WO2021192168A1 - Catheter - Google Patents

Catheter Download PDF

Info

Publication number
WO2021192168A1
WO2021192168A1 PCT/JP2020/013767 JP2020013767W WO2021192168A1 WO 2021192168 A1 WO2021192168 A1 WO 2021192168A1 JP 2020013767 W JP2020013767 W JP 2020013767W WO 2021192168 A1 WO2021192168 A1 WO 2021192168A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
catheter
metal tube
outer layer
tip
Prior art date
Application number
PCT/JP2020/013767
Other languages
French (fr)
Japanese (ja)
Inventor
雄輝 丹羽
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to JP2022510279A priority Critical patent/JP7214922B2/en
Priority to PCT/JP2020/013767 priority patent/WO2021192168A1/en
Priority to TW110110310A priority patent/TW202202097A/en
Publication of WO2021192168A1 publication Critical patent/WO2021192168A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to a catheter having improved adhesiveness between a metal member and a resin outer layer tube covering the metal member.
  • a catheter having a metal member and a resin outer layer tube that covers the metal member is known.
  • Patent Document 1 describes a catheter including a tubular shaft main body portion and a covering portion that covers the shaft main body portion.
  • Metal or resin is used for the shaft main body as a material having relatively high rigidity.
  • a polymer material or a mixture thereof is used for the covering portion as a material having an insulating property.
  • the shaft main body and the covering portion are a combination of different materials such as metal and polymer material.
  • the adhesiveness between a metal and a polymer material is lower than the adhesiveness between polymer materials (adhesiveness between homogeneous materials). Therefore, when the shaft main body is made of metal, the problem is how to prevent the coating from being peeled off from the shaft main body.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a catheter capable of preventing a resin outer layer tube covering a metal member from peeling off from the metal member.
  • the present invention presents a metal tube in which a flow path for transporting a cooling medium is formed in the hollow portion, a tip electrode formed at the tip of the metal tube, and the tip electrode.
  • a resin outer layer tube that covers the outer surface of a predetermined axial portion of the metal tube excluding the above, and an adhesive that adheres the outer layer tube and the metal tube at at least the tip of the outer layer tube.
  • the metal tube is characterized by including a roughened surface processed portion on which an uneven pattern is formed at a portion to which the adhesive is attached.
  • FIG. 3 is a cross-sectional view taken along the line CC of the catheter body shown in FIG.
  • FIG. 2 is a cross-sectional view taken along the line DD of the catheter body shown in FIG. (A) to (c) are schematic views showing an example of a concavo-convex pattern formed in a roughened surface processed portion.
  • FIG. 5A is a cross-sectional view taken along the line EE of the catheter body shown in FIG. 5
  • FIG. 5B is a cross-sectional view taken along the line FF. It is a figure which shows the structure of the catheter tip part, (a) is a partially enlarged view, (b) is the GG cross-sectional view of FIG. 6 (b).
  • FIG. 1 is a plan view showing a schematic configuration of a catheter according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line CC of the catheter body shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line DD of the catheter body shown in FIG.
  • the present embodiment will be described based on an example of an electrode catheter for diagnosis, but the present invention can be applied to catheters other than electrode catheters such as ablation catheters and defibrillation catheters.
  • the electrode catheter (hereinafter simply referred to as "catheter”) 1 shown in FIG. 1 is inserted into the heart through a blood vessel and is used for mapping the electrical activity state in the heart and measuring the electrocardiographic potential after ablation (catheter) of the inner wall of the heart. It is an instrument.
  • the catheter 1 is attached to a catheter main body 10 extending in the axial direction, a handle 20 attached to a proximal end portion 10b (proximal end side) of the catheter main body 10, and a distal end portion 10a (distal end side) of the catheter main body 10.
  • the tip tip electrode (tip electrode) 31 and a plurality of ring-shaped electrodes 41, 41 ... Are provided.
  • the catheter main body 10 is located at the tip portion 10a in the axial direction, a metal member 30 having a tip tip electrode 31 exposed to the outside, and a proximal end side in the axial direction of the metal member 30. It is provided with a resin outer layer tube 50 that covers the outer surface of the non-exposed portion 33, and an adhesive 51 that adheres the outer layer tube 50 and the non-exposed portion 33 of the metal member 30 at at least the tip portion 50a of the outer layer tube 50. ..
  • the metal member 30 is characterized in that the rough surface processed portion 70 on which the uneven pattern 71 (71A to 71C: see FIG. 4) is formed is provided on the portion (surface) to which the adhesive 51 is attached.
  • the handle 20 of the catheter 1 is rotatably arranged closer to the catheter body 10 than the grip portion 21 gripped by the operator of the catheter 1 and the grip portion 21, and the tip portion 10a is shown in the drawing. It includes a rotary plate 22 that deflects (or bends and deforms) in the directions of arrows B1-B2, and a rotary knob 23 that rotates the rotary plate 22.
  • the tip portion 10a When the rotating plate 22 is rotated in the direction of the arrow A1 in the drawing, the tip portion 10a is deflected in the direction of the arrow B1 in the drawing by an amount corresponding to the rotation angle of the rotating plate 22.
  • the tip portion 10a When the rotating plate 22 is rotated in the direction of the arrow A2 in the drawing, the tip portion 10a is deflected in the direction of the arrow B2 in the drawing by an amount corresponding to the rotation angle of the rotating plate 22.
  • the catheter body 10 includes a hollow tubular outer layer tube 50 and a plurality of hollow tubular lumen tubes 61 (61A to 61D), 65 (65A,) housed in the hollow portion of the outer layer tube 50. 65B) and.
  • the lumen tubes 61 and 65 are fixed to the outer layer tube 50 by, for example, an adhesive or melt bonding.
  • the catheter body 10 has at least one lumen inside.
  • the catheter body 10 shown in this example has a plurality of lead lumens 62 (62A to 62D) extending along the axial direction thereof and a plurality of operating lumens 66 (66A, 66B) in the hollow portion of the outer layer tube 50. Be prepared.
  • the lead lumen 62 is formed in the hollow portion of the lumen tube 61, and the operating lumen 66 is formed in the hollow portion of the lumen tube 65.
  • a lead wire (not shown) conducting with the tip tip electrode 31 and each ring-shaped electrode 41 is inserted into each lead lumen 62.
  • the operation wire 25 (25A, 25B) is inserted through the operation lumen 66 (66A, 66B).
  • the operation wire 25A deflects the tip portion 10a of the catheter body 10 in the direction of arrow B1 in the drawing.
  • the operation wire 25B deflects the tip portion 10a of the catheter body 10 in the direction of arrow B2 in the drawing.
  • Each operation wire 25 is inserted into each operation lumen 66 so as to be slidable in the axial direction thereof.
  • each operation wire 25 is fixed at an appropriate position on the rotating plate 22 (see FIG. 1).
  • Each operating wire 25 slides in the operating lumen 66 in the axial direction by an amount corresponding to the rotation angle of the rotating plate 22.
  • the tip end portion of each operation wire 25 is fixed to the tip tip electrode 31 by soldering or the like.
  • the outer layer tube 50 and the lumen tubes 61 and 65 are made of a flexible material. Specifically, synthetic resins such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon and PEBAX (registered trademark. Substance name: polyether blockamide) can be used for these tubes.
  • synthetic resins such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon and PEBAX (registered trademark. Substance name: polyether blockamide) can be used for these tubes.
  • the axial length of the catheter body 10 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
  • the inner diameter of the lead lumen 62 is preferably 0.05 to 0.20 mm, more preferably 0.07 to 0.15 mm.
  • the axial length of the lead lumen 62 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
  • the inner diameter of the operating lumen 66 is preferably 0.15 to 0.35 mm, more preferably 0.20 to 0.30 mm.
  • the axial length of the operating lumen 66 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
  • the metal member 30 provided with the tip tip electrode 31 and the ring-shaped electrode 41 shown in FIG. 2 and the like are made of a metal having good electrical conductivity, such as aluminum, copper, stainless steel, gold, and platinum.
  • the metal member 30 and the ring-shaped electrode 41 are preferably made of platinum or an alloy thereof in order to have good contrast with X-rays.
  • the outer diameters of the tip tip electrode 31 and the ring-shaped electrode 41 are not particularly limited, but are preferably about the same as the outer diameter of the catheter body 10, and are usually about 0.5 to 3 mm.
  • the metal member 30 is fixed to the outer layer tube 50 by the adhesive 51.
  • the ring-shaped electrode 41 is fixed to the outer peripheral surface of the outer layer tube 50 by crimping a metal ring having a diameter larger than the outer diameter of the outer layer tube 50 but being larger than the outer diameter of the outer layer tube 50, for example.
  • the number of ring-shaped electrodes 41 is not particularly limited. The number of ring-shaped electrodes 41 is appropriately set according to the number of lead wires that can be inserted into the catheter body 10.
  • the metal member 30 has a bottomed cylinder shape in which the tip end side is closed and the base end side is open.
  • the metal member 30 includes an exposed portion arranged on the tip end side to form the tip end electrode 31, and a non-exposed portion 33 arranged on the proximal end side and covered with the outer layer tube 50.
  • the outer shape of the metal member 30 on which the tip tip electrode 31 is formed on the tip side is hemispherical.
  • the tip portion 50a of the outer layer tube 50 is adhered to the outer surface of the non-exposed portion 33 by the adhesive 51.
  • a rough surface processed portion 70 is formed on the outer surface of the non-exposed portion 33.
  • the rough surface processed portion 70 is a portion where the surface is subjected to uneven processing according to a predetermined pattern.
  • the rough surface processing portion 70 is arranged on the entire axial direction of the non-exposed portion 33, or at least on the tip end side portion of the non-exposed portion 33.
  • the rough surface processing portion 70 is formed on the entire non-exposed portion 33 in the circumferential direction.
  • ⁇ Concavo-convex pattern >> 4 (a) to 4 (c) are schematic views showing an example of a concavo-convex pattern formed on the rough surface machined portion.
  • the uneven pattern 71 is formed by, for example, blasting, laser processing, electric discharge machining, chemical etching, cutting, or the like.
  • the uneven pattern 71 may be formed by a method other than this.
  • the uneven pattern 71 (71A to 71C) is a pattern having a predetermined uneven shape formed on the surface of the non-exposed portion 33.
  • the uneven pattern 71 is a pattern for obtaining an anchor effect for improving the adhesive force of the adhesive 51 to the non-exposed portion 33.
  • the uneven pattern 71 improves the adhesive force between different materials such as metal and resin.
  • the rough surface processing portion 70 may include a concave-convex pattern 71A in which a large number of concave portions 72 (or convex portions) are randomly arranged as shown in FIG. 4A.
  • the shape of the concave portion 72 (or the convex portion) constituting the concave-convex pattern 71A is the particle size, hardness, projection speed, etc. of the projection material that collides with the surface of the non-exposed portion 33. It is adjusted according to the processing conditions at the time of blasting including.
  • the rough surface processing portion 70 may include a concavo-convex pattern 71B in which a plurality of grooves 73 and 74 are geometrically (or regularly) arranged as shown in FIG. 4 (b).
  • the concavo-convex pattern 71B shown is a pattern in which a plurality of grooves 73 extending in the first direction and a plurality of grooves 74 extending in the second direction intersecting the first direction are arranged so as to intersect each other.
  • the inclination angles (spiral angles) of the grooves 73 and 74 with respect to the axial direction of the metal member 30 can be set to any angle such as 0 degree, 30 degree, 45 degree, 60 degree, 90 degree and the like.
  • the uneven pattern 71 is a pattern capable of exerting a uniform adhesive force over the entire area of the rough surface processed portion 70.
  • the rough surface machined portion 70 has a plurality of grooves 73, 74 geometrically (or) rather than forming a concavo-convex pattern 71A in which a large number of recesses 72 (or protrusions) are randomly arranged. It is desirable to form an arranged pattern (concavo-convex pattern 71B, etc.).
  • the geometric pattern facilitates the formation of uniform unevenness over the entire surface of the roughened surface machined portion 70. Since the geometric pattern tends to exert a uniform adhesive force over the entire area of the rough surface processed portion 70, a higher peeling prevention effect can be obtained.
  • the width and depth of the grooves 73 and 74, the internal shape of the grooves, and the like are set to be the same, and the grooves 73 and 73 are connected to each other. It is desirable to set the spacing and the spacing between the grooves 74 and 74 to be the same.
  • grooves 73 and 74 are inclined with respect to both the direction along the axis Ax of the metal member 30 (axial direction) and the direction orthogonal to the axis Ax (circumferential direction).
  • an external force is applied to the tip edge 50b of the outer layer tube 50 in the direction opposite to the insertion direction of the catheter 1 (the direction from the tip to the proximal end along the axis Ax). This external force tends to peel off the outer layer tube 50.
  • the grooves 73 and 74 that are inclined with respect to both the axis Ax (the direction of the force to be peeled off) and the direction orthogonal to the axis Ax are formed, they extend in parallel with each of the axial direction and the circumferential direction. A higher peeling prevention effect can be obtained than forming a groove.
  • the angles of the grooves 73 and 74 are inclined by 45 degrees with respect to the axis Ax of the metal member 30.
  • the optimum uneven pattern is selected based on the ease of forming the unevenness, the obtained anchor effect, and the like.
  • the grooves 73 and 74 extending in two directions are 45 degrees with respect to the axis Ax, respectively.
  • the uneven pattern 71B extending in the direction of is preferable.
  • the concavo-convex pattern 71B shown is a so-called twill pattern (diamond pattern) in which two types of grooves 73 and 74 extending in different directions intersect each other, but the concavo-convex pattern has three or more types of grooves extending in different directions. It may be a crossed pattern. Instead of forming a large number of linear grooves, a large number of wavy grooves may be formed in the rough surface processed portion 70.
  • the rough surface processing portion 70 may include a concave-convex pattern 71C in which a plurality of concave portions 75 (or convex portions) are geometrically (or regularly) arranged as shown in FIG. 4 (c). good.
  • the pattern shown is a pattern in which the dot-shaped (hemispherical) recesses 75 are aligned so as to extend linearly in the first direction and the second direction intersecting the first direction.
  • the concavo-convex pattern 71C is a grid-like pattern in which the recesses 75 are arranged at positions corresponding to the intersections of the grooves 73 and 74 in the concavo-convex pattern 71B.
  • a biocompatible adhesive is used.
  • a reactive adhesive such as an ultraviolet / visible light curable acrylic type, a cyanoacrylate type, or an ultraviolet / visible light curable silicon type, and a thermoplastic resin that melts by heating and cures by cooling (melting). Resin) etc.
  • a thermoplastic resin a polyether block amide copolymer resin (PEBAX (registered trademark)) can be exemplified.
  • the uneven surface processed portion 70 is formed with the uneven surface pattern 71, the adhesive force between the rough surface processed portion 70 and the adhesive 51 can be improved by the anchor effect. Even if the materials to be bonded are different materials, such as the relationship between the rough surface processed portion 70 made of a metal material and the adhesive 51 made of a resin material, good adhesive force is obtained due to the anchor effect. Can be obtained. Therefore, it is possible to prevent the outer layer tube 50 from peeling off from the metal member 30.
  • FIG. 5 is a plan view showing a schematic configuration of a catheter according to a second embodiment of the present invention.
  • FIG. 6A is a cross-sectional view taken along the line EE of the catheter body shown in FIG. 5, and
  • FIG. 6B is a cross-sectional view taken along the line FF.
  • 7A and 7B are views showing the structure of the tip of the catheter, FIG. 7A is a partially enlarged view, and FIG. 7B is a cross-sectional view taken along the line GG of FIG. 6B.
  • the ablation catheter (hereinafter simply referred to as "catheter") 2 is attached to a catheter body 80 having at least one lumen (feed path 121, return path 123, guide wire lumen 125) inside and a proximal end portion 80b of the catheter body 80.
  • the handle 90 is provided.
  • the illustrated catheter is an over-the-wire catheter.
  • the catheter body 80 is composed of a metal tube 100 in which a flow path (feed path 121, return path 123) for transporting a cooling medium is formed in a hollow portion, and a metal tube 100.
  • a resin outer layer tube 50 that covers the outer surface of a predetermined axial portion (insulation coating portion 106) of a metal tube 100 excluding the tip electrode 101 and a tip electrode 101 formed on the tip portion 100a, and an outer layer tube 50.
  • An adhesive 51 for adhering the outer layer tube 50 and the metal tube 100 at least at the tip portion 50a is provided.
  • the metal tube 100 includes a rough surface processed portion 70 in which an uneven pattern 71 is formed at a portion to which the adhesive 51 is attached.
  • the metal tube 100 is flexible in which slits 104 extending along the direction intersecting the axial direction are formed in at least a part of the axial direction located on the proximal end side in the axial direction with respect to the roughened surface machined portion 70.
  • a portion 103 is provided.
  • Metal tube 100 examples include stainless steel, NiTi, ⁇ -titanium, platinum iridium and the like.
  • the outer diameter of the metal tube 100 is, for example, 0.55 to 3.0 mm, preferably 0.7 to 2.0 mm.
  • the inner diameter of the metal tube 100 is, for example, 0.25 to 2.8 mm, preferably 0.6 to 1.9 mm.
  • the length of the metal tube 100 is, for example, 200 to 2200 mm, preferably 600 to 1000 mm.
  • the slit 104 formed in the flexible portion 103 penetrates the metal tube 100 in the inner and outer diameter directions. As shown in FIGS. 5 and 7 (a), the slit 104 is formed continuously in a spiral shape. By forming the slit 104, the flexible portion 103 is freely curved and deformed without kinking with a curvature corresponding to the width and pitch of the slit 104.
  • the pitch (spacing in the axial direction) of the slit 104 gradually narrows from the base end side to the tip end side of the metal tube 100.
  • the rigidity of the catheter body 80 gradually decreases toward the distal end side. Therefore, the flexible portion 103 can be made to follow the shape of the blood vessel.
  • the catheter body 80 can be a catheter having particularly excellent operability when it is introduced into the treatment target site.
  • the pitch of the slit 104 may be the same in the axial direction.
  • the axial length from the handle 90 to the flexible portion 103 is 100 to 700 mm, preferably 300 to 500 mm.
  • the axial length of the flexible portion 103 is 50 to 800 mm, preferably 100 to 600 mm.
  • the axial length from the flexible portion 103 to the tip edge is 5 to 15 mm, preferably 7 to 13 mm.
  • the width of the slit 104 is 0.01 to 0.1 mm, preferably 0.02 to 0.04 mm.
  • the distance between the slits 104 (the distance between the metal tubes 100 in the axial direction) is 0.3 to 20 mm.
  • the slit 104 is formed by, for example, laser processing, electric discharge machining, chemical etching, cutting, or the like.
  • the slit 104 may be formed by any other method.
  • the slit 104 may have a shape other than the spiral shape as long as it can impart flexibility to the metal tube 100.
  • the metal tube 100 may include a plurality of slits extending in the circumferential direction in the flexible portion 103. Each of such slits is arranged, for example, in different axial positions and is formed independently (discontinuously) from each other.
  • the catheter body 80 includes a tip electrode 101 formed by exposing the outer surface of the metal tube 100 to the axial tip 80a. Further, the remaining portion of the catheter body 80 in the axial direction is an insulating coating portion 106 whose outer surface is insulated and coated by the outer layer tube 50 and the adhesive 51.
  • the axial length of the insulating coating portion 106 is 150 to 1100 mm, preferably 800 to 1000 mm.
  • the axial length of the tip electrode 101 (length L in FIG. 7A) is 2 to 10 mm, preferably 4 to 8 mm.
  • the outer layer tube 50 covers at least the entire flexible portion 103.
  • the outer layer tube 50 is made of a heat-shrinkable resin tube having an insulating property.
  • the outer layer tube 50 formed by heating the heat-shrinkable resin tube to reduce its diameter is in close contact with the outer surface of the metal tube 100.
  • the outer layer tube 50 is made of, for example, a polyether block amide copolymer resin (PEBAX (registered trademark)) or polyethylene terephthalate (PET).
  • PEBAX polyether block amide copolymer resin
  • PET polyethylene terephthalate
  • the film thickness of the outer layer tube 50 is, for example, 10 to 100 ⁇ m, preferably 20 to 40 ⁇ m.
  • the tip electrode 101 and the insulating coating 106 are inserted into the patient's body via blood vessels.
  • High-frequency power is supplied to the tip electrode 101 of the catheter 2 from the high-frequency power supply device via the lead wire 127. Since the metal tube 100 is exposed in the tip electrode 101, a high frequency current flows between the tip electrode 101 and the counter electrode connected to the high frequency power supply device. The tissue around the tip electrode 101 is cauterized by the generated Joule heat.
  • the insulating coating portion 106 is insulated and coated, a high frequency current does not flow between the insulating coating and the counter electrode connected to the high frequency power supply device.
  • the catheter body 80 includes, as lumens in the hollow portion of the metal tube 100, a feed path 121 and a return path 123 for transporting a cooling medium for cooling the tip electrode 101, and a guide wire lumen 125 through which a guide wire is inserted (FIG. FIG. 6).
  • the feed path 121 and the guide wire lumen 125 are formed in the hollow portions of the flexible resin lumen tubes 122 and 126, respectively, which are inserted into the hollow portions of the metal tube 100.
  • the return path 123 is formed between the inner surface of the metal tube 100 and the outer surface of the lumen tubes 122 and 126. According to such a method of forming the return path 123, the number of lumen tubes accommodated in the metal tube 100 can be reduced, so that the diameter of the catheter body 80 can be reduced.
  • the cooling medium feed path 121 may be formed between the inner surface of the metal tube 100 and the outer surfaces of the lumen tubes 122 and 126, and the return path 123 may be formed in the hollow portion of the lumen tube 122.
  • the guide wire lumen 125 is arranged so as to penetrate the catheter body 80.
  • the guide wire lumen 125 is independent of the feed path 121 and the return path 123.
  • Lumen tubes 122 and 126 are composed of, for example, polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE) or polyimide (PI).
  • PEEK polyetheretherketone
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • Cooling medium and its flow path The flow paths for transporting the cooling medium include a feeding path 121 for transporting the cooling medium from the proximal end side to the distal end side of the catheter body 80 and a return path 123 for transporting the cooling medium from the distal end side toward the proximal end side. , Is included.
  • the feed path 121 transports the cooling medium toward the tip electrode 101.
  • the return path 123 transports the cooling medium that has cooled the tip electrode 101 (heat exchanged with the tip electrode 101) to the handle 90 side.
  • the tip opening 122a of the lumen tube 122 forming the feeding path 121 is arranged at an axial position corresponding to the forming position of the tip electrode 101.
  • the cooling medium cools the tip electrode 101 from the inside.
  • the cooling medium that has flowed out of the feed path 121 from the tip opening 122a of the lumen tube 122 flows into the return path 123 and is transported to the handle 90 side.
  • the feed path 121 is formed in the lumen tube 122 and the return path 123 is formed between the lumen tube 122 and the metal tube 100, cooling is performed when the cooling medium is transported to the tip electrode 101. It is possible to prevent the temperature of the medium from rising. Therefore, the cooling efficiency of the tip electrode 101 by the cooling medium is improved.
  • the cooling medium for cooling the tip electrode 101 may be a liquid or a gas as long as it is a fluid that can flow through the feed path 121 and the return path 123.
  • the liquid cooling medium for example, water, physiological saline, saturated saline, ethylene glycol, ethylene glycol aqueous solution and the like can be used.
  • the gas cooling medium for example, air can be used.
  • the temperature of the cooling medium is preferably ⁇ 20 to 10 ° C.
  • Both the sending path 121 and the returning path 123 are kept liquidtight (airtight) with respect to the external space of the catheter body 80. Therefore, the cooling medium is transported along the axial direction inside the catheter body 80, but does not leak to the outside of the catheter body 80.
  • the cooling medium does not enter the patient's body, the risk of irrigating the cooling medium into the organ to be treated can be avoided. Further, in the catheter 2, the optimum cooling medium can be selected and used according to the cooling capacity exhibited by each cooling medium.
  • Lead wires 127 and 127 that energize the tip electrode 101 are soldered to appropriate positions on the outer surface of the metal tube 100.
  • the lead wires 127 and 127 are covered with an outer layer tube 50.
  • the catheter body 80 may be provided with a thermocouple for measuring the temperature of the tip electrode 101 inside the metal tube 100.
  • the first to fourth branch pipes 131 to 134 are connected to the base end of the handle 90.
  • First branch pipe The first branch pipe 131 forms a path for introducing the cooling medium into the feed path 121.
  • the first branch pipe 131 is connected to the lumen tube 122 in the handle 90.
  • the hollow portion of the first branch pipe 131 communicates with the feed path 121, but does not communicate with other lumens (return path 123, guide wire lumen 125).
  • Second branch pipe forms a path for discharging the cooling medium from the return path 123.
  • a discharge connector 136 which serves as a discharge port for the cooling medium, is attached to the base end of the second branch pipe 132.
  • the hollow portion of the second branch pipe 132 communicates with the return path 123, but does not communicate with other lumens (feed path 121, guide wire lumen 125).
  • Third branch pipe forms a path for introducing the guide wire into the guide wire lumen 125.
  • An introduction connector 137 which is an introduction port for a guide wire, is attached to the base end portion of the third branch pipe 133.
  • the third branch pipe 133 is connected to the lumen tube 126 in the handle 90.
  • the hollow portion of the third branch pipe 133 communicates with the guide wire lumen 125, but does not communicate with other lumens (feed path 121, return path 123).
  • Fourth branch pipe Lead wires 127 and 127 are inserted into the fourth branch pipe 134.
  • a current-carrying connector 138 that conducts with the lead wires 127 and 127 is attached to the base end of the fourth branch pipe 134.
  • the handle 90 has a function as a grip portion for operation. Further, the handle 90 has a function as a hub that integrates the flow path for transporting the cooling medium, the path through which the guide wire is inserted, and the lead wires 127 and 127 for energization and guides them to the catheter body 80.
  • the rough surface processing portion 70 is a portion where the outer surface of the metal tube 100 is subjected to uneven processing according to a predetermined pattern.
  • the uneven pattern 71 formed on the rough surface processed portion 70 is a pattern formed mainly for the purpose of obtaining an anchor effect for improving the adhesiveness with the adhesive.
  • the uneven surface processing portion 70 can be formed with the unevenness pattern 71 shown in FIGS. 4 (a) to 4 (c), as in the first embodiment.
  • the axial length of the roughened surface processed portion 70 is, for example, 0.5 to 3.0 mm, preferably 1.0 to 2.0 mm.
  • the rough surface processing portion 70 includes the uneven pattern 71B in which a plurality of grooves 73, 74 are geometrically (or regularly) arranged as shown in FIG. 4B, the depth of the grooves 73, 74 is deep.
  • the thickness is 5 to 15%, preferably 8 to 12% of the wall thickness of the non-exposed portion 33.
  • the depth of the grooves 73 and 74 is, for example, 4 to 14 ⁇ m, preferably 7 to 11 ⁇ m.
  • the width of the grooves 73 and 74 is, for example, 0.01 to 0.1 mm, preferably 0.04 to 0.06 mm.
  • the spacing between the grooves 73 and 73 and the spacing between the grooves 74 and 74 are, for example, 0.1 to 0.4 mm, preferably 0.2 to 0.3 mm.
  • the adhesive 51 adheres to the entire circumferential direction of the rough surface processed portion 70 without any gap, and adheres the rough surface processed portion 70 and the tip portion 50a of the outer layer tube 50.
  • the axial tip edge 51a of the adhesive 51 is arranged so as to be located at the same axial position as the tip edge 71a of the uneven pattern 71, or preferably located on the proximal end side of the tip edge 71a of the concave-convex pattern 71. ..
  • the tip edge 51a of the adhesive 51 is the starting point of the peeling. Therefore, by fitting the tip edge 51a of the adhesive 51 into the uneven pattern 71, a more reliable peeling prevention effect can be obtained.
  • the tip edge 50b of the outer layer tube 50 is arranged so as to be located at the same axial position as the tip edge 51a of the adhesive 51, or preferably located on the proximal end side of the tip edge 51a of the adhesive 51.
  • the adhesive is attached to the tip edge 50b of the outer layer tube 50 to prevent the outer layer tube 50 from peeling off from the roughened surface processed portion 70.
  • the uneven surface processed portion 70 is formed with the uneven surface pattern 71, the adhesive force between the rough surface processed portion 70 and the adhesive 51 can be improved by the anchor effect. Even if the materials to be bonded are different materials, such as the relationship between the rough surface processed portion 70 made of a metal material and the adhesive 51 made of a resin material, good adhesive force is obtained due to the anchor effect. Can be obtained. Therefore, it is possible to prevent the outer layer tube 50 from peeling from the metal tube 100.
  • the outer layer tube 50 (and / or the adhesive 51) is peeled off from the metal tube 100 and a part of the covered metal tube 100 is exposed, the exposed part functions as a tip electrode. Due to the increase in the portion that functions as an electrode, there is a risk that tissues other than those to be cauterized will be cauterized. Further, if the outer layer tube 50 (and / or the adhesive 51) peeled off from the metal tube 100 is further torn, fragments of the outer layer tube 50 (and / or the adhesive 51) may remain in the body. There is.
  • the adhesive force between the rough surface processed portion 70 and the adhesive 51 is improved by the anchor effect, so that the above-mentioned problem caused by the outer layer tube 50 being peeled from the metal tube 100 is prevented from occurring. can.
  • the catheter 2 has a metal tube 100 in which a flow path (feed path 121, return path 123) for transporting a cooling medium is formed in the hollow portion, and a tip electrode 101 formed in the tip portion of the metal tube.
  • a resin outer layer tube 50 that covers the outer surface of a predetermined axial portion of the metal tube excluding the tip electrode, and an adhesive 51 that adheres the outer layer tube and the metal tube at least at the tip of the outer layer tube.
  • the catheter main body 80 is provided.
  • the metal tube is characterized in that a rough surface processed portion 70 on which the uneven pattern 71 is formed is provided at a portion to which the adhesive is attached.
  • the adhesive force between the rough surface processed portion and the adhesive can be improved by the anchor effect. Therefore, it is possible to prevent the outer layer tube from peeling from the metal tube.
  • an anchor that exhibits an uneven pattern on a rough surface processed portion made of a metal material, even if the materials to be adhered to each other are different materials, as in the case where the adhesive is made of a resin material. Good adhesive strength can be obtained due to the effect. Therefore, it is possible to prevent the outer layer tube from peeling from the metal tube.
  • the concave-convex pattern 71 includes a plurality of grooves 73 extending in the first direction and a plurality of grooves 74 extending in the second direction intersecting the first direction. It is characterized by that.
  • the peeling tends to occur from the place where the adhesive force between the two is the weakest.
  • a plurality of grooves extending in the first and second directions as a concavo-convex pattern in the rough surface processed portion, it becomes easy to make the adhesive force of the adhesive in the rough surface processed portion uniform. Therefore, it is possible to effectively prevent the outer layer tube from peeling from the metal tube.
  • the groove 73 extending in the first direction and the groove 74 extending in the second direction are inclined in the direction along the axis Ax of the metal tube 100 and in the direction orthogonal to the axis, respectively. It is characterized by doing.
  • an external force that tries to peel off the outer layer tube 50 acts on the tip edge 50b of the outer layer tube 50 in the direction opposite to the insertion direction of the catheter.
  • the rough surface machined portion 70 is formed with a groove inclined with respect to both the axis Ax (the direction along the external force to be peeled off) and the direction orthogonal to the axis Ax, the outer layer tube 50 is peeled off. A high peeling prevention effect can be obtained even against an external force.
  • the tip edge 51a of the adhesive 51 is located closer to the proximal end side than the tip edge 71a of the uneven pattern 71.
  • the tip edge of the adhesive is the starting point of peeling. Therefore, by fitting the tip edge of the adhesive in the uneven pattern, a more reliable peeling prevention effect can be obtained.
  • the flow paths include a feeding path 121 for transporting the cooling medium from the proximal end side to the distal end side, and a return path 123 for transporting the cooling medium from the distal end side toward the proximal end side.
  • One of the feed path and the return path is formed by a resin tube (lumen tube 122) inserted into the hollow portion of the metal tube 100, and the other of the feed path and the return path is a resin tube and a metal tube. It is characterized in that it is formed between.
  • the cooling medium cools the tip electrode. Since the cooling medium reciprocates in the catheter, the cooling medium does not enter the patient's body. Therefore, the risk of irrigating the cooling medium into the organ to be treated can be avoided.
  • the optimum cooling medium can be selected and used according to the cooling capacity exhibited by each cooling medium.
  • the cooling medium flows directly in the metal tube. Since the number of resin tubes housed in the metal tube can be reduced, the diameter of the catheter can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a catheter capable of preventing separation of a resin outer layer tube covering a metal tube from the metal tube. A catheter 2 is provided with a catheter body 80 having: a metal tube 100 in which a feed path 121 for transferring a cooling medium into a hollow part and a return path 123 are formed; a distal end electrode 101 formed on a distal end portion of the metal tube; an outer layer tube 50 made of a resin and covering the outer surface of a predetermined portion in the axial direction of the metal tube excluding the distal end electrode; and an adhesive 51 for bonding the outer layer tube and the metal tube at at least a distal end portion of the outer layer tube. The metal tube has, at a portion to which the adhesive adheres, a roughened surface section 70 in which a projection-recess pattern 71 is formed. The anchoring effect of the projection-recess pattern prevents separation of the outer layer tube from the metal tube.

Description

カテーテルcatheter
 本発明は、金属製の部材と、これを被覆する樹脂性の外層チューブとの接着性を向上させたカテーテルに関する。 The present invention relates to a catheter having improved adhesiveness between a metal member and a resin outer layer tube covering the metal member.
 血管を経由して体内に挿入されるカテーテルとして、金属製の部材と、該金属製の部材を被覆する樹脂性の外層チューブとを備えたカテーテルが知られている。 As a catheter that is inserted into the body via a blood vessel, a catheter having a metal member and a resin outer layer tube that covers the metal member is known.
 特許文献1には、管状のシャフト本体部と、シャフト本体部を被覆する被覆部と、を備えたカテーテルが記載されている。シャフト本体部には、比較的剛性の高い材料として、金属又は樹脂が使用される。被覆部には、絶縁性を備える材料として、高分子材料又はこれらの混合物が使用される。 Patent Document 1 describes a catheter including a tubular shaft main body portion and a covering portion that covers the shaft main body portion. Metal or resin is used for the shaft main body as a material having relatively high rigidity. A polymer material or a mixture thereof is used for the covering portion as a material having an insulating property.
 特許文献1において、シャフト本体部を金属から構成すると、シャフト本体部と被覆部は、金属と高分子材料という異質な材料の組み合わせとなる。一般的に金属と高分子材料との接着性(異質な材料同士の接着性)は、高分子材料同士の接着性(同質な材料同士の接着性)に比べて低くなる。そのため、シャフト本体部を金属から構成する場合は、如何にしてシャフト本体部から被覆部を剥離しないようにするかが問題となる。 In Patent Document 1, when the shaft main body is made of metal, the shaft main body and the covering portion are a combination of different materials such as metal and polymer material. Generally, the adhesiveness between a metal and a polymer material (adhesiveness between different materials) is lower than the adhesiveness between polymer materials (adhesiveness between homogeneous materials). Therefore, when the shaft main body is made of metal, the problem is how to prevent the coating from being peeled off from the shaft main body.
国際公開第2014/174662号International Publication No. 2014/174662
 本発明は上述の事情に鑑みてなされたものであり、金属製の部材を被覆する樹脂製の外層チューブが、金属製の部材から剥離することを防止できるカテーテルを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a catheter capable of preventing a resin outer layer tube covering a metal member from peeling off from the metal member.
 上記の課題を解決するために、本発明は、中空部内に冷却媒体を輸送する流路が形成された金属製チューブと、該金属製チューブの先端部に形成された先端電極と、該先端電極を除く前記金属製チューブの所定の軸方向部位の外面を被覆する樹脂製の外層チューブと、該外層チューブの少なくとも先端部において前記外層チューブと前記金属製チューブとを接着する接着剤と、を有したカテーテル本体を備え、前記金属製チューブは、前記接着剤を付着させる部位に、凹凸パターンが形成された粗面加工部を備えることを特徴とする。 In order to solve the above problems, the present invention presents a metal tube in which a flow path for transporting a cooling medium is formed in the hollow portion, a tip electrode formed at the tip of the metal tube, and the tip electrode. A resin outer layer tube that covers the outer surface of a predetermined axial portion of the metal tube excluding the above, and an adhesive that adheres the outer layer tube and the metal tube at at least the tip of the outer layer tube. The metal tube is characterized by including a roughened surface processed portion on which an uneven pattern is formed at a portion to which the adhesive is attached.
 本発明によれば、金属製の部材を被覆する樹脂製の外層チューブが、金属製の部材から剥離することを防止できる。 According to the present invention, it is possible to prevent the resin outer layer tube that covers the metal member from peeling off from the metal member.
本発明の第一の実施形態に係るカテーテルの概略構成を示す平面図である。It is a top view which shows the schematic structure of the catheter which concerns on 1st Embodiment of this invention. 図1に示すカテーテル本体のC-C断面図である。FIG. 3 is a cross-sectional view taken along the line CC of the catheter body shown in FIG. 図2に示すカテーテル本体のD-D断面図である。FIG. 2 is a cross-sectional view taken along the line DD of the catheter body shown in FIG. (a)~(c)は、粗面加工部に形成される凹凸パターンの一例を示す模式図である。(A) to (c) are schematic views showing an example of a concavo-convex pattern formed in a roughened surface processed portion. 本発明の第二の実施形態に係るカテーテルの概略構成を示す平面図である。It is a top view which shows the schematic structure of the catheter which concerns on 2nd Embodiment of this invention. (a)は、図5に示すカテーテル本体のE-E断面図であり、(b)はF-F断面図である。FIG. 5A is a cross-sectional view taken along the line EE of the catheter body shown in FIG. 5, and FIG. 5B is a cross-sectional view taken along the line FF. カテーテル先端部の構造を示す図であり、(a)は部分拡大図であり、(b)は図6(b)のG-G断面図である。It is a figure which shows the structure of the catheter tip part, (a) is a partially enlarged view, (b) is the GG cross-sectional view of FIG. 6 (b).
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。 Hereinafter, the present invention will be described in detail using the embodiments shown in the figure. However, unless otherwise specified, the components, types, combinations, shapes, relative arrangements, etc. described in this embodiment are merely explanatory examples, not the purpose of limiting the scope of the present invention to that alone. ..
〔第一の実施形態〕
 図1は、本発明の第一の実施形態に係るカテーテルの概略構成を示す平面図である。図2は、図1に示すカテーテル本体のC-C断面図である。図3は、図2に示すカテーテル本体のD-D断面図である。
[First Embodiment]
FIG. 1 is a plan view showing a schematic configuration of a catheter according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line CC of the catheter body shown in FIG. FIG. 3 is a cross-sectional view taken along the line DD of the catheter body shown in FIG.
 以下、本実施形態を診断用の電極カテーテルの例に基づいて説明するが、本発明はアブレーションカテーテル、除細動カテーテル等、電極カテーテル以外のカテーテルにも適用可能である。 Hereinafter, the present embodiment will be described based on an example of an electrode catheter for diagnosis, but the present invention can be applied to catheters other than electrode catheters such as ablation catheters and defibrillation catheters.
 図1に示す電極カテーテル(以下単に「カテーテル」という)1は、血管を通して心臓内に挿入され、心臓内の電気的活性状態のマッピングや心臓内壁のアブレーション(焼灼)後の心電位測定に使用される器具である。 The electrode catheter (hereinafter simply referred to as "catheter") 1 shown in FIG. 1 is inserted into the heart through a blood vessel and is used for mapping the electrical activity state in the heart and measuring the electrocardiographic potential after ablation (catheter) of the inner wall of the heart. It is an instrument.
 カテーテル1は、軸方向に延びるカテーテル本体10と、カテーテル本体10の基端部10b(近位端側)に取り付けられたハンドル20と、カテーテル本体10の先端部10a(遠位端側)に取り付けられた先端チップ電極(先端電極)31及び複数のリング状電極41,41…とを備える。 The catheter 1 is attached to a catheter main body 10 extending in the axial direction, a handle 20 attached to a proximal end portion 10b (proximal end side) of the catheter main body 10, and a distal end portion 10a (distal end side) of the catheter main body 10. The tip tip electrode (tip electrode) 31 and a plurality of ring- shaped electrodes 41, 41 ... Are provided.
 図2に示すように、カテーテル本体10は、軸方向の先端部10aに、外部に露出する先端チップ電極31を備えた金属製部材30と、金属製部材30の軸方向の基端側に位置する非露出部33の外面を被覆する樹脂製の外層チューブ50と、外層チューブ50の少なくとも先端部50aにおいて外層チューブ50と金属製部材30の非露出部33とを接着する接着剤51とを備える。金属製部材30は、接着剤51を付着させる部位(表面)に、凹凸パターン71(71A~71C:図4参照)が形成された粗面加工部70を備える点に特徴がある。 As shown in FIG. 2, the catheter main body 10 is located at the tip portion 10a in the axial direction, a metal member 30 having a tip tip electrode 31 exposed to the outside, and a proximal end side in the axial direction of the metal member 30. It is provided with a resin outer layer tube 50 that covers the outer surface of the non-exposed portion 33, and an adhesive 51 that adheres the outer layer tube 50 and the non-exposed portion 33 of the metal member 30 at at least the tip portion 50a of the outer layer tube 50. .. The metal member 30 is characterized in that the rough surface processed portion 70 on which the uneven pattern 71 (71A to 71C: see FIG. 4) is formed is provided on the portion (surface) to which the adhesive 51 is attached.
<操作部>
 図1に示すように、カテーテル1のハンドル20は、カテーテル1の操作者が把持する把持部21と、把持部21よりもカテーテル本体10寄りに回転自在に配置されて、先端部10aを図中矢印B1-B2方向に偏向(或いは湾曲変形)させる回転板22、及び回転板22を回転操作する回転つまみ23と、を備える。
<Operation unit>
As shown in FIG. 1, the handle 20 of the catheter 1 is rotatably arranged closer to the catheter body 10 than the grip portion 21 gripped by the operator of the catheter 1 and the grip portion 21, and the tip portion 10a is shown in the drawing. It includes a rotary plate 22 that deflects (or bends and deforms) in the directions of arrows B1-B2, and a rotary knob 23 that rotates the rotary plate 22.
 回転板22を図中矢印A1方向に回転させると、先端部10aが回転板22の回転角度に応じた量だけ図中矢印B1方向に偏向する。回転板22を図中矢印A2方向に回転させると、先端部10aが回転板22の回転角度に応じた量だけ図中矢印B2方向に偏向する。 When the rotating plate 22 is rotated in the direction of the arrow A1 in the drawing, the tip portion 10a is deflected in the direction of the arrow B1 in the drawing by an amount corresponding to the rotation angle of the rotating plate 22. When the rotating plate 22 is rotated in the direction of the arrow A2 in the drawing, the tip portion 10a is deflected in the direction of the arrow B2 in the drawing by an amount corresponding to the rotation angle of the rotating plate 22.
<カテーテル本体>
 図3に示すように、カテーテル本体10は、中空筒状の外層チューブ50と、外層チューブ50の中空部内に収容された複数の中空筒状のルーメンチューブ61(61A~61D),65(65A,65B)とを備える。ルーメンチューブ61,65は、外層チューブ50に対して、例えば接着剤や溶融接合などにより固定されている。
<Catheter body>
As shown in FIG. 3, the catheter body 10 includes a hollow tubular outer layer tube 50 and a plurality of hollow tubular lumen tubes 61 (61A to 61D), 65 (65A,) housed in the hollow portion of the outer layer tube 50. 65B) and. The lumen tubes 61 and 65 are fixed to the outer layer tube 50 by, for example, an adhesive or melt bonding.
 カテーテル本体10は、内部に少なくとも1つのルーメンを有している。本例に示すカテーテル本体10は、外層チューブ50の中空部内に、その軸方向に沿って延びる複数のリード用ルーメン62(62A~62D)と、複数の操作用ルーメン66(66A,66B)とを備える。リード用ルーメン62はルーメンチューブ61の中空部内に形成され、操作用ルーメン66はルーメンチューブ65の中空部内に形成されている。 The catheter body 10 has at least one lumen inside. The catheter body 10 shown in this example has a plurality of lead lumens 62 (62A to 62D) extending along the axial direction thereof and a plurality of operating lumens 66 (66A, 66B) in the hollow portion of the outer layer tube 50. Be prepared. The lead lumen 62 is formed in the hollow portion of the lumen tube 61, and the operating lumen 66 is formed in the hollow portion of the lumen tube 65.
 各リード用ルーメン62には、先端チップ電極31及び各リング状電極41と導通するリード線(図示省略)が挿通される。 A lead wire (not shown) conducting with the tip tip electrode 31 and each ring-shaped electrode 41 is inserted into each lead lumen 62.
 操作用ルーメン66(66A,66B)には、操作ワイヤ25(25A,25B)が挿通されている。操作ワイヤ25Aは、カテーテル本体10の先端部10aを図中矢印B1方向に偏向させる。操作ワイヤ25Bは、カテーテル本体10の先端部10aを図中矢印B2方向に偏向させる。各操作ワイヤ25は、各操作用ルーメン66に対してその軸方向に進退可能(スライド可能)に挿通される。 The operation wire 25 (25A, 25B) is inserted through the operation lumen 66 (66A, 66B). The operation wire 25A deflects the tip portion 10a of the catheter body 10 in the direction of arrow B1 in the drawing. The operation wire 25B deflects the tip portion 10a of the catheter body 10 in the direction of arrow B2 in the drawing. Each operation wire 25 is inserted into each operation lumen 66 so as to be slidable in the axial direction thereof.
 各操作ワイヤ25の基端部は、夫々回転板22(図1参照)の適所に固定されている。各操作ワイヤ25は、回転板22の回転角度に応じた量だけ、操作用ルーメン66内を軸方向へスライドする。図3に示すように、各操作ワイヤ25の先端部は先端チップ電極31に対して半田付け等により固定されている。 The base end portion of each operation wire 25 is fixed at an appropriate position on the rotating plate 22 (see FIG. 1). Each operating wire 25 slides in the operating lumen 66 in the axial direction by an amount corresponding to the rotation angle of the rotating plate 22. As shown in FIG. 3, the tip end portion of each operation wire 25 is fixed to the tip tip electrode 31 by soldering or the like.
 外層チューブ50とルーメンチューブ61,65は、可撓性材料により構成されている。具体的には、これらのチューブにはポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン、ナイロン及びPEBAX(登録商標。物質名:ポリエーテルブロックアミド)等の合成樹脂を用いることができる。 The outer layer tube 50 and the lumen tubes 61 and 65 are made of a flexible material. Specifically, synthetic resins such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon and PEBAX (registered trademark. Substance name: polyether blockamide) can be used for these tubes.
 カテーテル本体10の軸方向長は600~1500mmであることが好ましく、更に好ましくは700~1200mmとされる。 The axial length of the catheter body 10 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
 リード用ルーメン62の内径は0.05~0.20mmであることが好ましく、更に好ましくは0.07~0.15mmとされる。リード用ルーメン62の軸方向長は600~1500mmであることが好ましく、更に好ましくは700~1200mmとされる。 The inner diameter of the lead lumen 62 is preferably 0.05 to 0.20 mm, more preferably 0.07 to 0.15 mm. The axial length of the lead lumen 62 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
 操作用ルーメン66の内径は0.15~0.35mmであることが好ましく、更に好ましくは0.20~0.30mmとされる。操作用ルーメン66の軸方向長は600~1500mmであることが好ましく、更に好ましくは700~1200mmとされる。 The inner diameter of the operating lumen 66 is preferably 0.15 to 0.35 mm, more preferably 0.20 to 0.30 mm. The axial length of the operating lumen 66 is preferably 600 to 1500 mm, more preferably 700 to 1200 mm.
<電極>
 図2等に示される、先端チップ電極31を備える金属製部材30、及びリング状電極41は、例えばアルミニウム、銅、ステンレス、金、白金など、電気伝導性の良好な金属で構成される。なお、X線に対する造影性を良好に持たせるためには、金属製部材30、及びリング状電極41は、白金またはその合金で構成されることが好ましい。
<Electrode>
The metal member 30 provided with the tip tip electrode 31 and the ring-shaped electrode 41 shown in FIG. 2 and the like are made of a metal having good electrical conductivity, such as aluminum, copper, stainless steel, gold, and platinum. The metal member 30 and the ring-shaped electrode 41 are preferably made of platinum or an alloy thereof in order to have good contrast with X-rays.
 先端チップ電極31及びリング状電極41の外径は、特に限定されないが、カテーテル本体10の外径と同程度であることが好ましく、通常、約0.5~3mmである。 The outer diameters of the tip tip electrode 31 and the ring-shaped electrode 41 are not particularly limited, but are preferably about the same as the outer diameter of the catheter body 10, and are usually about 0.5 to 3 mm.
 図2に示すように、金属製部材30は、接着剤51により外層チューブ50に固定されている。 As shown in FIG. 2, the metal member 30 is fixed to the outer layer tube 50 by the adhesive 51.
 リング状電極41は、例えば、外層チューブ50の外径よりも径が大きいが大きい金属製のリングがかしめられて外層チューブ50の外周面に固定されている。リング状電極41の数は特に限定されない。リング状電極41の数は、カテーテル本体10内に挿通可能なリード線の数等に応じて適宜設定される。 The ring-shaped electrode 41 is fixed to the outer peripheral surface of the outer layer tube 50 by crimping a metal ring having a diameter larger than the outer diameter of the outer layer tube 50 but being larger than the outer diameter of the outer layer tube 50, for example. The number of ring-shaped electrodes 41 is not particularly limited. The number of ring-shaped electrodes 41 is appropriately set according to the number of lead wires that can be inserted into the catheter body 10.
<金属製部材>
 金属製部材30は、先端側が閉塞し、基端側が開口した有底筒状である。
 金属製部材30は、先端側に配置されて先端チップ電極31を形成する露出部と、基端側に配置されて外層チューブ50により被覆される非露出部33とを備える。先端チップ電極31が形成された金属製部材30の先端側の外形状は半球状である。
<Metal parts>
The metal member 30 has a bottomed cylinder shape in which the tip end side is closed and the base end side is open.
The metal member 30 includes an exposed portion arranged on the tip end side to form the tip end electrode 31, and a non-exposed portion 33 arranged on the proximal end side and covered with the outer layer tube 50. The outer shape of the metal member 30 on which the tip tip electrode 31 is formed on the tip side is hemispherical.
<<粗面加工部>>
 非露出部33の外表面には、外層チューブ50の先端部50aが、接着剤51により接着される。
 非露出部33の外表面には粗面加工部70が形成されている。粗面加工部70は、表面に所定のパターンによる凹凸加工が施された部位である。粗面加工部70は、非露出部33の軸方向の全体、又は、少なくとも非露出部33の先端側部位に配置されている。粗面加工部70は、非露出部33の周方向の全体に形成されている。
<< Rough surface processing part >>
The tip portion 50a of the outer layer tube 50 is adhered to the outer surface of the non-exposed portion 33 by the adhesive 51.
A rough surface processed portion 70 is formed on the outer surface of the non-exposed portion 33. The rough surface processed portion 70 is a portion where the surface is subjected to uneven processing according to a predetermined pattern. The rough surface processing portion 70 is arranged on the entire axial direction of the non-exposed portion 33, or at least on the tip end side portion of the non-exposed portion 33. The rough surface processing portion 70 is formed on the entire non-exposed portion 33 in the circumferential direction.
<<凹凸パターン>>
 図4(a)~(c)は、粗面加工部に形成される凹凸パターンの一例を示す模式図である。
 凹凸パターン71は、例えばブラスト加工、レーザ加工、放電加工、化学エッチング、切削加工等により形成される。なお、凹凸パターン71は、これ以外の方法により形成されてもよい。
<< Concavo-convex pattern >>
4 (a) to 4 (c) are schematic views showing an example of a concavo-convex pattern formed on the rough surface machined portion.
The uneven pattern 71 is formed by, for example, blasting, laser processing, electric discharge machining, chemical etching, cutting, or the like. The uneven pattern 71 may be formed by a method other than this.
 凹凸パターン71(71A~71C)は、非露出部33の表面に形成された所定の凹凸形状からなるパターンである。凹凸パターン71は、非露出部33に対する接着剤51の接着力を向上させるアンカー効果を得るためのパターンである。特に、凹凸パターン71は、金属と樹脂のような異質な材料同士の接着力を向上させる。 The uneven pattern 71 (71A to 71C) is a pattern having a predetermined uneven shape formed on the surface of the non-exposed portion 33. The uneven pattern 71 is a pattern for obtaining an anchor effect for improving the adhesive force of the adhesive 51 to the non-exposed portion 33. In particular, the uneven pattern 71 improves the adhesive force between different materials such as metal and resin.
 例えば、粗面加工部70は、図4(a)に示すような、多数の凹所72(又は凸所)がランダムに配置された凹凸パターン71Aを備えてもよい。凹凸パターン71Aをブラスト加工により形成する場合、凹凸パターン71Aを構成する凹所72(又は凸所)の形状等は、非露出部33の表面に衝突させる投射材の粒径、硬度、投射速度等を含むブラスト時の加工条件に応じて調整される。 For example, the rough surface processing portion 70 may include a concave-convex pattern 71A in which a large number of concave portions 72 (or convex portions) are randomly arranged as shown in FIG. 4A. When the concave-convex pattern 71A is formed by blasting, the shape of the concave portion 72 (or the convex portion) constituting the concave-convex pattern 71A is the particle size, hardness, projection speed, etc. of the projection material that collides with the surface of the non-exposed portion 33. It is adjusted according to the processing conditions at the time of blasting including.
 また、粗面加工部70は、図4(b)に示すような、複数の溝73,74が幾何学的に(又は規則的に)配置された凹凸パターン71Bを備えてもよい。
 図示する凹凸パターン71Bは、第一の方向に延びる複数の溝73と、第一の方向と交差する第二の方向に延びる複数の溝74とが互いに交差するように配置されたパターンである。
 金属製部材30の軸方向に対する各溝73,74の傾斜角度(螺旋角度)は、0度、30度、45度、60度、90度、その他のように、任意の角度に設定できる。
Further, the rough surface processing portion 70 may include a concavo-convex pattern 71B in which a plurality of grooves 73 and 74 are geometrically (or regularly) arranged as shown in FIG. 4 (b).
The concavo-convex pattern 71B shown is a pattern in which a plurality of grooves 73 extending in the first direction and a plurality of grooves 74 extending in the second direction intersecting the first direction are arranged so as to intersect each other.
The inclination angles (spiral angles) of the grooves 73 and 74 with respect to the axial direction of the metal member 30 can be set to any angle such as 0 degree, 30 degree, 45 degree, 60 degree, 90 degree and the like.
 ここで、外層チューブ50が金属製部材30から剥離する場合、剥離は両者間の接着力が最も弱い箇所から生じやすい。従って、凹凸パターン71は、粗面加工部70の全域において均一な接着力を発揮できるパターンであることが望ましい。 Here, when the outer layer tube 50 is peeled from the metal member 30, the peeling tends to occur from the place where the adhesive force between the two is the weakest. Therefore, it is desirable that the uneven pattern 71 is a pattern capable of exerting a uniform adhesive force over the entire area of the rough surface processed portion 70.
 当該観点から、粗面加工部70には、多数の凹所72(又は凸所)がランダムに配置された凹凸パターン71Aを形成するよりも、複数の溝73,74が幾何学的に(又は規則的に)配置されたパターン(凹凸パターン71B等)を形成する方が望ましい。幾何学的なパターンは、粗面加工部70の全域において均一な凹凸を形成しやすくなる。幾何学的なパターンは、粗面加工部70の全域において均一な接着力を発揮しやすくなるため、より高い剥離防止効果を得られる。 From this point of view, the rough surface machined portion 70 has a plurality of grooves 73, 74 geometrically (or) rather than forming a concavo-convex pattern 71A in which a large number of recesses 72 (or protrusions) are randomly arranged. It is desirable to form an arranged pattern (concavo-convex pattern 71B, etc.). The geometric pattern facilitates the formation of uniform unevenness over the entire surface of the roughened surface machined portion 70. Since the geometric pattern tends to exert a uniform adhesive force over the entire area of the rough surface processed portion 70, a higher peeling prevention effect can be obtained.
 なお、粗面加工部70の全域において均一な接着力を得るためには、各溝73,74の幅、深さ、及び溝の内部形状等を同一に設定すると共に、溝73,73同士の間隔、及び溝74,74同士の間隔を同一に設定することが望ましい。 In order to obtain a uniform adhesive force over the entire surface of the rough surface machined portion 70, the width and depth of the grooves 73 and 74, the internal shape of the grooves, and the like are set to be the same, and the grooves 73 and 73 are connected to each other. It is desirable to set the spacing and the spacing between the grooves 74 and 74 to be the same.
 各溝73,74は、金属製部材30の軸線Axに沿った方向(軸方向)と、軸線Axと直交する方向(周方向)の双方に対して傾斜していることが望ましい。 It is desirable that the grooves 73 and 74 are inclined with respect to both the direction along the axis Ax of the metal member 30 (axial direction) and the direction orthogonal to the axis Ax (circumferential direction).
 ここで、カテーテル1を体内に案内する際、外層チューブ50の先端縁50bには、カテーテル1の挿入方向とは逆方向(軸線Axに沿って先端から基端に向かう方向)に外力が加わる。この外力は、外層チューブ50を剥離させようとする。 Here, when guiding the catheter 1 into the body, an external force is applied to the tip edge 50b of the outer layer tube 50 in the direction opposite to the insertion direction of the catheter 1 (the direction from the tip to the proximal end along the axis Ax). This external force tends to peel off the outer layer tube 50.
 しかし、軸線Ax(剥離させようとする力の方向)、及び軸線Axと直交する方向の双方に対して傾斜した溝73,74を形成すれば、軸方向と周方向の夫々に平行して伸びる溝を形成するよりも、高い剥離防止効果を得られる。この場合の各溝73,74の角度は、金属製部材30の軸線Axに対して夫々45度傾斜した角度とするのが好適である。 However, if the grooves 73 and 74 that are inclined with respect to both the axis Ax (the direction of the force to be peeled off) and the direction orthogonal to the axis Ax are formed, they extend in parallel with each of the axial direction and the circumferential direction. A higher peeling prevention effect can be obtained than forming a groove. In this case, it is preferable that the angles of the grooves 73 and 74 are inclined by 45 degrees with respect to the axis Ax of the metal member 30.
 粗面加工部70に形成される凹凸パターンは、凹凸の形成しやすさ、及び得られるアンカー効果等に基づいて最適な凹凸パターンが選択される。例えば、カテーテル本体10の外径が1Fr(0.33mm)以下の診断用カテーテルの粗面加工部70に形成する凹凸パターンは、2方向に延びる溝73,74が軸線Axに対して夫々45度の方向に伸びる凹凸パターン71Bが好適である。 As the uneven pattern formed on the rough surface processed portion 70, the optimum uneven pattern is selected based on the ease of forming the unevenness, the obtained anchor effect, and the like. For example, in the uneven pattern formed on the rough surface processed portion 70 of the diagnostic catheter having the outer diameter of the catheter body 10 of 1 Fr (0.33 mm) or less, the grooves 73 and 74 extending in two directions are 45 degrees with respect to the axis Ax, respectively. The uneven pattern 71B extending in the direction of is preferable.
 図示する凹凸パターン71Bは、互いに異なる方向に延びる2種類の溝73,74を交差させたいわゆる綾目パターン(ダイヤモンドパターン)であるが、凹凸パターンは、互いに異なる方向に延びる3種類以上の溝を交差させたパターンでもよい。
 粗面加工部70には、多数の直線状の溝を形成する代わりに、多数の波状の溝を形成してもよい。
The concavo-convex pattern 71B shown is a so-called twill pattern (diamond pattern) in which two types of grooves 73 and 74 extending in different directions intersect each other, but the concavo-convex pattern has three or more types of grooves extending in different directions. It may be a crossed pattern.
Instead of forming a large number of linear grooves, a large number of wavy grooves may be formed in the rough surface processed portion 70.
 更に、粗面加工部70は、図4(c)に示すような、複数の凹所75(又は凸所)が幾何学的に(又は規則的に)配置された凹凸パターン71Cを備えてもよい。図示するパターンは、ドット状(半球状)の凹所75を、第一の方向、及び第一の方向と交差する第二の方向に線状に伸びるように整列させたパターンである。凹凸パターン71Cは、凹凸パターン71Bにおける各溝73,74の交点に相当する位置に凹所75を配置した格子状のパターンである。 Further, the rough surface processing portion 70 may include a concave-convex pattern 71C in which a plurality of concave portions 75 (or convex portions) are geometrically (or regularly) arranged as shown in FIG. 4 (c). good. The pattern shown is a pattern in which the dot-shaped (hemispherical) recesses 75 are aligned so as to extend linearly in the first direction and the second direction intersecting the first direction. The concavo-convex pattern 71C is a grid-like pattern in which the recesses 75 are arranged at positions corresponding to the intersections of the grooves 73 and 74 in the concavo-convex pattern 71B.
<接着剤>
 接着剤51としては、生体適合性を有する接着剤が使用される。例えば、接着剤51として、紫外線/可視光硬化型アクリル系、シアノアクリレート系、又は紫外線/可視光硬化型シリコン系等の反応系接着剤、並びに加熱により溶融し冷却により硬化する熱可塑性樹脂(溶融樹脂)等を使用できる。熱可塑性樹脂である接着剤51としては、ポリエーテルブロックアミド共重合体樹脂(PEBAX(登録商標))を例示できる。
<Adhesive>
As the adhesive 51, a biocompatible adhesive is used. For example, as the adhesive 51, a reactive adhesive such as an ultraviolet / visible light curable acrylic type, a cyanoacrylate type, or an ultraviolet / visible light curable silicon type, and a thermoplastic resin that melts by heating and cures by cooling (melting). Resin) etc. can be used. As the adhesive 51 which is a thermoplastic resin, a polyether block amide copolymer resin (PEBAX (registered trademark)) can be exemplified.
<効果>
 以上のように、本実施形態によれば、粗面加工部70に凹凸パターン71を形成したので、アンカー効果により粗面加工部70と接着剤51との接着力を向上させることができる。金属製材料から構成される粗面加工部70と、樹脂材料から構成される接着剤51との関係のように、接着する物が異質な材料同士であっても、アンカー効果により良好な接着力を得られる。従って、外層チューブ50が金属製部材30から剥離することを防止できる。
<Effect>
As described above, according to the present embodiment, since the uneven surface processed portion 70 is formed with the uneven surface pattern 71, the adhesive force between the rough surface processed portion 70 and the adhesive 51 can be improved by the anchor effect. Even if the materials to be bonded are different materials, such as the relationship between the rough surface processed portion 70 made of a metal material and the adhesive 51 made of a resin material, good adhesive force is obtained due to the anchor effect. Can be obtained. Therefore, it is possible to prevent the outer layer tube 50 from peeling off from the metal member 30.
〔第二の実施形態〕
 図5は、本発明の第二の実施形態に係るカテーテルの概略構成を示す平面図である。図6(a)は、図5に示すカテーテル本体のE-E断面図であり、(b)はF-F断面図である。図7は、カテーテル先端部の構造を示す図であり、(a)は部分拡大図であり、(b)は図6(b)のG-G断面図である。
[Second Embodiment]
FIG. 5 is a plan view showing a schematic configuration of a catheter according to a second embodiment of the present invention. FIG. 6A is a cross-sectional view taken along the line EE of the catheter body shown in FIG. 5, and FIG. 6B is a cross-sectional view taken along the line FF. 7A and 7B are views showing the structure of the tip of the catheter, FIG. 7A is a partially enlarged view, and FIG. 7B is a cross-sectional view taken along the line GG of FIG. 6B.
 以下、本発明を、高周波(ラジオ波)を用いて特定範囲の標的組織を加熱して焼灼するアブレーションカテーテルの例により説明する。以下の説明においては、第一の実施形態と同様の構成については同一の符号を付して適宜その説明を省略する。 Hereinafter, the present invention will be described with reference to an example of an ablation catheter that heats and cauterizes a target tissue in a specific range using high frequency waves (radio waves). In the following description, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 アブレーションカテーテル(以下単に「カテーテル」という)2は、内部に少なくとも1つのルーメン(送り路121、戻り路123、ガイドワイヤルーメン125)を有するカテーテル本体80と、カテーテル本体80の基端部80bに取り付けられたハンドル90と、を備える。図示するカテーテルは、オーバーザワイヤ型のカテーテルである。 The ablation catheter (hereinafter simply referred to as "catheter") 2 is attached to a catheter body 80 having at least one lumen (feed path 121, return path 123, guide wire lumen 125) inside and a proximal end portion 80b of the catheter body 80. The handle 90 is provided. The illustrated catheter is an over-the-wire catheter.
 図6、及び図7に示すように、カテーテル本体80は、中空部内に冷却媒体を輸送する流路(送り路121、戻り路123)が形成された金属製チューブ100と、金属製チューブ100の先端部100aに形成された先端電極101と、先端電極101を除く金属製チューブ100の所定の軸方向部位(絶縁被覆部106)の外面を被覆する樹脂製の外層チューブ50と、外層チューブ50の少なくとも先端部50aにおいて外層チューブ50と金属製チューブ100とを接着する接着剤51と、を備える。 As shown in FIGS. 6 and 7, the catheter body 80 is composed of a metal tube 100 in which a flow path (feed path 121, return path 123) for transporting a cooling medium is formed in a hollow portion, and a metal tube 100. A resin outer layer tube 50 that covers the outer surface of a predetermined axial portion (insulation coating portion 106) of a metal tube 100 excluding the tip electrode 101 and a tip electrode 101 formed on the tip portion 100a, and an outer layer tube 50. An adhesive 51 for adhering the outer layer tube 50 and the metal tube 100 at least at the tip portion 50a is provided.
 金属製チューブ100は、接着剤51を付着させる部位に、凹凸パターン71が形成された粗面加工部70を備える。金属製チューブ100は、粗面加工部70よりも軸方向の基端部側に位置する軸方向の少なくとも一部に、軸方向と交差する方向に沿って延びるスリット104が形成された可撓性部分103を備える。 The metal tube 100 includes a rough surface processed portion 70 in which an uneven pattern 71 is formed at a portion to which the adhesive 51 is attached. The metal tube 100 is flexible in which slits 104 extending along the direction intersecting the axial direction are formed in at least a part of the axial direction located on the proximal end side in the axial direction with respect to the roughened surface machined portion 70. A portion 103 is provided.
<金属製チューブ>
 金属製チューブ100を構成する金属材料としては、ステンレススチール、NiTi、βチタン、プラチナイリジウムなどを挙げられる。
<Metal tube>
Examples of the metal material constituting the metal tube 100 include stainless steel, NiTi, β-titanium, platinum iridium and the like.
 金属製チューブ100の外径は、例えば0.55~3.0mmとされ、好ましくは0.7~2.0mmとされる。金属製チューブ100の内径は、例えば0.25~2.8mmとされ、好ましくは0.6~1.9mmとされる。金属製チューブ100の長さは、例えば200~2200mmとされ、好ましくは600~1000mmとされる。 The outer diameter of the metal tube 100 is, for example, 0.55 to 3.0 mm, preferably 0.7 to 2.0 mm. The inner diameter of the metal tube 100 is, for example, 0.25 to 2.8 mm, preferably 0.6 to 1.9 mm. The length of the metal tube 100 is, for example, 200 to 2200 mm, preferably 600 to 1000 mm.
<<可撓性部分>>
 可撓性部分103に形成されたスリット104は、金属製チューブ100を内外径方向に貫通している。図5、及び図7(a)に示すように、スリット104は、螺旋状に連続して形成されている。スリット104が形成されることにより、可撓性部分103はスリット104の幅及びピッチに応じた曲率で、キンクすることなく自在に湾曲変形する。
<< Flexible part >>
The slit 104 formed in the flexible portion 103 penetrates the metal tube 100 in the inner and outer diameter directions. As shown in FIGS. 5 and 7 (a), the slit 104 is formed continuously in a spiral shape. By forming the slit 104, the flexible portion 103 is freely curved and deformed without kinking with a curvature corresponding to the width and pitch of the slit 104.
 スリット104のピッチ(軸方向における間隔)は、金属製チューブ100の基端側から先端側に向かって徐々に狭くなる。これにより、カテーテル本体80の剛性は先端側に向かって徐々に低下する。従って、可撓性部分103を血管形状に追従させることができる。カテーテル本体80を、治療対象部位へ導入する際の操作性に特に優れたカテーテルとすることができる。なお、本発明において、スリット104のピッチは軸方向に同一でもよい。 The pitch (spacing in the axial direction) of the slit 104 gradually narrows from the base end side to the tip end side of the metal tube 100. As a result, the rigidity of the catheter body 80 gradually decreases toward the distal end side. Therefore, the flexible portion 103 can be made to follow the shape of the blood vessel. The catheter body 80 can be a catheter having particularly excellent operability when it is introduced into the treatment target site. In the present invention, the pitch of the slit 104 may be the same in the axial direction.
 ハンドル90から可撓性部分103までの軸方向長は、100~700mmとされ、好ましくは300~500mmとされる。可撓性部分103の軸方向長は、50~800mmとされ、好ましくは100~600mmとされる。可撓性部分103から先端縁までの軸方向長は、5~15mmとされ、好ましくは7~13mmとされる。 The axial length from the handle 90 to the flexible portion 103 is 100 to 700 mm, preferably 300 to 500 mm. The axial length of the flexible portion 103 is 50 to 800 mm, preferably 100 to 600 mm. The axial length from the flexible portion 103 to the tip edge is 5 to 15 mm, preferably 7 to 13 mm.
 スリット104の幅は、0.01~0.1mmとされ、好ましくは0.02~0.04mmとされる。スリット104の間隔(金属製チューブ100の軸方向における離隔)は、0.3~20mmとされる。 The width of the slit 104 is 0.01 to 0.1 mm, preferably 0.02 to 0.04 mm. The distance between the slits 104 (the distance between the metal tubes 100 in the axial direction) is 0.3 to 20 mm.
 スリット104は、例えばレーザ加工、放電加工、化学エッチング、切削加工等により形成される。なお、スリット104は、これ以外の方法により形成されてもよい。 The slit 104 is formed by, for example, laser processing, electric discharge machining, chemical etching, cutting, or the like. The slit 104 may be formed by any other method.
 スリット104は、金属製チューブ100に可撓性を付与できる形状であれば、螺旋状以外の形状でもよい。例えば、金属製チューブ100は可撓性部分103に、周方向に延びる複数本のスリットを備えてもよい。このようなスリットの夫々は、例えば異なる軸方向位置に配置され、互いに独立して(非連続的に)形成される。 The slit 104 may have a shape other than the spiral shape as long as it can impart flexibility to the metal tube 100. For example, the metal tube 100 may include a plurality of slits extending in the circumferential direction in the flexible portion 103. Each of such slits is arranged, for example, in different axial positions and is formed independently (discontinuously) from each other.
<<露出部分、絶縁被覆部分>>
 図5に示すように、カテーテル本体80は、軸方向の先端部80aに金属製チューブ100の外表面を露出させることにより形成された先端電極101を備える。また、カテーテル本体80の軸方向の残部は、外層チューブ50及び接着剤51によって外表面が絶縁被覆された絶縁被覆部106となっている。
<< Exposed part, Insulation coating part >>
As shown in FIG. 5, the catheter body 80 includes a tip electrode 101 formed by exposing the outer surface of the metal tube 100 to the axial tip 80a. Further, the remaining portion of the catheter body 80 in the axial direction is an insulating coating portion 106 whose outer surface is insulated and coated by the outer layer tube 50 and the adhesive 51.
 絶縁被覆部106の軸方向長は、150~1100mmとされ、好ましくは800~1000mmとされる。先端電極101の軸方向長(図7(a)中の長さL)は、2~10mmとされ、好ましくは4~8mmとされる。 The axial length of the insulating coating portion 106 is 150 to 1100 mm, preferably 800 to 1000 mm. The axial length of the tip electrode 101 (length L in FIG. 7A) is 2 to 10 mm, preferably 4 to 8 mm.
 外層チューブ50は、少なくとも可撓性部分103の全体を被覆する。外層チューブ50は、絶縁性を有する熱収縮性樹脂チューブから構成されている。熱収縮性樹脂チューブを加熱して縮径させることにより形成された外層チューブ50は、金属製チューブ100の外表面に密着している。 The outer layer tube 50 covers at least the entire flexible portion 103. The outer layer tube 50 is made of a heat-shrinkable resin tube having an insulating property. The outer layer tube 50 formed by heating the heat-shrinkable resin tube to reduce its diameter is in close contact with the outer surface of the metal tube 100.
 外層チューブ50は、例えばポリエーテルブロックアミド共重合体樹脂(PEBAX(登録商標))又はポリエチレンテレフタレート(PET)から構成される。外層チューブ50の膜厚は、例えば10~100μmとされ、好ましくは20~40μmとされる。 The outer layer tube 50 is made of, for example, a polyether block amide copolymer resin (PEBAX (registered trademark)) or polyethylene terephthalate (PET). The film thickness of the outer layer tube 50 is, for example, 10 to 100 μm, preferably 20 to 40 μm.
 先端電極101及び絶縁被覆部106は、血管を経由して患者の体内に挿入される。
 カテーテル2の先端電極101には、リード線127を介して高周波電源装置から高周波電力が供給される。先端電極101は金属製チューブ100が露出しているため、先端電極101と高周波電源装置に接続された対極板との間で高周波電流が流れる。先端電極101周辺の組織は、発生したジュール熱により焼灼される。
The tip electrode 101 and the insulating coating 106 are inserted into the patient's body via blood vessels.
High-frequency power is supplied to the tip electrode 101 of the catheter 2 from the high-frequency power supply device via the lead wire 127. Since the metal tube 100 is exposed in the tip electrode 101, a high frequency current flows between the tip electrode 101 and the counter electrode connected to the high frequency power supply device. The tissue around the tip electrode 101 is cauterized by the generated Joule heat.
 絶縁被覆部106は絶縁被覆されているため、高周波電源装置に接続された対極板との間で高周波電流が流れることはない。 Since the insulating coating portion 106 is insulated and coated, a high frequency current does not flow between the insulating coating and the counter electrode connected to the high frequency power supply device.
<ルーメン>
 カテーテル本体80は、金属製チューブ100の中空部内にルーメンとして、先端電極101を冷却する冷却媒体を輸送する送り路121及び戻り路123、並びにガイドワイヤが挿通されるガイドワイヤルーメン125を備える(図6)。
<Lumen>
The catheter body 80 includes, as lumens in the hollow portion of the metal tube 100, a feed path 121 and a return path 123 for transporting a cooling medium for cooling the tip electrode 101, and a guide wire lumen 125 through which a guide wire is inserted (FIG. FIG. 6).
 送り路121とガイドワイヤルーメン125は、夫々、金属製チューブ100の中空部内に挿入された可撓性を有する樹脂製のルーメンチューブ122,126の中空部内に形成される。 The feed path 121 and the guide wire lumen 125 are formed in the hollow portions of the flexible resin lumen tubes 122 and 126, respectively, which are inserted into the hollow portions of the metal tube 100.
 戻り路123は、金属製チューブ100の内面と、ルーメンチューブ122,126の外面との間に形成される。このような戻り路123の形成方法によれば、金属製チューブ100内に収容するルーメンチューブの本数を減らせるので、カテーテル本体80を小径化できる。 The return path 123 is formed between the inner surface of the metal tube 100 and the outer surface of the lumen tubes 122 and 126. According to such a method of forming the return path 123, the number of lumen tubes accommodated in the metal tube 100 can be reduced, so that the diameter of the catheter body 80 can be reduced.
 なお、冷却媒体の送り路121を金属製チューブ100の内面とルーメンチューブ122,126の外面との間に形成し、戻り路123をルーメンチューブ122の中空部内に形成してもよい。 The cooling medium feed path 121 may be formed between the inner surface of the metal tube 100 and the outer surfaces of the lumen tubes 122 and 126, and the return path 123 may be formed in the hollow portion of the lumen tube 122.
 ガイドワイヤルーメン125は、カテーテル本体80を貫通して配置される。ガイドワイヤルーメン125は、送り路121及び戻り路123とは独立している。 The guide wire lumen 125 is arranged so as to penetrate the catheter body 80. The guide wire lumen 125 is independent of the feed path 121 and the return path 123.
 ルーメンチューブ122,126は、例えばポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)又はポリイミド(PI)から構成される。 Lumen tubes 122 and 126 are composed of, for example, polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE) or polyimide (PI).
<<冷却媒体、及びその流路>>
 冷却媒体を輸送する流路は、冷却媒体をカテーテル本体80の基端側から先端側に向けて輸送する送り路121と、冷却媒体を先端側から基端側に向けて輸送する戻り路123と、を含んで構成される。
<< Cooling medium and its flow path >>
The flow paths for transporting the cooling medium include a feeding path 121 for transporting the cooling medium from the proximal end side to the distal end side of the catheter body 80 and a return path 123 for transporting the cooling medium from the distal end side toward the proximal end side. , Is included.
 送り路121は、冷却媒体を先端電極101に向けて輸送する。戻り路123は、先端電極101を冷却した(先端電極101との間で熱交換された)冷却媒体をハンドル90側に輸送する。送り路121を形成するルーメンチューブ122の先端開口122aは、先端電極101の形成位置に相当する軸方向位置に配置されている。冷却媒体は先端電極101を内側から冷却する。ルーメンチューブ122の先端開口122aから送り路121の外部に流出した冷却媒体は、戻り路123に流入してハンドル90側に輸送される。 The feed path 121 transports the cooling medium toward the tip electrode 101. The return path 123 transports the cooling medium that has cooled the tip electrode 101 (heat exchanged with the tip electrode 101) to the handle 90 side. The tip opening 122a of the lumen tube 122 forming the feeding path 121 is arranged at an axial position corresponding to the forming position of the tip electrode 101. The cooling medium cools the tip electrode 101 from the inside. The cooling medium that has flowed out of the feed path 121 from the tip opening 122a of the lumen tube 122 flows into the return path 123 and is transported to the handle 90 side.
 本例においては、送り路121をルーメンチューブ122内に形成し、戻り路123をルーメンチューブ122と金属製チューブ100との間に形成したので、冷却媒体を先端電極101まで輸送する際に、冷却媒体の温度上昇を防止できる。従って、冷却媒体による先端電極101の冷却効率が向上する。 In this example, since the feed path 121 is formed in the lumen tube 122 and the return path 123 is formed between the lumen tube 122 and the metal tube 100, cooling is performed when the cooling medium is transported to the tip electrode 101. It is possible to prevent the temperature of the medium from rising. Therefore, the cooling efficiency of the tip electrode 101 by the cooling medium is improved.
 先端電極101を冷却する冷却媒体は、送り路121及び戻り路123内を流通可能な流体であれば、液体でも気体でもよい。液体の冷却媒体としては、例えば水、生理食塩水、飽和食塩水、エチレングリコール、エチレングルコール水溶液等を使用できる。気体の冷却媒体としては、例えば空気を使用できる。冷却媒体の温度は、-20~10℃が好適である。 The cooling medium for cooling the tip electrode 101 may be a liquid or a gas as long as it is a fluid that can flow through the feed path 121 and the return path 123. As the liquid cooling medium, for example, water, physiological saline, saturated saline, ethylene glycol, ethylene glycol aqueous solution and the like can be used. As the gas cooling medium, for example, air can be used. The temperature of the cooling medium is preferably −20 to 10 ° C.
 送り路121と戻り路123の双方は、カテーテル本体80の外部空間に対して液密性(気密性)が保持されている。従って、冷却媒体はカテーテル本体80の内部において軸方向に沿って輸送されるが、カテーテル本体80の外部には漏出しない。 Both the sending path 121 and the returning path 123 are kept liquidtight (airtight) with respect to the external space of the catheter body 80. Therefore, the cooling medium is transported along the axial direction inside the catheter body 80, but does not leak to the outside of the catheter body 80.
 カテーテル2において、冷却媒体は患者の体内には侵入しないため、治療対象となる臓器内に冷却媒体を灌注する場合に生じるリスクを回避できる。また、カテーテル2においては、各冷却媒体が発揮する冷却能力に応じて最適な冷却媒体を選択して使用できる。 In the catheter 2, since the cooling medium does not enter the patient's body, the risk of irrigating the cooling medium into the organ to be treated can be avoided. Further, in the catheter 2, the optimum cooling medium can be selected and used according to the cooling capacity exhibited by each cooling medium.
<電気系統>
 金属製チューブ100の外表面適所には、先端電極101に通電するリード線127,127が半田付けされている。リード線127,127は外層チューブ50によって被覆されている。
<Electrical system>
Lead wires 127 and 127 that energize the tip electrode 101 are soldered to appropriate positions on the outer surface of the metal tube 100. The lead wires 127 and 127 are covered with an outer layer tube 50.
 なお、カテーテル本体80は、その他の電気的な構成として、先端電極101の温度を計測する熱電対を、金属製チューブ100の内部に備えてもよい。 As another electrical configuration, the catheter body 80 may be provided with a thermocouple for measuring the temperature of the tip electrode 101 inside the metal tube 100.
<ハンドル>
 図5に示すように、ハンドル90の基端には、第一~第四分岐管131~134が接続されている。
<Handle>
As shown in FIG. 5, the first to fourth branch pipes 131 to 134 are connected to the base end of the handle 90.
<<第一分岐管>>
 第一分岐管131は、送り路121に冷却媒体を導入する経路を形成する。第一分岐管131の基端部には、冷却媒体の注入口となる注入コネクタ135が取り付けられている。
<< First branch pipe >>
The first branch pipe 131 forms a path for introducing the cooling medium into the feed path 121. An injection connector 135, which serves as an injection port for the cooling medium, is attached to the base end of the first branch pipe 131.
 第一分岐管131はハンドル90内において、ルーメンチューブ122と接続する。ハンドル90内において、第一分岐管131の中空部内は送り路121とは連通するが、他のルーメン(戻り路123、ガイドワイヤルーメン125)とは連通しない。 The first branch pipe 131 is connected to the lumen tube 122 in the handle 90. In the handle 90, the hollow portion of the first branch pipe 131 communicates with the feed path 121, but does not communicate with other lumens (return path 123, guide wire lumen 125).
<<第二分岐管>>
 第二分岐管132は、戻り路123から冷却媒体を排出する経路を形成する。第二分岐管132の基端部には、冷却媒体の排出口となる排出コネクタ136が取り付けられている。
 ハンドル90内において、第二分岐管132の中空部内は戻り路123と連通するが、他のルーメン(送り路121、ガイドワイヤルーメン125)とは連通しない。
<< Second branch pipe >>
The second branch pipe 132 forms a path for discharging the cooling medium from the return path 123. A discharge connector 136, which serves as a discharge port for the cooling medium, is attached to the base end of the second branch pipe 132.
In the handle 90, the hollow portion of the second branch pipe 132 communicates with the return path 123, but does not communicate with other lumens (feed path 121, guide wire lumen 125).
<<第三分岐管>>
 第三分岐管133は、ガイドワイヤルーメン125にガイドワイヤを導入する経路を形成する。第三分岐管133の基端部には、ガイドワイヤの導入口となる導入コネクタ137が取り付けられている。
<< Third branch pipe >>
The third branch pipe 133 forms a path for introducing the guide wire into the guide wire lumen 125. An introduction connector 137, which is an introduction port for a guide wire, is attached to the base end portion of the third branch pipe 133.
 第三分岐管133はハンドル90内において、ルーメンチューブ126と接続する。ハンドル90内において、第三分岐管133の中空部内はガイドワイヤルーメン125とは連通するが、他のルーメン(送り路121、戻り路123)とは連通しない。 The third branch pipe 133 is connected to the lumen tube 126 in the handle 90. In the handle 90, the hollow portion of the third branch pipe 133 communicates with the guide wire lumen 125, but does not communicate with other lumens (feed path 121, return path 123).
<<第四分岐管>>
 第四分岐管134内には、リード線127,127が挿通されている。第四分岐管134の基端部には、リード線127,127と導通した通電用コネクタ138が取り付けられている。
<< Fourth branch pipe >>
Lead wires 127 and 127 are inserted into the fourth branch pipe 134. A current-carrying connector 138 that conducts with the lead wires 127 and 127 is attached to the base end of the fourth branch pipe 134.
<<ハンドルの機能>>
 ハンドル90内において、各分岐管131~134の中空部内は夫々独立している。即ち、冷却媒体を輸送する空間は、他のルーメンとの間で液密性(気密性)が保持されている。
<< Handle function >>
In the handle 90, the hollow portions of the branch pipes 131 to 134 are independent of each other. That is, the space for transporting the cooling medium is kept liquidtight (airtight) with other lumens.
 ハンドル90は、操作用の把持部としての機能を有する。更にハンドル90は、冷却媒体を輸送する流路と、ガイドワイヤが挿通される経路と、通電用のリード線127,127と、を集約してカテーテル本体80に導くハブとしての機能を有する。 The handle 90 has a function as a grip portion for operation. Further, the handle 90 has a function as a hub that integrates the flow path for transporting the cooling medium, the path through which the guide wire is inserted, and the lead wires 127 and 127 for energization and guides them to the catheter body 80.
<粗面加工部/凹凸パターン>
 図7に示すように、粗面加工部70は、金属製チューブ100の外表面に所定のパターンによる凹凸加工が施された部位である。粗面加工部70に形成された凹凸パターン71は、主として接着剤との接着性を向上させるアンカー効果を得ることを目的として形成されたパターンである。粗面加工部70には、第一の実施形態と同様に、図4(a)~(c)に示した凹凸パターン71を形成することができる。
<Rough surface processed part / uneven pattern>
As shown in FIG. 7, the rough surface processing portion 70 is a portion where the outer surface of the metal tube 100 is subjected to uneven processing according to a predetermined pattern. The uneven pattern 71 formed on the rough surface processed portion 70 is a pattern formed mainly for the purpose of obtaining an anchor effect for improving the adhesiveness with the adhesive. The uneven surface processing portion 70 can be formed with the unevenness pattern 71 shown in FIGS. 4 (a) to 4 (c), as in the first embodiment.
 カテーテル2において、粗面加工部70の軸方向長は、例えば0.5~3.0mm、望ましくは1.0~2.0mmとされる。
 粗面加工部70が、図4(b)に示すような、複数の溝73,74が幾何学的に(又は規則的に)配置された凹凸パターン71Bを備える場合、溝73,74の深さは、非露出部33の肉厚の5~15%、好ましくは8~12%とされる。溝73,74の深さは、例えば4~14μm、望ましくは7~11μmとされる。
In the catheter 2, the axial length of the roughened surface processed portion 70 is, for example, 0.5 to 3.0 mm, preferably 1.0 to 2.0 mm.
When the rough surface processing portion 70 includes the uneven pattern 71B in which a plurality of grooves 73, 74 are geometrically (or regularly) arranged as shown in FIG. 4B, the depth of the grooves 73, 74 is deep. The thickness is 5 to 15%, preferably 8 to 12% of the wall thickness of the non-exposed portion 33. The depth of the grooves 73 and 74 is, for example, 4 to 14 μm, preferably 7 to 11 μm.
 溝73,74の幅は、例えば0.01~0.1mm、望ましくは0.04~0.06mmとされる。溝73,73の間隔、及び溝74,74の間隔は、例えば0.1~0.4mm、望ましくは0.2~0.3mmとされる。 The width of the grooves 73 and 74 is, for example, 0.01 to 0.1 mm, preferably 0.04 to 0.06 mm. The spacing between the grooves 73 and 73 and the spacing between the grooves 74 and 74 are, for example, 0.1 to 0.4 mm, preferably 0.2 to 0.3 mm.
<粗面加工部と接着剤との位置関係>
 接着剤51は、粗面加工部70の周方向の全体に隙間なく付着して、粗面加工部70と外層チューブ50の先端部50aとを接着する。
<Positional relationship between rough surface processed part and adhesive>
The adhesive 51 adheres to the entire circumferential direction of the rough surface processed portion 70 without any gap, and adheres the rough surface processed portion 70 and the tip portion 50a of the outer layer tube 50.
 接着剤51の軸方向の先端縁51aは、凹凸パターン71の先端縁71aと同等の軸方向位置か、望ましくは凹凸パターン71の先端縁71aよりも基端部側に位置するように配置される。接着剤51が金属製部材30から剥離する場合は、接着剤51の先端縁51aが剥離の開始地点となる。従って、接着剤51の先端縁51aを凹凸パターン71内に収めることによって、より確実な剥離防止効果を得られる。 The axial tip edge 51a of the adhesive 51 is arranged so as to be located at the same axial position as the tip edge 71a of the uneven pattern 71, or preferably located on the proximal end side of the tip edge 71a of the concave-convex pattern 71. .. When the adhesive 51 is peeled from the metal member 30, the tip edge 51a of the adhesive 51 is the starting point of the peeling. Therefore, by fitting the tip edge 51a of the adhesive 51 into the uneven pattern 71, a more reliable peeling prevention effect can be obtained.
 また、外層チューブ50の先端縁50bは、接着剤51の先端縁51aと同等の軸方向位置か、望ましくは接着剤51の先端縁51aよりも基端部側に位置するように配置される。これにより、外層チューブ50の先端縁50bに接着剤を付着させて、外層チューブ50が粗面加工部70から剥離することを防止する。 Further, the tip edge 50b of the outer layer tube 50 is arranged so as to be located at the same axial position as the tip edge 51a of the adhesive 51, or preferably located on the proximal end side of the tip edge 51a of the adhesive 51. As a result, the adhesive is attached to the tip edge 50b of the outer layer tube 50 to prevent the outer layer tube 50 from peeling off from the roughened surface processed portion 70.
<効果>
 以上のように、本実施形態によれば、粗面加工部70に凹凸パターン71を形成したので、アンカー効果により粗面加工部70と接着剤51との接着力を向上させることができる。金属製材料から構成される粗面加工部70と、樹脂材料から構成される接着剤51との関係のように、接着する物が異質な材料同士であっても、アンカー効果により良好な接着力を得られる。従って、外層チューブ50が金属製チューブ100から剥離することを防止できる。
<Effect>
As described above, according to the present embodiment, since the uneven surface processed portion 70 is formed with the uneven surface pattern 71, the adhesive force between the rough surface processed portion 70 and the adhesive 51 can be improved by the anchor effect. Even if the materials to be bonded are different materials, such as the relationship between the rough surface processed portion 70 made of a metal material and the adhesive 51 made of a resin material, good adhesive force is obtained due to the anchor effect. Can be obtained. Therefore, it is possible to prevent the outer layer tube 50 from peeling from the metal tube 100.
 仮に、外層チューブ50(及び/又は、接着剤51)が金属製チューブ100から剥離して、被覆されていた金属製チューブ100の一部分が露出した場合、当該露出した部分は先端電極として機能する。電極として機能する部分の増大により、焼灼対象以外の組織が焼灼される虞がある。また、金属製チューブ100から剥離した外層チューブ50(及び/又は、接着剤51)が更に千切れた場合には、外層チューブ50(及び/又は、接着剤51)の破片が体内に残留する虞がある。 If the outer layer tube 50 (and / or the adhesive 51) is peeled off from the metal tube 100 and a part of the covered metal tube 100 is exposed, the exposed part functions as a tip electrode. Due to the increase in the portion that functions as an electrode, there is a risk that tissues other than those to be cauterized will be cauterized. Further, if the outer layer tube 50 (and / or the adhesive 51) peeled off from the metal tube 100 is further torn, fragments of the outer layer tube 50 (and / or the adhesive 51) may remain in the body. There is.
 本実施形態によれば、アンカー効果により粗面加工部70と接着剤51との接着力を向上させたので、外層チューブ50が金属製チューブ100から剥離することに起因する上記問題の発生を防止できる。 According to the present embodiment, the adhesive force between the rough surface processed portion 70 and the adhesive 51 is improved by the anchor effect, so that the above-mentioned problem caused by the outer layer tube 50 being peeled from the metal tube 100 is prevented from occurring. can.
〔本発明の実施態様例と作用、効果のまとめ〕
<第一の実施態様>
 本態様に係るカテーテル2は、中空部内に冷却媒体を輸送する流路(送り路121,戻り路123)が形成された金属製チューブ100と、金属製チューブの先端部に形成された先端電極101と、先端電極を除く金属製チューブの所定の軸方向部位の外面を被覆する樹脂製の外層チューブ50と、外層チューブの少なくとも先端部において外層チューブと金属製チューブとを接着する接着剤51と、を有したカテーテル本体80を備える。金属製チューブは、接着剤を付着させる部位に、凹凸パターン71が形成された粗面加工部70を備えることを特徴とする。
[Summary of Examples of Embodiments of the Present Invention, Actions, and Effects]
<First embodiment>
The catheter 2 according to this embodiment has a metal tube 100 in which a flow path (feed path 121, return path 123) for transporting a cooling medium is formed in the hollow portion, and a tip electrode 101 formed in the tip portion of the metal tube. A resin outer layer tube 50 that covers the outer surface of a predetermined axial portion of the metal tube excluding the tip electrode, and an adhesive 51 that adheres the outer layer tube and the metal tube at least at the tip of the outer layer tube. The catheter main body 80 is provided. The metal tube is characterized in that a rough surface processed portion 70 on which the uneven pattern 71 is formed is provided at a portion to which the adhesive is attached.
 本態様によれば、粗面加工部に凹凸パターンを形成したので、アンカー効果により粗面加工部と接着剤との接着力を向上させることができる。従って、外層チューブが金属製チューブから剥離することを防止できる。 According to this aspect, since the uneven pattern is formed on the rough surface processed portion, the adhesive force between the rough surface processed portion and the adhesive can be improved by the anchor effect. Therefore, it is possible to prevent the outer layer tube from peeling from the metal tube.
 また、金属製材料から構成される粗面加工部に対して、接着剤が樹脂材料から構成される場合のように、接着する物が異質な材料同士であっても、凹凸パターンが発揮するアンカー効果により良好な接着力を得られる。従って、外層チューブが金属製チューブから剥離することを防止できる。 In addition, an anchor that exhibits an uneven pattern on a rough surface processed portion made of a metal material, even if the materials to be adhered to each other are different materials, as in the case where the adhesive is made of a resin material. Good adhesive strength can be obtained due to the effect. Therefore, it is possible to prevent the outer layer tube from peeling from the metal tube.
<第二の実施態様>
 本態様に係るカテーテル2において、凹凸パターン71は、第一の方向に延びる複数の溝73と、第一の方向と交差する第二の方向に延びる複数の溝74とを含んで構成されていることを特徴とする。
<Second embodiment>
In the catheter 2 according to this aspect, the concave-convex pattern 71 includes a plurality of grooves 73 extending in the first direction and a plurality of grooves 74 extending in the second direction intersecting the first direction. It is characterized by that.
 ここで、外層チューブ50が金属製チューブ100から剥離する場合、剥離は両者間の接着力が最も弱い箇所から生じやすい。粗面加工部には、凹凸パターンとして、第一及び第二の方向に夫々伸びる複数の溝を形成することにより、粗面加工部における接着剤の接着力を均一化しやすくなる。従って、外層チューブが金属製チューブから剥離することを効果的に防止できる。 Here, when the outer layer tube 50 is peeled from the metal tube 100, the peeling tends to occur from the place where the adhesive force between the two is the weakest. By forming a plurality of grooves extending in the first and second directions as a concavo-convex pattern in the rough surface processed portion, it becomes easy to make the adhesive force of the adhesive in the rough surface processed portion uniform. Therefore, it is possible to effectively prevent the outer layer tube from peeling from the metal tube.
<第三の実施態様>
 本態様に係るカテーテル2において、第一の方向に延びる溝73と、第二の方向に延びる溝74は、金属製チューブ100の軸線Axに沿った方向及び軸線と直交する方向に対して夫々傾斜していることを特徴とする。
<Third embodiment>
In the catheter 2 according to this embodiment, the groove 73 extending in the first direction and the groove 74 extending in the second direction are inclined in the direction along the axis Ax of the metal tube 100 and in the direction orthogonal to the axis, respectively. It is characterized by doing.
 ここで、カテーテルを体内に案内する際、外層チューブ50の先端縁50bには、カテーテルの挿入方向とは逆方向に、外層チューブ50を剥離させようとする外力が働く。しかし、粗面加工部70に、軸線Ax(剥離させようとする外力に沿った方向)、及び軸線Axと直交する方向の双方に対して傾斜した溝を形成すれば、外層チューブ50を剥離させようとする外力に対しても、高い剥離防止効果を得られる。 Here, when guiding the catheter into the body, an external force that tries to peel off the outer layer tube 50 acts on the tip edge 50b of the outer layer tube 50 in the direction opposite to the insertion direction of the catheter. However, if the rough surface machined portion 70 is formed with a groove inclined with respect to both the axis Ax (the direction along the external force to be peeled off) and the direction orthogonal to the axis Ax, the outer layer tube 50 is peeled off. A high peeling prevention effect can be obtained even against an external force.
<第四の実施態様>
 本態様に係るカテーテル2において、接着剤51の先端縁51aは、凹凸パターン71の先端縁71aよりも基端部側に位置することを特徴とする。
<Fourth embodiment>
In the catheter 2 according to this aspect, the tip edge 51a of the adhesive 51 is located closer to the proximal end side than the tip edge 71a of the uneven pattern 71.
 接着剤51が金属製チューブ100から剥離する場合は、接着剤の先端縁が剥離の開始地点となる。従って、接着剤の先端縁を凹凸パターン内に収めることによって、より確実な剥離防止効果を得られる。 When the adhesive 51 is peeled from the metal tube 100, the tip edge of the adhesive is the starting point of peeling. Therefore, by fitting the tip edge of the adhesive in the uneven pattern, a more reliable peeling prevention effect can be obtained.
<第五の実施態様>
 本態様に係るカテーテル2において、流路は、冷却媒体を基端側から先端側に向けて輸送する送り路121と、冷却媒体を先端側から基端側に向けて輸送する戻り路123と、を含み、送り路と戻り路の一方は金属製チューブ100の中空部内に挿入された樹脂製チューブ(ルーメンチューブ122)により形成され、送り路と戻り路の他方は樹脂製チューブと金属製チューブとの間に形成されていることを特徴とする。
<Fifth embodiment>
In the catheter 2 according to this embodiment, the flow paths include a feeding path 121 for transporting the cooling medium from the proximal end side to the distal end side, and a return path 123 for transporting the cooling medium from the distal end side toward the proximal end side. One of the feed path and the return path is formed by a resin tube (lumen tube 122) inserted into the hollow portion of the metal tube 100, and the other of the feed path and the return path is a resin tube and a metal tube. It is characterized in that it is formed between.
 本態様に係るカテーテルにおいて、冷却媒体は先端電極を冷却する。冷却媒体はカテーテル内を往復するため、冷却媒体は患者の体内には侵入しない。従って、治療対象となる臓器内に冷却媒体を灌注する場合に生じるリスクを回避できる。また、各冷却媒体が発揮する冷却能力に応じて最適な冷却媒体を選択して使用できる。 In the catheter according to this aspect, the cooling medium cools the tip electrode. Since the cooling medium reciprocates in the catheter, the cooling medium does not enter the patient's body. Therefore, the risk of irrigating the cooling medium into the organ to be treated can be avoided. In addition, the optimum cooling medium can be selected and used according to the cooling capacity exhibited by each cooling medium.
 本態様に係るカテーテルにおいて、冷却媒体は金属製チューブ内を直接流れる。金属製チューブ内に収容する樹脂性チューブの本数を減らせるので、カテーテルを小径化できる。 In the catheter according to this aspect, the cooling medium flows directly in the metal tube. Since the number of resin tubes housed in the metal tube can be reduced, the diameter of the catheter can be reduced.
 1,2…カテーテル、10…カテーテル本体、10a…先端部、10b…基端部、20…ハンドル、21…把持部、22…回転板、23…回転つまみ、25,25A,25B…操作ワイヤ、30…金属性部材、31…先端チップ電極、33…非露出部、41…リング状電極、50…外層チューブ、50a…先端部、50b…先端縁、51…接着剤、51a…先端縁、61,61A~61D…ルーメンチューブ、62,62A~62D…リード用ルーメン、65,65A,65B…ルーメンチューブ、66,66A,66B…操作用ルーメン、70…粗面加工部、71,71A~71C…凹凸パターン、72…凹所、73,74…溝、75…凹所、80…カテーテル本体、80a…先端部、80b…基端部、90…ハンドル、100…金属製チューブ、100a…先端部、101…先端電極、103…可撓性部分、104…スリット、106…絶縁被覆部、121…送り路、122…ルーメンチューブ、122a…先端縁、123…戻り路、125…ガイドワイヤルーメン、126…ルーメンチューブ、127…リード線、131…第一分岐管、132…第二分岐管、133…第三分岐管、134…第四分岐管、135…注入コネクタ、136…排出コネクタ、137…導入コネクタ、138…通電用コネクタ 1,2 ... catheter, 10 ... catheter body, 10a ... tip, 10b ... base end, 20 ... handle, 21 ... grip, 22 ... rotating plate, 23 ... rotating knob, 25, 25A, 25B ... operating wire, 30 ... Metallic member, 31 ... Tip tip electrode, 33 ... Non-exposed part, 41 ... Ring-shaped electrode, 50 ... Outer layer tube, 50a ... Tip, 50b ... Tip edge, 51 ... Adhesive, 51a ... Tip edge, 61 , 61A-61D ... Lumen tube, 62, 62A-62D ... Lead lumen, 65, 65A, 65B ... Lumen tube, 66, 66A, 66B ... Operation lumen, 70 ... Rough surface machined part, 71, 71A-71C ... Concavo-convex pattern, 72 ... recess, 73, 74 ... groove, 75 ... recess, 80 ... catheter body, 80a ... tip, 80b ... base end, 90 ... handle, 100 ... metal tube, 100a ... tip, 101 ... Tip electrode, 103 ... Flexible part, 104 ... Slit, 106 ... Insulation coating, 121 ... Feed path, 122 ... Lumen tube, 122a ... Tip edge, 123 ... Return path, 125 ... Guide wire lumen, 126 ... Lumen tube, 127 ... lead wire, 131 ... first branch pipe, 132 ... second branch pipe, 133 ... third branch pipe, 134 ... fourth branch pipe, 135 ... injection connector, 136 ... discharge connector, 137 ... introduction connector 138 ... Energizing connector

Claims (5)

  1.  中空部内に冷却媒体を輸送する流路が形成された金属製チューブと、該金属製チューブの先端部に形成された先端電極と、該先端電極を除く前記金属製チューブの所定の軸方向部位の外面を被覆する樹脂製の外層チューブと、該外層チューブの少なくとも先端部において前記外層チューブと前記金属製チューブとを接着する接着剤と、を有したカテーテル本体を備え、
     前記金属製チューブは、前記接着剤を付着させる部位に、凹凸パターンが形成された粗面加工部を備えることを特徴とするカテーテル。
    A metal tube having a flow path for transporting a cooling medium in the hollow portion, a tip electrode formed at the tip of the metal tube, and a predetermined axial portion of the metal tube excluding the tip electrode. A catheter body having a resin outer layer tube covering the outer surface and an adhesive for adhering the outer layer tube and the metal tube at at least at the tip of the outer layer tube is provided.
    The metal tube is a catheter characterized in that a rough surface processed portion on which an uneven pattern is formed is provided at a portion to which the adhesive is attached.
  2.  前記凹凸パターンは、第一の方向に延びる複数の溝と、該第一の方向と交差する第二の方向に延びる複数の溝とを含んで構成されていることを特徴とする請求項1に記載のカテーテル。 The first aspect of the present invention is characterized in that the uneven pattern includes a plurality of grooves extending in a first direction and a plurality of grooves extending in a second direction intersecting the first direction. The catheter described.
  3.  前記第一の方向に延びる溝と、前記第二の方向に延びる溝は、前記金属製チューブの軸線に沿った方向及び該軸線と直交する方向に対して夫々傾斜していることを特徴とする請求項2に記載のカテーテル。 The groove extending in the first direction and the groove extending in the second direction are each inclined with respect to a direction along the axis of the metal tube and a direction orthogonal to the axis. The catheter according to claim 2.
  4.  前記接着剤の先端縁は、前記凹凸パターンの先端縁よりも基端部側に位置することを特徴とする請求項1乃至3の何れか一項に記載のカテーテル。 The catheter according to any one of claims 1 to 3, wherein the tip edge of the adhesive is located on the proximal end side of the tip edge of the uneven pattern.
  5.  前記流路は、前記冷却媒体を基端側から先端側に向けて輸送する送り路と、前記冷却媒体を先端側から基端側に向けて輸送する戻り路と、を含み、
     前記送り路と前記戻り路の一方は前記金属製チューブの中空部内に挿入された樹脂製チューブにより形成され、前記送り路と前記戻り路の他方は前記金属製チューブと前記樹脂製チューブとの間に形成されていることを特徴とする請求項1乃至4の何れか一項に記載のカテーテル。
    The flow path includes a feed path for transporting the cooling medium from the proximal end side to the distal end side and a return path for transporting the cooling medium from the distal end side toward the proximal end side.
    One of the feed path and the return path is formed by a resin tube inserted into the hollow portion of the metal tube, and the other of the feed path and the return path is between the metal tube and the resin tube. The catheter according to any one of claims 1 to 4, wherein the catheter is formed in.
PCT/JP2020/013767 2020-03-26 2020-03-26 Catheter WO2021192168A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022510279A JP7214922B2 (en) 2020-03-26 2020-03-26 catheter
PCT/JP2020/013767 WO2021192168A1 (en) 2020-03-26 2020-03-26 Catheter
TW110110310A TW202202097A (en) 2020-03-26 2021-03-23 Catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013767 WO2021192168A1 (en) 2020-03-26 2020-03-26 Catheter

Publications (1)

Publication Number Publication Date
WO2021192168A1 true WO2021192168A1 (en) 2021-09-30

Family

ID=77891302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013767 WO2021192168A1 (en) 2020-03-26 2020-03-26 Catheter

Country Status (3)

Country Link
JP (1) JP7214922B2 (en)
TW (1) TW202202097A (en)
WO (1) WO2021192168A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832048A (en) * 1987-10-29 1989-05-23 Cordis Corporation Suction ablation catheter
JPH09511414A (en) * 1994-01-24 1997-11-18 インプレメド インコーポレイテッド Cryomapping and ablation catheter
US6001095A (en) * 1997-06-23 1999-12-14 Irvine Biomedical, Inc. Catheter system having closely spaced distal bipolar electrodes
JP2005342521A (en) * 2004-06-02 2005-12-15 Microline Inc Surgical clip
JP2019146909A (en) * 2018-02-28 2019-09-05 国立大学法人東北大学 Catheter for high-frequency treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832048A (en) * 1987-10-29 1989-05-23 Cordis Corporation Suction ablation catheter
JPH09511414A (en) * 1994-01-24 1997-11-18 インプレメド インコーポレイテッド Cryomapping and ablation catheter
US6001095A (en) * 1997-06-23 1999-12-14 Irvine Biomedical, Inc. Catheter system having closely spaced distal bipolar electrodes
JP2005342521A (en) * 2004-06-02 2005-12-15 Microline Inc Surgical clip
JP2019146909A (en) * 2018-02-28 2019-09-05 国立大学法人東北大学 Catheter for high-frequency treatment

Also Published As

Publication number Publication date
JPWO2021192168A1 (en) 2021-09-30
JP7214922B2 (en) 2023-01-30
TW202202097A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
JP5400784B2 (en) Electrophysiological electrode and device comprising electrophysiological electrode
US5843152A (en) Catheter system having a ball electrode
EP0837655B1 (en) Catheter with a spirally wound flat ribbon electrode
JP5444840B2 (en) Ablation catheter with balloon and ablation catheter system with balloon
EP0797956B1 (en) Slip resistant, field focusing ablation catheter electrode
EP2967731B1 (en) Open irrigated ablation catheter with proximal cooling
JP6117422B2 (en) Open irrigation ablation catheter
US20130184703A1 (en) Renal nerve modulation devices and methods for making and using the same
EP1364677A2 (en) Electrode array catheter
US20050177151A1 (en) Irrigation sheath
US6226554B1 (en) Catheter system having a ball electrode and methods thereof
JP2002119519A (en) Catheter having improved cauterizing electrode
CA2815653A1 (en) Catheter with helical end section for vessel ablation
WO2021192168A1 (en) Catheter
WO2022176604A1 (en) Puncturing device
JP2023176471A (en) puncture device
TWI805144B (en) Selectively insulated ultrasound transducers, catheters including the same and methods of using the same
TWI838232B (en) Selectively insulated ultrasound transducers, catheters including the same and methods of using the same
US20240130781A1 (en) Puncturing device
WO2022102319A1 (en) Puncturing device
JP2022127670A (en) Puncture device
CN108236500B (en) Electrophysiology catheter
JP2022127669A (en) Puncture device
JP2023068575A (en) Production method of electrode catheter
CN116963685A (en) Cauterizing puncture needle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927066

Country of ref document: EP

Kind code of ref document: A1