WO2021192048A1 - Differential device - Google Patents

Differential device Download PDF

Info

Publication number
WO2021192048A1
WO2021192048A1 PCT/JP2020/013051 JP2020013051W WO2021192048A1 WO 2021192048 A1 WO2021192048 A1 WO 2021192048A1 JP 2020013051 W JP2020013051 W JP 2020013051W WO 2021192048 A1 WO2021192048 A1 WO 2021192048A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
cam
differential device
clutch
side gear
Prior art date
Application number
PCT/JP2020/013051
Other languages
French (fr)
Japanese (ja)
Inventor
功 廣田
陽輔 川合
Original Assignee
ジーケーエヌ オートモーティブ リミテッド
Gkn ドライブライン ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーケーエヌ オートモーティブ リミテッド, Gkn ドライブライン ジャパン株式会社 filed Critical ジーケーエヌ オートモーティブ リミテッド
Priority to JP2022509841A priority Critical patent/JP7364785B2/en
Priority to CN202080094893.4A priority patent/CN115003934A/en
Priority to PCT/JP2020/013051 priority patent/WO2021192048A1/en
Publication of WO2021192048A1 publication Critical patent/WO2021192048A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices

Definitions

  • the following disclosure relates to a differential device, especially a differential device with less judder and noise in both forward and backward directions.
  • LSD limited slip differential
  • the LSD comprises, for example, a friction clutch that operates in response to torque, and the friction clutch acts to limit the differential (torque sensitive LSD).
  • torque-sensitive LSD there are various types of torque-sensitive LSD, such as a planetary gear type that uses the tooth surface resistance of the planetary gear as a pressing force on the clutch, a multi-plate clutch type that uses a multi-plate clutch as a friction clutch, and a cone clutch.
  • a planetary gear type that uses the tooth surface resistance of the planetary gear as a pressing force on the clutch
  • a multi-plate clutch type that uses a multi-plate clutch as a friction clutch
  • a cone clutch An example is a cone clutch type.
  • the planetary gear type and the multi-plate clutch type tend to exert a relatively large differential limiting force, but have a drawback that the device tends to be large.
  • Patent Document 1 discloses a compact cone clutch type LSD technology. According to the disclosure, a cam mechanism is used to obtain a large pressing force. That is, when the differential device is rotating in the direction in which the vehicle travels (drive direction), the cam mechanism partially converts the torque into a thrust force, and the thrust force presses the cone clutch, thus differentially. To limit.
  • Patent Document 1 Although not clearly described in Patent Document 1, it is possible to restrict the differential in the direction in which the vehicle reverses (coast direction). However, according to a further study by the present inventors, it has become clear that a slight phenomenon called judder occurs in the coastal direction, and the driver may feel uncomfortable.
  • a differential that allows differentials between a pair of axles is a side gear that can rotate around the axles in both the first and second directions opposite to each other, and the difference.
  • a differential gear set including a pinion gear that meshes with the side gear so as to allow movement, and an output member that engages with the side gear to drively connect the side gear and the axle, and is a clutch surface.
  • a cam comprising a second cam surface, wherein the first thrust force and the second thrust force press the clutch surface against the friction surface to operate the friction clutch.
  • Both the first thrust force and the second thrust force are the cams whose first cam surface and the second cam surface are respectively sized so as to exceed the meshing reaction force of the side gear with respect to the pinion gear. , Equipped with.
  • FIG. 1 is an elevation cross-sectional view of the differential device.
  • FIG. 2 is an exploded perspective view of the output member and the side gear taken out.
  • FIG. 3 is a perspective view showing a surface of the output member facing the side gear.
  • FIG. 4 is a plan sectional view of the differential device, which is taken from the line IV-IV of FIG.
  • FIG. 5 is a partially enlarged view of FIG. 4, and is a partial plan sectional view showing a cam in particular.
  • FIG. 6 is a partial plan sectional view showing the relationship between the meshed pinion and the side gear, and is a diagram corresponding to the VI-VI line of FIG.
  • the axis means the axis of rotation of the differential
  • the axial direction means the direction parallel to it
  • the radial direction means the direction orthogonal to it. ..
  • the differential device is used, for example, in an application in which torque around a shaft C is output to a pair of (usually right and left) axles while allowing differential. can.
  • it can be used for distributing torque to the front and rear drive wheels via a propeller shaft that connects the front and rear, and of course, it can also be used for various other applications that mediate the transmission of torque.
  • the following description relates to an example of distributing torque to the axles, but this is just for convenience of explanation.
  • the differential device is generally transmitted by a casing 1 that receives torque and rotates around an axis C, and a differential gear set 3 that is drivenly coupled to the casing 1 and transmits torque while allowing differential. It includes an output member 5 that outputs torque to each axle, a cam 7 that partially converts torque into thrust force, and a friction clutch 9 that limits the differential using the thrust force.
  • Casing 1 is generally cylindrical and is rotatably supported by bosses protruding from both ends.
  • the casing 1 can be provided with a flange that protrudes radially from the outer periphery of the cylindrical portion, and can receive torque via a ring gear coupled thereto.
  • support and torque reception do not necessarily have to depend on such a configuration.
  • the casing 1 may be of a two-piece type or a one-piece type which can be divided into a plurality of pieces for the convenience of carrying in the internal members.
  • the one-piece type as shown in FIG. 4, one or more openings 37 can be provided on the side surface thereof, and the differential gear set 3 and the output member 5 are carried in through the openings 37.
  • the inner surface of the casing 1 is provided with a friction surface 31 so as to face the output member 5.
  • the friction surface 31 is an element constituting the friction clutch 9.
  • the differential gear set 3 includes a pair of side gears 13 corresponding to a pair of axles.
  • the differential gear set 3 also includes a pinion shaft 33 that is drivenly coupled to the casing 1 and a plurality of pinion gears 11 that are rotatably supported by the shaft 33. By engaging the pinion gears 11 with the side gears 13, torque is transmitted to the pair of side gears 13 while allowing differential.
  • the differential gear set 3 can be a so-called bevel gear type in which the gear teeth of the pinion gear and the side gear are tilted as shown in the figure, or may be a face gear type (not shown).
  • the bevel gear type or face gear type can easily realize the following disclosure, or other types can be adopted if possible.
  • the side gear 13 may be directly connected to the axle, but unlike a general differential gear, the side gear 13 is not directly connected to each axle. May be isolated from. It is the output member 5 that is integrated with or separate from the side gear 13 that drives the side gear 13 and the axle.
  • each output member 5 generally comprises a hub 23 and a flange portion 25 extending radially outward from the hub 23.
  • a corresponding side gear 13 is fitted to the outer peripheral surface of each hub 23, and a corresponding axle is coupled to the inner surface.
  • the inner surface is provided with, for example, a spline for coupling with the axle, but the coupling does not necessarily depend on the spline.
  • the side gear 13 and the output member 5 are provided with a structure capable of transmitting torque by meshing with each other. That is, the torque output by the side gear 13 is transmitted to the axle via the output member 5 in either case of the integral body or the separate body.
  • the cone surface 27 and the friction surface 31 can be, for example, a conical surface that narrows outward in the axial direction, which is a so-called cone clutch type.
  • a conical surface instead of the conical surface, another suitable rotationally symmetric shape may be used. These forms make it possible to control the braking force of the friction clutch 9 according to the pressing force.
  • an appropriate friction ring 29 may be interposed between the cone surface 27 and the friction surface 31, and the inner surface of the friction ring 29 may be a conical surface suitable for the cone surface 27.
  • the cone surface 27 comes into contact with the friction surface 31 of the casing 1 via the friction ring 29.
  • the friction ring 29 may be rotatable with respect to the casing 1, but may be provided with, for example, an engaging portion to be prevented from rotating with respect to the casing 1.
  • the above description relates exclusively to the cone clutch having the cone surface as the clutch surface, but this is only for convenience of explanation, and instead of the cone clutch, the combination of the output member 5 and the casing 1 is other than a disc clutch, a drum clutch, etc.
  • the clutch of the form of may be configured. Needless to say, a multi-plate clutch may be used.
  • the side gear 13 includes, for example, a socket 19 which is a recess that opens outward in the axial direction.
  • each output member 5 includes a lug 21 corresponding to the socket 19.
  • Each of the lugs 21 is arranged and dimensioned so as to fit into the socket 19, so that the output members 5 mesh with each other with the side gears 13 to transmit torque.
  • the relationship between the socket and the lug may be opposite to the above description, and the side gear may be provided with the lug and the output member may be provided with the socket. Alternatively, it may have another appropriate structure that meshes with each other to transmit torque.
  • the socket 19 is not necessarily limited to this, but may be formed along the inner surface that fits on the outer peripheral surface, as best shown in FIG.
  • the lugs 21 can each be a protrusion that projects radially outward from the hub 23, as best shown in FIG. Such a structure is convenient for processing and is particularly useful for increasing strength and rigidity.
  • the wide surface radially outside the lug supports the wide surface radially outside the socket (reference numeral 13A in FIG. 2) in the side gear.
  • the surface 5A can be a recess that is sunk inward in the output member 5, and as can be understood from FIG. 1, the bottom portion of the side gear 13 can be accommodated. Needless to say, such a structure can also be applied to the other side gear 13 and the output member 5.
  • Such a structure helps to compress the dimensions of the combination of the side gear and the output member in the axial direction. Further, since the outer shape of such a combination matches the outer shape of the conventional side gear, it is advantageous in terms of compatibility of parts.
  • the side surfaces 21A and 21B of the lug 21 may be tapered inward in the direction of the side gear 13, that is, in the axial direction.
  • the side surfaces 19A and 19B of the socket 19 may also extend outward in the direction of the output member 5, that is, in the axial direction.
  • Either or both of the side surfaces 21A, 21B and 19A, 19B are tilted in the direction of the axis C, and therefore the combination of the side surfaces 19A, 21A and the combination of the side surfaces 19B, 21B are in contact with each other in the socket 19 of the lug 21.
  • the cam surfaces 19 and 21 that guide the sliding with respect to the cam surface 19 and 21 are defined. In these figures, both sides that abut each other are drawn flat, but only one may be flat and the other curved.
  • the combination of the socket 19 and the lug 21 acts as a cam 7 that partially converts the torque into a thrust force when the torque is applied. ..
  • the thrust force pushes the output member 5 outward in the axial direction to operate the friction clutch 9.
  • the thrust force generated by the cam 7 can be estimated by the following formula.
  • T is the torque input to the differential device
  • is the angle of the cam surface with respect to the axis C
  • Rc is the working radius of the cam.
  • both the cam surfaces 15 and 17 are tilted with respect to the direction of the axis C, the differential limiting performance can be exhibited in both the drive direction and the coast direction. Therefore, in the present embodiment, when the angles formed by the cam surfaces 15 and 17 with the direction of the axis C are ⁇ 1 and ⁇ 2, respectively, as is clear from FIGS. 4 and 5, both ⁇ 1 and ⁇ 2 are larger than 0. .. That is, the cam 7 not only generates a thrust force f1 with respect to the rotation R1 in the drive direction, but also generates a thrust force f2 with respect to the rotation R2 in the coast direction.
  • the thrust forces f1 and f2 both operate the friction clutch 9 by pressing the output member 5 outward in the axial direction. Since the friction clutch 9 operates in a torque-sensitive manner, the differential device functions as a torque-sensitive LSD.
  • Thrust forces f1 and f2 may be equal to or different from each other.
  • the thrust forces f1 and f2 can be adjusted independently by appropriately adjusting ⁇ 1 and ⁇ 2, respectively.
  • f1> f2 can be set, and in this case ⁇ 1> ⁇ 2 can be set.
  • it may be adjusted by the radius of action instead of or in addition to the inclination of the cam surface.
  • An elastic body such as a countersunk spring can be added between the side gear 13 and the output member 5.
  • the projectile may be interposed at other appropriate sites. The projectile always presses the cone surface 27 against the friction surface 31 regardless of the operation of the cam, and generates an initial torque. This can be a countermeasure against the delay of the differential limitation due to the delay of the initial movement of the cam 7.
  • the tooth surface of the side gear 13 and the tooth surface of the pinion gear 11 are in contact with each other on the pitch circle P, and the common normal TL of these tooth surfaces is the radius line R.
  • a pressure angle a is formed with respect to the pressure angle a.
  • the side gear 13 meshes outward in the axial direction and a reaction force fG is generated.
  • the meshing reaction force fG can be estimated by the following formula.
  • T is the torque inputted to the differential gear
  • a is the pressure angle of the pinion gear
  • [delta] 0 is the pitch angle of the side gears
  • the d m is the pitch diameter meshing side gears.
  • the meshing reaction force fG cancels out with the thrust reaction forces f1R and f2R.
  • the meshing reaction force fG exceeds the thrust reaction forces f1R and f2R, and the larger the meshing reaction force fG, the more advantageous it is to increase the braking force of the friction clutch 9.
  • the meshing reaction force is not constant. That is, the meshing reaction force fluctuates with time according to the process in which the gears begin to mesh, rotate while sliding with each other, and then disengage.
  • the meshing reaction force fG is kept at an appropriate size with respect to the thrust forces f1 and f2. That is, the cam surfaces 15 and 17 are dimensioned so that both the thrust forces f1 and f2 exceed the meshing reaction force fG.
  • Such a configuration is advantageous in suppressing judder.
  • the block 35 may be interposed between the pair of side gears 13 or so as to slide with both of them. Since the thrust reaction forces acting on both side gears 13 have substantially the same magnitude and are opposite to each other, the thrust reaction forces cancel each other out in the block 35.
  • the block 35 is, for example, a cylinder around a shaft C, provided with a through hole through which the pinion shaft 33 penetrates, but is not necessarily limited to such a shape. No.
  • the differential device may further include an actuator that applies a pressing force to the clutch in order to control the differential limit from the outside.
  • the clutch may have a structure such as a dog tooth.
  • the clutch provided with such dog teeth may be independent of the friction clutch 9, and the actuator may be configured to drive the dog teeth.
  • this embodiment can be applied to a so-called free running differential.
  • the free-running differential the casing is divided into an inner casing and an outer casing, and torque is transmitted to the axle only when they are connected to each other by a clutch or the like.
  • the structure described so far can be used almost as it is for the inner casing of the free running differential and its internal structure, except for the flange and the boss portion.

Abstract

Provided is a differential device for enabling a differential motion between a pair of axles, the differential device comprising: a differential gear group including a side gear capable of rotation in both a first direction and a second direction, which are opposite to each other, about a shaft, and a pinion gear in meshing engagement with the side gear so as to allow for said differential motion; a casing supporting the differential group and having a frictional surface facing the differential gear group; an output member in engagement with the side gear so as to drivingly couple the side gear and each of the axles and having a clutch surface; a casing supporting the differential group and having a frictional surface which faces the clutch surface and cooperates with the same to form a friction clutch that limits said differential motion; and a cam having a first cam surface for converting torque in said first direction to a first thrust force in the direction of the shaft and a second cam surface for converting torque in said second direction to a second thrust force in the direction of the shaft and configured so as to activate the friction clutch by the first thrust force or the second thrust force pushing the clutch surface against the frictional surface. The first cam surface and the second cam surface are each dimensioned such that the first thrust force and the second thrust force both exceed a reaction force from the meshing engagement of the side gear with the pinion gear.

Description

デファレンシャル装置Differential device
 以下の開示はデファレンシャル装置に関し、特に前進と後退の何れの方向にもジャダーや騒音の少ないデファレンシャル装置に関する。 The following disclosure relates to a differential device, especially a differential device with less judder and noise in both forward and backward directions.
 自動車において、左右の車軸は必ずしも等速で回転するわけではないので、その間の差動を許容する必要がある。両車軸の間で差動を許容するために、デファレンシャル装置が利用される。両車輪がトラクションを確保しているときにはデファレンシャル装置は有効にトルクを両車軸に伝達できるが、一方の車輪がトラクションを失ったときに他方の差動が可能なままでは、何れの車軸にもトルクが伝達されなくなってしまう。かかる事態を避けるための一手段は、いわゆるリミテッドスリップデフ(LSD)である。LSDは例えばトルクに感応して作動する摩擦クラッチを備え、摩擦クラッチは差動を制限するように働く(トルク感応型LSD)。 In an automobile, the left and right axles do not always rotate at a constant speed, so it is necessary to allow a differential between them. A differential is used to allow differentials between the two axles. The differential can effectively transmit torque to both axles when both wheels have traction, but torque to either axle if one wheel loses traction and the other is capable of differential. Will not be transmitted. One means for avoiding such a situation is a so-called limited slip differential (LSD). The LSD comprises, for example, a friction clutch that operates in response to torque, and the friction clutch acts to limit the differential (torque sensitive LSD).
 トルク感応型LSDには種々の形式があり、プラネタリギアの歯面抵抗をクラッチへの押圧力として利用するプラネタリギア式、多板クラッチを摩擦クラッチに利用する多板クラッチ式、コーンクラッチを利用するコーンクラッチ式等が例示できる。プラネタリギア式や多板クラッチ式は比較的に大きな差動制限力を発揮しやすいが、装置が大きくなりやすい欠点を有する。 There are various types of torque-sensitive LSD, such as a planetary gear type that uses the tooth surface resistance of the planetary gear as a pressing force on the clutch, a multi-plate clutch type that uses a multi-plate clutch as a friction clutch, and a cone clutch. An example is a cone clutch type. The planetary gear type and the multi-plate clutch type tend to exert a relatively large differential limiting force, but have a drawback that the device tends to be large.
 特許文献1は、コンパクトなコーンクラッチ式LSDの技術を開示する。開示によれば、大きな押圧力を得るためにカム機構が利用されている。すなわち車両が進行する向き(ドライブ方向)にデファレンシャル装置が回転しているときに、カム機構はトルクを部分的にスラスト力に変換し、かかるスラスト力がコーンクラッチを押圧し、以って差動を制限する。 Patent Document 1 discloses a compact cone clutch type LSD technology. According to the disclosure, a cam mechanism is used to obtain a large pressing force. That is, when the differential device is rotating in the direction in which the vehicle travels (drive direction), the cam mechanism partially converts the torque into a thrust force, and the thrust force presses the cone clutch, thus differentially. To limit.
日本国特許出願公開2019-49345号Japanese Patent Application Publication No. 2019-49345
 特許文献1には明瞭に記載されていないが、車両が後退する向き(コースト方向)にも差動制限をすることが可能である。ところが本発明者らが更に検討したところによれば、コースト方向では僅かながら所謂ジャダーと呼ばれる現象が生じ、運転者は不快感を覚えかねないことが明らかとなった。 Although not clearly described in Patent Document 1, it is possible to restrict the differential in the direction in which the vehicle reverses (coast direction). However, according to a further study by the present inventors, it has become clear that a slight phenomenon called judder occurs in the coastal direction, and the driver may feel uncomfortable.
 以下の開示はこのような問題と観察とに鑑みてなされたものである。一局面によれば、一対の車軸の間で差動を許容するデファレンシャル装置は、軸の周りに互いに反対の第1の方向と第2の方向との何れにも回転可能なサイドギアと、前記差動を許容するように前記サイドギアに噛み合ったピニオンギアと、を備えたデファレンシャルギア組と、前記サイドギアに係合して前記サイドギアと前記車軸とを駆動的に連結する出力部材であって、クラッチ面を備えた出力部材と、前記デファレンシャル組を支持するケーシングであって、前記クラッチ面に面して前記クラッチ面との組み合わせが前記差動を制限する摩擦クラッチを構成する摩擦面を備えたケーシングと、前記第1の方向のトルクを前記軸の方向の第1のスラスト力に変換する第1のカム面と、前記第2の方向のトルクを前記軸の方向の第2のスラスト力に変換する第2のカム面と、を備え、前記第1のスラスト力および前記第2のスラスト力が前記クラッチ面を前記摩擦面へ押圧して前記摩擦クラッチを作動させるべく構成されたカムであって、前記第1のスラスト力と前記第2のスラスト力の何れも前記サイドギアの前記ピニオンギアに対する噛み合い反力を超えるべく前記第1のカム面および前記第2のカム面がそれぞれ寸法づけられたカムと、を備える。 The following disclosure was made in view of such problems and observations. According to one aspect, a differential that allows differentials between a pair of axles is a side gear that can rotate around the axles in both the first and second directions opposite to each other, and the difference. A differential gear set including a pinion gear that meshes with the side gear so as to allow movement, and an output member that engages with the side gear to drively connect the side gear and the axle, and is a clutch surface. A casing that supports the differential set and has a friction surface that constitutes a friction clutch whose combination with the clutch surface faces the clutch surface and limits the differential. , The first cam surface that converts the torque in the first direction into the first thrust force in the direction of the shaft, and the torque in the second direction is converted into the second thrust force in the direction of the shaft. A cam comprising a second cam surface, wherein the first thrust force and the second thrust force press the clutch surface against the friction surface to operate the friction clutch. Both the first thrust force and the second thrust force are the cams whose first cam surface and the second cam surface are respectively sized so as to exceed the meshing reaction force of the side gear with respect to the pinion gear. , Equipped with.
図1は、デファレンシャル装置の立面断面図である。FIG. 1 is an elevation cross-sectional view of the differential device. 図2は、出力部材とサイドギアとを取り出した分解斜視図である。FIG. 2 is an exploded perspective view of the output member and the side gear taken out. 図3は、出力部材においてサイドギアに対向する面を見せる斜視図である。FIG. 3 is a perspective view showing a surface of the output member facing the side gear. 図4は、デファレンシャル装置の平面断面図であって、図1のIV-IV線から取られた図である。FIG. 4 is a plan sectional view of the differential device, which is taken from the line IV-IV of FIG. 図5は、図4の部分拡大図であって、特にカムを見せる部分平面断面図である。FIG. 5 is a partially enlarged view of FIG. 4, and is a partial plan sectional view showing a cam in particular. 図6は、噛み合ったピニオンとサイドギアとの関係を表す部分平面断面図であって、図1のVI-VI線に対応する図である。FIG. 6 is a partial plan sectional view showing the relationship between the meshed pinion and the side gear, and is a diagram corresponding to the VI-VI line of FIG.
 添付の図面を参照して以下に幾つかの例示的な実施形態を説明する。以下の説明および請求の範囲を通じて、特段の説明がなければ、軸はデファレンシャル装置の回転軸の意味であり、また軸方向はこれに平行な方向であり径方向はこれに直交する方向を意味する。 Some exemplary embodiments will be described below with reference to the accompanying drawings. Throughout the following description and the scope of the claim, unless otherwise specified, the axis means the axis of rotation of the differential, the axial direction means the direction parallel to it, and the radial direction means the direction orthogonal to it. ..
 例えば図1を参照するに、本実施形態によるデファレンシャル装置は、一例として、軸Cの周りのトルクを、差動を許容しながら一対の(通常、右および左の)車軸に出力する用途に利用できる。あるいは前後を連絡するプロペラシャフトに介在して前後の駆動輪へトルクを分配する用途に利用できるし、もちろんトルクの伝達を仲介する他の種々の用途にも利用できる。以下の説明は車軸にトルクを分配する例に関するが、これは説明の便宜に過ぎない。 For example, referring to FIG. 1, the differential device according to the present embodiment is used, for example, in an application in which torque around a shaft C is output to a pair of (usually right and left) axles while allowing differential. can. Alternatively, it can be used for distributing torque to the front and rear drive wheels via a propeller shaft that connects the front and rear, and of course, it can also be used for various other applications that mediate the transmission of torque. The following description relates to an example of distributing torque to the axles, but this is just for convenience of explanation.
 デファレンシャル装置は、概して、トルクを受容して軸Cの周りに回転するケーシング1と、ケーシング1に駆動的に結合して差動を許容しながらトルクを伝達するデファレンシャルギア組3と、伝達されたトルクをそれぞれ車軸に出力する出力部材5と、トルクを部分的にスラスト力に変換するカム7と、スラスト力を利用して差動を制限する摩擦クラッチ9と、よりなる。 The differential device is generally transmitted by a casing 1 that receives torque and rotates around an axis C, and a differential gear set 3 that is drivenly coupled to the casing 1 and transmits torque while allowing differential. It includes an output member 5 that outputs torque to each axle, a cam 7 that partially converts torque into thrust force, and a friction clutch 9 that limits the differential using the thrust force.
 ケーシング1は概して円筒形であり、その両端から突出したボス部により回転可能に支持される。ケーシング1は、円筒部の外周から径方向に突出したフランジを備えることができ、ここに結合したリングギアを介してトルクを受容することができる。ただし支持およびトルクの受容は、必ずしもかかる構成によらなくてもよい。 Casing 1 is generally cylindrical and is rotatably supported by bosses protruding from both ends. The casing 1 can be provided with a flange that protrudes radially from the outer periphery of the cylindrical portion, and can receive torque via a ring gear coupled thereto. However, support and torque reception do not necessarily have to depend on such a configuration.
 またケーシング1は、内部の部材の搬入の便宜のために複数に分割することができる2ピース形式であってもよく、あるいは1ピース形式であってもよい。1ピース形式の場合には、図4に示すごとくその側面に一以上の開口37を備えることができ、かかる開口37を通ってデファレンシャルギア組3や出力部材5が搬入される。ケーシング1の内面は、出力部材5に面するように、摩擦面31を備える。詳しくは後述するが、摩擦面31は摩擦クラッチ9を構成する要素である。 Further, the casing 1 may be of a two-piece type or a one-piece type which can be divided into a plurality of pieces for the convenience of carrying in the internal members. In the case of the one-piece type, as shown in FIG. 4, one or more openings 37 can be provided on the side surface thereof, and the differential gear set 3 and the output member 5 are carried in through the openings 37. The inner surface of the casing 1 is provided with a friction surface 31 so as to face the output member 5. As will be described in detail later, the friction surface 31 is an element constituting the friction clutch 9.
 再び図1を参照するに、デファレンシャルギア組3は、一対の車軸に対応して一対のサイドギア13を備える。デファレンシャルギア組3は、また、ケーシング1と駆動的に結合するピニオンシャフト33と、シャフト33に回転可能に支持された複数のピニオンギア11とを備える。ピニオンギア11がそれぞれサイドギア13に噛合することにより、トルクが一対のサイドギア13へ差動を許容しながら伝達される。 With reference to FIG. 1 again, the differential gear set 3 includes a pair of side gears 13 corresponding to a pair of axles. The differential gear set 3 also includes a pinion shaft 33 that is drivenly coupled to the casing 1 and a plurality of pinion gears 11 that are rotatably supported by the shaft 33. By engaging the pinion gears 11 with the side gears 13, torque is transmitted to the pair of side gears 13 while allowing differential.
 デファレンシャルギア組3は、図示のごとくピニオンギアおよびサイドギアのギア歯がそれぞれ傾いた、いわゆるベベルギア式にすることができるが、あるいは図示しないフェースギア式であってもよい。ベベルギア式またはフェースギア式は以下の開示を容易に実現できるが、あるいは可能ならば他の形式を採用することができる。 The differential gear set 3 can be a so-called bevel gear type in which the gear teeth of the pinion gear and the side gear are tilted as shown in the figure, or may be a face gear type (not shown). The bevel gear type or face gear type can easily realize the following disclosure, or other types can be adopted if possible.
 図1,4に組み合わせて図2を参照するに、いずれにせよ、サイドギア13は直接に車軸に結合していてもよいが、一般的なデファレンシャルギアとは異なり、直接に結合せずにそれぞれ車軸から隔離されていてもよい。サイドギア13と車軸とを駆動的に仲介するのは、サイドギア13と一体または別体の出力部材5である。 In reference to FIG. 2 in combination with FIGS. 1 and 4, in any case, the side gear 13 may be directly connected to the axle, but unlike a general differential gear, the side gear 13 is not directly connected to each axle. May be isolated from. It is the output member 5 that is integrated with or separate from the side gear 13 that drives the side gear 13 and the axle.
 図2に組み合わせて図3を参照するに、各出力部材5は、概して、ハブ23と、ハブ23から径方向に外方に展開するフランジ部25と、よりなる。各ハブ23の外周面には対応するサイドギア13が嵌合し、内面には対応する車軸が結合する。車軸との結合のために、内面は例えばスプラインを備えるが、結合は必ずしもスプラインによらなくてもよい。 With reference to FIG. 3 in combination with FIG. 2, each output member 5 generally comprises a hub 23 and a flange portion 25 extending radially outward from the hub 23. A corresponding side gear 13 is fitted to the outer peripheral surface of each hub 23, and a corresponding axle is coupled to the inner surface. The inner surface is provided with, for example, a spline for coupling with the axle, but the coupling does not necessarily depend on the spline.
 詳しくは後述するが、別体の場合にはサイドギア13と出力部材5とはそれぞれ互いに噛み合ってトルク伝達可能な構造を備える。すなわち、一体と別体の何れの場合においても、サイドギア13が出力するトルクは出力部材5を介して車軸へ伝達される。 Although details will be described later, in the case of a separate body, the side gear 13 and the output member 5 are provided with a structure capable of transmitting torque by meshing with each other. That is, the torque output by the side gear 13 is transmitted to the axle via the output member 5 in either case of the integral body or the separate body.
 図2,3に組み合わせて主に図1を参照するに、フランジ部25の外周は摩擦面31に面したコーン面27であって、かかるコーン面27が摩擦面31に当接して摩擦クラッチ9を構成する。コーン面27と摩擦面31は、例えば軸方向に外方に向かって細くなる円錐面にすることができ、これは所謂コーンクラッチの形式である。あるいは円錐面に代わり、他の適宜の回転対称形であってもよい。これらの形態は、摩擦クラッチ9の制動力を押圧力に応じて制御することを可能にする。 As shown mainly in reference to FIG. 1 in combination with FIGS. To configure. The cone surface 27 and the friction surface 31 can be, for example, a conical surface that narrows outward in the axial direction, which is a so-called cone clutch type. Alternatively, instead of the conical surface, another suitable rotationally symmetric shape may be used. These forms make it possible to control the braking force of the friction clutch 9 according to the pressing force.
 またコーン面27と摩擦面31との間には適宜のフリクションリング29が介在していてもよく、フリクションリング29の内面がコーン面27に適合した円錐面をなしていてもよい。この場合にはコーン面27はフリクションリング29を介してケーシング1の摩擦面31に当接する。フリクションリング29は、ケーシング1に対して回転可能であってもよいが、例えば係合部を備えてケーシング1に対して回り止めされていてもよい。 Further, an appropriate friction ring 29 may be interposed between the cone surface 27 and the friction surface 31, and the inner surface of the friction ring 29 may be a conical surface suitable for the cone surface 27. In this case, the cone surface 27 comes into contact with the friction surface 31 of the casing 1 via the friction ring 29. The friction ring 29 may be rotatable with respect to the casing 1, but may be provided with, for example, an engaging portion to be prevented from rotating with respect to the casing 1.
 上述の説明は専らコーン面をクラッチ面とするコーンクラッチに関するが、これは説明の便宜に過ぎず、コーンクラッチに代えて、出力部材5とケーシング1との組み合わせはディスククラッチやドラムクラッチ等の他の形態のクラッチを構成してもよい。またいうまでもなく、多板クラッチであってもよい。 The above description relates exclusively to the cone clutch having the cone surface as the clutch surface, but this is only for convenience of explanation, and instead of the cone clutch, the combination of the output member 5 and the casing 1 is other than a disc clutch, a drum clutch, etc. The clutch of the form of may be configured. Needless to say, a multi-plate clutch may be used.
 主に図2を参照するに、サイドギア13は例えば軸方向に外方に向いて開いた窪みであるソケット19を備える。図2に代わって図3を参照するに、ソケット19に対応して、出力部材5はそれぞれラグ21を備える。ラグ21はそれぞれソケット19に嵌り込むように配置され寸法づけられており、以って出力部材5はそれぞれサイドギア13と互いに噛み合ってトルクを伝達する。 Mainly referring to FIG. 2, the side gear 13 includes, for example, a socket 19 which is a recess that opens outward in the axial direction. With reference to FIG. 3 instead of FIG. 2, each output member 5 includes a lug 21 corresponding to the socket 19. Each of the lugs 21 is arranged and dimensioned so as to fit into the socket 19, so that the output members 5 mesh with each other with the side gears 13 to transmit torque.
 ソケットとラグの関係は上述の説明とは反対であってもよく、サイドギアがラグを備え、出力部材がソケットを備えてもよい。あるいは他の適宜の構造であって互いに噛み合ってトルクを伝達するものであってよい。 The relationship between the socket and the lug may be opposite to the above description, and the side gear may be provided with the lug and the output member may be provided with the socket. Alternatively, it may have another appropriate structure that meshes with each other to transmit torque.
 ソケット19は、必ずしもこれに限られないが、図2に最もよく示されているごとく、外周面に嵌合する内面に沿って形成されていてもよい。これに対応してラグ21は、図3に最もよく示されているごとく、それぞれハブ23から径方向外方に突出した突起にすることができる。このような構造は加工に便利であるし、また特に強度および剛性を高めるのに役立つ。 The socket 19 is not necessarily limited to this, but may be formed along the inner surface that fits on the outer peripheral surface, as best shown in FIG. Correspondingly, the lugs 21 can each be a protrusion that projects radially outward from the hub 23, as best shown in FIG. Such a structure is convenient for processing and is particularly useful for increasing strength and rigidity.
 このようにすると、出力部材においてラグよりも径方向に外側の広い面(図3において符号5A)は、サイドギアにおいてソケットよりも径方向に外側の広い面(図2において符号13A)を支持するために利用することができる。またかかる面5Aは出力部材5において内方に沈んだ凹所とすることができ、図1より理解される通り、サイドギア13の底部を収納することができる。言うまでもなく、かかる構造は他方のサイドギア13と出力部材5にも適用することができる。 In this way, in the output member, the wide surface radially outside the lug (reference numeral 5A in FIG. 3) supports the wide surface radially outside the socket (reference numeral 13A in FIG. 2) in the side gear. Can be used for. Further, the surface 5A can be a recess that is sunk inward in the output member 5, and as can be understood from FIG. 1, the bottom portion of the side gear 13 can be accommodated. Needless to say, such a structure can also be applied to the other side gear 13 and the output member 5.
 かかる構造は、サイドギアと出力部材との組み合わせの寸法を軸方向に圧縮するのに役立つ。またかかる組み合わせの外形は従来のサイドギアの外形と一致するので、部品の互換性の点で有利である。 Such a structure helps to compress the dimensions of the combination of the side gear and the output member in the axial direction. Further, since the outer shape of such a combination matches the outer shape of the conventional side gear, it is advantageous in terms of compatibility of parts.
 図2,3に組み合わせて図4,5を参照するに、ラグ21の側面21A,21Bは、サイドギア13の方向に、すなわち軸方向に内方に、テーパとなっていてもよい。あるいはこれに代えて、または加えて、ソケット19の側面19A,19Bも、出力部材5の方向に、すなわち軸方向に外方に、広がっていてもよい。側面21A,21Bと19A,19Bとの何れか、または両方が軸Cの方向に対して傾き、それゆえ互いに当接する側面19A,21Aの組み合わせおよび側面19B,21Bの組み合わせは、ラグ21のソケット19に対する摺動を案内するカム面19,21を規定する。これらの図では、互いに当接する側面の両方が平面的に描かれているが、一方のみが平面であって他方は曲面であってもよい。 With reference to FIGS. 4 and 5 in combination with FIGS. 2 and 3, the side surfaces 21A and 21B of the lug 21 may be tapered inward in the direction of the side gear 13, that is, in the axial direction. Alternatively, or in addition to this, the side surfaces 19A and 19B of the socket 19 may also extend outward in the direction of the output member 5, that is, in the axial direction. Either or both of the side surfaces 21A, 21B and 19A, 19B are tilted in the direction of the axis C, and therefore the combination of the side surfaces 19A, 21A and the combination of the side surfaces 19B, 21B are in contact with each other in the socket 19 of the lug 21. The cam surfaces 19 and 21 that guide the sliding with respect to the cam surface 19 and 21 are defined. In these figures, both sides that abut each other are drawn flat, but only one may be flat and the other curved.
 カム面15,17が軸Cの方向に対して傾いていることにより、ソケット19とラグ21との組み合わせは、トルクが作用したときにそのトルクを部分的にスラスト力に変換するカム7として働く。かかるスラスト力は出力部材5を軸方向に外方に押圧して摩擦クラッチ9を作動させる。 Since the cam surfaces 15 and 17 are tilted with respect to the direction of the axis C, the combination of the socket 19 and the lug 21 acts as a cam 7 that partially converts the torque into a thrust force when the torque is applied. .. The thrust force pushes the output member 5 outward in the axial direction to operate the friction clutch 9.
 カム7が発生するスラスト力は、以下の式により見積ることができる。 The thrust force generated by the cam 7 can be estimated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでTはデファレンシャル装置に入力されるトルクであり、θはカム面の軸Cに対する角度であり、Rcはカムの作用半径である。式(1)より理解される通り、カム面の角度が大きいほど、またカムの作用半径が小さいほど、大きなスラスト力が得られる。 Here, T is the torque input to the differential device, θ is the angle of the cam surface with respect to the axis C, and Rc is the working radius of the cam. As understood from the equation (1), the larger the angle of the cam surface and the smaller the working radius of the cam, the larger the thrust force can be obtained.
 上述の説明より理解される通り、カム面15,17を何れも軸Cの方向に対して傾ければ、ドライブ方向とコースト方向との両方について、差動制限性能を発揮し得る。そこで本実施形態においては、カム面15,17が軸Cの方向となす角をそれぞれθ1,θ2としたときに、図4,5より明らかな通り、θ1,θ2の何れも0より大である。すなわちカム7は、ドライブ方向の回転R1に対してスラスト力f1を発生するのみならず、コースト方向の回転R2に対してもスラスト力f2を発生する。 As understood from the above explanation, if both the cam surfaces 15 and 17 are tilted with respect to the direction of the axis C, the differential limiting performance can be exhibited in both the drive direction and the coast direction. Therefore, in the present embodiment, when the angles formed by the cam surfaces 15 and 17 with the direction of the axis C are θ1 and θ2, respectively, as is clear from FIGS. 4 and 5, both θ1 and θ2 are larger than 0. .. That is, the cam 7 not only generates a thrust force f1 with respect to the rotation R1 in the drive direction, but also generates a thrust force f2 with respect to the rotation R2 in the coast direction.
 スラスト力f1,f2は、何れも、出力部材5を軸方向に外方に押圧して摩擦クラッチ9を作動させる。摩擦クラッチ9はトルク感応的に作動するので、デファレンシャル装置はトルク感応型LSDとして機能する。 The thrust forces f1 and f2 both operate the friction clutch 9 by pressing the output member 5 outward in the axial direction. Since the friction clutch 9 operates in a torque-sensitive manner, the differential device functions as a torque-sensitive LSD.
 スラスト力f1,f2は互いに等しくてもよく、あるいは異なっていてもよい。式(1)より理解される通り、θ1とθ2とをそれぞれ適宜に調整することにより、スラスト力f1,f2を独立に調整することができる。例えばドライブ方向に比べてコースト方向には大きな差動制限力は必要ないので、f1>f2にすることができ、この場合にθ1>θ2にすることができる。もちろんカム面の傾きによるのに代えて、あるいは加えて、作用半径により調整してもよい。 Thrust forces f1 and f2 may be equal to or different from each other. As understood from the equation (1), the thrust forces f1 and f2 can be adjusted independently by appropriately adjusting θ1 and θ2, respectively. For example, since a large differential limiting force is not required in the coast direction as compared with the drive direction, f1> f2 can be set, and in this case θ1> θ2 can be set. Of course, it may be adjusted by the radius of action instead of or in addition to the inclination of the cam surface.
 サイドギア13と出力部材5との間には、皿バネのごとき弾発体を付加することができる。あるいは弾発体は他の適宜の部位に介在していてもよい。かかる弾発体は、カムの作動に関わらず、常時、コーン面27を摩擦面31に押し付け、イニシャルトルクを発生する。これはカム7の初動の遅れに伴う差動制限の遅れの対策になりうる。 An elastic body such as a countersunk spring can be added between the side gear 13 and the output member 5. Alternatively, the projectile may be interposed at other appropriate sites. The projectile always presses the cone surface 27 against the friction surface 31 regardless of the operation of the cam, and generates an initial torque. This can be a countermeasure against the delay of the differential limitation due to the delay of the initial movement of the cam 7.
 一方、図5に組み合わせて図6を参照するに、サイドギア13の歯面とピニオンギア11の歯面とは、ピッチ円P上において接し、これらの歯面の共通法線TLは、半径線Rに対して圧力角aを成す。かかる圧力角aに応じて、サイドギア13には軸方向に外方に噛み合い反力fGが生じる。噛み合い反力fGは、以下の式により見積ることができる。 On the other hand, referring to FIG. 6 in combination with FIG. 5, the tooth surface of the side gear 13 and the tooth surface of the pinion gear 11 are in contact with each other on the pitch circle P, and the common normal TL of these tooth surfaces is the radius line R. A pressure angle a is formed with respect to the pressure angle a. Depending on the pressure angle a, the side gear 13 meshes outward in the axial direction and a reaction force fG is generated. The meshing reaction force fG can be estimated by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここでTはデファレンシャル装置に入力されるトルクであり、aはピニオンギアの圧力角であり、δはサイドギアのピッチ角であり、dはサイドギアの噛み合いピッチ径である。 Where T is the torque inputted to the differential gear, a is the pressure angle of the pinion gear, [delta] 0 is the pitch angle of the side gears, the d m is the pitch diameter meshing side gears.
 噛み合い反力fGはスラスト反力f1R,f2Rと打ち消し合う。噛み合い反力fGがスラスト反力f1R,f2Rを凌駕し、より大きいほうが、摩擦クラッチ9の制動力を大きくするに有利である。ところが噛み合い反力は一定ではないことに問題がある。すなわち、ギアが噛み合い始め、互いに滑りながら回転し、次いで離脱していく過程に応じて、噛み合い反力は経時的に変動する。特に、既に述べた通り、f1>f2の関係が成立する時にはコースト方向のスラスト反力f2Rは噛み合い反力fGより小さくなりやすく、従って噛み合い反力fGの変動が摩擦クラッチ9の作動に強い影響を及ぼす。これがコースト方向におけるジャダーの原因であると推定された。 The meshing reaction force fG cancels out with the thrust reaction forces f1R and f2R. The meshing reaction force fG exceeds the thrust reaction forces f1R and f2R, and the larger the meshing reaction force fG, the more advantageous it is to increase the braking force of the friction clutch 9. However, there is a problem that the meshing reaction force is not constant. That is, the meshing reaction force fluctuates with time according to the process in which the gears begin to mesh, rotate while sliding with each other, and then disengage. In particular, as already described, when the relationship of f1> f2 is established, the thrust reaction force f2R in the coast direction tends to be smaller than the meshing reaction force fG, and therefore the fluctuation of the meshing reaction force fG has a strong influence on the operation of the friction clutch 9. To exert. It was presumed that this was the cause of judder in the coast direction.
 そこで本実施形態においては、噛み合い反力を大きくするべきであるとの一般的な認識に反して、噛み合い反力fGをスラスト力f1,f2に対して適当な大きさに留めている。すなわち、スラスト力f1,f2の何れも噛み合い反力fGを超えるように、カム面15,17をそれぞれ寸法づける。かかる構成は、繰り返し述べた通り、ジャダーを抑制するのに有利である。 Therefore, in the present embodiment, contrary to the general recognition that the meshing reaction force should be increased, the meshing reaction force fG is kept at an appropriate size with respect to the thrust forces f1 and f2. That is, the cam surfaces 15 and 17 are dimensioned so that both the thrust forces f1 and f2 exceed the meshing reaction force fG. Such a configuration, as reiterated, is advantageous in suppressing judder.
 一方、スラスト反力f1R,f2Rはギア歯面が負担するから、これらが過大であればデファレンシャルギア組を消耗させかねない。そこでスラスト反力f1R,f2Rの影響を低減するべく、一対のサイドギア13の間に、またその両方と摺動するように、ブロック35が介在していてもよい。両サイドギア13に作用するスラスト反力は略同じ大きさであって、互いに逆向きであるから、スラスト反力はブロック35において互いにほぼ相殺される。ブロック35は、図1,4に最もよく示されている通り、例えば軸Cの周りの円筒であって、ピニオンシャフト33が貫通する貫通孔を備えたものであるが、必ずしもかかる形状に限られない。 On the other hand, the thrust reaction forces f1R and f2R are borne by the gear tooth surface, so if these are excessive, the differential gear set may be consumed. Therefore, in order to reduce the influence of the thrust reaction forces f1R and f2R, the block 35 may be interposed between the pair of side gears 13 or so as to slide with both of them. Since the thrust reaction forces acting on both side gears 13 have substantially the same magnitude and are opposite to each other, the thrust reaction forces cancel each other out in the block 35. As best shown in FIGS. 1 and 4, the block 35 is, for example, a cylinder around a shaft C, provided with a through hole through which the pinion shaft 33 penetrates, but is not necessarily limited to such a shape. No.
 これまでの説明より理解される通り、サイドギア13には軸方向に様々な反力が作用するが、互いに拮抗ないし相殺し、またブロック35がサイドギア13を反力から保護するので、トルクが増大してもサイドギア13とピニオンギア11との噛合は安定的であり、ギア動作が不安定になったり、ギア歯面が損傷したりすることがない。サイドギア自体が摩擦クラッチとして機能する場合に比べ、これらの点は有利な効果である。 As understood from the explanation so far, various reaction forces act in the axial direction on the side gear 13, but they antagonize or cancel each other, and the block 35 protects the side gear 13 from the reaction force, so that the torque increases. However, the engagement between the side gear 13 and the pinion gear 11 is stable, and the gear operation is not unstable or the gear tooth surface is not damaged. These points are advantageous effects as compared with the case where the side gear itself functions as a friction clutch.
 なお上述の構成に加えて、デファレンシャル装置は、外部から差動制限を制御するべく、クラッチに押圧力を付与するアクチュエータをさらに備えてもよい。また差動をロックするべく、クラッチはドッグ歯のごとき構造を有してもよい。かかるドッグ歯を備えたクラッチは、摩擦クラッチ9からは独立していてもよく、アクチュエータはドッグ歯を駆動するように構成されていてもよい。 In addition to the above configuration, the differential device may further include an actuator that applies a pressing force to the clutch in order to control the differential limit from the outside. Further, in order to lock the differential, the clutch may have a structure such as a dog tooth. The clutch provided with such dog teeth may be independent of the friction clutch 9, and the actuator may be configured to drive the dog teeth.
 さらに本実施形態は、所謂フリーランニングデフに適用することができる。フリーランニングデフにおいては、ケーシングはインナケーシングとアウタケーシングとに分かれており、クラッチ等により互いに接続したときにのみ、トルクを車軸に伝える。これまでに説明した構造は、フランジとボス部とを除けば、フリーランニングデフのインナケーシングおよびその内部構造に、略そのままに利用することができる。 Furthermore, this embodiment can be applied to a so-called free running differential. In the free-running differential, the casing is divided into an inner casing and an outer casing, and torque is transmitted to the axle only when they are connected to each other by a clutch or the like. The structure described so far can be used almost as it is for the inner casing of the free running differential and its internal structure, except for the flange and the boss portion.
 幾つかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正ないし変形をすることが可能である。 Although some embodiments have been described, it is possible to modify or modify the embodiments based on the above disclosure contents.

Claims (7)

  1.  一対の車軸の間で差動を許容するデファレンシャル装置であって、
     軸の周りに互いに反対の第1の方向と第2の方向との何れにも回転可能なサイドギアと、前記差動を許容するように前記サイドギアに噛み合ったピニオンギアと、を備えたデファレンシャルギア組と、
     前記サイドギアに係合して前記サイドギアと前記車軸とを駆動的に連結する出力部材であって、クラッチ面を備えた出力部材と、
     前記デファレンシャル組を支持するケーシングであって、前記クラッチ面に面して前記クラッチ面との組み合わせが前記差動を制限する摩擦クラッチを構成する摩擦面を備えたケーシングと、
     前記第1の方向のトルクを前記軸の方向の第1のスラスト力に変換する第1のカム面と、前記第2の方向のトルクを前記軸の方向の第2のスラスト力に変換する第2のカム面と、を備え、前記第1のスラスト力および前記第2のスラスト力が前記クラッチ面を前記摩擦面へ押圧して前記摩擦クラッチを作動させるべく構成されたカムであって、前記第1のスラスト力と前記第2のスラスト力の何れも前記サイドギアの前記ピニオンギアに対する噛み合い反力を超えるべく前記第1のカム面および前記第2のカム面がそれぞれ寸法づけられたカムと、
     を備えたデファレンシャル装置。
    A differential device that allows differentials between a pair of axles.
    A differential gear set that includes side gears that can rotate around the shaft in both the first and second directions opposite to each other, and pinion gears that mesh with the side gears to allow the differential. When,
    An output member that engages with the side gear to drively connect the side gear and the axle, and includes an output member having a clutch surface.
    A casing that supports the differential set and has a friction surface that faces the clutch surface and constitutes a friction clutch whose combination with the clutch surface limits the differential.
    A first cam surface that converts torque in the first direction into a first thrust force in the direction of the shaft, and a first cam surface that converts torque in the second direction into a second thrust force in the direction of the shaft. A cam comprising two cam surfaces, wherein the first thrust force and the second thrust force press the clutch surface against the friction surface to operate the friction clutch. Both the first thrust force and the second thrust force are a cam in which the first cam surface and the second cam surface are respectively sized so as to exceed the meshing reaction force of the side gear with respect to the pinion gear.
    Differential device with.
  2.  請求項1のデファレンシャル装置であって、前記第1のカム面は前記軸の方向に対して第1の角(θ1)を成し、前記第2のカム面は前記軸の方向に対して前記第1の角(θ1)とは異なる第2の角(θ2)を成す、デファレンシャル装置。 The differential device according to claim 1, wherein the first cam surface forms a first angle (θ1) with respect to the direction of the axis, and the second cam surface forms the first angle (θ1) with respect to the direction of the axis. A differential device that forms a second angle (θ2) different from the first angle (θ1).
  3.  請求項2のデファレンシャル装置であって、前記第1の角(θ1)と前記第2の角(θ2)とは、不等式θ1>θ2を満足する、デファレンシャル装置。 The differential device according to claim 2, wherein the first angle (θ1) and the second angle (θ2) satisfy the inequality θ1> θ2.
  4.  請求項1のデファレンシャル装置であって、前記出力部材は、前記車軸と結合する内面を有するハブと、前記ハブから径方向に外方に展開し、その外周に前記クラッチ面を有するフランジ部と、を備え、前記フランジ部の一方の面は前記サイドギアを受容するべく寸法づけられている、デファレンシャル装置。 The differential device according to claim 1, wherein the output member includes a hub having an inner surface that is coupled to the axle, a flange portion that expands radially outward from the hub and has a clutch surface on the outer periphery thereof. A differential device comprising: One surface of the flange portion is sized to receive the side gear.
  5.  請求項1のデファレンシャル装置であって、前記出力部材は前記サイドギアと係合するためのラグを備え、前記サイドギアは前記ラグを受容するソケットを備え、前記ラグと前記ソケットとが当接する面は前記第1のカム面および前記第2のカム面を構成する、デファレンシャル装置。 The differential device according to claim 1, wherein the output member is provided with a lug for engaging with the side gear, the side gear is provided with a socket for receiving the lug, and the surface where the lug and the socket are in contact is described as described above. A differential device that constitutes a first cam surface and the second cam surface.
  6.  請求項5のデファレンシャル装置であって、前記ラグは前記ハブから径方向外方に突出した突起であり、前記ソケットは前記ラグが嵌り込むように配置され寸法づけられた窪みである、デファレンシャル装置。 The differential device according to claim 5, wherein the lug is a protrusion that protrudes radially outward from the hub, and the socket is a recess that is arranged and dimensioned so that the lug fits.
  7.  前記サイドギアと摺動して前記カムが及ぼすスラスト反力を負担するブロック、
     をさらに備えた請求項1のデファレンシャル装置。
    A block that slides on the side gear and bears the thrust reaction force exerted by the cam.
    The differential device according to claim 1, further comprising.
PCT/JP2020/013051 2020-03-24 2020-03-24 Differential device WO2021192048A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022509841A JP7364785B2 (en) 2020-03-24 2020-03-24 differential device
CN202080094893.4A CN115003934A (en) 2020-03-24 2020-03-24 Differential gear device
PCT/JP2020/013051 WO2021192048A1 (en) 2020-03-24 2020-03-24 Differential device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013051 WO2021192048A1 (en) 2020-03-24 2020-03-24 Differential device

Publications (1)

Publication Number Publication Date
WO2021192048A1 true WO2021192048A1 (en) 2021-09-30

Family

ID=77891166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013051 WO2021192048A1 (en) 2020-03-24 2020-03-24 Differential device

Country Status (3)

Country Link
JP (1) JP7364785B2 (en)
CN (1) CN115003934A (en)
WO (1) WO2021192048A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289307A (en) * 2000-04-04 2001-10-19 Tochigi Fuji Ind Co Ltd Differential gear
JP2006052860A (en) * 2005-10-31 2006-02-23 Gkn ドライブライン トルクテクノロジー株式会社 Differential gear
JP2019124264A (en) * 2018-01-15 2019-07-25 Gknドライブラインジャパン株式会社 Differential device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289307A (en) * 2000-04-04 2001-10-19 Tochigi Fuji Ind Co Ltd Differential gear
JP2006052860A (en) * 2005-10-31 2006-02-23 Gkn ドライブライン トルクテクノロジー株式会社 Differential gear
JP2019124264A (en) * 2018-01-15 2019-07-25 Gknドライブラインジャパン株式会社 Differential device

Also Published As

Publication number Publication date
JP7364785B2 (en) 2023-10-18
JPWO2021192048A1 (en) 2021-09-30
CN115003934A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US5098360A (en) Differential gear with limited slip and locking mechanism
US7311633B2 (en) Vehicular four-wheel drive unit
US4400996A (en) Positive clutch differential
JP2636229B2 (en) Differential limit mechanism of four-wheel drive central differential
GB2051980A (en) Limited slip differential unit
EP2440810B1 (en) Limited slip differential using face gears and a pinion housing
US7276010B2 (en) Drive force transmission device
US11402006B2 (en) Differential device
JP2820161B2 (en) Coupling device
US4914980A (en) Limited slip differential assembly
WO2021192048A1 (en) Differential device
US4569250A (en) Positive drive with torque responsive dampener
EP1491796A2 (en) Differential gearing for vehicle
JPS58221046A (en) Limited slip differential gear
US7819771B2 (en) Asymmetrical, active axle transmission
EP1205337B1 (en) Differential limiting device for a differential device
JP5353350B2 (en) Vehicle differential
WO2021240592A1 (en) Differential device
WO2017042882A1 (en) Limited slip differential
US20200166112A1 (en) Transaxle
JP2930400B2 (en) Driving force transmission device for four-wheel drive vehicles
JP2569127Y2 (en) Anti-spin differential
JPH09144842A (en) Differential device
GB2122281A (en) Compact clutch
JP2004353824A (en) Differential device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927903

Country of ref document: EP

Kind code of ref document: A1