WO2021191529A1 - Dynamic sealing device for a turbomachine probe - Google Patents

Dynamic sealing device for a turbomachine probe Download PDF

Info

Publication number
WO2021191529A1
WO2021191529A1 PCT/FR2021/050445 FR2021050445W WO2021191529A1 WO 2021191529 A1 WO2021191529 A1 WO 2021191529A1 FR 2021050445 W FR2021050445 W FR 2021050445W WO 2021191529 A1 WO2021191529 A1 WO 2021191529A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
sealing device
sealing means
probe
engine compartment
Prior art date
Application number
PCT/FR2021/050445
Other languages
French (fr)
Inventor
Jean-Louis Champion-Reaud
Nicolas ZOULOUMIAN
Jean-Luc BREINING
Paul Henri Joseph Mauclair
Carlos Mendes
David LE-VOT
Cyril COBOS
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2021191529A1 publication Critical patent/WO2021191529A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals

Definitions

  • TITLE DYNAMIC SEALING DEVICE FOR PROBES
  • the technical field of the invention is that of the characterization of a turbomachine in the development phase as well as the exploration and measurement of the flow flows within a turbomachine.
  • the invention relates more particularly to a dynamic sealing device allowing the introduction as well as the displacement of a measurement probe in a flow duct of a turbomachine, and capable of ensuring a seal between different aerothermal conditions d 'a turbomachine.
  • the invention finds a particularly advantageous application in the field of test turbomachines.
  • any quantity for example of pressure, speed, temperature, concentration, etc.
  • the measurement of any quantity within an internal flow of the turbomachine by means of an intrusive probe is made complex and delicate by: the aerothermal environment of the probe; in particular by the high pressure and temperature levels within the flow in question; the confinement associated with the increasingly important compactness of turbomachines; the crossing of multiple watertight walls delimiting different aerothermal environments with different pressures, temperatures and concentrations; the need to achieve effective sealing at each interface of the turbomachine delimiting often very different aerothermal conditions (for example between an internal vein and an external vein of a bypass turbomachine) so as not to degrade its operation; the control of the radial and axial differential expansions of the various parts which can be important, during the operational phases, and in particular during the thermal transients.
  • the invention aims to provide a dynamic sealing device configured to allow the introduction of a measurement probe into a flow of a turbomachine, while preserving the integrity.
  • different internal flows of the turbomachine despite very different air-thermal conditions at the interfaces, compatible with the geometrical constraints of current compact turbomachines, allowing a radial displacement of the measurement probe and making it possible to absorb the differential expansions between stator-stator or else stator-rotor.
  • the invention relates to a dynamic sealing device for a measuring system comprising a measuring probe intended to pass through a first engine compartment of a turbomachine and to measure a physical quantity in a second engine compartment, the first engine compartment being delimited in its radially outer portion by an outer casing (and in its radially inner portion by an inner casing, the second engine compartment being delimited in its radially outer portion by said inner casing, said dynamic sealing device according to the invention being characterized in that it comprises: a first body configured to be positioned inside said first engine compartment and secured to the outer casing, a second body configured to be positioned inside said first engine compartment and secured to the internal casing, the first body and the second body delimiting a passage inside the first engine compartment for the introduction of said measurement probe; a first sealing means configured to provide a movable and sealed connection between the first body and the second body ; a second sealing means formed inside said passage configured to cooperate with said measurement probe re and to ensure a seal between the two ends of said passage formed by said first body
  • the term probe will denote any means making it possible to carry out a measurement of a physical quantity (such as for example pressure, temperature, particle concentration, speed, etc.) that it is intrusive such as than a thermocouple or an anemoclinometric probe, or even a non-intrusive one, such as a light beam (laser, IR, UV, etc.).
  • a physical quantity such as for example pressure, temperature, particle concentration, speed, etc.
  • a non-intrusive one such as a light beam (laser, IR, UV, etc.).
  • the measuring means hereinafter referred to by the general term "probe” travels inside a tube formed by a sheath opening into a flow vein.
  • the probe can be fixed or mobile, that is to say set in motion by a device controlled manually or automatically.
  • the dynamic sealing device is understood to mean a sealing device allowing the radial displacement (relative to the engine axis of a turbomachine) of a probe and allowing the radial and axial expansions inherent in the operating conditions of a turbomachine.
  • the invention advantageously makes it possible to achieve a seal between two compartments of a turbomachine having high and different temperature and pressure conditions, while allowing the differential expansions of the parts of the turbomachine and by allowing movement of the probe. measurement so as to allow a radial exploration of a flow vein if necessary.
  • the invention finds a particularly interesting application in the field of tests, such as engine tests or partial tests relating to the exploration of flows, reactive or inert, from the air inlet to the exhaust nozzle.
  • the dynamic sealing device advantageously makes it possible to ensure simultaneously: sealing under severe pressure and temperature conditions relating to the operation of a turbomachine; correction of the axial and / or radial differential expansions of the housings with respect to one another; radial displacement of the probe so as to allow different radial positions of the measurement probe for radial exploration of a turbomachine flow vein.
  • the dynamic sealing device according to the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
  • the first sealing means is housed in an annular housing provided at said first body, said first sealing means ensuring sealed contact with said second body.
  • the first sealing means is housed in an annular housing provided at said second body, said first sealing means ensuring sealed contact with said first body.
  • the annular housing is provided at one end of said first body or at one end of said second body.
  • the first sealing means is movable axially and radially with respect to the axis of the turbomachine in said annular housing.
  • the first sealing means is a segment seal.
  • said second sealing means has an orifice for the passage of said measurement probe, said orifice having a diameter configured to ensure sealed contact with said measurement probe and to allow relative movement of said measurement probe.
  • said second sealing means is housed in a housing provided at said first body or at said second body.
  • said second sealing means is movable axially and radially with respect to the axis of the turbomachine, in said housing.
  • a subject of the invention is also a measuring system for measuring a physical quantity inside an engine compartment of a turbomachine, said measuring system comprising: a measuring probe intended to pass through a first engine compartment of a turbomachine and measuring a physical quantity in a second engine compartment; a dynamic sealing device according to the invention.
  • the invention also relates to a bypass turbomachine comprising a measuring system according to the invention for measuring a physical quantity inside a primary flow stream of a primary flow at the means of a measuring probe passing through a secondary flow vein of secondary flow.
  • FIG. 1 is a block diagram illustrating the dynamic sealing device according to the invention through which a measurement probe passes.
  • Figure 1 is shown only as an indication and as an example and is not therefore limiting of the invention.
  • upstream and downstream are defined relative to the normal direction of gas flow (from upstream to downstream) through a turbomachine.
  • axis of the turbomachine or “engine axis”, the axis of rotation of a rotor of the turbomachine.
  • an “axial” direction corresponds to the direction of the axis of the turbomachine and a “radial” direction is a direction perpendicular to the axis of the turbomachine and intersecting this axis.
  • an axial plane is a plane containing the axis of the turbomachine, and a radial plane is a plane perpendicular to this axis.
  • Outer are used in the present application with reference to a radial direction so that the inner part of an element is, in a radial direction, closer to the axis of the turbomachine than the outer part of the same element.
  • the inlet air flow is separated at the level of the fan into a primary flow F1 circulating in a primary gas flow duct, located in a radially internal portion of the turbomachine and in a secondary flow F2 circulating in a secondary gas flow stream, located in a radially outer portion of the turbomachine.
  • FIG. 1 represents a block diagram in axial section of a measuring system 200 for a turbomachine in position in a turbomachine 100 with bypass flow comprising from the outside to the inside: an external casing 120, an external duct flow 140 delimited on the outside by the outer casing 120 and partly internally by an internal casing 130, and an internal flow vein 150.
  • the measuring system 200 comprises a measuring probe 210, called intrusive, as well as a dynamic sealing device 220 ensuring both the introduction and the guidance of the measurement probe 210 inside the turbomachine 100, as well as the seal between the various compartments of the turbomachine (external environment, external vein 140, internal vein 150) through which the measurement probe 210 passes.
  • the measurement probe 210 is indifferently any means making it possible to carry out a measurement of a physical quantity (such as for example the pressure, the temperature, the concentration of particles, the speed, etc.) inside a turbomachine , such as for example a thermocouple, an anemoclinometric probe, a light beam (laser, IR, UV, ).
  • a physical quantity such as for example the pressure, the temperature, the concentration of particles, the speed, etc.
  • a turbomachine such as for example a thermocouple, an anemoclinometric probe, a light beam (laser, IR, UV, ).
  • the measurement probe 210 is associated with information processing means (not shown) measured by said measurement 210.
  • the measurement probe 210 makes it possible to measure a physical quantity of an internal flow vein 150 of a turbomachine 100.
  • the dynamic sealing device 220 comprises a first body, for example a sheath 230 having an outer end 231, in the form of a cup, intended to bear against the outer surface 121 of the wall of the housing external 120, and to cover a portion of the external surface 121 around a passage opening 122 passing through the wall of the external casing 120.
  • a first body for example a sheath 230 having an outer end 231, in the form of a cup, intended to bear against the outer surface 121 of the wall of the housing external 120, and to cover a portion of the external surface 121 around a passage opening 122 passing through the wall of the external casing 120.
  • the sleeve 230 has a central body 232, for example of substantially tubular shape, and extending substantially radially (with respect to the axis of the turbomachine) in the turbomachine in the external vein 140, as well as an end internal 233 formed by an annular flange extending radially relative to the longitudinal axis of the central body 232 of the sleeve 240.
  • the outer end 231 of the sheath 230 is advantageously secured to the outer surface 121 of the wall of the outer casing 120.
  • the internal end 223 of the sleeve 230 cooperates with a second body, for example an integral bush 240 of the internal casing 130, via a sealing means, such as a seal 250, for example an annular segment seal.
  • the inner end 233 of the sleeve 232 further has an intermediate flange 234 surrounding the central part 232 of the sleeve 230 and positioned at a certain distance from the inner end flange 233 so as to form an annular housing 235, called a seal groove, configured to receive the seal 250.
  • the seal 250 has an internal diameter greater than the diameter of the annular housing 235 so that the seal is axially movable within the annular housing 235.
  • the distance between the two flanges 233, 234 defining the height of the annular housing 235 is greater than the thickness of the seal 250 so as to allow movement in the radial direction of the seal inside of the annular housing 235 and therefore the radial differential expansions of the various elements of the turbomachine 100, and in particular of the outer casing 120 and of the inner casing 130.
  • the sleeve 240 has the shape of an inverted cup, or bowl, with an upper cylindrical portion 241 and a lower cylindrical portion 242 having an internal diameter substantially equivalent to the internal diameter of the sleeve 230 for the passage of the measurement probe 210
  • the upper portion 241 of the socket 240 has an internal diameter greater than the internal diameter of the lower portion 242.
  • the outer diameter of the lower portion 242 of the sleeve 240 is greater than the diameter of the passage hole 132 formed at the wall of the internal casing 130.
  • the lower portion 242 of the sleeve 240 is intended to come in contact with the radially outer surface 131 of the wall of the inner casing 130 and is configured to ensure a seal between the external vein 140 and the internal vein 150.
  • the lower portion 242 of the sleeve 240 is secured to the radially outer surface 131 of the wall of the internal casing 130, ie on the surface delimiting the external flow vein 140.
  • the upper portion 241 of the sleeve 240 is configured to receive the inner end 233 of the sleeve 230 as well as the seal 250.
  • the seal 250 of the segmented seal type, is sized to be able to be inserted in the annular groove 235 of the sleeve 230 and to come to match the inside of the cavity formed by the upper portion 241 of the sleeve 240, so that the peripheral periphery of the seal 250 is in direct contact with the internal wall of the cavity of the upper portion 241 of the sleeve 240, and ensures a sealed contact.
  • the sheath 230 and the sleeve 240 cooperate so as to define a passage 205 inside the external vein 140 for the passage of the measurement probe, and to allow the introduction of the measurement probe to the interior of the internal vein 150 without disturbing the aerothermal conditions in the external vein 140.
  • the measurement probe 210 can be fixed or mobile.
  • the sealing device 220 according to the invention advantageously makes it possible to be able to use a mobile measuring probe while respecting the sealing conditions between the two veins.
  • the measurement probe can be set in motion by a device controlled manually or even automatically.
  • the seal 250 serves as a dynamic connection between the sleeve 230 and the sleeve 240 and ensures a dynamic seal between these two elements and therefore between the external vein and the internal vein on which the sleeve 230 and the socket 240 are respectively secured.
  • the assembly thus configured also makes it possible to make up for the differential expansions inherent in the operation of the turbomachine, and in particular the axial differential expansions between the sleeve 230 (and therefore the outer casing 120 on which it is integral) and the internal casing 130 and the radial differential expansions between the internal casing 130 and the sleeve 230.
  • the sleeve 240 has a housing 243 formed between the upper portion 241 of the sleeve 240 and the lower portion 242 of the sleeve 240.
  • the housing 243 is oriented so as to open at the level of the radially internal part of the sleeve 240 (ie taking the axis of revolution of the sleeve as the reference axis).
  • the housing 243 is configured to receive and maintain in position a second sealing means 260 housed inside said housing 243 ensuring, in cooperation with the measurement probe 210, a seal on either side of the passage 205 formed by the sheath. 230 and socket
  • the second sealing means 260 is for example a movable ring-shaped cup housed inside said housing 243.
  • the movable cup 260 has a passage orifice 261 having a diameter adjusted to the external diameter of the measurement probe 210 intended to pass through the movable cup 260 as illustrated in FIG. 1.
  • the movable cup 260 allows the internal vein 150 to be isolated from the inside of the sheath 230, the flow of the internal vein 150 being blocked in the lower portion 242 of the sleeve 240.
  • the movable cup 260 also allows to allow the axial displacement of the measuring probe 210 due to the axial expansions, by axial displacement of the movable cup inside the housing 243 of the sleeve
  • the diameter of the orifice 261 of the movable cup 260 is adjusted to that of the measuring probe 210, to ensure a seal at this level of the cup / probe. Furthermore, the movable cup 260 is trapped in a cavity, the thickness of which is slightly greater than that of the movable cup 260, which cup is, therefore, movable in translation in its housing. Therefore, the measurement probe 210 is radially movable (in the orifice 261 of the movable cup 260) and the probe + cup assembly can move in translation relative to the socket
  • the movable cup 260 also makes it possible to authorize the radial displacement of the measurement probe 210 in the turbomachine in order to achieve radial explorations of the internal flow vein.
  • the cup is metallic to withstand the environment both from a thermal and chemical point of view, etc. and is chosen to be compatible with that of the probe, i.e. its hardness is lower than that constituting the probe so as not to damage said probe.
  • the technical solution described above makes it possible to achieve two complementary degrees of sealing: a first sealing produced by the movable cup 260 and a second sealing produced by the seal 250 ensuring dynamic sealing between the sheath 230 and socket 240.
  • the seal 250 provides dynamic sealing between the external 140 and internal 150 veins while ensuring compensation for the differential expansions (axial and radial) between the housings 120, 130.
  • the movable cup 260 provides dynamic sealing between the inside of the sheath 230 and the internal vein 150 while allowing the axial displacement of the probe due to the differential expansions, as well as the radial displacement of the measuring probe 210 allowing to modify the radial position in the vein of the measuring probe 210.
  • the cavity 205 will be ventilated, contributing on the one hand to the cooling of the probe 210 and to the ventilation of the dead water zone at the level of the base of the socket, where it is welded to the wall 130 (zone 132) .

Abstract

The invention relates to a dynamic sealing device (220) for a measuring system (200) comprising a measuring probe (210) intended to pass through a first motor compartment (140) of a turbomachine and to measure a physical variable in a second motor compartment (150), the first motor compartment (140) being defined in its radially outer portion by an outer casing (120) and in its radially inner portion by an inner casing (130), the second motor compartment (150) being defined in its radially outer portion by the inner casing (130), the dynamic sealing device (220) being characterised in that it comprises: a first body (230) configured to be positioned inside the first motor compartment (140) and secured to the outer casing (120); a second body (240) configured to be positioned inside the first motor compartment (140) and secured to the inner casing (130), the first body (230) and the second body (240) defining a passage (205) inside the first motor compartment (130) for inserting the measuring probe (210); a first sealing means (250) configured to provide a movable and sealed connection between the first body (230) and the second body (240); a second sealing means (260) formed inside the passage (205) configured to cooperate with the measuring probe (210) and to ensure a seal between the two ends of the passage (205) formed by the first body (230) and the second body (240).

Description

DESCRIPTION DESCRIPTION
TITRE : DISPOSITIF D’ETANCHEITE DYNAMIQUE POUR SONDETITLE: DYNAMIC SEALING DEVICE FOR PROBES
DE TURBOMACHINETURBOMACHINE
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] Le domaine technique de l’invention est celui de la caractérisation d’une turbomachine en phase de développement ainsi que de l’exploration et de la mesure des écoulements de flux au sein d’une turbomachine. [0001] The technical field of the invention is that of the characterization of a turbomachine in the development phase as well as the exploration and measurement of the flow flows within a turbomachine.
[0002] L’invention concerne plus particulièrement un dispositif d’étanchéité dynamique permettant l’introduction ainsi que le déplacement d’une sonde de mesure dans une veine d’écoulement de turbomachine, et capable d’assurer une étanchéité entre différentes conditions aérothermiques d’une turbomachine. [0002] The invention relates more particularly to a dynamic sealing device allowing the introduction as well as the displacement of a measurement probe in a flow duct of a turbomachine, and capable of ensuring a seal between different aerothermal conditions d 'a turbomachine.
[0003] L’invention trouve une application particulièrement intéressante dans le domaine des turbomachines d’essai. [0003] The invention finds a particularly advantageous application in the field of test turbomachines.
ARRIERE PLAN TECHNIQUE TECHNICAL BACKGROUND
[0004] De nos jours, la phase de développement ou d’amélioration d’une turbomachine s’appuie largement sur des résultats de codes ou de logiciels numériques de plus en plus sophistiqués et performants. Dans le domaine de l’aéronautique, il est toutefois nécessaire d’effectuer, en complément, des opérations dites de « recalage » de ces codes et logiciels numériques avec des mesures sur des turbomachines d’essai afin d’améliorer leur caractère prédictif. De telles opérations de recalage permettent des gains substantiels de temps et d’argent dans les phases initiales de développement des turbomachines. [0004] Nowadays, the development or improvement phase of a turbomachine is largely based on the results of increasingly sophisticated and efficient digital codes or software. In the field of aeronautics, however, it is necessary to carry out, in addition, so-called "readjustment" operations of these digital codes and software with measurements on test turbomachines in order to improve their predictive nature. Such readjustment operations allow substantial savings in time and money in the initial stages of turbine engine development.
[0005] Ces « recalages » ne sont envisageables qu’au moyen de données instationnaires collectées au sein même de la turbomachine, afin de tenir compte de tous les phénomènes de couplage aérodynamique/thermique/mécanique dont la turbomachine est le siège, comme particulièrement la turbine haute pression. [0005] These “readjustments” can only be envisaged by means of unsteady data collected within the turbomachine itself, in order to take into account all the phenomena of aerodynamic / thermal / mechanical coupling of which the turbomachine is the seat, such as particularly the high pressure turbine.
[0006] Cependant, la mesure de toute grandeur (par exemple de pression, de vitesse, de température, de concentration, etc) au sein d’un écoulement interne de la turbomachine au moyen d’une sonde intrusive est rendue complexe et délicate par : l’environnement aérothermique de la sonde ; notamment par les niveaux de pression et de température élevés au sein de l’écoulement en question ; le confinement associé à la compacité de plus en plus importante des turbomachines ; la traversée de parois étanches multiples délimitant différents environnements aérothermiques avec des pressions, des températures et des concentrations différentes ; la nécessité de réaliser une étanchéité efficace au niveau de chaque interface de la turbomachine délimitant des conditions aérothermiques souvent très différentes (par exemple entre une veine interne et une veine externe d’une turbomachine à double flux) pour ne pas dégrader son fonctionnement ; la maîtrise des dilatations différentielles radiales et axiales des différentes pièces qui peuvent être importantes, lors des phases opérationnelles, et en particulier durant les transitoires thermiques.[0006] However, the measurement of any quantity (for example of pressure, speed, temperature, concentration, etc.) within an internal flow of the turbomachine by means of an intrusive probe is made complex and delicate by: the aerothermal environment of the probe; in particular by the high pressure and temperature levels within the flow in question; the confinement associated with the increasingly important compactness of turbomachines; the crossing of multiple watertight walls delimiting different aerothermal environments with different pressures, temperatures and concentrations; the need to achieve effective sealing at each interface of the turbomachine delimiting often very different aerothermal conditions (for example between an internal vein and an external vein of a bypass turbomachine) so as not to degrade its operation; the control of the radial and axial differential expansions of the various parts which can be important, during the operational phases, and in particular during the thermal transients.
RESUME DE L’INVENTION [0007] Dans ce contexte, l’invention vise à proposer un dispositif d’étanchéité dynamique configuré pour permettre l’introduction d’une sonde de mesure dans un écoulement d’une turbomachine, tout en préservant l’intégrité des différents écoulements internes de la turbomachine, malgré des conditions aérothermiques très différentes aux interfaces, compatible avec les contraintes géométriques des turbomachines compactes actuelles, autorisant un déplacement radial de la sonde de mesure et permettant d’absorber les dilatations différentielles entre stator-stator ou encore stator-rotor. SUMMARY OF THE INVENTION [0007] In this context, the invention aims to provide a dynamic sealing device configured to allow the introduction of a measurement probe into a flow of a turbomachine, while preserving the integrity. different internal flows of the turbomachine, despite very different air-thermal conditions at the interfaces, compatible with the geometrical constraints of current compact turbomachines, allowing a radial displacement of the measurement probe and making it possible to absorb the differential expansions between stator-stator or else stator-rotor.
[0008] A cette fin, l’invention concerne un dispositif d’étanchéité dynamique pour système de mesure comportant une sonde de mesure destinée à traverser un premier compartiment moteur d’une turbomachine et à mesurer une grandeur physique dans un deuxième compartiment moteur, le premier compartiment moteur étant délimité dans sa portion radialement externe par un carter externe (et dans sa portion radialement interne par un carter interne, le deuxième compartiment moteur étant délimité dans sa portion radialement externe par ledit carter interne, ledit dispositif d’étanchéité dynamique selon l’invention étant caractérisé en ce qu’il comporte : un premier corps configuré pour être positionné à l’intérieur dudit premier compartiment moteur et solidarisé au carter externe, un deuxième corps configuré pour être positionné à l’intérieur dudit premier compartiment moteur et solidarisé au carter interne, le premier corps et le deuxième corps délimitant un passage à l’intérieur du premier compartiment moteur pour l’introduction de ladite sonde de mesure ; un premier moyen d’étanchéité configuré pour assurer une liaison mobile et étanche entre le premier corps et le deuxième corps ; un deuxième moyen d’étanchéité ménagé à l’intérieur dudit passage configuré pour coopérer avec ladite sonde de mesure et pour assurer une étanchéité entre les deux extrémités dudit passage ménagé par ledit premier corps et ledit deuxième corps. To this end, the invention relates to a dynamic sealing device for a measuring system comprising a measuring probe intended to pass through a first engine compartment of a turbomachine and to measure a physical quantity in a second engine compartment, the first engine compartment being delimited in its radially outer portion by an outer casing (and in its radially inner portion by an inner casing, the second engine compartment being delimited in its radially outer portion by said inner casing, said dynamic sealing device according to the invention being characterized in that it comprises: a first body configured to be positioned inside said first engine compartment and secured to the outer casing, a second body configured to be positioned inside said first engine compartment and secured to the internal casing, the first body and the second body delimiting a passage inside the first engine compartment for the introduction of said measurement probe; a first sealing means configured to provide a movable and sealed connection between the first body and the second body ; a second sealing means formed inside said passage configured to cooperate with said measurement probe re and to ensure a seal between the two ends of said passage formed by said first body and said second body.
[0009] Dans la présente demande, on désignera par sonde tout moyen permettant de réaliser une mesure d’une grandeur physique (comme par exemple la pression, la température, la concentration de particules, la vitesse, etc) qu’il soit intrusif tel qu’un thermocouple ou une sonde anémoclinométrique, ou encore non intrusif, tel qu’un faisceau lumineux (laser, IR, UV, ...). Dans les deux cas, le moyen de mesure, désigné par la suite par le terme générale « sonde », chemine à l’intérieur d’un tube que constitue un fourreau débouchant dans une veine d’écoulement. La sonde peut être fixe ou mobile, c’est-à-dire mise en mouvement par un dispositif piloté manuellement ou encore de manière automatique. [0009] In the present application, the term probe will denote any means making it possible to carry out a measurement of a physical quantity (such as for example pressure, temperature, particle concentration, speed, etc.) that it is intrusive such as than a thermocouple or an anemoclinometric probe, or even a non-intrusive one, such as a light beam (laser, IR, UV, etc.). In both cases, the measuring means, hereinafter referred to by the general term "probe", travels inside a tube formed by a sheath opening into a flow vein. The probe can be fixed or mobile, that is to say set in motion by a device controlled manually or automatically.
[0010] On entend par le dispositif d’étanchéité dynamique un dispositif d’étanchéité permettant le déplacement radial (par rapport à l’axe moteur d’une turbomachine) d’une sonde et autorisant les dilatations radiales et axiales inhérentes aux conditions de fonctionnement d’une turbomachine. [0011] L’invention permet avantageusement de réaliser une étanchéité entre deux compartiments d’une turbomachine présentant des conditions de température et de pression élevées et différentes, tout en autorisant les dilatations différentielles des pièces de la turbomachine et en autorisant un déplacement de la sonde de mesure de manière à permettre une exploration radiale d’une veine d’écoulement si besoin. The dynamic sealing device is understood to mean a sealing device allowing the radial displacement (relative to the engine axis of a turbomachine) of a probe and allowing the radial and axial expansions inherent in the operating conditions of a turbomachine. The invention advantageously makes it possible to achieve a seal between two compartments of a turbomachine having high and different temperature and pressure conditions, while allowing the differential expansions of the parts of the turbomachine and by allowing movement of the probe. measurement so as to allow a radial exploration of a flow vein if necessary.
[0012] L’invention trouve une application particulièrement intéressante dans le domaine des essais, tels que les essais moteurs ou les essais partiels relatifs à l’exploration des écoulements, réactifs ou inertes, depuis l’entrée de l’air jusqu’à la tuyère d’échappement. The invention finds a particularly interesting application in the field of tests, such as engine tests or partial tests relating to the exploration of flows, reactive or inert, from the air inlet to the exhaust nozzle.
[0013] Le dispositif d’étanchéité dynamique selon l’invention permet avantageusement d’assurer de manière simultanée : une étanchéité dans des conditions sévères de pression et de température relatives au fonctionnement d’une turbomachine ; un rattrapage des dilatations différentielles axiales et/ou radiales des carters les uns par rapport aux autres ; le déplacement radial de la sonde de manière à permettre différentes positions radiales de la sonde de mesure pour une exploration radiale d’une veine d’écoulement de turbomachine. [0013] The dynamic sealing device according to the invention advantageously makes it possible to ensure simultaneously: sealing under severe pressure and temperature conditions relating to the operation of a turbomachine; correction of the axial and / or radial differential expansions of the housings with respect to one another; radial displacement of the probe so as to allow different radial positions of the measurement probe for radial exploration of a turbomachine flow vein.
[0014] Outre les caractéristiques évoquées dans le paragraphe précédent, le dispositif d’étanchéité dynamique selon l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles. [0014] In addition to the characteristics mentioned in the previous paragraph, the dynamic sealing device according to the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
[0015] Avantageusement, le premier moyen d’étanchéité est logé dans un logement annulaire ménagé au niveau dudit premier corps, ledit premier moyen d’étanchéité assurant un contact étanche avec ledit deuxième corps. Advantageously, the first sealing means is housed in an annular housing provided at said first body, said first sealing means ensuring sealed contact with said second body.
[0016] Avantageusement, le premier moyen d’étanchéité est logé dans un logement annulaire ménagé au niveau dudit deuxième corps, ledit premier moyen d’étanchéité assurant un contact étanche avec ledit premier corps. [0017] Avantageusement, le logement annulaire est ménagé au niveau d’une extrémité dudit premier corps ou au niveau d’une extrémité dudit deuxième corps. Advantageously, the first sealing means is housed in an annular housing provided at said second body, said first sealing means ensuring sealed contact with said first body. Advantageously, the annular housing is provided at one end of said first body or at one end of said second body.
[0018] Avantageusement, le premier moyen d’étanchéité est mobile axialement et radialement par rapport à l’axe de la turbomachine dans ledit logement annulaire. [0019] Avantageusement, le premier moyen d’étanchéité est un joint segment. Advantageously, the first sealing means is movable axially and radially with respect to the axis of the turbomachine in said annular housing. Advantageously, the first sealing means is a segment seal.
[0020] Avantageusement, ledit deuxième moyen d’étanchéité présente un orifice pour le passage de ladite sonde de mesure, ledit orifice présentant un diamètre configuré pour assurer un contact étanche avec ladite sonde de mesure et pour autoriser un déplacement relatif de ladite sonde de mesure. [0021] Avantageusement, ledit deuxième moyen d’étanchéité est logé dans un logement ménagé au niveau dudit premier corps ou au niveau dudit deuxième corps. Advantageously, said second sealing means has an orifice for the passage of said measurement probe, said orifice having a diameter configured to ensure sealed contact with said measurement probe and to allow relative movement of said measurement probe. . Advantageously, said second sealing means is housed in a housing provided at said first body or at said second body.
[0022] Avantageusement, ledit deuxième moyen d’étanchéité est mobile axialement et radialement par rapport à l’axe de la turbomachine, dans ledit logement. Advantageously, said second sealing means is movable axially and radially with respect to the axis of the turbomachine, in said housing.
[0023] L’invention a également pour objet un système de mesure pour la mesure d’une grandeur physique à l’intérieur d’un compartiment moteur d’une turbomachine, ledit système de mesure comportant : une sonde de mesure destinée à traverser un premier compartiment moteur d’une turbomachine et à mesurer une grandeur physique dans un deuxième compartiment moteur ; un dispositif d’étanchéité dynamique selon l’invention. A subject of the invention is also a measuring system for measuring a physical quantity inside an engine compartment of a turbomachine, said measuring system comprising: a measuring probe intended to pass through a first engine compartment of a turbomachine and measuring a physical quantity in a second engine compartment; a dynamic sealing device according to the invention.
[0024] L’invention a également pour objet une turbomachine à double flux comportant un système de mesure selon l’invention pour la mesure d’une grandeur physique à l’intérieur d’une veine primaire d’écoulement d’un flux primaire au moyen d’une sonde de mesure traversant une veine secondaire d’écoulement de flux secondaire. The invention also relates to a bypass turbomachine comprising a measuring system according to the invention for measuring a physical quantity inside a primary flow stream of a primary flow at the means of a measuring probe passing through a secondary flow vein of secondary flow.
[0025] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen de la figure qui l’accompagne. BREVE DESCRIPTION DES FIGURES The invention and its various applications will be better understood on reading the following description and on examining the accompanying figure. BRIEF DESCRIPTION OF THE FIGURES
[0026] [Fig. 1] est un schéma de principe illustrant le dispositif d’étanchéité dynamique selon l’invention traversé par une sonde de mesure. [0026] [Fig. 1] is a block diagram illustrating the dynamic sealing device according to the invention through which a measurement probe passes.
[0027] La figure 1 n’est représentée qu’à titre indicatif et d’exemple et n’est pas conséquent nullement limitatif de l’invention. [0027] Figure 1 is shown only as an indication and as an example and is not therefore limiting of the invention.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
[0028] Dans la présente demande, les termes « amont » et « aval » sont définis par rapport au sens d'écoulement normal du gaz (de l'amont vers l'aval) à travers une turbomachine. [0029] On appelle également « axe de la turbomachine » ou « axe moteur », l'axe de rotation d’un rotor de la turbomachine. Sauf indication contraire, une direction « axiale » correspond à la direction de l'axe de la turbomachine et une direction « radiale » est une direction perpendiculaire à l'axe de la turbomachine et coupant cet axe. De même, un plan axial est un plan contenant l'axe de la turbomachine, et un plan radial est un plan perpendiculaire à cet axe. In the present application, the terms "upstream" and "downstream" are defined relative to the normal direction of gas flow (from upstream to downstream) through a turbomachine. Also called "axis of the turbomachine" or "engine axis", the axis of rotation of a rotor of the turbomachine. Unless otherwise indicated, an “axial” direction corresponds to the direction of the axis of the turbomachine and a “radial” direction is a direction perpendicular to the axis of the turbomachine and intersecting this axis. Likewise, an axial plane is a plane containing the axis of the turbomachine, and a radial plane is a plane perpendicular to this axis.
[0030] Sauf précision contraire, les adjectifs « inférieur », « interne »,Unless otherwise specified, the adjectives "lower", "internal",
« extérieur », « externe » sont utilisés dans la présente demande en référence à une direction radiale de sorte que la partie intérieure d'un élément est, suivant une direction radiale, plus proche de l'axe de la turbomachine que la partie extérieure du même élément. "Outer", "outer" are used in the present application with reference to a radial direction so that the inner part of an element is, in a radial direction, closer to the axis of the turbomachine than the outer part of the same element.
[0031] Dans une turbomachine à double flux, le flux d’air d’entrée est séparé au niveau de la soufflante en un flux primaire F1 circulant dans une veine primaire d’écoulement des gaz, localisée dans une portion radialement interne de la turbomachine et en un flux secondaire F2 circulant dans une veine secondaire d’écoulement des gaz, localisée dans une portion radialement externe de la turbomachine. In a double-flow turbomachine, the inlet air flow is separated at the level of the fan into a primary flow F1 circulating in a primary gas flow duct, located in a radially internal portion of the turbomachine and in a secondary flow F2 circulating in a secondary gas flow stream, located in a radially outer portion of the turbomachine.
[0032] La figure 1 représente un schéma de principe en coupe axiale d’un système de mesure 200 pour turbomachine en position dans une turbomachine 100 à double flux comportant de l’extérieur vers l’intérieur : un carter externe 120, une veine externe d’écoulement 140 délimitée en partie externe par le carter externe 120 et en partie interne par un carter interne 130, et une veine interne d’écoulement 150. [0032] FIG. 1 represents a block diagram in axial section of a measuring system 200 for a turbomachine in position in a turbomachine 100 with bypass flow comprising from the outside to the inside: an external casing 120, an external duct flow 140 delimited on the outside by the outer casing 120 and partly internally by an internal casing 130, and an internal flow vein 150.
[0033] Dans l’exemple de réalisation de la figure 1 , le système de mesure 200 comporte une sonde de mesure 210, dite intrusive, ainsi qu’un dispositif d’étanchéité dynamique 220 assurant à la fois l’introduction et le guidage de la sonde de mesure 210 à l’intérieur de la turbomachine 100, ainsi que l’étanchéité entre les différents compartiments de la turbomachine (environnement extérieur, veine externe 140, veine interne 150) traversés par la sonde de mesure 210. In the embodiment of Figure 1, the measuring system 200 comprises a measuring probe 210, called intrusive, as well as a dynamic sealing device 220 ensuring both the introduction and the guidance of the measurement probe 210 inside the turbomachine 100, as well as the seal between the various compartments of the turbomachine (external environment, external vein 140, internal vein 150) through which the measurement probe 210 passes.
[0034] La sonde de mesure 210 est indifféremment tout moyen permettant de réaliser une mesure d’une grandeur physique (comme par exemple la pression, la température, la concentration de particules, la vitesse, etc) à l’intérieur d’une turbomachine, comme par exemple un thermocouple, une sonde anémoclinométrique, un faisceau lumineux (laser, IR, UV, ...). The measurement probe 210 is indifferently any means making it possible to carry out a measurement of a physical quantity (such as for example the pressure, the temperature, the concentration of particles, the speed, etc.) inside a turbomachine , such as for example a thermocouple, an anemoclinometric probe, a light beam (laser, IR, UV, ...).
[0035] La sonde de mesure 210 est associée à des moyens de traitement de l’information (non représentés) mesurée par ladite de mesure 210. The measurement probe 210 is associated with information processing means (not shown) measured by said measurement 210.
[0036] Dans l’exemple de réalisation représenté, la sonde de mesure 210 permet de mesurer une grandeur physique d’une veine interne d’écoulement 150 d’une turbomachine 100. In the exemplary embodiment shown, the measurement probe 210 makes it possible to measure a physical quantity of an internal flow vein 150 of a turbomachine 100.
[0037] Le dispositif d’étanchéité dynamique 220 selon l’invention comporte un premier corps, par exemple un fourreau 230 présentant une extrémité externe 231 , en forme de coupelle, destinée en venir en appui avec la surface externe 121 de la paroi du carter externe 120, et à recouvrir une portion de la surface externe 121 autour d’un orifice de passage 122 traversant la paroi du carter externe 120. The dynamic sealing device 220 according to the invention comprises a first body, for example a sheath 230 having an outer end 231, in the form of a cup, intended to bear against the outer surface 121 of the wall of the housing external 120, and to cover a portion of the external surface 121 around a passage opening 122 passing through the wall of the external casing 120.
[0038] Le fourreau 230 présente un corps central 232, par exemple de forme sensiblement tubulaire, et s’étendant sensiblement radialement (par rapport à l’axe de la turbomachine) dans la turbomachine dans la veine externe 140, ainsi qu’une extrémité interne 233 formée par un flasque annulaire s’étendant radialement par rapport à l’axe longitudinal du corps central 232 du fourreau 240. The sleeve 230 has a central body 232, for example of substantially tubular shape, and extending substantially radially (with respect to the axis of the turbomachine) in the turbomachine in the external vein 140, as well as an end internal 233 formed by an annular flange extending radially relative to the longitudinal axis of the central body 232 of the sleeve 240.
[0039] Pour assurer l’étanchéité de la veine externe 140 au niveau de l’orifice de passage 122 de la paroi du carter externe 120, l’extrémité externe 231 du fourreau 230 est avantageusement solidarisée sur la surface externe 121 de la paroi du carter externe 120. To seal the outer vein 140 at the passage opening 122 of the wall of the outer casing 120, the outer end 231 of the sheath 230 is advantageously secured to the outer surface 121 of the wall of the outer casing 120.
[0040] Pour assurer l’étanchéité de la veine externe 140 au niveau de l’orifice de passage 132 de la paroi du carter interne 130, l’extrémité interne 223 du fourreau 230 coopère avec un deuxième corps, par exemple une douille 240 solidaire du carter interne 130, via un moyen d’étanchéité, tel qu’un joint d’étanchéité 250, par exemple un joint segment annulaire. To seal the external vein 140 at the level of the passage orifice 132 of the wall of the internal casing 130, the internal end 223 of the sleeve 230 cooperates with a second body, for example an integral bush 240 of the internal casing 130, via a sealing means, such as a seal 250, for example an annular segment seal.
[0041] A cet effet, l’extrémité interne 233 du fourreau 232 présente en outre un flasque intermédiaire 234 entourant la partie centrale 232 du fourreau 230 et positionné à une certaine distance du flasque d’extrémité interne 233 de manière à former un logement annulaire 235, dite gorge à joint, configuré pour recevoir le joint d’étanchéité 250. To this end, the inner end 233 of the sleeve 232 further has an intermediate flange 234 surrounding the central part 232 of the sleeve 230 and positioned at a certain distance from the inner end flange 233 so as to form an annular housing 235, called a seal groove, configured to receive the seal 250.
[0042] Le joint d’étanchéité 250 présente un diamètre interne supérieure au diamètre du logement annulaire 235 de sorte que le joint d’étanchéité est mobile axialement à l’intérieur du logement annulaire 235. [0042] The seal 250 has an internal diameter greater than the diameter of the annular housing 235 so that the seal is axially movable within the annular housing 235.
[0043] La distance entre les deux flasques 233, 234 délimitant la hauteur du logement annulaire 235 est supérieure à l’épaisseur du joint d’étanchéité 250 de manière à autoriser un déplacement dans le sens radial du joint d’étanchéité à l’intérieur du logement annulaire 235 et donc les dilatations différentielles radiales des différents éléments de la turbomachine 100, et notamment du carter externe 120 et du carter interne 130. The distance between the two flanges 233, 234 defining the height of the annular housing 235 is greater than the thickness of the seal 250 so as to allow movement in the radial direction of the seal inside of the annular housing 235 and therefore the radial differential expansions of the various elements of the turbomachine 100, and in particular of the outer casing 120 and of the inner casing 130.
[0044] La douille 240 présente une forme de coupelle inversée, ou de cuvette, avec une portion supérieure 241 cylindrique et une portion inférieure 242 cylindrique présentant un diamètre intérieur sensiblement équivalent au diamètre intérieur du fourreau 230 pour le passage de la sonde de mesure 210. La portion supérieure 241 de la douille 240 présente un diamètre intérieur supérieur au diamètre intérieur de la portion inférieure 242. The sleeve 240 has the shape of an inverted cup, or bowl, with an upper cylindrical portion 241 and a lower cylindrical portion 242 having an internal diameter substantially equivalent to the internal diameter of the sleeve 230 for the passage of the measurement probe 210 The upper portion 241 of the socket 240 has an internal diameter greater than the internal diameter of the lower portion 242.
[0045] Le diamètre extérieur de la portion inférieure 242 de la douille 240 est supérieur au diamètre de l’orifice de passage 132 ménagé au niveau de la paroi du carter interne 130. La portion inférieure 242 de la douille 240 est destinée à venir en contact avec la surface radialement externe 131 de la paroi du carter interne 130 et est configurée pour assurer une étanchéité entre la veine externe 140 et la veine interne 150. Avantageusement, la portion inférieure 242 de la douille 240 est solidarisée sur la surface radialement externe 131 de la paroi du carter interne 130, i.e. sur la surface délimitant la veine externe 140 d’écoulement. The outer diameter of the lower portion 242 of the sleeve 240 is greater than the diameter of the passage hole 132 formed at the wall of the internal casing 130. The lower portion 242 of the sleeve 240 is intended to come in contact with the radially outer surface 131 of the wall of the inner casing 130 and is configured to ensure a seal between the external vein 140 and the internal vein 150. Advantageously, the lower portion 242 of the sleeve 240 is secured to the radially outer surface 131 of the wall of the internal casing 130, ie on the surface delimiting the external flow vein 140.
[0046] La portion supérieure 241 de la douille 240 est configurée pour recevoir l’extrémité interne 233 du fourreau 230 ainsi que le joint d’étanchéité 250. Le joint d’étanchéité 250, de type joint segmenté, est dimensionné pour pouvoir être inséré dans la gorge annulaire 235 du fourreau 230 et à venir épouser l’intérieur de la cavité formée par la portion supérieure 241 de la douille 240, de sorte que le pourtour périphérique du joint d’étanchéité 250 est en contact direct avec la paroi interne de la cavité de la portion supérieure 241 de la douille 240, et assure un contact étanche. The upper portion 241 of the sleeve 240 is configured to receive the inner end 233 of the sleeve 230 as well as the seal 250. The seal 250, of the segmented seal type, is sized to be able to be inserted in the annular groove 235 of the sleeve 230 and to come to match the inside of the cavity formed by the upper portion 241 of the sleeve 240, so that the peripheral periphery of the seal 250 is in direct contact with the internal wall of the cavity of the upper portion 241 of the sleeve 240, and ensures a sealed contact.
[0047] Le fourreau 230 et la douille 240 coopèrent de manière à délimiter un passage 205 à l’intérieur de la veine externe 140 pour le passage de la sonde de mesure, et à permettre l’introduction de la sonde de mesure à l’intérieur de la veine interne 150 sans perturber les conditions aérothermiques dans la veine externe 140. The sheath 230 and the sleeve 240 cooperate so as to define a passage 205 inside the external vein 140 for the passage of the measurement probe, and to allow the introduction of the measurement probe to the interior of the internal vein 150 without disturbing the aerothermal conditions in the external vein 140.
[0048] La sonde de mesure 210 peut être fixe ou mobile. Toutefois, le dispositif d’étanchéité 220 selon l’invention permet avantageusement de pouvoir utiliser une sonde de mesure mobile en respectant les conditions d’étanchéité entre les deux veines. The measurement probe 210 can be fixed or mobile. However, the sealing device 220 according to the invention advantageously makes it possible to be able to use a mobile measuring probe while respecting the sealing conditions between the two veins.
[0049] A cet effet, la sonde de mesure peut être mise en mouvement par un dispositif piloté manuellement ou encore de manière automatique. For this purpose, the measurement probe can be set in motion by a device controlled manually or even automatically.
[0050] Le joint d’étanchéité 250 sert de liaison dynamique entre le fourreau 230 et la douille 240 et permet d’assurer une étanchéité dynamique entre ces deux éléments et donc entre la veine externe et la veine interne sur lesquelles le fourreau 230 et la douille 240 sont respectivement solidarisés. The seal 250 serves as a dynamic connection between the sleeve 230 and the sleeve 240 and ensures a dynamic seal between these two elements and therefore between the external vein and the internal vein on which the sleeve 230 and the socket 240 are respectively secured.
[0051] L’ensemble ainsi configuré permet également de rattraper les dilatations différentielles inhérentes au fonctionnement de la turbomachine, et notamment les dilatations différentielles axiales entre le fourreau 230 (et donc le carter externe 120 sur lequel il est solidaire) et le carter interne 130 et les dilatations différentielles radiales entre le carter interne 130 et le fourreau 230. [0052] En outre, la douille 240 présente un logement 243 ménagé entre la portion supérieure 241 de la douille 240 et la portion inférieure 242 de la douille 240. Le logement 243 est orientée de manière à être débouchant au niveau de la partie radialement interne de la douille 240 (i.e. en prenant comme axe de référence l’axe de révolution de la douille). Le logement 243 est configuré pour recevoir et maintenir en position un deuxième moyen d’étanchéité 260 logé à l’intérieur dudit logement 243 assurant en coopération avec la sonde de mesure 210 une étanchéité de part et d’autre du passage 205 ménagé par le fourreau 230 et la douille 240. The assembly thus configured also makes it possible to make up for the differential expansions inherent in the operation of the turbomachine, and in particular the axial differential expansions between the sleeve 230 (and therefore the outer casing 120 on which it is integral) and the internal casing 130 and the radial differential expansions between the internal casing 130 and the sleeve 230. In addition, the sleeve 240 has a housing 243 formed between the upper portion 241 of the sleeve 240 and the lower portion 242 of the sleeve 240. The housing 243 is oriented so as to open at the level of the radially internal part of the sleeve 240 (ie taking the axis of revolution of the sleeve as the reference axis). The housing 243 is configured to receive and maintain in position a second sealing means 260 housed inside said housing 243 ensuring, in cooperation with the measurement probe 210, a seal on either side of the passage 205 formed by the sheath. 230 and socket 240.
[0053] Le deuxième moyen d’étanchéité 260 est par exemple une coupelle mobile de forme annulaire logée à l’intérieur dudit logement 243. The second sealing means 260 is for example a movable ring-shaped cup housed inside said housing 243.
[0054] La coupelle mobile 260 présente un orifice de passage 261 présentant un diamètre ajusté au diamètre externe de la sonde de mesure 210 destinée à traverser la coupelle mobile 260 comme illustré à la figure 1 . The movable cup 260 has a passage orifice 261 having a diameter adjusted to the external diameter of the measurement probe 210 intended to pass through the movable cup 260 as illustrated in FIG. 1.
[0055] La coupelle mobile 260 permet d’isoler la veine interne 150 de l’intérieur du fourreau 230, l’écoulement de la veine interne 150 étant bloqué dans la portion inférieure 242 de la douille 240. La coupelle mobile 260 permet en outre d’autoriser le déplacement axial de la sonde de mesure 210 du fait des dilatations axiales, par déplacement axial de la coupelle mobile à l’intérieur du logement 243 de la douilleThe movable cup 260 allows the internal vein 150 to be isolated from the inside of the sheath 230, the flow of the internal vein 150 being blocked in the lower portion 242 of the sleeve 240. The movable cup 260 also allows to allow the axial displacement of the measuring probe 210 due to the axial expansions, by axial displacement of the movable cup inside the housing 243 of the sleeve
240. 240.
[0056] Le diamètre de l’orifice 261 de la coupelle mobile 260 est ajusté à celui de la sonde de mesure 210, pour assurer l’étanchéité à ce niveau coupelle/sonde. Par ailleurs, la coupelle mobile 260 est emprisonnée dans une cavité, dont l’épaisseur est légèrement supérieure à celle de la coupelle mobile 260, laquelle coupelle est, donc mobile en translation dans son logement. De ce fait, la sonde de mesure 210 est mobile radialement (dans l’orifice 261 de la coupelle mobile 260) et l’ensemble sonde + coupelle peut de déplacer en translation par rapport à la douilleThe diameter of the orifice 261 of the movable cup 260 is adjusted to that of the measuring probe 210, to ensure a seal at this level of the cup / probe. Furthermore, the movable cup 260 is trapped in a cavity, the thickness of which is slightly greater than that of the movable cup 260, which cup is, therefore, movable in translation in its housing. Therefore, the measurement probe 210 is radially movable (in the orifice 261 of the movable cup 260) and the probe + cup assembly can move in translation relative to the socket
241 , pour encaisser les dilatations différentielles qui existent entre les deux carters 120 et 130, qu’ils soient axiaux ou azimutaux (si l’un "tourne" par rapport à l’autre, ou toute combinaison de ses deux mouvements). 241, to accommodate the differential expansions that exist between the two housings 120 and 130, whether they are axial or azimuthal (if one "turns" relative to the other, or any combination of its two movements).
[0057] La coupelle mobile 260 permet également d’autoriser le déplacement radial de la sonde de mesure 210 dans la turbomachine afin de réaliser des explorations radiales de la veine interne d’écoulement. La coupelle est métallique pour résister à l’environnement à la fois d’un point de vue thermique, chimique, ... et est choisi compatible avec celui de la sonde, c’est-à-dire que sa dureté est plus faible que celle constituant la sonde afin de ne pas endommager ladite sonde. The movable cup 260 also makes it possible to authorize the radial displacement of the measurement probe 210 in the turbomachine in order to achieve radial explorations of the internal flow vein. The cup is metallic to withstand the environment both from a thermal and chemical point of view, etc. and is chosen to be compatible with that of the probe, i.e. its hardness is lower than that constituting the probe so as not to damage said probe.
[0058] Ainsi, la solution technique exposée ci-dessus permet de réaliser deux degrés d’étanchéité complémentaires : une première étanchéité réalisée par la coupelle mobile 260 et une deuxième étanchéité réalisée par le joint d’étanchéité 250 assurant une étanchéité dynamique entre le fourreau 230 et la douille 240. Thus, the technical solution described above makes it possible to achieve two complementary degrees of sealing: a first sealing produced by the movable cup 260 and a second sealing produced by the seal 250 ensuring dynamic sealing between the sheath 230 and socket 240.
[0059] Comme mentionné précédemment, le joint d’étanchéité 250 assure une étanchéité dynamique entre les veines externe 140 et interne 150 tout en assurant un rattrapage des dilatations différentielles (axiales et radiales) entre les carters 120, 130. As mentioned above, the seal 250 provides dynamic sealing between the external 140 and internal 150 veins while ensuring compensation for the differential expansions (axial and radial) between the housings 120, 130.
[0060] La coupelle mobile 260 assure une étanchéité dynamique entre l’intérieur du fourreau 230 et la veine interne 150 tout en autorisant le déplacement axial de la sonde du fait des dilatations différentielles, ainsi que le déplacement radial de la sonde de mesure 210 permettant de modifier la position radiale dans la veine de la sonde de mesure 210. The movable cup 260 provides dynamic sealing between the inside of the sheath 230 and the internal vein 150 while allowing the axial displacement of the probe due to the differential expansions, as well as the radial displacement of the measuring probe 210 allowing to modify the radial position in the vein of the measuring probe 210.
[0061] En fonction des conditions de pression dans les veines d’écoulement externe et interne, et du différentiel de pression entre les deux veines d’écoulement, il est également envisagé de ménager un flux de ventilation au travers du fourreau afin d’y garantir des conditions aérothermiques maîtrisées compatibles avec l’environnement de la sonde. Ainsi si la pression dans le flux 140 est supérieure à celle dans le flux 150, il est possible de ménager quelques orifices de petites dimensions dans le fourreau 232 au travers desquels un petit débit de fluide s’écoulera naturellement. Ainsi la cavité 205 sera ventilée, contribuant d’une part au refroidissement de la sonde 210 et à la ventilation de la zone d’eau morte au niveau du pied de la douille, là où elle est soudée à la paroi 130 (zone 132). Depending on the pressure conditions in the external and internal flow veins, and the pressure differential between the two flow veins, it is also envisaged to provide a ventilation flow through the sheath in order to there guarantee controlled aerothermal conditions compatible with the environment of the probe. Thus if the pressure in the flow 140 is greater than that in the flow 150, it is possible to provide a few orifices of small dimensions in the sleeve 232 through which a small flow of fluid will flow naturally. Thus the cavity 205 will be ventilated, contributing on the one hand to the cooling of the probe 210 and to the ventilation of the dead water zone at the level of the base of the socket, where it is welded to the wall 130 (zone 132) .

Claims

REVENDICATIONS
[Revendication 1] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) comportant une sonde de mesure (210) destinée à traverser un premier compartiment moteur (140) d’une turbomachine et à mesurer une grandeur physique dans un deuxième compartiment moteur (150), le premier compartiment moteur (140) étant délimité dans sa portion radialement externe par un carter externe (120) et dans sa portion radialement interne par un carter interne (130), le deuxième compartiment moteur (150) étant délimité dans sa portion radialement externe par ledit carter interne (130), ledit dispositif d’étanchéité dynamique (220) étant caractérisé en ce qu’il comporte : [Claim 1] Dynamic sealing device (220) for a measuring system (200) comprising a measuring probe (210) intended to pass through a first engine compartment (140) of a turbomachine and to measure a physical quantity in a second engine compartment (150), the first engine compartment (140) being delimited in its radially outer portion by an outer casing (120) and in its radially inner portion by an inner casing (130), the second engine compartment (150) being delimited in its radially outer portion by said inner casing (130), said dynamic sealing device (220) being characterized in that it comprises:
- un premier corps (230) configuré pour être positionné à l’intérieur dudit premier compartiment moteur (140) et solidarisé au carter externe (120), - a first body (230) configured to be positioned inside said first engine compartment (140) and secured to the outer casing (120),
- un deuxième corps (240) configuré pour être positionné à l’intérieur dudit premier compartiment moteur (140) et solidarisé au carter interne (130), le premier corps (230) et le deuxième corps (240) délimitant un passage (205) à l’intérieur du premier compartiment moteur (130) pour l’introduction de ladite sonde de mesure (210) ;- a second body (240) configured to be positioned inside said first engine compartment (140) and secured to the internal casing (130), the first body (230) and the second body (240) defining a passage (205) inside the first engine compartment (130) for the introduction of said measurement probe (210);
- un premier moyen d’étanchéité (250) logé dans un logement annulaire (235) ménagé au niveau dudit premier corps (230), ledit premier moyen d’étanchéité (250) assurant un contact étanche avec ledit deuxième corps (240) ; - a first sealing means (250) housed in an annular housing (235) provided at said first body (230), said first sealing means (250) ensuring sealed contact with said second body (240);
- un deuxième moyen d’étanchéité (260) ménagé à l’intérieur dudit passage (205) configuré pour coopérer avec ladite sonde de mesure (210) et pour assurer une étanchéité entre les deux extrémités dudit passage (205) ménagé par ledit premier corps (230) et ledit deuxième corps (240), ledit deuxième moyen d’étanchéité (260) est mobile axialement et radialement par rapport à l’axe de la turbomachine, dans ledit logement (235). - a second sealing means (260) formed inside said passage (205) configured to cooperate with said measurement probe (210) and to ensure a seal between the two ends of said passage (205) formed by said first body (230) and said second body (240), said second sealing means (260) is movable axially and radially with respect to the axis of the turbomachine, in said housing (235).
[Revendication 2] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon la revendication précédente caractérisé en ce que le premier moyen d’étanchéité (250) est logé dans un logement annulaire (235), ledit logement annulaire (235) étant : [Claim 2] Dynamic sealing device (220) for a measuring system (200) according to the preceding claim characterized in that the first sealing means (250) is housed in an annular housing (235), said annular housing ( 235) being:
- ménagé au niveau dudit premier corps (230), ledit premier moyen d’étanchéité assurant un contact étanche avec ledit deuxième corps (240), ou - provided at said first body (230), said first sealing means ensuring sealed contact with said second body (240), or
- ménagé au niveau dudit deuxième corps (240), ledit premier moyen d’étanchéité assurant un contact étanche avec ledit premier corps (230). - Provided at said second body (240), said first sealing means ensuring sealed contact with said first body (230).
[Revendication 3] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon la revendication précédente caractérisé en ce que le logement annulaire (235) est ménagé au niveau d’une extrémité dudit premier corps (230) ou au niveau d’une extrémité dudit deuxième corps (240). [Claim 3] Dynamic sealing device (220) for a measuring system (200) according to the preceding claim characterized in that the annular housing (235) is provided at one end of said first body (230) or at the level from one end of said second body (240).
[Revendication 4] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon l’une des revendications 2 à 3 caractérisé en ce que le premier moyen d’étanchéité (250) est mobile axialement et radialement par rapport à l’axe de la turbomachine dans ledit logement annulaire (235). [Claim 4] Dynamic sealing device (220) for a measuring system (200) according to one of claims 2 to 3 characterized in that the first sealing means (250) is movable axially and radially with respect to the axis of the turbomachine in said annular housing (235).
[Revendication 5] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon l’une des revendications précédentes caractérisé en ce que le premier moyen d’étanchéité (250) est un joint segment. [Claim 5] Dynamic sealing device (220) for a measuring system (200) according to one of the preceding claims, characterized in that the first sealing means (250) is a segment seal.
[Revendication 6] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon l’une des revendications précédentes caractérisé en ce que ledit deuxième moyen d’étanchéité (260) présente un orifice (261 ) pour le passage de ladite sonde de mesure (210), ledit orifice (261 ) présentant un diamètre configuré pour assurer un contact étanche avec ladite sonde de mesure (210) et pour autoriser un déplacement relatif de ladite sonde de mesure (210). [Claim 6] Dynamic sealing device (220) for a measuring system (200) according to one of the preceding claims characterized in that said second sealing means (260) has an orifice (261) for the passage of said measurement probe (210), said orifice (261) having a diameter configured to ensure sealed contact with said measurement probe (210) and to allow relative displacement of said measurement probe (210).
[Revendication 7] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon l’une des revendications précédentes caractérisé en ce que ledit deuxième moyen d’étanchéité (260) est logé dans un logement (243) ménagé au niveau dudit premier corps (230) ou au niveau dudit deuxième corps (240). [Claim 7] Dynamic sealing device (220) for a measuring system (200) according to one of the preceding claims characterized in that said second sealing means (260) is housed in a housing (243) provided at said first body (230) or at said second body (240).
[Revendication 8] Dispositif d’étanchéité dynamique (220) pour système de mesure (200) selon la revendication précédente caractérisé en ce que ledit deuxième moyen d’étanchéité (260) est mobile axialement et radialement par rapport à l’axe de la turbomachine, dans ledit logement (243). [Claim 8] Dynamic sealing device (220) for a measuring system (200) according to the preceding claim characterized in that said second sealing means (260) is movable axially and radially with respect to the axis of the turbomachine , in said housing (243).
[Revendication 9] Système de mesure (200) pour la mesure d’une grandeur physique à l’intérieur d’un compartiment moteur d’une turbomachine, ledit système de mesure comportant : - une sonde de mesure (210) destinée à traverser un premier compartiment moteur (140) d’une turbomachine et à mesurer une grandeur physique dans un deuxième compartiment moteur (150) ;[Claim 9] Measuring system (200) for measuring a physical quantity inside an engine compartment of a turbomachine, said measuring system comprising: - a measuring probe (210) intended to pass through a first engine compartment (140) of a turbomachine and measuring a physical quantity in a second engine compartment (150);
- un dispositif d’étanchéité dynamique (220) selon l’une des revendications précédentes. [Revendication 10] Turbomachine à double flux comportant un système de mesure (200) selon la revendication précédente pour la mesure d’une grandeur physique à l’intérieur d’une veine primaire d’écoulement d’un flux primaire au moyen d’une sonde de mesure (210) traversant une veine secondaire d’écoulement de flux secondaire. - a dynamic sealing device (220) according to one of the preceding claims. [Claim 10] By-pass turbomachine comprising a measuring system (200) according to the preceding claim for measuring a physical quantity inside a primary flow stream of a primary flow by means of a measuring probe (210) passing through a secondary stream flow vein.
PCT/FR2021/050445 2020-03-25 2021-03-18 Dynamic sealing device for a turbomachine probe WO2021191529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2002919 2020-03-25
FR2002919A FR3108653B1 (en) 2020-03-25 2020-03-25 DYNAMIC SEALING DEVICE FOR TURBOMACHINE PROBE

Publications (1)

Publication Number Publication Date
WO2021191529A1 true WO2021191529A1 (en) 2021-09-30

Family

ID=70295556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050445 WO2021191529A1 (en) 2020-03-25 2021-03-18 Dynamic sealing device for a turbomachine probe

Country Status (2)

Country Link
FR (1) FR3108653B1 (en)
WO (1) WO2021191529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134890A1 (en) * 2022-04-25 2023-10-27 Safran Aircraft Engines Air flow characteristics measurement set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553391A1 (en) * 2004-01-12 2005-07-13 General Electric Company Methods and apparatus for installing process instruments probes
FR3051908A1 (en) * 2016-05-24 2017-12-01 Snecma ANTI-BENDING DEVICE FOR TURBOMACHINE PROBE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553391A1 (en) * 2004-01-12 2005-07-13 General Electric Company Methods and apparatus for installing process instruments probes
FR3051908A1 (en) * 2016-05-24 2017-12-01 Snecma ANTI-BENDING DEVICE FOR TURBOMACHINE PROBE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134890A1 (en) * 2022-04-25 2023-10-27 Safran Aircraft Engines Air flow characteristics measurement set

Also Published As

Publication number Publication date
FR3108653A1 (en) 2021-10-01
FR3108653B1 (en) 2022-11-04

Similar Documents

Publication Publication Date Title
EP3769067B1 (en) Device for measuring the characteristics of an air flow
EP2501996A1 (en) Combustion chamber having a ventilated spark plug
CA2554933C (en) Sealing system for the rear lubrication chamber of a turbojet
WO2012153040A1 (en) Device for mounting a spark plug in a combustion engine of a gas turbine engine
WO2021191529A1 (en) Dynamic sealing device for a turbomachine probe
FR2997997A1 (en) AIR TUBE SUPPORT SUPPORT IN A TURBOMACHINE
EP3301693A1 (en) Proportional electromagnetic actuator valve
FR3068070B1 (en) TURBINE FOR TURBOMACHINE
CA2891076C (en) Air exhaust tube holder in a turbomachine
FR2829824A1 (en) Incidence sensor used in aircraft and aeronautics has a fluid seal between its static and moving parts that has reduced friction and so results in more accurate measurement of the incidence angle
EP3580431B1 (en) Ring for reducing the overpressure near the upstream seal of a bearing compartment of a turbojet engine
FR2917799A1 (en) VALVE WITH LONG RUNNING COURSE WITH STOP FUNCTION.
FR3115828A1 (en) Fixing an ejection cone in a turbomachine turbine
FR2819874A1 (en) INTERNAL GAS PRESSURE CONTROL VALVE OF A TANK
FR3051907A1 (en) SEALING TEST DEVICE
FR3088671A1 (en) SEALING BETWEEN A MOBILE WHEEL AND A DISTRIBUTOR OF A TURBOMACHINE
FR3127543A1 (en) Double skin hydrogen pipe comprising at least one leak detection system at the level of at least one connection system, aircraft comprising at least one such pipe
LU82708A1 (en) BALANCED SHUTTER VALVE
FR3055950A1 (en) COMBUSTION CHAMBER FOR TURBOMACHINE COMPRISING MEANS FOR IMPROVING THE COOLING OF AN ANNULAR WALL IN THE WAKE OF AN OBSTACLE
FR3087829A1 (en) INTERMEDIATE HOUSING OF A TURBOMACHINE WITH AN AERODYNAMIC PARAMETER MEASURING DEVICE, TURBINE MODULE COMPRISING SUCH AN INTERMEDIATE HOUSING AND A TURBOMACHINE EQUIPPED WITH SUCH A MODULE
EP3647636A1 (en) Control valve of a stream of fluid provided with an electrical actuator and system comprising such a valve
FR3080168A1 (en) ASSEMBLY FOR A TURBOMACHINE COMBUSTION CHAMBER
FR3066009A1 (en) PREVAPORIZATION ROD FOR A TURBOMACHINE
FR2957974A1 (en) Degassing tube for guiding gas flow in hollow low pressure rotary shaft of turbojet engine of aircraft, has ring that is radially deformed during assembling of sections of tube in rotary shaft of engine, so that ring is supported on shaft
FR3086003A1 (en) DISPENSING SYSTEM FOR A PRIMARY FLUID AND A SECONDARY FLUID

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21718942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21718942

Country of ref document: EP

Kind code of ref document: A1