) The holding unit holds the state indicated by the emergency stop signal based on the operation of the emergency stop switch of the own node, and holds the state in response to the emergency stop release signal from the software executed on the own node. unlock,
The node system according to (14) above.
(16) The dead time is set based on the transmission delay between the nodes in the system.
The node system according to (13) to (15) above.
(17) The dead time is set according to the switching of the operation mode of the system based on the connection state between the nodes.
The node system according to (16) above.
(18) The input unit includes a storage element for setting a dead time, or a delay circuit for invalidating the input by the dead time.
The node system according to (14) to (17) above.
(19) It further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit.
The control device according to any one of (13) to (18) above.
(20) The own node includes a plurality of drive units, and the at least a part of the nodes control the output of the control signal to each drive unit based on the determination result of the integrated determination unit.
The node system according to (19) above.
 1…手術支援システム、11…手術台、13…右手用スレーブ装置
 14…左手用スレーブ装置、15…操作台、16…右手用マスタ装置
 17…左手用マスタ装置、18,19…操作部、20…カメラ部
 21…モニタ
 111…右手用マスタ制御装置、112…左手用マスタ制御装置
 113…制御PC、121…右手用スレーブ制御装置
 122…左手用スレーブ制御装置、123…CCU
 300…相互監視システム、310…マスタ側安全監視装置
 311…非常停止信号、312…ラッチ、313…マスタ状態判定部
 314…ラッチ解除信号、315…スイッチ
 316…デッドタイム(DET)検出部、317…状態信号
 318…復帰回路
 320…スレーブ側安全監視装置、321…非常停止信号
 32…ラッチ、323…スレーブ状態判定部、324…ラッチ解除信号
 325…スイッチ、326…デッドタイム(DET)検出部
 327…状態信号、328…復帰回路
 500…相互監視システム、501~503…相互監視サブシステム
 600…状態監視回路、601…状態判定部
 602…UIスイッチ信号、603…安全監視装置、604…状態信号
 605…モータ駆動回路状態信号、606…Watch Dog信号
 607…通信ALIVE信号、610…全体状態信号
 611…安全トルクオフ解除信号、612…ブレーキ解除信号
 613…レーザ出力オン信号
 621…安全トルクオフ判定部、622…安全トルクオフ解除信号
 623…ブレーキ解除判定部、624…ブレーキ解除信号
 625…レーザ出力オン判定部、626…レーザ出力オン信号
1 ... Surgery support system, 11 ... Operating table, 13 ... Right hand slave device 14 ... Left hand slave device, 15 ... Operation table, 16 ... Right hand master device 17 ... Left hand master device, 18, 19 ... Operation unit, 20 ... Camera unit 21 ... Monitor 111 ... Right-hand master control device, 112 ... Left-hand master control device 113 ... Control PC, 121 ... Right-hand slave control device 122 ... Left-hand slave control device, 123 ... CCU
300 ... Mutual monitoring system, 310 ... Master side safety monitoring device 311 ... Emergency stop signal, 312 ... Latch, 313 ... Master status determination unit 314 ... Latch release signal, 315 ... Switch 316 ... Dead time (DET) detection unit, 317 ... Status signal 318 ... Return circuit 320 ... Slave side safety monitoring device, 321 ... Emergency stop signal 32 ... Latch 323 ... Slave status determination unit 324 ... Latch release signal 325 ... Switch 326 ... Dead time (DET) detection unit 327 ... Status signal, 328 ... Return circuit 500 ... Mutual monitoring system, 501 to 503 ... Mutual monitoring subsystem 600 ... Status monitoring circuit, 601 ... Status determination unit 602 ... UI switch signal, 603 ... Safety monitoring device, 604 ... Status signal 605 ... Motor drive circuit status signal, 606 ... Watch Dog signal 607 ... Communication ALIVE signal, 610 ... Overall status signal 611 ... Safety torque off release signal, 612 ... Brake release signal 613 ... Laser output on signal 621 ... Safety torque off judgment unit, 622 ... Safety Torque off release signal 623 ... Brake release judgment unit, 624 ... Brake release signal 625 ... Laser output on judgment unit, 626 ... Laser output on signal

Claims (13)

  1.  複数のノードからなるシステムにおける1つのノードを制御する制御装置であって、
     自ノードの状態を保持する保持部と、
     他のノードの状態を入力する入力部と、
     前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて、自ノードの状態を判定する判定部と、
    を具備する制御装置。
    A control device that controls one node in a system consisting of multiple nodes.
    A holding unit that holds the state of its own node,
    Input section for inputting the status of other nodes,
    A determination unit that determines the state of the own node based on the state of the own node held in the holding unit and the state of another node input from the input unit.
    A control device comprising.
  2.  前記保持部は、状態解除信号が入力されるまで自ノードの状態を保持し、
     前記入力部は、前記状態解除信号が入力されてから所定のデッドタイムの期間だけ他ノードの状態の入力を無効化する、
    請求項1に記載の制御装置。
    The holding unit holds the state of its own node until a state release signal is input.
    The input unit invalidates the input of the state of another node for a predetermined dead time period after the state release signal is input.
    The control device according to claim 1.
  3.  前記保持部は、自ノードの非常停止スイッチの操作に基づく非常停止信号が示す状態を保持し、自ノードで実行されるソフトウェアからの非常停止解除信号に応じて、保持している状態を解除する、
    請求項2に記載の制御装置。
    The holding unit holds the state indicated by the emergency stop signal based on the operation of the emergency stop switch of the own node, and releases the held state in response to the emergency stop release signal from the software executed on the own node. ,
    The control device according to claim 2.
  4.  前記システムにおけるノード間の伝送遅延に基づいた前記デッドタイムが設定される、
    請求項1に記載の制御装置。
    The dead time is set based on the transmission delay between the nodes in the system.
    The control device according to claim 1.
  5.  前記システムにおけるノード間を接続するケーブルの配線長に基づいた前記デッドタイムが設定される、
    請求項4に記載の制御装置。
    The dead time is set based on the length of the cable connecting the nodes in the system.
    The control device according to claim 4.
  6.  前記システムにおけるノード間を接続するケーブルの配線長又はノード間の遅延時間計測回路による計測結果に基づいた前記デッドタイムが設定される、
    請求項4に記載の制御装置。
    The dead time is set based on the wiring length of the cable connecting the nodes in the system or the measurement result by the delay time measurement circuit between the nodes.
    The control device according to claim 4.
  7.  前記遅延時間計測回路は、ノード間の信号のラウンドトリップ時間に基づいてノード間の伝送遅延を推定する、
    請求項6に記載の制御装置。
    The delay time measuring circuit estimates the transmission delay between nodes based on the round trip time of the signal between the nodes.
    The control device according to claim 6.
  8.  ノード間の接続状態に基づく前記システムの動作モードの切り替えに応じて前記デッドタイムが設定される、
    請求項4に記載の制御装置。
    The dead time is set according to the switching of the operation mode of the system based on the connection state between the nodes.
    The control device according to claim 4.
  9.  前記入力部においてデッドタイムを設定する記憶要素、又は入力をデッドタイムだけ無効化するための遅延回路を備える、
    請求項2に記載の制御装置。
    The input unit includes a storage element for setting a dead time, or a delay circuit for invalidating the input by the dead time.
    The control device according to claim 2.
  10.  自ノード内の複数種類の状態と、前記判定部が判定した状態を統合して判定する統合判定部をさらに備える、
    請求項1に記載の制御装置。
    It further includes an integrated determination unit that integrates and determines a plurality of types of states in the own node and the states determined by the determination unit.
    The control device according to claim 1.
  11.  自ノードは複数の駆動部を含み、
     前記統合判定部の判定結果に基づいて各駆動部への制御信号の出力を制御する、
    請求項10に記載の制御装置。
    The own node includes multiple drive units and
    The output of the control signal to each drive unit is controlled based on the determination result of the integrated determination unit.
    The control device according to claim 10.
  12.  複数のノードからなるシステムにおける1つのノードを制御する制御方法であって、
     自ノードの状態を保持する保持ステップと、
     他のノードの状態を入力する入力ステップと、
     前記保持ステップにおいて保持された自ノードの状態と前記入力ステップにおいて入力された他のノードの状態に基づいて、自ノードの状態を判定する判定ステップと、
    を有する制御方法。
    A control method that controls one node in a system consisting of multiple nodes.
    A retention step that retains the state of its own node,
    Input steps to enter the status of other nodes,
    A determination step for determining the state of the own node based on the state of the own node held in the holding step and the state of another node input in the input step, and
    Control method having.
  13.  複数のノードからなり、少なくとも一部のノードは、
     自ノードの状態を保持する保持部と、他のノードの状態を入力する入力部と、前記保持部に保持される自ノードの状態と前記入力部から入力された他のノードの状態に基づいて自ノードの状態を判定する判定部を備えた監視装置を装備する、
    ノードシステム。
    Consists of multiple nodes, at least some of them
    Based on the holding unit that holds the state of the own node, the input unit that inputs the state of the other node, the state of the own node held in the holding unit, and the state of the other node input from the input unit. Equipped with a monitoring device equipped with a judgment unit that determines the status of the own node,
    Node system.
PCT/JP2021/002801 2020-03-24 2021-01-27 Control device, control method, and node system WO2021192586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053420 2020-03-24
JP2020053420A JP2021151686A (en) 2020-03-24 2020-03-24 Control device and control method as well as node system

Publications (1)

Publication Number Publication Date
WO2021192586A1 true WO2021192586A1 (en) 2021-09-30

Family

ID=77886994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002801 WO2021192586A1 (en) 2020-03-24 2021-01-27 Control device, control method, and node system

Country Status (2)

Country Link
JP (1) JP2021151686A (en)
WO (1) WO2021192586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115399681A (en) * 2022-09-19 2022-11-29 上海集成电路制造创新中心有限公司 Sensor, robot and sweeper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100805A (en) * 1999-09-27 2001-04-13 Matsushita Electric Ind Co Ltd Robot controller
JP2012081554A (en) * 2010-10-12 2012-04-26 Tohoku Univ Tactile sensor system
JP2015229224A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Industrial robot
JP2016124077A (en) * 2015-01-06 2016-07-11 株式会社デンソーウェーブ Method for wiring robot
JP2016533277A (en) * 2013-10-17 2016-10-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Fault response, fault isolation, and graceful degradation in robotic systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100805A (en) * 1999-09-27 2001-04-13 Matsushita Electric Ind Co Ltd Robot controller
JP2012081554A (en) * 2010-10-12 2012-04-26 Tohoku Univ Tactile sensor system
JP2016533277A (en) * 2013-10-17 2016-10-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Fault response, fault isolation, and graceful degradation in robotic systems
JP2015229224A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Industrial robot
JP2016124077A (en) * 2015-01-06 2016-07-11 株式会社デンソーウェーブ Method for wiring robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115399681A (en) * 2022-09-19 2022-11-29 上海集成电路制造创新中心有限公司 Sensor, robot and sweeper
CN115399681B (en) * 2022-09-19 2024-04-05 上海集成电路制造创新中心有限公司 Sensor, robot and sweeper

Also Published As

Publication number Publication date
JP2021151686A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN111278609B (en) Robotic surgical system and method for communicating synchronous and asynchronous information to and from a node of a robotic arm
US11419690B2 (en) Robotic surgical system having a communication network of a ring topology and method for use therewith
EP3628451A1 (en) Fault reaction, fault isolation, and graceful degradation in a robotic system
WO2021192586A1 (en) Control device, control method, and node system
EP1644857A2 (en) System for controlling medical devices
CN106272554B (en) A kind of operating robot operating status fault detection method
CN115023196A (en) Power management architecture for surgical robotic systems
US11357584B2 (en) Method for detecting faults in operating states of surgical robots
JP7384160B2 (en) Information processing device, information processing method and program
US20230136248A1 (en) Testing unit for testing a surgical robot system
KR102541237B1 (en) Manipulable control system and robot-assisted surgical equipment equipped with the system
CN115279296A (en) Redundant robot power and communication architecture
WO2021163083A1 (en) System and method for activation and deactivation syncrhonization handling in a surgical robotic system
JPH10222204A (en) Doubling method for process input/output device
US20240065787A1 (en) Surgical robotic system with instrument detection
CN117002415A (en) Multi-sensor synchronous triggering system and method
CN116018107A (en) Control system with safety device for surgical robot system
JP2006344023A (en) Control unit
JPH0635739A (en) Switching control system
JPH01238831A (en) X-ray fluoroscopically photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774614

Country of ref document: EP

Kind code of ref document: A1