WO2021192312A1 - Terminal et procédé de communication - Google Patents

Terminal et procédé de communication Download PDF

Info

Publication number
WO2021192312A1
WO2021192312A1 PCT/JP2020/014374 JP2020014374W WO2021192312A1 WO 2021192312 A1 WO2021192312 A1 WO 2021192312A1 JP 2020014374 W JP2020014374 W JP 2020014374W WO 2021192312 A1 WO2021192312 A1 WO 2021192312A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource
terminal
control information
selection window
Prior art date
Application number
PCT/JP2020/014374
Other languages
English (en)
Japanese (ja)
Inventor
翔平 吉岡
尚哉 芝池
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/014374 priority Critical patent/WO2021192312A1/fr
Publication of WO2021192312A1 publication Critical patent/WO2021192312A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G New Radio
  • Non-Patent Document 1 Non-Patent Document 1
  • D2D reduces the traffic between the terminal and the base station, and enables communication between the terminals even if the base station becomes unable to communicate due to a disaster or the like.
  • D2D is referred to as "sidelink”, but in the present specification, D2D, which is a more general term, is used. However, in the description of the embodiment described later, a side link is also used if necessary.
  • D2D communication includes D2D discovery (also called D2D discovery) for discovering other terminals that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between terminals. It is also roughly divided into communication, etc.).
  • D2D communication, D2D discovery, etc. are not particularly distinguished, they are simply referred to as D2D.
  • a signal transmitted / received in D2D is called a D2D signal.
  • Various use cases of services related to V2X (Vehicle to Everything) in NR are being studied (for example, Non-Patent Document 2).
  • Resource allocation mode 2 is supported for direct terminal-to-terminal communication in NR-V2X.
  • the terminal executes sensing in the sensing window in the resource pool, and selects available resource candidates from the resource selection window in the resource pool based on the sensing result.
  • the present invention has been made in view of the above points, and an object of the present invention is to reduce collision of selected resources when autonomously selecting resources used by terminals in direct communication between terminals.
  • a receiver that senses control information that reserves periodic traffic transmitted from another terminal in the sensing window, and a resource in a predetermined section in the resource selection window based on the control information.
  • the control unit has a control unit that identifies and determines a set of available resources, and a transmission unit that executes transmission to another terminal using a resource selected from the set of resources. Based on the control information, a terminal is provided that excludes resources corresponding to resources past or future from the control information from available resources in the resource selection window.
  • the collision of the selected resources can be reduced.
  • V2X It is a figure for demonstrating V2X. It is a figure for demonstrating the example (1) of the transmission mode of V2X. It is a figure for demonstrating the example (2) of the transmission mode of V2X. It is a figure for demonstrating the example (3) of the transmission mode of V2X. It is a figure for demonstrating the example (4) of the transmission mode of V2X. It is a figure for demonstrating the example (5) of the transmission mode of V2X. It is a figure for demonstrating the example (1) of the communication type of V2X. It is a figure for demonstrating the example (2) of the communication type of V2X. It is a figure for demonstrating the example (3) of the communication type of V2X. It is a sequence diagram which shows the operation example (1) of V2X.
  • LTE Long Term Evolution
  • NR Universal Terrestrial Radio Access
  • LAN Local Area Network
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram for explaining V2X.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • FIG. 1 V2X is a part of ITS (Intelligent Transport Systems), V2V (Vehicle to Vehicle) which means a communication mode between vehicles, and a roadside installed between a vehicle and a roadside.
  • ITS Intelligent Transport Systems
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicle to Pedestrian
  • V2X using LTE or NR cellular communication and terminal-to-terminal communication is being studied.
  • V2X using cellular communication is also referred to as cellular V2X.
  • studies are underway to realize large capacity, low delay, high reliability, and QoS (Quality of Service) control.
  • LTE or NR V2X it is expected that studies not limited to 3GPP specifications will be promoted in the future. For example, ensuring interoperability, reducing costs by implementing higher layers, using or switching between multiple RATs (Radio Access Technology), supporting regulations in each country, data acquisition, distribution, database management, and LTE or NR V2X platform. It is expected that the usage method will be examined.
  • RATs Radio Access Technology
  • the communication device is mounted on the vehicle, but the embodiment of the present invention is not limited to the embodiment.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, and the communication device may be a base station, an RSU, a relay station (relay node), or the like. It may be a terminal or the like having a scheduling ability.
  • SL may be distinguished based on any or combination of UL (Uplink) or DL (Downlink) and the following 1) -4). Further, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
  • SL or UL OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread-OFDM
  • Transform Precoded OFDM Transferformed Any of the above OFDM may be applied.
  • Mode 3 and Mode 4 are defined regarding the allocation of SL resources to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS SemiPersistent Scheduling
  • Mode 4 the terminal 20 autonomously selects a transmission resource from the resource pool.
  • the slot in the embodiment of the present invention may be read as a symbol, a mini slot, a subframe, a wireless frame, and a TTI (Transmission Time Interval).
  • the cell in the embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
  • the terminal 20 is not limited to the V2X terminal, and may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
  • IoT Internet of Things
  • FIG. 2 is a diagram for explaining an example (1) of the transmission mode of V2X.
  • the base station 10 transmits the sidelink scheduling to the terminal 20A.
  • the terminal 20A transmits PSCCH (Physical Sidelink Control Channel) and PSCH (Physical Sidelink Shared Channel) to the terminal 20B based on the received scheduling (step 2).
  • the transmission mode of the side link communication shown in FIG. 2 may be referred to as the side link transmission mode 3 in LTE.
  • LTE sidelink transmission mode 3 Uu-based sidelink scheduling is performed.
  • Uu is a wireless interface between UTRAN (Universal Terrestrial Radio Access Network) and UE (User Equipment).
  • the transmission mode of the side link communication shown in FIG. 2 may be referred to as the side link transmission mode 1 in NR.
  • FIG. 3 is a diagram for explaining an example (2) of the transmission mode of V2X.
  • terminal 20A transmits PSCCH and PSCH to terminal 20B using autonomously selected resources.
  • the transmission mode of the side link communication shown in FIG. 3 may be referred to as the side link transmission mode 4 in LTE.
  • the UE In the side link transmission mode 4 in LTE, the UE itself executes resource selection.
  • FIG. 4 is a diagram for explaining an example (3) of the transmission mode of V2X.
  • terminal 20A transmits PSCCH and PSCH to terminal 20B using autonomously selected resources.
  • terminal 20B uses autonomously selected resources to transmit PSCCH and PSCH to terminal 20A (step 1).
  • the transmission mode of the side link communication shown in FIG. 4 may be referred to as the side link transmission mode 2a in NR.
  • the terminal 20 In the side link transmission mode 2 in NR, the terminal 20 itself executes resource selection.
  • FIG. 5 is a diagram for explaining an example (4) of the transmission mode of V2X.
  • the base station 10 transmits the side link grant to the terminal 20A via the RRC (Radio Resource Control) setting.
  • the terminal 20A transmits the PSCH to the terminal 20B based on the received resource pattern (step 1).
  • the transmission mode of the side link communication shown in FIG. 5 may be referred to as the side link transmission mode 2c in NR.
  • FIG. 6 is a diagram for explaining an example (5) of the transmission mode of V2X.
  • the terminal 20A transmits the side link scheduling to the terminal 20B via the PSCCH. Subsequently, the terminal 20B transmits the PSCH to the terminal 20A based on the received scheduling (step 2).
  • the transmission mode of the side link communication shown in FIG. 6 may be referred to as the side link transmission mode 2d in NR.
  • FIG. 7 is a diagram for explaining an example (1) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 7 is unicast.
  • Terminal 20A transmits PSCCH and PSCH to terminal 20.
  • the terminal 20A unicasts to the terminal 20B and also unicasts to the terminal 20C.
  • FIG. 8 is a diagram for explaining an example (2) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 8 is group cast.
  • Terminal 20A transmits PSCCH and PSCH to the group to which one or more terminals 20 belong.
  • the group includes a terminal 20B and a terminal 20C, and the terminal 20A performs a group cast to the group.
  • FIG. 9 is a diagram for explaining an example (3) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 9 is broadcast.
  • Terminal 20A transmits PSCCH and PSCH to one or more terminals 20.
  • terminal 20A broadcasts to terminal 20B, terminal 20C and terminal 20D.
  • the terminal 20A shown in FIGS. 7 to 9 may be referred to as a header UE.
  • HARQ Hybrid automatic repeat request
  • SFCI Segmentlink Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH is used in the transmission of HARQ-ACK on the side link, but this is an example.
  • PSCCH may be used to transmit HARQ-ACK on the side link
  • PSCH may be used to transmit HARQ-ACK on the side link
  • other channels may be used. It may be used to transmit HARQ-ACK on the side link.
  • HARQ-ACK all the information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK.
  • This HARQ-ACK may be referred to as HARQ-ACK information.
  • a codebook applied to the HARQ-ACK information reported from the terminal 20 to the base station 10 or the like is called a HARQ-ACK codebook.
  • the HARQ-ACK codebook defines a bit string of HARQ-ACK information.
  • NACK is also transmitted by "HARQ-ACK".
  • FIG. 10 is a sequence diagram showing an operation example (1) of V2X.
  • the wireless communication system according to the embodiment of the present invention may have a terminal 20A and a terminal 20B.
  • FIG. 10 shows terminals 20A and terminals 20B as examples.
  • terminal 20 terminal 20
  • terminal 20B terminal 20
  • user device terminal 20
  • FIG. 10 shows a case where both the terminal 20A and the terminal 20B are within the coverage of the cell as an example, the operation in the embodiment of the present invention can be applied even when the terminal 20B is outside the coverage.
  • the terminal 20 is a device mounted on a vehicle such as an automobile, and has a cellular communication function as a UE in LTE or NR and a side link function. There is.
  • the terminal 20 may be a general mobile terminal (smartphone or the like). Further, the terminal 20 may be an RSU.
  • the RSU may be a UE type RSU having a UE function or a gNB type RSU having a base station device function.
  • the terminal 20 does not have to be a device in one housing.
  • the device including the various sensors may be the terminal 20.
  • the processing content of the transmission data of the side link of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR.
  • the terminal 20 scrambles and modulates the code word of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding. Then, precoded complex-valued symbols are mapped to resource elements to generate a transmission signal (example: complex-valued time-domain SC-FDMA signal), which is transmitted from each antenna port.
  • the base station 10 has a cellular communication function as a base station in LTE or NR, and a function for enabling communication of the terminal 20 in the present embodiment (example: resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
  • RSU gNB type RSU
  • the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
  • step S101 the terminal 20A autonomously selects the resources to be used for PSCCH and PSCH from the resource selection window having a predetermined period.
  • the resource selection window may be set from the base station 10 to the terminal 20.
  • step S102 and step S103 the terminal 20A transmits SCI (Sidelink Control Information) by PSCCH and / or PSCH by using the resource autonomously selected in step S101, and transmits SL data by PSCH.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • the terminal 20B receives the SCI (PSCCH and / or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK for receiving the data.
  • the terminal 20A may include the information of the resource selected autonomously in the SCI and transmit it.
  • step S104 the terminal 20B transmits HARQ-ACK for the received data to the terminal 20A using the PSFCH resource determined from the received SCI.
  • step S105 the terminal 20A retransmits the PSCCH and the PSCH to the terminal 20B when the HARQ-ACK received in step S104 indicates that the retransmission is requested, that is, when it is NACK (negative response).
  • Terminal 20A may resend PSCCH and PSCH using autonomously selected resources.
  • steps S104 and S105 may not be executed.
  • FIG. 11 is a sequence diagram showing an operation example (2) of V2X. Blind retransmissions without HARQ control may be performed to improve transmission success rate or reach.
  • step S201 the terminal 20A autonomously selects the resources to be used for PSCCH and PSCH from the resource selection window having a predetermined period.
  • the resource selection window may be set from the base station 10 to the terminal 20.
  • step S202 and step S203 the terminal 20A transmits SCI by PSCCH and / or PSCH by using the resource autonomously selected in step S201, and transmits SL data by PSCH.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • step S204 the terminal 20A retransmits the SCI by PSCCH and / or the SL data by PSCH to the terminal 20B by using the resource autonomously selected in step S201.
  • the retransmission in step S204 may be executed a plurality of times.
  • step S204 may not be executed.
  • FIG. 12 is a sequence diagram showing an operation example (3) of V2X.
  • Base station 10 may schedule sidelinks. That is, the base station 10 may determine the resource of the side link used by the terminal 20 and transmit the information indicating the resource to the terminal 20. Further, when HARQ control is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
  • step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A by PDCCH.
  • DCI Downlink Control Information
  • the DCI for SL scheduling will be referred to as SL scheduling DCI.
  • step S301 it is assumed that the base station 10 also transmits DCI for DL scheduling (which may be called DL allocation) to the terminal 20A by PDCCH.
  • DCI for DL scheduling (which may be called DL allocation)
  • the DCI for DL scheduling will be referred to as DL scheduling DCI.
  • the terminal 20A that has received the DL scheduling DCI receives the DL data by PDSCH using the resource specified by the DL scheduling DCI.
  • step S302 and step S303 the terminal 20A transmits SCI (Sidelink Control Information) by PSCCH and / or PSCH by using the resource specified by SL scheduling DCI, and also transmits SL data by PSCH.
  • SCI Servicelink Control Information
  • SL scheduling DCI only PSCH resources may be specified.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • the terminal 20B receives the SCI (PSCCH and / or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the SCI received by the PSCCH and / or the PSCH includes information on the PSFCH resource for the terminal 20B to transmit HARQ-ACK for the reception of the data.
  • the resource information is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the resource information from the DL scheduling DCI or SL scheduling DCI and SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include the information of the resource, and the terminal 20A may autonomously include the information of the resource in the SCI and transmit the information.
  • step S304 the terminal 20B transmits HARQ-ACK for the received data to the terminal 20A using the PSFCH resource determined from the received SCI.
  • the terminal 20A has the PUCCH (or the SL scheduling DCI) designated by the DL scheduling DCI (or the SL scheduling DCI) at the timing specified by the DL scheduling DCI (or SL scheduling DCI) (for example, slot unit timing).
  • the HARQ-ACK is transmitted using the resource, and the base station 10 receives the HARQ-ACK.
  • the HARQ-ACK codebook may include an ARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, HARQ-ACK for DL data is not included when DL data is not assigned. NR Rel. In 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
  • steps S304 and S305 may not be executed.
  • FIG. 13 is a sequence diagram showing an operation example (4) of V2X.
  • the HARQ response is transmitted by PSFCH.
  • PSFCH Physical Uplink Control Channel
  • the PSFCH format for example, the same format as PUCCH (Physical Uplink Control Channel) format 0 can be used. That is, the PSFCH format may have a PRB (Physical Resource Block) size of 1, and ACK and NACK may be sequence-based formats identified by sequence and / or cyclic shift differences.
  • the format of PSFCH is not limited to this.
  • the resources of PSFCH may be arranged in the symbol at the end of the slot or the plurality of symbols at the end. Further, whether or not the period N is set in the PSFCH resource is specified in advance. The period N may be set or predetermined in slot units.
  • the vertical axis corresponds to the frequency domain and the horizontal axis corresponds to the time domain.
  • the PSCCH may be arranged in one symbol at the beginning of the slot, may be arranged in a plurality of symbols from the beginning, or may be arranged in a plurality of symbols from a symbol other than the beginning.
  • the PSFCH may be arranged in one symbol at the end of the slot, or may be arranged in a plurality of symbols at the end of the slot.
  • three subchannels are set in the resource pool, and two PSFCHs are arranged three slots after the slot in which the PSSCH is arranged.
  • the arrow from PSSCH to PSFCH shows an example of PSFCH associated with PSSCH.
  • step S401 the terminal 20A, which is the transmitting side terminal 20, executes a group cast to the terminal 20B, the terminal 20C, and the terminal 20D, which are the receiving side terminals 20, via SL-SCH.
  • terminal 20B uses PSFCH # B
  • terminal 20C uses PSFCH # C
  • terminal 20D uses PSFCH # D to transmit a HARQ response to terminal 20A.
  • the number of available PSFCH resources is less than the number of receiving terminals 20 belonging to the group, it is necessary to determine how to allocate the PSFCH resources. ..
  • the transmitting side terminal 20 may know the number of receiving side terminals 20 in the group cast.
  • FIG. 14 is a diagram showing an example of an operation of excluding resources.
  • the terminal 20 selects a resource and transmits the resource.
  • the terminal 20 performs sensing in a sensing window in the resource pool.
  • the terminal 20 receives a resource reservation field or a resource allocation field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates in the window (resource selection window). Subsequently, the terminal 20 randomly selects a resource from the available resource candidates.
  • FIG. 14 shows an example of the LTE side link, it may be similarly applied to the NR side link.
  • the terminal 20 executes sensing in the sensing window in the resource pool.
  • the terminal 20 receives a resource reservation field included in the SCI transmitted from another terminal 20, and identifies available resource candidates in the resource selection window in the resource pool based on the field. Subsequently, the terminal 20 randomly selects a resource from the available resource candidates.
  • the resource pool setting may have a period.
  • the period may have a period of 10240 milliseconds for 10 frames.
  • the 10 frames may be referred to as hyperframes, for example.
  • FIG. 14 shows an example in which the subframe t 0 SL to the subframe t Tmax SL are set as the resource pool.
  • the area of the resource pool in the hyperframe may be set by, for example, a bitmap.
  • the subframe may be replaced with a slot.
  • the transmission trigger in the terminal 20 occurs in the subframe n, and the priority of the transmission is pTX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting the priority p RX in the sensing window from the subframe t n-10 ⁇ Pstep SL to the subframe t n-1 SL. .. If SCI is detected in the sensing window and RSRP exceeds the threshold, the resources in the resource selection window corresponding to the SCI are excluded. Further, when SCI is detected in the sensing window and RSRP is less than the threshold value, the resource in the resource selection window corresponding to the SCI is not excluded.
  • the threshold value is, for example, based on the priority p TX and priority p RX, set for each resource in the sensing window or being defined threshold Th pTX, may be PRx.
  • the threshold Th pTX set for each resource of the sensing window again 3dB increase the pRX Resource identification may be performed. That is, resources that are not excluded because RSRP is less than the threshold value may be increased by increasing the threshold values Th pTX and pRX and executing resource identification again. Furthermore, by measuring the RSSI of each resource S A, RSSI may add minimal resources in the set S B. Until the set S B of the resource candidates is 20% or more of the resource selection window may repeat the operations RSSI contained in the S A adds the minimum resources to S B.
  • Lower layer of the terminal 20 may report S B to the upper layer.
  • the upper layer of the terminal 20 may determine the resources to be used by running the random selection against S B.
  • the terminal 20 may execute the side link transmission using the determined resource.
  • the terminal 20 may use the resource periodically without performing sensing a predetermined number of times (for example, Cresel times).
  • the resource reservation field moves backward in the time domain. Notification (backward indication) is possible, and resources in the resource selection window corresponding to resources that could not be detected in the first subframe of the sensing window can be excluded.
  • the resource to be retransmitted may be used for HARQ combining, and in LTE, the resource to be retransmitted may be used for repeated transmission.
  • backward means a time point past the reference time point.
  • the resource reservation field enables forward notification in the time domain, and the resource selection window corresponding to the resource ahead in the time domain. Resources in can be excluded.
  • forward means a time in the future from the reference time.
  • the separated field for notifying the resource index for the purpose of backward notification may not be included in the 1st stage SCI. That is, backward notification may not be supported.
  • a resource index for backward notification may be notified in a 1-bit separated field included in the 1st stage SCI.
  • the separated ceil (log 2 ( Nmax )) bit field contained in the 1st stage SCI provides a resource index for backward notification. You may be notified.
  • N max may be the number of resources that can be instructed from one SCI, or may be the number including the resources to which the SCI is transmitted.
  • the terminal 20 may notify the rear using the resource reservation field in the SCI format 0-1.
  • the upper layer parameter SL-ResourceReservePeriod may be associated with a backward notification and / or a forward notification.
  • FIG. 15 is a diagram showing an example (1) of specification change in the embodiment of the present invention.
  • the "SL-ResourceReservePeriod” may include the information element "sl-BackwardIndication-r16".
  • "SL-ResourceReservePeriod” may indicate a backward notification. That is, the resource specified in the Time resource association field in the SCI format 0_1 may be a resource older than the SCI format 0-1.
  • FIG. 16 is a diagram showing an example (2) of specification change in the embodiment of the present invention.
  • the "SL-ResourceReservePeriod” may include the information element "sl-BackwardIndication-2nd-r16" or "sl-BackwardIndication-3rd-r16".
  • "SL-ResourceReservePeriod” may indicate the notification to the first resource behind.
  • the first resource indicated by the Time resource association field in the SCI format 0_1 may be a resource older than the SCI format 0_1.
  • “SL-ResourceReservePeriod” may indicate a notification to the second resource behind. That is, the second resource indicated by the Time resource association field in the SCI format 0_1 may be a resource older than the SCI format 0_1.
  • the 2nd stage SCI is an SCI transmitted / received in the PSCH that can be decoded after decoding the SCI format 0_1.
  • the 2nd stage SCI may be in SCI format 0_2.
  • a field dedicated to the 2nd stage SCI may be introduced as shown in 1) -3) below.
  • the following 1) -3) may be applied in SCI format 0-1.
  • the 1-bit field may be defined as follows. "0": Notification to the front "1”: Notification to the rear
  • the 2-bit field may be defined as follows, for example. "0": 2nd resource forward notification and 3rd resource forward notification "1”: 2nd resource forward notification and 3rd resource backward notification "2": 2nd resource Notification to the rear and notification to the rear by the third resource "3": Notification to the rear by the second resource and notification to the front by the third resource
  • the 1-bit field may be defined as follows, for example. "0": 2nd resource forward notification and 3rd resource forward notification "1": 2nd resource forward notification and 3rd resource backward notification, or 2nd resource backward Notification to and notification to the third resource backward
  • T1 T2 with respect to the time point T1 of the first resource and the time point T2 of the second resource. There wasn't.
  • TRIV may be defined as follows when periodic resource reservation is valid in the resource pool. Note that N may correspond to sl-MaxNumPerReservever-r16. TRIV may mean a Time resource indication value, or may mean a value specified in the Time resource assignment field for the values of T1 and T2.
  • the size of the time resource allocation field may be 10 bits.
  • T1 may be interpreted as the time offset of T1 plus 1 in TRIV defined as follows.
  • T2 may be interpreted as a time offset obtained by subtracting 1 from T2 in TRIV defined as follows.
  • T1 T2. That is, when executing forward notification and backward notification from a certain resource, it may be assumed that the time offsets are different.
  • a 1-bit field dedicated to the 2nd stage SCI may be defined as follows. "0": 2nd resource forward notification and 3rd resource forward notification "1": 2nd resource backward notification and 3rd resource backward notification
  • FIG. 17 is a flowchart for explaining the operation of excluding resources in the embodiment of the present invention.
  • the terminal 20 may receive higher layer parameters from the base station 10.
  • the information element "sl-ResourceReservePeriodList-r16" shown in FIG. 15 or FIG. 16 may be received by the terminal 20 as system information.
  • step S502 the terminal 20 executes sensing in the sensing window. Subsequently, the terminal 20 receives the SCI transmitted from the other terminal 20 (S503). After receiving the 1st stage SCI, the terminal 20 may further receive the 2nd stage SCI.
  • step S504 the terminal 20 acquires a backward notification and / or a forward notification based on the upper layer parameter and / or SCI, and excludes the resource in the resource selection window.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by the sensing even when the sensing of some resources fails, and the SCI notifies the rear and / or Resources can be excluded from the resource selection window based on forward notifications.
  • the base station 10 and the terminal 20 include a function of carrying out the above-described embodiment.
  • the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
  • FIG. 18 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 18 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL reference signal and the like to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads the setting information from the storage device as needed.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 140 performs processing related to the setting for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of the D2D communication and the DL communication to the terminal 20 via the transmission unit 110. Further, the control unit 140 receives information related to the HARQ response of the D2D communication and the DL communication from the terminal 20 via the reception unit 120.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 19 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 19 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving the NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signal, reference signal, etc. transmitted from the base station 10. Further, for example, the transmission unit 210 connects the other terminal 20 to PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. Etc., and the receiving unit 220 receives PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • PSCCH Physical Sidelink Control Channel
  • PSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Side
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 240 controls D2D communication with another terminal 20 as described in the embodiment.
  • the control unit 240 performs processing related to HARQ of D2D communication and DL communication.
  • the control unit 240 transmits information related to the HARQ response of the D2D communication and the DL communication from the base station 10 to the other terminal 20 scheduled to the base station 10.
  • the control unit 240 may schedule D2D communication to another terminal 20.
  • the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the sensing result.
  • the control unit 240 performs processing related to MCS in transmission / reception of D2D communication.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (component) that functions transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 18 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the receiving unit that senses the control information that reserves the periodic traffic transmitted from another terminal in the sensing window, and the receiving unit that senses the control information based on the control information.
  • a control unit that identifies resources in a predetermined section in the resource selection window and determines a set of available resources, and a transmission unit that executes transmission to other terminals using the resources selected from the set of resources. Based on the control information, the control unit excludes a resource corresponding to a resource past or a future than the control information from the available resources in the resource selection window. Provided.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by the sensing, and the SCI notifies the rear and / or forwards. You can exclude resources from the resource selection window based on the notification to. That is, in the direct communication between terminals, when the resources used by the terminals are autonomously selected, the collision of the selected resources can be reduced.
  • the receiving unit receives the upper layer parameter, and the control unit excludes the available resources in the resource selection window by the resource reservation information included in the control information based on the upper layer parameter. May be determined.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by sensing even if the sensing of some resources fails, and the resource is based on the backward notification by the SCI. You can exclude resources from the selection window.
  • the receiving unit receives the second control information that can be received after receiving the first control information, and the control unit is based on the second control information and is earlier than the first control information.
  • the resource corresponding to the resource of is excluded from the available resources in the resource selection window, and the resource corresponding to the resource in the future than the first control information is excluded from the available resources in the resource selection window. It may be excluded.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by sensing even if the sensing of some resources fails, and the SCI notifies the rear and the front. You can exclude resources from the resource selection window based on.
  • the control unit Based on the second control information, the control unit excludes the resources corresponding to the two resources past the first control information from the available resources in the resource selection window, or excludes the resources corresponding to the two resources past the first control information. , Resources corresponding to two resources in the future beyond the first control information may be excluded from the available resources in the resource selection window.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by sensing even if the sensing of some resources fails, and the SCI notifies the rear and the front. You can exclude resources from the resource selection window based on.
  • the control unit Based on the resource reservation information included in the control information, the control unit selects a resource past for a specific time from the control information and a future resource for a specific time in the previous period from the control information in the resource selection window. May be excluded from the available resources within.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by sensing even if the sensing of some resources fails, and the resource is based on the backward notification by the SCI. You can exclude resources from the selection window.
  • the reception procedure for sensing the control information for reserving the periodic traffic transmitted from another terminal in the sensing window and the resource selection window based on the control information executes a control procedure for identifying resources in a predetermined section and determining a set of available resources, and a transmission procedure for executing transmission to another terminal using a resource selected from the set of resources.
  • the control procedure includes a communication method including a procedure of excluding resources corresponding to resources past or future from the control information from available resources in the resource selection window based on the control information. Is provided.
  • the terminal 20 receives the SCI transmitted from the other terminal 20 by the sensing, and the SCI notifies the rear and / or forwards. You can exclude resources from the resource selection window based on the notification to. That is, in the direct communication between terminals, when the resources used by the terminals are autonomously selected, the collision of the selected resources can be reduced.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), LTE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node.
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”,“ Terms such as “cell group”, “carrier”, and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the user terminal described above.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transmitter / receiver.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be in time units based on New Melology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the terminal 20.
  • At least one of the configured BWPs may be active, and the terminal 20 does not have to assume that a predetermined signal / channel is transmitted or received outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the SCI or 1st stage SCI in the present disclosure is an example of the first control information.
  • the 2nd stage SCI is an example of the second control information.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne un terminal qui comprend une unité de réception qui détecte des informations de commande pour réserver un trafic périodique transmis à partir d'un autre terminal dans une fenêtre de détection, une unité de commande qui identifie des ressources dans un segment prescrit d'une fenêtre de sélection de ressources, sur la base des informations de commande, pour déterminer un ensemble de ressources disponibles et une unité de transmission qui utilise une ressource sélectionnée parmi l'ensemble de ressources pour transmettre à un autre terminal, sur la base des informations de commande, l'unité de commande excluant les ressources correspondant aux ressources se trouvant davantage dans le passé ou les ressources se trouvant davantage dans le futur que les informations de commande des ressources disponibles dans la fenêtre de sélection de ressources.
PCT/JP2020/014374 2020-03-27 2020-03-27 Terminal et procédé de communication WO2021192312A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014374 WO2021192312A1 (fr) 2020-03-27 2020-03-27 Terminal et procédé de communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014374 WO2021192312A1 (fr) 2020-03-27 2020-03-27 Terminal et procédé de communication

Publications (1)

Publication Number Publication Date
WO2021192312A1 true WO2021192312A1 (fr) 2021-09-30

Family

ID=77890714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014374 WO2021192312A1 (fr) 2020-03-27 2020-03-27 Terminal et procédé de communication

Country Status (1)

Country Link
WO (1) WO2021192312A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030541A1 (fr) * 2016-08-10 2018-02-15 株式会社Nttドコモ Appareil d'utilisateur et procédé d'émission de signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030541A1 (fr) * 2016-08-10 2018-02-15 株式会社Nttドコモ Appareil d'utilisateur et procédé d'émission de signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Overall description of Radio Access Network (RAN) aspects for Vehicle-to-everything (V2X) based on LTE and NR (Release 16)", 3GPP DRAFT; R1-2001218, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 27 February 2020 (2020-02-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051857208 *

Similar Documents

Publication Publication Date Title
JPWO2020136854A1 (ja) ユーザ装置
WO2021186730A1 (fr) Terminal et procédé de communication
WO2021124462A1 (fr) Terminal et procédé de communication
WO2022038952A1 (fr) Terminal et procédé de communication
WO2021255808A1 (fr) Terminal et procédé de communication
WO2022070284A1 (fr) Terminal et procédé de commande de ressources
WO2021181708A1 (fr) Terminal et procédé de communication
WO2021157042A1 (fr) Terminal et procédé de communication
WO2021192111A1 (fr) Terminal et procédé de communication
WO2021166268A1 (fr) Terminal et procédé de mesure
WO2021048990A1 (fr) Terminal
WO2022153548A1 (fr) Terminal et procédé de communication
WO2021246297A1 (fr) Terminal et procédé de communication
WO2022085204A1 (fr) Terminal et procédé de communication
WO2021172339A1 (fr) Terminal et procédé de communication
WO2022079782A1 (fr) Terminal, et procédé de communication
WO2022024330A1 (fr) Terminal et procédé de communication
WO2022074849A1 (fr) Terminal et procédé de communication
WO2021205664A1 (fr) Terminal et procédé de communication
WO2021186731A1 (fr) Terminal et procédé de communication
WO2021161482A1 (fr) Équipement utilisateur et procédé de communication
WO2021106375A1 (fr) Terminal et procédé de communication
WO2021181710A1 (fr) Terminal et procédé de communication
WO2021181709A1 (fr) Terminal et procédé de communication
WO2021156986A1 (fr) Terminal et procédé de mesure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP