WO2021191556A1 - Procédé de mise à jour d'une pluralité de réseaux de neurones se repoussant entre eux, procédé de contrôle et dispositif associés - Google Patents
Procédé de mise à jour d'une pluralité de réseaux de neurones se repoussant entre eux, procédé de contrôle et dispositif associés Download PDFInfo
- Publication number
- WO2021191556A1 WO2021191556A1 PCT/FR2021/050495 FR2021050495W WO2021191556A1 WO 2021191556 A1 WO2021191556 A1 WO 2021191556A1 FR 2021050495 W FR2021050495 W FR 2021050495W WO 2021191556 A1 WO2021191556 A1 WO 2021191556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neural networks
- image
- new
- networks
- mechanical part
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Definitions
- TITLE Method for updating a plurality of neural networks repelling each other, control method and associated device
- the technical field of the invention is that of neural networks applied to non-destructive testing.
- the present invention relates to a method for updating a plurality of neural networks repelling each other.
- the invention also relates to a method of monitoring using a plurality of neural networks updated with an updating method according to the invention.
- the invention further relates to a device implementing one of these methods.
- the SVGD method introduces an explicit repulsion between the networks in order to ensure their good distribution while making them go towards the main modes of the distribution of the parameters of the networks, which makes it possible to ensure their performance.
- its computation cost is quadratic as a function of the number of networks. This high computation cost does not make it possible to quickly update the networks in the control chain and therefore does not allow online learning. [0006]
- the invention offers a solution to the problems mentioned above, by using a method of updating the plurality of neural networks repelling each other, compatible with the installation on a chain of control.
- a first aspect of the invention relates to a method for updating a plurality of neural networks repelling each other, dedicated to the control of a mechanical part, said neural networks having been trained to from a library of known defects and parts, the method comprising, from at least one annotated image, the annotation associated with an image making it possible to characterize the defect and / or the part associated with said image, a step updating the plurality of neural networks during which the parameters of the plurality of neural networks are updated using the following expression:
- [0009] is the vector of parameters associated with the network m of the plurality of networks before the update, me ⁇ 1,.,. , M ⁇ where M is the number of neural networks of the plurality of neural networks, is the vector of parameters associated with the network m of the plurality of networks after the update, h t ⁇ R is a step and is a function vector of such that and defined through :
- the function is a symmetric function such that ⁇ ( ⁇ ', ⁇ )> 0 for any pair ( ⁇ ', ⁇ ) of R D x R D and the function is defined by:
- the method developed by the inventors makes it possible to calculate an average repulsion which will be applied to the neural networks of the plurality of neural networks with respect to the parameter network
- the calculation of this average repulsion only requires traversing all the networks ⁇ (m) , me ⁇ 1, ..., M ⁇ only once.
- the cost of calculating the method developed by the inventors is linear as a function of the number of networks and of the number of samples, i.e. 0 (L x M), and no longer quadratic as a function of the number neural networks as in the case of the methods of the state of the art such as the SVGD method.
- the method according to a first aspect of the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
- the method comprises, before the step of updating the plurality of neural networks: a step of acquiring at least one image; a step of annotation of the acquired image.
- a second aspect of the invention relates to a method of controlling a mechanical part from at least one image of the mechanical part using a plurality of neural networks repelling each other, said neural networks having been trained from a library of known defects and parts, said method comprising: for each neural network of the plurality of neural networks, a step of determining, from the image of the mechanical part, a prediction of the presence of a defect within the mechanical part for each pixel of the image so as to obtain a statistic of the predictions of the presence of a defect within the mechanical part; from the statistics of the predictions, a step of calculating an indicator of divergence in the predictions made by each neural network of the plurality of neural networks; when the divergence indicator is greater than a predetermined threshold value, a step of detecting a new fault or a new mechanical part,
- the method according to a second aspect of the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
- the method comprises, when no new defect or no new part is detected, a step of determining the presence of a defect from the statistics of the predictions of the presence of a defect.
- the divergence indicator is given by the prediction entropy or by mutual information.
- a third aspect of the invention relates to a data processing device comprising the means configured to implement a method according to a first aspect of the invention or a second aspect of the invention.
- a fourth aspect of the invention relates to a computer program comprising instructions which, when the program is executed by a computer, lead the latter to implement the method according to a first aspect of the invention or a second aspect of the invention.
- a fifth aspect of the invention relates to a computer readable data medium, on which is recorded the computer program according to a fourth aspect of the invention.
- FIG. 1 shows a flow chart of a method according to a first aspect of the invention.
- FIG. 2 shows a flowchart of a method according to a second aspect of the invention.
- FIG. 3 shows a schematic representation of a device according to a third aspect of the invention.
- the [Fig. 4] illustrates the principle of detecting a new defect and / or a new part used in the method according to a second aspect of the invention.
- a first aspect of the invention illustrated in Figure 1 relates to a method 100 for updating a plurality of neural networks dedicated to the control of a mechanical part PM, said neural networks having been trained from a library of known defects and PM parts.
- the method 100 comprises, from at least one annotated IM image, preferably a plurality of annotated IM images, a step 1 E3 of updating the plurality of networks neurons during which the parameters of the plurality of neural networks repelling each other are updated using the following expression:
- M is the number of neural networks of the plurality of neural networks is the vector of parameters associated with the network m of the plurality of networks after the update
- h t e M is a step and with D the number of parameters of each neural network, is a function vector of such that and defined by:
- the vectors are vectors drawn at random from among the vectors of parameters of the plurality of networks of neurons, L denoting the number of vectors drawn at random to establish the displacement Necessarily, L is less than the total number of networks of neurons of the plurality of neural networks, denoted M.
- the function R is symmetric and such that ⁇ ( ⁇ ', ⁇ )> 0 for any couple
- Is the gradient as a function of is the probability of a knowing b and X is a vector representative of the annotated image.
- the method developed by the inventors calculates an average repulsion which will be applied to the neural networks of the plurality of neural networks with respect to the parameter network
- the calculation of this average repulsion only requires going through all the networks once. Then, this average repulsion will be applied to each network with a weighting which will depend on the distance between the updated network and the sample.
- the cost of calculating the method developed by the inventors is linear as a function of the number of networks and of the number of samples, that is to say O (L x M), and no longer quadratic as a function of the number of neural networks as in the case of the SVGD method.
- the method incremental learning used in the method according to a first aspect of the invention is linear as a function of the number of neural networks.
- the calculation of the coefficients which play the role of factors weighting of the average repulsion as a function of the updated network is carried out prior to the update after having drawn the vectors at random. random. This calculation is generally inexpensive.
- the drawing of lots for the network of parameters is preferably carried out at each iteration of update step 1 E3.
- h t e R is a step and is a vector function of such that and defined by:
- M is the number of neural networks of the plurality of neural networks
- b) is the probability of a given b
- X is a vector representative of the annotated image or of the plurality of images.
- the SVGD method allows the use of any type of kernel function k, the inventors have considered a function of the type: [0042] where is a probability density, and where the function ⁇ : is symmetric and such that ⁇ ( ⁇ ', ⁇ )> 0 for any pair ( ⁇ ', ⁇ ) of like the kernel function k.
- the above integral calculation is generally not feasible in practice for large dimension networks.
- [0044] is the average repulsion with respect to the vector of parameters of the plurality of neural networks, and having the following expression:
- the IM image (s) of the part necessary for the implementation of the method 100 according to a first aspect of the invention can be transmitted by an acquisition device.
- the method 100 according to a first aspect of the invention comprises a step of receiving at least one IM image of the mechanical part PM, preferably a plurality of IM images of the mechanical part PM.
- this reception can be done by means of a communication module MO ’, for example a Bluetooth, Wi-Fi or Ethernet card.
- the IM image (s) of the part PM necessary for the implementation of the method 100 according to a first aspect of the invention can also be acquired by the device implementing the method 100 according to a first aspect of the invention.
- the method 100 according to a first aspect of the invention comprises a step 1 E1 of acquiring at least one IM image of the mechanical part PM, preferably a plurality of IM images of the mechanical part PM.
- this acquisition can be done by means of an acquisition module MO, for example one or more CCD cameras.
- the method 100 according to a first aspect of the invention can be implemented from a single image IM or from a plurality of images IM of the mechanical part PM, the plurality of images IM of the mechanical part PM which can for example be acquired for different orientations of the part PM.
- the method 100 comprises a step E2 of annotation, for example by an operator, of the acquired image.
- the purpose of this annotation (sometimes also called labeling) is to characterize the defect and / or the part associated with the acquired image in order to then be able to update the plurality of neural networks.
- annotation step 1 E2 is implemented using an annotation module M4.
- this module M4 may take the form of a calculation means (for example a processor or an ASIC card) associated with a memory, of a display device (for example a screen or an ASIC card). touch screen) for displaying the image or images to be annotated and an input device (e.g.
- step 1 E2 the data acquired on the part PM or the defect (in other words the image (s) acquired) were annotated so as to obtain annotated data DA likely to be used in the incremental learning. of the plurality of neural networks as has just been detailed.
- a second aspect of the invention illustrated in [Fig. 2] and in [Fig. 3] relates to a method 200 for checking a mechanical part PM from at least one IM image of the mechanical part PM, preferably a plurality of IM images of the mechanical part PM, using a plurality of neural networks repelling each other, said neural networks having been trained from a library of known defects and parts.
- the use of a plurality of neural networks repelling each other makes it possible to classify IM images in a robust manner, especially in the case of ambiguous data.
- the optimal parameters of the neural networks of the plurality of neural networks are learned on a training database.
- the term “optimal parameters” is understood to mean the sets of parameters for which the highest rate of detections and the lowest rate of false alarms are carried out on a validation database.
- the supervised learning of neural networks on a learning basis prior to the implementation of a method according to a second aspect of the invention does not make it possible to take into account new parts and / or new defects. that could happen in the chain of custody.
- the method 200 according to a second aspect of the invention proposes to automate the detection of these new parts and / or these new defects.
- new defect or new part is meant a defect or part that is not present in the learning base used to train the plurality of neural networks.
- the method 200 comprises, for each neural network of the plurality of neural networks, a step 2E1 of determination, from the IM image or from the plurality of IM images of the mechanical part PM, an SD statistic of the predictions of the presence of a fault at the within the PM room.
- each neural network of the plurality of neural networks predicts a probability, for each pixel of the IM image or of the plurality of IM images, of corresponding to a defect.
- an SD statistic of the predictions of the neural networks of the plurality of neural networks concerning the presence of a fault in the part is obtained.
- any statistical quantity determined from the SD statistic of the predictions can be used (for example, the mean or the standard deviation).
- the maximum of the probabilities of fault occurrence predicted by the neural networks of the plurality of neural networks is used.
- this plurality of neural networks is integrated within a module M1 for determining a statistic SD of the predictions of the presence of a fault.
- This module M1 can take the form of a computing means (eg a processor or an ASIC card) associated with a memory.
- the method 200 then comprises, starting from the statistics SD of the predictions, a step 2E2 of determining a divergence indicator ID in the predictions made by each neural network of the plurality neural networks.
- This indicator of divergence can take several forms. For example, in one embodiment, the divergence indicator is determined using the standard deviation of the different predictions.
- the divergence indicator is determined using the entropy of the prediction.
- the latter is calculated for each prediction y and knowing the input x and the networks ⁇ (m), m ⁇ ⁇ 1, ..., M ⁇ . More specifically, the entropy of the prediction y knowing the input x and the networks is defined by the following formula:
- the divergence indicator is determined from the mutual information.
- the mutual information is obtained by subtracting the mean of the entropies of the predictions made by each of the networks from the entropy of the prediction y knowing the input x and the networks
- the method 200 according to a second aspect of the invention also comprises, when the divergence indicator ID is greater than a predetermined threshold value, a step 2E3 of detecting a new defect and / or a new part.
- the result of this step 2E3 can for example be represented in the form of a Boolean BO which takes the value “true” if it is a new fault or a new part and “false” in the case contrary. It is useful to recall that, in the present invention, the neural networks of the plurality of neural networks are neural networks repelling each other. Without it, the divergence in predictions used in the method 200 according to a second aspect of the invention would not allow the detection of new data.
- one hundred (100) neural networks repelling each other between them were learned on a database covering the interval [-4,4]
- the plurality of neural networks made predictions on the interval [-6,6]
- the average values assigned to these inputs are represented by the black crosses while the standard deviation is represented by the gray area.
- step 2E2 of calculating an ID divergence indicator and step 2E3 of detecting a new fault and / or a new part are implemented using an M23 detection module for a new fault or a new part.
- this module M23 may take the form of a calculation means (eg a processor or an ASIC card) associated with a memory.
- the method 200 comprises a step 2E4 ′ of determining the presence of a defect from statistics SD of the predictions of the presence of a defect.
- the result of this step can for example be represented in the form of a Boolean PD which takes the value “true” in the presence of a fault and “false” in the opposite case.
- a Boolean can then be used to trigger an alarm in the event of a fault or even trigger the intervention of an operator.
- the method 200 comprises, when a new defect and / or a new part has been detected (that is to say that the defect or the part does not belong to not to the defects or to the parts of the library used for learning) a step 2E4 of annotation, for example by an operator, of the acquired image, then, from the annotated image DA or of the plurality of annotated IM images, a step 2E5 of incremental learning of the plurality of neural networks using a method 100 according to a first aspect of the invention.
- the updating of the parameters of the neural networks by incremental learning is done by an overall method such that the neural networks repel each other, which makes it possible to ensure that the divergence between the predictions of the different neural networks is strong in the presence of new data (i.e. a new defect and / or a new part), the neural networks of the plurality of neural networks thus learned covering well the space of settings.
- the neural networks thus obtained are well distributed over the distribution of their parameters knowing the working data.
- sampling methods concentrate around the mean and only deviate from it at the cost of lengthy calculations rendering this method unusable in practice.
- multiple-choice methods run the risk of rendering at least part of the neural networks of the plurality of neural networks non-performing on certain data, which does not allow good exploitation of the plurality of networks of neurons. neurons.
- step 1 E5 of incremental learning new parameters w are obtained for each neuron networks of the plurality of neural networks.
- the plurality of neural networks can then be used again for fault detection in a mechanical part taking into account the new defect and / or the new part which then becomes a known defect or a known part for the following iterations.
- a third aspect of the invention illustrated in FIG. 3 relates to a device DI for updating a plurality of neural networks repelling each other or detecting a fault in a room.
- the DI device comprises an acquisition module MO allowing the acquisition of one or more IM images of the mechanical part PM.
- the DI device comprises a receiving module MO 'for receiving IM images taken by a remote acquisition module.
- the device DI comprises a module M1 for determining a statistic SD of the predictions of the presence of a fault, said statistic being determined using a plurality of neural networks repelling each other. .
- This module M1 can take the form of a computing means (eg a processor or an ASIC card) associated with a memory.
- the DI device comprises a module M23 for detecting a new fault or a new part PM.
- this module M23 may take the form of a calculation means (eg a processor or an ASIC card) associated with a memory.
- a single module performs the functions of the detection module M23 and of the module M1 for determining a prediction SD statistic.
- the DI device comprises an M4 annotation module.
- this module M4 may take the form of a calculation means (for example a processor or an ASIC card) associated with a memory, of a display device (for example a screen or an ASIC card). touch screen) for displaying the image or images to be annotated and an input device (e.g. a keyboard, mouse or even a touch screen) allowing an operator to annotate the image or images IM images.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Feedback Control In General (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Un aspect de l'invention concerne un procédé d'apprentissage d'une pluralité des réseaux de neurones se repoussant entre eux destiné au contrôle de pièces mécaniques à l'aide d'une méthode itérative permettant de rendre la mise à jour des neurones linéairement dépendante du nombre de réseaux de neurones tout en garantissant l'obtentions de réseaux de neurones se repoussant entre eux bien répartis sur la distribution de leurs paramètres connaissant les données de travail. Un deuxième aspect de l'invention concerne un procédé de contrôle de pièce mécanique faisant usage d'un procédé selon un premier aspect de l'invention.
Description
DESCRIPTION
TITRE : Procédé de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux, procédé de contrôle et dispositif associés
DOMAINE TECHNIQUE DE L’INVENTION
[0001] Le domaine technique de l’invention est celui des réseaux de neurones appliqués au contrôle non destructif.
[0002] La présente invention concerne un procédé de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux. L’invention concerne également un procédé de contrôle à l’aide d’une pluralité de réseaux de neurones mis à jour avec un procédé de mise à jour selon l’invention. L’invention concerne en outre un dispositif mettant en œuvre l’un de ces procédés.
ARRIERE-PLAN TECHNOLOGIQUE DE L’INVENTION
[0003] Lorsqu’une pluralité de réseau de neurones est utilisée pour le contrôle d’une pièce mécanique, il est important que ces réseaux soient bien répartis sur la distribution de leurs paramètres connaissant les données de travail. Cette bonne répartition peut ensuite être utilisée de différentes façons, notamment dans la détection de données nouvelles, c’est-à-dire de nouveaux défauts ou de nouvelles pièces n’appartenant pas aux données utilisées pour l’apprentissage de la pluralité de réseaux de neurones.
[0004] Cependant, les méthodes d’ensembles telles que celles avec des initialisations multiples aléatoires n’ont aucun moyen d’induire cette bonne répartition. De manière similaire, les méthodes d’échantillonnage se concentrent autour de la moyenne et ne s’en éloignent qu’au prix de longs calculs. Les méthodes à choix multiples, quant à elles, rendent des réseaux non-performants sur certaines données, ce qui ne permet pas une bonne exploitation de l’ensemble des réseaux.
[0005] La méthode SVGD introduit une répulsion explicite entre les réseaux afin d’assurer leur bonne répartition tout en les faisant aller vers les principaux modes de la distribution des paramètres des réseaux, ce qui permet d’assurer leurs performances. Néanmoins, son coût de calcul est quadratique en fonction du nombre de réseaux. Ce fort coût de calcul ne permet pas de mettre à jour rapidement les réseaux dans la chaîne de contrôle et donc ne permet pas un apprentissage en ligne.
[0006] Il existe donc un besoin d’un procédé de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux, peu gourmand en ressources de calcul, permettant d’obtenir des réseaux de neurones bien répartis sur la distribution de leurs paramètres connaissant les données de travail.
RESUME DE L’INVENTION
[0007] L’invention offre une solution aux problèmes évoqués précédemment, en utilisant une méthode de mise à jour de la pluralité de réseaux de neurones se repoussant entre eux, compatible avec la mise en place sur une chaîne de contrôle.
[0008] Pour cela, un premier aspect de l’invention concerne un procédé de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux, dédiés au contrôle d’une pièce mécanique, lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces connus, le procédé comprenant, à partir d’au moins une image annotée, l’annotation associée à une image permettant de caractériser le défaut et/ou la pièce associée à ladite image, une étape de mise à jour de la pluralité de réseaux de neurones durant laquelle les paramètres de la pluralité de réseaux de neurones sont mis à jour à l’aide de l’expression suivante :
[0009] est le vecteur de paramètres associé au réseau m de la pluralité de
réseaux avant la mise à jour, m e {1, .,. ,M} où M est le nombre de réseaux de neurones de la pluralité de réseaux de neurones, est le vecteur de paramètres
associé au réseau m de la pluralité de réseaux après la mise à jour, ht ∈ R est un pas et est un vecteur fonction de telle que et définie
par :
[0010] où les vecteurs et L < M, sont des vecteurs tirés au sort
aléatoirement parmi les vecteurs de paramètres de la pluralité de réseaux de
neurones de sorte à établir le déplacement la fonction est une
fonction symétrique telle que Φ(ω',ω) > 0 pour tout couple (ω',ω) de RD x RD et la fonction
est définie par :
[0011] où est le gradient en fonction de est la probabilité de a
sachant b et X est un vecteur représentatif de l’image annotée.
[0012] Ainsi, la méthode développée par les inventeurs permet de calculer une répulsion moyenne qui va être appliquée aux réseaux de neurones de la
pluralité de réseaux de neurones par rapport au réseau de paramètres Le calcul
de cette répulsion moyenne ne nécessite de parcourir qu’une seule fois tous les réseaux ω(m ), m e {1, ... , M}. Ainsi, le coût de calcul de la méthode développée par les inventeurs est linéaire en fonction du nombre de réseaux et du nombre d’échantillons, c’est-à-dire 0(L x M), et non plus quadratique en fonction du nombre de réseaux de neurones comme dans le cas des méthodes de l’état de la technique telles que la méthode SVGD.
[0013] Outre les caractéristiques qui viennent d’être évoquées dans le paragraphe précédent, le procédé selon un premier aspect de l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles.
[0014] Avantageusement, le procédé comprend, avant l’étape de mise à jour de la pluralité de réseaux de neurones : une étape d’acquisition d’au moins une image ; une étape d’annotation de l’image acquise.
[0015] Un deuxième aspect de l’invention concerne un procédé de contrôle d’une pièce mécanique à partir d’au moins une image de la pièce mécanique à l’aide d’une pluralité de réseaux de neurones se repoussant entre eux, lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces connus, ledit procédé comprenant :
pour chaque réseau de neurones de la pluralité de réseaux de neurones, une étape de détermination, à partir de l’image de la pièce mécanique, d’une prédiction de la présence d’un défaut au sein de la pièce mécanique pour chaque pixel de l’image de sorte à obtenir une statistique des prédictions de la présence d’un défaut au sein de la pièce mécanique ; à partir de la statistique des prédictions une étape de calcul d’un indicateur de divergence dans les prédictions effectuées par chaque réseau de neurones de la pluralité de réseaux de neurones ; lorsque l’indicateur de divergence est supérieur à une valeur seuil prédéterminée, une étape de détection d’un nouveau défaut ou d’une nouvelle pièce mécanique,
[0016] et lorsqu’un nouveau défaut ou une nouvelle pièce mécanique est détecté : une étape d’annotation de l’image associée au nouveau défaut et/ou à la nouvelle pièce ; et à partir de l’image annotée, une étape d’apprentissage incrémental de la pluralité de réseaux de neurones à l’aide d’un procédé selon un premier aspect de l’invention.
[0017] Outre les caractéristiques qui viennent d’être évoquées dans le paragraphe précédent, le procédé selon un deuxième aspect de l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles.
[0018] Avantageusement le procédé comprend, lorsqu’aucun nouveau défaut ou aucune nouvelle pièce n’est détecté, une étape de détermination de la présence d’un défaut à partir de la statistique des prédictions de la présence d’un défaut.
[0019] Avantageusement, l’indicateur de divergence est donné par l’entropie de prédiction ou par l’information mutuelle.
[0020] Un troisième aspect de l’invention concerne un dispositif de traitement des données comprenant les moyens configurés pour mettre en œuvre un procédé selon un premier aspect de l’invention ou un deuxième aspect de l’invention.
[0021] Un quatrième aspect de l’invention concerne un programme d'ordinateur comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur,
conduisent celui-ci à mettre en œuvre le procédé selon un premier aspect de l’invention ou un deuxième aspect de l’invention.
[0022] Un cinquième aspect de l’invention concerne un support de données lisible par ordinateur, sur lequel est enregistré le programme d'ordinateur selon un quatrième aspect de l’invention.
[0023] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent.
BREVE DESCRIPTION DES FIGURES
[0024] Les figures sont présentées à titre indicatif et nullement limitatif de l’invention.
[0025] La [Fig. 1] montre un ordinogramme d’un procédé selon un premier aspect de l’invention.
[0026] La [Fig. 2] montre un ordinogramme d’un procédé selon un deuxième aspect de l’invention.
[0027] La [Fig. 3] montre une représentation schématique d’un dispositif selon un troisième aspect de l’invention.
[0028] La [Fig. 4] illustre le principe de la détection d’un nouveau défaut et/ou d’une nouvelle pièce utilisée dans le procédé selon un deuxième aspect de l’invention.
DESCRIPTION DETAILLEE
[0029] Les figures sont présentées à titre indicatif et nullement limitatif de l’invention. Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique.
[0030] Un premier aspect de l’invention illustré à la figure 1 concerne un procédé 100 de mise à jour d’une pluralité de réseaux de neurones dédiés au contrôle d’une pièce mécanique PM, lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces PM connus.
[0031] Le procédé 100 selon un premier aspect de l’invention comprend, à partir d’au moins une image IM annotée, de préférence une pluralité d’images IM annotés, une étape 1 E3 de mise à jour de la pluralité de réseaux de neurones durant laquelle les paramètres de la pluralité de réseaux de neurones se repoussant entre eux sont mis à jour à l’aide de l’expression suivante :
[0032] est le vecteur de paramètres associé au réseau m de la pluralité de
réseaux avant la mise à jour, m e {1, .,. ,M} où M est le nombre de réseaux de neurones de la pluralité de réseaux de neurones est le vecteur de paramètres
associé au réseau m de la pluralité de réseaux après la mise à jour, ht e M est un pas et avec D le nombre de paramètres de chaque réseau de neurones,
est un vecteur fonction de telle que
et définie par :
[0033] où les vecteurs
sont des vecteurs tirés au sort aléatoirement parmi les vecteurs de paramètres de la pluralité de réseaux de
neurones, L désignant le nombre de vecteurs tirés au sort aléatoirement pour établir le déplacement Nécessairement, L est inférieur au nombre total de réseaux de
neurones de la pluralité de réseau de neurones, noté M. La fonction
R est symétrique et telle que Φ(ω',ω) > 0 pour tout couple
[0035] est le gradient en fonction de est la probabilité de a
sachant b et X est un vecteur représentatif de l’image annotée.
[0036] Ainsi, la méthode développée par les inventeurs calcule une répulsion moyenne qui va être appliquée aux réseaux de neurones de la pluralité de
réseaux de neurones par rapport au réseau de paramètres Le calcul de cette
répulsion moyenne ne nécessite de parcourir qu’une seule fois tous les réseaux Ensuite, cette répulsion moyenne va être appliquée à chaque
réseau avec une pondération qui va dépendre de l’éloignement entre le réseau mis à jour et l’échantillon. Ainsi, le coût de calcul de la méthode développé par les inventeurs
est linéaire en fonction du nombre de réseaux et du nombre d’échantillons, c’est-à-dire O(L x M), et non plus quadratique en fonction du nombre de réseaux de neurones comme dans le cas de la méthode SVGD.
[0037] Par exemple, en prenant L = 1, un seul réseau de paramètres est à
tirer au sort aléatoirement, donc un seul est à calculer, et la méthode
d’apprentissage incrémental utilisée dans le procédé selon un premier aspect de l’invention est linéaire en fonction du nombre de réseaux de neurones. De manière plus détaillée, le calcul des coefficients qui jouent le rôle de facteurs
de pondération de la répulsion moyenne en fonction du réseau mis à jour, est fait préalablement à la mise à jour après avoir tiré au sort les vecteurs de manière
aléatoire. Ce calcul n’est en général pas coûteux.
[0038] Le tirage au sort du réseau de paramètres est de préférence effectué
à chaque itération de l’étape 1 E3 de mise à jour.
[0039] Afin de dériver les relations qui viennent d’être détaillées, les inventeurs ont tiré parti de la méthode SVGD (pour « Stein Variational Gradient Descent » en anglais) qui induit une répulsion entre les réseaux mais avec un coût quadratique en fonction du nombre de réseaux. La méthode SVGD effectue la mise à jour
[0040] où est le vecteur de paramètres associé au réseau m de la pluralité de
réseaux avant la mise à jour, est le vecteur de paramètres associé au réseau
m de la pluralité de réseaux après la mise à jour, ht e R est un pas et
est un vecteur fonction de telle que et définie par :
[0041] où M est le nombre de réseaux de neurones de la pluralité de réseaux de neurones, est la fonction noyau, est le gradient en fonction de
ln (X) est la fonction logarithme, p(a|b) est la probabilité de a sachant b et X est un
vecteur représentatif de l’image ou de la pluralité d’images annotée. Bien que la méthode SVGD permette l’utilisation de tout type de fonction noyau k, les inventeurs ont considéré une fonction du type :
[0042] où
est une densité de probabilité, et où la fonction Φ :
est symétrique et telle que Φ(ω',ω) > 0 pour tout couple (ω',ω) de
l’instar de la fonction noyau k. Le calcul de l’intégrale ci-dessus n’est généralement pas faisable en pratique pour des réseaux de grande dimension. Cependant, les inventeurs ont noté que, en choisissant pour la loi de probabilité donnée par la densité v la loi des vecteurs de paramètres de la pluralité de
réseaux de neurones, il est possible de reformuler cette intégrale de manière approximative en tirant aléatoirement au sort certains des vecteurs de paramètres
de la pluralité de réseaux de neurones, de sorte que :
[0043] où L désigne le nombre d’échantillons utilisés, par exemple L e [1,10], voire L = 1. Ainsi, il est possible de reformuler l’expression de
de la manière suivante :
[0044] est la répulsion moyenne par rapport au vecteur de paramètres
de la pluralité de réseaux de neurones, et ayant l’expression suivante :
[0046] La ou les images IM de la pièce nécessaires à la mise en œuvre du procédé 100 selon un premier aspect de l’invention peuvent être transmises par un dispositif d’acquisition. Dans ce cas, le procédé 100 selon un premier aspect de l’invention comprend une étape de réception d’au moins une image IM de la pièce mécanique PM, de préférence une pluralité d’images IM de la pièce mécanique PM. Dans un mode de réalisation illustré à la figure 3, cette réception pourra se faire au moyen d’un module MO’ de communication, par exemple une carte Bluetooth, Wi-Fi ou Ethernet.
[0047] La ou les images IM de la pièce PM nécessaires à la mise en œuvre du procédé 100 selon un premier aspect de l’invention peuvent également être acquises par le dispositif mettant en œuvre le procédé 100 selon un premier aspect de l’invention. Dans ce cas, le procédé 100 selon un premier aspect de l’invention comprend une étape 1 E1 d’acquisition d’au moins une image IM de la pièce mécanique PM, de préférence une pluralité d’images IM de la pièce mécanique PM. Dans un mode de réalisation illustré à la figure 3, cette acquisition pourra se faire au moyen d’un module MO d’acquisition, par exemple une ou plusieurs caméras CCD. Il est utile de noter que le procédé 100 selon un premier aspect de l’invention peut être mis en œuvre à partir d’un seule image IM ou d’une pluralité d’images IM de la pièce mécanique PM, la pluralité d’images IM de la pièce mécanique PM pouvant par exemple être acquise pour différentes orientations de la pièce PM.
[0048] Dans un mode de réalisation, le procédé 100 selon un premier aspect de l’invention comprend une étape E2 d’annotation, par exemple par un opérateur, de l’image acquise. Cette annotation (parfois aussi appelée labellisation) a pour but de caractériser le défaut et/ou la pièce associée à l’image acquise afin de pouvoir ensuite mettre à jour la pluralité de réseaux de neurones. Dans un mode de réalisation, l’étape 1 E2 d’annotation est mise en œuvre à l’aide d’un module d’annotation M4. Dans un mode de réalisation, ce module M4 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire, d’un dispositif d’affichage (par ex. un écran ou un écran tactile) permettant d’afficher l’image ou les images à annoter et d’un dispositif de saisie (par ex. un clavier, une souris ou
bien encore un écran tactile) permettant à un opérateur d’annoter l’image ou les images. A l’issue de cette étape 1 E2, les données acquises sur la pièce PM ou le défaut (autrement dit la ou les images acquises) ont été annotées de sorte à obtenir des données annotées DA susceptibles d’être utilisées dans l’apprentissage incrémental de la pluralité de réseaux de neurones comme cela vient d’être détaillé.
[0049] Il est possible de tirer parti des avantages du procédé 100 selon un premier aspect de l’invention dans le contrôle des pièces mécaniques, notamment pour la mise à jour de la pluralité de réseaux de neurones en charge de ce contrôle. Pour cela, un deuxième aspect de l’invention illustré à la [Fig. 2] et à la [Fig. 3] concerne un procédé 200 de contrôle d’une pièce mécanique PM à partir d’au moins une image IM de la pièce mécanique PM, de préférence une pluralité d’images IM de la pièce mécanique PM, à l’aide d’une pluralité de réseaux de neurones se repoussant entre eux, lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces connus.
[0050] L’utilisation d’une pluralité de réseaux de neurones se repoussant entre eux permet de classifier les images IM de manière robuste, notamment dans le cas de données ambiguës. Par ailleurs, les paramètres optimaux des réseaux de neurones de la pluralité de réseaux de neurones sont appris sur une base de données d’apprentissage. Par « paramètres optimaux », on entend les jeux de paramètres pour lesquels le plus haut taux de détections et le plus bas taux de fausses alarmes sont réalisés sur une base de données de validation. Cependant, l’apprentissage supervisé des réseaux de neurones sur une base d’apprentissage préalablement à la mise en œuvre d’un procédé selon un deuxième aspect de l’invention ne permet pas de prendre en compte de nouvelles pièces et/ou de nouveaux défauts qui pourraient arriver dans la chaîne de contrôle. Le procédé 200 selon un deuxième aspect de l’invention se propose d’automatiser la détection de ces nouvelles pièces et/ou de ces nouveaux défauts. On entend par nouveau défaut ou nouvelle pièce un défaut ou une pièce qui n’est pas présent dans la base d’apprentissage utilisée pour entraîner la pluralité de réseaux de neurones.
[0051] Le procédé 200 selon un deuxième aspect de l’invention comprend, pour chaque réseau de neurones de la pluralité de réseaux de neurones, une étape 2E1 de détermination, à partir de l’image IM ou de la pluralité d’images IM de la pièce mécanique PM, d’une statistique SD des prédictions de la présence d’un défaut au
sein de la pièce PM. Autrement dit, chaque réseau de neurones de la pluralité de réseaux de neurones prédit une probabilité, pour chaque pixel de l’image IM ou de la pluralité d’images IM, de correspondre à un défaut.
[0052] A l’issue de cette étape 2E1 , une statistique SD des prédictions des réseaux de neurones de la pluralité de réseaux de neurones concernant la présence d’un défaut dans la pièce est obtenue. Pour détecter les défauts, toute grandeur statistique déterminée à partir de la statistique SD des prédictions peut être utilisée (par exemple, la moyenne ou encore l’écart-type). Préférentiellement, le maximum des probabilités d’occurrence de défaut prédites par les réseaux de neurones de la pluralité de réseaux de neurones est utilisé.
[0053] Dans un mode de réalisation, cette pluralité de réseaux de neurones est intégrée au sein d’un module M1 de détermination d’une statistique SD des prédictions de la présence d’un défaut. Ce module M1 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire.
[0054] Le procédé 200 selon un deuxième aspect de l’invention comprend ensuite, à partie de la statistique SD des prédictions, une étape 2E2 de détermination d’un indicateur de divergence ID dans les prédictions effectuées par chaque réseau de neurones de la pluralité de réseaux de neurones. Cet indicateur de divergence peut prendre plusieurs formes. Par exemple, dans un mode de réalisation, l’indicateur de divergence est déterminé à l’aide de l’écart-type des différentes prédictions.
[0055] Dans un premier mode de réalisation alternatif, l’indicateur de divergence est déterminé à l’aide de l’entropie de la prédiction. Cette dernière se calcule pour chaque prédiction y et connaissant l’entrée x et les réseaux ω(m),m ∈ {1, ...,M}. Plus particulièrement, l’entropie de la prédiction y connaissant l’entrée x et les réseaux est définie par la formule suivante :
[0056] où est la distribution moyenne de la prédiction y
connaissant l’entrée x et les réseaux Cette distribution moyenne
est donnée par la formule suivante :
[0058] Dans un deuxième mode de réalisation alternatif, l’indicateur de divergence est déterminé à partir de l’information mutuelle. L’information mutuelle est obtenue en soustrayant la moyenne des entropies des prédictions faites par chacun des réseaux à l’entropie de la prédiction y connaissant l’entrée x et les réseaux
Elle permet de mesurer l’information apportée par l’ensemble des réseaux de neurones de la pluralité de réseaux de neurones. Plus particulièrement, l’information mutuelle est définie par la formule suivante :
[0059] où est l’entropie de la prédiction y faite par le réseau ω
(m ) connaissant l’entrée x, définie par la formule suivant :
[0060] Bien entendu, d’autres mesures de la divergence entre les prédictions sont envisageables. Par exemple, il sera possible d’envisager l’utilisation d’un indicateur composite déterminé à partir tout ou partie des indicateurs qui viennent d’être présentés.
[0061] Il est ensuite possible, à partir de cet indicateur de divergence, de déterminer la présence d’un nouveau défaut et/ou d’une nouvelle pièce. Pour cela, le procédé 200 selon un deuxième aspect de l’invention comprend également, lorsque l’indicateur ID de divergence est supérieur à une valeur seuil prédéterminée, une étape 2E3 de détection d’un nouveau défaut et/ou d’une nouvelle pièce. Le résultat de cette étape 2E3 peut par exemple être représenté sous la forme d’un booléen BO qui prend la valeur « vrai » s’il s’agit d’un nouveau défaut ou d’une nouvelle pièce et « faux » dans le cas contraire. Il est utile de rappeler que, dans la présente invention, les réseaux de neurones de la pluralité de réseaux de neurones sont des réseaux de neurones se repoussant entre eux. Sans cela, la divergence dans les prédictions
utilisée dans le procédé 200 selon un deuxième aspect de l’invention ne permettrait pas la détection de nouvelles données.
[0062] Le principe de ce mode de détection est illustré à la [Fig. 4] Cette figure représente en trait plein une courbe représentative de la fonction y = x3 sur l’intervalle [-6,6] Afin de pouvoir prédire la valeur de y en fonction de x, cent (100) réseaux de neurones se repoussant entre eux ont été appris sur une base de données couvrant l’intervalle [-4,4] Ensuite, la pluralité de réseaux de neurones a établi des prédictions sur l’intervalle [-6,6] Les valeurs moyennes assignées à ces entrées sont représentées par les croix noires tandis que l’écart-type est représenté par la zone grisée. Sur l’intervalle [-4,4] utilisé pour l’apprentissage des réseaux de neurones, ces derniers font une bonne prédiction de la valeur y=x3 avec un écart-type faible. A l’inverse, sur les intervalles [-6,-4[ et ]4,6] correspondant à de nouvelles données, les prédictions moyennes des réseaux de neurones s’éloignent fortement de la courbe rouge y=x3 et l’écart-type entre les prédictions des réseaux augmente également. Ainsi, les données nouvelles par rapport à la base d’apprentissage peuvent être détectées en observant l’écart-type des prédictions des réseaux appris avec la méthode d’apprentissage de la présente invention. L’exemple ici illustré avec l’écart- type reste valable pour les autres indicateurs de divergence présentés précédemment.
[0063] Dans un mode de réalisation, l’étape 2E2 de calcul d’un indicateur de divergence ID et l’étape 2E3 de détection d’un nouveau défaut et/ou d’une nouvelle pièce sont mises en œuvre à l’aide d’un module de détection M23 d’un nouveau défaut ou d’une nouvelle pièce. Dans un mode de réalisation, ce module M23 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire.
[0064] Si aucune nouvelle pièce ou nouveau défaut n’est détecté, alors le procédé 200 comprend une étape 2E4’ de détermination de la présence d’un défaut à partir statistique SD des prédictions de la présence d’un défaut. Le résultat de cette étape peut par exemple être représenté sous la forme d’un booléen PD qui prend la valeur « vrai » en présence d’un défaut et « faux » dans le cas contraire. Un tel booléen pourra ensuite être utilisé pour déclencher une alarme en cas de défaut ou bien encore déclencher l’intervention d’un opérateur.
[0065] En revanche, si un nouveau défaut ou une nouvelle pièce a été détecté, il peut être avantageux de prendre en compte cette nouvelle donnée pour les caractérisations suivantes.
[0066] Pour cela, le procédé 200 selon un deuxième aspect de l’invention comprend, lorsqu’un nouveau défaut et/ou une nouvelle pièce a été détecté (c’est-à- dire que le défaut ou la pièce n’appartient pas aux défauts ou aux pièces de la librairie utilisée pour l’apprentissage) une étape 2E4 d’annotation, par exemple par un opérateur, de l’image acquise, puis, à partir de l’image annotée DA ou de la pluralité d’images IM annotées, une étape 2E5 d’apprentissage incrémental de la pluralité de réseaux de neurones à l’aide d’un procédé 100 selon un premier aspect de l’invention.
[0067] Ainsi, la mise à jour des paramètres des réseaux de neurones par apprentissage incrémental est faite par une méthode d’ensemble telle que les réseaux de neurones se repoussent entre eux, ce qui permet d’assurer que la divergence entre les prédictions des différents réseaux de neurones soit forte en présence d’une donnée nouvelle (c.à.d. un nouveau défaut et/ou une nouvelle pièce), les réseaux de neurones de la pluralité de réseaux de neurones ainsi appris couvrant bien l’espace des paramètres. En d’autres termes, les réseaux de neurones ainsi obtenus sont bien répartis sur la distribution de leurs paramètres connaissant les données de travail. Un tel résultat ne peut pas être obtenu avec les autres méthodes de l’état de la technique, exception faite de la méthode SVGD qui est cependant beaucoup plus gourmande en puissance de calcul. Plus particulièrement, les méthodes d’ensembles avec des réseaux ne se repoussant pas entre eux telles que celles avec des initialisations multiples aléatoires n’ont aucun moyen d’induire cette bonne répartition. De manière similaire, les méthodes d’échantillonnage se concentrent autour de la moyenne et ne s’en éloignent qu’au prix de longs calculs rendant cette méthode inutilisable en pratique. Enfin, les méthodes à choix multiples, font courir le risque de rendre une partie au moins des réseaux de neurones de la pluralité de réseaux de neurones non- performants sur certaines données, ce qui ne permet pas une bonne exploitation de la pluralité de réseaux de neurones.
[0068] A l’issue de l’étape 1 E5 d’apprentissage incrémental de nouveaux paramètres w sont obtenus pour chaque réseaux de neurone de la pluralité de réseaux de neurones. La pluralité de réseau de neurones peut ensuite être à nouveau utilisée pour la détection de défaut dans une pièce mécanique en prenant en compte le
nouveau défaut et/ou la nouvelle pièce qui devient alors un défaut connu ou une pièce connue pour les itérations suivantes.
[0069] Afin de mettre en œuvre un procédé 100,200 selon un premier aspect de l’invention ou un deuxième aspect de l’invention, un troisième aspect de l’invention illustré à la figure 3 concerne un dispositif DI de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux ou de détection d’un défaut dans une pièce. Dans un mode de réalisation, le dispositif DI comprend un module MO d’acquisition permettant l’acquisition d’une ou plusieurs images IM de la pièce mécanique PM. Dans un mode de réalisation, le dispositif DI comprend un module de réception MO’ permettant de recevoir des images IM prises par un module d’acquisition distant. Dans un mode de réalisation, le dispositif DI comprend un module M1 de détermination d’une statistique SD des prédictions de la présence d’un défaut, ladite statistique étant déterminée à l’aide d’une pluralité de réseaux de neurones se repoussant entre eux. Ce module M1 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire. Dans un mode de réalisation, le dispositif DI comprend un module M23 de détection d’un nouveau défaut ou d’une nouvelle pièce PM. Dans un mode de réalisation, ce module M23 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire. Dans un mode de réalisation, un module unique assure les fonctions du module M23 de détection et du module M1 de détermination d’une statistique SD de prédiction. Dans un mode de réalisation le dispositif DI comprend un module d’annotation M4. Dans un mode de réalisation, ce module M4 pourra prendre la forme d’un moyen de calcul (par ex. un processeur ou une carte ASIC) associé à une mémoire, d’un dispositif d’affichage (par ex. un écran ou un écran tactile) permettant d’afficher l’image ou les images à annoter et d’un dispositif de saisie (par ex. un clavier, une souris ou bien encore un écran tactile) permettant à un opérateur d’annoter l’image ou les images IM.
Claims
[Revendication 1] Procédé (100) de mise à jour d’une pluralité de réseaux de neurones se repoussant entre eux dédiés au contrôle d’une pièce mécanique (PM), lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces (PM) connus, le procédé (100) comprenant, à partir d’au moins une image (IM) annotée, l’annotation associée à une image permettant de caractériser le défaut et/ou la pièce associée à ladite image, une étape (1 E3) de mise à jour de la pluralité de réseaux de neurones durant laquelle les paramètres de la pluralité de réseaux de neurones se repoussant entre eux sont mis à jour à l’aide de l’expressions suivante :
où est le vecteur de paramètres associé au réseau m de la pluralité de réseaux
avant la mise à jour, m e {1,...,M} où M est le nombre de réseaux de neurones de la pluralité de réseaux de neurones, est le vecteur de paramètres associé au
réseau m de la pluralité de réseaux après la mise à jour, ht e M est un pas et avec D le nombre de paramètres de chaque réseau de neurones, est
un vecteur fonction de telle que et définie par :
où les vecteurs et L < M, sont des vecteurs tirés au sort aléatoirement
parmi les vecteurs de paramètres de la pluralité de réseaux de neurones de sorte
à établir le déplacement la fonction
est une fonction
symétrique telle que f(w', w) > 0 pour tout couple (ω',ω) de R° x R° et la fonction
est définie par :
où est le gradient en fonction de p(a\b ) est la probabilité de a sachant b et
X est un vecteur représentatif de l’image (IM) annotée.
[Revendication 2] Procédé (100) selon la revendication précédente comprenant en outre, avant l’étape (1 E3) de mise à jour de la pluralité de réseaux de neurones :
- une étape (1E1) d’acquisition d’au moins une image (IM) ;
- une étape (1 E2) d’annotation de l’image (IM) acquise.
[Revendication 3] Procédé (200) de contrôle d’une pièce mécanique (PM) à partir d’au moins une image (IM) de la pièce mécanique (PM) à l’aide d’une pluralité de réseaux de neurones se repoussant entre eux, lesdits réseaux de neurones ayant été entraînés à partir d’une librairie de défauts et de pièces connus, ledit procédé comprenant :
- pour chaque réseau de neurones de la pluralité de réseaux de neurones, une étape (2E1) de détermination, à partir de l’image (IM) de la pièce mécanique (PM), d’une prédiction de la présence d’un défaut au sein de la pièce mécanique pour chaque pixel de l’image de sorte à obtenir une statistique (SD) des prédictions de la présence d’un défaut au sein de la pièce mécanique (PM) ;
- à partir de la statistique (SD) des prédictions une étape (2E2) de calcul d’un indicateur (ID) de divergence dans les prédictions effectuées par chaque réseau de neurones de la pluralité de réseaux de neurones ;
- lorsque l’indicateur (ID) de divergence est supérieur à une valeur seuil prédéterminée, une étape (2E3) de détection d’un nouveau défaut ou d’une nouvelle pièce mécanique (PM), et lorsqu’un nouveau défaut ou une nouvelle pièce mécanique (PM) est détecté :
- une étape (2E4) d’annotation de l’image (IM) associée au nouveau défaut et/ou à la nouvelle pièce ; et
- à partir de l’image annotée (DA), une étape (2E5) d’apprentissage incrémental de la pluralité de réseaux de neurones à l’aide d’un procédé selon la revendication 1.
[Revendication 4] Procédé (200) selon la revendication précédente comprenant, lorsqu’aucun nouveau défaut ou aucune nouvelle pièce est détecté, une étape (2E4’) de détermination de la présence d’un défaut à partir statistique (SD) des prédictions de la présence d’un défaut.
[Revendication 5] Dispositif de traitement de données comprenant les moyens configurés pour mettre en œuvre un procédé selon l’une des revendications précédentes.
[Revendication 6] Programme d'ordinateur comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur, conduisent celui-ci à mettre en œuvre le procédé selon l’une des revendications 1 à 4.
[Revendication 7] Support de données lisible par ordinateur, sur lequel est enregistré le programme d'ordinateur selon la revendication 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2002982 | 2020-03-26 | ||
FR2002982A FR3108758B1 (fr) | 2020-03-26 | 2020-03-26 | Procédé de mise à jour d’une pluralité de réseaux de neurones non indépendants, procédé de contrôle et dispositif associés |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021191556A1 true WO2021191556A1 (fr) | 2021-09-30 |
Family
ID=71111579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2021/050495 WO2021191556A1 (fr) | 2020-03-26 | 2021-03-23 | Procédé de mise à jour d'une pluralité de réseaux de neurones se repoussant entre eux, procédé de contrôle et dispositif associés |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3108758B1 (fr) |
WO (1) | WO2021191556A1 (fr) |
-
2020
- 2020-03-26 FR FR2002982A patent/FR3108758B1/fr active Active
-
2021
- 2021-03-23 WO PCT/FR2021/050495 patent/WO2021191556A1/fr active Application Filing
Non-Patent Citations (3)
Title |
---|
J. SUN, Q. SUN: "A support vector machine based online learning approach for automated visual inspection", PROCEEDINGS OF THE 2009 CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION (CRV'09), 25 May 2009 (2009-05-25), pages 192 - 199, XP031524549, DOI: 10.1109/CRV.2009.13 * |
QIANG LIU ET AL: "Stein variational gradient descent as moment matching", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 27 October 2018 (2018-10-27), XP080925874 * |
X. LV ET AL: "Deep active learning for surface defect detection", SENSORS, vol. 20, no. 6, 1650, 16 March 2020 (2020-03-16), XP055759400, DOI: 10.3390/s20061650 * |
Also Published As
Publication number | Publication date |
---|---|
FR3108758A1 (fr) | 2021-10-01 |
FR3108758B1 (fr) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3767467A1 (fr) | Procédé et dispositif de détermination d'une valeur d'indice de performance de prédiction d anomalies dans une infrastructure informatique à partir de valeurs d'indicateurs de performance | |
EP3767558B1 (fr) | Procede et dispositif de determination d'une duree estimee avant un incident technique dans une infrastructure informatique a partir de valeurs d'indicateurs de performance | |
EP3028202B1 (fr) | Procédé et dispositif d'analyse d'un échantillon biologique | |
EP3767468A1 (fr) | Procédé et dispositif de détermination d'une valeur de risque d'incident technique dans une infrastructure informatique à partir de valeurs d'indicateurs de performance | |
EP3846087A1 (fr) | Procede et systeme de selection d'un modele d'apprentissage au sein d'une pluralite de modeles d'apprentissage | |
FR3076384A1 (fr) | Detection d'anomalies par une approche combinant apprentissage supervise et non-supervise | |
EP3471356B1 (fr) | Dispositif et procede d'acquisition de valeurs de compteurs associes a une tache de calcul | |
EP3163445A1 (fr) | Mécanisme d'analyse de corrélation lors de la dégradation des performances d'une chaîne applicative | |
Beagum et al. | Nonparametric de‐noising filter optimization using structure‐based microscopic image classification | |
FR2974965A1 (fr) | Procede de detection d'intrusions | |
WO2021009364A1 (fr) | Procédé d'identification de données aberrantes dans d'un jeu de données d'entrée acquises par au moins un capteur | |
Luo et al. | IP packet-level encrypted traffic classification using machine learning with a light weight feature engineering method | |
EP1532550A2 (fr) | Detection d'une image de reference robuste a de grandes transformations photometriques | |
WO2021191556A1 (fr) | Procédé de mise à jour d'une pluralité de réseaux de neurones se repoussant entre eux, procédé de contrôle et dispositif associés | |
FR3108757A1 (fr) | Procédé de contrôle d’une pièce mécanique par apprentissage en ligne de réseaux de neurones et dispositif associé | |
EP3380942B1 (fr) | Procédé et système d'aide à la maintenance et à l'optimisation d'un supercalculateur | |
WO2019122241A1 (fr) | Procédé de construction automatique de scénarios d'attaques informatiques, produit programme d'ordinateur et système de construction associés | |
FR3060794A1 (fr) | Procede de determination de l'etat d'un systeme, procede de determination d'une methode de projection optimale et dispositif mettant en œuvre lesdits procedes | |
FR3089648A1 (fr) | Procede de detection non supervise d’attaques internes et systeme associe | |
WO2020126994A1 (fr) | Procede et systeme de detection d'anomalie dans un reseau de telecommunications | |
EP4033361B1 (fr) | Procédé et dispositif de détermination d'au moins une machine impliquée dans une anomalie détectée dans une infrastructure informatique complexe | |
EP3869368A1 (fr) | Procede et dispositif de detection d'anomalie | |
US20240220608A1 (en) | System and method for detecting poisoned training data based on characteristics of updated artificial intelligence models | |
FR3112407A1 (fr) | Procédé statistique non supervisé de détection multivariée de courbes atypiques | |
WO2024079408A1 (fr) | Procédé de détection d'anomalie dans une série temporelle observée de valeurs d'une grandeur physique représentative des performances d'un système |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21716807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21716807 Country of ref document: EP Kind code of ref document: A1 |