WO2021191258A1 - Procédé et système laser permettant de générer des impulsions laser de sortie amplifiées d'impulsions à la demande, et produit programme d'ordinateur associé - Google Patents

Procédé et système laser permettant de générer des impulsions laser de sortie amplifiées d'impulsions à la demande, et produit programme d'ordinateur associé Download PDF

Info

Publication number
WO2021191258A1
WO2021191258A1 PCT/EP2021/057538 EP2021057538W WO2021191258A1 WO 2021191258 A1 WO2021191258 A1 WO 2021191258A1 EP 2021057538 W EP2021057538 W EP 2021057538W WO 2021191258 A1 WO2021191258 A1 WO 2021191258A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
laser pulses
amplified
input laser
input
Prior art date
Application number
PCT/EP2021/057538
Other languages
German (de)
English (en)
Inventor
Aleksander BUDNICKI
Markus Ginter
Raphael SCELLE
Alexander Killi
Dirk Sutter
Rainer Flaig
Jonathan BRONS
Original Assignee
Trumpf Laser Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser Gmbh filed Critical Trumpf Laser Gmbh
Publication of WO2021191258A1 publication Critical patent/WO2021191258A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/1302Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by all-optical means, e.g. gain-clamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal

Definitions

  • the invention relates to a method for generating amplified output laser pulses, which each have the same pulse energy and the same temporal pulse properties, at an output at individually specified Zeitpunk th, as well as a laser system suitable for performing the method and an associated control program product.
  • Such a method and such a laser system are known, for example, from DE 102017210272 B3.
  • the inversion must occur in the amplification medium of the amplifier must first be rebuilt in order to ensure pulse-to-pulse stability. If the pulse pauses are too long, the amplification becomes so great that pulse excesses occur. If the pulse interval is too long, a sacrificial laser pulse is inserted, which is then directed to an absorber. It is indicated as advantageous to choose the pulse energies of the sacrificial laser pulses equal to the pulse energy of the input laser pulses to be amplified.
  • Known short-pulse laser systems have a pulse rate-dependent laser pulse energy with constant pump power and are usually operated at a constant frequency.
  • Previous POD schemes focus on constant pulse energy.
  • the same non-linearities must also be guaranteed in order to obtain the same temporal pulse properties, such as pulse duration, pulse width and chirp. This is particularly important for subsequent frequency conversion or other non-linear processes (e.g. glass cutting).
  • the present invention is based on the object of specifying a POD (Pulse on Demand) method and an associated laser system to generate amplified output laser pulses, which each have the same pulse energy and the same temporal pulse properties, at an output at individually specified times .
  • POD Pulse on Demand
  • the non-linear Phase can be kept constant. This is ensured according to the invention in that, for example, the inversion curve along the optical amplifier is kept approximately constant for each input laser pulse.
  • the constant inversion curve can be achieved by varying the sacrificial laser pulse with regard to its pulse energy and the pulse distance to the subsequent input laser pulse.
  • the method according to the invention works solely through the targeted timing of the selected input and sacrificial laser pulses. This procedure is faster than a pulse energy regulation of the output laser pulses.
  • One of the input laser pulses is preferably inserted as a sacrificial laser pulse into the pulse sequence of the selected input laser pulses.
  • an external laser pulse as a sacrificial laser pulse in the pulse sequence of the selected input laser pulses.
  • several adjacent input laser pulses with reduced pulse energy can be inserted as a sacrificial laser burst into the pulse sequence of the selected input laser pulses.
  • only the amplified input laser pulses can be frequency-converted in order to decouple the non-frequency-converted, amplified sacrificial laser bursts from the sequence of frequency-converted, amplified input laser pulses by means of a frequency-selective filter.
  • the amplified sacrificial laser pulses or the amplified sacrificial laser bursts can also be decoupled from the sequence of amplified input laser pulses by means of a time-controlled optical decoupler.
  • the input frequency of the input laser pulses is preferably in the MHz range, e.g. in the range between 10 MFIz and 200 MFIz, and the basic operating frequency, which is a multiple of the input frequency, in the range between 1 kHz and 100 MFIz.
  • the maximum time span is preferably a multiple of the minimum time span, preferably twice as long as the minimum time span.
  • the selection and decoupling units preferably each have a time-controlled, acousto-optical modulator (AOM) or an electro-optical module dulator (EOM).
  • the decoupling unit can have a frequency conversion device for frequency converting amplified input laser pulses, the pulse energy of which is above the minimum pulse energy of the frequency conversion device required for the frequency conversion, and a frequency-selective filter for decoupling non-frequency-converted, amplified input laser pulses. In this case, no activation of the coupling unit is required.
  • the optical amplifier particularly preferably has an optical amplifier fiber which is optically pumped.
  • control program product which has code means which are adapted to carry out all the steps of the method described above when the program runs on a control unit of a laser system.
  • FIG. 1a, 1b schematically shows the laser system according to the invention for generating amplified output laser pulses with the same pulse energy and the same temporal pulse properties in a sacrificial operating mode (FIG. 1a) and in a basic operating mode (FIG. 1b);
  • 2a shows the inversion profile of an optical amplifier fiber plotted over the fiber length in a sacrificial operating mode set according to the invention and in a sacrificial operating mode set not according to the invention
  • 2b shows the pulse energy plotted over the fiber length of an input laser pulse amplified in the optical amplifier fiber in a sacrificial operating mode according to the invention and in a sacrificial operating mode not set according to the invention
  • Fig. 2c the associated temporal pulse profile (pulse shape) of the corre spondingly Fign. 2a and 2b amplified input laser pulses after pulse compression;
  • FIG. 3 schematically shows a modified embodiment of the laser system according to the invention in a sacrificial operating mode
  • FIG. 4 shows a decoupling unit in the form of a frequency conversion device.
  • the laser system 1 comprises a pulse source 4 for providing a pulse sequence of identical input laser pulses 5, which are fo repe benefits at an input frequency.
  • This input frequency of the input laser pulses 5 is permanently set and is in particular in the MHz range, e.g. in the range between 10 MHz and 200 MHz.
  • the laser system 1 comprises an optical selection device (pulse picker) 6, for example in the form of an input-side AOM (acousto-optical modulator) or EOM (electro-optical modulator), for targeted selection or passage and possibly for targeted reduction of the pulse energy of some of the input laser pulses 5.
  • the selected input laser pulses 5 i, 52 are allowed to pass without being deflected by the pulse picker 6, while the unselected input laser pulses 5 are decoupled by the pulse picker 6 and directed onto an absorber 7.
  • the laser system 1 further comprises an optical amplifier 8, e.g. in the form of a pumped optical amplifier fiber, for amplifying the selected input laser pulses 5i, 52 and an optical decoupling unit (decoupler) 9, e.g.
  • the amplifier 8 has a gain-free minimum time span Tmin, which is predetermined by the inversion structure required for a minimum gain in the amplifier 8, and a maximum time span Tmax, which is predetermined by the inversion structure required for a maximum allowable gain in the amplifier 8.
  • the minimum time period Tmin is based on the fact that, after a pulse amplification, the inversion in the amplification medium of the amplifier 8 first has to be built up again in order to ensure pulse-to-pulse stability.
  • the maximum time span Tmax prevents excessively long pulse pauses and thus excessively large amplifications, which lead to undesired pulse peaks (e.g. to pulse peaks that could damage the optical elements of the amplifier 8, or to non-linear processes in the active medium, which cause changes in the pulse shape or thermal effects on the cause optical elements of the amplifier 8).
  • the amplified input laser pulses 5T, 52 arrive at the output 3 at times ti, t2 as amplified output laser pulses 2i, 22.
  • a compression unit 20 for pulse compression of the amplified input laser pulses 5i, 52 is optionally arranged between the decoupler 9 and the output 3.
  • a pulse stretching device e.g. in the form of a fiber section designed as a fiber Bragg grating, can optionally be arranged between the optical selection device 6 and the amplifier 8.
  • the laser system 1 further comprises a control unit 10 which controls the pulse picker 6 and the decoupler 9 in accordance with a user request 11, which requests amplified output laser pulses 2 ⁇ , 22 at the output 3 at individually adjustable times ti, t2.
  • the control unit 10 controls the pulse picker 6 with such a basic operating frequency fG (basic clock), which is a multiple of the input frequency fo, that the temporal pulse interval AtG between two successive, selected input laser pulses 5i, 5i + i corresponds to at least the minimum time span Tmin and at most the maximum time span Tmax (Tmin ⁇ AtG ⁇ Tmax).
  • fG basic clock
  • the selected input pulses 5i, 5M are thus repeated with the basic operating frequency fG, which is preferably in the range between 1 kHz and 100 MHz.
  • the decoupler 9 is also controlled with the basic operating frequency fG, so that at the output 3 amplified output laser pulses 2i, 2i + i, which each have the same pulse energy and the same pulse properties over time, with the basic operating frequency fG or in the basic cycle (e.g. 5 ps ) arrive at times ti, ti + i.
  • the user request 11 at output 3 requests two amplified output laser pulses 2i, 22 with the same pulse energy and the same temporal pulse properties at two points in time ti, t2, whose pulse interval At is greater than the pulse interval AtG, in particular greater than that Maximum time span
  • the control unit 10 controls the pulse picker 6 in terms of time in such a way that only those two of the input laser pulses 5 that arrive at the output 3 at the respectively requested times t 1, t 2 are allowed to pass. Since the pulse spacing At between the two input laser pulses 5i, 52 to be amplified is greater than the maximum time span Tmax, the inversion built up in the amplifier 8 would be greater than permissible. Therefore, the control unit 10 inserts at least one further, possibly energy-reduced, input laser pulse 5 as a sacrificial laser pulse 12 into the pulse sequence of the selected input laser pulses 5i, 52, the second input pulse 52 to be amplified by at least the minimum time period Tmin and at most the maximum time period Tmax is spaced.
  • This lead time is denoted by Atv in FIG. 1a (Tmin ⁇ Atv ⁇ Tmax).
  • the pulse energy of the sacrificial laser pulse 12 can be reduced as desired by appropriately time-controlled partial decoupling of the underlying input laser pulse 5 at the pulse picker 6.
  • the two selected input laser pulses 5i, 52 and the sacrificial laser pulse 12 are amplified by means of the amplifier 8 to form the amplified input laser pulses 5i ', 52' and to form the amplified sacrificial laser pulse 12 '.
  • the decoupler 9 is timed by the control unit 10 such that only the two amplified input laser pulses 5'i, 5'2 are allowed through and that the amplified sacrificial laser pulse 12 'is decoupled and directed onto an absorber 13.
  • the two amplified input laser pulses 5'i, 5'2 then arrive at the output 3 at times ti, t2.
  • the lead time Atv and the pulse energy of the victim laser pulse 12 are coordinated in such a way that the second amplified output laser pulse 22 has the same pulse energy as the amplified output laser pulses 2i, 2 of the basic operating mode. The following applies: the shorter the lead time Atv is selected, the lower the pulse energy of the sacrificial laser pulse 12 must be selected, as shown in dashed lines in FIG.
  • the lead time period Atv and the pulse energy of the sacrificial laser pulse 12 are therefore additionally coordinated with one another in such a way that the second amplified output laser pulse 22 has the same temporal pulse properties as the amplified output laser pulses 2i, 2i + i of the basic operating mode.
  • Fig. 2a shows the inversion curve applied over the fiber length of the optical amplifier 8, which is designed as an optical amplifier fiber, shortly before the input laser pulse 52 to be amplified is coupled into the amplifier fiber, specifically for an operating mode A set according to the invention and for a victim operating mode B not set according to the invention.
  • the inversion curve is ideally identical to the inversion curve in the basic operating mode (o).
  • the input laser pulse 52 to be amplified is coupled into the fiber end on the left in FIG. 1a and out of the right fiber end as an amplified output laser pulse 5i ', 52'.
  • the amplifier fiber is optically pumped via the right fiber end and the sacrificial laser pulse 12 not set according to the invention has a shorter time interval to the amplifying input laser pulse 52 than the sacrificial laser pulse 12 set according to the invention.
  • the sacrificial operating mode B In the sacrificial operating mode B, this leads to longer optical pumping between the sacrificial laser pulse 12 and the input laser pulse 5i and thus to a higher inversion, especially at the left fiber end, compared to the sacrificial operating mode A. So that the input laser pulse 52 to be amplified has the same pulse energy after amplification as in the basic operating mode or as in the victim operating mode A, the pulse energy of the victim laser pulse must therefore be reduced in comparison to the victim operating mode A for the victim operating mode B shown.
  • the sacrificial laser pulse 12 Due to the low pulse energy, the sacrificial laser pulse 12 is less amplified at the left fiber end and the inversion is thus reduced to a lesser extent. At the right end of the fiber, the reduction of the inversion is comparable, since the sacrificial laser pulse 12 was previously amplified in the amplifier fiber. Since the remaining time for the optical pumping between the sacrificial laser pulse 12 and the input laser pulse 52 in the sacrificial operating mode B is less than in the sacrificial operating mode A, the inversion along the amplifier fiber is less built up before the input laser pulse 52 is amplified.
  • the victim operating mode B has a more energetic course of the pulse energy along the amplifier fiber than the victim operating mode A, so that higher intensities and thus more self-phase modulation occur in victim operating mode B than in victim operating mode A.
  • the temporal pulse properties are changed by self-phase modulation.
  • the pulse duration of pulse 2i in basic operating mode
  • 22 in sacrificial operating mode B
  • the temporal chirp What changes for both the CPA and a non-CPA system is the temporal chirp.
  • the pulse energy and the time interval Atv of the sacrificial laser pulse 12 to the subsequent input laser pulse 52 to be amplified are set in such a way that the amplified output laser pulse 22 not only has the same pulse energy, but also the same temporal pulse properties (e.g. pulse width) as the ver amplified output laser pulses 2i, 2i + i of the basic operating mode.
  • the pulse energy and the time interval Atv of the sacrificial laser pulse 12 to the subsequent input laser pulse 52 to be amplified are set in such a way that the amplified output laser pulse 22 not only has the same pulse energy, but also the same temporal pulse properties (e.g. pulse width) as the ver amplified output laser pulses 2i, 2i + i of the basic operating mode.
  • the amplified input laser pulse 52 in the sacrificial operating mode A after the pulse compression has a smaller pulse width WA that is the pulse width of the amplified output laser pulses 2i, 2i + i of the basic operating mode corresponds to than in the victim operating mode B (pulse width WB).
  • the laser system 1 shown in FIG. 3 differs from FIG. 1 in that the control unit 10 selects at least one sacrificial laser burst 14, consisting of several, here only by way of example four, energy-reduced adjacent input laser pulses 15-1-154, which is then amplified in the optical amplifier 8 to form a sacrificial laser burst 14 ', consisting of the amplified, energy-reduced input laser pulses 15I'-154'.
  • the amplified sacrificial laser burst 14 ′ is decoupled by means of the decoupler 9, which can either be designed as an AOM or EOM or, as shown in FIG. 4, has a frequency conversion device 16 with a frequency-selective filter 17 connected downstream.
  • the for The minimum pulse power required for frequency conversion is below the maximum power of the amplified input laser pulses 5i ', 52, but above the maximum power of the amplified, energy-reduced input laser pulses 15I'-154, so that only the amplified input laser pulses 5i', 52, but not the amplified, energy-reduced input laser pulses 1 5I '-1 54, can be frequency converted.
  • the frequency-selective filter 17 the non-frequency-converted, amplified output laser pulses 1 5 154 are decoupled from the sequence of frequency-converted, amplified output laser pulses 5i ", 52", which then arrive at output 3 at the specified times ti, t2.
  • the method described functions solely through the timing of the pulse picker 6 being controlled by the control unit 10, ie it is not regulated.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

La présente invention vise à générer au moins deux impulsions laser de sortie amplifiées (21, 22), ayant chacune la même énergie pulsée et les mêmes propriétés d'impulsion temporelles, à une sortie (3) à des instants prédéfinis individuellement (t1, t2). À cet effet, ces impulsions laser d'entrée (51, 52) qui arrivent à la sortie aux instants prédéfinis respectivement, sont choisies parmi une séquence d'impulsions d'impulsions laser d'entrée identiques (5) qui sont répétées à une fréquence d'entrée (f0). Les impulsions laser d'entrée choisies (51, 52) sont amplifiées au moyen d'un amplificateur optique (8) qui présente une période minimale prédéfinie sans amplification (Tmin) et une période maximale prédéfinie sans amplification (T max)(Tmax). Dans un mode de fonctionnement de base dans lequel l'espacement d'impulsions temporel entre deux impulsions laser d'entrée successives choisies correspond au moins à la période minimale (Tmin) et au plus à la période maximale (Tmax), les impulsions laser d'entrée choisies sont répétées à une fréquence de fonctionnement de base. Dans un mode de fonctionnement sacrificiel dans lequel l'espacement d'impulsions temporel (Δt) entre deux impulsions laser d'entrée successives (51, 52) à amplifier est supérieur à l'espacement temporel à la fréquence de fonctionnement de base, au moins une impulsion laser sacrificielle (12), qui est espacée de l'impulsion d'entrée suivante (52) à amplifier par la période maximale (Tmax) au plus, est insérée, avant l'impulsion suivante des deux impulsions laser d'entrée successives (51, 52) à amplifier, dans la séquence d'impulsions des impulsions laser d'entrée choisies (51, 52), et l'impulsion laser sacrificielle amplifiée (12') est couplée hors de la séquence d'impulsions des impulsions laser d'entrée amplifiées (51', 52') en amont de la sortie. Dans le mode de fonctionnement sacrificiel, l'énergie pulsée et l'espacement temporel (ΔtV) entre l'impulsion laser sacrificielle (12) et l'impulsion laser d'entrée suivante (52) à amplifier sont réglés de telle sorte que l'impulsion laser de sortie amplifiée (22) a la même énergie pulsée et les mêmes propriétés d'impulsion temporelles que les impulsions laser de sortie amplifiées (2i, 2i+1) dans le mode de fonctionnement de base.
PCT/EP2021/057538 2020-03-26 2021-03-24 Procédé et système laser permettant de générer des impulsions laser de sortie amplifiées d'impulsions à la demande, et produit programme d'ordinateur associé WO2021191258A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020203928.3A DE102020203928A1 (de) 2020-03-26 2020-03-26 Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse und zugehöriges Computerprogrammprodukt
DE102020203928.3 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021191258A1 true WO2021191258A1 (fr) 2021-09-30

Family

ID=75302544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/057538 WO2021191258A1 (fr) 2020-03-26 2021-03-24 Procédé et système laser permettant de générer des impulsions laser de sortie amplifiées d'impulsions à la demande, et produit programme d'ordinateur associé

Country Status (2)

Country Link
DE (1) DE102020203928A1 (fr)
WO (1) WO2021191258A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050235A1 (en) * 2010-11-24 2014-02-20 Fianum, Ltd. Optical Systems
DE102014017568A1 (de) * 2014-11-30 2016-06-02 Edgewave Gmbh Frei triggerbare Laseranordnung aus Master-Oszillator und Leistungsverstärker
DE102017210272B3 (de) 2017-06-20 2018-11-08 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse
DE102018200811A1 (de) * 2018-01-18 2019-07-18 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042654B1 (fr) 2015-10-19 2018-02-16 Amplitude Systemes Systeme de laser a impulsions modulable temporellement en cadence et/ou en amplitude

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050235A1 (en) * 2010-11-24 2014-02-20 Fianum, Ltd. Optical Systems
DE102014017568A1 (de) * 2014-11-30 2016-06-02 Edgewave Gmbh Frei triggerbare Laseranordnung aus Master-Oszillator und Leistungsverstärker
DE102017210272B3 (de) 2017-06-20 2018-11-08 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse
DE102018200811A1 (de) * 2018-01-18 2019-07-18 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse

Also Published As

Publication number Publication date
DE102020203928A1 (de) 2021-09-30

Similar Documents

Publication Publication Date Title
DE102016124087B3 (de) Erzeugung von Laserpulsen in einem Burstbetrieb
DE102017210272B3 (de) Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse
EP2537216B1 (fr) Système et procédé d'amplification de laser pour générer des impulsions lasers reproductibles
EP3063590B1 (fr) Dispositif et procédé de génération de courtes impulsions de rayonnement
EP3741013B1 (fr) Procédé et système laser pour générer des impulsions laser de sortie sur demande amplifiées
DE102006023601A9 (de) Lasersystem
EP3411754A1 (fr) Dispositif et procédé de génération d'impulsions laser
DE2842049A1 (de) Laser
EP3064992B1 (fr) Système et procédé optiques
EP2019461A1 (fr) Détection d'émission à impulsions multiples d'un laser à soliton pompé par diode laser
WO2021191258A1 (fr) Procédé et système laser permettant de générer des impulsions laser de sortie amplifiées d'impulsions à la demande, et produit programme d'ordinateur associé
EP4104261A1 (fr) Procédé d'amplification d'une impulsion laser ultracourte et procédé de conception d'un système d'amplification
EP0373357B1 (fr) Méthode et appareil pour contrôler un moteur à courant continu à excitation séparée
DE60111937T2 (de) Umwandlung von elektrischen impulsen unter benutzung optischer verzögerungselemente
EP1422795A2 (fr) Système laser combinant plusieurs faisceaux laser
WO2016128341A1 (fr) Procédé et dispositif pour générer un rayonnement laser pulsé
EP1775806B1 (fr) Procedé pour la production d'impulsions temporelles rectangulaires ultracourtes
EP2807710B1 (fr) Dispositif de production d'impulsions de lumiere
WO2014086834A1 (fr) Procédé et dispositif de synthèse de rayonnement électromagnétique
WO2009087072A1 (fr) Laser déclenché
DE102020122731A1 (de) Kurzpuls-Lasersystem und Verfahren zur Erzeugung von Laserpulsen
WO2011157386A1 (fr) Système laser à filtrage spectral
WO2024013094A1 (fr) Oscillateur à fibre à verrouillage de mode passif, dispositif laser et système d'amplification cpa non linéaire comprenant un tel oscillateur à fibre
WO2022171675A1 (fr) Système de détection de variations de durée d'impulsions laser et procédé de génération d'impulsions laser
WO2020253910A1 (fr) Système laser et procédé pour la génération de rayonnement laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21715529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21715529

Country of ref document: EP

Kind code of ref document: A1