WO2021190330A1 - 一种反射式望远镜光轴校准方法 - Google Patents
一种反射式望远镜光轴校准方法 Download PDFInfo
- Publication number
- WO2021190330A1 WO2021190330A1 PCT/CN2021/080585 CN2021080585W WO2021190330A1 WO 2021190330 A1 WO2021190330 A1 WO 2021190330A1 CN 2021080585 W CN2021080585 W CN 2021080585W WO 2021190330 A1 WO2021190330 A1 WO 2021190330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circle
- secondary mirror
- eyepiece
- mirror
- real
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/62—Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/02—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/183—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
Definitions
- the invention relates to the technical field of optical axis calibration of a reflective telescope, in particular to a method for calibrating the optical axis of a reflective telescope.
- Astronomy is a science based on observations. At the beginning of astronomical observations, astronomers observed and studied bright luminous stars visible to the human eye. With the gradual deepening of science, astronomers began to study those celestial bodies that were farther away from the earth and were darker and invisible to the naked eye, so they began to use telescopes, initially, conjoined monocular telescopes (referred to as refracting telescopes). With the advancement of astronomical science, the cross-coupling monocular telescope is far from satisfying the curiosity of scientists, because the cross-coupling monocular telescope has a small aperture and can only be within 100 mm at the maximum, and it is difficult to grind a larger aperture. And it's expensive. So in 1668, British mathematician and physicist Newton built his reflecting telescope. Its principle is to use a curved mirror to reflect light to a focal point. This design method is several times higher than using a lens to magnify the object.
- the reflective telescope includes a lens barrel, a primary mirror, a secondary mirror, and an eyepiece.
- the secondary mirror is installed in the barrel through a secondary mirror fixing bracket, and the secondary mirror fixing bracket is in a cross shape.
- the optical axis of the primary lens is parallel to the axis of the lens barrel and passes through the secondary lens; the optical axis of the eyepiece is perpendicular to the axis of the lens barrel and also passes through the secondary lens.
- the optical axis is adjusted accurately.
- the advantage of reflecting telescopes is that compared with refracting telescopes, reflecting telescopes have lower cost for the same caliber, meanwhile the caliber can be made very large, and it is easy to grind.
- the optical axis of a reflecting telescope When the optical axis of a reflecting telescope is correct, it should have the following characteristics: 1.
- the elliptical secondary mirror is installed at a 45-degree tilt so that the secondary mirror reflection surface is a perfect circle, and this perfect circle is located in the middle of the eyepiece mouth.
- the reflective circular surface of the primary mirror is in the middle of the reflective surface of the secondary mirror.
- the center mark that comes with the main lens is in the middle of the eyepiece. 4.
- the center of the auxiliary lens fixing bracket is in the middle of the eyepiece mouth.
- the present invention provides a method for calibrating the optical axis of a reflective telescope, which is convenient and quick to calibrate the optical axis of the reflective telescope.
- a method for calibrating the optical axis of a reflective telescope includes:
- the projection of the fixed bracket overlaps the cross calibration line.
- the radius of the reference circle is adjustable.
- reference circle specifically includes:
- a first reference circle used to enclose the center mark of the main mirror
- a third reference circle used to enclose the boundary circle of the reflection surface of the secondary mirror
- the radius of the first reference circle, the second reference circle and the third reference circle gradually increase.
- the adjustment of the secondary lens and the primary lens makes the boundary circle of the secondary lens, the reflection circle of the primary lens and the center mark of the primary lens in the real-time image of the eyepiece are arranged concentrically with the reference circle, so that the real-time image of the eyepiece
- the projection of the auxiliary mirror fixing bracket overlaps the cross calibration line, which specifically includes:
- the adjusting the secondary mirror so that the boundary circle of the reflective surface of the secondary mirror coincides with the third reference circle specifically includes:
- the acquiring and displaying the real-time image of the eyepiece along the optical axis direction of the eyepiece specifically includes:
- the real-time image of the eyepiece is transmitted to the display device for display.
- the calibration method of the present invention can quickly complete the optical axis calibration of the reflecting telescope, and has strong operability.
- the real-time image of the eyepiece is transmitted to the display device for display, which is clearer than the traditional calibration method to calibrate the baseline.
- the calibration method of the present invention is very convenient to observe. By observing the positional relationship of the secondary mirror reflection surface boundary circle, the primary mirror reflection circle and the primary mirror center mark relative to the reference circle in the real-time image of the eyepiece, the primary and secondary mirrors are adjusted inversely, Therefore, the optical axis of the reflecting telescope is calibrated, which is more efficient than the traditional calibration method.
- FIG. 1 is a flowchart of a method for calibrating the optical axis of a reflective telescope according to an embodiment of the present invention
- FIG. 2 is a specific flowchart of step S1 in FIG. 1;
- Fig. 3 is a detailed flowchart of step S3 in Fig. 1.
- a method for calibrating the optical axis of a reflective telescope includes:
- S1 Acquire and display the real-time image of the eyepiece along the optical axis of the eyepiece.
- an automatic zoom camera is used to capture the real-time image of the eyepiece in the eyepiece port, and transmit the acquired real-time image of the eyepiece to a display device such as a display screen for display.
- a display device such as a display screen for display.
- S14 Transmit the real-time image of the eyepiece to the display device for display.
- the model of the male thread and the female thread is M48, and the threaded connection method is adopted so that the lens of the camera can shoot along the optical axis direction of the eyepiece to obtain the real-time image of the eyepiece.
- S2 Draw a reference circle with the center point of the real-time image of the eyepiece as the center of the circle, and draw a cross calibration line with the center point of the real-time image of the eyepiece as the center.
- an eyepiece center mark is set on its center point, and the eyepiece center mark is displayed in the real-time image of the eyepiece.
- the eyepiece center mark can be directly used as the center point of the real-time image of the eyepiece.
- the real-time image of the eyepiece is displayed on the display screen of the display device, and a reference circle is drawn on the display screen through the software program with the center point of the real-time image of the eyepiece as the center of the circle.
- the radius of the reference circle is adjustable, and specifically includes: a first reference circle for enclosing the center mark of the main mirror; a second reference circle for enclosing the reflection circle of the main mirror; and a second reference circle for enclosing the reflection surface of the secondary mirror.
- the third reference circle of the boundary circle; the radius of the first reference circle, the second reference circle and the third reference circle gradually increase.
- S36 adjusting the secondary mirror so that the boundary circle of the secondary mirror reflection surface coincides with the third reference circle, specifically including the following two cases:
- the boundary circle of the reflection surface of the secondary mirror and the third reference circle do not coincide in the vertical direction. It cannot be solved by adjusting the elevation screw of the secondary mirror. The position of the circle within the boundary circle of the reflection surface of the secondary mirror will definitely move up and down, and the primary mirror cannot correct it back by itself. In this case, there is a problem with the height of the secondary mirror that is often mentioned in the optical axis calibration, and the height of the secondary mirror needs to be adjusted.
- the calibration method of the present invention can quickly complete the optical axis calibration of the reflective telescope, and has strong operability.
- the real-time image of the eyepiece is transmitted to the display device for display, which is clearer than the traditional calibration method to calibrate the baseline.
- the calibration method of the present invention is very convenient to observe. By observing the positional relationship of the secondary mirror reflection surface boundary circle, the primary mirror reflection circle and the primary mirror center mark relative to the reference circle in the real-time image of the eyepiece, the primary and secondary mirrors are adjusted inversely, Therefore, the optical axis of the reflecting telescope is calibrated, which is more efficient than the traditional calibration method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Astronomy & Astrophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Telescopes (AREA)
Abstract
一种反射式望远镜光轴校准方法,包括:获取沿目镜光轴方向的目镜实时影像并显示(S1);以目镜实时影像的中心点为圆心画参考圆,以目镜实时影像的中心点为中心画一个十字校准线(S2);调整副镜和主镜,使目镜实时影像中的副镜反射面边界圆、主镜反射圆和主镜中心标记分别与参考圆同心设置,使目镜实时影像中的副镜固定支架投影与十字校准线重叠(S3)。该校准方法能够快速完成对反射式望远镜的光轴校准,可操作性强。将目镜实时影像传输到显示设备上显示,观察起来非常方便,比传统的校准方法校准基线更清晰、效率更高。
Description
本发明涉及反射式望远镜光轴校准技术领域,具体涉及一种反射式望远镜光轴校准方法。
天文学是建立在观测基础之上的科学。天文观测之初,天文学家对人眼可见的明亮发光星体进行观测研究。随着科学的逐步深入,天文学家开始研究那些距离地球更远的,也更暗的肉眼不可见的天体,于是开始借助望远镜,最初是,交合式单筒望远镜(简称,折射式望远镜)。随着天文科学的进步,交合式单筒式望远镜远远无法满足科学家的好奇心,因为交合式单筒式望远镜,口径小,最大只能做到100毫米以内,更大的口径难以磨制,而且价格昂贵。于是1668年,英国数学家、物理学家牛顿制成了他的反射望远镜。它的原理是使用一个弯曲的镜面将光线反射到一个焦点上。这种设计方法比使用透镜将物体放大的倍数高出数倍。
反射式望远镜包括镜筒、主镜、副镜和目镜,副镜通过副镜固定支架安装在镜筒内,副镜固定支架呈十字形。反射镜的光学系统中有两个光轴:主镜光轴和目镜光轴。主镜光轴平行于镜筒的轴线,经过副镜;目镜光轴垂直于镜筒轴线,也经过副镜。当两个光轴都经过副镜上的同一点,且被副镜反射后两条轴线完全重合,也就是成了一个光轴,那么光轴调整准确。反射式望远镜的优点在于,反射式望远镜和折射式望远镜相比,同样口径成本低,同时口径可以 做很大,磨制方便。
但是,其缺点是反射式望远镜光轴调整困难。如果望远镜的光轴出现问题,那么轻则通过望远镜看的物体变形、模糊,重则因为光轴偏差太多,导致看不到远处物体。
反射式望远镜光轴正确时应该具有以下几个特征:1、椭圆形的副镜呈45度倾斜安装使副镜反射面为一个正圆,且这个正圆位于目镜口端正中。2、主镜反射圆面在副镜反射面的正中。3、主镜自带的中心标记在目镜口端正中。4、副镜固定支架的中心在目镜口端正中。
发明内容
针对现有技术中的缺陷,本发明提供一种反射式望远镜光轴校准方法,方便快速对反射式望远镜进行光轴校准。
本发明的技术方案是这样实现的:
一种反射式望远镜光轴校准方法,包括:
获取沿目镜光轴方向的目镜实时影像并显示;
以所述目镜实时影像的中心点为圆心画参考圆,以所述目镜实时影像的中心点为中心画一个十字校准线;
调整副镜和主镜,使所述目镜实时影像中的副镜反射面边界圆、主镜反射圆和主镜中心标记分别与所述参考圆同心设置,使所述目镜实时影像中的副镜固定支架投影与所述十字校准线重叠。
进一步,所述参考圆的半径可调。
进一步,所述参考圆具体包括:
用于圈住所述主镜中心标记的第一参考圆;
用于圈住所述主镜反射圆的第二参考圆;以及
用于圈住所述副镜反射面边界圆的第三参考圆;
所述第一参考圆、第二参考圆和第三参考圆的半径逐渐递增。
进一步,所述调整副镜和主镜,使所述目镜实时影像中的副镜边界圆、主镜反射圆和主镜中心标记分别与所述参考圆同心设置,使所述目镜实时影像中的副镜固定支架投影与所述十字校准线重叠,具体包括:
调整所述副镜,使所述目镜实时影像中能够观察到所述副镜反射面边界圆;
调整所述第三参考圆的半径,圈住所述副镜反射面边界圆;
调整所述副镜,使所述主镜反射圆位于所述副镜反射面边界圆的中部;
调整所述第二参考圆的半径,使所述第二参考圆的半径与所述主镜反射圆的半径相同;
调整所述副镜,使所述主镜反射圆与所述第二参考圆重合;
调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合;
调整所述副镜,使主镜中心标记与所述第一参考圆的圆心重合;
调整所述主镜,使所述副镜固定支架投影与所述十字校准线重叠。
进一步,所述调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合,具体包括:
若所述副镜反射面边界圆与所述第三参考圆左右方向不重合,调整所述副镜左右转角或副镜左右倾斜角,使所述副镜反射面边界圆与所述第三参考圆左右重合;
若所述副镜反射面边界圆与所述第三参考圆上下方向不重合,调整所述副镜高度,使所述副镜反射面边界圆与所述第三参考圆上下重合。
进一步,所述获取沿目镜光轴方向的目镜实时影像并显示,具体包括:
在所述目镜端口上安装公头螺纹;
将设置有母头螺纹的摄像头与所述公头螺纹相连接;
开启摄像头,获取所述目镜实时影像;
将所述目镜实时影像传输到显示设备上进行显示。
本发明的有益效果体现在:
本发明的校准方法能够快速完成对反射式望远镜的光轴校准,可操作性强。将目镜实时影像传输到显示设备上显示,比传统的校准方法校准基线更清晰。本发明的校准方法观察起来非常方便,通过观察目镜实时影像中的副镜反射面边界圆、主镜反射圆和主镜中心标记相对于参考圆的位置关系,反向调整主镜和副镜,从而将反射式望远镜的光轴校准,比传统校准方法效率更高。
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明实施例提供的一种反射式望远镜光轴校准方法的流程图;
图2为图1中步骤S1的具体流程图;
图3为图1中步骤S3的具体流程图。
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
如图1所示,本发明实施例提供的一种反射式望远镜光轴校准方法,包括:
S1:获取沿目镜光轴方向的目镜实时影像并显示。
本实施例中,采用自动变焦的摄像头拍摄获取目镜端口内的目镜实时影像,并将获取到的目镜实时影像传输到显示屏等显示设备上显示出来。如图2所示,具体步骤包括:
S11:在所述目镜端口上安装公头螺纹;
S12:将设置有母头螺纹的摄像头与所述公头螺纹相连接;
S13:开启摄像头,获取所述目镜实时影像;
S14:将所述目镜实时影像传输到显示设备上进行显示。
本实施例中,公头螺纹和母头螺纹的型号为M48,采用螺纹连接的方式,使摄像头的镜头能够沿目镜的光轴方向拍摄获取到目镜实时影像。
S2:以所述目镜实时影像的中心点为圆心画参考圆,以所述目镜实时影像的中心点为中心画一个十字校准线。
目镜在生产时会在其中心点上设置有目镜中心标记,目镜中心标记在目镜实时影像会显示,可以直接以目镜中心标记作为目镜实时影像的中心点。
目镜实时影像显示在显示设备的显示屏上,通过软件程序以目镜实时影像的中心点为圆心在显示屏上画参考圆。参考圆的半径可调,具体包括:用于圈住所述主镜中心标记的第一参考圆;用于圈住所述主镜反射圆的第二参考圆;以及用于圈住所述副镜反射面边界圆的第三参考圆;所述第一参考圆、第二参考圆和第三参考圆的半径逐渐递增。
S3:调整副镜和主镜,使所述目镜实时影像中的副镜反射面边界圆、主镜反 射圆和主镜中心标记分别与所述参考圆同心设置,使所述目镜实时影像中的副镜固定支架投影与所述十字校准线重叠。如图3所示,具体包括:
S31:调整所述副镜,使所述目镜实时影像中能够观察到所述副镜反射面边界圆;
S32:调整所述第三参考圆的半径,使第三参考圆能够尽可能多的圈住所述副镜反射面边界圆;
S33:调整所述副镜,使所述主镜反射圆位于所述副镜反射面边界圆的中部;
S34:调整所述第二参考圆的半径,使所述第二参考圆的半径与所述主镜反射圆的半径大致相同,以尽可能多的圈住主镜反射圆;
S35:调整所述副镜,使所述主镜反射圆与所述第二参考圆重合;
S36:调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合;
S37:调整所述副镜,使主镜中心标记与所述第一参考圆的圆心重合;
S38:调整所述主镜,使所述副镜固定支架投影与所述十字校准线重叠。
其中,S36:调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合,具体包括以下两种情况:
S361:若所述副镜反射面边界圆与所述第三参考圆左右方向不重合,调整所述副镜左右转角或副镜左右倾斜角,使所述副镜反射面边界圆与所述第三参考圆左右重合。
S362:若所述副镜反射面边界圆与所述第三参考圆上下方向不重合,调整所述副镜高度,使所述副镜反射面边界圆与所述第三参考圆上下重合。
副镜反射面边界圆与第三参考圆上下方向不重合,不能通过调整副镜的仰角螺丝来解决,因为就算调整副镜使副镜反射面边界圆与第三参考圆上下重合,主镜反射圆在副镜反射面边界圆内的位置肯定会发生上下移动,且主镜无法自 身修正回来。这种情况就是光轴校准里常说的副镜高度有问题,需要把副镜高度进行调整。
综上所述,本发明的校准方法能够快速完成对反射式望远镜的光轴校准,可操作性强。将目镜实时影像传输到显示设备上显示,比传统的校准方法校准基线更清晰。本发明的校准方法观察起来非常方便,通过观察目镜实时影像中的副镜反射面边界圆、主镜反射圆和主镜中心标记相对于参考圆的位置关系,反向调整主镜和副镜,从而将反射式望远镜的光轴校准,比传统校准方法效率更高。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。
Claims (6)
- 一种反射式望远镜光轴校准方法,其特征在于,包括:获取沿目镜光轴方向的目镜实时影像并显示;以所述目镜实时影像的中心点为圆心画参考圆,以所述目镜实时影像的中心点为中心画一个十字校准线;调整副镜和主镜,使所述目镜实时影像中的副镜反射面边界圆、主镜反射圆和主镜中心标记分别与所述参考圆同心设置,使所述目镜实时影像中的副镜固定支架投影与所述十字校准线重叠。
- 根据权利要求1所述的一种反射式望远镜光轴校准方法,其特征在于,所述参考圆的半径可调。
- 根据权利要求2所述的一种反射式望远镜光轴校准方法,其特征在于,所述参考圆具体包括:用于圈住所述主镜中心标记的第一参考圆;用于圈住所述主镜反射圆的第二参考圆;以及用于圈住所述副镜反射面边界圆的第三参考圆;所述第一参考圆、第二参考圆和第三参考圆的半径逐渐递增。
- 根据权利要求3所述的一种反射式望远镜光轴校准方法,其特征在于,所述调整副镜和主镜,使所述目镜实时影像中的副镜边界圆、主镜反射圆和主镜中心标记分别与所述参考圆同心设置,使所述目镜实时影像中的副镜固定支架投影与所述十字校准线重叠,具体包括:调整所述副镜,使所述目镜实时影像中能够观察到所述副镜反射面边界圆;调整所述第三参考圆的半径,圈住所述副镜反射面边界圆;调整所述副镜,使所述主镜反射圆位于所述副镜反射面边界圆的中部;调整所述第二参考圆的半径,圈住所述主镜反射圆;调整所述副镜,使所述主镜反射圆与所述第二参考圆重合;调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合;调整所述副镜,使主镜中心标记与所述第一参考圆的圆心重合;调整所述主镜,使所述副镜固定支架投影与所述十字校准线重叠。
- 根据权利要求4所述的一种反射式望远镜光轴校准方法,其特征在于,所述调整所述副镜,使所述副镜反射面边界圆与所述第三参考圆重合,具体包括:若所述副镜反射面边界圆与所述第三参考圆左右方向不重合,调整所述副镜左右转角或副镜左右倾斜角,使所述副镜反射面边界圆与所述第三参考圆左右重合;若所述副镜反射面边界圆与所述第三参考圆上下方向不重合,调整所述副镜高度,使所述副镜反射面边界圆与所述第三参考圆上下重合。
- 根据权利要求1所述的一种反射式望远镜光轴校准方法,其特征在于,所述获取沿目镜光轴方向的目镜实时影像并显示,具体包括:在所述目镜端口上安装公头螺纹;将设置有母头螺纹的摄像头与所述公头螺纹相连接;开启摄像头,获取所述目镜实时影像;将所述目镜实时影像传输到显示设备上进行显示。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010208704.3 | 2020-03-23 | ||
CN202010208704.3A CN111381384B (zh) | 2020-03-23 | 2020-03-23 | 一种反射式望远镜光轴校准方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021190330A1 true WO2021190330A1 (zh) | 2021-09-30 |
Family
ID=71221767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/080585 WO2021190330A1 (zh) | 2020-03-23 | 2021-03-12 | 一种反射式望远镜光轴校准方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111381384B (zh) |
WO (1) | WO2021190330A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115016089A (zh) * | 2022-08-09 | 2022-09-06 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种用于分体积木反射式纹影仪的光路快速找准方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111381384B (zh) * | 2020-03-23 | 2022-03-29 | 霍然 | 一种反射式望远镜光轴校准方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886981A (ja) * | 1994-09-14 | 1996-04-02 | Nikon Corp | 紫外線光源心出し工具 |
US6366349B1 (en) * | 1998-05-18 | 2002-04-02 | Lasermax, Inc. | Apparatus for aligning optical elements in response to the display of a reflected reticle image and method of aligning |
CN105122000A (zh) * | 2013-04-05 | 2015-12-02 | 莱卡地球系统公开股份有限公司 | 具有校准电子十字光标的显示图像位置的功能的测量装置 |
CN205581397U (zh) * | 2016-04-12 | 2016-09-14 | 昆明美菱光学仪器有限公司 | 一种标校望远镜 |
CN205844621U (zh) * | 2016-07-07 | 2016-12-28 | 苏州振旺光电有限公司 | 一种牛顿反射式望远镜光轴校准目镜 |
CN108196379A (zh) * | 2017-12-14 | 2018-06-22 | 中国航空工业集团公司洛阳电光设备研究所 | 一种光学系统穿轴光管及穿轴方法 |
CN111381384A (zh) * | 2020-03-23 | 2020-07-07 | 霍然 | 一种反射式望远镜光轴校准方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3614238A (en) * | 1968-01-05 | 1971-10-19 | Itek Corp | Bright line reticle apparatus and optical alignment methods |
CN104977726A (zh) * | 2015-05-12 | 2015-10-14 | 中国科学院光电技术研究所 | 一种用于望远镜装调的高精度主镜球心指示及跟踪装置 |
CN108227175B (zh) * | 2018-03-16 | 2024-02-20 | 南通斯密特森光电科技有限公司 | 主反射镜可调的天文望远镜 |
CN109782408B (zh) * | 2019-01-30 | 2021-02-02 | 中国科学院国家天文台 | 一种大口径望远镜副镜姿态在位调整方法 |
-
2020
- 2020-03-23 CN CN202010208704.3A patent/CN111381384B/zh active Active
-
2021
- 2021-03-12 WO PCT/CN2021/080585 patent/WO2021190330A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886981A (ja) * | 1994-09-14 | 1996-04-02 | Nikon Corp | 紫外線光源心出し工具 |
US6366349B1 (en) * | 1998-05-18 | 2002-04-02 | Lasermax, Inc. | Apparatus for aligning optical elements in response to the display of a reflected reticle image and method of aligning |
CN105122000A (zh) * | 2013-04-05 | 2015-12-02 | 莱卡地球系统公开股份有限公司 | 具有校准电子十字光标的显示图像位置的功能的测量装置 |
CN205581397U (zh) * | 2016-04-12 | 2016-09-14 | 昆明美菱光学仪器有限公司 | 一种标校望远镜 |
CN205844621U (zh) * | 2016-07-07 | 2016-12-28 | 苏州振旺光电有限公司 | 一种牛顿反射式望远镜光轴校准目镜 |
CN108196379A (zh) * | 2017-12-14 | 2018-06-22 | 中国航空工业集团公司洛阳电光设备研究所 | 一种光学系统穿轴光管及穿轴方法 |
CN111381384A (zh) * | 2020-03-23 | 2020-07-07 | 霍然 | 一种反射式望远镜光轴校准方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115016089A (zh) * | 2022-08-09 | 2022-09-06 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种用于分体积木反射式纹影仪的光路快速找准方法 |
CN115016089B (zh) * | 2022-08-09 | 2022-11-04 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种用于分体积木反射式风洞纹影仪的光路快速找准方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111381384B (zh) | 2022-03-29 |
CN111381384A (zh) | 2020-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021190330A1 (zh) | 一种反射式望远镜光轴校准方法 | |
US4012126A (en) | Optical system for 360° annular image transfer | |
US3522983A (en) | Magnifying spectacles | |
US3064526A (en) | Dual image reflecting telescope | |
TW201837526A (zh) | 用作斜視相機鏡頭的光學系統 | |
CN102902139A (zh) | 一种成像装置视场扩展系统和方法及手机 | |
WO2018171537A1 (en) | Optical adapter for microscope and method for adjusting direction of optical image | |
JP3875742B2 (ja) | 極軸望遠鏡のコンバータ | |
CN107045193A (zh) | 一种可附接外部导星装置的望远镜 | |
CN110488492A (zh) | 目视光学成像系统及显示设备 | |
CN206505222U (zh) | 一种可附接外部导星装置的望远镜 | |
US20050168811A1 (en) | Fork mounted telescope with full range of travel along the declination axis | |
CN108549145B (zh) | 一种单物双目望远镜的新结构 | |
CN102236146A (zh) | 一种长焦多用途照相镜头 | |
CN100468124C (zh) | 反射式立体图像分视镜 | |
KR101608404B1 (ko) | 입체 이미지를 촬영하기 위한 단안식 현미경 | |
CN101452109B (zh) | 大屏幕大偏角图像采集方法及其采集装置和采集用镜头 | |
TWI314219B (zh) | ||
US2191027A (en) | Combined view finder and range finder | |
CN209808317U (zh) | 引导组件和眼底相机 | |
CN209690626U (zh) | 内置光纤照明的手机高清近摄放大镜头装置 | |
CN206818960U (zh) | 一种高清摄像镜头 | |
GB2404993A (en) | Magnifying adapter for camera lenses | |
CN218471048U (zh) | 一种望远系统 | |
CN218512713U (zh) | 一种基于非球面应用的连续变焦目镜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21776449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21776449 Country of ref document: EP Kind code of ref document: A1 |