WO2021189855A1 - 基于ct序列的图像识别方法、装置、电子设备及介质 - Google Patents

基于ct序列的图像识别方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2021189855A1
WO2021189855A1 PCT/CN2020/125461 CN2020125461W WO2021189855A1 WO 2021189855 A1 WO2021189855 A1 WO 2021189855A1 CN 2020125461 W CN2020125461 W CN 2020125461W WO 2021189855 A1 WO2021189855 A1 WO 2021189855A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lesion
tissue
sequence
label
Prior art date
Application number
PCT/CN2020/125461
Other languages
English (en)
French (fr)
Inventor
刘新卉
叶苓
高良心
李楠楠
周云舒
黄凌云
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021189855A1 publication Critical patent/WO2021189855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • This application relates to the field of machine learning technology, and in particular to a CT sequence-based image recognition method, device, electronic equipment, and computer-readable storage medium.
  • An image recognition method based on CT sequence provided by this application includes:
  • the image sequence to be recognized is acquired, and the target image recognition model is used to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • An image recognition device based on CT sequence comprising:
  • the image acquisition module is used to acquire the tissue image sequence and the lesion image sequence of the target pathological tissue
  • the first feature extraction module is configured to input all the images in the tissue image sequence to a pre-built feature extraction model for feature extraction to obtain a first feature image set;
  • the second feature extraction module is configured to input all images in the lesion image sequence to the pre-built feature extraction model for feature extraction to obtain a second feature image set;
  • the feature splicing module is used to splice the first feature map and the second feature map to obtain a lesion feature map
  • the label prediction module is used to perform image recognition on the lesion feature map to obtain a predicted image label
  • a model update module is used to calculate a loss value between the predicted image label and the preset target pathological label of the target pathological tissue, and update the feature extraction model according to the loss value to obtain a target image recognition model;
  • the image recognition module is used to obtain the image sequence to be recognized, and use the target image recognition model to perform image recognition on the image sequence to be recognized to obtain the recognition result.
  • An electronic device which includes:
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores a computer program executable by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the following steps:
  • the image sequence to be recognized is acquired, and the target image recognition model is used to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • a computer-readable storage medium includes a storage data area and a storage program area, wherein the storage data area stores created data, and the storage program area stores a computer program; wherein, when the computer program is executed by a processor To achieve the following steps:
  • the image sequence to be recognized is acquired, and the target image recognition model is used to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • FIG. 1 is a schematic flowchart of an image recognition method based on CT sequence provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of a process for acquiring a tissue image sequence and a lesion image sequence of a target pathological tissue according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of a process of inputting a tissue image sequence to a feature extraction model for feature extraction according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a process of generating a predicted image label according to an embodiment of the application
  • FIG. 5 is a schematic diagram of modules of a CT sequence-based image recognition device provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the internal structure of an electronic device that implements a CT sequence-based image recognition method provided by an embodiment of the application;
  • the execution subject of the CT sequence-based image recognition method provided in the embodiments of the present application includes, but is not limited to, at least one of the electronic devices that can be configured to execute the method provided in the embodiments of the present application, such as a server and a terminal.
  • the image recognition method based on the CT sequence may be executed by software or hardware installed in the terminal device or the server device, and the software may be a blockchain platform.
  • the server includes but is not limited to: a single server, a server cluster, a cloud server or a cloud server cluster, etc.
  • This application provides an image recognition method based on CT sequence.
  • FIG. 1 it is a schematic flowchart of a CT sequence-based image recognition method provided by an embodiment of this application.
  • the method can be executed by a device, and the device can be implemented by software and/or hardware.
  • the image recognition method based on CT sequence includes:
  • the tissue image sequence and the lesion image sequence of the target pathological tissue are composed of multiple tissue images and multiple lesion images.
  • the number of images in the tissue image sequence of the target pathological tissue and the lesion image sequence may be the same or different.
  • FIG. 2 is a schematic flowchart of obtaining a tissue image sequence and a lesion image sequence of a target pathological tissue according to an embodiment of the application.
  • the acquiring a tissue image sequence and a lesion image sequence of the target pathological tissue includes:
  • the embodiment of the present application uses a java sentence with a data capture function to capture the tissue segmentation grayscale image and the lesion segmentation grayscale image of the target pathological tissue from a pre-built database.
  • the CT mask image is an image that only contains 0 and 1 pixel values.
  • the CT mask image is multiplied by the tissue segmentation gray map to obtain multiple pieces of tissue that are completely black and only the tissue can be seen.
  • the image of is the organization image sequence. Multiply the CT mask image with the gray image of the lesion segmentation to obtain multiple black images outside the lesion where only the lesion can be seen, which is the lesion image sequence.
  • the method before the acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue, the method further includes:
  • the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue is performed.
  • the judging whether the user is an authorized user according to the unique identifier and password of the user includes:
  • the unique identifier and password of the user match the pre-stored information, determine that the user is an authorized user, and execute the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue;
  • the user When the unique identifier and password of the user do not match the pre-stored information, the user is determined to be an unauthorized user, and the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue is not performed.
  • the preferred embodiment of the present application is before acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue. The verification of the user's identity improves the security of the tissue image sequence and the lesion image sequence of the target pathological tissue.
  • FIG. 3 is a schematic diagram of a process of inputting a tissue image sequence to a feature extraction model for feature extraction according to an embodiment of the application.
  • inputting all the images in the tissue image sequence to a pre-built feature extraction model for feature extraction to obtain a first feature image set includes:
  • the use of the feature extraction model to perform convolution processing on all images in the tissue image sequence includes: using a preset convolution kernel matrix in the feature extraction model and each image sequence in the tissue image sequence. The pixels of the image are multiplied.
  • performing pooling processing on the first convolutional image set includes, but is not limited to, maximum pooling, minimum pooling, and average pooling.
  • inputting all the images in the lesion image sequence to a pre-built feature extraction model for feature extraction to obtain the second feature image set includes:
  • Pooling is performed on the second convolutional image set to obtain a second characteristic image set.
  • the tissue image sequence and the lesion image sequence are respectively used to train the model, which enhances the diversity of training data and improves the accuracy of image recognition by the target image recognition model.
  • the sizes of the first feature map and the second feature map are the same.
  • the first feature map and the second feature map are geometrically spliced, for example, the first feature map and the second feature map are spliced together according to edges of the same length, and the lesion feature map is obtained after the splicing is completed.
  • the predicted image label is an image recognition model that recognizes the type of the lesion in the lesion feature map.
  • FIG. 4 is a schematic diagram of a process of generating a predicted image label according to an embodiment of the application.
  • the performing image recognition on the lesion feature map to obtain a predicted image label includes:
  • S50 Calculate the probability value that the label of the lesion feature map is a preset label by using an activation function
  • the activation function includes, but is not limited to, a sigmoid activation function.
  • the activation function can be used to calculate the probability value that the label of the lesion feature map is a preset label.
  • the predicted image label corresponding to the lesion feature map is generated according to the probability value. For example, when the probability value is "X”, the predicted image label "The probability that the lesion feature map is the target lesion is X" is generated for the lesion feature map.
  • the calculating the loss value between the predicted image label and the preset target pathological label of the target pathological tissue includes:
  • M is the number of predicted image labels
  • N is the number of preset target pathological labels of the target pathological tissue
  • y ic is the sign indicator variable
  • W is the preset weight coefficient
  • p ic is the i-th lesion feature map is The probability of the target pathological label c is preset.
  • the embodiment of the present application uses a gradient descent algorithm to update the parameters of the feature extraction model. If the loss value between the predicted image label and the preset target pathological label of the target pathological tissue is less than or equal to a preset error, a target image recognition model is obtained.
  • the gradient descent algorithm includes, but is not limited to: a large-batch gradient descent algorithm, a small-batch gradient descent algorithm, and a stochastic gradient descent algorithm.
  • a python sentence with a data capture function is used to obtain the image sequence to be identified from the blockchain node for storing the CT sequence.
  • Using the high data throughput of the blockchain can improve the efficiency of obtaining the image sequence to be identified.
  • the target image recognition model is used to perform image recognition on the image sequence to be recognized, and the recognition result is obtained.
  • the recognition result is the type of the lesion in the image in the image sequence to be recognized.
  • the method further includes:
  • the push queue task is implemented by subscriber notification message queue (MQ).
  • MQ subscriber notification message queue
  • multiple recognition results that need to be pushed are processed in batches, so as to ensure that the previous batch of recognition results is pushed and the next batch of recognition is continued to be processed. result.
  • the queue of notification messages from the subscribers can reduce the occupation of computing resources, cut a large amount of data and push them in batches, and avoid the occupation and waste of computing resources due to data congestion.
  • the embodiment of the application obtains the tissue image sequence and the lesion image sequence of the target pathological tissue, and uses all the images in the tissue image sequence and the lesion image sequence as training data to train the feature extraction model to obtain the first feature map and the second feature Figure, stitching the first feature map and the second feature map into a lesion feature map and calculating the loss value of the lesion feature map, updating the feature extraction model according to the loss value to obtain the target image recognition model, using the tissue image sequence and the lesion image respectively
  • the sequence trains the model, which enhances the diversity of training data and improves the accuracy of image recognition by the target image recognition model; obtains the image sequence to be recognized, uses the target image recognition model to perform image recognition on the image sequence to be recognized, and obtains the recognition result. There is no need to manually detect and recognize images one by one, which improves the efficiency of image recognition. Therefore, the image recognition method based on CT sequence proposed in this application can improve the efficiency and accuracy of image recognition.
  • FIG. 5 it is a schematic diagram of the modules of the image recognition device based on the CT sequence of the present application.
  • the CT sequence-based image recognition apparatus 100 described in this application can be installed in an electronic device.
  • the CT sequence-based image recognition device may include an image acquisition module 101, a first feature extraction module 102, a second feature extraction module 103, a feature splicing module 104, a label prediction module 105, a model update module 106, and Image recognition module 107.
  • the module described in the present invention can also be called a unit, which refers to a series of computer program segments that can be executed by the processor of an electronic device and can complete fixed functions, and are stored in the memory of the electronic device.
  • each module/unit is as follows:
  • the image acquisition module 101 is used to acquire a tissue image sequence and a lesion image sequence of a target pathological tissue;
  • the first feature extraction module 102 is configured to input all the images in the tissue image sequence to a pre-built feature extraction model for feature extraction to obtain a first feature image set;
  • the second feature extraction module 103 is configured to input all images in the lesion image sequence to the pre-built feature extraction model for feature extraction to obtain a second feature image set;
  • the feature splicing module 104 is configured to splice the first feature map and the second feature map to obtain a lesion feature map;
  • the label prediction module 105 is configured to perform image recognition on the lesion feature map to obtain a predicted image label
  • the model update module 106 is used to calculate the loss value between the predicted image label and the preset target pathological label of the target pathological tissue, and update the feature extraction model according to the loss value to obtain the target image Recognition model
  • the image recognition module 107 is configured to obtain an image sequence to be recognized, and use the target image recognition model to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • each module of the CT sequence-based image recognition device is as follows:
  • the image acquisition module 101 is used to acquire a tissue image sequence and a lesion image sequence of a target pathological tissue.
  • the tissue image sequence and the lesion image sequence of the target pathological tissue are composed of multiple tissue images and multiple lesion images.
  • the number of images in the tissue image sequence of the target pathological tissue and the lesion image sequence may be the same or different.
  • the image acquisition module 101 is specifically used for:
  • the CT mask image is multiplied by the lesion segmentation gray image to obtain a lesion image sequence.
  • the embodiment of the present application uses a java sentence with a data capture function to capture the tissue segmentation grayscale image and the lesion segmentation grayscale image of the target pathological tissue from a pre-built database.
  • the CT mask image is an image that only contains 0 and 1 pixel values.
  • the CT mask image is multiplied by the tissue segmentation gray map to obtain multiple pieces of tissue that are completely black and only the tissue can be seen.
  • the image of is the organization image sequence. Multiply the CT mask image with the gray image of the lesion segmentation to obtain multiple black images outside the lesion where only the lesion can be seen, which is the lesion image sequence.
  • the CT sequence-based image recognition device further includes an identity verification module, and the identity verification module is specifically configured to:
  • the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue is performed.
  • the judging whether the user is an authorized user according to the unique identifier and password of the user includes:
  • the unique identifier and password of the user match the pre-stored information, determine that the user is an authorized user, and execute the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue;
  • the user When the unique identifier and password of the user do not match the pre-stored information, the user is determined to be an unauthorized user, and the operation of acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue is not performed.
  • the preferred embodiment of the present application is before acquiring the tissue image sequence and the lesion image sequence of the target pathological tissue. The verification of the user's identity improves the security of the tissue image sequence and the lesion image sequence of the target pathological tissue.
  • the first feature extraction module 102 is configured to input all the images in the tissue image sequence to a pre-built feature extraction model for feature extraction to obtain a first feature image set.
  • the first feature extraction module 102 is specifically configured to:
  • Pooling processing is performed on the first convolutional image set to obtain a first characteristic image set.
  • the use of the feature extraction model to perform convolution processing on all images in the tissue image sequence includes: using a preset convolution kernel matrix in the feature extraction model and each image sequence in the tissue image sequence. The pixels of the image are multiplied.
  • performing pooling processing on the first convolutional image set includes, but is not limited to, maximum pooling, minimum pooling, and average pooling.
  • the second feature extraction module 103 is configured to input all images in the lesion image sequence to the pre-built feature extraction model for feature extraction to obtain a second feature image set.
  • the second feature extraction module 103 is specifically configured to:
  • Pooling is performed on the second convolutional image set to obtain a second characteristic image set.
  • the tissue image sequence and the lesion image sequence are respectively used to train the model, which enhances the diversity of training data and improves the accuracy of image recognition by the target image recognition model.
  • the feature splicing module 104 is configured to splice the first feature map and the second feature map to obtain a lesion feature map.
  • the sizes of the first feature map and the second feature map are the same.
  • the first feature map and the second feature map are geometrically spliced, for example, the first feature map and the second feature map are spliced together according to edges of the same length, and the lesion feature map is obtained after the splicing is completed.
  • the label prediction module 105 is configured to perform image recognition on the lesion feature map to obtain a predicted image label.
  • the predicted image label is an image recognition model that recognizes the type of the lesion in the lesion feature map.
  • the label prediction module 105 is specifically configured to:
  • the predicted image label corresponding to the lesion feature map is generated according to the probability value.
  • the activation function includes, but is not limited to, a sigmoid activation function.
  • the activation function can be used to calculate the probability value that the label of the lesion feature map is a preset label.
  • the predicted image label corresponding to the lesion feature map is generated according to the probability value. For example, when the probability value is "X”, the predicted image label "The probability that the lesion feature map is the target lesion is X" is generated for the lesion feature map.
  • the model update module 106 is used to calculate the loss value between the predicted image label and the preset target pathological label of the target pathological tissue, and update the feature extraction model according to the loss value to obtain the target image Identify the model.
  • model update module 106 is specifically configured to:
  • M is the number of predicted image labels
  • N is the number of preset target pathological labels of the target pathological tissue
  • y ic is the sign indicator variable
  • W is the preset weight coefficient
  • p ic is the i-th lesion feature map is The probability of the target pathological label c is preset.
  • the embodiment of the present application uses a gradient descent algorithm to update the parameters of the feature extraction model. If the loss value between the predicted image label and the preset target pathological label of the target pathological tissue is less than or equal to a preset error, a target image recognition model is obtained.
  • the gradient descent algorithm includes, but is not limited to: a large-batch gradient descent algorithm, a small-batch gradient descent algorithm, and a stochastic gradient descent algorithm.
  • the image recognition module 107 is configured to obtain an image sequence to be recognized, and use the target image recognition model to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • a python sentence with a data capture function is used to obtain the image sequence to be identified from the blockchain node for storing the CT sequence.
  • Using the high data throughput of the blockchain can improve the efficiency of obtaining the image sequence to be identified.
  • the target image recognition model is used to perform image recognition on the image sequence to be recognized, and the recognition result is obtained.
  • the recognition result is the type of the lesion in the image in the image sequence to be recognized.
  • the CT sequence-based image recognition device further includes a push module, and the push module is specifically configured to:
  • the push queue task is implemented by subscriber notification message queue (MQ).
  • MQ subscriber notification message queue
  • multiple recognition results that need to be pushed are processed in batches, so as to ensure that the previous batch of recognition results is pushed and the next batch of recognition is continued to be processed. result.
  • the queue of notification messages from the subscribers can reduce the occupation of computing resources, cut a large amount of data and push them in batches, and avoid the occupation and waste of computing resources due to data congestion.
  • the embodiment of the application obtains the tissue image sequence and the lesion image sequence of the target pathological tissue, and uses all the images in the tissue image sequence and the lesion image sequence as training data to train the feature extraction model to obtain the first feature map and the second feature Figure, splicing the first feature map and the second feature map into a lesion feature map and calculating the loss value of the lesion feature map, updating the feature extraction model according to the loss value to obtain the target image recognition model, using the tissue image sequence and the lesion image respectively
  • the sequence trains the model, which enhances the diversity of training data and improves the accuracy of image recognition by the target image recognition model; obtains the image sequence to be recognized, uses the target image recognition model to perform image recognition on the image sequence to be recognized, and obtains the recognition result.
  • the manual recognition of the image is avoided, and the efficiency of image recognition is improved. Therefore, the image recognition method based on CT sequence proposed in this application can improve the efficiency and accuracy of image recognition.
  • FIG. 6 it is a schematic diagram of the structure of an electronic device that implements the image recognition method based on the CT sequence in this application.
  • the electronic device 1 may include a processor 10, a memory 11, and a bus, and may also include a computer program stored in the memory 11 and running on the processor 10, such as an image recognition program 12 based on a CT sequence.
  • the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, mobile hard disk, multimedia card, card-type memory (such as SD or DX memory, etc.), magnetic memory, magnetic disk, CD etc.
  • the memory 11 may be an internal storage unit of the electronic device 1 in some embodiments, for example, a mobile hard disk of the electronic device 1.
  • the memory 11 may also be an external storage device of the electronic device 1, such as a plug-in mobile hard disk, a smart media card (SMC), and a secure digital (Secure Digital) equipped on the electronic device 1. , SD) card, flash card (Flash Card), etc.
  • the memory 11 may also include both an internal storage unit of the electronic device 1 and an external storage device.
  • the memory 11 can be used not only to store application software and various data installed in the electronic device 1, such as the code of the image recognition program 12 based on the CT sequence, etc., but also to temporarily store data that has been output or will be output.
  • the processor 10 may be composed of integrated circuits in some embodiments, for example, may be composed of a single packaged integrated circuit, or may be composed of multiple integrated circuits with the same function or different functions, including one or more Combinations of central processing unit (CPU), microprocessor, digital processing chip, graphics processor, and various control chips, etc.
  • the processor 10 is the control unit of the electronic device, which uses various interfaces and lines to connect the various components of the entire electronic device, and runs or executes programs or modules stored in the memory 11 (such as executing Image recognition programs based on the CT sequence, etc.), and call data stored in the memory 11 to execute various functions of the electronic device 1 and process data.
  • the bus may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the bus is configured to implement connection and communication between the memory 11 and at least one processor 10 and the like.
  • FIG. 6 only shows an electronic device with components. Those skilled in the art can understand that the structure shown in FIG. 6 does not constitute a limitation on the electronic device 1, and may include fewer or more components than shown in the figure. Components, or a combination of certain components, or different component arrangements.
  • the electronic device 1 may also include a power source (such as a battery) for supplying power to various components.
  • the power source may be logically connected to the at least one processor 10 through a power management device, thereby controlling power
  • the device implements functions such as charge management, discharge management, and power consumption management.
  • the power supply may also include any components such as one or more DC or AC power supplies, recharging devices, power failure detection circuits, power converters or inverters, and power status indicators.
  • the electronic device 1 may also include various sensors, Bluetooth modules, Wi-Fi modules, etc., which will not be repeated here.
  • the electronic device 1 may also include a network interface.
  • the network interface may include a wired interface and/or a wireless interface (such as a WI-FI interface, a Bluetooth interface, etc.), which is usually used in the electronic device 1 Establish a communication connection with other electronic devices.
  • the electronic device 1 may also include a user interface.
  • the user interface may be a display (Display) and an input unit (such as a keyboard (Keyboard)).
  • the user interface may also be a standard wired interface or a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) touch device, etc.
  • the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the electronic device 1 and to display a visualized user interface.
  • the CT sequence-based image recognition program 12 stored in the memory 11 in the electronic device 1 is a combination of multiple computer programs. When running in the processor 10, it can realize:
  • the image sequence to be recognized is acquired, and the target image recognition model is used to perform image recognition on the image sequence to be recognized to obtain a recognition result.
  • the integrated module/unit of the electronic device 1 can be stored in a computer readable storage medium. It can be non-volatile or volatile.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) .
  • the computer usable storage medium may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required by at least one function, etc.; the storage data area may store a block chain node Use the created data, etc.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional modules.
  • the blockchain referred to in this application is a new application mode of computer technology such as distributed data storage, point-to-point transmission, consensus mechanism, and encryption algorithm.
  • Blockchain essentially a decentralized database, is a series of data blocks associated with cryptographic methods. Each data block contains a batch of network transaction information for verification. The validity of the information (anti-counterfeiting) and the generation of the next block.
  • the blockchain can include the underlying platform of the blockchain, the platform product service layer, and the application service layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Computer Hardware Design (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种基于CT序列的图像识别方法、装置及计算机可读存储介质,涉及机器学习技术,该方法包括:获取目标病理组织的组织图像序列和病灶图像序列;对组织图像序列和病灶图像序列进行特征提取,将第一特征图像集和二特征图像集拼接为病灶特征图;生成病灶特征图的预测图像标签;计算预测图像标签和预置目标病理标签之间的损失值,根据损失值对特征提取模型进行更新得到目标图像识别模型;利用目标图像识别模型对待识别图像序列进行图像识别,得到识别结果。该方法还涉及区块链技术,待识别图像序列可存储于区块链节点中。该方法可以应用于医学图像的识别,可提高图像识别的效率和精确度。

Description

基于CT序列的图像识别方法、装置、电子设备及介质
本申请要求于2020年9月22日提交中国专利局、申请号为202011001690.4,发明名称为“基于CT序列的图像识别方法、装置、电子设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器学习技术领域,尤其涉及一种基于CT序列的图像识别方法、装置、电子设备及计算机可读存储介质。
背景技术
2020年初新冠疫情突袭武汉,在二月份武汉医疗及检测资源极度紧张,且核酸检测的敏感度较低等情况下,为“早发现,早隔离”,使用CT影像诊断新冠肺炎被提出。
现有技术中,对病人的CT影像进行新冠检测时,需要利用整个CT的所有序列。对于一个CT序列,有薄层厚层之分,厚层五六十张图像,薄层多则达五百张图像,发明人意识到即使相同厚度的CT每个病人的层数也不相同,医生会耗费至少二三十分钟才能完成一次诊断,诊断效率不能满足实际情况的实时性。同同时,大量的时间也消耗医生大量的精力,容易出现漏诊误诊的情况,从而导致诊断的效率和准确度都不高。因此,如何提高利用CT鉴别新冠肺炎及其他肺炎的效率和精确度,成为了亟待解决的问题。
发明内容
本申请提供的一种基于CT序列的图像识别方法,包括:
获取目标病理组织的组织图像序列和病灶图像序列;
将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
对所述病灶特征图进行图像识别,得到预测图像标签;
计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
一种基于CT序列的图像识别装置,所述装置包括:
图像获取模块,用于获取目标病理组织的组织图像序列和病灶图像序列;
第一特征提取模块,用于将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
第二特征提取模块,用于将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
特征拼接模块,用于将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
标签预测模块,用于对所述病灶特征图进行图像识别,得到预测图像标签;
模型更新模块,用于计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
图像识别模块,用于获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
一种电子设备,所述电子设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行如下步骤:
获取目标病理组织的组织图像序列和病灶图像序列;
将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
对所述病灶特征图进行图像识别,得到预测图像标签;
计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
一种计算机可读存储介质,包括存储数据区和存储程序区,其中,所述存储数据区存储创建的数据,所述存储程序区存储有计算机程序;其中,所述计算机程序被处理器执行时实现如下步骤:
获取目标病理组织的组织图像序列和病灶图像序列;
将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
对所述病灶特征图进行图像识别,得到预测图像标签;
计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
附图说明
图1为本申请一实施例提供的基于CT序列的图像识别方法的流程示意图;
图2为本申请一实施例提供的获取目标病理组织的组织图像序列和病灶图像序列的流程示意图;
图3为本申请一实施例提供的将组织图像序列输入至特征提取模型进行特征提取的流程示意图;
图4为本申请一实施例提供的生成预测图像标签的流程示意图;
图5为本申请一实施例提供的基于CT序列的图像识别装置的模块示意图;
图6为本申请一实施例提供的实现基于CT序列的图像识别方法的电子设备的内部结构示意图;
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的基于CT序列的图像识别方法的执行主体包括但不限于服务端、 终端等能够被配置为执行本申请实施例提供的该方法的电子设备中的至少一种。换言之,所述基于CT序列的图像识别方法可以由安装在终端设备或服务端设备的软件或硬件来执行,所述软件可以是区块链平台。所述服务端包括但不限于:单台服务器、服务器集群、云端服务器或云端服务器集群等。
本申请提供一种基于CT序列的图像识别方法。参照图1所示,为本申请一实施例提供的基于CT序列的图像识别方法的流程示意图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,基于CT序列的图像识别方法包括:
S1、获取目标病理组织的组织图像序列和病灶图像序列。
本申请实施例中,所述目标病理组织的组织图像序列和病灶图像序列由多张组织图像和多张病灶图像组成。所述目标病理组织的组织图像序列和病灶图像序列中图像数量可以相同也可以不同。
图2为本申请一实施例提供的获取目标病理组织的组织图像序列和病灶图像序列的流程示意图。
详细地,参见图2所示,所述获取目标病理组织的组织图像序列和病灶图像序列,包括:
S10、获取目标病理组织的组织分割灰度图和病灶分割灰度图;
S11、利用预设的CT掩膜图像与所述组织分割灰度图相乘,得到组织图像序列;
S12、利用所述CT掩膜图像与所述病灶分割灰度图相乘,得到病灶图像序列。
具体地,本申请实施例利用具有数据抓取功能的java语句从预先构建的数据库中抓取目标病理组织的组织分割灰度图和病灶分割灰度图。
本申请实施例中,所述CT掩膜图像为仅包含0、1像素值的图像,利用CT掩膜图像与组织分割灰度图相乘,得到多张组织外全黑的只能看到组织的图像,即为组织图像序列。利用CT掩膜图像与病灶分割灰度图相乘,得到多张病灶外全黑的只能看到病灶的图像,即为病灶图像序列。
本申请一可选实施例中,所述获取目标病理组织的组织图像序列和病灶图像序列之前,所述方法还包括:
接收识别所述目标病理组织的病灶的的图像识别请求;
提取所述图像识别请求中的用户信息,所述用户信息包括用户的唯一标识和密码;
根据所述用户的唯一标识和密码判断所述用户是否为授权用户;
若所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
详细地,所述根据所述用户的唯一标识和密码判断所述用户是否为授权用户,包括:
在所述用户的唯一标识及密码与预先存储信息都匹配时,确定所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作;
在所述用户的唯一标识及密码与预先存储信息都不匹配时,确定所述用户为非授权用户,不执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
由于目标病理组织的组织图像序列和病灶图像序列具有一定的隐私性,因此,通常这些数据的保密性需求较高,本申请较佳实施例在获取目标病理组织的组织图像序列和病灶图像序列之前对用户身份进行校验,提高了目标病理组织的组织图像序列和病灶图像序列的安全性。
S2、将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集。
图3为本申请一实施例提供的将组织图像序列输入至特征提取模型进行特征提取的流程示意图。
本申请实施例中,参图3所示,所述将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集,包括:
S20、利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理,得到第一卷积图像集;
S21、对所述第一卷积图像集进行池化处理,得到第一特征图像集。
详细地,本申请实施例中,所述利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理包括:利用特征提取模型中预设的卷积核矩阵与组织图像序列中每张图像的像素进行乘积。
具体地,对所述第一卷积图像集进行池化处理包括但不限于最大池化、最小池化和平均池化。
S3、将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集。
与得到第一特征图像集类似地,本申请实施例中,所述将所述病灶图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第二征图像集,包括:
利用所述特征提取模型对所述病灶图像序列中所有图像进行卷积处理,得到第二卷积图像集;
对所述第二卷积图像集进行池化处理,得到第二特征图像集。
本申请实施例中分别利用组织图像序列和病灶图像序列对模型进行训练,增强了训练数据的多样性,提高了目标图像识别模型对图像识别的精确度。
S4、将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图。
本申请实施例中,由于所述第一特征图与所述第二特征图为同一特征提取网络的输出,因此第一特征图与第二特征图的尺寸一致。
本申请实施例将所述第一特征图与第二特征图进行几何拼接,例如,将第一特征图和第二特征图按照长度相同的边拼接在一起,拼接完成后得到病灶特征图。
S5、对所述病灶特征图进行图像识别,得到预测图像标签。
本申请实施例中,所述预测图像标签是图像识别模型对病灶特征图中的病灶的类型进行识别。
图4为本申请一实施例提供的生成预测图像标签的流程示意图。
具体的,参见图4所示,所述对所述病灶特征图进行图像识别,得到预测图像标签,包括:
S50、利用激活函数计算所述病灶特征图的标签为预设标签的概率值;
S51、根据所述概率值生成所述病灶特征图对应的预测图像标签。
详细地,所述激活函数包括但不限于sigmoid激活函数,利用激活函数可计算得到病灶特征图的标签为预设标签的概率值。
本申请实施例中,根据所述概率值生成所述病灶特征图对应的预测图像标签。例如,当概率值为“X”时,对所述病灶特征图生成预测图像标签“病灶特征图为目标病灶的概率为X”。
S6、计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型。
本申请实施例中,所述计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,包括:
利用如下损失函数计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值L cls
Figure PCTCN2020125461-appb-000001
其中,M为预测图像标签的数量,N为目标病理组织的预置目标病理标签的数量;y ic是正负号指示变量,W为预设权重系数,p ic为第i个病灶特征图为预置目标病理标签c的概率。
进一步地,若所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值大于预设误差,本申请实施例利用梯度下降算法对所述特征提取模型的参数进行更新,若所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值小于或等于预设误差,得到目标图像识别模型。
详细地,所述梯度下降算法包括但不限于:大批量梯度下降算法、小批量梯度下降算法、随机梯度下降算法。
S7、获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
本申请实施例中,利用具有数据抓取功能的python语句从用于存储CT序列的区块链节点中获取待识别图像序列。利用区块链的数据高吞吐性,可提高获取待识别图像序列的效率。
本申请实施例利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。所述识别结果为待识别图像序列中的图像中的病灶类型。
本申请一较佳实施例中,所述得到识别结果之后,所述方法还包括:
获取推送队列任务;
根据所述推送队列任务确定推送顺序;
根据所述推送顺序向用户推送所述识别结果。
实际应用中,需要对多个待识别图像序列进行图像识别,得到多个识别结果,在推送识别结果时,通过设置推送队列任务能够防止因同时对多个识别结果进行推送操作而造成的数据推送过程拥塞,提高了对多个识别结果进行推送处理的效率。
优选地,所述推送队列任务采用订阅方通知消息列队(MQ)实现,具体的,通过分批处理多份需要推送的识别结果,从而确保前一批识别结果推送结束再继续处理后一批识别结果。
通过订阅方通知消息列队可以降低计算资源占用,将大量的数据进行切割并分批进行推送,避免因为数据拥塞而导致计算资源的占用与浪费。
本申请实施例通过获取目标病理组织的组织图像序列和病灶图像序列,分别利用组织图像序列和病灶图像序列中的所有图像作为训练数据对特征提取模型进行训练,得到第一特征图和第二特征图,将第一特征图与第二特征图拼接为病灶特征图并计算病灶特征图的损失值,根据损失值对特征提取模型进行更新,得到目标图像识别模型,分别利用组织图像序列和病灶图像序列对模型进行训练,增强了训练数据的多样性,提高了目标图像识别模型对图像识别的精确度;获取待识别图像序列,利用目标图像识别模型对待识别图像序列进行图像识别,得到识别结果,无需人工对图像进行一一检测识别,提高了图像识别的效率。因此本申请提出的基于CT序列的图像识别方法,可以提高图像识别的效率和精确度。
如图5所示,是本申请基于CT序列的图像识别装置的模块示意图。
本申请所述基于CT序列的图像识别装置100可以安装于电子设备中。根据实现的功能,所述基于CT序列的图像识别装置可以包括图像获取模块101、第一特征提取模块102、第二特征提取模块103、特征拼接模块104、标签预测模块105、模型更新模块106和图像识别模块107。本发所述模块也可以称之为单元,是指一种能够被电子设备处理器所执行,并且能够完成固定功能的一系列计算机程序段,其存储在电子设备的存储器中。
在本实施例中,关于各模块/单元的功能如下:
所述图像获取模块101,用于获取目标病理组织的组织图像序列和病灶图像序列;
所述第一特征提取模块102,用于将所述组织图像序列中所有图像输入至预先构建的 特征提取模型进行特征提取,得到第一特征图像集;
所述第二特征提取模块103,用于将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
所述特征拼接模块104,用于将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
所述标签预测模块105,用于对所述病灶特征图进行图像识别,得到预测图像标签;
所述模型更新模块106,用于计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
所述图像识别模块107,用于获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
详细地,所述基于CT序列的图像识别装置各模块的具体实施方式如下:
所述图像获取模块101,用于获取目标病理组织的组织图像序列和病灶图像序列。
本申请实施例中,所述目标病理组织的组织图像序列和病灶图像序列由多张组织图像和多张病灶图像组成。所述目标病理组织的组织图像序列和病灶图像序列中图像数量可以相同也可以不同。
详细地,所述图像获取模块101具体用于:
获取目标病理组织的组织分割灰度图和病灶分割灰度图;
利用预设的CT掩膜图像与所述组织分割灰度图相乘,得到组织图像序列;
利用所述CT掩膜图像与所述病灶分割灰度图相乘,得到病灶图像序列。
具体地,本申请实施例利用具有数据抓取功能的java语句从预先构建的数据库中抓取目标病理组织的组织分割灰度图和病灶分割灰度图。
本申请实施例中,所述CT掩膜图像为仅包含0、1像素值的图像,利用CT掩膜图像与组织分割灰度图相乘,得到多张组织外全黑的只能看到组织的图像,即为组织图像序列。利用CT掩膜图像与病灶分割灰度图相乘,得到多张病灶外全黑的只能看到病灶的图像,即为病灶图像序列。
本申请一可选实施例中,所述基于CT序列的图像识别装置还包括身份验证模块,所述身份验证模块具体用于:
接收识别所述目标病理组织的病灶的的图像识别请求;
提取所述图像识别请求中的用户信息,所述用户信息包括用户的唯一标识和密码;
根据所述用户的唯一标识和密码判断所述用户是否为授权用户;
若所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
详细地,所述根据所述用户的唯一标识和密码判断所述用户是否为授权用户,包括:
在所述用户的唯一标识及密码与预先存储信息都匹配时,确定所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作;
在所述用户的唯一标识及密码与预先存储信息都不匹配时,确定所述用户为非授权用户,不执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
由于目标病理组织的组织图像序列和病灶图像序列具有一定的隐私性,因此,通常这些数据的保密性需求较高,本申请较佳实施例在获取目标病理组织的组织图像序列和病灶图像序列之前对用户身份进行校验,提高了目标病理组织的组织图像序列和病灶图像序列的安全性。
所述第一特征提取模块102,用于将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集。
本申请实施例中,所述第一特征提取模块102具体用于:
利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理,得到第一卷积图像集;
对所述第一卷积图像集进行池化处理,得到第一特征图像集。
详细地,本申请实施例中,所述利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理包括:利用特征提取模型中预设的卷积核矩阵与组织图像序列中每张图像的像素进行乘积。
具体地,对所述第一卷积图像集进行池化处理包括但不限于最大池化、最小池化和平均池化。
所述第二特征提取模块103,用于将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集。
本申请实施例中,所述第二特征提取模块103具体用于:
利用所述特征提取模型对所述病灶图像序列中所有图像进行卷积处理,得到第二卷积图像集;
对所述第二卷积图像集进行池化处理,得到第二特征图像集。
本申请实施例中分别利用组织图像序列和病灶图像序列对模型进行训练,增强了训练数据的多样性,提高了目标图像识别模型对图像识别的精确度。
所述特征拼接模块104,用于将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图。
本申请实施例中,由于所述第一特征图与所述第二特征图为同一特征提取网络的输出,因此第一特征图与第二特征图的尺寸一致。
本申请实施例将所述第一特征图与第二特征图进行几何拼接,例如,将第一特征图和第二特征图按照长度相同的边拼接在一起,拼接完成后得到病灶特征图。
所述标签预测模块105,用于对所述病灶特征图进行图像识别,得到预测图像标签。
本申请实施例中,所述预测图像标签是图像识别模型对病灶特征图中的病灶的类型进行识别。
本申请实施例中,所述标签预测模块105具体用于:
利用激活函数计算所述病灶特征图的标签为预设标签的概率值;
根据所述概率值生成所述病灶特征图对应的预测图像标签。
详细地,所述激活函数包括但不限于sigmoid激活函数,利用激活函数可计算得到病灶特征图的标签为预设标签的概率值。
本申请实施例中,根据所述概率值生成所述病灶特征图对应的预测图像标签。例如,当概率值为“X”时,对所述病灶特征图生成预测图像标签“病灶特征图为目标病灶的概率为X”。
所述模型更新模块106,用于计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型。
本申请实施例中,所述模型更新模块106具体用于:
利用如下损失函数计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值L cls
Figure PCTCN2020125461-appb-000002
其中,M为预测图像标签的数量,N为目标病理组织的预置目标病理标签的数量;y ic是正负号指示变量,W为预设权重系数,p ic为第i个病灶特征图为预置目标病理标签c的概率。
进一步地,若所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值大于预设误差,本申请实施例利用梯度下降算法对所述特征提取模型的参数进行更新, 若所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值小于或等于预设误差,得到目标图像识别模型。
详细地,所述梯度下降算法包括但不限于:大批量梯度下降算法、小批量梯度下降算法、随机梯度下降算法。
所述图像识别模块107,用于获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
本申请实施例中,利用具有数据抓取功能的python语句从用于存储CT序列的区块链节点中获取待识别图像序列。利用区块链的数据高吞吐性,可提高获取待识别图像序列的效率。
本申请实施例利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。所述识别结果为待识别图像序列中的图像中的病灶类型。
本申请一较佳实施例中,所述基于CT序列的图像识别装置还包括推送模块,所述推送模块具体用于:
得到识别结果之后,获取推送队列任务;
根据所述推送队列任务确定推送顺序;
根据所述推送顺序向用户推送所述识别结果。
实际应用中,需要对多个待识别图像序列进行图像识别,得到多个识别结果,在推送识别结果时,通过设置推送队列任务能够防止因同时对多个识别结果进行推送操作而造成的数据推送过程拥塞,提高了对多个识别结果进行推送处理的效率。
优选地,所述推送队列任务采用订阅方通知消息列队(MQ)实现,具体的,通过分批处理多份需要推送的识别结果,从而确保前一批识别结果推送结束再继续处理后一批识别结果。
通过订阅方通知消息列队可以降低计算资源占用,将大量的数据进行切割并分批进行推送,避免因为数据拥塞而导致计算资源的占用与浪费。
本申请实施例通过获取目标病理组织的组织图像序列和病灶图像序列,分别利用组织图像序列和病灶图像序列中的所有图像作为训练数据对特征提取模型进行训练,得到第一特征图和第二特征图,将第一特征图与第二特征图拼接为病灶特征图并计算病灶特征图的损失值,根据损失值对特征提取模型进行更新,得到目标图像识别模型,分别利用组织图像序列和病灶图像序列对模型进行训练,增强了训练数据的多样性,提高了目标图像识别模型对图像识别的精确度;获取待识别图像序列,利用目标图像识别模型对待识别图像序列进行图像识别,得到识别结果,避免了人工对图像进行识别,提高了图像识别的效率。因此本申请提出的基于CT序列的图像识别方法,可以提高图像识别的效率和精确度。
如图6所示,是本申请实现基于CT序列的图像识别方法的电子设备的结构示意图。
所述电子设备1可以包括处理器10、存储器11和总线,还可以包括存储在所述存储器11中并可在所述处理器10上运行的计算机程序,如基于CT序列的图像识别程序12。
其中,所述存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、移动硬盘、多媒体卡、卡型存储器(例如:SD或DX存储器等)、磁性存储器、磁盘、光盘等。所述存储器11在一些实施例中可以是电子设备1的内部存储单元,例如该电子设备1的移动硬盘。所述存储器11在另一些实施例中也可以是电子设备1的外部存储设备,例如电子设备1上配备的插接式移动硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)等。进一步地,所述存储器11还可以既包括电子设备1的内部存储单元也包括外部存储设备。所述存储器11不仅可以用于存储安装于电子设备1的应用软件及各类数据,例如基于CT序列的图像识别程序12的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
所述处理器10在一些实施例中可以由集成电路组成,例如可以由单个封装的集成电 路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。所述处理器10是所述电子设备的控制核心(Control Unit),利用各种接口和线路连接整个电子设备的各个部件,通过运行或执行存储在所述存储器11内的程序或者模块(例如执行基于CT序列的图像识别程序等),以及调用存储在所述存储器11内的数据,以执行电子设备1的各种功能和处理数据。
所述总线可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。所述总线被设置为实现所述存储器11以及至少一个处理器10等之间的连接通信。
图6仅示出了具有部件的电子设备,本领域技术人员可以理解的是,图6示出的结构并不构成对所述电子设备1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
例如,尽管未示出,所述电子设备1还可以包括给各个部件供电的电源(比如电池),优选地,电源可以通过电源管理装置与所述至少一个处理器10逻辑相连,从而通过电源管理装置实现充电管理、放电管理、以及功耗管理等功能。电源还可以包括一个或一个以上的直流或交流电源、再充电装置、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。所述电子设备1还可以包括多种传感器、蓝牙模块、Wi-Fi模块等,在此不再赘述。
进一步地,所述电子设备1还可以包括网络接口,可选地,所述网络接口可以包括有线接口和/或无线接口(如WI-FI接口、蓝牙接口等),通常用于在该电子设备1与其他电子设备之间建立通信连接。
可选地,该电子设备1还可以包括用户接口,用户接口可以是显示器(Display)、输入单元(比如键盘(Keyboard)),可选地,用户接口还可以是标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子设备1中处理的信息以及用于显示可视化的用户界面。
应该了解,所述实施例仅为说明之用,在专利申请范围上并不受此结构的限制。
所述电子设备1中的所述存储器11存储的基于CT序列的图像识别程序12是多个计算机程序的组合,在所述处理器10中运行时,可以实现:
获取目标病理组织的组织图像序列和病灶图像序列;
将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
对所述病灶特征图进行图像识别,得到预测图像标签;
计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
进一步地,所述电子设备1集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中,所述计算机可读存储介质可以是非易失性,也可以是易失性。所述计算机可读介质可以包括:能够携带所述计 算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)。
进一步地,所述计算机可用存储介质可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据区块链节点的使用所创建的数据等。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。
因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附关联图表记视为限制所涉及的权利要求。
本申请所指区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(Blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。区块链可以包括区块链底层平台、平台产品服务层以及应用服务层等。
此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (20)

  1. 一种基于CT序列的图像识别方法,其中,所述方法包括:
    获取目标病理组织的组织图像序列和病灶图像序列;
    将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
    将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
    将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
    对所述病灶特征图进行图像识别,得到预测图像标签;
    计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
    获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
  2. 如权利要求1所述的基于CT序列的图像识别方法,其中,所述获取目标病理组织的组织图像序列和病灶图像序列,包括:
    获取目标病理组织的组织分割灰度图和病灶分割灰度图;
    利用预设的CT掩膜图像与所述组织分割灰度图相乘,得到组织图像序列;
    利用所述CT掩膜图像与所述病灶分割灰度图相乘,得到病灶图像序列。
  3. 如权利要求1所述的基于CT序列的图像识别方法,其中,所述获取目标病理组织的组织图像序列和病灶图像序列之前,所述方法还包括:
    接收识别所述目标病理组织的病灶的的图像识别请求;
    提取所述图像识别请求中的用户信息,所述用户信息包括用户的唯一标识和密码;
    根据所述用户的唯一标识和密码判断所述用户是否为授权用户;
    若所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
  4. 如权利要求1所述的基于CT序列的图像识别方法,其中,所述将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集,包括:
    利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理,得到第一卷积图像集;
    对所述第一卷积图像集进行池化处理,得到第一特征图像集。
  5. 如权利要求1所述的基于CT序列的图像识别方法,其中,所述得到识别结果之后,所述方法还包括:
    获取推送队列任务;
    根据所述推送队列任务确定推送顺序;
    根据所述推送顺序向用户推送所述识别结果。
  6. 如权利要求1至5中任一项所述的基于CT序列的图像识别方法,其中,所述对所述病灶特征图进行图像识别,得到预测图像标签,包括:
    利用激活函数计算所述病灶特征图的标签为预设标签的概率值;
    根据所述概率值生成所述病灶特征图对应的预测图像标签。
  7. 如权利要求1所述的基于CT序列的图像识别方法,其中,所述计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,包括:
    利用如下损失函数计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值L cls
    Figure PCTCN2020125461-appb-100001
    其中,M为预测图像标签的数量,N为目标病理组织的预置目标病理标签的数量;y ic是正负号指示变量,W为预设权重系数,p ic为第i个病灶特征图为预置目标病理标签c的概率。
  8. 一种基于CT序列的图像识别装置,其中,所述装置包括:
    图像获取模块,用于获取目标病理组织的组织图像序列和病灶图像序列;
    第一特征提取模块,用于将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
    第二特征提取模块,用于将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
    特征拼接模块,用于将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
    标签预测模块,用于对所述病灶特征图进行图像识别,得到预测图像标签;
    模型更新模块,用于计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
    图像识别模块,用于获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
  9. 一种电子设备,其中,所述电子设备包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行如下步骤:
    获取目标病理组织的组织图像序列和病灶图像序列;
    将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
    将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
    将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
    对所述病灶特征图进行图像识别,得到预测图像标签;
    计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
    获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
  10. 如权利要求9所述的电子设备,其中,所述获取目标病理组织的组织图像序列和病灶图像序列,包括:
    获取目标病理组织的组织分割灰度图和病灶分割灰度图;
    利用预设的CT掩膜图像与所述组织分割灰度图相乘,得到组织图像序列;
    利用所述CT掩膜图像与所述病灶分割灰度图相乘,得到病灶图像序列。
  11. 如权利要求9所述的电子设备,其中,所述获取目标病理组织的组织图像序列和病灶图像序列之前,所述方法还包括:
    接收识别所述目标病理组织的病灶的的图像识别请求;
    提取所述图像识别请求中的用户信息,所述用户信息包括用户的唯一标识和密码;
    根据所述用户的唯一标识和密码判断所述用户是否为授权用户;
    若所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
  12. 如权利要求9所述的电子设备,其中,所述将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集,包括:
    利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理,得到第一卷积图像集;
    对所述第一卷积图像集进行池化处理,得到第一特征图像集。
  13. 如权利要求9所述的电子设备,其中,所述得到识别结果之后,所述方法还包括:
    获取推送队列任务;
    根据所述推送队列任务确定推送顺序;
    根据所述推送顺序向用户推送所述识别结果。
  14. 如权利要求9至13中任一项所述的电子设备,其中,所述对所述病灶特征图进行图像识别,得到预测图像标签,包括:
    利用激活函数计算所述病灶特征图的标签为预设标签的概率值;
    根据所述概率值生成所述病灶特征图对应的预测图像标签。
  15. 如权利要求9所述的电子设备,其中,所述计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,包括:
    利用如下损失函数计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值L cls
    Figure PCTCN2020125461-appb-100002
    其中,M为预测图像标签的数量,N为目标病理组织的预置目标病理标签的数量;y ic是正负号指示变量,W为预设权重系数,p ic为第i个病灶特征图为预置目标病理标签c的概率。
  16. 一种计算机可读存储介质,包括存储数据区和存储程序区,其中,所述存储数据区存储创建的数据,所述存储程序区存储有计算机程序;其中,所述计算机程序被处理器执行时实现如下步骤:
    获取目标病理组织的组织图像序列和病灶图像序列;
    将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集;
    将所述病灶图像序列中所有图像输入至所述预先构建的特征提取模型进行特征提取,得到第二特征图像集;
    将所述第一特征图与所述第二特征图进行拼接,得到病灶特征图;
    对所述病灶特征图进行图像识别,得到预测图像标签;
    计算所述预测图像标签和所述目标病理组织的预置目标病理标签之间的损失值,根据所述损失值对所述特征提取模型进行更新,得到目标图像识别模型;
    获取待识别图像序列,利用所述目标图像识别模型对所述待识别图像序列进行图像识别,得到识别结果。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述获取目标病理组织的组织图像序列和病灶图像序列,包括:
    获取目标病理组织的组织分割灰度图和病灶分割灰度图;
    利用预设的CT掩膜图像与所述组织分割灰度图相乘,得到组织图像序列;
    利用所述CT掩膜图像与所述病灶分割灰度图相乘,得到病灶图像序列。
  18. 如权利要求16所述的计算机可读存储介质,其中,所述获取目标病理组织的组织图像序列和病灶图像序列之前,所述方法还包括:
    接收识别所述目标病理组织的病灶的的图像识别请求;
    提取所述图像识别请求中的用户信息,所述用户信息包括用户的唯一标识和密码;
    根据所述用户的唯一标识和密码判断所述用户是否为授权用户;
    若所述用户为授权用户,执行所述获取目标病理组织的组织图像序列和病灶图像序列的操作。
  19. 如权利要求16所述的计算机可读存储介质,其中,所述将所述组织图像序列中所有图像输入至预先构建的特征提取模型进行特征提取,得到第一特征图像集,包括:
    利用所述特征提取模型对所述组织图像序列中所有图像进行卷积处理,得到第一卷积图像集;
    对所述第一卷积图像集进行池化处理,得到第一特征图像集。
  20. 如权利要求16所述的计算机可读存储介质,其中,所述得到识别结果之后,所述方法还包括:
    获取推送队列任务;
    根据所述推送队列任务确定推送顺序;
    根据所述推送顺序向用户推送所述识别结果。
PCT/CN2020/125461 2020-09-22 2020-10-30 基于ct序列的图像识别方法、装置、电子设备及介质 WO2021189855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011001690.4A CN111932562B (zh) 2020-09-22 2020-09-22 基于ct序列的图像识别方法、装置、电子设备及介质
CN202011001690.4 2020-09-22

Publications (1)

Publication Number Publication Date
WO2021189855A1 true WO2021189855A1 (zh) 2021-09-30

Family

ID=73334641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125461 WO2021189855A1 (zh) 2020-09-22 2020-10-30 基于ct序列的图像识别方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN111932562B (zh)
WO (1) WO2021189855A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114429493A (zh) * 2022-01-26 2022-05-03 数坤(北京)网络科技股份有限公司 影像序列处理方法、装置、电子设备及存储介质
CN114722925A (zh) * 2022-03-22 2022-07-08 北京安德医智科技有限公司 病灶分类装置与非易失性计算机可读存储介质
CN114782321A (zh) * 2022-03-24 2022-07-22 北京医准智能科技有限公司 胸部ct影像选择方法、装置、设备及存储介质
CN116030201A (zh) * 2023-03-28 2023-04-28 美众(天津)科技有限公司 多颜色发型演示图像的生成方法、装置、终端及存储介质
CN116486196A (zh) * 2023-03-17 2023-07-25 哈尔滨工业大学(深圳) 病灶分割模型训练方法、病灶分割方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516210B (zh) * 2021-09-14 2021-12-17 之江实验室 一种基于pet/ct的肺腺癌鳞癌诊断模型训练方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106780475A (zh) * 2016-12-27 2017-05-31 北京市计算中心 一种基于病理组织切片图像组织区域的图像处理方法及装置
US20170372471A1 (en) * 2016-06-28 2017-12-28 Contextvision Ab Method and system for detecting pathological anomalies in a digital pathology image and method for annotating a tissue slide
CN108257674A (zh) * 2018-01-24 2018-07-06 龙马智芯(珠海横琴)科技有限公司 疾病预测方法和装置、设备、计算机可读存储介质
CN109671049A (zh) * 2018-11-07 2019-04-23 哈尔滨工业大学(深圳) 一种医学图像处理方法、系统、设备、存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109685066B (zh) * 2018-12-24 2021-03-09 中国矿业大学(北京) 一种基于深度卷积神经网络的矿井目标检测与识别方法
CN111414916B (zh) * 2020-02-29 2024-05-31 中国平安财产保险股份有限公司 图像中文本内容提取生成方法、装置及可读存储介质
CN111429460B (zh) * 2020-06-12 2020-09-22 腾讯科技(深圳)有限公司 图像分割方法、图像分割模型训练方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170372471A1 (en) * 2016-06-28 2017-12-28 Contextvision Ab Method and system for detecting pathological anomalies in a digital pathology image and method for annotating a tissue slide
CN106780475A (zh) * 2016-12-27 2017-05-31 北京市计算中心 一种基于病理组织切片图像组织区域的图像处理方法及装置
CN108257674A (zh) * 2018-01-24 2018-07-06 龙马智芯(珠海横琴)科技有限公司 疾病预测方法和装置、设备、计算机可读存储介质
CN109671049A (zh) * 2018-11-07 2019-04-23 哈尔滨工业大学(深圳) 一种医学图像处理方法、系统、设备、存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114429493A (zh) * 2022-01-26 2022-05-03 数坤(北京)网络科技股份有限公司 影像序列处理方法、装置、电子设备及存储介质
CN114429493B (zh) * 2022-01-26 2023-05-09 数坤(北京)网络科技股份有限公司 影像序列处理方法、装置、电子设备及存储介质
CN114722925A (zh) * 2022-03-22 2022-07-08 北京安德医智科技有限公司 病灶分类装置与非易失性计算机可读存储介质
CN114782321A (zh) * 2022-03-24 2022-07-22 北京医准智能科技有限公司 胸部ct影像选择方法、装置、设备及存储介质
CN114782321B (zh) * 2022-03-24 2022-12-06 北京医准智能科技有限公司 胸部ct影像选择方法、装置、设备及存储介质
CN116486196A (zh) * 2023-03-17 2023-07-25 哈尔滨工业大学(深圳) 病灶分割模型训练方法、病灶分割方法及装置
CN116486196B (zh) * 2023-03-17 2024-01-23 哈尔滨工业大学(深圳) 病灶分割模型训练方法、病灶分割方法及装置
CN116030201A (zh) * 2023-03-28 2023-04-28 美众(天津)科技有限公司 多颜色发型演示图像的生成方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN111932562A (zh) 2020-11-13
CN111932562B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2021189855A1 (zh) 基于ct序列的图像识别方法、装置、电子设备及介质
CN112148577B (zh) 数据异常检测方法、装置、电子设备及存储介质
WO2021189912A1 (zh) 图像中目标物的检测方法、装置、电子设备及存储介质
WO2022105179A1 (zh) 生物特征图像识别方法、装置、电子设备及可读存储介质
CN113283446B (zh) 图像中目标物识别方法、装置、电子设备及存储介质
CN111652279B (zh) 基于时序数据的行为评价方法、装置及可读存储介质
CN111694844B (zh) 基于配置算法的企业运行数据分析方法、装置及电子设备
CN113705462B (zh) 人脸识别方法、装置、电子设备及计算机可读存储介质
CN112137591B (zh) 基于视频流的目标物位置检测方法、装置、设备及介质
CN112446544A (zh) 交通流预测模型训练方法、装置、电子设备及存储介质
CN112507934A (zh) 活体检测方法、装置、电子设备及存储介质
CN113806434B (zh) 大数据处理方法、装置、设备及介质
CN111862096A (zh) 图像分割方法、装置、电子设备及存储介质
CN111694843B (zh) 缺失号码检测方法、装置、电子设备及存储介质
CN111696663A (zh) 疾病风险的分析方法、装置、电子设备及计算机存储介质
CN112668575A (zh) 关键信息提取方法、装置、电子设备及存储介质
CN112017763B (zh) 医疗影像数据传输方法、装置、设备及介质
CN112990374A (zh) 图像分类方法、装置、电子设备及介质
WO2023134080A1 (zh) 相机作弊识别方法、装置、设备及存储介质
CN116434934A (zh) 基于消息队列的患者候诊方法、装置、电子设备及介质
WO2022227191A1 (zh) 非主动活体检测方法、装置、电子设备及存储介质
CN113705686B (zh) 图像分类方法、装置、电子设备及可读存储介质
CN112560721B (zh) 无感知模型切换方法、装置、电子设备及存储介质
CN112233194B (zh) 医学图片优化方法、装置、设备及计算机可读存储介质
CN112580505B (zh) 网点开关门状态识别方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926997

Country of ref document: EP

Kind code of ref document: A1