WO2021189999A1 - 一种可快速清除故障电流的机械式直流断路器 - Google Patents

一种可快速清除故障电流的机械式直流断路器 Download PDF

Info

Publication number
WO2021189999A1
WO2021189999A1 PCT/CN2020/137843 CN2020137843W WO2021189999A1 WO 2021189999 A1 WO2021189999 A1 WO 2021189999A1 CN 2020137843 W CN2020137843 W CN 2020137843W WO 2021189999 A1 WO2021189999 A1 WO 2021189999A1
Authority
WO
WIPO (PCT)
Prior art keywords
power electronic
branch
circuit breaker
diode
electronic switch
Prior art date
Application number
PCT/CN2020/137843
Other languages
English (en)
French (fr)
Inventor
郭自德
庄严
傅明政
秦贵锋
周晓龙
李艳林
Original Assignee
思源电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思源电气股份有限公司 filed Critical 思源电气股份有限公司
Publication of WO2021189999A1 publication Critical patent/WO2021189999A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0406Modifications for accelerating switching in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais

Definitions

  • the invention belongs to the technical field of high-voltage equipment, and specifically relates to a mechanical DC circuit breaker capable of quickly clearing fault current.
  • the circuit is all power electronic devices, so its operating loss is very large, and special water-cooled equipment is required; on the basis of all solid state, the hybrid DC circuit breaker improves the main branch to a combination of mechanical switches and power electronic switches, which requires a lot of power
  • the electronic device triggers the conduction synchronously, which requires high action consistency, difficult control, and low working reliability; while the traditional mechanical type uses ball gap triggering with low reliability and large on-off randomness, using ball gap or thyristor triggering, transfer support
  • the circuit cannot actively break the current. After a certain period of time after the circuit is broken, the residual small current of the circuit continues to exist, and the fault clearing time is long.
  • the invention provides a mechanical DC circuit breaker capable of quickly clearing fault currents, which solves the problems of large operating losses of the existing DC circuit breakers, requiring special water cooling equipment, high control difficulty, and long fault clearing time.
  • a mechanical DC circuit breaker capable of quickly clearing fault currents includes a transfer branch connected in parallel with a main branch and an energy-consuming branch.
  • the main branch includes a circuit breaker body
  • the energy-consuming branch includes a lightning arrester
  • the transfer branch includes an energy storage capacitor, an inductance, and a power electronic switch connected in series. The power electronic switch is used to turn on and off by itself to control the input and exit time of the transfer branch during fault handling. .
  • the power electronic switch adopts an H-bridge structure, and the H-bridge structure includes four diodes with opposite polarities.
  • the power electronic switch includes a fully controlled power electronic device branch, a voltage equalizing capacitor, a first voltage equalizing resistor branch and a second voltage equalizing resistor branch connected in series, and the three branches are connected in parallel to form an H bridge
  • One end of the horizontal bar is connected to the cathodes of the first diode and the second diode, and the other end is connected to the anodes of the third diode and the fourth diode.
  • the anode is connected to the cathode of the fourth diode and serves as a pin terminal of the power electronic switch.
  • the anode of the second diode is connected to the cathode of the third diode and serves as another terminal of the power electronic switch. The end of the foot.
  • the anode of the fully controlled power electronic device is connected to the cathodes of the first diode and the second diode, the cathode is connected to the anodes of the third diode and the fourth diode, and the gate is connected to the driving module Connected, the drive module is used to provide the current or voltage required by the full-control power electronic device to work.
  • the fully-controlled power electronic device is configured as IGBT, IGCT or IEGT.
  • the energy storage capacitor is also connected in parallel with the charging capacitor and the current limiting resistor connected in series.
  • a controllable power electronic switch in the transfer branch through its own turn-on and turn-off, control the input and exit time of the transfer branch during the fault handling process, and ensure the correct time of the oscillating current input in the fault breaking process , And completed the removal of the residual current in the transfer branch in a short time, avoiding the continuous existence of the residual small current of the line, reducing the fault clearing time, improving the breaking performance of the DC circuit breaker, and also through the charging capacitor and current limiting
  • the current quickly charges the energy storage capacitor after the switch-off, so that it reaches the voltage state before the switch-off, provides conditions for the reclosing implementation of the DC circuit breaker, and meets the production needs and practical application requirements of the DC circuit breaker.
  • Figure 1 is a schematic diagram of the structure of the DC circuit breaker of the present invention
  • Figure 2 is a schematic diagram of the structure of the power electronic switch of the present invention.
  • Fig. 3 is a schematic diagram of the equivalent principle of the fully-controlled power electronic device of the present invention.
  • Fig. 4 is a logical schematic diagram of a short-circuit fault breaking process using the DC circuit breaker of the present invention
  • Figure 5 is a schematic diagram of a short-circuit fault breaking process using the DC circuit breaker of the present invention.
  • Fig. 6 is a schematic diagram of the realization principle of reclosing by using the DC circuit breaker of the present invention.
  • the present invention provides a mechanical DC circuit breaker capable of quickly clearing fault currents.
  • a controllable power electronic switch is introduced into the transfer branch, and through its own The turn-on and turn-off control of the transfer branch during the fault handling process ensures the correct moment of the oscillating current input, and completes the removal of the residual current in the transfer branch in a short time to avoid the line
  • the continuous existence of small residual current reduces the time of fault clearing and improves the breaking performance of the DC circuit breaker.
  • FIG. 1 it includes a transfer branch and an energy-consuming branch connected in parallel with the main branch.
  • the main branch includes a circuit breaker body, or a plurality of circuit breaker bodies connected in series.
  • the branch includes a lightning arrester.
  • the transfer branch includes an energy storage capacitor, an inductance, and a power electronic switch connected in series.
  • the power electronic switch is used to control the switching of the transfer branch during the fault handling process by turning on and off itself. Putting in and out moments.
  • the power electronic switch adopts an H-bridge structure, as shown in Fig.
  • the specific structure of the power electronic switch is as follows: the above three branches are connected in parallel to form the horizontal bar of the H-bridge structure, one end of which is connected to the cathodes of the first diode and the second diode, and the other end is connected to the third diode
  • the anode of the tube and the fourth diode are connected, where the anode of the fully-controlled power electronic device is connected to the cathodes of the first diode and the second diode, and the cathode is connected to the third diode and the fourth diode.
  • the anode of the first diode is connected, and the gate is connected to the driving module, and the driving module is used to provide the current or voltage required for the operation of the fully-controlled power electronic device.
  • the anode of the first diode is connected to the cathode of the fourth diode, Commonly used as a pin terminal of the power electronic switch, the anode of the second diode is connected to the cathode of the third diode, and the other pin terminal of the power electronic switch is connected together through these two pin terminals Transfer branch.
  • the fully-controlled power electronic device TR is equivalent to a two-transistor model, as shown in Figure 3, and its three ends are anode A, cathode K and gate G respectively.
  • the base current Ib2 of the transistor V2 is reduced, and then Ik and Ic2 are reduced, Ic2 is reduced, IA and Ic1 are reduced, and the transistor V2 is further reduced.
  • the base current Ib2 thus forming a strong positive feedback, until the device exits saturation and realizes the current turn-off process.
  • the above-mentioned energy storage capacitor is also connected in parallel with the charging capacitor and the current-limiting resistor connected in series.
  • the power electronic switch K of the transfer branch is in the off state; the charging capacitor C1 and the energy storage capacitor C2 are in a full energy state; the mechanical switch CB of the main branch is closed, and its steady-state current flows through the mechanical switch CB of the main branch.
  • FIG. 4 is a logical schematic diagram of a circuit breaker fault current breaking process according to an embodiment of the present invention
  • FIG. 5 is a topological schematic diagram of a circuit breaker short-circuit fault breaking process according to an embodiment of the present invention.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

一种可快速清除故障电流的机械式直流断路器,包括与主支路并联的转移支路和耗能支路,所述主支路包括断路器本体,所述耗能支路包括避雷器(MOV),所述转移支路包括串联在一起的储能电容(C2)、电感(L)和电力电子开关(K),所述电力电子开关(K)用于通过自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻。在转移支路引入可控的电力电子开关(K),通过其自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻,确保了故障分断过程中振荡电流投入的正确时刻,并且在短时间内完成了转移支路中残余电流的切除,避免线路残余小电流的持续存在,减少了故障清除时间,提高了直流断路器的开断性能。

Description

一种可快速清除故障电流的机械式直流断路器 技术领域
本发明属于高压设备的技术领域,具体涉及一种可快速清除故障电流的机械式直流断路器。
背景技术
近年来,随着柔性直流输电技术与多端直流电网的快速发展,作为直流输电系统中重要的控制与保护设备,直流断路器成为研究热点。目前的直流断路器按照技术原理主要可分为全固态式、混合式与机械式,全固态断路器是指断路器中没有机械运动部件,完全由半导体器件作为断路器的开关器件,由于通流回路全部为电力电子器件,因此其运行损耗非常大,需专门的水冷设备;混合式直流断路器在全固态的基础上,将主支路改进为机械开关加电力电子开关的组合,需大量电力电子器件同步触发导通,动作一致性要求高、控制难度大,工作可靠性低;而传统机械式采用球隙触发可靠性低、通断随机性大,采用球隙或用晶闸管触发,转移支路不能主动开断电流,开断后的一定时间内,线路残余小电流持续存在,故障清除时间长。
发明内容
本发明提供了一种可快速清除故障电流的机械式直流断路器,解决了现有直流断路器运行损耗大,需要专门的水冷设备,控制难度大,故障清除时间长等问题。
本发明可通过以下技术方案实现:
一种可快速清除故障电流的机械式直流断路器,包括与主支路并联的转移支路和耗能支路,所述主支路包括断路器本体,所述耗能支路包括避雷器,所述转移支路包括串联在一起的储能电容、电感和电力电子开关,所述电力电子开关用于通过自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻。
进一步,所述电力电子开关采用H桥式结构,所述H桥式结构包括两两极性相对设置的四个二极管。
进一步,所述电力电子开关包括全控型电力电子器件支路、串联在一起的均压电容和第一均压电阻支路以及第二均压电阻支路,三条支路并联在一起组成H桥式结构的横杠,其一端与第一二极管、第二二极管的阴极相连,另一端与第三二极管、第四二极管的阳极相连,所述第一二极管的阳极与第四二极管的阴极相连,共同作为电力电子开关的一个引脚端,所述第二二极管的阳极与第三二极管的阴极相连,共同作为电力电子开关的另一个引脚端。
进一步,所述全控型电力电子器件的阳极与第一二极管、第二二极管的阴极相连,阴极与第三二极管、第四二极管的阳极相连,门极与驱动模块相连,所述驱动模块用于提供全控型电力电子器件工作所需的电流或者电压。
进一步,所述全控型电力电子器件设置为IGBT、IGCT或者IEGT。
进一步,所述储能电容还与串联在一起的充电电容和限流电阻并联。
本发明有益的技术效果在于:
在转移支路引入可控的电力电子开关,通过其自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻,确保了故障分断过程中振荡电流投入的正确时刻,并且在短时间内完成了转移支路中残余电流的切除,避免线路残余小电流的持续存在,减少了故障清除时间,提高了直流断路器的开断性能,同时还通过充电电容和限流电流为关断后的储能 电容进行快速充电,使其达到关断前的电压状态,为直流断路器的重合闸实施提供条件,满足直流断路器的生产需要和实际应用要求。
附图说明
图1是本发明的直流断路器的结构示意图;
图2是本发明的电力电子开关的结构示意图;
图3是本发明的全控型电力电子器件的等效原理示意图;
图4是利用本发明的直流断路器进行短路故障分断过程逻辑示意图;
图5是利用本发明的直流断路器进行短路故障分断过程示意图;
图6是利用本发明的直流断路器进行重合闸的实现原理示意图。
具体实施方式
下面结合附图及较佳实施例详细说明本发明的具体实施方式。
鉴于现有直流断路器的运行损耗大、可靠性低等问题,本发明提供了一种可快速清除故障电流的机械式直流断路器,在转移支路引入可控的电力电子开关,通过其自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻,确保了振荡电流投入的正确时刻,并且在短时间内完成了转移支路中残余电流的切除,避免线路残余小电流的持续存在,减少了故障清除时间,提高了直流断路器的开断性能。
具体地,如图1所示,包括与主支路并联的转移支路和耗能支路,该主支路包括断路器本体,也可以是多个串联在一起的断路器本体,该耗能支路包括避雷器,该转移支路包括串联在一起的储能电容、电感和电力电子开关,该电力电子开关用于通过自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻。该电力电子开关采用H桥式结构,如图2所示,其包括两两极性相对设置的四个二极管,作为H桥式的四个垂直脚,以及全控型电力电子器件支路、串联在一起的均压电容和第一均 压电阻支路以及第二均压电阻支路,这三条支路并联在一起组成H桥式的横杠,这样无论电流流向如何,都能保证电流从H桥式结构中电力电子器件晶闸管的阳极流入,阴极流出,确保采用本发明的直流断路器都可以切断故障电流,解决线路故障。
该电力电子开关的具体结构如下:上述三条支路并联在一起组成H桥式结构的横杠,其一端与第一二极管、第二二极管的阴极相连,另一端与第三二极管、第四二极管的阳极相连,其中,全控型电力电子器件的阳极与第一二极管、第二二极管的阴极相连,阴极与第三二极管、第四二极管的阳极相连,门极与驱动模块相连,所述驱动模块用于提供全控型电力电子器件工作所需的电流或者电压,该第一二极管的阳极与第四二极管的阴极相连,共同作为电力电子开关的一个引脚端,该第二二极管的阳极与第三二极管的阴极相连,共同作为电力电子开关的另一个引脚端,通过这两个引脚端接入转移支路。
该全控型电力电子器件有多种选择方式,如IGCT、IGBT、IEGT或者以SiC为原材料制成的全控型器件,以下双晶体管为例说明其可控关断原理与过程如下:
将全控型电力电子器件TR等效为双晶体管模型,如图3所示,其三端分别为阳极A,阴极K及门极G。关断时,给门极G加负脉冲电流,则晶体管V2的基极电流Ib2减小,进而使Ik与Ic2减小,Ic2减小,使IA和Ic1减小,又进一步减小了晶体管V2的基极电流Ib2,如此形成强烈的正反馈,直至器件退出饱和而实现电流的关断过程。
为了满足线路中的重合闸需求,上述储能电容还与串联在一起的充电电容和限流电阻并联。
采用本发明的直流断路器的工作过程如下:
正常运行状态
转移支路的电力电子开关K处于关断状态;充电电容C1及储能电容 C2为满能量状态;主支路的机械开关CB闭合,其稳态电流流经主支路机械开关CB。
短路故障分断过程
由于稳态分断和短路故障分断的动作原理一致,区别只是分断电流不同。因此,仅以短路故障分断过程为例进行阐述,图4为本发明实施例的断路器故障电流开断过程的逻辑示意图,图5为本发明实施例的断路器短路故障分断过程拓扑示意图。结合图4、图5,故障电流开断过程如下:
1)t0时刻:线路发生短路故障,主支路快速机械开关CB承受短路故障电流i0,如图5(a)所示。
2)t1时刻:直流断路器接收到直流控制保护系统下发的分闸指令,主支路快速机械开关CB动作,执行分闸指令,如图5(b)所示;
3)t2时刻:快速机械开关CB触头运动到有效开距位置,转移支路可控电力电子开关K触发导通,转移支路电容C2、电抗器L与主支路快速机械开关CB形成振荡回路,产生高频振荡电流i2,如图5(c)所示;
4)t3时刻:主支路电流i0过零,快速机械开关CB熄弧,主支路完成电流i0开断,如图5(d)所示;
5)t4时刻:线路电流转移至转移支路,给转移支路储能电容充电至耗能支路避雷器动作电压Uc,避雷器动作吸收线路残余能量,如图5(e)所示;
6)t5时刻:转移支路可控电力电子开关K关断,转移支路电流i2为0,转移支路退出,如图5(f)所示;
7)t6时刻:耗能支路避雷器完成线路残余能量的吸收,避雷器吸能退出,耗能支路电流i3降为0,直流断路器完成故障开断,如图5(g)所示。
相对于传统直流断路器,由于电力电子开关K的引入:1)在t1时刻,其触发更为准确与可靠,确保了振荡电流的正确投入;2)在t5时刻, 对转移支路进行分断,在短时间内完成了转移支路残余电流的切除,解决了线路残余小电流持续存在,故障清除时间长的问题。
快速重合闸功能
在上述开断过程中,储能电容C2与电感L发生谐振后,其储存电压已发生改变减小至零左右,而充电电容C1基本维持不变。在t5时刻,电力电子开关K关断后,储能电容C2与振荡回路断开,此时充电电容C1给储能电容C2进行充电,如图6所示,通过控制限流电阻R,从而实现充电电容C1对储能电容C2的快速充电,使其恢复至具备再次开断故障电流的电压状态,实现机械式直流断路器快速重合闸功能。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,因此,本发明的保护范围由所附权利要求书限定。

Claims (6)

  1. 一种可快速清除故障电流的机械式直流断路器,其特征在于:包括与主支路并联的转移支路和耗能支路,所述主支路包括断路器本体,所述耗能支路包括避雷器,所述转移支路包括串联在一起的储能电容、电感和电力电子开关,所述电力电子开关用于通过自身的导通和关断,控制在故障处理过程中,转移支路的投入和退出时刻。
  2. 根据权利要求1所述的一种可快速清除故障电流的机械式直流断路器,其特征在于:所述电力电子开关采用H桥式结构,所述H桥式结构包括两两极性相对设置的四个二极管。
  3. 根据权利要求2所述的一种可快速清除故障电流的机械式直流断路器,其特征在于:所述电力电子开关包括全控型电力电子器件支路、串联在一起的均压电容和第一均压电阻支路以及第二均压电阻支路,三条支路并联在一起组成H桥式结构的横杠,其一端与第一二极管、第二二极管的阴极相连,另一端与第三二极管、第四二极管的阳极相连,所述第一二极管的阳极与第四二极管的阴极相连,共同作为电力电子开关的一个引脚端,所述第二二极管的阳极与第三二极管的阴极相连,共同作为电力电子开关的另一个引脚端。
  4. 根据权利要求3所述的一种可快速清除故障电流的机械式直流断路器,其特征在于:所述全控型电力电子器件的阳极与第一二极管、第二二极管的阴极相连,阴极与第三二极管、第四二极管的阳极相连,门极与驱动模块相连,所述驱动模块用于提供全控型电力电子器件工作所需的电流或者电压。
  5. 根据权利要求4所述的一种可快速清除故障电流的机械式直流断路器,其特征在于:所述全控型电力电子器件设置为IGBT、IGCT或者IEGT。
  6. 根据权利要求1所述的一种可快速清除故障电流的机械式直流断路器,其特征在于:所述储能电容还与串联在一起的充电电容和限流电阻并联。
PCT/CN2020/137843 2020-03-26 2020-12-20 一种可快速清除故障电流的机械式直流断路器 WO2021189999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010224233.5A CN111371441A (zh) 2020-03-26 2020-03-26 一种可控关断机械式直流断路器
CN202010224233.5 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021189999A1 true WO2021189999A1 (zh) 2021-09-30

Family

ID=71212034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137843 WO2021189999A1 (zh) 2020-03-26 2020-12-20 一种可快速清除故障电流的机械式直流断路器

Country Status (2)

Country Link
CN (1) CN111371441A (zh)
WO (1) WO2021189999A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050073A (zh) * 2021-11-09 2022-02-15 许昌许继软件技术有限公司 一种直流开关装置及其控制方法
CN114123770A (zh) * 2021-11-03 2022-03-01 西安交通大学 叠加式磁耦合电流转移模块及电流开断方法
CN114498546A (zh) * 2021-12-28 2022-05-13 清华大学 一种混合双重桥式直流断路器拓扑电路及其控制方法
CN114709796A (zh) * 2022-04-28 2022-07-05 西安交通大学 一种基于选相控制的发电机“失零”故障电流开断装置和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371441A (zh) * 2020-03-26 2020-07-03 思源电气股份有限公司 一种可控关断机械式直流断路器
CN112003357B (zh) * 2020-08-25 2022-11-22 中车株洲电力机车研究所有限公司 基于固态开关的电路控制方法
CN112952776B (zh) * 2021-03-02 2022-12-20 华北电力大学 一种适用于中压直流断路器的电流转移电路及方法
CN114665439B (zh) * 2021-12-06 2023-07-21 西安交通大学 具有快速重合闸功能的断路器及其控制方法
CN114614455B (zh) * 2022-04-29 2023-10-03 国网陕西省电力有限公司电力科学研究院 一种多电容分级转移电流的直流断路器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021739A (zh) * 2012-11-30 2013-04-03 西安交通大学 混合式直流断路器
EP3091627A1 (en) * 2013-12-31 2016-11-09 Hyosung Corporation High-voltage dc circuit breaker
CN106532657A (zh) * 2016-11-03 2017-03-22 中国电力科学研究院 直流断路器及直流输电系统断路方法
CN107846210A (zh) * 2017-10-23 2018-03-27 许继电气股份有限公司 一种直流断路器用支路组件、直流断路器
CN108521117A (zh) * 2018-04-23 2018-09-11 西安交通大学 一种用于直流断路器的换流支路
CN109274076A (zh) * 2018-08-23 2019-01-25 国家电网有限公司 一种电流注入式直流断路器
CN110048382A (zh) * 2019-04-23 2019-07-23 西安交通大学 基于液体电弧电压转移的机械式直流断路器及其使用方法
CN110460014A (zh) * 2019-08-07 2019-11-15 西安交通大学 基于电容预充电转移的双向混合式直流断路器及开断方法
CN111371441A (zh) * 2020-03-26 2020-07-03 思源电气股份有限公司 一种可控关断机械式直流断路器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021739A (zh) * 2012-11-30 2013-04-03 西安交通大学 混合式直流断路器
EP3091627A1 (en) * 2013-12-31 2016-11-09 Hyosung Corporation High-voltage dc circuit breaker
CN106532657A (zh) * 2016-11-03 2017-03-22 中国电力科学研究院 直流断路器及直流输电系统断路方法
CN107846210A (zh) * 2017-10-23 2018-03-27 许继电气股份有限公司 一种直流断路器用支路组件、直流断路器
CN108521117A (zh) * 2018-04-23 2018-09-11 西安交通大学 一种用于直流断路器的换流支路
CN109274076A (zh) * 2018-08-23 2019-01-25 国家电网有限公司 一种电流注入式直流断路器
CN110048382A (zh) * 2019-04-23 2019-07-23 西安交通大学 基于液体电弧电压转移的机械式直流断路器及其使用方法
CN110460014A (zh) * 2019-08-07 2019-11-15 西安交通大学 基于电容预充电转移的双向混合式直流断路器及开断方法
CN111371441A (zh) * 2020-03-26 2020-07-03 思源电气股份有限公司 一种可控关断机械式直流断路器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123770A (zh) * 2021-11-03 2022-03-01 西安交通大学 叠加式磁耦合电流转移模块及电流开断方法
CN114123770B (zh) * 2021-11-03 2023-08-08 西安交通大学 叠加式磁耦合电流转移模块及电流开断方法
CN114050073A (zh) * 2021-11-09 2022-02-15 许昌许继软件技术有限公司 一种直流开关装置及其控制方法
CN114498546A (zh) * 2021-12-28 2022-05-13 清华大学 一种混合双重桥式直流断路器拓扑电路及其控制方法
CN114709796A (zh) * 2022-04-28 2022-07-05 西安交通大学 一种基于选相控制的发电机“失零”故障电流开断装置和方法
CN114709796B (zh) * 2022-04-28 2023-06-27 西安交通大学 一种基于选相控制的发电机“失零”故障电流开断装置和方法

Also Published As

Publication number Publication date
CN111371441A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021189999A1 (zh) 一种可快速清除故障电流的机械式直流断路器
US10454265B2 (en) Bridge-type circuit, and direct current breaking device and control method thereof
WO2017181927A1 (zh) 一种直流电流关断装置及其控制方法
WO2017063413A1 (zh) 一种高压直流断路器及其控制方法
WO2015024509A1 (zh) 一种高压大电流直流断路器及其控制方法
CN204681065U (zh) 一种直流断路器
WO2016197973A1 (zh) 预充电型高速直流断路器及其控制方法和存储介质
CN112653087B (zh) 一种采用复合固态开关的直流断路器及其控制方法
CN113013832B (zh) 一种基于无源耦合振荡的混合式直流断路器及其控制方法
CN104980137A (zh) 一种强迫换流型全固态高速直流断路器和换流开关
CN111404113B (zh) 一种t型直流断路器及其控制方法
CN111224372A (zh) 具有快速重合闸功能的混合式直流断路器及其开断方法
CN104917164B (zh) 一种驱动保护电路
CN115241850B (zh) 一种组合式高压直流断路器及其控制策略
CN210430911U (zh) 一种直流断路器
CN112865042A (zh) 一种可控电压源振荡型直流断路器及其应用方法
CN112803357A (zh) 基于限流和振荡转移结合的直流断路器及其控制方法
CN109361202B (zh) 一种电流注入式断路器
CN205160036U (zh) 一种预充电型高速直流断路器
CN116581721A (zh) 一种晶闸管型直流断路器及故障清除方法
CN113852056B (zh) 一种具备预限流功能的经济型直流断路器及其控制方法
CN216215874U (zh) 一种直流断路器
CN113725831B (zh) 一种经济型机械式高压直流断路器
CN111740389B (zh) 一种适用于重合闸的高分断性能直流断路器
Zhao et al. Research on Topology of Medium Voltage Hybrid DC Circuit Breaker Based on IGCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927241

Country of ref document: EP

Kind code of ref document: A1