WO2021192199A1 - Wireless device, server, and wireless communication method - Google Patents

Wireless device, server, and wireless communication method Download PDF

Info

Publication number
WO2021192199A1
WO2021192199A1 PCT/JP2020/013921 JP2020013921W WO2021192199A1 WO 2021192199 A1 WO2021192199 A1 WO 2021192199A1 JP 2020013921 W JP2020013921 W JP 2020013921W WO 2021192199 A1 WO2021192199 A1 WO 2021192199A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell base
small cell
antenna
antennas
Prior art date
Application number
PCT/JP2020/013921
Other languages
French (fr)
Japanese (ja)
Inventor
基貴 飯田
真規 野町
敦久 小野
充弘 近藤
和人 野口
志郎 福元
阿部 達朗
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to JP2021552566A priority Critical patent/JP7429708B2/en
Priority to PCT/JP2020/013921 priority patent/WO2021192199A1/en
Publication of WO2021192199A1 publication Critical patent/WO2021192199A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a wireless device, a server and a wireless communication method.
  • a cell having a coverage of several hundred meters to several tens of kilometers (hereinafter, also referred to as a macro cell) and one or more cells having a coverage smaller than that of the macro cell (hereinafter, small).
  • a configuration using also called a cell.
  • HetNet heterogeneous network
  • Wireless devices that form cells have become smaller in recent years, making them easier to install, remove, and carry.
  • the position information indicating the position of such a wireless device is measured by a person of a telecommunications carrier at the installation location of the wireless device and registered in the server. Therefore, the location information may be erroneously registered.
  • the wireless device may be moved by a user or the like to a position different from the position indicated by the position information.
  • the present invention has been made in view of such circumstances, and one of the objects of the present invention is to provide a wireless device, a server, and a wireless communication method that can appropriately manage the position of the wireless device.
  • the wireless device is a wireless device including a plurality of antennas, and the antenna that is turned on among the plurality of antennas by controlling the on or off of each of the plurality of antennas.
  • the control unit that switches between a plurality of different antenna patterns and each of the plurality of antenna patterns are used for receiving a downlink reference signal used for measuring measurement information for position estimation of the wireless device, or for measuring the measurement information. It is provided with a communication unit that transmits an uplink reference signal.
  • the server is a server that estimates the position of a wireless device provided with a plurality of antennas, and receives signals from each of a plurality of antenna patterns in which the antenna to be turned on is different among the plurality of antennas.
  • a communication unit that receives measurement information measured using the downlink reference signal or measurement information measured using the uplink reference signal transmitted in each of the plurality of antenna patterns, and the plurality of antennas. It includes an estimation unit that estimates the position of the radio device based on the measurement information about at least one of the patterns.
  • the wireless communication method is a wireless communication method for estimating the position of a wireless device including a plurality of antennas, and the wireless device controls on or off of each of the plurality of antennas. Then, the step of switching a plurality of antenna patterns in which the antennas to be turned on are different among the plurality of antennas and the downlink used for measuring the measurement information for position estimation of the wireless device in each of the plurality of antenna patterns.
  • a wireless communication method including a step of receiving a reference signal or transmitting an uplink reference signal used for measuring the measurement information.
  • the position of the wireless device can be appropriately managed.
  • FIG. 4A and 4B are diagrams showing an example of a propagation path for each antenna pattern according to the present embodiment. It is a figure which shows an example of the position estimation of the downlink base using a plurality of antenna patterns which concerns on this embodiment. It is a figure which shows an example of the position estimation of the uplink base using a plurality of antenna patterns which concerns on this embodiment. It is a figure which shows an example of the plurality of antenna patterns which concerns on this embodiment.
  • FIG. 1 is a diagram showing an outline of a wireless communication system according to the present embodiment.
  • the wireless communication system 1 may include small cell base stations 10A and 10B, macrocell base stations 20A to 20C, a core network 30, a location server 40, and terminals 50A and 50B. ..
  • the small cell base stations 10A and 10B are wireless devices that form a cell (for example, a small cell). Small cells are cells that have smaller coverage than macro cells.
  • the small cell may be called, for example, a pico cell, a femto cell, a relay cell, or the like. Further, since the small cell base stations 10A and 10B have lower power than the macro cell base stations 20A to 20C, they may be called low-power nodes.
  • the small cell base station 10A is a relay device between the macro cell base station 20A and the terminal 50A.
  • the relay device is also called a relay node (RN), UE-Relay, or the like.
  • the small cell base station 10A communicates with the terminal 50A via the access link L1 and communicates with the macrocell base station 20A via the backhaul link L2.
  • the small cell base station 10A is connected to the core network 30 via the macro cell base station 20A.
  • the access link L1 and the backhaul link L2 may be wireless links.
  • the small cell base station 10A is an RN (Layer 2RN) that performs layer 2 or lower processing (for example, processing of RadioLinkControl (RLC) layer, MediumAccessControl (MAC) layer, Physical (PHY) layer, etc.). It may be an RN (Layer 3RN) that performs processing of layer 3 or lower (for example, processing of RadioResourceControl (RRC) layer, RLC layer, MAC layer, PHY layer, etc.), or it may be a simple repeater. There may be.
  • RN Layer 2RN
  • RLC RadioLinkControl
  • MAC MediumAccessControl
  • PHY Physical
  • the layer 2RN and the layer 3RN may perform demodulation, decoding, error correction, etc. on the downlink signal (downlink signal) received from the macrocell base station 20A or the uplink signal (uplink signal) received from the terminal 50A, respectively.
  • the layer 2RN and the layer 3RN may recode and modulate the downlink or uplink signal and transmit it to the terminal 50A or to the macrocell base station 20A.
  • the small cell base station 10B is a kind of base station, for example, eNodeB (eNB), pico eNB, Home eNB (HeNB), gNodeB (gNB), DistributedUnit (DU), gNB-DU, RemoteRadioHead. It is also called (RRH), Integrated Access and Backhaul / Backhauling (IAB) node, and the like.
  • the small cell base station 10B communicates with the terminal 50B via the access link L1.
  • the small cell base station 10B may be connected to the macro cell base station 20B via the backhaul link L2.
  • the backhaul link L2 may be, for example, a wired backhaul such as an optical line or a wireless backhaul such as an IAB backhaul.
  • the small cell base station 10B may communicate with the terminal 50B by carrier aggregation (CA) or dual connectivity (DC) with the macro cell base station 20B. Although not shown, the small cell base station 10B may be connected to the core network 30 without going through the macro cell base station 20B.
  • CA carrier aggregation
  • DC dual connectivity
  • Macrocell base stations 20A to 20C are base stations that form macrocells.
  • a macro cell is a cell having a coverage of several hundred meters to several tens of kilometers in radius.
  • the macrocell base stations 20A and / or 20B are also referred to as, for example, eNB, gNB, Donor eNodeB (DeNB), Donor eNodeB (DeNB), MasterNode, Donornode, and the like.
  • the core network 30 includes a device that manages the mobility of the location server 40 and the terminal 50 (for example, a mobility management device (Mobility Management Entity: MME), an access mobility management device (Access and Mobility Management Function: AMF), etc.). Is provided.
  • a mobility management device Mobility Management Entity: MME
  • MMF Access and Mobility Management Function
  • the location server 40 is a server that estimates the positions of the small cell base stations 10A and 10B.
  • the position is a point in a two-dimensional or three-dimensional coordinate system, and may be specified by a value of a coordinate axis.
  • the location server 40 may be called, for example, Evolved Serving Mobile Location Center (E-SMLC) or the like. Further, the location server 40 may estimate the position of at least one of the macro cell base stations 20 to 20C and the terminals 50A and 50B.
  • E-SMLC Evolved Serving Mobile Location Center
  • the terminals 50A and 50B are predetermined terminals or devices such as smartphones, personal computers, in-vehicle terminals, in-vehicle devices, and stationary devices.
  • the terminals 50A and 50B may be referred to as a User Equipment (UE) or the like.
  • the terminals 50A and 50B may be mobile or fixed.
  • the terminals 50A and 50B may support at least one communication method such as LTE, LTE-Advanced and New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • the small cell base stations 10A and 10B, the macro cell base stations 20A to 20C, and the terminals 50A and 50B are not distinguished, they are collectively referred to as the small cell base station 10, the macro cell base station 20, and the terminal 50.
  • FIG. 1 is merely an example, and the number, configuration, and the like of the small cell base station 10, the macro cell base station 20, and the terminal 50 included in the wireless communication system 1 are not limited to those shown.
  • the position estimation of the small cell base station 10 may be performed based on the information measured by using the reference signal (RS) received or transmitted by the small cell base station 10 (hereinafter referred to as measurement information). good.
  • the RS may be a downlink RS (for example, a Positioning reference signal (PRS)) or an uplink RS (for example, a Sounding Reference Signal (SRS)). .. Note that position estimation may be paraphrased as positioning.
  • the position of the small cell base station 10 is estimated based on the measurement information measured using the downlink RS received by the small cell base station 10.
  • the measurement information is, for example, information (Reference) indicating a time difference between a downlink RS from a reference base station and a downlink RS from another base station (macrocell base station 20 or another small cell base station 10). It may also be Signal Time Difference (RSTD)).
  • RSTD Signal Time Difference
  • Downlink-based position estimation is also called Observed Time Difference Of Arrival (OTDOA), downlink-based positioning, and the like.
  • FIG. 2 is a diagram showing an example of downlink-based position estimation according to the present embodiment.
  • the position of the small cell base station 10 is estimated based on the measurement information measured based on the downlink RS from the macro cell base stations 20A to 20C.
  • the macrocell base station 20A is selected as the reference base station.
  • RSTD will be described as an example of the measurement information measured by using the downlink RS, but the measurement information is not limited to this.
  • the small cell base station 10 has a time difference between the time T C related to the reception of the downlink RS from the macro cell base station 20C and the time T A related to the reception of the downlink RS from the macro cell base station 20A. and some RSTD CA, and RSTD BA is the time difference between the time T a for the received downlink RS from time T B and the macrocell base station 20A regarding the reception of the downlink RS from the macrocell base station 20B measures.
  • the small cell base station 10 transmits the measured RSTD CA and RSTD BA to the location server 40.
  • the location server 40 estimates the location of the small cell base station 10 based on the RSTD CA and RSTD BA. As shown in FIG. 2, the location server 40 obtains a hyperbolic D CA , which is a set of points in which the RSTD CAs have a matching relationship, from the positions of the known macrocell base stations 20A and 20C. Similarly, the location server 40 obtains the hyperbolic D BA is a set of points from the position of the known macrocell base stations 20A and 20B in a relationship RSTD BA match. When RSTD CA and RSTD BA of measurement error (error) is not be uniquely determined intersection of the hyperbolas D CA and D BA as the position of the small cell base station 10.
  • error measurement error
  • hyperbola D CA may deviate by the sum of the positive and negative errors N CA + + N CA- at the maximum.
  • hyperbola D BA is at most, there is a sum N BA + + N BA- only deviate potential positive and negative error.
  • the known positions of the macrocell base stations 20A to 20C are, for example, points in a two-dimensional or three-dimensional coordinate system, and may be indicated by coordinates.
  • the position estimated by hyperbolic D CA and hyperbolic D BA is a arbitrary point of maximum error N CA + + N CA- or N BA + + N BA- range R generated by.
  • the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
  • the position of the small cell base station 10 is estimated based on the measurement information measured using the uplink RS transmitted from the small cell base station 10.
  • the measurement information is, for example, information (Uplink-Relative Time of) indicating the time difference between the reference timing in another base station (macrocell base station 20 or another small cell base station 10) and the uplink RS from the small cell base station 10. It may also be called Arrival (UL-RTOA)).
  • Uplink-based position estimation is also called Uplink Time Difference Of Arrival (UTDOA), Uplink based positioning, or the like.
  • FIG. 3 is a diagram showing an example of up-based position estimation according to the present embodiment.
  • the position of the small cell base station 10 is estimated based on the measurement information measured by using the uplink RS from the small cell base station 10.
  • UL-RTOA will be described as an example of the measurement information measured by using the uplink RS, but the measurement information is not limited to this.
  • the macrocell base station 20A, 20B and 20C are the time difference between the time T A for the received uplink RS, T B and T C and the reference time T REF from the small cell base station 10 UL-RTOA A , UL-RTOA B and UL-RTOA C are measured.
  • the macrocell base stations 20A, 20B and 20C transmit the measured UL-RTOA A , UL-RTOA B and UL-RTOA C to the location server 40, respectively.
  • the location server 40 estimates the location of the small cell base station 10 based on UL-RTOA A , UL-RTOA B, and UL-RTOA C. As shown in FIG. 3, the location server 40 obtains a circle RA , which is a set of points in which UL-RTOA A matches, from the position of the known macrocell base station 20A. Similarly, the location server 40 obtains a circle R B and R C is a set of points from the position of the known macrocell base station 20B and 20C in relation to UL-RTOA B and UL-RTOA C matches.
  • circle R A when there is no error in the measurement of the UL-RTOA B and UL-RTOA C, circle R A, can be uniquely determined intersection of R B and R C as the position of the small cell base station 10.
  • the circles RA , R B, and RC are the sum of the positive and negative errors at the maximum, N A + + N A- , N B + + N B-, and N C +, respectively.
  • N A + + N A- , N B + + N B-, and N C + respectively.
  • the position estimated by the circles R A , R B and RC is any point in the range R generated by the maximum error NA + + NA- , N B + + N B- or NC + + NC-.
  • the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
  • the downlink RS transmitted from the macro cell base station 20 in FIG. 2 may be transmitted from the other small cell base station 10. Further, the uplink RS received by the macro cell base station 20 in FIG. 3 may be received and measured by another small cell base station 10.
  • the small cell base station 10 is based on the measurement information measured using the downlink RS (for example, RSTD) or the measurement information measured using the uplink RS (for example, UL-RTOA).
  • the position is estimated.
  • the method of estimating the position of the small cell base station 10 using the downlink RS or the uplink RS the method of estimating the position of the terminal 50 can be diverted, so that the registration of the position of the small cell base station 10 can be easily automated.
  • the small cell base station 10 includes a plurality of antennas A. Therefore, it is assumed that the state of the propagation path of the downlink RS or the uplink RS changes by switching a plurality of antenna patterns in which one or more antennas A that are turned on among the plurality of antennas A are different.
  • the state of the propagation path includes, for example, the direction of the propagation path on which the downlink RS or the uplink RS is propagated, the distance of the propagation path (that is, the distance between the small base station 10 and the macrocell base station 20), and the state of the propagation path.
  • At least one of the quality of the propagation path may be included.
  • the small cell base station 10 controls the on or off of each of the plurality of antennas A and switches the plurality of antenna patterns to receive the downlink RS in each of the plurality of antenna patterns.
  • the uplink RS is transmitted.
  • the location server 40 uses the measurement information (for example, RSTD) measured using the downlink RS received in each of the plurality of antenna patterns, or the uplink RS transmitted in each of the plurality of antenna patterns.
  • the position of the small cell base station 10 is estimated based on the measurement information measured using (for example, UL-RTOA). As a result, the states of a plurality of propagation paths of the downlink RS or the uplink RS can be taken into consideration, so that the estimation accuracy of the position of the small cell base station 10 can be improved.
  • FIGS. 4A and 4B are diagrams showing an example of a propagation path for each antenna pattern according to the present embodiment.
  • the small cell base station 10 includes four antennas A1 to A4, but the number of antennas A included in the small cell base station 10 is not limited to this.
  • FIG. 4A shows an antenna pattern 1 in which the antenna A1 is on and antennas A2 to A4 are off
  • FIG. 4B shows an antenna pattern 3 in which the antenna A3 is on and the antennas A1, A2, and A4 are off.
  • the propagation paths between the antenna A1 turned on in the antenna pattern 1 and each of the macrocell base stations 20A to 20C, and the antennas A3 and the macrocell base stations 20A to 20C turned on in the antenna pattern 3 It is different from the propagation path with each. Therefore, if the state of the propagation path between the antenna A1 and the macrocell base station 20C is poor (for example, it is affected by an obstacle as shown in FIG. 4A), the space between the antenna A3 and the macrocell base station 20C is affected. It is also assumed that the condition of the propagation path of the antenna is good (for example, it is not affected by obstacles as shown in FIG. 4B). In this case, the estimated position based on the antenna pattern 1 can be complemented by the estimated position based on the antenna pattern 3 and the known distance AD13 between the antennas A1 and A3 of the small cell base station 10.
  • FIG. 5 is a diagram showing an example of downlink-based position estimation using a plurality of antenna patterns according to the present embodiment.
  • RSTD CA1 is measured with the antenna pattern 1 using the downlink RS from the macrocell base stations 20C and 20A, and the downlink RS from the macrocell base stations 20B and 20A is measured.
  • RSTD BA1 is assumed in the antenna pattern 1 by using the antenna pattern 1.
  • the position of the small cell base station 10 is estimated within the range R1 where the hyperbola D CA1 based on RSTD CA1 and the hyperbola D BA1 based on RSTD BA1 intersect.
  • the small cell base station 10 has an antenna pattern 3 that turns on the antenna A3, which has a better propagation path condition than the antenna A1, and even if the RSTD CA3 is measured using the downlink RS from the macro cell base stations 20C and 20A. good.
  • the location server 40 obtains the hyperbola D CA3 , which is a set of points in which the RSTD CA3 has a matching relationship, from the positions of the known macrocell base stations 20A and 20C. Further, the location server 40 may estimate the position of the small cell base station 10 based on the known distance AD13 of the antennas A1 and A3 in the small cell base station 10. For example, in FIG. 5, a circle C1 which is a set of points at a distance AD13 is obtained from a hyperbola D CA3 based on RSTD CA3. The location server 40 may obtain a range R2 where the range R1 and the circle C1 intersect, and determine the estimated position of the small cell base station 10 in the range R2.
  • the position of the small cell base station 10 is estimated based on the known distance AD13 between A3 and A3.
  • the estimated position of the small cell base station 10 can be narrowed down to a range R2 smaller than the range R1 estimated by the single antenna pattern 1. Therefore, the estimation accuracy of the small cell base station 10 can be improved.
  • FIG. 6 is a diagram showing an example of up-base position estimation using a plurality of antenna patterns according to the present embodiment.
  • the macro cell base stations 20A, 20B and 20C measure UL-RTOA A1 , UL-RTOA B1 and UL-RTOA C1 using the uplink RS transmitted from the small cell base station 10 in the antenna pattern 1. It shall be. Similar to FIG. 3, in the range R3 of the circle R A1, R B1 and R C1 based on UL-RTOA A1, UL-RTOA B1 and UL-RTOA C1 intersect, that the position of the small cell base station 10 is estimated And.
  • the small cell base station 10 transmits an uplink RS with an antenna pattern 3 that turns on the antenna A3, which has a better propagation path condition than the antenna A1, and the macro cell base stations 20A, 20B, and 20C perform the UL-RTOA A3.
  • UL-RTOA B3 and UL-RTOA C3 may be measured.
  • the location server 40 obtains the circle R C3 , which is a set of points in which UL-RTOA C3 has a matching relationship, from the position of the known macrocell base station 20C. Further, the location server 40 may estimate the position of the small cell base station 10 based on the known distance AD13 of the antennas A1 and A3 in the small cell base station 10. For example, in FIG. 6, a circle C2 is a set of points of the distance AD13 from the circle R 3 based on UL-RTOA C3 is obtained. The location server 40 may obtain a range R4 where the range R3 and the circle C2 intersect, and determine the estimated position of the small cell base station 10 in the range R4.
  • a plurality of UL-RTOAs measured by the macrocell base station 20C based on the uplink RS transmitted in the different antenna patterns 1 and 3 and the antennas turned on in the different antenna patterns 1 and 3 are used.
  • the position of the small cell base station 10 is estimated based on the known distance AD13 between A1 and A3.
  • the estimated position of the small cell base station 10 can be narrowed down to a range R4 smaller than the range R3 estimated by the single antenna pattern 1. Therefore, the estimation accuracy of the small cell base station 10 can be improved.
  • FIGS. 4 to 6 illustrate the method of estimating the position of the small cell base station using the antenna patterns 1 and 3, the plurality of antenna patterns used for estimating the position of the small cell base station 10 are limited to this. No.
  • FIG. 7 is a diagram showing an example of a plurality of antenna patterns according to the present embodiment.
  • the antenna pattern is a combination of turning on or off each of the plurality of antennas A (for example, antennas A1 to A4 in FIG. 7) included in the small cell base station 10.
  • a set of one or more antennas A (also referred to as an antenna set) to be turned on differs between the plurality of antenna patterns.
  • one antenna A to be turned on differs between the antenna patterns 1 to 4. Further, the two antennas A that are turned on are different between the antenna patterns 5 to 8. As described above, in the plurality of antenna patterns, it is sufficient that the antenna sets to be turned on are different.
  • the distance between the antennas A1 and A2 is taken into consideration.
  • the distance between the antennas A2 and A3 is taken into consideration.
  • the distance between the antennas A2 and A4 is taken into consideration.
  • the distance between the antennas A3 and A4 is taken into consideration. In this way, the distance between the antennas used for position estimation may be determined for each pair of antenna patterns.
  • the distance between the antenna set S1 including the antennas A1 and A2 and the antenna set S2 including the antennas A3 and A4 may be taken into consideration.
  • the distance between the antenna set S3 including the antennas A1 and A4 and the antenna set S4 including the antennas A2 and A3 may be considered.
  • the small cell base station 10 and other base stations are used by receiving the downlink RS or transmitting the uplink RS by using each of a plurality of antenna patterns in which one or more antennas to be turned on are different. Since a plurality of measurement information with the station 20 or another small cell base station 10) can be considered, the accuracy of estimating the position of the small cell base station 10 can be improved.
  • FIG. 8 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment.
  • Each device for example, small cell base station 10, macro cell base station 20 or location server 40
  • the wireless communication system 1 includes a processor 10a, a memory 10b, a storage device 10c, a communication device 10d for wired or wireless communication, and an input operation. It has at least an input device 10e for receiving the information, an output device 10f for outputting information, and one or more antennas A.
  • the processor 10a is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1.
  • the processor 10a may form a control unit that controls each device.
  • the memory 10b is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the storage device 10c is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • eMMC embedded MultiMediaCard
  • the communication device 10d is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 10d may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal transmitted from the antenna A by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna A and transmits it to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 10e is, for example, a keyboard, a touch panel, a mouse and / or a microphone.
  • the output device 10f is, for example, a display and / or a speaker.
  • FIG. 9 is a diagram showing an example of a functional block configuration of the small cell base station according to the present embodiment.
  • the small cell base station 10 includes antenna units 11a to 11d, a control unit 12, a communication unit 13, and a measurement unit 14.
  • the measurement unit 14 may be omitted.
  • antenna portions 11a to 11d are shown, but the number of antenna units 11 included in the small cell base station 10 is not limited to 4, and may be 2 or more.
  • the antennas A1 to A4 included in the antenna portions 11a to 11d and the antenna portions 11a to 11d are not distinguished, they are collectively referred to as the antenna portion 11 and the antenna A.
  • Each antenna unit 11 includes an antenna A.
  • the antenna A may be composed of one or a plurality of antenna elements.
  • the antenna A may be composed of an antenna panel including a plurality of antenna elements.
  • each antenna unit 11 may include a switch for switching the antenna A on or off.
  • the control unit 12 may control the on or off of the antenna A of each antenna unit 11.
  • the control unit 12 may control the on or off of each antenna A to switch a plurality of antenna patterns (for example, FIG. 7) in which one or more antennas A that are turned on among the plurality of antennas A are different.
  • the control unit 12 may select the plurality of antenna patterns.
  • the plurality of antenna patterns indicated by the antenna pattern information may be selected.
  • the control unit 12 may use a plurality of antennas, for example, based on the state of many propagation paths between the small cell base station 10 and another base station (macro cell base station 20 or another small cell base station 10).
  • a pattern may be selected, and the communication unit 13 described later may transmit information indicating the selected antenna pattern to the location server 40. Further, the control unit 12 may select all predetermined antenna patterns and try all the antenna patterns in order.
  • the communication unit 13 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Further, the communication unit 13 receives the downlink signal and / or transmits the uplink signal to and from the macrocell base station 20 via the backhaul link L2.
  • the communication unit 13 may communicate with the location server 40 via a protocol for communication with the location server 40.
  • the protocol may be, for example, a protocol related to position estimation such as LTE positioning Protocol (LPP), LPP Annex (LPPa), or LPP Extensions (LPPe).
  • LPP LTE positioning Protocol
  • LPPa LPP Annex
  • LPPe LPP Extensions
  • the communication unit 13 may receive or transmit information indicating the plurality of antenna patterns (antenna pattern information) via the protocol.
  • the communication unit 13 may include at least one of the OTDOA communication unit 131 that performs communication related to downlink-based position estimation and the UTDOA communication unit 132 that performs communication related to uplink-based position estimation.
  • the OTDOA communication unit 131 receives the downlink RS (for example, PRS) used for measuring the measurement information (for example, RSTD) for estimating the position of the small cell base station 10 in each of the plurality of antenna patterns. Specifically, the OTDOA communication unit 131 may receive a plurality of downlink RSs transmitted in each of the plurality of cells in each antenna pattern.
  • the plurality of cells may be formed by one or more macro cell base stations 20 and / or one or more other small cell base stations 10.
  • the OTDOA communication unit 131 may receive information (assist information) that assists the measurement by the measurement unit 14 from the location server 40.
  • the support information may include, for example, information about a cell that transmits the downlink RS to be measured (for example, cell ID, etc.), configuration information of the downlink RS (for example, timing, period, radio resource, etc.), and the like.
  • the OTDOA communication unit 131 may transmit the measurement information (for example, RSTD) measured by using the downlink RS received in each of the plurality of antenna patterns to the location server 40.
  • RSTD measurement information
  • the UTDOA communication unit 132 transmits an uplink RS (for example, SRS) used for measuring measurement information (for example, UL-RTOA) for position estimation of the small cell base station 10 in each of the plurality of antenna patterns.
  • an uplink RS for example, SRS
  • measurement information for example, UL-RTOA
  • the UTDOA communication unit 132 may transmit the uplink RS with different radio resources (for example, time resources and / or frequency resources) for each antenna pattern.
  • the UTDOA communication unit 132 may explicitly notify the macrocell base station 20 of the antenna pattern used for the transmission of the uplink RS in advance.
  • the measurement unit 14 measures the measurement information (for example, RSTD) based on the downlink RS received by the OTDOA communication unit 131. Specifically, the measuring unit 14 may measure each antenna pattern using the time difference of the downlink RS received in the plurality of cells (see, for example, FIG. 2) as the measurement information.
  • RSTD measurement information
  • the antenna unit 11 may be realized by, for example, the antenna A and the communication device 10d.
  • the control unit 12 may be realized by the processor 10a executing a program stored in the storage device 10c.
  • the communication unit 13 and the measurement unit 14 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium).
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 10 is a diagram showing an example of a functional block configuration of a macrocell base station according to the present embodiment.
  • the macrocell base station 20 includes a communication unit 21, a measurement unit 22, and a control unit 23.
  • the measurement unit 22 may be omitted.
  • the communication unit 21 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Further, the communication unit 21 transmits a downlink signal and / or receives an uplink signal with the small cell base station 10 via the backhaul link L2.
  • the communication unit 21 may communicate with the location server 40 via a protocol for communication with the location server 40 (for example, LPPa).
  • the communication unit 21 may receive the antenna pattern information via the protocol.
  • the communication unit 21 may include at least one of the OTDOA communication unit 211 that performs communication related to downlink-based position estimation and the UTDOA communication unit 212 that performs communication related to uplink-based position estimation.
  • the OTDOA communication unit 211 transmits a downlink RS (for example, PRS) used for measuring measurement information (for example, RSTD) for estimating the position of the small cell base station 10.
  • a downlink RS for example, PRS
  • the OTDOA communication unit 211 may transmit the downlink RS with different radio resources (for example, time resources and / or frequency resources) for each antenna pattern.
  • the UTDOA communication unit 212 receives the uplink RS (for example, SRS) transmitted from the small cell base station 10 in each of the plurality of antenna patterns.
  • the antenna pattern used to transmit the uplink RS may be recognized, for example, based on the radio resources (eg, time resources and / or frequency resources) to which the uplink RS is transmitted.
  • the UTDOA communication unit 212 may receive support information for supporting the measurement by the measurement unit 22 from the location server 40.
  • the support information may include, for example, information on the uplink RS to be measured (for example, timing, period, radio resource, etc.).
  • the measurement unit 22 measures measurement information (for example, UL-RTOA) based on the uplink RS received by the UTDOA communication unit 212. Specifically, the measuring unit 22 may measure each antenna pattern using the time difference between the reference time and the uplink RS (see, for example, FIG. 3) as the measurement information.
  • the measuring unit 22 may be composed of, for example, a location measurement unit (LMU).
  • the control unit 23 controls the macro cell base station 20. Specifically, the control unit 23 may control the communication by the communication unit 21 and / or the measurement by the measurement unit 22.
  • the communication unit 21 and the measurement unit 22 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d. .. When executing a program, the program may be stored in the storage medium.
  • FIG. 11 is a diagram showing an example of the functional block configuration of the location server according to the present embodiment.
  • the location server 40 includes a storage unit 41, a communication unit 42, an estimation unit 43, and a selection unit 44.
  • the selection unit 44 may be omitted.
  • the storage unit 41 stores information used for estimating the position of the small cell base station 10.
  • the information may include, for example, information indicating at least one of the following.
  • the communication unit 42 communicates with at least one of the small cell base station 10, the macro cell base station 20, and the terminal 50 by using a predetermined protocol (for example, LPP, LPPa, LPPe, etc.).
  • a predetermined protocol for example, LPP, LPPa, LPPe, etc.
  • the communication unit 42 may receive information indicating the state of the propagation path (propagation path information) from the small cell base station 10 or the macro cell base station 20.
  • the communication unit 42 may transmit antenna pattern information indicating a plurality of antenna patterns selected by the selection unit 44, which will be described later, to the small cell base station 10.
  • the communication unit 42 may receive antenna pattern information indicating a plurality of antenna patterns selected by the small cell base station 10.
  • the communication unit 42 may include at least one of the OTDOA communication unit 421 that performs communication related to downlink-based position estimation and the UTDOA communication unit 422 that performs communication related to uplink-based position estimation.
  • the OTDOA communication unit 421 may receive measurement information (for example, RSTD) measured using the downlink RS received by the small cell base station 10 from the small cell base station 10.
  • the measurement information may correspond to each of the plurality of antenna patterns. Further, the OTDOA communication unit 421 may transmit the support information for measurement of the measurement information to the small cell base station 10.
  • the UTDOA communication unit 422 receives the measurement information (for example, UL-RTOA) measured using the uplink RS transmitted from the small cell base station 10 from the macro cell base station 20 or another small cell base station 10. good.
  • the measurement information may correspond to each of the plurality of antenna patterns. Further, the UTDOA communication unit 422 may transmit the support information for measurement of the measurement information to the macro cell base station 20 or another small cell base station 10.
  • the estimation unit 43 estimates the position of the small cell base station 10 based on the measurement information (for example, RSTD) received by the OTDOA communication unit 421 or the measurement information (for example, UL-RTOA) received by the UTDOA communication unit 422. I do. Specifically, the estimation unit 43 may estimate the position of the small cell base station 10 based on the above estimation information for at least one of the plurality of antenna patterns switched by the small cell base station 10.
  • the measurement information for example, RSTD
  • UL-RTOA measurement information received by the UTDOA communication unit 422. I do.
  • the estimation unit 43 may estimate the position of the small cell base station 10 based on the above estimation information for at least one of the plurality of antenna patterns switched by the small cell base station 10.
  • the estimation unit 43 estimates the position of the small cell base station 10 based on a plurality of measurement information corresponding to each of the plurality of antenna patterns and the distance between the antennas turned on by the plurality of antenna patterns. May be done. For example, as described with reference to FIG. 4-6, when the antenna patterns 1 and 3 are switched in the small cell base station 10, the estimation unit 43 receives the measurement information corresponding to the antenna patterns 1 and 3 and the antenna pattern.
  • the position of the small cell base station 10 may be estimated based on the distance AD13 of the antennas A1 and A3 which are turned on in 1 and 3.
  • the estimation unit 43 may weight the measurement information corresponding to each antenna pattern based on the state of the propagation path between the small cell base station 10 and the other base station for each antenna pattern.
  • the estimation unit 43 may estimate the position of the small cell base station 10 based on the weighted measurement information. For example, as described with reference to FIGS. 4A and 4B, when the state of the propagation path between the antenna pattern 1 and the other base station is worse than that of the antenna pattern 3, the measurement information corresponding to the antenna pattern 3 is more than that of the antenna pattern 1. Larger weighting factors may be multiplied.
  • the selection unit 44 selects a plurality of antenna patterns of the small cell base station 10. For example, the selection unit 44 sets a plurality of antenna patterns based on, for example, the state of the propagation path between the small cell base station 10 and another base station (macro cell base station 20 or another small cell base station 10). You may choose.
  • the communication unit 42 may transmit information indicating the selected antenna pattern to the small cell base station 10. Further, the selection unit 44 may select all predetermined antenna patterns, and the communication unit 42 may transmit information indicating the all antenna patterns to the small cell base station 10.
  • the communication unit 42 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d.
  • the storage unit 41 may be realized by the storage device 10c.
  • the estimation unit 43 and the selection unit 44 may be realized by the processor 10a executing a program stored in the storage device 10c. When executing a program, the program may be stored in the storage medium.
  • FIG. 12 is a diagram showing an example of a downlink-based position estimation operation according to the present embodiment.
  • FIG. 12 describes an example of estimating the position of the small cell base station 10 based on the downlink RS from the macro cell base stations 20A to 20C.
  • the downlink RS is not limited to the macro cell base station 20, and may be transmitted from another small cell base station 10.
  • the measurement information measured by using the downlink RS is assumed to be RSTD, but the measurement information is not limited to this.
  • this operation may be started according to the request information from the location server 40.
  • the request information may be, for example, information requesting measurement in the small cell base station 10.
  • it may be started when the small cell base station 10 satisfies a predetermined condition.
  • the predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected.
  • the small cell base station 10 has acquired the support information from the location server 40 for the measurement of the downlink RS before the start of this operation. Further, it is assumed that i has been initialized before the start of this operation.
  • the small cell base station 10 selects M (M ⁇ 2) antenna patterns for measuring downlink RS.
  • the small cell base station 10 may select M antenna patterns based on the antenna pattern information indicating the M antenna patterns notified from the location server 40.
  • the antenna pattern information may be included in the support information or the request information, for example.
  • the small cell base station 10 itself may select a plurality of antenna patterns.
  • the small cell base station 10 may select all antenna patterns (for example, antenna patterns 1 to 8 in FIG. 7).
  • step S102 the small cell base station 10 controls on or off of each antenna A according to the i-th antenna pattern (1 ⁇ i ⁇ M) among the M antenna patterns selected in step S102.
  • step S103 the small cell base station 10 receives the downlink RS from the macro cell base stations 20A to 20C in the i-th antenna pattern.
  • step S104 the small cell base station 10 measures at least one RSTD based on the downlink RS received in the i-th antenna pattern.
  • step S105 the small cell base station 10 counts up the subscript i of the antenna pattern by 1, and determines whether or not the counted up i exceeds the number M of the antenna patterns selected in step S101. If i ⁇ M, this operation returns to step S102, and if i> M, this operation proceeds to step S106.
  • the initial value of i that is initialized before the start of this operation is 1, but the initial value is not limited to this. For example, when the initial value of i is 0, it may be determined in step S105 whether or not i exceeds M-1 (whether or not i> M-1).
  • the small cell base station 10 transmits measurement information indicating the measurement results using each of the M antenna patterns to the location server 40.
  • the measurement information may include one or more RSTDs measured for each of the M antenna patterns and information indicating each of the M antenna patterns (for example, M antenna pattern IDs).
  • the location server 40 estimates the position of the small cell base station 10 based on the measurement information received from the small cell base station 10. Specifically, the location server 40 may estimate the position of the small cell base station 10 based on the RSTD measured by at least one of the M antenna patterns.
  • the location server 40 includes a RSTD CA1 and RSTD BA1 of the antenna pattern 1, and RSTD CA antenna pattern 3, the antenna A3 to be turned on by the antenna A1 and the antenna pattern 3 which is turned on in the antenna pattern 1
  • the range R2 of the estimated position of the small cell base station 10 is determined based on the distance of.
  • FIG. 13 is a diagram showing an example of an ascending-based position estimation operation according to the present embodiment.
  • FIG. 13 describes an example of estimating the position of the small cell base station 10 based on the uplink RS from the small cell base station 10.
  • the uplink RS is not limited to the macro cell base station 20, and may be received and measured by another small cell base station 10.
  • the measurement information measured by using the uplink RS is assumed to be UL-RTOA, but the measurement information is not limited to this.
  • the uplink RS configuration information (for example, timing, cycle, radio resource, etc.) may be configured in the small cell base station 10 by any of the macro cell base stations 20A to 20C.
  • the configuration information may be notified from the location server 40 to the macrocell base stations 20A to 20C as support information for measuring the uplink RS, or may be notified to the location server 40 from any of the macrocell base stations 20A to 20C. May be done.
  • this operation may be started according to the request information from the location server 40.
  • the request information may be, for example, information requesting measurement at the macrocell base stations 20A to 20C (LMU) selected by the location server 40.
  • LMU macrocell base stations 20A to 20C
  • it may be started when the small cell base station 10 satisfies a predetermined condition.
  • the predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected. Further, it is assumed that i has been initialized before the start of this operation.
  • Steps S201 and S202 of FIG. 13 are the same as steps S101 and S102 of FIG.
  • step S203 the small cell base station 10 transmits an uplink RS using the i-th antenna pattern.
  • step S204 the macrocell base stations 20A to 20C each measure UL-RTOA based on the uplink RS transmitted by the i-th antenna pattern.
  • step S205 the small cell base station 10 counts up the subscript i of the antenna pattern by 1, and determines whether or not the counted up i exceeds the number M of the antenna patterns selected in step S101. If i ⁇ M, this operation returns to step S202, and if i> M, this operation proceeds to step S206.
  • the initial value of i that is initialized before the start of this operation is 1, but the initial value is not limited to this. For example, when the initial value of i is 0, it may be determined in step S105 whether or not i exceeds M-1 (whether or not i> M-1).
  • the macrocell base stations 20A to 20C each transmit measurement information indicating the measurement result using each of the M antenna patterns to the location server 40.
  • the measurement information may include UL-RTOA measured for each of the M antenna patterns and information indicating each of the M antenna patterns (for example, M antenna pattern IDs).
  • the location server 40 estimates the position of the small cell base station 10 based on the measurement information received from the macro cell base stations 20A to 20C. Specifically, the location server 40 may estimate the position of the small cell base station 10 based on the UL-RTOA measured by at least one of the M antenna patterns.
  • the location server 40 has UL-RTOA A , UL-RTOA B and UL-RTOA C of antenna pattern 1, UL-RTOA C of antenna pattern 3, and antenna A1 turned on in antenna pattern 1.
  • the range R4 of the estimated position of the small cell base station 10 is determined based on the distance from the antenna A3 that is turned on in the antenna pattern 3 and the antenna pattern 3.
  • the small cell base station 10 and other base stations are used by receiving the downlink RS or transmitting the uplink RS by using each of a plurality of antenna patterns in which one or more antennas to be turned on are different. Since a plurality of measurement information with the station 20 or another small cell base station 10) can be considered, the accuracy of estimating the position of the small cell base station 10 can be improved.
  • the above embodiment may be combined with the correctness confirmation of the position of the small cell base station 10.
  • a base station other than the small cell base station 10 whose position is to be estimated, or a server on the core network 30 (for example, a location server 40) is a position determined based on at least one of the following.
  • the correctness of the position estimated in the above embodiment may be determined based on the comparison result with the position of the small cell base station 10 whose position is estimated in the above embodiment.
  • -Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (for example, WiFi (registered trademark) or Bluetooth (registered trademark)) (for example, Wi-Fi CERTIFIED Location) ), And information on the location and surrounding cells of the small cell base station 10 (for example, the result of network screening).
  • WiFi registered trademark
  • Bluetooth registered trademark
  • the above embodiment may be combined with the movement detection of the position of the small cell base station 10.
  • the small cell base station 10 itself whose position is to be estimated, other base stations other than the small cell base station 10, or a server on the core network 30 (for example, a location server 40) is at least one of the following. Based on the above, the movement of the small cell base station 10 whose position is estimated in the above embodiment may be detected.
  • -Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)) (for example, Wi-Fi) Information on the location and surrounding cells of the small cell base station 10 obtained by CERTIFIED Location) (for example, the result of network screening) -Variation of cells registered in the Ncell table-Internet protocol (IP) information assigned to the small cell base station 10 (for example, IP address) -Information detected by the sensor included in the small cell base station 10 (sensor information) -Information indicating the power supply status or operating status of the small cell base station 10 (operation information)
  • IP Ncell table-Internet protocol
  • the sensor that detects the sensor information may be, for example, a gyro sensor, a light sensor, or a switch sensor.
  • a gyro sensor or the like provided inside the small cell base station 10 may detect changes in acceleration or posture of the small cell base station 10 as sensor information.
  • a light sensor provided on a contact surface such as the bottom of the small cell base station 10 may detect a change in brightness of the contact surface as sensor information.
  • the fluctuation of the switch may be detected as the sensor information by the switch sensor provided on the contact surface such as the bottom of the small cell base station 10.
  • Wireless communication system 10 ... Small cell base station, 20 ... Macrocell base station, 30 ... Core network, 40 ... Location server, 50 ... Terminal, 10a ... Processor, 10b ... Memory, 10c ... Storage device, 10d ... Communication device 10, e ... Input device, 10f ... Output device, A ... Antenna, 11 ... Antenna unit, 12 ... Control unit, 13 ... Communication unit, 131 ... OTDOA communication unit, 132 ... UTDOA communication unit, 14 ... Measurement unit, 21 ... Communication Unit, 211 ... OTDOA communication unit, 212 ... UTDOA communication unit, 22 ... measurement unit, 41 ... storage unit, 42 ... communication unit, 421 ... OTDOA communication unit, 422 ... UTDOA communication unit, 43 ... estimation unit, 44 ... selection unit

Abstract

The present invention makes it possible to properly manage the position of a wireless device. This wireless device comprises a plurality of antennas. The wireless device further comprises: a control unit which controls turning on and off of each of the plurality of antennas to switch a plurality of antenna patterns having different antennas that are turned on among the plurality of antennas; and a communication unit which, in each of the plurality of antenna patterns, performs reception of a downlink reference signal used for measuring measurement information for estimating the position of the wireless device, or transmission of an uplink reference signal used for measuring the measurement information.

Description

無線装置、サーバ及び無線通信方法Wireless devices, servers and wireless communication methods
 本発明は、無線装置、サーバ及び無線通信方法に関する。 The present invention relates to a wireless device, a server and a wireless communication method.
 国際標準化団体である3GPP(Third Generation Partnership Project)では、第4世代(Fourth Generation:4G)無線アクセス技術(Radio Access Technology:RAT)としてLTE-Advancedが策定されている(例えば、非特許文献1)。近年では、LTE-Advancedに準拠した無線通信ネットワークの運用も進められている。 3GPP (Third Generation Partnership Project), an international standardization organization, has established LTE-Advanced as the 4th generation (Fourth Generation: 4G) radio access technology (RAT) (for example, Non-Patent Document 1). .. In recent years, the operation of LTE-Advanced compliant wireless communication networks has also been promoted.
 このような無線通信ネットワークの一つとして、例えば、半径数百メートルから数十キロメートルのカバレッジを有するセル(以下、マクロセルともいう)と、マクロセルよりも小さいカバレッジを有する一以上のセル(以下、スモールセルともいう)とを用いた構成がある。このように、カバレッジが異なる複数のセルを連携させた構成は、ヘテロジニアスネットワーク(Heterogeneous Network:HetNet)とも呼ばれる。 As one of such wireless communication networks, for example, a cell having a coverage of several hundred meters to several tens of kilometers (hereinafter, also referred to as a macro cell) and one or more cells having a coverage smaller than that of the macro cell (hereinafter, small). There is a configuration using (also called a cell). Such a configuration in which a plurality of cells having different coverages are linked is also called a heterogeneous network (HetNet).
 セル(例えば、スモールセル)を形成する無線装置は、近年小型化されており、設置、取り外し、持ち運び等が容易となっている。このような無線装置の位置を示す位置情報は、現状、当該無線装置の設置場所において通信事業者の人によって測定され、サーバに登録される。このため、当該位置情報が誤って登録される恐れがある。また、位置情報が示す位置とは異なる位置に、ユーザ等によって無線装置が移動される恐れもある。 Wireless devices that form cells (for example, small cells) have become smaller in recent years, making them easier to install, remove, and carry. At present, the position information indicating the position of such a wireless device is measured by a person of a telecommunications carrier at the installation location of the wireless device and registered in the server. Therefore, the location information may be erroneously registered. In addition, the wireless device may be moved by a user or the like to a position different from the position indicated by the position information.
 本発明はこのような事情に鑑みてなされたものであり、無線装置の位置を適切に管理可能とする無線装置、サーバ及び無線通信方法を提供することを目的の一つとする。 The present invention has been made in view of such circumstances, and one of the objects of the present invention is to provide a wireless device, a server, and a wireless communication method that can appropriately manage the position of the wireless device.
 本発明の一の側面に係る無線装置は、複数のアンテナを備える無線装置であって、前記複数のアンテナの各々のオン又はオフを制御して、前記複数のアンテナのうちでオンとなるアンテナが異なる複数のアンテナパターンを切り替える制御部と、前記複数のアンテナパターンの各々で、前記無線装置の位置推定用の測定情報の測定に用いられる下り参照信号の受信、又は、前記測定情報の測定に用いられる上り参照信号の送信を行う通信部と、を備える。 The wireless device according to one aspect of the present invention is a wireless device including a plurality of antennas, and the antenna that is turned on among the plurality of antennas by controlling the on or off of each of the plurality of antennas. The control unit that switches between a plurality of different antenna patterns and each of the plurality of antenna patterns are used for receiving a downlink reference signal used for measuring measurement information for position estimation of the wireless device, or for measuring the measurement information. It is provided with a communication unit that transmits an uplink reference signal.
 本発明の他の側面に係るサーバは、複数のアンテナを備えた無線装置の位置推定を行うサーバであって、前記複数のアンテナのうちでオンとなるアンテナが異なる複数のアンテナパターンの各々で受信された下り参照信号を用いて測定された測定情報、又は、前記複数のアンテナパターンの各々で送信された上り参照信号を用いて測定された測定情報、を受信する通信部と、前記複数のアンテナパターンの少なくとも一つについての前記測定情報に基づいて、前記無線装置の位置推定を行う推定部と、を備える。 The server according to another aspect of the present invention is a server that estimates the position of a wireless device provided with a plurality of antennas, and receives signals from each of a plurality of antenna patterns in which the antenna to be turned on is different among the plurality of antennas. A communication unit that receives measurement information measured using the downlink reference signal or measurement information measured using the uplink reference signal transmitted in each of the plurality of antenna patterns, and the plurality of antennas. It includes an estimation unit that estimates the position of the radio device based on the measurement information about at least one of the patterns.
 本発明の他の側面に係る無線通信方法は、複数のアンテナを備える無線装置の位置推定のための無線通信方法であって、前記無線装置において、前記複数のアンテナの各々のオン又はオフを制御して、前記複数のアンテナのうちでオンとなるアンテナが異なる複数のアンテナパターンを切り替えるステップと、前記複数のアンテナパターンの各々で、前記無線装置の位置推定用の測定情報の測定に用いられる下り参照信号の受信、又は、前記測定情報の測定に用いられる上り参照信号の送信を行うステップと、を有する無線通信方法。 The wireless communication method according to another aspect of the present invention is a wireless communication method for estimating the position of a wireless device including a plurality of antennas, and the wireless device controls on or off of each of the plurality of antennas. Then, the step of switching a plurality of antenna patterns in which the antennas to be turned on are different among the plurality of antennas and the downlink used for measuring the measurement information for position estimation of the wireless device in each of the plurality of antenna patterns. A wireless communication method including a step of receiving a reference signal or transmitting an uplink reference signal used for measuring the measurement information.
 本発明によれば、無線装置の位置を適切に管理できる。 According to the present invention, the position of the wireless device can be appropriately managed.
本実施形態に係る無線通信システムの概要を示す図である。It is a figure which shows the outline of the wireless communication system which concerns on this embodiment. 本実施形態に係る下りベースの位置推定の一例を示す図である。It is a figure which shows an example of the position estimation of the downlink base which concerns on this embodiment. 本実施形態に係る上りベースの位置推定の一例を示す図である。It is a figure which shows an example of the position estimation of the uplink base which concerns on this embodiment. 図4A及び4Bは、本実施形態に係るアンテナパターン毎の伝播路の一例を示す図である。4A and 4B are diagrams showing an example of a propagation path for each antenna pattern according to the present embodiment. 本実施形態に係る複数のアンテナパターンを用いた下りベースの位置推定の一例を示す図である。It is a figure which shows an example of the position estimation of the downlink base using a plurality of antenna patterns which concerns on this embodiment. 本実施形態に係る複数のアンテナパターンを用いた上りベースの位置推定の一例を示す図である。It is a figure which shows an example of the position estimation of the uplink base using a plurality of antenna patterns which concerns on this embodiment. 本実施形態に係る複数のアンテナパターンの一例を示す図である。It is a figure which shows an example of the plurality of antenna patterns which concerns on this embodiment. 本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of each apparatus in the wireless communication system which concerns on this embodiment. 本実施形態に係るスモールセル基地局の機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of the small cell base station which concerns on this embodiment. 本実施形態に係るマクロセル基地局の機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of the macro cell base station which concerns on this embodiment. 本実施形態に係るロケーションサーバの機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of the location server which concerns on this embodiment. 本実施形態に係る下りベースの位置推定動作の一例を示す図である。It is a figure which shows an example of the position estimation operation of the downlink base which concerns on this embodiment. 本実施形態に係る上りベースの位置推定動作の一例を示す図である。It is a figure which shows an example of the position estimation operation of the uplink base which concerns on this embodiment.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals may have the same or similar configurations.
 (無線通信システムの概要)
 図1は、本実施形態に係る無線通信システムの概要を示す図である。図1に示すように、無線通信システム1は、スモールセル基地局10A及び10Bと、マクロセル基地局20A~20Cと、コアネットワーク30と、ロケーションサーバ40と、端末50A及び50Bと、を含んでもよい。
(Overview of wireless communication system)
FIG. 1 is a diagram showing an outline of a wireless communication system according to the present embodiment. As shown in FIG. 1, the wireless communication system 1 may include small cell base stations 10A and 10B, macrocell base stations 20A to 20C, a core network 30, a location server 40, and terminals 50A and 50B. ..
 スモールセル基地局10A及び10Bは、セル(例えば、スモールセル)を形成する無線装置である。スモールセルは、マクロセルよりも小さいカバレッジを有するセルである。スモールセルは、例えば、ピコセル、フェムトセル、リレーセル等と呼ばれてもよい。また、スモールセル基地局10A及び10Bは、マクロセル基地局20A~20Cと比べて低電力であるため、低電力ノード(low-power node)と呼ばれてもよい。 The small cell base stations 10A and 10B are wireless devices that form a cell (for example, a small cell). Small cells are cells that have smaller coverage than macro cells. The small cell may be called, for example, a pico cell, a femto cell, a relay cell, or the like. Further, since the small cell base stations 10A and 10B have lower power than the macro cell base stations 20A to 20C, they may be called low-power nodes.
 例えば、スモールセル基地局10Aは、マクロセル基地局20Aと端末50Aとの間の中継装置である。当該中継装置は、relay node(RN)、UE-Relay等とも呼ばれる。スモールセル基地局10Aは、アクセスリンクL1を介して端末50Aと通信し、バックホールリンクL2を介してマクロセル基地局20Aと通信する。スモールセル基地局10Aは、マクロセル基地局20Aを介してコアネットワーク30に接続される。図1に示すように、アクセスリンクL1及びバックホールリンクL2は、無線リンクであってもよい。 For example, the small cell base station 10A is a relay device between the macro cell base station 20A and the terminal 50A. The relay device is also called a relay node (RN), UE-Relay, or the like. The small cell base station 10A communicates with the terminal 50A via the access link L1 and communicates with the macrocell base station 20A via the backhaul link L2. The small cell base station 10A is connected to the core network 30 via the macro cell base station 20A. As shown in FIG. 1, the access link L1 and the backhaul link L2 may be wireless links.
 当該スモールセル基地局10Aは、レイヤ2以下の処理(例えば、Radio Link Control(RLC)レイヤ、Medium Access Control(MAC)レイヤ、Physical(PHY)レイヤ等の処理)を行うRN(レイヤ2RN)であってもよいし、レイヤ3以下の処理(例えば、Radio Resource Control(RRC)レイヤ、RLCレイヤ、MACレイヤ、PHYレイヤ等の処理)を行うRN(レイヤ3RN)であってもよいし、単なるリピータであってもよい。 The small cell base station 10A is an RN (Layer 2RN) that performs layer 2 or lower processing (for example, processing of RadioLinkControl (RLC) layer, MediumAccessControl (MAC) layer, Physical (PHY) layer, etc.). It may be an RN (Layer 3RN) that performs processing of layer 3 or lower (for example, processing of RadioResourceControl (RRC) layer, RLC layer, MAC layer, PHY layer, etc.), or it may be a simple repeater. There may be.
 レイヤ2RN及びレイヤ3RNは、マクロセル基地局20Aから受信した下り信号(downlink signal)又は端末50Aから受信した上り信号(uplink signal)に対してそれぞれ復調、復号及び誤り訂正等を行ってもよい。レイヤ2RN及びレイヤ3RNは、当該下り信号又は上り信号を再度符号化(coding)及び変調して、端末50Aに送信又はマクロセル基地局20Aに送信してもよい。 The layer 2RN and the layer 3RN may perform demodulation, decoding, error correction, etc. on the downlink signal (downlink signal) received from the macrocell base station 20A or the uplink signal (uplink signal) received from the terminal 50A, respectively. The layer 2RN and the layer 3RN may recode and modulate the downlink or uplink signal and transmit it to the terminal 50A or to the macrocell base station 20A.
 一方、スモールセル基地局10Bは、基地局の一種であり、例えば、eNodeB(eNB)、pico eNB、Home eNB(HeNB)、gNodeB(gNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード等とも呼ばれる。スモールセル基地局10Bは、アクセスリンクL1を介して端末50Bと通信する。スモールセル基地局10Bは、バックホールリンクL2を介してマクロセル基地局20Bに接続されてもよい。バックホールリンクL2は、例えば、光回線等の有線バックホールであってもよいし、IABバックホール等の無線バックホールであってもよい。 On the other hand, the small cell base station 10B is a kind of base station, for example, eNodeB (eNB), pico eNB, Home eNB (HeNB), gNodeB (gNB), DistributedUnit (DU), gNB-DU, RemoteRadioHead. It is also called (RRH), Integrated Access and Backhaul / Backhauling (IAB) node, and the like. The small cell base station 10B communicates with the terminal 50B via the access link L1. The small cell base station 10B may be connected to the macro cell base station 20B via the backhaul link L2. The backhaul link L2 may be, for example, a wired backhaul such as an optical line or a wireless backhaul such as an IAB backhaul.
 当該スモールセル基地局10Bは、マクロセル基地局20Bとのキャリアアグリゲーション(Carrier Aggregation:CA)又はデュアルコネクティビティ(Dual Connectivity:DC)により、端末50Bと通信を行ってもよい。なお、図示しないが、スモールセル基地局10Bは、マクロセル基地局20Bを介さずに、コアネットワーク30に接続されてもよい。 The small cell base station 10B may communicate with the terminal 50B by carrier aggregation (CA) or dual connectivity (DC) with the macro cell base station 20B. Although not shown, the small cell base station 10B may be connected to the core network 30 without going through the macro cell base station 20B.
 マクロセル基地局20A~20Cは、マクロセルを形成する基地局である。マクロセルは、半径数百メートルから数十キロメートルのカバレッジを有するセルである。マクロセル基地局20A及び/又は20Bは、例えば、eNB、gNB、Donor eNodeB(DeNB)、Donor eNodeB(DeNB)、Master Node、Donor node等とも呼ばれる。 Macrocell base stations 20A to 20C are base stations that form macrocells. A macro cell is a cell having a coverage of several hundred meters to several tens of kilometers in radius. The macrocell base stations 20A and / or 20B are also referred to as, for example, eNB, gNB, Donor eNodeB (DeNB), Donor eNodeB (DeNB), MasterNode, Donornode, and the like.
 コアネットワーク30には、ロケーションサーバ40、端末50の移動(mobility)管理を行う装置(例えば、移動管理装置(Mobility Management Entity:MME)、アクセス移動管理装置(Access and Mobility Management Function:AMF)等)が設けられる。 The core network 30 includes a device that manages the mobility of the location server 40 and the terminal 50 (for example, a mobility management device (Mobility Management Entity: MME), an access mobility management device (Access and Mobility Management Function: AMF), etc.). Is provided.
 ロケーションサーバ40は、スモールセル基地局10A及び10Bの位置を推定するサーバである。ここで、当該位置は、2次元又は3次元の座標系の点であり、座標軸の値によって特定されてもよい。ロケーションサーバ40は、例えば、Evolved Serving Mobile Location Center(E-SMLC)等と呼ばれてもよい。また、ロケーションサーバ40は、マクロセル基地局20~20C、端末50A及び50Bの少なくとも一つの位置を推定してもよい。 The location server 40 is a server that estimates the positions of the small cell base stations 10A and 10B. Here, the position is a point in a two-dimensional or three-dimensional coordinate system, and may be specified by a value of a coordinate axis. The location server 40 may be called, for example, Evolved Serving Mobile Location Center (E-SMLC) or the like. Further, the location server 40 may estimate the position of at least one of the macro cell base stations 20 to 20C and the terminals 50A and 50B.
 端末50A及び50Bは、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置等、所定の端末又は装置である。端末50A及び50Bは、User Equipment(UE)等と呼ばれてもよい。端末50A及び50Bは、移動型であってもよいし、固定型であってもよい。端末50A及び50Bは、例えば、LTE、LTE-Advanced及びNew Radio(NR)等の少なくとも一つの通信方式をサポートしてもよい。 The terminals 50A and 50B are predetermined terminals or devices such as smartphones, personal computers, in-vehicle terminals, in-vehicle devices, and stationary devices. The terminals 50A and 50B may be referred to as a User Equipment (UE) or the like. The terminals 50A and 50B may be mobile or fixed. The terminals 50A and 50B may support at least one communication method such as LTE, LTE-Advanced and New Radio (NR).
 以下、スモールセル基地局10A及び10B、マクロセル基地局20A~20C、端末50A及び50Bをそれぞれ区別しない場合は、スモールセル基地局10、マクロセル基地局20、端末50と総称する。なお、図1は、例示にすぎず、無線通信システム1に含まれるスモールセル基地局10、マクロセル基地局20、端末50の数、構成等は図示するものに限られない。 Hereinafter, when the small cell base stations 10A and 10B, the macro cell base stations 20A to 20C, and the terminals 50A and 50B are not distinguished, they are collectively referred to as the small cell base station 10, the macro cell base station 20, and the terminal 50. Note that FIG. 1 is merely an example, and the number, configuration, and the like of the small cell base station 10, the macro cell base station 20, and the terminal 50 included in the wireless communication system 1 are not limited to those shown.
 次に、以上のような無線通信システム1におけるスモールセル基地局10の位置推定について説明する。スモールセル基地局10の位置推定は、スモールセル基地局10によって受信又は送信される参照信号(Reference signal:RS)を用いて測定される情報(以下、測定情報という)に基づいて行われてもよい。当該RSは、下りRS(例えば、ポジショニング参照信号(Positioning reference signal:PRS))であってもよいし、又は、上りRS(例えば、サウンディング参照信号(Sounding Reference Signal:SRS))であってもよい。なお、位置推定は、ポジショニング(positioning)と言い換えられてもよい。 Next, the position estimation of the small cell base station 10 in the wireless communication system 1 as described above will be described. The position estimation of the small cell base station 10 may be performed based on the information measured by using the reference signal (RS) received or transmitted by the small cell base station 10 (hereinafter referred to as measurement information). good. The RS may be a downlink RS (for example, a Positioning reference signal (PRS)) or an uplink RS (for example, a Sounding Reference Signal (SRS)). .. Note that position estimation may be paraphrased as positioning.
 <下りベースの位置推定>
 下りベースの位置推定では、スモールセル基地局10で受信される下りRSを用いて測定される測定情報に基づいて、当該スモールセル基地局10の位置が推定される。当該測定情報は、例えば、基準基地局(reference base station)からの下りRSと他の基地局(マクロセル基地局20又は他のスモールセル基地局10)からの下りRSとの時間差を示す情報(Reference Signal Time Difference(RSTD)とも呼ばれる)であってもよい。下りベースの位置推定は、Observed Time Difference Of Arrival(OTDOA)、下りベースのポジショニング(Downlink based positioning)等とも呼ばれる。
<Descent-based position estimation>
In the downlink-based position estimation, the position of the small cell base station 10 is estimated based on the measurement information measured using the downlink RS received by the small cell base station 10. The measurement information is, for example, information (Reference) indicating a time difference between a downlink RS from a reference base station and a downlink RS from another base station (macrocell base station 20 or another small cell base station 10). It may also be Signal Time Difference (RSTD)). Downlink-based position estimation is also called Observed Time Difference Of Arrival (OTDOA), downlink-based positioning, and the like.
 図2は、本実施形態に係る下りベースの位置推定の一例を示す図である。例えば、図2では、マクロセル基地局20A~20Cからの下りRSに基づいて測定される測定情報に基づいて、スモールセル基地局10の位置が推定される。なお、図2では、マクロセル基地局20Aが、基準基地局として選択されるものとする。また、以下では、下りRSを用いて測定された測定情報の一例としてRSTDを説明するが、上記測定情報はこれに限られない。 FIG. 2 is a diagram showing an example of downlink-based position estimation according to the present embodiment. For example, in FIG. 2, the position of the small cell base station 10 is estimated based on the measurement information measured based on the downlink RS from the macro cell base stations 20A to 20C. In FIG. 2, it is assumed that the macrocell base station 20A is selected as the reference base station. Further, in the following, RSTD will be described as an example of the measurement information measured by using the downlink RS, but the measurement information is not limited to this.
 図2に示すように、スモールセル基地局10は、マクロセル基地局20Cからの下りRSの受信に関する時間(time)TCとマクロセル基地局20Aからの下りRSの受信に関する時間TAとの時間差であるRSTDCAと、マクロセル基地局20Bからの下りRSの受信に関する時間TBとマクロセル基地局20Aからの下りRSの受信に関する時間TAとの時間差であるRSTDBAとを測定する。スモールセル基地局10は、測定されたRSTDCA及びRSTDBAをロケーションサーバ40に送信する。 As shown in FIG. 2, the small cell base station 10 has a time difference between the time T C related to the reception of the downlink RS from the macro cell base station 20C and the time T A related to the reception of the downlink RS from the macro cell base station 20A. and some RSTD CA, and RSTD BA is the time difference between the time T a for the received downlink RS from time T B and the macrocell base station 20A regarding the reception of the downlink RS from the macrocell base station 20B measures. The small cell base station 10 transmits the measured RSTD CA and RSTD BA to the location server 40.
 ロケーションサーバ40は、RSTDCA及びRSTDBAに基づいて、スモールセル基地局10の位置を推定する。図2に示すように、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Cの位置からRSTDCAが一致する関係にある点集合である双曲線DCAを求める。同様に、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Bの位置からRSTDBAが一致する関係にある点集合である双曲線DBAを求める。RSTDCA及びRSTDBAの測定の誤差(error)がないとすると、双曲線DCA及びDBAの交点をスモールセル基地局10の位置として一意に決定できる。ただし、実際には、測定の誤差があるので、双曲線DCAは、最大で、正及び負の誤差の和NCA++NCA-だけずれる可能性がある。同様に、双曲線DBAは、最大で、正及び負の誤差の和NBA++NBA-だけずれる可能性がある。なお、マクロセル基地局20A~20Cの既知の位置とは、例えば、2次元又は3次元の座標系における点であり、座標によって示されてもよい。 The location server 40 estimates the location of the small cell base station 10 based on the RSTD CA and RSTD BA. As shown in FIG. 2, the location server 40 obtains a hyperbolic D CA , which is a set of points in which the RSTD CAs have a matching relationship, from the positions of the known macrocell base stations 20A and 20C. Similarly, the location server 40 obtains the hyperbolic D BA is a set of points from the position of the known macrocell base stations 20A and 20B in a relationship RSTD BA match. When RSTD CA and RSTD BA of measurement error (error) is not be uniquely determined intersection of the hyperbolas D CA and D BA as the position of the small cell base station 10. However, in reality, there is a measurement error, so the hyperbola D CA may deviate by the sum of the positive and negative errors N CA + + N CA- at the maximum. Similarly, hyperbola D BA is at most, there is a sum N BA + + N BA- only deviate potential positive and negative error. The known positions of the macrocell base stations 20A to 20C are, for example, points in a two-dimensional or three-dimensional coordinate system, and may be indicated by coordinates.
 したがって、双曲線DCA及び双曲線DBAによって推定される位置は、最大誤差NCA++NCA-又はNBA++NBA-によって発生する範囲Rの任意の点となる。例えば、ロケーションサーバ40は、範囲R内の中間点、又は、マクロセル基地局20A~20Cとスモールセル基地局10との間の伝播路の状態に応じた重み付け及び/又は選択に基づいて、範囲R内のスモールセル基地局10の位置を決定する。 Therefore, the position estimated by hyperbolic D CA and hyperbolic D BA is a arbitrary point of maximum error N CA + + N CA- or N BA + + N BA- range R generated by. For example, the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
 <上りベースの位置推定>
 上りベースの位置推定では、スモールセル基地局10から送信される上りRSを用いて測定される測定情報に基づいて、当該スモールセル基地局10の位置が推定される。当該測定情報は、例えば、他の基地局(マクロセル基地局20又は他のスモールセル基地局10)における基準タイミングとスモールセル基地局10からの上りRSとの時間差を示す情報(Uplink-Relative Time of Arrival(UL-RTOA))とも呼ばれる)であってもよい。上りベースの位置推定は、Uplink Time Difference Of Arrival(UTDOA)、上りベースのポジショニング(Uplink based positioning)等とも呼ばれる。
<Upward-based position estimation>
In the uplink-based position estimation, the position of the small cell base station 10 is estimated based on the measurement information measured using the uplink RS transmitted from the small cell base station 10. The measurement information is, for example, information (Uplink-Relative Time of) indicating the time difference between the reference timing in another base station (macrocell base station 20 or another small cell base station 10) and the uplink RS from the small cell base station 10. It may also be called Arrival (UL-RTOA)). Uplink-based position estimation is also called Uplink Time Difference Of Arrival (UTDOA), Uplink based positioning, or the like.
 図3は、本実施形態に係る上りベースの位置推定の一例を示す図である。例えば、図3では、スモールセル基地局10からの上りRSを用いて測定される測定情報に基づいてスモールセル基地局10の位置が推定される。なお、以下では、上りRSを用いて測定された測定情報の一例としてUL-RTOAを説明するが、当該測定情報は、これに限られない。 FIG. 3 is a diagram showing an example of up-based position estimation according to the present embodiment. For example, in FIG. 3, the position of the small cell base station 10 is estimated based on the measurement information measured by using the uplink RS from the small cell base station 10. In the following, UL-RTOA will be described as an example of the measurement information measured by using the uplink RS, but the measurement information is not limited to this.
 図3に示すように、マクロセル基地局20A、20B及び20Cは、それぞれ、スモールセル基地局10からの上りRSの受信に関する時間TA、TB及びTCと基準時間TREFとの時間差であるUL-RTOAA、UL-RTOAB及びUL-RTOACを測定する。マクロセル基地局20A、20B及び20Cは、それぞれ、測定されたUL-RTOAA、UL-RTOAB及びUL-RTOACをロケーションサーバ40に送信する。 As shown in FIG. 3, the macrocell base station 20A, 20B and 20C, respectively, are the time difference between the time T A for the received uplink RS, T B and T C and the reference time T REF from the small cell base station 10 UL-RTOA A , UL-RTOA B and UL-RTOA C are measured. The macrocell base stations 20A, 20B and 20C transmit the measured UL-RTOA A , UL-RTOA B and UL-RTOA C to the location server 40, respectively.
 ロケーションサーバ40は、UL-RTOAA、UL-RTOAB及びUL-RTOACに基づいて、スモールセル基地局10の位置を推定する。図3に示すように、ロケーションサーバ40は、既知のマクロセル基地局20Aの位置からUL-RTOAAが一致する関係にある点集合である円RAを求める。同様に、ロケーションサーバ40は、既知のマクロセル基地局20B及び20Cの位置からUL-RTOAB及びUL-RTOACが一致する関係にある点集合である円RB及びRCを求める。UL-RTOAA、UL-RTOAB及びUL-RTOACの測定の誤差がないとすると、円RA、RB及びRCの交点をスモールセル基地局10の位置として一意に決定できる。ただし、実際には、測定の誤差があるので、円RA、RB及びRCは、それぞれ、最大で、正及び負の誤差の和NA++NA-、NB++NB-及びNC++NC-だけずれる可能性がある。 The location server 40 estimates the location of the small cell base station 10 based on UL-RTOA A , UL-RTOA B, and UL-RTOA C. As shown in FIG. 3, the location server 40 obtains a circle RA , which is a set of points in which UL-RTOA A matches, from the position of the known macrocell base station 20A. Similarly, the location server 40 obtains a circle R B and R C is a set of points from the position of the known macrocell base station 20B and 20C in relation to UL-RTOA B and UL-RTOA C matches. UL-RTOA A, when there is no error in the measurement of the UL-RTOA B and UL-RTOA C, circle R A, can be uniquely determined intersection of R B and R C as the position of the small cell base station 10. However, in reality, there is a measurement error, so the circles RA , R B, and RC are the sum of the positive and negative errors at the maximum, N A + + N A- , N B + + N B-, and N C +, respectively. There is a possibility of shifting by + NC-.
 したがって、円RA、RB及びRCによって推定される位置は、最大誤差NA++NA-、NB++NB-又はNC++NC-によって発生する範囲Rの任意の点となる。例えば、ロケーションサーバ40は、範囲R内の中間点、又は、マクロセル基地局20A~20Cとスモールセル基地局10との間の伝播路の状態に応じた重み付け及び/又は選択に基づいて、範囲R内のスモールセル基地局10の位置を決定する。 Therefore, the position estimated by the circles R A , R B and RC is any point in the range R generated by the maximum error NA + + NA- , N B + + N B- or NC + + NC-. For example, the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
 なお、図2及び図3では、位置推定の対象となるスモールセル基地局10以外の他のスモールセル基地局10は示されないが、これに限られない。図2においてマクロセル基地局20から送信される下りRSは、当該他のスモールセル基地局10から送信されてもよい。また、図3においてマクロセル基地局20で受信される上りRSは、他のスモールセル基地局10で受信されて測定されてもよい。 Note that, in FIGS. 2 and 3, other small cell base stations 10 other than the small cell base station 10 for which the position is estimated are not shown, but the present invention is not limited to this. The downlink RS transmitted from the macro cell base station 20 in FIG. 2 may be transmitted from the other small cell base station 10. Further, the uplink RS received by the macro cell base station 20 in FIG. 3 may be received and measured by another small cell base station 10.
 以上のように、下りRSを用いて測定された測定情報(例えば、RSTD)、又は、上りRSを用いて測定された測定情報(例えば、UL-RTOA)に基づいて、スモールセル基地局10の位置が推定される。このような下りRS又は上りRSを用いたスモールセル基地局10の位置推定の手法では、端末50の位置推定の手法を流用できるので、スモールセル基地局10の位置の登録を簡便に自動化できる。 As described above, the small cell base station 10 is based on the measurement information measured using the downlink RS (for example, RSTD) or the measurement information measured using the uplink RS (for example, UL-RTOA). The position is estimated. In the method of estimating the position of the small cell base station 10 using the downlink RS or the uplink RS, the method of estimating the position of the terminal 50 can be diverted, so that the registration of the position of the small cell base station 10 can be easily automated.
 しかしながら、上記下りRS又は上りRSを用いた位置推定の手法では、下りRS又は上りRSの伝播路の状態によって測定誤差が大きくなると、スモールセル基地局10の位置の推定精度が低下する恐れがある。一方、スモールセル基地局10は、複数のアンテナAを備える。このため、当該複数のアンテナAのうちでオンとなる一以上のアンテナAが異なる複数のアンテナパターンを切り替えることにより、下りRS又は上りRSの伝播路の状態が変化することが想定される。ここで、伝播路の状態とは、例えば、下りRS又は上りRSが伝播される伝播路の方向、当該伝播路の距離(すなわち、スモール基地局10とマクロセル基地局20との間の距離)及び当該伝播路の品質(例えば、パスロス、チャネル状態情報(CSI)、参照信号受信電力(RSRP)、参照信号受信品質(RSRQ)等)等の少なくとも一つを含んでもよい。 However, in the position estimation method using the downlink RS or the uplink RS, if the measurement error becomes large depending on the state of the propagation path of the downlink RS or the uplink RS, the estimation accuracy of the position of the small cell base station 10 may decrease. .. On the other hand, the small cell base station 10 includes a plurality of antennas A. Therefore, it is assumed that the state of the propagation path of the downlink RS or the uplink RS changes by switching a plurality of antenna patterns in which one or more antennas A that are turned on among the plurality of antennas A are different. Here, the state of the propagation path includes, for example, the direction of the propagation path on which the downlink RS or the uplink RS is propagated, the distance of the propagation path (that is, the distance between the small base station 10 and the macrocell base station 20), and the state of the propagation path. At least one of the quality of the propagation path (for example, path loss, channel state information (CSI), reference signal reception power (RSRP), reference signal reception quality (RSRQ), etc.) may be included.
 そこで、本実施形態に係るスモールセル基地局10は、複数のアンテナAの各々のオン又はオフを制御して、複数のアンテナパターンを切り替えることにより、当該複数のアンテナパターンの各々で下りRSの受信又は上りRSの送信を行う。また、ロケーションサーバ40は、当該複数のアンテナパターンの各々で受信された下りRSを用いて測定された測定情報(例えば、RSTD)、又は、当該複数のアンテナパターンの各々で送信された上りRSを用いて測定された測定情報(例えば、UL-RTOA)に基づいて、スモールセル基地局10の位置を推定する。これにより、下りRS又は上りRSの複数の伝播路の状態を考慮できるので、スモールセル基地局10の位置の推定精度を向上できる。 Therefore, the small cell base station 10 according to the present embodiment controls the on or off of each of the plurality of antennas A and switches the plurality of antenna patterns to receive the downlink RS in each of the plurality of antenna patterns. Alternatively, the uplink RS is transmitted. Further, the location server 40 uses the measurement information (for example, RSTD) measured using the downlink RS received in each of the plurality of antenna patterns, or the uplink RS transmitted in each of the plurality of antenna patterns. The position of the small cell base station 10 is estimated based on the measurement information measured using (for example, UL-RTOA). As a result, the states of a plurality of propagation paths of the downlink RS or the uplink RS can be taken into consideration, so that the estimation accuracy of the position of the small cell base station 10 can be improved.
 <複数のアンテナパターン>
 次に、複数のアンテナパターンを用いたスモールセル基地局の位置推定の手法について説明する。図4A及び4Bは、本実施形態に係るアンテナパターン毎の伝播路の一例を示す図である。例えば、図4A及び4Bでは、スモールセル基地局10が4つのアンテナA1~A4を備えるが、スモールセル基地局10が備えるアンテナAの数はこれに限られない。図4Aでは、アンテナA1がオン及びアンテナA2~A4がオフであるアンテナパターン1が示され、図4Bでは、アンテナA3がオン及びアンテナA1、A2、A4がオフであるアンテナパターン3が示される。
<Multiple antenna patterns>
Next, a method of estimating the position of a small cell base station using a plurality of antenna patterns will be described. 4A and 4B are diagrams showing an example of a propagation path for each antenna pattern according to the present embodiment. For example, in FIGS. 4A and 4B, the small cell base station 10 includes four antennas A1 to A4, but the number of antennas A included in the small cell base station 10 is not limited to this. FIG. 4A shows an antenna pattern 1 in which the antenna A1 is on and antennas A2 to A4 are off, and FIG. 4B shows an antenna pattern 3 in which the antenna A3 is on and the antennas A1, A2, and A4 are off.
 図4A及び4Bに示すように、アンテナパターン1でオンとなるアンテナA1とマクロセル基地局20A~20Cの各々との伝播路と、アンテナパターン3でオンとなるアンテナA3とマクロセル基地局20A~20Cの各々との伝播路とは異なる。このため、当該アンテナA1とマクロセル基地局20Cとの間の伝播路の状態が悪い(例えば、図4Aに示すように障害物の影響を受ける)場合、当該アンテナA3とマクロセル基地局20Cとの間の伝播路の状態は良い(例えば、図4Bに示すように障害物の影響を受けない)ことも想定される。この場合、アンテナパターン1に基づく推定位置を、アンテナパターン3に基づく推定位置と、スモールセル基地局10のアンテナA1及びA3間の既知の距離AD13とに基づいて、で補完することができる。 As shown in FIGS. 4A and 4B, the propagation paths between the antenna A1 turned on in the antenna pattern 1 and each of the macrocell base stations 20A to 20C, and the antennas A3 and the macrocell base stations 20A to 20C turned on in the antenna pattern 3 It is different from the propagation path with each. Therefore, if the state of the propagation path between the antenna A1 and the macrocell base station 20C is poor (for example, it is affected by an obstacle as shown in FIG. 4A), the space between the antenna A3 and the macrocell base station 20C is affected. It is also assumed that the condition of the propagation path of the antenna is good (for example, it is not affected by obstacles as shown in FIG. 4B). In this case, the estimated position based on the antenna pattern 1 can be complemented by the estimated position based on the antenna pattern 3 and the known distance AD13 between the antennas A1 and A3 of the small cell base station 10.
 ≪下りベースの位置推定≫
 図5は、本実施形態に係る複数のアンテナパターンを用いた下りベースの位置推定の一例を示す図である。なお、図5では、基準基地局をマクロセル基地局20Aとして、マクロセル基地局20C及び20Aからの下りRSを用いてアンテナパターン1でRSTDCA1が測定され、マクロセル基地局20B及び20Aからの下りRSを用いてアンテナパターン1でRSTDBA1が想定されるものとする。図2と同様に、RSTDCA1に基づく双曲線DCA1と、RSTDBA1に基づく双曲線DBA1と、が交わる範囲R1内で、スモールセル基地局10の位置が推定されるものとする。
≪Descent-based position estimation≫
FIG. 5 is a diagram showing an example of downlink-based position estimation using a plurality of antenna patterns according to the present embodiment. In FIG. 5, with the reference base station as the macrocell base station 20A, RSTD CA1 is measured with the antenna pattern 1 using the downlink RS from the macrocell base stations 20C and 20A, and the downlink RS from the macrocell base stations 20B and 20A is measured. It is assumed that RSTD BA1 is assumed in the antenna pattern 1 by using the antenna pattern 1. Similar to FIG. 2, it is assumed that the position of the small cell base station 10 is estimated within the range R1 where the hyperbola D CA1 based on RSTD CA1 and the hyperbola D BA1 based on RSTD BA1 intersect.
 ここで、アンテナパターン1でオンになるアンテナA1とマクロセル基地局20Cの伝播路の状態が悪い場合(例えば、図4A参照)、RSTDCA1の誤差NCAが大きくなるので、範囲R1が拡大し、スモールセル基地局10の位置の推定精度が低下する恐れがある。そこで、スモールセル基地局10は、アンテナA1よりも伝播路の状態が良いアンテナA3をオンにするアンテナパターン3で、マクロセル基地局20C及び20Aからの下りRSを用いてRSTDCA3を測定してもよい。 Here, when the state of the propagation path of the antenna A1 and the macrocell base station 20C, which are turned on in the antenna pattern 1, is bad (see, for example, FIG. 4A), the error N CA of the RSTD CA1 becomes large, so that the range R1 expands. There is a risk that the estimation accuracy of the position of the small cell base station 10 will decrease. Therefore, the small cell base station 10 has an antenna pattern 3 that turns on the antenna A3, which has a better propagation path condition than the antenna A1, and even if the RSTD CA3 is measured using the downlink RS from the macro cell base stations 20C and 20A. good.
 図5に示すように、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Cの位置からRSTDCA3が一致する関係にある点集合である双曲線DCA3を求める。また、ロケーションサーバ40は、スモールセル基地局10内におけるアンテナA1及びA3の既知の距離AD13に基づいて、スモールセル基地局10の位置を推定してもよい。例えば、図5では、RSTDCA3に基づく双曲線DCA3から距離AD13の点の集合である円C1が求められる。ロケーションサーバ40は、上記範囲R1と円C1とが交わる範囲R2を求め、当該範囲R2でスモールセル基地局10の推定位置を決定してもよい。 As shown in FIG. 5, the location server 40 obtains the hyperbola D CA3 , which is a set of points in which the RSTD CA3 has a matching relationship, from the positions of the known macrocell base stations 20A and 20C. Further, the location server 40 may estimate the position of the small cell base station 10 based on the known distance AD13 of the antennas A1 and A3 in the small cell base station 10. For example, in FIG. 5, a circle C1 which is a set of points at a distance AD13 is obtained from a hyperbola D CA3 based on RSTD CA3. The location server 40 may obtain a range R2 where the range R1 and the circle C1 intersect, and determine the estimated position of the small cell base station 10 in the range R2.
 このように、図5では、同じマクロセル基地局20A及び20Cからの下りRSを用いて異なるアンテナパターン1及び3で測定された複数のRSTDと、当該異なるアンテナパターン1及び3でオンとなるアンテナA1及びA3間の既知の距離AD13に基づいて、スモールセル基地局10の位置が推定される。これにより、単一のアンテナパターン1で推定された範囲R1よりも小さい範囲R2に、スモールセル基地局10の推定位置を絞ることができる。よって、スモールセル基地局10の推定精度を向上させることができる。 As described above, in FIG. 5, a plurality of RSTDs measured in different antenna patterns 1 and 3 using the downlink RS from the same macrocell base stations 20A and 20C, and the antenna A1 turned on in the different antenna patterns 1 and 3. And the position of the small cell base station 10 is estimated based on the known distance AD13 between A3 and A3. As a result, the estimated position of the small cell base station 10 can be narrowed down to a range R2 smaller than the range R1 estimated by the single antenna pattern 1. Therefore, the estimation accuracy of the small cell base station 10 can be improved.
 ≪上りベースの位置推定≫
 図6は、本実施形態に係る複数のアンテナパターンを用いた上りベースの位置推定の一例を示す図である。なお、図6では、マクロセル基地局20A、20B及び20Cが、スモールセル基地局10からアンテナパターン1で送信された上りRSを用いてUL-RTOAA1、UL-RTOAB1及びUL-RTOAC1を測定するものとする。図3と同様に、UL-RTOAA1、UL-RTOAB1及びUL-RTOAC1に基づく円RA1、RB1及びRC1が交わる範囲R3内で、スモールセル基地局10の位置が推定されるものとする。
≪Upward base position estimation≫
FIG. 6 is a diagram showing an example of up-base position estimation using a plurality of antenna patterns according to the present embodiment. In FIG. 6, the macro cell base stations 20A, 20B and 20C measure UL-RTOA A1 , UL-RTOA B1 and UL-RTOA C1 using the uplink RS transmitted from the small cell base station 10 in the antenna pattern 1. It shall be. Similar to FIG. 3, in the range R3 of the circle R A1, R B1 and R C1 based on UL-RTOA A1, UL-RTOA B1 and UL-RTOA C1 intersect, that the position of the small cell base station 10 is estimated And.
 ここで、アンテナパターン1でオンになるアンテナA1とマクロセル基地局20Cの伝播路の状態が悪い場合(例えば、図4A参照)、UL-RTOAA1の誤差NCAが大きくなるので、範囲R3が拡大し、スモールセル基地局10の位置の推定精度が低下する恐れがある。そこで、スモールセル基地局10は、アンテナA1よりも伝播路の状態が良いアンテナA3をオンにするアンテナパターン3で、上りRSを送信し、マクロセル基地局20A、20B及び20Cが、UL-RTOAA3、UL-RTOAB3及びUL-RTOAC3を測定してもよい。 Here, if the state of the propagation path of the antenna A1 and the macrocell base station 20C which is turned on by the antenna pattern 1 is poor (e.g., see FIG. 4A), since the error N CA of UL-RTOA A1 increases, the range R3 is larger However, the estimation accuracy of the position of the small cell base station 10 may decrease. Therefore, the small cell base station 10 transmits an uplink RS with an antenna pattern 3 that turns on the antenna A3, which has a better propagation path condition than the antenna A1, and the macro cell base stations 20A, 20B, and 20C perform the UL-RTOA A3. , UL-RTOA B3 and UL-RTOA C3 may be measured.
 図6に示すように、ロケーションサーバ40は、既知のマクロセル基地局20Cの位置からUL-RTOAC3が一致する関係にある点集合である円RC3を求める。また、ロケーションサーバ40は、スモールセル基地局10内におけるアンテナA1及びA3の既知の距離AD13に基づいて、スモールセル基地局10の位置を推定してもよい。例えば、図6では、UL-RTOAC3に基づく円R3から距離AD13の点の集合である円C2が求められる。ロケーションサーバ40は、上記範囲R3と円C2とが交わる範囲R4を求め、当該範囲R4でスモールセル基地局10の推定位置を決定してもよい。 As shown in FIG. 6, the location server 40 obtains the circle R C3 , which is a set of points in which UL-RTOA C3 has a matching relationship, from the position of the known macrocell base station 20C. Further, the location server 40 may estimate the position of the small cell base station 10 based on the known distance AD13 of the antennas A1 and A3 in the small cell base station 10. For example, in FIG. 6, a circle C2 is a set of points of the distance AD13 from the circle R 3 based on UL-RTOA C3 is obtained. The location server 40 may obtain a range R4 where the range R3 and the circle C2 intersect, and determine the estimated position of the small cell base station 10 in the range R4.
 このように、図6では、異なるアンテナパターン1及び3で送信された上りRSに基づいてマクロセル基地局20Cで測定された複数のUL-RTOAと、当該異なるアンテナパターン1及び3でオンとなるアンテナA1及びA3間の既知の距離AD13に基づいて、スモールセル基地局10の位置が推定される。これにより、単一のアンテナパターン1で推定された範囲R3よりも小さい範囲R4に、スモールセル基地局10の推定位置を絞ることができる。よって、スモールセル基地局10の推定精度を向上させることができる。 As described above, in FIG. 6, a plurality of UL-RTOAs measured by the macrocell base station 20C based on the uplink RS transmitted in the different antenna patterns 1 and 3 and the antennas turned on in the different antenna patterns 1 and 3 are used. The position of the small cell base station 10 is estimated based on the known distance AD13 between A1 and A3. As a result, the estimated position of the small cell base station 10 can be narrowed down to a range R4 smaller than the range R3 estimated by the single antenna pattern 1. Therefore, the estimation accuracy of the small cell base station 10 can be improved.
 なお、図4~6では、アンテナパターン1及び3を用いたスモールセル基地局の位置推定の手法について例示したが、スモールセル基地局10の位置推定に用いられる複数のアンテナパターンはこれに限られない。 Although FIGS. 4 to 6 illustrate the method of estimating the position of the small cell base station using the antenna patterns 1 and 3, the plurality of antenna patterns used for estimating the position of the small cell base station 10 are limited to this. No.
 図7は、本実施形態に係る複数のアンテナパターンの一例を示す図である。図7に示すように、アンテナパターンは、スモールセル基地局10が備える複数のアンテナA(例えば、図7では、アンテナA1~A4)の各々のオン又はオフの組み合わせである。複数のアンテナパターン間では、オンとなる一以上のアンテナAのセット(アンテナセットともいう)が異なる。 FIG. 7 is a diagram showing an example of a plurality of antenna patterns according to the present embodiment. As shown in FIG. 7, the antenna pattern is a combination of turning on or off each of the plurality of antennas A (for example, antennas A1 to A4 in FIG. 7) included in the small cell base station 10. A set of one or more antennas A (also referred to as an antenna set) to be turned on differs between the plurality of antenna patterns.
 例えば、アンテナパターン1~4間では、オンとなる一つのアンテナAが異なる。また、アンテナパターン5~8間では、オンとなる二つのアンテナAが異なる。このように、複数のアンテナパターンでは、オンとなるアンテナセットが異なればよい。 For example, one antenna A to be turned on differs between the antenna patterns 1 to 4. Further, the two antennas A that are turned on are different between the antenna patterns 5 to 8. As described above, in the plurality of antenna patterns, it is sufficient that the antenna sets to be turned on are different.
 図4~6で説明したように、スモールセル基地局10の位置推定に異なるアンテナパターンで受信された下りRS又は送信された上りRSが用いられる場合、当該異なるアンテナパターンでオンとなるアンテナ間の距離に基づいて、当該位置推定が行われる。 As described with reference to FIGS. 4 to 6, when the downlink RS received by a different antenna pattern or the uplink RS transmitted by a different antenna pattern is used for the position estimation of the small cell base station 10, between the antennas turned on by the different antenna pattern. The position is estimated based on the distance.
 例えば、図7のアンテナパターン1及び2を用いる場合、アンテナA1及びA2の距離が考慮される。また、アンテナパターン2及び3を用いる場合、アンテナA2及びA3の距離が考慮される。また、アンテナパターン2及び4を用いる場合、アンテナA2及びA4の距離が考慮される。また、アンテナパターン3及び4を用いる場合は、アンテナA3及びA4の距離が考慮される。このように、アンテナパターンのペア毎に位置推定に用いるアンテナ間の距離が定められてもよい。 For example, when the antenna patterns 1 and 2 of FIG. 7 are used, the distance between the antennas A1 and A2 is taken into consideration. When the antenna patterns 2 and 3 are used, the distance between the antennas A2 and A3 is taken into consideration. When the antenna patterns 2 and 4 are used, the distance between the antennas A2 and A4 is taken into consideration. When the antenna patterns 3 and 4 are used, the distance between the antennas A3 and A4 is taken into consideration. In this way, the distance between the antennas used for position estimation may be determined for each pair of antenna patterns.
 また、アンテナパターン5及び6を用いる場合、アンテナA1及びA2を含むアンテナセットS1と、アンテナA3及びA4を含むアンテナセットS2との距離が考慮されてもよい。同様に、アンテナパターン7及び8を用いる場合、アンテナA1及びA4を含むアンテナセットS3と、アンテナA2及びA3を含むアンテナセットS4との距離が考慮されてもよい。 Further, when the antenna patterns 5 and 6 are used, the distance between the antenna set S1 including the antennas A1 and A2 and the antenna set S2 including the antennas A3 and A4 may be taken into consideration. Similarly, when the antenna patterns 7 and 8 are used, the distance between the antenna set S3 including the antennas A1 and A4 and the antenna set S4 including the antennas A2 and A3 may be considered.
 以上のように、オンとなる一以上のアンテナが異なる複数のアンテナパターンの各々を用いて下りRSの受信又は上りRSの送信を行うことにより、スモールセル基地局10と他の基地局(マクロセル基地局20又は他のスモールセル基地局10)との間の複数の測定情報を考慮できるので、スモールセル基地局10の位置の推定精度を向上できる。 As described above, the small cell base station 10 and other base stations (macrocell bases) are used by receiving the downlink RS or transmitting the uplink RS by using each of a plurality of antenna patterns in which one or more antennas to be turned on are different. Since a plurality of measurement information with the station 20 or another small cell base station 10) can be considered, the accuracy of estimating the position of the small cell base station 10 can be improved.
 (無線通信システムの詳細構成)
 次に、以上のような無線通信システム1の各装置の詳細構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
(Detailed configuration of wireless communication system)
Next, the detailed configuration of each device of the wireless communication system 1 as described above will be described. It should be noted that the following configurations are for showing the configurations necessary for the description of the present embodiment, and do not exclude that each device includes functional blocks other than those shown in the drawings.
 <ハードウェア構成>
 図8は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、スモールセル基地局10、マクロセル基地局20又はロケーションサーバ40)は、プロセッサ10a、メモリ10b、記憶装置10c、有線又は無線通信を行う通信装置10d、入力操作を受け付ける入力装置10e、情報の出力を行う出力装置10f及び一以上のアンテナAを少なくとも有する。
<Hardware configuration>
FIG. 8 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment. Each device (for example, small cell base station 10, macro cell base station 20 or location server 40) in the wireless communication system 1 includes a processor 10a, a memory 10b, a storage device 10c, a communication device 10d for wired or wireless communication, and an input operation. It has at least an input device 10e for receiving the information, an output device 10f for outputting information, and one or more antennas A.
 プロセッサ10aは、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ10aは、各装置を制御する制御部を構成してもよい。 The processor 10a is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1. The processor 10a may form a control unit that controls each device.
 メモリ10bは、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。 The memory 10b is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
 記憶装置10cは、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The storage device 10c is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
 通信装置10dは、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュールなどである。また、通信装置10dには、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 10d is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 10d may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナAから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 The RF device generates a radio signal transmitted from the antenna A by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna A and transmits it to the BB device. The BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
 入力装置10eは、例えば、キーボード、タッチパネル、マウス及び/又はマイク等である。出力装置10fは、例えば、ディスプレイ及び/又はスピーカ等である。 The input device 10e is, for example, a keyboard, a touch panel, a mouse and / or a microphone. The output device 10f is, for example, a display and / or a speaker.
 <機能ブロック構成>
 ≪スモールセル基地局≫
 図9は、本実施形態に係るスモールセル基地局の機能ブロック構成の一例を示す図である。図9に示すように、スモールセル基地局10は、アンテナ部11a~11dと、制御部12と、通信部13と、測定部14と、を備える。なお、上りベースの位置推定の場合、測定部14は省略されてもよい。
<Functional block configuration>
≪Small cell base station≫
FIG. 9 is a diagram showing an example of a functional block configuration of the small cell base station according to the present embodiment. As shown in FIG. 9, the small cell base station 10 includes antenna units 11a to 11d, a control unit 12, a communication unit 13, and a measurement unit 14. In the case of uplink-based position estimation, the measurement unit 14 may be omitted.
 また、図9では、4つのアンテナ部11a~11dが示されるが、スモールセル基地局10の備えるアンテナ部11の数は4に限られず、2以上であればよい。アンテナ部11a~11d及びアンテナ部11a~11dが備えるアンテナA1~A4を区別しない場合は、アンテナ部11及びアンテナAと総称する。 Further, in FIG. 9, four antenna units 11a to 11d are shown, but the number of antenna units 11 included in the small cell base station 10 is not limited to 4, and may be 2 or more. When the antennas A1 to A4 included in the antenna portions 11a to 11d and the antenna portions 11a to 11d are not distinguished, they are collectively referred to as the antenna portion 11 and the antenna A.
 各アンテナ部(antenna unit)11は、アンテナAを含んで構成される。当該アンテナAは、一つ又は複数のアンテナ素子(antenna element)で構成されてもよい。当該アンテナAは、複数のアンテナ素子を含むアンテナパネルで構成されてもよい。また、各アンテナ部11は、アンテナAのオン又はオフを切り替えるスイッチを備えてもよい。 Each antenna unit 11 includes an antenna A. The antenna A may be composed of one or a plurality of antenna elements. The antenna A may be composed of an antenna panel including a plurality of antenna elements. Further, each antenna unit 11 may include a switch for switching the antenna A on or off.
 制御部12は、各アンテナ部11のアンテナAのオン又はオフを制御してもよい。制御部12は、各アンテナAのオン又はオフを制御して、複数のアンテナAのうちでオンとなる一以上のアンテナAが異なる複数のアンテナパターン(例えば、図7)を切り替えてもよい。 The control unit 12 may control the on or off of the antenna A of each antenna unit 11. The control unit 12 may control the on or off of each antenna A to switch a plurality of antenna patterns (for example, FIG. 7) in which one or more antennas A that are turned on among the plurality of antennas A are different.
 制御部12は、当該複数のアンテナパターンを選択してもよい。上記複数のアンテナパターンを示す情報(アンテナパターン情報)が後述する通信部13によってロケーションサーバ40から受信される場合に、当該アンテナパターン情報が示す複数のアンテナパターンを選択してもよい。又は、制御部12は、例えば、スモールセル基地局10と他の基地局(マクロセル基地局20又は他のスモールセル基地局10)との間の多くの伝播路の状態に基づいて、複数のアンテナパターンを選択し、後述する通信部13に当該選択されたアンテナパターンを示す情報をロケーションサーバ40に送信させてもよい。また、制御部12は、予め定められた全アンテナパターンを選択して、当該全アンテナパターンを順に試行してもよい。 The control unit 12 may select the plurality of antenna patterns. When the information indicating the plurality of antenna patterns (antenna pattern information) is received from the location server 40 by the communication unit 13 described later, the plurality of antenna patterns indicated by the antenna pattern information may be selected. Alternatively, the control unit 12 may use a plurality of antennas, for example, based on the state of many propagation paths between the small cell base station 10 and another base station (macro cell base station 20 or another small cell base station 10). A pattern may be selected, and the communication unit 13 described later may transmit information indicating the selected antenna pattern to the location server 40. Further, the control unit 12 may select all predetermined antenna patterns and try all the antenna patterns in order.
 通信部13は、アクセスリンクL1を介して端末50との間で、下り信号の送信及び/又は上り信号の受信を行う。また、通信部13は、バックホールリンクL2を介してマクロセル基地局20との間で、下り信号の受信及び/又は上り信号の送信を行う。 The communication unit 13 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Further, the communication unit 13 receives the downlink signal and / or transmits the uplink signal to and from the macrocell base station 20 via the backhaul link L2.
 また、通信部13は、ロケーションサーバ40との通信用のプロトコルを介して、ロケーションサーバ40と通信を行ってもよい。当該プロトコルは、例えば、LTE positioning Protocol(LPP)、LPP Annex(LPPa)、又は、LPP Extensions(LPPe)等の位置推定に関するプロトコルであってもよい。例えば、通信部13は、当該プロトコルを介して、上記複数のアンテナパターンを示す情報(アンテナパターン情報)を受信又は送信してもよい。 Further, the communication unit 13 may communicate with the location server 40 via a protocol for communication with the location server 40. The protocol may be, for example, a protocol related to position estimation such as LTE positioning Protocol (LPP), LPP Annex (LPPa), or LPP Extensions (LPPe). For example, the communication unit 13 may receive or transmit information indicating the plurality of antenna patterns (antenna pattern information) via the protocol.
 具体的には、通信部13は、下りベースの位置推定に関する通信を行うOTDOA通信部131、及び、上りベースの位置推定に関する通信を行うUTDOA通信部132の少なくとも一つを含んでもよい。 Specifically, the communication unit 13 may include at least one of the OTDOA communication unit 131 that performs communication related to downlink-based position estimation and the UTDOA communication unit 132 that performs communication related to uplink-based position estimation.
 OTDOA通信部131は、上記複数のアンテナパターンの各々で、スモールセル基地局10の位置推定用の測定情報(例えば、RSTD)の測定に用いられる下りRS(例えば、PRS)を受信する。具体的には、OTDOA通信部131は、各アンテナパターンで、複数のセルそれぞれで送信される複数の下りRSを受信してもよい。当該複数のセルは、一以上のマクロセル基地局20及び/又は他の一以上のスモールセル基地局10によって形成されてもよい。 The OTDOA communication unit 131 receives the downlink RS (for example, PRS) used for measuring the measurement information (for example, RSTD) for estimating the position of the small cell base station 10 in each of the plurality of antenna patterns. Specifically, the OTDOA communication unit 131 may receive a plurality of downlink RSs transmitted in each of the plurality of cells in each antenna pattern. The plurality of cells may be formed by one or more macro cell base stations 20 and / or one or more other small cell base stations 10.
 また、OTDOA通信部131は、測定部14による測定を支援(assist)する情報(支援情報)をロケーションサーバ40から受信してもよい。支援情報は、例えば、測定対象の下りRSを送信するセルに関する情報(例えば、セルID等)、下りRSの構成(configuration)情報(例えば、タイミング、周期、無線リソース等)等を含んでもよい。 Further, the OTDOA communication unit 131 may receive information (assist information) that assists the measurement by the measurement unit 14 from the location server 40. The support information may include, for example, information about a cell that transmits the downlink RS to be measured (for example, cell ID, etc.), configuration information of the downlink RS (for example, timing, period, radio resource, etc.), and the like.
 また、OTDOA通信部131は、上記複数のアンテナパターンの各々で受信された下りRSを用いて測定された測定情報(例えば、RSTD)をロケーションサーバ40に送信してもよい。 Further, the OTDOA communication unit 131 may transmit the measurement information (for example, RSTD) measured by using the downlink RS received in each of the plurality of antenna patterns to the location server 40.
 UTDOA通信部132は、上記複数のアンテナパターンの各々で、スモールセル基地局10の位置推定用の測定情報(例えば、UL-RTOA)の測定に用いられる上りRS(例えば、SRS)を送信する。例えば、UTDOA通信部132は、アンテナパターン毎に異なる無線リソース(例えば、時間リソース及び/又は周波数リソース)で、当該上りRSを送信してもよい。また、UTDOA通信部132は、上りRSの送信に使用するアンテナパターンを予めマクロセル基地局20に明示的に通知してもよい。 The UTDOA communication unit 132 transmits an uplink RS (for example, SRS) used for measuring measurement information (for example, UL-RTOA) for position estimation of the small cell base station 10 in each of the plurality of antenna patterns. For example, the UTDOA communication unit 132 may transmit the uplink RS with different radio resources (for example, time resources and / or frequency resources) for each antenna pattern. Further, the UTDOA communication unit 132 may explicitly notify the macrocell base station 20 of the antenna pattern used for the transmission of the uplink RS in advance.
 測定部14は、OTDOA通信部131で受信された下りRSに基づいて、測定情報(例えば、RSTD)を測定する。具体的には、測定部14は、複数のセルで受信された下りRSの時間差(例えば、図2参照)を当該測定情報として、各アンテナパターンで測定してもよい。 The measurement unit 14 measures the measurement information (for example, RSTD) based on the downlink RS received by the OTDOA communication unit 131. Specifically, the measuring unit 14 may measure each antenna pattern using the time difference of the downlink RS received in the plurality of cells (see, for example, FIG. 2) as the measurement information.
 なお、アンテナ部11は、例えば、アンテナA及び通信装置10dにより実現されてもよい。制御部12は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。通信部13及び測定部14は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The antenna unit 11 may be realized by, for example, the antenna A and the communication device 10d. The control unit 12 may be realized by the processor 10a executing a program stored in the storage device 10c. The communication unit 13 and the measurement unit 14 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium). The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 ≪マクロセル基地局≫
 図10は、本実施形態に係るマクロセル基地局の機能ブロック構成の一例を示す図である。図10に示すように、マクロセル基地局20は、通信部21と、測定部22と、制御部23と、を備える。なお、下りベースの位置推定の場合、測定部22は省略されてもよい。
≪Macrocell base station≫
FIG. 10 is a diagram showing an example of a functional block configuration of a macrocell base station according to the present embodiment. As shown in FIG. 10, the macrocell base station 20 includes a communication unit 21, a measurement unit 22, and a control unit 23. In the case of downlink-based position estimation, the measurement unit 22 may be omitted.
 通信部21は、アクセスリンクL1を介して端末50との間で、下り信号の送信及び/又は上り信号の受信を行う。また、通信部21は、バックホールリンクL2を介してスモールセル基地局10との間で、下り信号の送信及び/又は上り信号の受信を行う。 The communication unit 21 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Further, the communication unit 21 transmits a downlink signal and / or receives an uplink signal with the small cell base station 10 via the backhaul link L2.
 また、通信部21は、ロケーションサーバ40との通信用のプロトコル(例えば、LPPa)を介して、ロケーションサーバ40と通信を行ってもよい。例えば、通信部21は、当該プロトコルを介して、上記アンテナパターン情報を受信してもよい。 Further, the communication unit 21 may communicate with the location server 40 via a protocol for communication with the location server 40 (for example, LPPa). For example, the communication unit 21 may receive the antenna pattern information via the protocol.
 具体的には、通信部21は、下りベースの位置推定に関する通信を行うOTDOA通信部211、及び、上りベースの位置推定に関する通信を行うUTDOA通信部212の少なくとも一つを含んでもよい。 Specifically, the communication unit 21 may include at least one of the OTDOA communication unit 211 that performs communication related to downlink-based position estimation and the UTDOA communication unit 212 that performs communication related to uplink-based position estimation.
 OTDOA通信部211は、スモールセル基地局10の位置推定用の測定情報(例えば、RSTD)の測定に用いられる下りRS(例えば、PRS)を送信する。例えば、OTDOA通信部211は、アンテナパターン毎に異なる無線リソース(例えば、時間リソース及び/又は周波数リソース)で、当該下りRSを送信してもよい。 The OTDOA communication unit 211 transmits a downlink RS (for example, PRS) used for measuring measurement information (for example, RSTD) for estimating the position of the small cell base station 10. For example, the OTDOA communication unit 211 may transmit the downlink RS with different radio resources (for example, time resources and / or frequency resources) for each antenna pattern.
 UTDOA通信部212は、複数のアンテナパターンの各々でスモールセル基地局10から送信された上りRS(例えば、SRS)を受信する。当該上りRSの送信に用いられたアンテナパターンは、例えば、当該上りRSが送信される無線リソース(例えば、時間リソース及び/又は周波数リソース)に基づいて認識されてもよい。 The UTDOA communication unit 212 receives the uplink RS (for example, SRS) transmitted from the small cell base station 10 in each of the plurality of antenna patterns. The antenna pattern used to transmit the uplink RS may be recognized, for example, based on the radio resources (eg, time resources and / or frequency resources) to which the uplink RS is transmitted.
 また、UTDOA通信部212は、測定部22による測定を支援する支援情報をロケーションサーバ40から受信してもよい。当該支援情報は、例えば、測定対象の上りRSに関する情報(例えば、タイミング、周期、無線リソース等)等を含んでもよい。 Further, the UTDOA communication unit 212 may receive support information for supporting the measurement by the measurement unit 22 from the location server 40. The support information may include, for example, information on the uplink RS to be measured (for example, timing, period, radio resource, etc.).
 測定部22は、UTDOA通信部212で受信された上りRSに基づいて、測定情報(例えば、UL-RTOA)を測定する。具体的には、測定部22は、基準時間と上りRSの時間差(例えば、図3参照)を当該測定情報として、各アンテナパターンで測定してもよい。測定部22は、例えば、位置測定ユニット(Location Measurement Unit:LMU)で構成されてもよい。 The measurement unit 22 measures measurement information (for example, UL-RTOA) based on the uplink RS received by the UTDOA communication unit 212. Specifically, the measuring unit 22 may measure each antenna pattern using the time difference between the reference time and the uplink RS (see, for example, FIG. 3) as the measurement information. The measuring unit 22 may be composed of, for example, a location measurement unit (LMU).
 制御部23は、マクロセル基地局20を制御する。具体的には、制御部23は、通信部21による通信及び/又は測定部22による測定を制御してもよい。 The control unit 23 controls the macro cell base station 20. Specifically, the control unit 23 may control the communication by the communication unit 21 and / or the measurement by the measurement unit 22.
 なお、通信部21及び測定部22は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、上記記憶媒体に格納されていてもよい。 The communication unit 21 and the measurement unit 22 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d. .. When executing a program, the program may be stored in the storage medium.
 ≪ロケーションサーバ≫
 図11は、本実施形態に係るロケーションサーバの機能ブロック構成の一例を示す図である。図11に示すように、ロケーションサーバ40は、記憶部41と、通信部42と、推定部43と、選択部44とを備える。なお、スモールセル基地局10で複数のアンテナパターンが選択される場合、選択部44は省略されてもよい。
≪Location server≫
FIG. 11 is a diagram showing an example of the functional block configuration of the location server according to the present embodiment. As shown in FIG. 11, the location server 40 includes a storage unit 41, a communication unit 42, an estimation unit 43, and a selection unit 44. When a plurality of antenna patterns are selected by the small cell base station 10, the selection unit 44 may be omitted.
 記憶部41は、スモールセル基地局10の位置推定に用いられる情報を記憶する。当該情報は、例えば、以下の少なくとも一つを示す情報を含んでもよい。
・位置推定対象のスモールセル基地局10以外の他の基地局(例えば、マクロセル基地局20A~20C、他のスモールセル基地局10)の位置
・位置推定対象のスモールセル基地局10が備える二つのアンテナA間の距離(又は、二つのアンテナセット間の距離)
・各アンテナパターンにおける伝播路の状態
The storage unit 41 stores information used for estimating the position of the small cell base station 10. The information may include, for example, information indicating at least one of the following.
-Two base stations included in the position / position estimation target small cell base station 10 of other base stations (for example, macrocell base stations 20A to 20C, other small cell base stations 10) other than the position estimation target small cell base station 10. Distance between antennas A (or distance between two antenna sets)
・ State of propagation path in each antenna pattern
 通信部42は、所定のプロトコル(例えば、LPP、LPPa又はLPPe等)を用いて、スモールセル基地局10、マクロセル基地局20及び端末50の少なくとも一つとの通信を行う。例えば、通信部42は、上記伝播路の状態を示す情報(伝播路情報)をスモールセル基地局10又はマクロセル基地局20から受信してもよい。 The communication unit 42 communicates with at least one of the small cell base station 10, the macro cell base station 20, and the terminal 50 by using a predetermined protocol (for example, LPP, LPPa, LPPe, etc.). For example, the communication unit 42 may receive information indicating the state of the propagation path (propagation path information) from the small cell base station 10 or the macro cell base station 20.
 また、通信部42は、後述する選択部44で選択される複数のアンテナパターンを示すアンテナパターン情報を、スモールセル基地局10に送信してもよい。又は、通信部42は、スモールセル基地局10で選択された複数のアンテナパターンを示すアンテナパターン情報を受信してもよい。 Further, the communication unit 42 may transmit antenna pattern information indicating a plurality of antenna patterns selected by the selection unit 44, which will be described later, to the small cell base station 10. Alternatively, the communication unit 42 may receive antenna pattern information indicating a plurality of antenna patterns selected by the small cell base station 10.
 また、通信部42は、下りベースの位置推定に関する通信を行うOTDOA通信部421、及び、上りベースの位置推定に関する通信を行うUTDOA通信部422の少なくとも一つを含んでもよい。 Further, the communication unit 42 may include at least one of the OTDOA communication unit 421 that performs communication related to downlink-based position estimation and the UTDOA communication unit 422 that performs communication related to uplink-based position estimation.
 OTDOA通信部421は、スモールセル基地局10で受信された下りRSを用いて測定された測定情報(例えば、RSTD)をスモールセル基地局10から受信してもよい。当該測定情報は、上記複数のアンテナパターンの各々に対応してもよい。また、OTDOA通信部421は、当該測定情報の測定用の支援情報をスモールセル基地局10に送信してもよい。 The OTDOA communication unit 421 may receive measurement information (for example, RSTD) measured using the downlink RS received by the small cell base station 10 from the small cell base station 10. The measurement information may correspond to each of the plurality of antenna patterns. Further, the OTDOA communication unit 421 may transmit the support information for measurement of the measurement information to the small cell base station 10.
 UTDOA通信部422は、スモールセル基地局10から送信された上りRSを用いて測定された測定情報(例えば、UL-RTOA)をマクロセル基地局20又は他のスモールセル基地局10から受信してもよい。当該測定情報は、上記複数のアンテナパターンの各々に対応してもよい。また、UTDOA通信部422は、当該測定情報の測定用の支援情報をマクロセル基地局20又は他のスモールセル基地局10に送信してもよい。 Even if the UTDOA communication unit 422 receives the measurement information (for example, UL-RTOA) measured using the uplink RS transmitted from the small cell base station 10 from the macro cell base station 20 or another small cell base station 10. good. The measurement information may correspond to each of the plurality of antenna patterns. Further, the UTDOA communication unit 422 may transmit the support information for measurement of the measurement information to the macro cell base station 20 or another small cell base station 10.
 推定部43は、OTDOA通信部421で受信された測定情報(例えば、RSTD)又はUTDOA通信部422で受信された測定情報(例えば、UL-RTOA)に基づいて、スモールセル基地局10の位置推定を行う。具体的には、推定部43は、スモールセル基地局10で切り替えられる複数のアンテナパターンの少なくとも一つについての上記推定情報に基づいて、スモールセル基地局10の位置推定を行ってもよい。 The estimation unit 43 estimates the position of the small cell base station 10 based on the measurement information (for example, RSTD) received by the OTDOA communication unit 421 or the measurement information (for example, UL-RTOA) received by the UTDOA communication unit 422. I do. Specifically, the estimation unit 43 may estimate the position of the small cell base station 10 based on the above estimation information for at least one of the plurality of antenna patterns switched by the small cell base station 10.
 具体的には、推定部43は、複数のアンテナパターンにそれぞれ対応する複数の測定情報と、当該複数のアンテナパターンでオンになるアンテナ間の距離とに基づいて、スモールセル基地局10の位置推定を行ってもよい。例えば、図4-6で説明したように、スモールセル基地局10においてアンテナパターン1及び3が切り替えられる場合に、推定部43は、当該アンテナパターン1及び3に対応する測定情報と、当該アンテナパターン1及び3でオンとなるアンテナA1及びA3の距離AD13とに基づいて、スモールセル基地局10の位置を推定してもよい。 Specifically, the estimation unit 43 estimates the position of the small cell base station 10 based on a plurality of measurement information corresponding to each of the plurality of antenna patterns and the distance between the antennas turned on by the plurality of antenna patterns. May be done. For example, as described with reference to FIG. 4-6, when the antenna patterns 1 and 3 are switched in the small cell base station 10, the estimation unit 43 receives the measurement information corresponding to the antenna patterns 1 and 3 and the antenna pattern. The position of the small cell base station 10 may be estimated based on the distance AD13 of the antennas A1 and A3 which are turned on in 1 and 3.
 また、推定部43は、アンテナパターン毎のスモールセル基地局10と上記他の基地局との間の伝播路の状態に基づいて、各アンテナパターンに対応する測定情報に重み付けしてもよい。推定部43は、重み付けされた測定情報に基づいて、スモールセル基地局10の位置を推定してもよい。例えば、図4A及び4Bで説明したように、アンテナパターン1との他の基地局との伝播路の状態がアンテナパターン3よりも悪い場合、アンテナパターン3に対応する測定情報にアンテナパターン1よりも大きい重み係数が乗算されてもよい。 Further, the estimation unit 43 may weight the measurement information corresponding to each antenna pattern based on the state of the propagation path between the small cell base station 10 and the other base station for each antenna pattern. The estimation unit 43 may estimate the position of the small cell base station 10 based on the weighted measurement information. For example, as described with reference to FIGS. 4A and 4B, when the state of the propagation path between the antenna pattern 1 and the other base station is worse than that of the antenna pattern 3, the measurement information corresponding to the antenna pattern 3 is more than that of the antenna pattern 1. Larger weighting factors may be multiplied.
 選択部44は、スモールセル基地局10の複数のアンテナパターンを選択する。例えば、選択部44は、例えば、スモールセル基地局10と他の基地局(マクロセル基地局20又は他のスモールセル基地局10)との間の伝播路の状態に基づいて、複数のアンテナパターンを選択してもよい。通信部42は、当該選択されたアンテナパターンを示す情報をスモールセル基地局10に送信してもよい。また、選択部44は、予め定められた全アンテナパターンを選択し、通信部42は、当該全アンテナパターンを示す情報をスモールセル基地局10に送信してもよい。 The selection unit 44 selects a plurality of antenna patterns of the small cell base station 10. For example, the selection unit 44 sets a plurality of antenna patterns based on, for example, the state of the propagation path between the small cell base station 10 and another base station (macro cell base station 20 or another small cell base station 10). You may choose. The communication unit 42 may transmit information indicating the selected antenna pattern to the small cell base station 10. Further, the selection unit 44 may select all predetermined antenna patterns, and the communication unit 42 may transmit information indicating the all antenna patterns to the small cell base station 10.
 なお、通信部42は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。記憶部41は、記憶装置10cにより実現されてもよい。推定部43及び選択部44は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、上記記憶媒体に格納されていてもよい。 The communication unit 42 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d. The storage unit 41 may be realized by the storage device 10c. The estimation unit 43 and the selection unit 44 may be realized by the processor 10a executing a program stored in the storage device 10c. When executing a program, the program may be stored in the storage medium.
 (無線通信システムの動作)
 次に、以上のように構成される無線通信システム1の動作について説明する。
(Operation of wireless communication system)
Next, the operation of the wireless communication system 1 configured as described above will be described.
 <下りベースの位置推定動作>
 図12は、本実施形態に係る下りベースの位置推定動作の一例を示す図である。図12では、マクロセル基地局20A~20Cからの下りRSに基づいてスモールセル基地局10の位置を推定する一例を説明する。なお、上記の通り、下りRSは、マクロセル基地局20に限られず、他のスモールセル基地局10から送信されてもよい。また、図12では、下りRSを用いて測定される測定情報は、RSTDであるものとするが、これに限られない。
<Downward-based position estimation operation>
FIG. 12 is a diagram showing an example of a downlink-based position estimation operation according to the present embodiment. FIG. 12 describes an example of estimating the position of the small cell base station 10 based on the downlink RS from the macro cell base stations 20A to 20C. As described above, the downlink RS is not limited to the macro cell base station 20, and may be transmitted from another small cell base station 10. Further, in FIG. 12, the measurement information measured by using the downlink RS is assumed to be RSTD, but the measurement information is not limited to this.
 また、本動作は、ロケーションサーバ40からの要求情報に応じて開始されてもよい。当該要求情報は、例えば、スモールセル基地局10における測定を要求する情報であってもよい。又は、スモールセル基地局10が所定の条件を満たす場合に開始されてもよい。当該所定の条件は、例えば、スモールセル基地局10の移動が検出される場合等であってもよい。また、本動作の開始前においてスモールセル基地局10は、下りRSの測定用に上記支援情報をロケーションサーバ40から取得しているものとする。また、本動作の開始前にiは初期化されているものとする。 Further, this operation may be started according to the request information from the location server 40. The request information may be, for example, information requesting measurement in the small cell base station 10. Alternatively, it may be started when the small cell base station 10 satisfies a predetermined condition. The predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected. Further, it is assumed that the small cell base station 10 has acquired the support information from the location server 40 for the measurement of the downlink RS before the start of this operation. Further, it is assumed that i has been initialized before the start of this operation.
 ステップS101において、スモールセル基地局10は、下りRSの測定用のM(M≧2)個のアンテナパターンを選択する。例えば、スモールセル基地局10は、ロケーションサーバ40から通知されるM個のアンテナパターンを示すアンテナパターン情報に基づいて、M個のアンテナパターンを選択してもよい。当該アンテナパターン情報は、例えば、上記支援情報又は上記要求情報に含まれてもよい。又は、スモールセル基地局10自身が、複数のアンテナパターンを選択してもよい。又は、スモールセル基地局10は、全てのアンテナパターン(例えば、図7では、アンテナパターン1~8)を選択してもよい。 In step S101, the small cell base station 10 selects M (M ≧ 2) antenna patterns for measuring downlink RS. For example, the small cell base station 10 may select M antenna patterns based on the antenna pattern information indicating the M antenna patterns notified from the location server 40. The antenna pattern information may be included in the support information or the request information, for example. Alternatively, the small cell base station 10 itself may select a plurality of antenna patterns. Alternatively, the small cell base station 10 may select all antenna patterns (for example, antenna patterns 1 to 8 in FIG. 7).
 ステップS102において、スモールセル基地局10は、ステップS102で選択されたM個のアンテナパターンのうち、i番目のアンテナパターン(1≦i≦M)に従って、各アンテナAのオン又はオフを制御する。 In step S102, the small cell base station 10 controls on or off of each antenna A according to the i-th antenna pattern (1 ≦ i ≦ M) among the M antenna patterns selected in step S102.
 ステップS103において、スモールセル基地局10は、i番目のアンテナパターンで、マクロセル基地局20A~20Cからの下りRSを受信する。 In step S103, the small cell base station 10 receives the downlink RS from the macro cell base stations 20A to 20C in the i-th antenna pattern.
 ステップS104において、スモールセル基地局10は、i番目のアンテナパターンで受信された下りRSに基づいて、少なくとも一つのRSTDを測定する。 In step S104, the small cell base station 10 measures at least one RSTD based on the downlink RS received in the i-th antenna pattern.
 ステップS105において、スモールセル基地局10は、アンテナパターンの添え字iを1カウントアップし、カウントアップされたiがステップS101で選択されたアンテナパターンの数Mを超えるか否かを判定する。i≦Mである場合、本動作は、ステップS102に戻り、i>Mである場合、本動作は、ステップS106に進む。ここでは、本動作の開始前に初期化されるiの初期値は1であるものとするが、これに限られない。例えば、iの初期値が0である場合、ステップS105において、iがM-1を超えるか否か(i>M-1であるか否か)が判定されてもよい。 In step S105, the small cell base station 10 counts up the subscript i of the antenna pattern by 1, and determines whether or not the counted up i exceeds the number M of the antenna patterns selected in step S101. If i ≦ M, this operation returns to step S102, and if i> M, this operation proceeds to step S106. Here, it is assumed that the initial value of i that is initialized before the start of this operation is 1, but the initial value is not limited to this. For example, when the initial value of i is 0, it may be determined in step S105 whether or not i exceeds M-1 (whether or not i> M-1).
 ステップS106において、スモールセル基地局10は、M個のアンテナパターンそれぞれを用いた測定結果を示す測定情報をロケーションサーバ40に送信する。当該測定情報は、M個のアンテナパターンの各々で測定された一以上のRSTDと、M個のアンテナパターンの各々を示す情報(例えば、M個のアンテナパターンID)を含んでもよい。 In step S106, the small cell base station 10 transmits measurement information indicating the measurement results using each of the M antenna patterns to the location server 40. The measurement information may include one or more RSTDs measured for each of the M antenna patterns and information indicating each of the M antenna patterns (for example, M antenna pattern IDs).
 ステップS107において、ロケーションサーバ40は、スモールセル基地局10から受信した測定情報に基づいて、スモールセル基地局10の位置を推定する。具体的には、ロケーションサーバ40は、M個のアンテナパターンのうちの少なくとも一つで測定されたRSTDに基づいて、スモールセル基地局10の位置を推定してもよい。 In step S107, the location server 40 estimates the position of the small cell base station 10 based on the measurement information received from the small cell base station 10. Specifically, the location server 40 may estimate the position of the small cell base station 10 based on the RSTD measured by at least one of the M antenna patterns.
 例えば、図5では、ロケーションサーバ40は、アンテナパターン1のRSTDCA1及びRSTDBA1と、アンテナパターン3のRSTDCAと、アンテナパターン1でオンとなるアンテナA1及びアンテナパターン3でオンとなるアンテナA3との距離とに基づいて、スモールセル基地局10の推定位置の範囲R2を決定する。 For example, in FIG. 5, the location server 40 includes a RSTD CA1 and RSTD BA1 of the antenna pattern 1, and RSTD CA antenna pattern 3, the antenna A3 to be turned on by the antenna A1 and the antenna pattern 3 which is turned on in the antenna pattern 1 The range R2 of the estimated position of the small cell base station 10 is determined based on the distance of.
 <上りベースの位置推定動作>
 図13は、本実施形態に係る上りベースの位置推定動作の一例を示す図である。図13では、スモールセル基地局10からの上りRSに基づいて当該スモールセル基地局10の位置を推定する一例を説明する。なお、上記の通り、上りRSは、マクロセル基地局20に限られず、他のスモールセル基地局10で受信及び測定されてもよい。また、図13では、上りRSを用いて測定される測定情報は、UL-RTOAであるものとするが、これに限られない。
<Upward-based position estimation operation>
FIG. 13 is a diagram showing an example of an ascending-based position estimation operation according to the present embodiment. FIG. 13 describes an example of estimating the position of the small cell base station 10 based on the uplink RS from the small cell base station 10. As described above, the uplink RS is not limited to the macro cell base station 20, and may be received and measured by another small cell base station 10. Further, in FIG. 13, the measurement information measured by using the uplink RS is assumed to be UL-RTOA, but the measurement information is not limited to this.
 また、図13において、上りRSの構成情報(例えば、タイミング、周期、無線リソース等)がマクロセル基地局20A~20Cのいずれかによってスモールセル基地局10に設定(configure)されていてもよい。当該構成情報は、上りRSの測定用の支援情報として、ロケーションサーバ40からマクロセル基地局20A~20Cに通知されてもよいし、又は、マクロセル基地局20A~20Cのいずれかからロケーションサーバ40に通知されてもよい。 Further, in FIG. 13, the uplink RS configuration information (for example, timing, cycle, radio resource, etc.) may be configured in the small cell base station 10 by any of the macro cell base stations 20A to 20C. The configuration information may be notified from the location server 40 to the macrocell base stations 20A to 20C as support information for measuring the uplink RS, or may be notified to the location server 40 from any of the macrocell base stations 20A to 20C. May be done.
 また、本動作は、ロケーションサーバ40からの要求情報に応じて開始されてもよい。当該要求情報は、例えば、ロケーションサーバ40によって選択されたマクロセル基地局20A~20C(のLMU)における測定を要求する情報であってもよい。又は、スモールセル基地局10が所定の条件を満たす場合に開始されてもよい。当該所定の条件は、例えば、スモールセル基地局10の移動が検出される場合等であってもよい。また、本動作の開始前にiは初期化されているものとする。 Further, this operation may be started according to the request information from the location server 40. The request information may be, for example, information requesting measurement at the macrocell base stations 20A to 20C (LMU) selected by the location server 40. Alternatively, it may be started when the small cell base station 10 satisfies a predetermined condition. The predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected. Further, it is assumed that i has been initialized before the start of this operation.
 図13のステップS201及びS202は、図12のステップS101及びS102と同様である。ステップS203において、スモールセル基地局10は、i番目のアンテナパターンを用いて、上りRSを送信する。 Steps S201 and S202 of FIG. 13 are the same as steps S101 and S102 of FIG. In step S203, the small cell base station 10 transmits an uplink RS using the i-th antenna pattern.
 ステップS204において、マクロセル基地局20A~20Cは、それぞれ、i番目のアンテナパターンで送信された上りRSに基づいて、UL-RTOAを測定する。 In step S204, the macrocell base stations 20A to 20C each measure UL-RTOA based on the uplink RS transmitted by the i-th antenna pattern.
 ステップS205において、スモールセル基地局10は、アンテナパターンの添え字iを1カウントアップし、カウントアップされたiがステップS101で選択されたアンテナパターンの数Mを超えるか否かを判定する。i≦Mである場合、本動作は、ステップS202に戻り、i>Mである場合、本動作は、ステップS206に進む。ここでは、本動作の開始前に初期化されるiの初期値は1であるものとするが、これに限られない。例えば、iの初期値が0である場合、ステップS105において、iがM-1を超えるか否か(i>M-1であるか否か)が判定されてもよい。 In step S205, the small cell base station 10 counts up the subscript i of the antenna pattern by 1, and determines whether or not the counted up i exceeds the number M of the antenna patterns selected in step S101. If i ≦ M, this operation returns to step S202, and if i> M, this operation proceeds to step S206. Here, it is assumed that the initial value of i that is initialized before the start of this operation is 1, but the initial value is not limited to this. For example, when the initial value of i is 0, it may be determined in step S105 whether or not i exceeds M-1 (whether or not i> M-1).
 ステップS206において、マクロセル基地局20A~20Cは、それぞれ、M個のアンテナパターンそれぞれを用いた測定結果を示す測定情報をロケーションサーバ40に送信する。当該測定情報は、M個のアンテナパターンの各々で測定されたUL-RTOAと、M個のアンテナパターンの各々を示す情報(例えば、M個のアンテナパターンID)を含んでもよい。 In step S206, the macrocell base stations 20A to 20C each transmit measurement information indicating the measurement result using each of the M antenna patterns to the location server 40. The measurement information may include UL-RTOA measured for each of the M antenna patterns and information indicating each of the M antenna patterns (for example, M antenna pattern IDs).
 ステップS207において、ロケーションサーバ40は、マクロセル基地局20A~20Cから受信した測定情報に基づいて、スモールセル基地局10の位置を推定する。具体的には、ロケーションサーバ40は、M個のアンテナパターンのうちの少なくとも一つで測定されたUL-RTOAに基づいて、スモールセル基地局10の位置を推定してもよい。 In step S207, the location server 40 estimates the position of the small cell base station 10 based on the measurement information received from the macro cell base stations 20A to 20C. Specifically, the location server 40 may estimate the position of the small cell base station 10 based on the UL-RTOA measured by at least one of the M antenna patterns.
 例えば、図6では、ロケーションサーバ40は、アンテナパターン1のUL-RTOAA、UL-RTOAB及びUL-RTOACと、アンテナパターン3のUL-RTOACと、アンテナパターン1でオンとなるアンテナA1及びアンテナパターン3でオンとなるアンテナA3との距離とに基づいて、スモールセル基地局10の推定位置の範囲R4を決定する。 For example, in FIG. 6, the location server 40 has UL-RTOA A , UL-RTOA B and UL-RTOA C of antenna pattern 1, UL-RTOA C of antenna pattern 3, and antenna A1 turned on in antenna pattern 1. The range R4 of the estimated position of the small cell base station 10 is determined based on the distance from the antenna A3 that is turned on in the antenna pattern 3 and the antenna pattern 3.
 以上のように、オンとなる一以上のアンテナが異なる複数のアンテナパターンの各々を用いて下りRSの受信又は上りRSの送信を行うことにより、スモールセル基地局10と他の基地局(マクロセル基地局20又は他のスモールセル基地局10)との間の複数の測定情報を考慮できるので、スモールセル基地局10の位置の推定精度を向上できる。 As described above, the small cell base station 10 and other base stations (macrocell bases) are used by receiving the downlink RS or transmitting the uplink RS by using each of a plurality of antenna patterns in which one or more antennas to be turned on are different. Since a plurality of measurement information with the station 20 or another small cell base station 10) can be considered, the accuracy of estimating the position of the small cell base station 10 can be improved.
 (その他の実施形態)
 なお、上記実施形態は、スモールセル基地局10の位置の正誤確認と組み合わせられてもよい。例えば、上記位置の推定対象となるスモールセル基地局10以外の他の基地局、又は、コアネットワーク30上のサーバ(例えば、ロケーションサーバ40)は、以下の少なくとも一つに基づいて求められる位置と、上記実施形態で位置推定されたスモールセル基地局10の位置と、の比較結果に基づいて、上記実施形態で推定された位置の正誤を判定してもよい。
・GPS信号に基づいて決定されたスモールセル基地局10の位置
・他の通信方式(例えば、WiFi(登録商標)又はBluetooth(登録商標))のアクセスポイントの測位機能(例えば、Wi-Fi CERTIFIED Location)によって求められたスモールセル基地局10の位置
・周辺セルの情報(例えば、ネットワークスクリーニングの結果)
・Ncellテーブルに登録されたセルの変動
・スモールセル基地局10に割り当てられたインターネットプロトコル(IP)情報(例えば、IPアドレス)
(Other embodiments)
The above embodiment may be combined with the correctness confirmation of the position of the small cell base station 10. For example, a base station other than the small cell base station 10 whose position is to be estimated, or a server on the core network 30 (for example, a location server 40) is a position determined based on at least one of the following. , The correctness of the position estimated in the above embodiment may be determined based on the comparison result with the position of the small cell base station 10 whose position is estimated in the above embodiment.
-Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (for example, WiFi (registered trademark) or Bluetooth (registered trademark)) (for example, Wi-Fi CERTIFIED Location) ), And information on the location and surrounding cells of the small cell base station 10 (for example, the result of network screening).
-Variation of cells registered in the Ncell table-Internet protocol (IP) information assigned to the small cell base station 10 (for example, IP address)
 また、上記実施形態は、スモールセル基地局10の位置の移動検出と組み合わせられてもよい。例えば、上記位置の推定対象となるスモールセル基地局10自身、当該スモールセル基地局10以外の他の基地局、又は、コアネットワーク30上のサーバ(例えば、ロケーションサーバ40)は、以下の少なくとも一つに基づいて、上記実施形態で位置推定されたスモールセル基地局10の移動を検出してもよい。
・GPS信号に基づいて決定されたスモールセル基地局10の位置
・他の通信方式(例えば、Wi-Fi(登録商標)又はBluetooth(登録商標))のアクセスポイントの測位機能(例えば、Wi-Fi CERTIFIED Location)によって求められたスモールセル基地局10の位置
・周辺セルの情報(例えば、ネットワークスクリーニングの結果)
・Ncellテーブルに登録されたセルの変動
・スモールセル基地局10に割り当てられたインターネットプロトコル(IP)情報(例えば、IPアドレス)
・スモールセル基地局10が備えるセンサで検出される情報(センサ情報)
・スモールセル基地局10の電源の状態又は稼働状況を示す情報(稼働情報)
Further, the above embodiment may be combined with the movement detection of the position of the small cell base station 10. For example, the small cell base station 10 itself whose position is to be estimated, other base stations other than the small cell base station 10, or a server on the core network 30 (for example, a location server 40) is at least one of the following. Based on the above, the movement of the small cell base station 10 whose position is estimated in the above embodiment may be detected.
-Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)) (for example, Wi-Fi) Information on the location and surrounding cells of the small cell base station 10 obtained by CERTIFIED Location) (for example, the result of network screening)
-Variation of cells registered in the Ncell table-Internet protocol (IP) information assigned to the small cell base station 10 (for example, IP address)
-Information detected by the sensor included in the small cell base station 10 (sensor information)
-Information indicating the power supply status or operating status of the small cell base station 10 (operation information)
 上記センサ情報を検出するセンサは、例えば、ジャイロセンサ、明かりセンサ又はスイッチセンサであってもよい。例えば、スモールセル基地局10内部に設けられたジャイロセンサ等)により、スモールセル基地局10の加速度又は姿勢の変化等がセンサ情報として検出されてもよい。また、スモールセル基地局10の底部等の接触面に設けられた明かりセンサにより、接触面の明暗の変化等がセンサ情報として検出されてもよい。また、スモールセル基地局10の底部等の接触面に設けられたスイッチセンサにより、スイッチの変動が上記センサ情報として検出されてもよい。 The sensor that detects the sensor information may be, for example, a gyro sensor, a light sensor, or a switch sensor. For example, a gyro sensor or the like provided inside the small cell base station 10) may detect changes in acceleration or posture of the small cell base station 10 as sensor information. Further, a light sensor provided on a contact surface such as the bottom of the small cell base station 10 may detect a change in brightness of the contact surface as sensor information. Further, the fluctuation of the switch may be detected as the sensor information by the switch sensor provided on the contact surface such as the bottom of the small cell base station 10.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. The flowchart, sequence, each element included in the embodiment, its arrangement, material, condition, shape, size, and the like described in the embodiment are not limited to those exemplified, and can be changed as appropriate. In addition, the configurations shown in different embodiments can be partially replaced or combined.
1…無線通信システム、10…スモールセル基地局、20…マクロセル基地局、30…コアネットワーク、40…ロケーションサーバ、50…端末、10a…プロセッサ、10b…メモリ、10c…記憶装置、10d…通信装置、10e…入力装置、10f…出力装置、A…アンテナ、11…アンテナ部、12…制御部、13…通信部、131…OTDOA通信部、132…UTDOA通信部、14…測定部、21…通信部、211…OTDOA通信部、212…UTDOA通信部、22…測定部、41…記憶部、42…通信部、421…OTDOA通信部、422…UTDOA通信部、43…推定部、44…選択部 1 ... Wireless communication system, 10 ... Small cell base station, 20 ... Macrocell base station, 30 ... Core network, 40 ... Location server, 50 ... Terminal, 10a ... Processor, 10b ... Memory, 10c ... Storage device, 10d ... Communication device 10, e ... Input device, 10f ... Output device, A ... Antenna, 11 ... Antenna unit, 12 ... Control unit, 13 ... Communication unit, 131 ... OTDOA communication unit, 132 ... UTDOA communication unit, 14 ... Measurement unit, 21 ... Communication Unit, 211 ... OTDOA communication unit, 212 ... UTDOA communication unit, 22 ... measurement unit, 41 ... storage unit, 42 ... communication unit, 421 ... OTDOA communication unit, 422 ... UTDOA communication unit, 43 ... estimation unit, 44 ... selection unit

Claims (9)

  1.  複数のアンテナを備えた無線装置であって、
     前記複数のアンテナの各々のオン又はオフを制御して、前記複数のアンテナのうちでオンとなるアンテナが異なる複数のアンテナパターンを切り替える制御部と、
     前記複数のアンテナパターンの各々で、前記無線装置の位置推定用の測定情報の測定に用いられる下り参照信号の受信、又は、前記測定情報の測定に用いられる上り参照信号の送信を行う通信部と、
     を備える無線装置。
    A wireless device with multiple antennas
    A control unit that controls the on or off of each of the plurality of antennas and switches a plurality of antenna patterns in which the antenna to be turned on is different among the plurality of antennas.
    With each of the plurality of antenna patterns, a communication unit that receives a downlink reference signal used for measuring measurement information for position estimation of the wireless device or transmits an uplink reference signal used for measuring the measurement information. ,
    A wireless device equipped with.
  2.  各基地局からの前記下り参照信号を用いて、前記複数のアンテナパターンの各々についての前記測定情報を測定する測定部を具備し、
     前記通信部は、前記測定情報をサーバに送信する、
     請求項1に記載の無線装置。
    A measuring unit for measuring the measurement information for each of the plurality of antenna patterns using the downlink reference signal from each base station is provided.
    The communication unit transmits the measurement information to the server.
    The wireless device according to claim 1.
  3.  前記通信部は、前記複数のアンテナパターンの各々で前記上り参照信号を送信し、
     前記上り参照信号を用いて各基地局で測定された、前記複数のアンテナパターン各々についての前記測定情報が、前記各基地局からサーバに送信される、
     請求項1に記載の無線装置。
    The communication unit transmits the uplink reference signal in each of the plurality of antenna patterns, and the communication unit transmits the uplink reference signal.
    The measurement information for each of the plurality of antenna patterns measured at each base station using the uplink reference signal is transmitted from each base station to the server.
    The wireless device according to claim 1.
  4.  前記制御部は、前記複数のアンテナパターンを選択する、
     請求項1から請求項3のいずれかに記載の無線装置。
    The control unit selects the plurality of antenna patterns.
    The wireless device according to any one of claims 1 to 3.
  5. 請求項1に対応するロケーションサーバ
     複数のアンテナを備えた無線装置の位置推定を行うサーバであって、
     前記複数のアンテナのうちでオンとなるアンテナが異なり、前記複数のアンテナのオン又はオフを制御して切り替えられる複数のアンテナパターンの各々で受信された下り参照信号を用いて測定された測定情報、又は、前記複数のアンテナパターンの各々で送信された上り参照信号を用いて測定された測定情報、を受信する通信部と、
     前記複数のアンテナパターンの少なくとも一つについての前記測定情報に基づいて、前記無線装置の位置推定を行う推定部と、
     を備えるサーバ。
    Location server according to claim 1. A server that estimates the position of a wireless device provided with a plurality of antennas.
    Measurement information measured using a downlink reference signal received in each of a plurality of antenna patterns in which the antenna to be turned on is different among the plurality of antennas and the plurality of antennas can be switched on or off by controlling the on / off of the plurality of antennas. Alternatively, a communication unit that receives measurement information measured using uplink reference signals transmitted by each of the plurality of antenna patterns, and a communication unit.
    An estimation unit that estimates the position of the wireless device based on the measurement information for at least one of the plurality of antenna patterns.
    Server with.
  6.  前記推定部は、前記無線装置が備える複数のアンテナのうちの少なくとも二つのアンテナ間の距離に基づいて、前記無線装置の位置推定を行う、
     請求項5に記載のサーバ。
    The estimation unit estimates the position of the wireless device based on the distance between at least two antennas among the plurality of antennas included in the wireless device.
    The server according to claim 5.
  7.  前記推定部は、アンテナパターン毎の前記無線装置と各基地局との間の伝播路の状態に基づいて重み付けされた前記測定情報に基づいて、前記無線装置の位置推定を行う、
     請求項5又は請求項6に記載のサーバ。
    The estimation unit estimates the position of the radio device based on the measurement information weighted based on the state of the propagation path between the radio device and each base station for each antenna pattern.
    The server according to claim 5 or 6.
  8.  前記複数のアンテナパターンを選択する選択部を備え、
     前記通信部は、前記複数のアンテナパターンを示す情報を前記無線装置に送信する、
     請求項5から請求項7のいずれかに記載のサーバ。
    A selection unit for selecting the plurality of antenna patterns is provided.
    The communication unit transmits information indicating the plurality of antenna patterns to the wireless device.
    The server according to any one of claims 5 to 7.
  9.  複数のアンテナを備える無線装置の位置推定のための無線通信方法であって、
     前記無線装置において、
     前記複数のアンテナの各々のオン又はオフを制御して、前記複数のアンテナのうちでオンとなるアンテナが異なる複数のアンテナパターンを切り替えるステップと、
     前記複数のアンテナパターンの各々で、前記無線装置の位置推定用の測定情報の測定に用いられる下り参照信号の受信、又は、前記測定情報の測定に用いられる上り参照信号の送信を行うステップと、
     を有する無線通信方法。
    A wireless communication method for estimating the position of a wireless device equipped with multiple antennas.
    In the wireless device
    A step of controlling the on or off of each of the plurality of antennas to switch a plurality of antenna patterns in which the antennas to be turned on are different among the plurality of antennas.
    A step of receiving a downlink reference signal used for measuring measurement information for position estimation of the wireless device or transmitting an uplink reference signal used for measuring the measurement information in each of the plurality of antenna patterns.
    Wireless communication method having.
PCT/JP2020/013921 2020-03-27 2020-03-27 Wireless device, server, and wireless communication method WO2021192199A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021552566A JP7429708B2 (en) 2020-03-27 2020-03-27 Wireless device, server and wireless communication method
PCT/JP2020/013921 WO2021192199A1 (en) 2020-03-27 2020-03-27 Wireless device, server, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013921 WO2021192199A1 (en) 2020-03-27 2020-03-27 Wireless device, server, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021192199A1 true WO2021192199A1 (en) 2021-09-30

Family

ID=77891039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013921 WO2021192199A1 (en) 2020-03-27 2020-03-27 Wireless device, server, and wireless communication method

Country Status (2)

Country Link
JP (1) JP7429708B2 (en)
WO (1) WO2021192199A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028369A (en) * 2008-07-17 2010-02-04 Nec Corp Radio communication system, control server, mobile base station apparatus and mobile base station control method
JP2014531841A (en) * 2011-10-03 2014-11-27 聯發科技股▲ふん▼有限公司Mediatek Inc. NETWORK-BASED POSITIONING METHOD, POSITION MEASUREMENT METHOD, AND POSITION MEASUREMENT UNIT
JP2019536024A (en) * 2016-11-11 2019-12-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン User equipment location in mobile communication networks based on delay and path strength
WO2020003896A1 (en) * 2018-06-28 2020-01-02 シャープ株式会社 Terminal device, location server and communication method
WO2020016975A1 (en) * 2018-07-18 2020-01-23 株式会社Nttドコモ User device and base station device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034182A1 (en) 2015-08-25 2017-03-02 엘지전자 주식회사 Method for receiving or transmitting reference signal for location determination in wireless communication system and device for same
US10609673B2 (en) 2018-04-30 2020-03-31 Qualcomm Incorporated Reference signal measurement in mobile device having multiple antenna receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028369A (en) * 2008-07-17 2010-02-04 Nec Corp Radio communication system, control server, mobile base station apparatus and mobile base station control method
JP2014531841A (en) * 2011-10-03 2014-11-27 聯發科技股▲ふん▼有限公司Mediatek Inc. NETWORK-BASED POSITIONING METHOD, POSITION MEASUREMENT METHOD, AND POSITION MEASUREMENT UNIT
JP2019536024A (en) * 2016-11-11 2019-12-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン User equipment location in mobile communication networks based on delay and path strength
WO2020003896A1 (en) * 2018-06-28 2020-01-02 シャープ株式会社 Terminal device, location server and communication method
WO2020016975A1 (en) * 2018-07-18 2020-01-23 株式会社Nttドコモ User device and base station device

Also Published As

Publication number Publication date
JP7429708B2 (en) 2024-02-08
JPWO2021192199A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
RU2708229C1 (en) Positioning support information for estimating arrival time (toa) in conditions of possible multi-beam propagation
JP6652138B2 (en) Electronic device and wireless communication method in wireless communication system
ES2670579T3 (en) Nodes and methods to improve positioning
WO2020096506A1 (en) Using mirrors as a positioning solution
US7293088B2 (en) Tag location, client location, and coverage hole location in a wireless network
EP3446413B1 (en) Method and apparatus for improved reception of positioning reference signals
EP2679034B1 (en) Determining device in-range proximity
KR20190092548A (en) Positioning methods and systems, and related devices
US20170041899A1 (en) Techniques for reducing scans for indoor position determination
US9001789B2 (en) Communication system, identifier assignment device, base station, identifier assignment method, and non-transitory computer readable medium embodying instructions for controlling a device
TW201247003A (en) System and method for storing information to locate a femto cell
US20180234937A1 (en) Device and method for estimating position of terminal in wireless communication system
US20080207209A1 (en) Cellular mobile radio communication system
JP2021507620A (en) Systems and methods for multiple round trip time (RTT) estimates in wireless networks
CN109478919B (en) Base station and user equipment
US9445390B2 (en) Method and node for positioning in combined cell
RU2717948C1 (en) Communication method for using a wireless terminal device, a communication method for using a wireless device of a base station, a wireless terminal device and a base station wireless device
US9883341B2 (en) Wireless device, a radio network node, a network node and methods therein
KR101960288B1 (en) System and Method for Providing WLAN based Positioning in Low-Power Wide-Area Network
US8364152B2 (en) Macrocell to Femtocell and Femtocell to Femtocell handoff
Denis et al. Cooperative and heterogeneous indoor localization experiments
MX2012012639A (en) Spatial arrangement of a plurality of communication devices and method for determining the spatial position of a device.
US20130196680A1 (en) Method and System for Femtocell Positioning
WO2021192199A1 (en) Wireless device, server, and wireless communication method
WO2021234826A1 (en) Server, wireless device and wireless communications method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021552566

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927180

Country of ref document: EP

Kind code of ref document: A1