WO2021192528A1 - Hybrid control device and method for controlling hybrid control device - Google Patents

Hybrid control device and method for controlling hybrid control device Download PDF

Info

Publication number
WO2021192528A1
WO2021192528A1 PCT/JP2021/001179 JP2021001179W WO2021192528A1 WO 2021192528 A1 WO2021192528 A1 WO 2021192528A1 JP 2021001179 W JP2021001179 W JP 2021001179W WO 2021192528 A1 WO2021192528 A1 WO 2021192528A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
control device
fluid medium
hybrid control
engine
Prior art date
Application number
PCT/JP2021/001179
Other languages
French (fr)
Japanese (ja)
Inventor
坂口 重幸
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021192528A1 publication Critical patent/WO2021192528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a hybrid control device and a control method for the hybrid control device.
  • hybrid (HV) vehicles developed for the purpose of improving environmental performance have become widespread.
  • the hybrid vehicle is provided with two drive sources, a fuel-burning engine and a driving motor, and is equipped with an inverter that converts the direct current from the battery into alternating current and supplies it to the driving motor. There is.
  • the hybrid vehicle in addition to cooling the engine, it is also necessary to cool the motor and inverter for hybrid driving. Therefore, the hybrid vehicle is provided with two cooling channels, a cooling channel for cooling the engine and a cooling channel for cooling the hybrid system, and the fluid medium is circulated in each cooling channel to circulate the engine or the hybrid system. Is cooling.
  • Patent Document 1 heat is transferred from the HV cooling water to the engine cooling water by transferring the heat of the HV (hybrid) cooling water to the engine cooling water, and the heat is heated by the waste heat of the traveling motor and the inverter. It is disclosed that the heat of the HV cooling water heats the engine cooling water, and the waste heat of the traveling motor and the inverter is used for warming up the engine.
  • the hybrid control device includes a fuel combustion type engine having a cylinder head, a radiator for cooling a circulating fluid medium, a traveling electric motor, a power conversion unit for driving the electric motor, and the cylinder head. Controls the flow path forming body that circulates the fluid medium through the power conversion unit and the electric motor, and the flow path of the flow path forming body, and also controls the driving of the electric motor and the power conversion unit.
  • the control unit heats the fluid medium by increasing the heat generated by the power conversion unit or the electric motor.
  • the control method of the hybrid control device forms a high-power heat-generating flow path that circulates a fluid medium through the cylinder head of a fuel-burning engine, a power conversion unit that drives a traveling motor, and the motor.
  • the fluid medium is heated by increasing the heat generated by the power conversion unit or the electric motor.
  • fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
  • FIG. 1 is a configuration diagram showing a hybrid control device 100, and shows an engine cooling flow path during engine operation.
  • the fuel combustion type engine 10 includes a cylinder head 11, a cylinder block 12, a heater core 13, and an EGR cooler 14.
  • the flow path through which the fluid medium passes from the cylinder head 11 to the cylinder block 12 reaches the water pump 23 via the flow path switching valve 22 and returns to the cylinder head 11.
  • the flow path through which the fluid medium passes from the cylinder head 11 to the heater core 13 reaches the water pump 23 from the EGR cooler 14 via the flow path switching valve 22 and returns to the cylinder head 11.
  • the flow path through which the fluid medium passes from the cylinder head 11 to the radiator 20 includes a reservoir tank 21, reaches the water pump 23 from the radiator 20 via the flow path switching valve 22, and returns to the cylinder head 11.
  • the fluid medium also flows to the flow path switching valve 24 from the middle of the path from the radiator 20 to the flow path switching valve 22.
  • the fluid medium has a path from the middle of the path from the heater core 13 to the EGR cooler 14 to the flow path switching valve 24.
  • the flow path is provided. Due to the action of the switching valve 24, the path flowing from the heater core 13 to the flow path switching valve 24 is blocked.
  • the fluid medium emitted from the flow path switching valve 24 joins the flow path connecting the flow path switching valve 22 and the water pump 23 via the power conversion unit 25 of the high-power system, the heat generating element 27, the motor 28, and the generator 29. ..
  • the power conversion unit 25 converts the DC power supplied from the battery 26 into AC power by an electric system (not shown), and drives the electric motor 28 for traveling the vehicle.
  • the generator 29 is coupled to the engine 10 and generates electricity while the engine 10 is operating to charge the battery 26.
  • the heat generating element 27 is, for example, a PTC heater or a Pelche element, and is incorporated in the flow path in the middle of the flow path or in the flow path in the power conversion unit 25, and is driven by a signal from the control unit 30 to heat the fluid medium.
  • the heat generating element 27 is driven. Although it is not done, it may be driven if the engine water temperature is low.
  • the control unit 30 controls the flow path of the flow path forming body through which the fluid medium passes, and also controls the drive of the power conversion unit 25 and the electric motor 28.
  • the flow path forming body forms a flow path for circulating the fluid medium through at least the cylinder head 11, the power conversion unit 25, and the electric motor 28, and the flow path is controlled by the control unit 30.
  • control unit 30 includes a water temperature ETW of the engine 10 from a temperature sensor (not shown) provided in the vicinity of the engine 10, an outside air temperature OT of the vehicle, a heat generation command AC from the air conditioner, and a blower from the air conditioner.
  • the fan signal BC, the deceleration NA of the vehicle, and the SOC (charged state) BT of the battery 26 are input. Further, the control unit 30 obtains the rate of decrease ETV of the water temperature ETW based on the input water temperature ETW of the engine 10.
  • control unit 30 controls the switching signals SW1 and SW2 to the flow path switching valves 22 and 24 to the power conversion unit 25, the heat generating element 27, and the motor 28, respectively, based on the input environmental information.
  • the signals CT1, CT2, and CT3 are output.
  • the control unit 30 While the engine is running, the control unit 30 outputs the switching signals SW1 and SW2 to the flow path switching valves 22 and 24. As a result, as shown in FIG. 1, the control unit 30 forms an engine cooling flow path in which the fluid medium circulates from the cylinder head 11 through the heater core 13 and the radiator 20 when the vehicle is running the engine.
  • the fluid medium cooled by the radiator 20 cools the engine 10 via the flow path switching valve 22 and the water pump 23.
  • the flow path area of the flow path switching valve 22 is controlled according to the temperature required from the air conditioner or the like. Further, the fluid medium cooled by the radiator 20 cools the power conversion unit 25 and the electric motor 28, which are high-power systems, via the flow path switching valve 24.
  • FIG. 2 is a configuration diagram showing the hybrid control device 100, and shows a high electric system heat generation flow path formed when the vehicle is in the EV traveling mode.
  • EV running means stopping the operation of the fuel combustion type engine 10 and driving the running electric motor 28 to run the vehicle.
  • control unit 30 In the case of EV traveling, the control unit 30 outputs switching signals SW1 and SW2 to the flow path switching valves 22 and 24, respectively, and as shown in FIG. 2, the fluid medium is powered from the cylinder head 11 via the heater core 13. A high electric power generation flow path that circulates to the conversion unit 25 is formed.
  • the flow path through which the fluid medium passes from the cylinder head 11 to the cylinder block 12 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium passes from the cylinder head 11, the heater core 13, and the EGR cooler 14 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium passes from the cylinder head 11 to the radiator 20 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium flows from the radiator 20 to the flow path switching valve 22 to the flow path switching valve 24 is also closed. Instead, the flow path switching valve 24 forms a path that flows from the middle of the path from the heater core 13 to the EGR cooler 14 to the flow path switching valve 24.
  • the fluid medium passes from the cylinder head 11 through the heater core 13, the flow path switching valve 24, the power conversion unit 25, the heat generating element 27, the electric motor 28, and the generator 29, that is, through the high electric system, and the flow path switching valve 22. Joins the flow path connecting the water pump 23 and the water pump 23.
  • the control unit 30 is based on at least one of the water temperature ETW, the water temperature decrease rate ETV, the outside air temperature OT, the heat generation command AC from the air conditioner, the blower fan signal BC or the vehicle deceleration NA, and the SOC of the battery 26.
  • the fluid medium is heated based on the BT.
  • FIG. 3 is a circuit configuration diagram of the power conversion unit 25.
  • the inverter 251 in the power conversion unit 25 has a UVW phase upper and lower arm series circuit.
  • the U-phase upper and lower arm series circuit includes a U-phase upper arm switching element Tuu and a U-phase upper arm diode Du, and a U-phase lower arm switching element Tu and a U-phase lower arm diode Dul.
  • the V-phase upper and lower arm series circuit includes a V-phase upper arm switching element Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm switching element Tvr and a V-phase lower arm diode Dvl.
  • the W-phase upper and lower arm series circuit includes a W-phase upper arm switching element Twoo and a W-phase upper arm diode Dwoo, and a W-phase lower arm switching element Twl and a W-phase lower arm diode Dwl.
  • the switching element is, for example, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the smoothing capacitor 252 smoothes the current generated by ON / OFF of the switching element and suppresses the ripple of the direct current supplied from the battery 26 to the inverter 251.
  • the smoothing capacitor 252 for example, an electrolytic capacitor or a film capacitor is used.
  • the motor control unit 253 performs pulse width modulation based on the three-phase voltage command Vc and the drive frequency Fc, generates a gate signal for driving the inverter 251 and outputs this gate signal to the switching element of the inverter 251.
  • the inverter 251 generates heat when the switching element is turned on and off.
  • the motor control unit 253 increases the drive frequency Fc in response to the control signal CT1 from the control unit 30 to increase the switching loss of the switching element. This increases the heat generation of the switching element.
  • the motor control unit 253 increases the reactive current by adjusting the phase of the motor in response to the control signal CT3 from the control unit 30, and increases the current consumption and the copper loss. This increases the heat generation of the motor 28.
  • the inverter 251 drives the motor 28 by converting the DC power obtained from the battery 26 into AC power during power running. Further, at the time of regeneration, the power of the motor 28 is converted into DC power to charge the battery 26.
  • each switching element is molded, and the flow path is arranged in the vicinity of the sealed switching element.
  • the drive frequency Fc is increased in response to the control signal CT1 from the control unit 30, and the switching loss of the switching element is increased, so that the fluid medium of the flow path formed in the power conversion unit 25 can be heated. ..
  • the heat generating element 27 is arranged in the flow path in the inverter 251 but may be arranged at any position in the high electric system heat generating flow path.
  • the motor 28 is driven by the inverter 251 to generate heat.
  • a flow path is formed inside the motor 28 while maintaining electrical insulation.
  • FIGS. 4 (A) to 4 (F) are graphs showing setting values corresponding to environmental information. These set values are stored in advance in the control unit 30.
  • the control unit 30 reads out the set value corresponding to the detected environmental information, performs the processing described later, and outputs the switching signals SW1 and SW2 and the control signals CT1, CT2, and CT3. ..
  • the horizontal axis shows the water temperature ETW of the engine 10
  • the vertical axis shows the output value kETW.
  • the output value kETW outputs 0 to 1 corresponding to the detected water temperature ETW of the engine 10, for example, 0 ° C. to 100 ° C.
  • the output value kETW outputs 1
  • the output value kETW gradually changes from 1 to 0, and the water temperature ETW becomes 0.
  • the output value kETW outputs 0.
  • the horizontal axis shows the outside air temperature OT
  • the vertical axis shows the output value kOT.
  • the output value kOT outputs 0 to 1 in response to the detected outside air temperature OT, for example, 0 ° C. to 50 ° C.
  • the output value kOT outputs 1
  • the output value kOT gradually changes from 1 to 0, and the outside air.
  • the output value kOT outputs 0.
  • the horizontal axis shows the heat generation command AC from the air conditioner
  • the vertical axis shows the output value kAC. If the heat generation command AC is turned off due to the operation of the air conditioner or the like, the output value kAC outputs 0. If the heat generation command AC is ON, the output value kAC outputs 1.
  • the horizontal axis shows the blower fan signal BC
  • the vertical axis shows the output value kBC. If the blower fan signal BC is OFF due to the operation of the blower fan or the like, the output value kBC outputs 0. If the blower fan signal BC is ON, the output value kBC outputs 1.
  • the horizontal axis shows the deceleration NA of the vehicle
  • the vertical axis shows the output value kNA.
  • the horizontal axis shows the SOC (charged state) BT of the battery 26, and the vertical axis shows the output value kBT.
  • the output value kBT outputs 0, and as the SOC (charged state) BT changes from about 30% to about 60%, the output value kBT starts from 0. It gradually becomes 1, and when the SOC (charged state) BT is larger than about 60%, the output value kBT outputs 1.
  • control unit 30 obtains the lowering speed ETV of the water temperature ETW based on the water temperature ETW of the engine 10, and stores in advance the relationship between the lowering speed ETV and its output value kETV as a set value. For example, when the decrease rate ETV of the water temperature ETW is fast, the output value kETV gradually approaches 1, and as the decrease rate ETV decreases, the output value kETV gradually approaches 0.
  • the control unit 30 Based on the input environmental information, the control unit 30 obtains an output value with reference to the set values shown in FIGS. 4 (A) to 4 (F) and the like, and obtains an output value from the following equation (1).
  • ELHL (kETW + kETV + kOT + kAC + kBC + kNA) x kBT (1)
  • ELHL 1 or more, it is set to 1.
  • the SOC of the battery 26 is given high priority. For example, when the SOC of the battery 26 is low, the heat generated by the high-power system that consumes the DC power of the battery 26 is reduced.
  • FIG. 5 is a graph showing the correspondence between the high electric system heat generation level ELHL and the control signal.
  • the horizontal axis of the figure shows the high electric system heat generation level ELHL, and the vertical axis shows the drive frequency Fc of the inverter 251 by the control signal CT1 and the reactive current of the motor 28 by the control signal CT3.
  • the control unit 30 determines the drive frequency Fc of the inverter 251 and the reactive current of the motor 28 corresponding to the high electric system heat generation level ELHL obtained from the equation (1), and converts the control signals CT1 and CT3 into electric power. Output to unit 25.
  • the heat generating element 27 may be driven by outputting the control signal CT2 corresponding to the high electric system heat generation level ELHL. For example, when the high electric system heat generation level ELHL is about 0.8 or more, the signal for driving the heat generation element 27 is gradually increased to output the control signal CT2 so that the fluid medium generates heat.
  • FIG. 5 shows an example in which control signals CT1 and CT3 are output at the same time corresponding to the high electric system heat generation level ELHL, but the present invention is not limited to this.
  • the control signal CT1 is output first in response to the high-electricity heat generation level ELHL, the control signal CT2 is output when further heating is required, and the control signal CT3 is output when further heating is required. It may be output stepwise.
  • FIG. 6 is a flowchart showing the control of high-voltage heat generation in the control unit 30.
  • the program shown in this flowchart can be executed by a computer equipped with a CPU, memory, and the like. All processing or some processing may be realized by a hard logic circuit. Further, this program can be provided by being stored in the storage medium of the hybrid control device 100 in advance. Alternatively, the program can be stored and provided in an independent storage medium, or the program can be recorded and stored in the storage medium of the hybrid control device 100 via a network line. It may be supplied as a computer-readable computer program product in various forms such as a data signal (carrier wave). All or part of the processing of the program shown in the flowchart of FIG. 6 may be executed by the motor control unit 253 or another control unit in the hybrid control device 100.
  • step S301 of FIG. 6 the control unit 30 determines whether the vehicle is in the EV traveling mode. If the vehicle is not in the EV driving mode, the control shown in the flowchart of FIG. 6 is terminated. The control shown in the flowchart of FIG. 6 is repeatedly executed at predetermined time intervals. If the vehicle is in the EV driving mode, the process proceeds to the next step S302.
  • step S302 the control unit 30 outputs switching signals SW1 and SW2 to the flow path switching valves 22 and 24, respectively, and as shown in FIG. 2, the fluid medium passes through the cylinder head 11 to the heater core 13 in the flow path forming body.
  • the switch is switched to a high-power heat-generating flow path that circulates to the power conversion unit 25.
  • the flow path forming body is switched to the engine cooling flow path as shown in FIG.
  • a flow path in which all the fluid medium flows only in the high-power heat generation flow path will be described as an example, but a part of the fluid medium may flow through the engine cooling flow path, and the vehicle The flow rate is controlled based on the operating condition and the like. Then, the process proceeds to step S303.
  • step S303 the control unit 30 reads the environmental information related to the temperature. That is, the water temperature ETW, the outside air temperature OT, the heat generation command AC from the air conditioner, the blower fan signal BC, the vehicle deceleration NA, and the battery SOC BT are read. Further, the decrease rate ETV of the water temperature ETW is obtained based on the read water temperature ETW of the engine 10. Then, the process proceeds to step S304.
  • step S304 the control unit 30 refers to the set values shown in FIGS. 4 (A) to 4 (F) and refers to the output values kETW, kETV, kOT, kAC, kBC, kNA, and kBT corresponding to the environmental information.
  • the high electric system heat generation level ELHL is obtained based on the equation (1).
  • the process proceeds to step S305. If the control permission condition is not satisfied, the control shown in the flowchart of FIG. 6 is terminated. For example, if the SOC of the battery is about 30% or less, the result of the equation (1) is 0, and the control permission condition is not satisfied.
  • step S305 the control unit 30 determines the drive frequency Fc of the inverter 251 and the reactive current of the motor 28 in response to the high electric power generation level ELHL obtained from the equation (1), and outputs the control signals CT1 and CT3. Output to the power conversion unit 25.
  • the heat generating element 27 may be driven by outputting the control signal CT2 corresponding to the high electric system heat generation level ELHL. As a result, the fluid medium in the high-voltage heating flow path is heated.
  • the heated fluid medium circulates through the water pump 23 and the cylinder head 11 to the heater core 13 and the flow path switching valve 24.
  • the fluid medium whose temperature has risen due to heating can be supplied to the cylinder head 11 and the heater core 13 even during EV traveling.
  • the rate of decrease in the water temperature of the engine 10 can be reduced, and the operating time of the engine 10 can be increased by lengthening the time until the engine 10 is restarted. It is effective in reducing fuel and exhaust gas.
  • the fluid medium whose temperature has risen is supplied to the heater core 13, so that the air conditioning performance can be maintained.
  • FIG. 7 is a time chart showing the control of the high electric system heat generation flow path in the EV traveling mode after warming up.
  • FIG. 7 (A) shows the vehicle speed
  • FIG. 7 (B) shows the engine speed
  • FIG. 7 (C) shows the engine water temperature
  • FIG. 7 (D) shows the heat generation request of the strong electric system
  • the horizontal axis shows the time. Is.
  • the engine water temperature gradually decreases in the EV driving mode after warming up. It is assumed that the engine 10 starts when the engine water temperature drops to 60 ° C. At time t1, it is assumed that the control unit 30 turns on the high electric system heat generation request as shown in FIG. 7 (D) by the control of steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature. As a result, the fluid medium in the high-electricity heat generation flow path is heated, and as shown by the solid line in FIG. 7C, the rate of decrease in the engine water temperature slows down.
  • the dotted line in FIG. 7C shows the engine water temperature when the fluid medium is not heated. If the fluid medium is not heated, the engine water temperature drops quickly to 60 ° C., and as a result, the engine 10 starts early, as shown by the dotted line in FIG. 7 (B). However, when the fluid medium in the high-electric heat generation flow path is heated, the engine water temperature reaches 60 ° C. at time t2, and at this time, the engine 10 starts. That is, the start of the engine can be delayed by the period of T1 shown in FIG. 7 (B).
  • the control unit 30 turns on the high-electricity heat generation request as shown in FIG. 7 (D) by controlling steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature. Then, since the fluid medium is heated, the engine water temperature reaches 60 ° C. at time t4, and at this time, the engine 10 starts. That is, the start of the engine can be delayed by the period of T2 shown in FIG. 7 (B). As a result, when the operation of the engine 10 is stopped and the engine is running in EV, the rate of decrease in the water temperature of the engine 10 can be reduced, and the operating time of the engine 10 can be increased by lengthening the time until the engine 10 is restarted. It is effective in reducing fuel and exhaust gas.
  • the engine speed shown in FIG. 7B fluctuates according to the vehicle speed shown in FIG. 7A.
  • FIG. 8 is a time chart showing the control of high-power system heat generation in the EV driving mode at cold temperature.
  • FIG. 8 (A) shows the vehicle speed
  • FIG. 8 (B) shows the engine speed
  • FIG. 8 (C) shows the engine water temperature
  • FIG. 8 (D) shows the heat generation request of the strong electric system
  • the horizontal axis shows the time. Is.
  • the control unit 30 When the vehicle is EV traveling, at time t1, the control unit 30 generates heat from the high electric system as shown in FIG. 8 (D) under the control of steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature.
  • the request is turned on.
  • the fluid medium in the high-electricity heat generation flow path is heated, and as shown by the solid line in FIG. 8C, the rate of increase in the engine water temperature is increased.
  • the dotted line in FIG. 8C shows the engine water temperature when the fluid medium is not heated.
  • the engine 10 starts at time t2.
  • the fluid medium whose temperature has risen is supplied to the heater core 13, so that the air conditioning performance can be improved.
  • the engine water temperature is raised during EV driving, and the exhaust gas concentration at engine starting is reduced.
  • the hybrid control device 100 includes a fuel combustion type engine 10 having a cylinder head 11, a radiator 20 for cooling a circulating fluid medium, a traveling electric motor 28, and a power conversion unit for driving the motor 28. 25, a flow path forming body that circulates a fluid medium through the cylinder head 11, the power conversion unit 25, and the motor 28 (forming a flow path that passes through the cylinder head 11, the power conversion unit 25, and the motor 28), and a flow path formation.
  • the motor 28 and the control unit 30 for controlling the drive of the power conversion unit 25 are provided. Heat. As a result, fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
  • the control method of the hybrid control device 100 is a strong electric system heat generation in which a fluid medium is circulated through a cylinder head 11 of a fuel combustion type engine 10, a power conversion unit 25 for driving a traveling electric motor 28, and the electric motor 28.
  • a flow path is formed to increase the heat generated by the power conversion unit 25 or the electric motor 28 to heat the fluid medium.
  • fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
  • V-phase upper arm switching element Dvu ... V-phase upper arm diode, Tvr. ⁇ ⁇ V phase lower arm switching element, Dvl ⁇ ⁇ ⁇ V phase lower arm diode, Tuu ⁇ ⁇ ⁇ W phase upper arm switching element, Dwoo ⁇ ⁇ ⁇ W phase upper arm diode, Twl ⁇ ⁇ ⁇ W phase lower arm switching element , Dwl ... W phase lower arm diode.

Abstract

There has been a problem that fuel consumption reduces in a case where a power conversion unit such as an inverter is not effectively used and a temperature of a fluid medium such as engine cooling water is low. During EV traveling, a control unit 30 outputs switching signals SW1 and SW2 to flow path switching valves 22 and 24, respectively, to form a strong electricity heat generation flow path in which a fluid medium circulates from a cylinder head 11 to a power conversion unit 25 via a heater core 13 as shown in Fig. 2. Then, on the basis of at least one of a water temperature ETW, a reduction speed ETV of a water temperature, an outside air temperature OT, a heat generation command AC from an air conditioner, a blower fan signal BC, and deceleration NA of a vehicle and on the basis of BT representing a SOC of a battery, the control unit 30 increases heat generation of the power conversion unit 25 or a motor 28 to heat the fluid medium.

Description

ハイブリッド制御装置およびハイブリッド制御装置の制御方法Hybrid control device and control method of hybrid control device
 本発明は、ハイブリッド制御装置およびハイブリッド制御装置の制御方法に関する。 The present invention relates to a hybrid control device and a control method for the hybrid control device.
 近年、環境性能の向上を目的として開発されたハイブリッド(HV)車両の普及が進められている。ハイブリッド車両には、燃料燃焼型のエンジンと走行用の電動機との2つの駆動源が設けられ、またバッテリからの直流電流を交流電流に変換して走行用の電動機に供給するインバータが搭載されている。 In recent years, hybrid (HV) vehicles developed for the purpose of improving environmental performance have become widespread. The hybrid vehicle is provided with two drive sources, a fuel-burning engine and a driving motor, and is equipped with an inverter that converts the direct current from the battery into alternating current and supplies it to the driving motor. There is.
 こうしたハイブリッド車両では、エンジンの冷却に加え、ハイブリッド走行用の電動機やインバータの冷却も必要となる。そのため、ハイブリッド車両には、エンジン冷却用の冷却流路とハイブリッドシステム冷却用の冷却流路との2つの冷却流路が設けられ、各冷却流路に流体媒体を循環させることでエンジンやハイブリッドシステムの冷却を行っている。 In such a hybrid vehicle, in addition to cooling the engine, it is also necessary to cool the motor and inverter for hybrid driving. Therefore, the hybrid vehicle is provided with two cooling channels, a cooling channel for cooling the engine and a cooling channel for cooling the hybrid system, and the fluid medium is circulated in each cooling channel to circulate the engine or the hybrid system. Is cooling.
 特許文献1には、HV(ハイブリッド)冷却水の熱をエンジン冷却水に伝えることにより、HV冷却水からエンジン冷却水への熱伝達が行われ、走行用電動機やインバータの廃熱で加熱されたHV冷却水の熱でエンジン冷却水が加温されるようになり、走行用電動機やインバータの廃熱をエンジンの暖機に利用することが開示されている。 In Patent Document 1, heat is transferred from the HV cooling water to the engine cooling water by transferring the heat of the HV (hybrid) cooling water to the engine cooling water, and the heat is heated by the waste heat of the traveling motor and the inverter. It is disclosed that the heat of the HV cooling water heats the engine cooling water, and the waste heat of the traveling motor and the inverter is used for warming up the engine.
特開2011-98628号公報Japanese Unexamined Patent Publication No. 2011-98628
 上述した、特許文献1に記載のシステムでは、インバータなどの電力変換部を有効に活用しておらず、エンジン冷却水などの流体媒体の温度が低い状態では、燃費が低下する課題があった。 In the system described in Patent Document 1 described above, the power conversion unit such as an inverter is not effectively utilized, and there is a problem that the fuel efficiency is lowered when the temperature of the fluid medium such as engine cooling water is low.
 本発明によるハイブリッド制御装置は、シリンダヘッドを有しかつ燃料燃焼型のエンジンと、循環する流体媒体を冷却するラジエータと、走行用の電動機と、前記電動機を駆動する電力変換部と、前記シリンダヘッドと前記電力変換部と前記電動機を通って前記流体媒体を循環させる流路形成体と、前記流路形成体の流路を制御すると供に、前記電動機および前記電力変換部の駆動を制御する制御部とを備え、前記制御部は、前記電力変換部または前記電動機の発熱を大きくして前記流体媒体を加熱する。
 本発明によるハイブリッド制御装置の制御方法は、燃料燃焼型のエンジンのシリンダヘッドと走行用の電動機を駆動する電力変換部と前記電動機とを通って流体媒体を循環させる強電系発熱流路を形成し、前記電力変換部または前記電動機の発熱を大きくして前記流体媒体を加熱する。
The hybrid control device according to the present invention includes a fuel combustion type engine having a cylinder head, a radiator for cooling a circulating fluid medium, a traveling electric motor, a power conversion unit for driving the electric motor, and the cylinder head. Controls the flow path forming body that circulates the fluid medium through the power conversion unit and the electric motor, and the flow path of the flow path forming body, and also controls the driving of the electric motor and the power conversion unit. The control unit heats the fluid medium by increasing the heat generated by the power conversion unit or the electric motor.
The control method of the hybrid control device according to the present invention forms a high-power heat-generating flow path that circulates a fluid medium through the cylinder head of a fuel-burning engine, a power conversion unit that drives a traveling motor, and the motor. The fluid medium is heated by increasing the heat generated by the power conversion unit or the electric motor.
 本発明によれば、EV走行中であっても必要に応じて流体媒体の温度を上げることにより、燃費を向上することができる。 According to the present invention, fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
エンジン冷却流路におけるハイブリッド制御装置を示す構成図である。It is a block diagram which shows the hybrid control device in an engine cooling flow path. 強電系発熱流路におけるハイブリッド制御装置を示す構成図である。It is a block diagram which shows the hybrid control device in the high electric system heat generation flow path. 電力変換部の回路構成図である。It is a circuit block diagram of a power conversion part. (A)~(F)環境情報に対応した設定値を示すグラフである。It is a graph which shows the setting value corresponding to (A)-(F) environment information. 強電系発熱レベルと制御信号との対応を示すグラフである。It is a graph which shows the correspondence between a high electric system heat generation level and a control signal. 強電系発熱の制御を示すフローチャートである。It is a flowchart which shows the control of the high electric system heat generation. 暖気後のEV走行モードにおける強電系発熱流路の制御を示すタイムチャートである。It is a time chart which shows the control of the high electric system heat generation flow path in the EV traveling mode after warming up. 冷温時のEV走行モードにおける強電系発熱の制御を示すタイムチャートである。It is a time chart which shows the control of a strong electric system heat generation in an EV running mode at a cold temperature.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawing may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
 図1は、ハイブリッド制御装置100を示す構成図であり、エンジン稼働中におけるエンジン冷却流路を示す。
 図1に示すように、燃料燃焼型のエンジン10は、シリンダヘッド11、シリンダブロック12、ヒーターコア13、EGRクーラ14を備える。流体媒体がシリンダヘッド11からシリンダブロック12を通る流路は、流路切替弁22を経てウォータポンプ23へ至り、シリンダヘッド11へ戻る。また、流体媒体がシリンダヘッド11からヒーターコア13を通る流路は、EGRクーラ14から流路切替弁22を経てウォータポンプ23へ至り、シリンダヘッド11へ戻る。さらに、流体媒体がシリンダヘッド11からラジエータ20を通る流路は、リザーバタンク21を備え、ラジエータ20から流路切替弁22を経てウォータポンプ23へ至り、シリンダヘッド11へ戻る。
FIG. 1 is a configuration diagram showing a hybrid control device 100, and shows an engine cooling flow path during engine operation.
As shown in FIG. 1, the fuel combustion type engine 10 includes a cylinder head 11, a cylinder block 12, a heater core 13, and an EGR cooler 14. The flow path through which the fluid medium passes from the cylinder head 11 to the cylinder block 12 reaches the water pump 23 via the flow path switching valve 22 and returns to the cylinder head 11. Further, the flow path through which the fluid medium passes from the cylinder head 11 to the heater core 13 reaches the water pump 23 from the EGR cooler 14 via the flow path switching valve 22 and returns to the cylinder head 11. Further, the flow path through which the fluid medium passes from the cylinder head 11 to the radiator 20 includes a reservoir tank 21, reaches the water pump 23 from the radiator 20 via the flow path switching valve 22, and returns to the cylinder head 11.
 ラジエータ20から流路切替弁22までの経路の途中から流体媒体は流路切替弁24へも流れる。なお、ヒーターコア13からEGRクーラ14までの経路の途中から流体媒体は流路切替弁24へ流れる経路を備えるが、後述する制御部30によりエンジン冷却流路が形成されている場合は、流路切替弁24の作用により、ヒーターコア13から流路切替弁24へ流れる経路は閉塞されている。 The fluid medium also flows to the flow path switching valve 24 from the middle of the path from the radiator 20 to the flow path switching valve 22. The fluid medium has a path from the middle of the path from the heater core 13 to the EGR cooler 14 to the flow path switching valve 24. However, when the engine cooling flow path is formed by the control unit 30 described later, the flow path is provided. Due to the action of the switching valve 24, the path flowing from the heater core 13 to the flow path switching valve 24 is blocked.
 流路切替弁24から出た流体媒体は、強電系の電力変換部25、発熱素子27、電動機28、発電機29を経て、流路切替弁22とウォータポンプ23とを結ぶ流路に合流する。電力変換部25は、その詳細は後述するが、図示省略した電気系統により、バッテリ26から供給される直流電力を交流電力に変換し、車両走行用の電動機28を駆動する。 The fluid medium emitted from the flow path switching valve 24 joins the flow path connecting the flow path switching valve 22 and the water pump 23 via the power conversion unit 25 of the high-power system, the heat generating element 27, the motor 28, and the generator 29. .. Although the details will be described later, the power conversion unit 25 converts the DC power supplied from the battery 26 into AC power by an electric system (not shown), and drives the electric motor 28 for traveling the vehicle.
 発電機29は、エンジン10に結合されており、エンジン10の稼働中に発電を行い、バッテリ26を充電する。 The generator 29 is coupled to the engine 10 and generates electricity while the engine 10 is operating to charge the battery 26.
 発熱素子27は、例えばPTCヒーター、ペルチェ素子であり、流路途中に、あるいは電力変換部25内の流路に組み込まれ、制御部30からの信号により駆動されて流体媒体を加熱する。なお、図1に示すエンジン冷却流路の場合は、エンジン稼働中における流体媒体の流路であって、電力変換部25、電動機28、発電機29は流体媒体によって冷却され、発熱素子27は駆動されていないが、エンジン水温が低い場合は駆動させても良い。 The heat generating element 27 is, for example, a PTC heater or a Pelche element, and is incorporated in the flow path in the middle of the flow path or in the flow path in the power conversion unit 25, and is driven by a signal from the control unit 30 to heat the fluid medium. In the case of the engine cooling flow path shown in FIG. 1, the flow path of the fluid medium during engine operation, the power conversion unit 25, the motor 28, and the generator 29 are cooled by the fluid medium, and the heat generating element 27 is driven. Although it is not done, it may be driven if the engine water temperature is low.
 制御部30は、流体媒体が通る流路形成体の流路を制御すると供に、電力変換部25および電動機28の駆動を制御する。流路形成体は、少なくともシリンダヘッド11と電力変換部25と電動機28を通って流体媒体を循環させる流路を形成し、制御部30によってその流路が制御される。 The control unit 30 controls the flow path of the flow path forming body through which the fluid medium passes, and also controls the drive of the power conversion unit 25 and the electric motor 28. The flow path forming body forms a flow path for circulating the fluid medium through at least the cylinder head 11, the power conversion unit 25, and the electric motor 28, and the flow path is controlled by the control unit 30.
 また、制御部30には、温度に係わる環境情報が入力される。具体的には、制御部30には、エンジン10の近傍に設けられた温度センサ(図示省略)からのエンジン10の水温ETW、車両の外気温度OT、エアコンからの発熱指令AC、エアコンからのブロアファン信号BC、車両の減速度NA、バッテリ26のSOC(充電状態)BTが入力される。さらに、制御部30は、入力されたエンジン10の水温ETWに基づいて水温ETWの低下速度ETVを求める。詳細は後述するが、制御部30は、入力された環境情報に基づいて、流路切替弁22、24へそれぞれ切替信号SW1、SW2を、電力変換部25、発熱素子27、電動機28へそれぞれ制御信号CT1、CT2、CT3を出力する。 In addition, environmental information related to temperature is input to the control unit 30. Specifically, the control unit 30 includes a water temperature ETW of the engine 10 from a temperature sensor (not shown) provided in the vicinity of the engine 10, an outside air temperature OT of the vehicle, a heat generation command AC from the air conditioner, and a blower from the air conditioner. The fan signal BC, the deceleration NA of the vehicle, and the SOC (charged state) BT of the battery 26 are input. Further, the control unit 30 obtains the rate of decrease ETV of the water temperature ETW based on the input water temperature ETW of the engine 10. Although the details will be described later, the control unit 30 controls the switching signals SW1 and SW2 to the flow path switching valves 22 and 24 to the power conversion unit 25, the heat generating element 27, and the motor 28, respectively, based on the input environmental information. The signals CT1, CT2, and CT3 are output.
 エンジン稼働中において、制御部30は、切替信号SW1、SW2を流路切替弁22、24へ出力する。その結果、図1に示すように、制御部30は、車両がエンジン走行である場合に、流体媒体がシリンダヘッド11からヒーターコア13およびラジエータ20を経て循環するエンジン冷却流路を形成する。ラジエータ20で冷却された流体媒体は、流路切替弁22、ウォータポンプ23を経てエンジン10を冷却する。流路切替弁22は、エアコンなどからの要求温度に合わせてその流路面積が制御される。また、ラジエータ20で冷却された流体媒体は、流路切替弁24を経由して、強電系である電力変換部25、電動機28を冷却する。 While the engine is running, the control unit 30 outputs the switching signals SW1 and SW2 to the flow path switching valves 22 and 24. As a result, as shown in FIG. 1, the control unit 30 forms an engine cooling flow path in which the fluid medium circulates from the cylinder head 11 through the heater core 13 and the radiator 20 when the vehicle is running the engine. The fluid medium cooled by the radiator 20 cools the engine 10 via the flow path switching valve 22 and the water pump 23. The flow path area of the flow path switching valve 22 is controlled according to the temperature required from the air conditioner or the like. Further, the fluid medium cooled by the radiator 20 cools the power conversion unit 25 and the electric motor 28, which are high-power systems, via the flow path switching valve 24.
 図2は、ハイブリッド制御装置100を示す構成図であり、車両がEV走行モードである場合に形成される強電系発熱流路を示す。図1と同一箇所には同一の符号を付してその説明を省略する。なお、EV走行とは燃料燃焼型のエンジン10の稼働を停止し、走行用の電動機28を駆動して車両を走行させることを言う。 FIG. 2 is a configuration diagram showing the hybrid control device 100, and shows a high electric system heat generation flow path formed when the vehicle is in the EV traveling mode. The same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In addition, EV running means stopping the operation of the fuel combustion type engine 10 and driving the running electric motor 28 to run the vehicle.
 EV走行である場合に、制御部30は、流路切替弁22、24へそれぞれ切替信号SW1、SW2を出力し、図2に示すように、流体媒体がシリンダヘッド11からヒーターコア13を経て電力変換部25へと循環する強電系発熱流路を形成する。 In the case of EV traveling, the control unit 30 outputs switching signals SW1 and SW2 to the flow path switching valves 22 and 24, respectively, and as shown in FIG. 2, the fluid medium is powered from the cylinder head 11 via the heater core 13. A high electric power generation flow path that circulates to the conversion unit 25 is formed.
 図2に示すように、流体媒体がシリンダヘッド11からシリンダブロック12を通る流路は、流路切替弁22によって閉塞される。さらに、流体媒体がシリンダヘッド11からヒーターコア13、EGRクーラ14を通る流路は流路切替弁22によって閉塞される。さらに、流体媒体がシリンダヘッド11からラジエータ20を通る流路は、流路切替弁22によって閉塞される。さらに、流体媒体がラジエータ20から流路切替弁22までの経路の途中から流路切替弁24へ流れる流路も閉鎖される。替わって、ヒーターコア13からEGRクーラ14までの経路の途中から流路切替弁24へ流れる経路が流路切替弁24によって形成される。 As shown in FIG. 2, the flow path through which the fluid medium passes from the cylinder head 11 to the cylinder block 12 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium passes from the cylinder head 11, the heater core 13, and the EGR cooler 14 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium passes from the cylinder head 11 to the radiator 20 is blocked by the flow path switching valve 22. Further, the flow path through which the fluid medium flows from the radiator 20 to the flow path switching valve 22 to the flow path switching valve 24 is also closed. Instead, the flow path switching valve 24 forms a path that flows from the middle of the path from the heater core 13 to the EGR cooler 14 to the flow path switching valve 24.
 これにより、流体媒体は、シリンダヘッド11からヒーターコア13、流路切替弁24、電力変換部25、発熱素子27、電動機28、発電機29を経て、すなわち強電系を経て、流路切替弁22とウォータポンプ23とを結ぶ流路に合流する。そして、制御部30は、水温ETW、水温の低下速度ETV、外気温度OT、エアコンからの発熱指令AC、ブロアファン信号BCまたは車両の減速度NAの少なくとも一つに基づいて、およびバッテリ26のSOCであるBTに基づいて、流体媒体を加熱する。 As a result, the fluid medium passes from the cylinder head 11 through the heater core 13, the flow path switching valve 24, the power conversion unit 25, the heat generating element 27, the electric motor 28, and the generator 29, that is, through the high electric system, and the flow path switching valve 22. Joins the flow path connecting the water pump 23 and the water pump 23. Then, the control unit 30 is based on at least one of the water temperature ETW, the water temperature decrease rate ETV, the outside air temperature OT, the heat generation command AC from the air conditioner, the blower fan signal BC or the vehicle deceleration NA, and the SOC of the battery 26. The fluid medium is heated based on the BT.
 図3は、電力変換部25の回路構成図である。
 電力変換部25内のインバータ251は、UVW相の上下アーム直列回路を有する。U相上下アーム直列回路は、U相上アームスイッチング素子Tuu及びU相上アームダイオードDuuと、U相下アームスイッチング素子Tul及びU相下アームダイオードDulとよりなる。V相上下アーム直列回路は、V相上アームスイッチング素子Tvu及びV相上アームダイオードDvuと、V相下アームスイッチング素子Tvl及びV相下アームダイオードDvlとよりなる。W相上下アーム直列回路は、W相上アームスイッチング素子Twu及びW相上アームダイオードDwuと、W相下アームスイッチング素子Twl及びW相下アームダイオードDwlとよりなる。
FIG. 3 is a circuit configuration diagram of the power conversion unit 25.
The inverter 251 in the power conversion unit 25 has a UVW phase upper and lower arm series circuit. The U-phase upper and lower arm series circuit includes a U-phase upper arm switching element Tuu and a U-phase upper arm diode Du, and a U-phase lower arm switching element Tu and a U-phase lower arm diode Dul. The V-phase upper and lower arm series circuit includes a V-phase upper arm switching element Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm switching element Tvr and a V-phase lower arm diode Dvl. The W-phase upper and lower arm series circuit includes a W-phase upper arm switching element Twoo and a W-phase upper arm diode Dwoo, and a W-phase lower arm switching element Twl and a W-phase lower arm diode Dwl.
 スイッチング素子は、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などである。 The switching element is, for example, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
 平滑コンデンサ252は、スイッチング素子のON/OFFによって生じる電流を平滑化し、バッテリ26からインバータ251へ供給される直流電流のリップルを抑制する。この平滑コンデンサ252は、例えば電解コンデンサやフィルムコンデンサを用いる。 The smoothing capacitor 252 smoothes the current generated by ON / OFF of the switching element and suppresses the ripple of the direct current supplied from the battery 26 to the inverter 251. As the smoothing capacitor 252, for example, an electrolytic capacitor or a film capacitor is used.
 電動機制御部253は、三相電圧指令Vcおよび駆動周波数Fcに基づいてパルス幅変調を行い、インバータ251を駆動させるためのゲート信号を生成し、このゲート信号をインバータ251のスイッチング素子へ出力する。インバータ251は、スイッチング素子のON/OFFによって発熱する。電動機制御部253は、制御部30からの制御信号CT1に応じて、駆動周波数Fcを増加して、スイッチング素子のスイッチング損失を増加する。これによりスイッチング素子の発熱が増加する。また、電動機制御部253は、制御部30からの制御信号CT3に応じて電動機の位相調整などにより無効電流を増やして、消費電流や銅損失を増加する。これにより電動機28の発熱が増加する。 The motor control unit 253 performs pulse width modulation based on the three-phase voltage command Vc and the drive frequency Fc, generates a gate signal for driving the inverter 251 and outputs this gate signal to the switching element of the inverter 251. The inverter 251 generates heat when the switching element is turned on and off. The motor control unit 253 increases the drive frequency Fc in response to the control signal CT1 from the control unit 30 to increase the switching loss of the switching element. This increases the heat generation of the switching element. Further, the motor control unit 253 increases the reactive current by adjusting the phase of the motor in response to the control signal CT3 from the control unit 30, and increases the current consumption and the copper loss. This increases the heat generation of the motor 28.
 インバータ251は、力行時において、バッテリ26から得られる直流電力を交流電力に変換して電動機28を駆動する。また、回生時において、電動機28の動力を直流電力に変換してバッテリ26を充電する。 The inverter 251 drives the motor 28 by converting the DC power obtained from the battery 26 into AC power during power running. Further, at the time of regeneration, the power of the motor 28 is converted into DC power to charge the battery 26.
 図3においては、流体媒体の流路は図示を省略しているが、各スイッチング素子はモールドされており、流路は封止されたスイッチング素子の近傍に配置される。制御部30からの制御信号CT1に応じて駆動周波数Fcが増加されてスイッチング素子のスイッチング損失が増加することにより、電力変換部25内に形成されている流路の流体媒体を加熱することができる。なお、発熱素子27は、インバータ251内の流路に配置されるが、配置位置は強電系発熱流路のいずれの個所でもよい。 In FIG. 3, the flow path of the fluid medium is not shown, but each switching element is molded, and the flow path is arranged in the vicinity of the sealed switching element. The drive frequency Fc is increased in response to the control signal CT1 from the control unit 30, and the switching loss of the switching element is increased, so that the fluid medium of the flow path formed in the power conversion unit 25 can be heated. .. The heat generating element 27 is arranged in the flow path in the inverter 251 but may be arranged at any position in the high electric system heat generating flow path.
 電動機28は、インバータ251により駆動されて発熱する。電動機28の内部には、電気的絶縁を保持した状態で流路が形成されている。制御部30からの制御信号CT3に応じて電動機28の無効電流を増加することにより、電動機28内に形成されている流路の流体媒体を加熱することができる。 The motor 28 is driven by the inverter 251 to generate heat. A flow path is formed inside the motor 28 while maintaining electrical insulation. By increasing the reactive current of the motor 28 in response to the control signal CT3 from the control unit 30, the fluid medium of the flow path formed in the motor 28 can be heated.
 図4(A)~図4(F)は、環境情報に対応した設定値を示すグラフである。これらの設定値は、制御部30に予め記憶されている。制御部30は、車両がEV走行モードである場合に、検出された環境情報に対応した設定値を読み出し、後述の処理を行い、切替信号SW1、SW2や制御信号CT1、CT2、CT3を出力する。 FIGS. 4 (A) to 4 (F) are graphs showing setting values corresponding to environmental information. These set values are stored in advance in the control unit 30. When the vehicle is in the EV driving mode, the control unit 30 reads out the set value corresponding to the detected environmental information, performs the processing described later, and outputs the switching signals SW1 and SW2 and the control signals CT1, CT2, and CT3. ..
 図4(A)は、横軸にエンジン10の水温ETW、縦軸にその出力値kETWを示す。検出されたエンジン10の水温ETW、例えば0℃~100℃に対応して、出力値kETWは0~1を出力する。例えば、水温ETWが約40℃以下の場合は出力値kETWは1を出力し、水温ETWが約40℃から約70℃と上昇するに従って、出力値kETWは1から漸次0になり、水温ETWが約70℃以上では出力値kETWは0を出力する。 In FIG. 4A, the horizontal axis shows the water temperature ETW of the engine 10, and the vertical axis shows the output value kETW. The output value kETW outputs 0 to 1 corresponding to the detected water temperature ETW of the engine 10, for example, 0 ° C. to 100 ° C. For example, when the water temperature ETW is about 40 ° C. or less, the output value kETW outputs 1, and as the water temperature ETW rises from about 40 ° C. to about 70 ° C., the output value kETW gradually changes from 1 to 0, and the water temperature ETW becomes 0. At about 70 ° C. or higher, the output value kETW outputs 0.
 図4(B)は、横軸に外気温度OT、縦軸にその出力値kOTを示す。検出された外気温度OT、例えば0℃~50℃に対応して、出力値kOTは0~1を出力する。例えば、外気温度OTが約20℃以下の場合は出力値kOTは1を出力し、外気温度OTが約20℃から約30℃と上昇するに従って、出力値kOTは1から漸次0になり、外気温度OTが約30℃以上では出力値kOTは0を出力する。 In FIG. 4B, the horizontal axis shows the outside air temperature OT, and the vertical axis shows the output value kOT. The output value kOT outputs 0 to 1 in response to the detected outside air temperature OT, for example, 0 ° C. to 50 ° C. For example, when the outside air temperature OT is about 20 ° C. or less, the output value kOT outputs 1, and as the outside air temperature OT rises from about 20 ° C. to about 30 ° C., the output value kOT gradually changes from 1 to 0, and the outside air. When the temperature OT is about 30 ° C. or higher, the output value kOT outputs 0.
 図4(C)は、横軸にエアコンからの発熱指令AC、縦軸にその出力値kACを示す。エアコンの操作等により発熱指令ACがOFFであれば、出力値kACは0を出力する。
発熱指令ACがONであれば、出力値kACは1を出力する。
In FIG. 4C, the horizontal axis shows the heat generation command AC from the air conditioner, and the vertical axis shows the output value kAC. If the heat generation command AC is turned off due to the operation of the air conditioner or the like, the output value kAC outputs 0.
If the heat generation command AC is ON, the output value kAC outputs 1.
 図4(D)は、横軸にブロアファン信号BC、縦軸にその出力値kBCを示す。ブロアファンの操作等によりブロアファン信号BCがOFFであれば、出力値kBCは0を出力する。ブロアファン信号BCがONであれば、出力値kBCは1を出力する。 In FIG. 4D, the horizontal axis shows the blower fan signal BC, and the vertical axis shows the output value kBC. If the blower fan signal BC is OFF due to the operation of the blower fan or the like, the output value kBC outputs 0. If the blower fan signal BC is ON, the output value kBC outputs 1.
 図4(E)は、横軸に車両の減速度NA、縦軸にその出力値kNAを示す。検出された車両の減速度NA、例えば減速度NAが約-1Gから-0.7Gの場合は出力値kNAは1を出力し、減速度NAが約-0.7Gから約-0.9Gとなるに従って、出力値kNAは1から漸次0.5になり、減速度NAが約-0.9Gより大きい場合は出力値kOTは0.5を出力する。なお、制御部30に車両の減速度NAが入力される例で説明するが、車両の速度が入力されてもよい。この場合は制御部30において、車両の速度をモニタし、この車両の速度から車両の減速度NAを求める。 In FIG. 4 (E), the horizontal axis shows the deceleration NA of the vehicle, and the vertical axis shows the output value kNA. When the detected vehicle deceleration NA, for example, the deceleration NA is from about -1G to -0.7G, the output value kNA is 1, and the deceleration NA is from about -0.7G to about -0.9G. As a result, the output value kNA gradually changes from 1 to 0.5, and when the deceleration NA is larger than about -0.9G, the output value kOT outputs 0.5. Although the description will be described with an example in which the deceleration NA of the vehicle is input to the control unit 30, the speed of the vehicle may be input. In this case, the control unit 30 monitors the speed of the vehicle and obtains the deceleration NA of the vehicle from the speed of the vehicle.
 図4(F)は、横軸にバッテリ26のSOC(充電状態)BT、縦軸にその出力値kBTを示す。バッテリ26のSOC(充電状態)BTが約30%以下の場合は出力値kBTは0を出力し、SOC(充電状態)BTが約30%から約60%となるに従って、出力値kBTは0から漸次1になり、SOC(充電状態)BTが約60%より大きい場合は出力値kBTは1を出力する。 In FIG. 4 (F), the horizontal axis shows the SOC (charged state) BT of the battery 26, and the vertical axis shows the output value kBT. When the SOC (charged state) BT of the battery 26 is about 30% or less, the output value kBT outputs 0, and as the SOC (charged state) BT changes from about 30% to about 60%, the output value kBT starts from 0. It gradually becomes 1, and when the SOC (charged state) BT is larger than about 60%, the output value kBT outputs 1.
 なお、図示省略したが、制御部30はエンジン10の水温ETWに基づいて水温ETWの低下速度ETVを求め、低下速度ETVとその出力値kETVとの関係を設定値として予め記憶する。例えば水温ETWの低下速度ETVが早い場合は、出力値kETVは1を、低下速度ETVが遅くなるほど出力値kETVは漸次0に近づく。 Although not shown, the control unit 30 obtains the lowering speed ETV of the water temperature ETW based on the water temperature ETW of the engine 10, and stores in advance the relationship between the lowering speed ETV and its output value kETV as a set value. For example, when the decrease rate ETV of the water temperature ETW is fast, the output value kETV gradually approaches 1, and as the decrease rate ETV decreases, the output value kETV gradually approaches 0.
 制御部30は、入力された環境情報に基づいて、図4(A)~図4(F)等に示す設定値を参照して、出力値を求め、以下の式(1)より、強電系発熱レベルELHLを求める。
 ELHL=(kETW+kETV+kOT+kAC+kBC+kNA)×kBT (1)
 ただし、ELHLが1以上になる場合は1とする。この式(1)では、バッテリ26のSOCについてはその優先度を高くしている。例えば、バッテリ26のSOCが低い場合に、バッテリ26の直流電力を消費する強電系の発熱を少なくする。
Based on the input environmental information, the control unit 30 obtains an output value with reference to the set values shown in FIGS. 4 (A) to 4 (F) and the like, and obtains an output value from the following equation (1). Obtain the heat generation level ELHL.
ELHL = (kETW + kETV + kOT + kAC + kBC + kNA) x kBT (1)
However, if ELHL is 1 or more, it is set to 1. In this equation (1), the SOC of the battery 26 is given high priority. For example, when the SOC of the battery 26 is low, the heat generated by the high-power system that consumes the DC power of the battery 26 is reduced.
 図5は、強電系発熱レベルELHLと制御信号との対応を示すグラフである。図の横軸は強電系発熱レベルELHLを、縦軸は制御信号CT1によるインバータ251の駆動周波数Fcと、制御信号CT3による電動機28の無効電流とを示す。 FIG. 5 is a graph showing the correspondence between the high electric system heat generation level ELHL and the control signal. The horizontal axis of the figure shows the high electric system heat generation level ELHL, and the vertical axis shows the drive frequency Fc of the inverter 251 by the control signal CT1 and the reactive current of the motor 28 by the control signal CT3.
 図5に示すように、強電系発熱レベルELHLが0から約0.8以下の場合は、駆動周波数Fcを漸次高くするとともに、無効電流を漸次大きくする。すなわち、制御部30は、式(1)より求めた強電系発熱レベルELHLに対応して、インバータ251の駆動周波数Fcと、電動機28の無効電流とを決定し、制御信号CT1、CT3を電力変換部25へ出力する。なお、図5では図示を省略しているが、強電系発熱レベルELHLに対応して制御信号CT2を出力して発熱素子27を駆動してもよい。例えば、強電系発熱レベルELHLが約0.8以上の場合は、発熱素子27を駆動する信号を漸次高くして流体媒体が発熱するように制御信号CT2を出力する。 As shown in FIG. 5, when the high electric system heat generation level ELHL is 0 to about 0.8 or less, the drive frequency Fc is gradually increased and the reactive current is gradually increased. That is, the control unit 30 determines the drive frequency Fc of the inverter 251 and the reactive current of the motor 28 corresponding to the high electric system heat generation level ELHL obtained from the equation (1), and converts the control signals CT1 and CT3 into electric power. Output to unit 25. Although not shown in FIG. 5, the heat generating element 27 may be driven by outputting the control signal CT2 corresponding to the high electric system heat generation level ELHL. For example, when the high electric system heat generation level ELHL is about 0.8 or more, the signal for driving the heat generation element 27 is gradually increased to output the control signal CT2 so that the fluid medium generates heat.
 なお、図5では強電系発熱レベルELHLに対応して、制御信号CT1、CT3を同時に出力する例を示したがこれに限定されない。例えば、強電系発熱レベルELHLに対応して、まず制御信号CT1を出力し、更に加熱が必要な場合は、制御信号CT2を出力し、更に加熱が必要な場合は、制御信号CT3を出力するなど段階的に出力してもよい。 Note that FIG. 5 shows an example in which control signals CT1 and CT3 are output at the same time corresponding to the high electric system heat generation level ELHL, but the present invention is not limited to this. For example, the control signal CT1 is output first in response to the high-electricity heat generation level ELHL, the control signal CT2 is output when further heating is required, and the control signal CT3 is output when further heating is required. It may be output stepwise.
 図6は制御部30における強電系発熱の制御を示すフローチャートである。なお、このフローチャートで示したプログラムを、CPU、メモリなどを備えたコンピュータにより実行することができる。全部の処理、または一部の処理をハードロジック回路により実現してもよい。更に、このプログラムは、予めハイブリッド制御装置100の記憶媒体に格納して提供することができる。あるいは、独立した記憶媒体にプログラムを格納して提供したり、ネットワーク回線によりプログラムをハイブリッド制御装置100の記憶媒体に記録して格納することもできる。データ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給してもよい。図6のフローチャートで示したプログラムの全部の処理、または一部の処理を、電動機制御部253またはハイブリッド制御装置100内のその他の制御部で実行してもよい。 FIG. 6 is a flowchart showing the control of high-voltage heat generation in the control unit 30. The program shown in this flowchart can be executed by a computer equipped with a CPU, memory, and the like. All processing or some processing may be realized by a hard logic circuit. Further, this program can be provided by being stored in the storage medium of the hybrid control device 100 in advance. Alternatively, the program can be stored and provided in an independent storage medium, or the program can be recorded and stored in the storage medium of the hybrid control device 100 via a network line. It may be supplied as a computer-readable computer program product in various forms such as a data signal (carrier wave). All or part of the processing of the program shown in the flowchart of FIG. 6 may be executed by the motor control unit 253 or another control unit in the hybrid control device 100.
 図6のステップS301において、制御部30は車両がEV走行モードであるかを判定する。車両がEV走行モードでなければ図6のフローチャートで示す制御を終了する。なお、図6のフローチャートで示す制御は所定時間ごとに繰り返し実行される。車両がEV走行モードであれば次のステップS302へ進む。 In step S301 of FIG. 6, the control unit 30 determines whether the vehicle is in the EV traveling mode. If the vehicle is not in the EV driving mode, the control shown in the flowchart of FIG. 6 is terminated. The control shown in the flowchart of FIG. 6 is repeatedly executed at predetermined time intervals. If the vehicle is in the EV driving mode, the process proceeds to the next step S302.
 ステップS302では、制御部30は流路切替弁22、24へそれぞれ切替信号SW1、SW2を出力し、図2に示すように、流路形成体を流体媒体がシリンダヘッド11からヒーターコア13を経て電力変換部25へと循環する強電系発熱流路に切り替える。なお、エンジン稼働中は流路形成体を、図1に示すよう、エンジン冷却流路に切り替えられている。この強電系発熱流路への切り替えにおいて、流体媒体を全て強電系発熱流路にのみ流す流路を例に説明するが、流体媒体の一部はエンジン冷却流路を流れてもよく、車両の運転状態等に基づいてその流量を制御する。その後、ステップS303へ進む。 In step S302, the control unit 30 outputs switching signals SW1 and SW2 to the flow path switching valves 22 and 24, respectively, and as shown in FIG. 2, the fluid medium passes through the cylinder head 11 to the heater core 13 in the flow path forming body. The switch is switched to a high-power heat-generating flow path that circulates to the power conversion unit 25. While the engine is operating, the flow path forming body is switched to the engine cooling flow path as shown in FIG. In the switching to the high-power heat generation flow path, a flow path in which all the fluid medium flows only in the high-power heat generation flow path will be described as an example, but a part of the fluid medium may flow through the engine cooling flow path, and the vehicle The flow rate is controlled based on the operating condition and the like. Then, the process proceeds to step S303.
 ステップS303では、制御部30は、温度に係わる環境情報を読み込む。すなわち、水温ETW、外気温度OT、エアコンからの発熱指令AC、ブロアファン信号BC、車両の減速度NA、バッテリのSOCであるBTを読み込む。さらに、読み込まれたエンジン10の水温ETWに基づいて水温ETWの低下速度ETVを求める。その後、ステップS304へ進む。 In step S303, the control unit 30 reads the environmental information related to the temperature. That is, the water temperature ETW, the outside air temperature OT, the heat generation command AC from the air conditioner, the blower fan signal BC, the vehicle deceleration NA, and the battery SOC BT are read. Further, the decrease rate ETV of the water temperature ETW is obtained based on the read water temperature ETW of the engine 10. Then, the process proceeds to step S304.
 ステップS304では、制御部30は、図4(A)~図4(F)に示した設定値を参照して、環境情報に対応した出力値kETW、kETV、kOT、kAC、kBC、kNA、kBTを求める。次に、式(1)に基づいて強電系発熱レベルELHLを求める。そして、図5に示す強電系発熱レベルELHLと制御信号との対応を示すグラフを参照し、強電系発熱流路の制御許可条件が成立すれば、ステップS305へ進む。制御許可条件が成立しなければ、図6のフローチャートで示す制御を終了する。例えば、バッテリのSOCが約30%以下であれば、式(1)の結果は0となり、制御許可条件が成立しない。 In step S304, the control unit 30 refers to the set values shown in FIGS. 4 (A) to 4 (F) and refers to the output values kETW, kETV, kOT, kAC, kBC, kNA, and kBT corresponding to the environmental information. Ask for. Next, the high electric system heat generation level ELHL is obtained based on the equation (1). Then, referring to the graph showing the correspondence between the high-power heat generation level ELHL and the control signal shown in FIG. 5, if the control permission condition of the high-power heat generation flow path is satisfied, the process proceeds to step S305. If the control permission condition is not satisfied, the control shown in the flowchart of FIG. 6 is terminated. For example, if the SOC of the battery is about 30% or less, the result of the equation (1) is 0, and the control permission condition is not satisfied.
 ステップS305では、制御部30は、式(1)より求めた強電系発熱レベルELHLに対応して、インバータ251の駆動周波数Fcと、電動機28の無効電流とを決定し、制御信号CT1、CT3を電力変換部25へ出力する。なお、強電系発熱レベルELHLに対応して制御信号CT2を出力して発熱素子27を駆動してもよい。これにより、強電系発熱流路における流体媒体が加熱される。 In step S305, the control unit 30 determines the drive frequency Fc of the inverter 251 and the reactive current of the motor 28 in response to the high electric power generation level ELHL obtained from the equation (1), and outputs the control signals CT1 and CT3. Output to the power conversion unit 25. The heat generating element 27 may be driven by outputting the control signal CT2 corresponding to the high electric system heat generation level ELHL. As a result, the fluid medium in the high-voltage heating flow path is heated.
 加熱された流体媒体は、ウォータポンプ23、シリンダヘッド11を経てヒーターコア13、流路切替弁24へと循環する。これにより、EV走行においても、シリンダヘッド11やヒーターコア13に、加熱により温度が上昇した流体媒体を供給することができる。例えば、エンジン10の稼働を停止してEV走行している場合に、エンジン10の水温の低下速度を減らすことができ、エンジン10の再稼働までの時間を長くすることによりエンジン10の稼働時間を減らし、燃料と排気ガス低減に効果がある。また、EV走行であっても、ヒーターコア13に温度が上昇した流体媒体が供給されるので、空調性能を維持することができる。 The heated fluid medium circulates through the water pump 23 and the cylinder head 11 to the heater core 13 and the flow path switching valve 24. As a result, the fluid medium whose temperature has risen due to heating can be supplied to the cylinder head 11 and the heater core 13 even during EV traveling. For example, when the engine 10 is stopped and the engine is running in EV mode, the rate of decrease in the water temperature of the engine 10 can be reduced, and the operating time of the engine 10 can be increased by lengthening the time until the engine 10 is restarted. It is effective in reducing fuel and exhaust gas. Further, even in the EV traveling, the fluid medium whose temperature has risen is supplied to the heater core 13, so that the air conditioning performance can be maintained.
 図7は、暖気後のEV走行モードにおける強電系発熱流路の制御を示すタイムチャートである。図7(A)は車速を、図7(B)はエンジン回転数を、図7(C)はエンジン水温を、図7(D)は強電系の発熱要求であり、横軸はいずれも時間である。 FIG. 7 is a time chart showing the control of the high electric system heat generation flow path in the EV traveling mode after warming up. FIG. 7 (A) shows the vehicle speed, FIG. 7 (B) shows the engine speed, FIG. 7 (C) shows the engine water temperature, FIG. 7 (D) shows the heat generation request of the strong electric system, and the horizontal axis shows the time. Is.
 図7(C)に示すように、暖気後にEV走行モードにおいては徐々にはエンジン水温が低下する。エンジン水温が60℃に低下すると、エンジン10が始動するものとする。時刻t1において、温度に係わる環境情報に基づいて制御部30は図6のステップS304、S305の制御により、図7(D)に示すように、強電系発熱要求がオンになったとする。これにより、強電系発熱流路における流体媒体が加熱され、図7(C)の実線に示すように、エンジン水温の低下速度が鈍る。 As shown in FIG. 7C, the engine water temperature gradually decreases in the EV driving mode after warming up. It is assumed that the engine 10 starts when the engine water temperature drops to 60 ° C. At time t1, it is assumed that the control unit 30 turns on the high electric system heat generation request as shown in FIG. 7 (D) by the control of steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature. As a result, the fluid medium in the high-electricity heat generation flow path is heated, and as shown by the solid line in FIG. 7C, the rate of decrease in the engine water temperature slows down.
 図7(C)の点線は、流体媒体の加熱を行わなかった場合のエンジン水温を示す。流体媒体の加熱を行わなければ、エンジン水温が60℃に早く低下し、その結果、図7(B)の点線で示すように、早くエンジン10が始動する。しかし、強電系発熱流路における流体媒体を加熱した場合は、時刻t2でエンジン水温が60℃になり、この時、エンジン10が始動する。すなわち、図7(B)に示すT1の期間だけエンジンの始動を遅らせることができる。 The dotted line in FIG. 7C shows the engine water temperature when the fluid medium is not heated. If the fluid medium is not heated, the engine water temperature drops quickly to 60 ° C., and as a result, the engine 10 starts early, as shown by the dotted line in FIG. 7 (B). However, when the fluid medium in the high-electric heat generation flow path is heated, the engine water temperature reaches 60 ° C. at time t2, and at this time, the engine 10 starts. That is, the start of the engine can be delayed by the period of T1 shown in FIG. 7 (B).
 次に、時刻t3において、温度に係わる環境情報に基づいて制御部30は図6のステップS304、S305の制御により、図7(D)に示すように、強電系発熱要求がオンになる。そして、流体媒体が加熱されるので、時刻t4でエンジン水温が60℃になり、この時、エンジン10が始動する。すなわち、図7(B)に示すT2の期間だけエンジンの始動を遅らせることができる。これにより、エンジン10の稼働を停止してEV走行している場合に、エンジン10の水温の低下速度を減らすことができ、エンジン10の再稼働までの時間を長くすることによりエンジン10の稼働時間を減らし、燃料と排気ガス低減に効果がある。なお、図7(A)に示す車速に応じて図7(B)に示すエンジン回転数は上下する。 Next, at time t3, the control unit 30 turns on the high-electricity heat generation request as shown in FIG. 7 (D) by controlling steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature. Then, since the fluid medium is heated, the engine water temperature reaches 60 ° C. at time t4, and at this time, the engine 10 starts. That is, the start of the engine can be delayed by the period of T2 shown in FIG. 7 (B). As a result, when the operation of the engine 10 is stopped and the engine is running in EV, the rate of decrease in the water temperature of the engine 10 can be reduced, and the operating time of the engine 10 can be increased by lengthening the time until the engine 10 is restarted. It is effective in reducing fuel and exhaust gas. The engine speed shown in FIG. 7B fluctuates according to the vehicle speed shown in FIG. 7A.
 図8は、冷温時のEV走行モードにおける強電系発熱の制御を示すタイムチャートである。図8(A)は車速を、図8(B)はエンジン回転数を、図8(C)はエンジン水温を、図8(D)は強電系の発熱要求であり、横軸はいずれも時間である。 FIG. 8 is a time chart showing the control of high-power system heat generation in the EV driving mode at cold temperature. FIG. 8 (A) shows the vehicle speed, FIG. 8 (B) shows the engine speed, FIG. 8 (C) shows the engine water temperature, FIG. 8 (D) shows the heat generation request of the strong electric system, and the horizontal axis shows the time. Is.
 車両がEV走行している場合に、時刻t1において、温度に係わる環境情報に基づいて制御部30は図6のステップS304、S305の制御により、図8(D)に示すように、強電系発熱要求がオンになったとする。これにより、強電系発熱流路における流体媒体が加熱され、図8(C)の実線に示すように、エンジン水温の上昇速度が速まる。図8(C)の点線は、流体媒体の加熱を行わなかった場合のエンジン水温を示す。時刻t2でエンジン10が始動する。このように、EV走行であっても、ヒーターコア13に温度が上昇した流体媒体が供給されるので、空調性能を高めることができる。また、EV走行時にエンジン水温を上昇させ、エンジン始動時の排気ガス濃度が低減する。 When the vehicle is EV traveling, at time t1, the control unit 30 generates heat from the high electric system as shown in FIG. 8 (D) under the control of steps S304 and S305 of FIG. 6 based on the environmental information related to the temperature. Suppose the request is turned on. As a result, the fluid medium in the high-electricity heat generation flow path is heated, and as shown by the solid line in FIG. 8C, the rate of increase in the engine water temperature is increased. The dotted line in FIG. 8C shows the engine water temperature when the fluid medium is not heated. The engine 10 starts at time t2. As described above, even in the EV traveling, the fluid medium whose temperature has risen is supplied to the heater core 13, so that the air conditioning performance can be improved. In addition, the engine water temperature is raised during EV driving, and the exhaust gas concentration at engine starting is reduced.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)ハイブリッド制御装置100は、シリンダヘッド11を有しかつ燃料燃焼型のエンジン10と、循環する流体媒体を冷却するラジエータ20と、走行用の電動機28と、電動機28を駆動する電力変換部25と、シリンダヘッド11と電力変換部25と電動機28を通って流体媒体を循環させる流路形成体(シリンダヘッド11と電力変換部25と電動機28を通る流路を形成)と、流路形成体の流路を制御すると供に、電動機28および電力変換部25の駆動を制御する制御部30とを備え、制御部30は、電力変換部25または電動機28の発熱を大きくして流体媒体を加熱する。これにより、EV走行中であっても必要に応じて流体媒体の温度を上げることにより、燃費を向上することができる。
According to the embodiment described above, the following effects can be obtained.
(1) The hybrid control device 100 includes a fuel combustion type engine 10 having a cylinder head 11, a radiator 20 for cooling a circulating fluid medium, a traveling electric motor 28, and a power conversion unit for driving the motor 28. 25, a flow path forming body that circulates a fluid medium through the cylinder head 11, the power conversion unit 25, and the motor 28 (forming a flow path that passes through the cylinder head 11, the power conversion unit 25, and the motor 28), and a flow path formation. Along with controlling the flow path of the body, the motor 28 and the control unit 30 for controlling the drive of the power conversion unit 25 are provided. Heat. As a result, fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
(2)ハイブリッド制御装置100の制御方法は、燃料燃焼型のエンジン10のシリンダヘッド11と走行用の電動機28を駆動する電力変換部25と電動機28とを通って流体媒体を循環させる強電系発熱流路を形成し、電力変換部25または電動機28の発熱を大きくして流体媒体を加熱する。これにより、EV走行中であっても必要に応じて流体媒体の温度を上げることにより、燃費を向上することができる。 (2) The control method of the hybrid control device 100 is a strong electric system heat generation in which a fluid medium is circulated through a cylinder head 11 of a fuel combustion type engine 10, a power conversion unit 25 for driving a traveling electric motor 28, and the electric motor 28. A flow path is formed to increase the heat generated by the power conversion unit 25 or the electric motor 28 to heat the fluid medium. As a result, fuel efficiency can be improved by raising the temperature of the fluid medium as needed even during EV traveling.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiment, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. ..
 10・・・エンジン、11・・・シリンダヘッド、12・・・シリンダブロック、13・・・ヒーターコア、14・・・EGRクーラ、20・・・ラジエータ、21・・・リザーバタンク、22、24・・・流路切替弁、23・・・ウォータポンプ、25・・・電力変換部、26・・・バッテリ、27・・・発熱素子、28・・・電動機、29・・・発電機、30・・・制御部、100・・・ハイブリッド制御装置、251・・・インバータ、252・・・平滑コンデンサ、253・・・電動機制御部、Tuu・・・U相上アームスイッチング素子、Duu・・・U相上アームダイオード、Tul・・・U相下アームスイッチング素子、Dul・・・U相下アームダイオード、Tvu・・・V相上アームスイッチング素子、Dvu・・・V相上アームダイオード、Tvl・・・V相下アームスイッチング素子、Dvl・・・V相下アームダイオード、Twu・・・W相上アームスイッチング素子、Dwu・・・W相上アームダイオード、Twl・・・W相下アームスイッチング素子、Dwl・・・W相下アームダイオード。
 
10 ... Engine, 11 ... Cylinder head, 12 ... Cylinder block, 13 ... Heater core, 14 ... EGR cooler, 20 ... Diode, 21 ... Reservoir tank, 22, 24 ... Flow path switching valve, 23 ... Water pump, 25 ... Power converter, 26 ... Battery, 27 ... Heat generating element, 28 ... Electric motor, 29 ... Generator, 30 ... Control unit, 100 ... Hybrid control device, 251 ... Inverter, 252 ... Smoothing capacitor, 253 ... Electric motor control unit, Tu ... U phase upper arm switching element, Du ... U-phase upper arm diode, Tul ... U-phase lower arm switching element, Dul ... U-phase lower arm diode, Tv ... V-phase upper arm switching element, Dvu ... V-phase upper arm diode, Tvr.・ ・ V phase lower arm switching element, Dvl ・ ・ ・ V phase lower arm diode, Tuu ・ ・ ・ W phase upper arm switching element, Dwoo ・ ・ ・ W phase upper arm diode, Twl ・ ・ ・ W phase lower arm switching element , Dwl ... W phase lower arm diode.

Claims (11)

  1.  シリンダヘッドを有しかつ燃料燃焼型のエンジンと、
     循環する流体媒体を冷却するラジエータと、
     走行用の電動機と、
     前記電動機を駆動する電力変換部と、
     前記シリンダヘッドと前記電力変換部と前記電動機を通って前記流体媒体を循環させる流路形成体と、
     前記流路形成体の流路を制御すると供に、前記電動機および前記電力変換部の駆動を制御する制御部とを備え、
     前記制御部は、前記電力変換部または前記電動機の発熱を大きくして前記流体媒体を加熱するハイブリッド制御装置。
    With a fuel-burning engine that has a cylinder head,
    A radiator that cools the circulating fluid medium,
    With a motor for driving
    The power conversion unit that drives the motor and
    A flow path forming body that circulates the fluid medium through the cylinder head, the power conversion unit, and the motor.
    In addition to controlling the flow path of the flow path forming body, it also includes a control unit that controls the drive of the electric motor and the power conversion unit.
    The control unit is a hybrid control device that heats the fluid medium by increasing the heat generated by the power conversion unit or the electric motor.
  2.  請求項1に記載のハイブリッド制御装置において、
     前記制御部は、前記電力変換部のスイッチング素子の駆動周波数を増加することにより前記流体媒体を加熱するハイブリッド制御装置。
    In the hybrid control device according to claim 1,
    The control unit is a hybrid control device that heats the fluid medium by increasing the drive frequency of the switching element of the power conversion unit.
  3.  請求項1に記載のハイブリッド制御装置において、
     前記制御部は、前記電動機の無効電流を増加することにより前記流体媒体を加熱するハイブリッド制御装置。
    In the hybrid control device according to claim 1,
    The control unit is a hybrid control device that heats the fluid medium by increasing the reactive current of the motor.
  4.  請求項1に記載のハイブリッド制御装置において、
     前記流路形成体の流路に発熱素子を設け、
     前記制御部は、前記発熱素子を駆動することにより前記流体媒体を加熱するハイブリッド制御装置。
    In the hybrid control device according to claim 1,
    A heat generating element is provided in the flow path of the flow path forming body, and a heat generating element is provided.
    The control unit is a hybrid control device that heats the fluid medium by driving the heat generating element.
  5.  請求項1から請求項4までのいずれか一項に記載のハイブリッド制御装置において、 前記制御部は、前記エンジンの水温、前記エンジンの水温の低下速度、車両の外気温度、エアコンからの発熱指令、ブロアファン信号または前記車両の減速度の少なくとも一つに基づいて、および前記電力変換部に直流電力を供給するバッテリのSOCに基づいて、前記流体媒体の加熱を制御するハイブリッド制御装置。 In the hybrid control device according to any one of claims 1 to 4, the control unit has the water temperature of the engine, the rate of decrease of the water temperature of the engine, the outside air temperature of the vehicle, the heat generation command from the air conditioner, and the like. A hybrid control device that controls the heating of the fluid medium based on a blower fan signal or at least one of the vehicle decelerations, and based on the SOC of a battery that supplies DC power to the power converter.
  6.  請求項5に記載のハイブリッド制御装置において、
     前記制御部は、前記バッテリのSOCの優先度を高くして、前記バッテリのSOCに基づいて、前記流体媒体を加熱するハイブリッド制御装置。
    In the hybrid control device according to claim 5,
    The control unit is a hybrid control device that raises the priority of the SOC of the battery and heats the fluid medium based on the SOC of the battery.
  7.  請求項1から請求項4までのいずれか一項に記載のハイブリッド制御装置において、 前記制御部は、前記流体媒体が前記シリンダヘッドからヒーターコアを経て前記電力変換部へと循環する強電系発熱流路を形成するように前記流路形成体の流路を制御するハイブリッド制御装置。 In the hybrid control device according to any one of claims 1 to 4, in the control unit, the fluid medium circulates from the cylinder head to the power conversion unit via the heater core. A hybrid control device that controls the flow path of the flow path forming body so as to form a path.
  8.  請求項7に記載のハイブリッド制御装置において、
     前記制御部は、車両がEV走行である場合に、前記強電系発熱流路を形成するハイブリッド制御装置。
    In the hybrid control device according to claim 7.
    The control unit is a hybrid control device that forms the high-electricity heat generation flow path when the vehicle is traveling in EV mode.
  9.  請求項7に記載のハイブリッド制御装置において、
     前記制御部は、車両がエンジン走行である場合に、前記流体媒体が前記シリンダヘッドから前記ヒーターコアおよび前記ラジエータを経て循環するエンジン冷却流路を形成するように前記流路形成体の流路を制御するハイブリッド制御装置。
    In the hybrid control device according to claim 7.
    The control unit creates a flow path of the flow path forming body so that the fluid medium forms an engine cooling flow path that circulates from the cylinder head through the heater core and the radiator when the vehicle is running on the engine. A hybrid control device to control.
  10.  燃料燃焼型のエンジンのシリンダヘッドと走行用の電動機を駆動する電力変換部と前記電動機とを通って流体媒体を循環させる強電系発熱流路を形成し、
     前記電力変換部または前記電動機の発熱を大きくして前記流体媒体を加熱するハイブリッド制御装置の制御方法。
    A high-power heat-generating flow path that circulates a fluid medium through the cylinder head of a fuel-burning engine, a power conversion unit that drives a traveling motor, and the motor is formed.
    A control method for a hybrid control device that heats the fluid medium by increasing the heat generated by the power conversion unit or the electric motor.
  11.  請求項10に記載のハイブリッド制御装置の制御方法において、
     車両がEV走行である場合に、前記強電系発熱流路を形成し、
     前記エンジンの水温、前記エンジンの水温の低下速度、前記車両の外気温度、エアコンからの発熱指令、ブロアファン信号または前記車両の減速度の少なくとも一つに基づいて、および前記電力変換部に直流電力を供給するバッテリのSOCに基づいて、前記流体媒体の加熱を制御するハイブリッド制御装置の制御方法。
    In the control method of the hybrid control device according to claim 10,
    When the vehicle is traveling on EV, the high electric system heat generation flow path is formed.
    DC power based on at least one of the engine water temperature, the engine water temperature decrease rate, the vehicle outside air temperature, the heat generation command from the air conditioner, the blower fan signal or the vehicle deceleration, and to the power converter. A control method of a hybrid control device that controls heating of the fluid medium based on the SOC of the battery to which the fluid medium is supplied.
PCT/JP2021/001179 2020-03-23 2021-01-15 Hybrid control device and method for controlling hybrid control device WO2021192528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051548A JP2023062212A (en) 2020-03-23 2020-03-23 Hybrid control device and method for controlling hybrid control device
JP2020-051548 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021192528A1 true WO2021192528A1 (en) 2021-09-30

Family

ID=77891357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001179 WO2021192528A1 (en) 2020-03-23 2021-01-15 Hybrid control device and method for controlling hybrid control device

Country Status (2)

Country Link
JP (1) JP2023062212A (en)
WO (1) WO2021192528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193735A1 (en) * 2022-04-06 2023-10-12 长城汽车股份有限公司 Method and apparatus for controlling water temperature of engine, device, and medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (en) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd Cooling device for hybrid type electric vehicle
JP2004162860A (en) * 2002-11-15 2004-06-10 Daikin Ind Ltd Temperature rise control method for autonomous inverter driven hydraulic unit and its device
JP2007182857A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Cooling device
JP2010119282A (en) * 2008-10-17 2010-05-27 Denso Corp Thermal management system
JP2010125954A (en) * 2008-11-27 2010-06-10 Mazda Motor Corp Motor controller for hybrid vehicle
WO2016031089A1 (en) * 2014-08-27 2016-03-03 三菱電機株式会社 Drive system
JP2018188112A (en) * 2017-05-12 2018-11-29 株式会社豊田中央研究所 Motor control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (en) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd Cooling device for hybrid type electric vehicle
JP2004162860A (en) * 2002-11-15 2004-06-10 Daikin Ind Ltd Temperature rise control method for autonomous inverter driven hydraulic unit and its device
JP2007182857A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Cooling device
JP2010119282A (en) * 2008-10-17 2010-05-27 Denso Corp Thermal management system
JP2010125954A (en) * 2008-11-27 2010-06-10 Mazda Motor Corp Motor controller for hybrid vehicle
WO2016031089A1 (en) * 2014-08-27 2016-03-03 三菱電機株式会社 Drive system
JP2018188112A (en) * 2017-05-12 2018-11-29 株式会社豊田中央研究所 Motor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193735A1 (en) * 2022-04-06 2023-10-12 长城汽车股份有限公司 Method and apparatus for controlling water temperature of engine, device, and medium

Also Published As

Publication number Publication date
JP2023062212A (en) 2023-05-08

Similar Documents

Publication Publication Date Title
KR100973763B1 (en) Motor drive device and vehicle provided with the same
CN101578190B (en) Cooling system
US9174629B2 (en) Vehicle
JP5365586B2 (en) Power converter
JP2009159748A (en) Converter device, rotating electrical machine controller and driving device
WO2009011461A1 (en) Inverter control device and vehicle
CN100544179C (en) Motor control unit and be equipped with its vehicle
JPWO2012124073A1 (en) Inverter overheat protection control device and inverter overheat protection control method
JPWO2007064020A1 (en) DC-DC converter for electric vehicles
CN107769670B (en) System and method for controlling switching frequency
CN106134062B (en) Motor compressor
JP6394288B2 (en) Power converter
US20200180451A1 (en) Power conversion device
JP2008312398A (en) Load drive unit
WO2021192528A1 (en) Hybrid control device and method for controlling hybrid control device
JP2011109765A (en) Rotating electrical machine cooling system
JP2006149064A (en) Vehicle drive system and vehicle equipped therewith
JP5303295B2 (en) Power converter for vehicle and electric vehicle
US10581363B2 (en) Isolated dual bus hybrid vehicle drivetrain
JP2014023263A (en) Electric vehicle
CN114097170A (en) Power supply system
KR101125005B1 (en) Method for controlling electric water pump of hybrid vehicle
US11424701B2 (en) Method for operating a brushed direct current electric motor
EP3796543B1 (en) Method for operating a brushed direct current electric motor, data processing apparatus, computer program, computer-readable data carrier and a device
JP2012228114A (en) Power module, and hybrid vehicle or electric vehicle provided with power module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP