WO2021189395A1 - Beam configuration indication for a downlink shared channel - Google Patents

Beam configuration indication for a downlink shared channel Download PDF

Info

Publication number
WO2021189395A1
WO2021189395A1 PCT/CN2020/081552 CN2020081552W WO2021189395A1 WO 2021189395 A1 WO2021189395 A1 WO 2021189395A1 CN 2020081552 W CN2020081552 W CN 2020081552W WO 2021189395 A1 WO2021189395 A1 WO 2021189395A1
Authority
WO
WIPO (PCT)
Prior art keywords
shared channel
reference signals
transmission configuration
configuration indicator
indication
Prior art date
Application number
PCT/CN2020/081552
Other languages
French (fr)
Inventor
Runxin WANG
Muhammad Sayed Khairy Abdelghaffar
Yu Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/081552 priority Critical patent/WO2021189395A1/en
Publication of WO2021189395A1 publication Critical patent/WO2021189395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates generally to wireless communications and more specifically to beam configuration indication for a downlink shared channel.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-APro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-APro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station and a UE may communicate via multiple transmission and reception points (TRPs) for a downlink transmission.
  • TRPs transmission and reception points
  • the TRPs may be transparent to the UE such that the UE may fail to receive or identify one or more reference signals from different TRPs.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support beam configuration indication for a downlink shared channel.
  • the described techniques provide for indicating a single frequency network (SFN) mode and associated composite channel reference signals to a user equipment (UE) .
  • a UE and a base station may communicate via two or more transmission and reception points (TRPs) , for example, to improve communication quality, speed, or throughput via SFN transmissions.
  • TRPs transmission and reception points
  • SFN mode may refer more generally to a mode of operation where multiple TRPs provide a joint transmission (e.g., a joint, concurrent, or simultaneous, etc., transmission) on a same set of time and frequency resources.
  • the base station may transmit a configuration associated with a shared channel that indicates whether shared channel transmissions (e.g., one or more reference signals) are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit.
  • the UE may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a quasi co-location (QCL) state, mode, or relationship) .
  • QCL quasi co-location
  • the UE may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., the one or more reference signals on the shared channel) .
  • An SFN mode may be represented as a channel configuration including multiple beam configurations or multiple candidate beam configurations (e.g., one beam configuration for each TRP) .
  • the SFN mode may be explicitly or implicitly indicated in a configuration, a control signaling, or a control message.
  • the configuration may also configure a number of transmission configuration indicator (TCI) states for control channel that may be used to respectively indicate QCL information for the TRPs.
  • TCI transmission configuration indicator
  • the control signaling and the control message may further activate a beam configuration for each TRP communicating with the UE.
  • the configuration may implicitly indicate the SFN mode for the control channel.
  • One or more TCI states may also be configured and activated for tracking reference signals (TRS) associated with the shared channel transmission or with the reference signals of the shared channel transmission.
  • TRS tracking reference signals
  • a configuration may configure one or more TCI states for the TRS
  • control signaling may indicate or identify up to two TCI states for each TRS
  • a control message may indicate or activate one or two TCI states for each TRS.
  • the UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
  • a method of wireless communication at a UE may include receiving, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decoding a data signal of the shared channel based on the one or more received reference signals.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
  • the apparatus may include means for receiving, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decoding a data signal of the shared channel based on the one or more received reference signals.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving signaling configuring the shared channel for an SFN mode.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving control signaling including a field indicating that the shared channel may be configured for an SFN mode.
  • control signaling includes a media access control (MAC) control element (CE) .
  • MAC media access control
  • CE control element
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving control signaling including an indication that two or more TCI states may be configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message including a field indicating that the shared channel may be configured for an SFN mode.
  • the control message includes a downlink control information (DCI) message.
  • DCI downlink control information
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode.
  • receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message according to two or more control channel beam configurations.
  • receiving the indication to activate the two or more beam configurations may include operations, features, means, or instructions for receiving control signaling identifying two or more TCI states for the one or more reference signals of the shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the two or more identified TCI states, and comparing the set of bits to a table to determine the activated combination of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where receiving the one or more reference signals on the shared channel may be based on the second QCL time threshold.
  • a method of wireless communication at a base station may include transmitting, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determining, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the apparatus may include means for transmitting, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determining, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting signaling configuring the shared channel for an SFN mode.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting control signaling including a field indicating that the shared channel may be configured for an SFN mode.
  • control signaling includes a media access control control element.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting control signaling including an indication that two or more TCI states may be configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message including a field indicating that the shared channel may be configured for an SFN mode.
  • control message includes a DCI message.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode.
  • transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message based on two or more control channel beam configurations.
  • transmitting the indication to activate the two or more beam configurations may include operations, features, means, or instructions for transmitting control signaling identifying two or more TCI states for the one or more reference signals of the shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of TCI states of the two or more identified TCI states, where the two or more activated TCI states include the activated combination of TCI states, and transmitting a control message including the set of bits.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where transmitting the one or more reference signals on the shared channel may be based on the second QCL time threshold.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a data signal of the shared channel based on the one or more transmitted reference signals.
  • a method of wireless communication at a UE may include receiving, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receiving the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the apparatus may include means for receiving, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receiving the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the indication may be received via radio resource control (RRC) signaling.
  • RRC radio resource control
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling identifying two or more TCI states for the one or more TRSs.
  • control signaling includes a MAC CE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including an indication of one or more activated TCI states of the two or more identified TCI states.
  • the indication of the one or more activated TCI states includes a field of the control message.
  • the indication of the one or more activated TCI states includes a subset of a TCI field of the control message.
  • control message includes a DCI message.
  • the one or more TRSs may have a same QCL state as one or more demodulation reference signals (DMRS) of the shared channel, where the one or more DMRSs and the shared channel may be associated with a signal frequency network state.
  • DMRS demodulation reference signals
  • a first TRS of the one or more TRSs may have a different QCL state from a second TRS of the one or more TRSs.
  • the one or more reference signals of the shared channel include DMRSs.
  • a method of wireless communication at a base station may include transmitting, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determining to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmitting an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmitting the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the apparatus may include means for transmitting, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determining to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmitting an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmitting the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the indication may be transmitted via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting control signaling identifying two or more TCI states for the one or more TRSs of the shared channel.
  • control signaling includes a MAC CE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including an indication of one or more activated TCI states of the two or more identified TCI states.
  • the indication of the one or more activated TCI states includes a field of the control message.
  • the indication of the one or more activated TCI states includes a subset of a TCI field of the control message.
  • control message includes a DCI message.
  • the one or more TRSs may have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel may be associated with a signal frequency network state.
  • a first TRS of the one or more TRSs may have a different QCL state from a second TRS of the one or more TRSs.
  • the one or more reference signals of the shared channel include DMRSs.
  • FIG. 1 illustrates an example of a wireless communications system that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • FIGs. 3A and 3B illustrate respective examples of signaling schemes that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • FIGs. 4A and 4B illustrate respective examples of control information that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show block diagrams of devices in accordance with aspects of the present disclosure.
  • FIG. 12 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
  • FIG. 13 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
  • FIGs. 14 through 21 show flowcharts illustrating methods that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • a user equipment (UE) and a base station may communicate via two or more transmission and reception points (TRPs) , for example, to improve communication quality, speed, or throughput.
  • TRPs transmission and reception points
  • a UE and a base station may communicate via a first TRP and a second TRP corresponding to the base station (e.g., when the UE 115 is located in a high speed train (HST) ) .
  • HST high speed train
  • the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) .
  • the first and second TRPs may concurrently or simultaneously transmit a same downlink signal to the UE using a same frequency.
  • Such downlink signals may be referred to as single frequency network (SFN) signals or signals having or operating according to an SFN mode (e.g., SFNed signals) .
  • the UE may receive SFN downlink signals as if the UE were receiving a single downlink signal (e.g., from the perspective of the UE, the UE may not distinguish or may be unable to distinguish between SFN signals (e.g., SFNed downlink data signals) received from one TRP and SFN signals (e.g., corresponding SFNed downlink data signals) received from a second TRP) .
  • SFN single frequency network
  • SFN mode may refer more generally to a mode of operation where multiple TRPs provide a transmission (e.g., a joint, concurrent, or simultaneous, etc., transmission) on a same set of time and frequency resources.
  • SFN mode other terms referring to the equivalent techniques may be substituted herein.
  • Communications between the UE and the first and second TRPs may represent multi-antenna transmissions, where the first and second TRPs may concurrently or simultaneously transmit downlink information to the UE, for example, using an SFN mode.
  • SFN transmissions from the first and second TRPs to the UE may represent a composite (which may also be referred to as combined, joint, etc. ) channel that may be estimated using quasi co-location (QCL) state information or one or more other channel properties, among other examples.
  • QCL state may refer to one more QCL relationships, and may also refer to or be referred to as a QCL mode.
  • the first and second TRPs may be associated with different downlink channel properties (e.g., spatial or other transmission properties, such as different QCL states) , such that if the UE is unaware of the SFN mode, the UE may be unable to decode or receive the respective signals from the first and second TRPs using a corresponding composite channel.
  • different downlink channel properties e.g., spatial or other transmission properties, such as different QCL states
  • the UE may expect to receive one set of reference signals for the channel instead of two sets of reference signals for the composite channel (e.g., one for each TRP) . If the UE is unaware of the SFN mode, the UE may process communications according to the one set of reference signals, which may result in communication errors or reduced communication quality, speed, or throughput. Accordingly, the present disclosure provides techniques for indicating an SFN mode and composite channel reference signals to a UE.
  • the base station may transmit a configuration, control signaling, or a control message associated with a shared channel that may indicate whether shared channel transmissions are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit.
  • the SFN mode may be explicitly indicated as enabled or disabled in the configuration, the control signaling, or the control message.
  • the configuration may also configure a number of transmission configuration indicator (TCI) states for control channel that may be used to respectively indicate QCL information for the first and second TRPs.
  • TCI transmission configuration indicator
  • the base station may also transmit the control signaling and the control message to identify and activate a TCI state for each TRP communicating with the UE.
  • the configuration, the control signaling, or the control message may implicitly indicate the SFN mode for the control channel.
  • the configuration may configure a TCI state for the control channel such that the TCI state indicates two or more types of reference signals for a QCL type or state.
  • the control signaling may implicitly indicate the SFN mode by indicating multiple TCI states for the shared channel or for TRS of the shared channel.
  • the control message may implicitly indicate the SFN mode for the shared channel via a radio network temporary identifier (RNTI) or via an SFN mode of the control message.
  • RNTI radio network temporary identifier
  • the UE may determine that the SFN mode is enabled for the shared channel transmission, for example, based on an implicit or explicit indication in the configuration.
  • the UE may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a QCL state or relationship) .
  • the UE may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., one or more references signals on the shared channel) .
  • one or more TCI states may also be configured and activated for tracking reference signals (TRS) associated with the shared channel transmission or with the reference signals of the shared channel transmission.
  • TRS tracking reference signals
  • a configuration may configure one or more TCI states for the TRS
  • control signaling may indicate or identify up to two TCI states for each TRS
  • a control message may indicate or activate one or two TCI states for each TRS.
  • the UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to signaling schemes, control information, a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to beam configuration indication for a downlink shared channel.
  • FIG. 1 illustrates an example of a wireless communications system 100 in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-APro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-APro LTE-APro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • one or more TCI states may be configured and activated for a UE 115 for a downlink transmission from a base station 105 (e.g., a downlink shared channel transmission or a downlink control channel transmission) .
  • the one or more TCI states may be configured, for example, via RRC signaling, where up to 64 TCI states may be configured for a control channel and up to 128 TCI states may be configured for a shared channel.
  • a MAC control element (CE) and a downlink control information (DCI) may be transmitted to the UE to activate a TCI state for the shared channel and a MAC CE may be transmitted to the UE to activate a TCI state for the control channel.
  • CE MAC control element
  • DCI downlink control information
  • a TCI state may include parameters for configuring a QCL relationship between one or two downlink reference signals and DMRS ports of the shared channel, the control channel, or a CSI-RS resource.
  • the TCI state may indicate a QCL relationship for a first downlink reference signal (e.g., QCL Type-1) and a QCL relationship for a second downlink reference signal (e.g., QCL Type-2) , such that up to two QCL relationships may be configured for a TCI state.
  • the UE 115 may be associated with a predetermined threshold representing a time between reception of DCI and reception of a transmission on a shared channel.
  • the predetermined threshold may represent a number of symbols (e.g., 7, 14, or 28 symbols) and may be indicated via UE capability signaling. If an offset between reception of the DCI and reception of the transmission on the shared channel is less than the predetermined threshold, the UE may assume a QCL state for the transmission corresponding to a configured CORESET having a lowest identifier (ID) . For example, if the offset is less than the predetermined threshold, the UE 115 may not have time to decode the DCI by tuning a receive beam to an indicated TCI state.
  • ID lowest identifier
  • the UE 115 may determine whether the UE 115 has received a MAC CE. If the UE 115 has not received the MAC CE, the UE 115 may determine a QCL state based on a TCI parameter from RRC signaling, and may further determine the QCL state based on parameters associated with a CORESET of the DCI or cell acquisition. If the UE 115 has received a MAC CE (e.g., identifying TCI states for QCL information) , the UE 115 may determine the QCL state according to the TCI state indicated via a TCI field in the DCI.
  • a MAC CE e.g., identifying TCI states for QCL information
  • a UE 115 and a base station 105 may communicate via two or more TRPs, for example, to improve communication quality, speed, or throughput via SFN transmissions.
  • the base station 105 may transmit a configuration, a control signaling, or a control message associated with a shared channel that indicates whether shared channel transmissions are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit.
  • the UE 115 may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a QCL state or relationship) .
  • the UE 115 may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., one or more reference signals on the control channel) .
  • One or more TCI states may also be configured and activated for TRS associated with the shared channel transmission or with the reference signals of the shared channel transmission.
  • a configuration may configure one or more TCI states for the TRS
  • control signaling may indicate or identify up to two TCI states for each TRS
  • a control message may indicate or activate one or two TCI states for each TRS.
  • the UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
  • FIG. 2 illustrates an example of a wireless communications system 200 in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • wireless communications system 200 may include a UE 115-a and a base station 105, which may be examples of a UE 115 and base station 105 described with reference to FIG. 1.
  • Wireless communications system 200 may also include two or more TRPs 210, where UE 115-a may communicate with the base station 105 via at least the two or more TRPs 210.
  • wireless communications system 200 may include TRP 210-a and TRP 210-b, which may correspond to the base station 105. While the examples described herein refer to two TRPs 210, it is to be understood that the same examples may also apply to any number of TRPs 210 (e.g., greater than two TRPs 210) .
  • UE 115-a may estimate properties of a channel (e.g., a shared channel or a control channel) used for transmissions from TRPs 210-a and 210-b based on one or more reference signals transmitted over the channel.
  • a channel property may include a phase change, a frequency offset, a channel synchronization, interference characteristics, or channel distortions.
  • Channel estimation (e.g., channel property estimation) may support reception of downlink transmissions, among other examples.
  • a QCL state may support channel estimation at UE 115-a by indicating relationships between different channels associated with different downlink transmissions received at different antenna ports.
  • a QCL state may indicate a relationship between respective antenna ports of a reference signal and a control channel or a shared channel (e.g., or reference signals thereof) .
  • UE 115-a may determine a channel property of a first antenna port (e.g., of the reference signal) and apply the channel property to a second antenna port (e.g., of the shared or control channel) .
  • a QCL state may indicate one or more reference signals (e.g., reference signal ports) that may be used for channel estimation for one or more antenna ports of a downlink channel.
  • the base station 105 may configure UE 115-a with a QCL state indicating that one or more antenna ports used for a downlink reference signal (e.g., a synchronization signal block (SSB) or CSI-RS) are QCLed (e.g., share one or more channel properties) with one or more antenna ports of a downlink channel such as a physical downlink shared channel (PDSCH) , a physical downlink control channel (PDCCH) , or CSI-RS.
  • UE 115-a may receive QCL information from the base station 105 via a configuration (e.g., a TCI state configuration) indicating a QCL state.
  • a configuration e.g., a TCI state configuration
  • QCL information may indicate a relationship between antenna ports, as well as a QCL type associated with the QCL relationship.
  • a QCL relationship, mode, or type may indicate a relationship between two signals for one or more of a Doppler shift, Doppler spread, average delay, or one or more spatial receive parameters.
  • a first QCL relationship, mode, or type may indicate a relationship between the two signals for a Doppler shift, Doppler spread, and average delay, such as QCL-TypeA (e.g., associating channel properties including Doppler shift, Doppler spread, average delay, and delay spread) .
  • QCL-TypeA e.g., associating channel properties including Doppler shift, Doppler spread, average delay, and delay spread
  • a second QCL relationship, mode, or type may indicate a relationship between the two signals for a Doppler shift and a Doppler spread, such as QCL-TypeB (e.g., associating channel properties including Doppler shift and Doppler spread) .
  • a third QCL relationship, mode, or type may indicate a relationship between the two signals for an average delay and a Doppler spread, such as QCL-TypeC (e.g., associating channel properties including Doppler shift and average delay) .
  • a fourth QCL relationship, mode, or type may indicate a relationship between the two signals for one or more spatial receive parameters, such as QCL-TypeD (e.g., associating channel properties including one or more spatial receive parameters) .
  • two or more TRPs 210 may communicate downlink signals (e.g., reference signals or other downlink signals) to UE 115-a.
  • UE 115-a may be located on an HST 205 and may receive downlink signals from two TRPs 210.
  • two or more of the TRPs 210 may concurrently or simultaneously transmit a same downlink signal to UE 115-a (e.g., a joint SFN downlink signal) using a same frequency.
  • Such downlink signals may be referred to as SFNed downlink signals or downlink signals having an SFN mode or state.
  • such downlink signals may be referred to as including multiple beam configurations or multiple candidate beam configurations (e.g., one beam configuration for each TRP 210) .
  • SFNed downlink signals may represent nearly simultaneous transmissions from two or more geographically separated antennas (e.g., from two or more TRPs 210) .
  • UE 115-a may receive SFNed downlink signals as if UE 115-a were receiving a single downlink signal.
  • TRPs 210-a and 210-b may transmit independent reference signals to UE 115-a (e.g., for independent channel estimation) and UE 115-a may use the independent reference signals to perform channel estimation for antenna ports QCLed with the ports of the independent reference signals.
  • UE 115-a may use independent reference signals to receive or decode SFNed downlink signals using antenna ports QCLed with the independent reference signal antenna ports.
  • DMRS ports corresponding to an SFN transmission on a shared channel or control channel may be QCLed with (e.g., associated with) one or more antenna ports of a reference signal (e.g., an SSB or CSI-RS) .
  • UE 115-a may use the information from the one or more antenna ports of the reference signal to support channel estimation for the SFN transmission.
  • an HST wireless network may include a set of TRPs 210 spaced along a high speed railway, where UE 115-a may communicate with a number (e.g., two) of TRPs 210 of the set of TRPs 210 (e.g., TRPs 210-a and 210-b) in the downlink and/or uplink.
  • Communications between UE 115-a and TRPs 210-a and 210-b may represent multi-antenna transmissions, where TRPs 210-a and 210-b may concurrently or simultaneously transmit downlink information to UE 115-a, for example, using an SFN mode.
  • TRPs 210-a and 210-b may be transparent to UE 115-a, such that UE 115-a may be unaware of which TRP 210 a transmission is from, or unaware that a transmission is from both TRPs 210.
  • SFNed transmissions from TRPs 210-a and 210-b to UE 115-a may represent a composite channel that may be estimated using QCL state information or one or more other channel properties, among other examples.
  • the SFN mode may be transparent to UE 115-a, such that UE 115-a may be unaware that a downlink signal corresponds to an SFNed signal.
  • TRPs 210-a and 210-b may be associated with different downlink channel properties (e.g., spatial or other transmission properties, such as different QCL states) , such that if UE 115-a is unaware of the SFN mode, UE 115-a may be unable to decode or receive the respective signals from TRPs 210-a and 210-b using a corresponding composite channel.
  • UE 115-a may expect to receive one set of reference signals for the channel instead of two sets of reference signals for the composite channel (e.g., one for each TRP 210) . If UE 115-a is unaware of the SFN mode, UE 115-a may process communications according to the one set of reference signals, which may result in communication errors or reduced communication quality, speed, or throughput. Accordingly, the present disclosure provides techniques for indicating an SFN mode and composite channel reference signals to a UE 115 (e.g., UE 115-a) .
  • the base station 105 may transmit a configuration 215 (e.g., an RRC configuration) for a shared channel, which may carry a shared channel transmission 230.
  • the configuration 215 may be transmitted via TRP 210-a, TRP 210-b, another TRP 210, or any combination thereof.
  • the configuration 215 may indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit.
  • an SFN mode may be explicitly indicated as enabled or disabled in the configuration 215 (e.g., in a PDSCH configuration) .
  • the configuration 215 may indicate for UE 115-a to use a default TCI state or SFN mode, for example, configured during cell acquisition.
  • the configuration 215 may also configure a number of TCI states configured for the shared channel. In some cases, two of the configured TCI states, or two other TCI states, may be used to respectively indicate QCL information for the two TRPs 210.
  • control signaling 220 e.g., a MAC CE
  • UE 115-a e.g., TRPs 210-a and 210-b
  • a control message 225 e.g., a DCI
  • the control signaling 220 and control message 225 may either or both be transmitted via TRP 210-a, TRP 210-b, another TRP 210, or any combination thereof.
  • the control message 225 may further represent a DCI or a grant to schedule the corresponding shared channel transmission 230.
  • the configuration 215 may implicitly indicate the SFN mode for the shared channel transmission 230.
  • the configuration 215 may configure a TCI state for the shared channel transmissions 230 (e.g., for an associated PDSCH or PDCCH) such that the TCI state indicates two or more types of reference signals for a QCL type or state. If UE 115-a receives a configuration 215 that indicates multiple reference signals for a TCI state or for a QCL type, UE 115-a may determine that an associated shared channel transmission 230 is SFNed.
  • a QCL type of the TCI state may be associated with multiple (e.g., two or more) instances of QCL information.
  • a QCL type of the TCI state may be associated with one instance of QCL information, and the instance of QCL information may be associated with two or more reference signals.
  • control signaling 220 may explicitly or implicitly indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode.
  • the control signaling 220 may use a bit or a field (e.g., a reserved bit) to indicate an SFN mode (e.g., a value of ‘0’ may indicate a non-SFN mode and a value of ‘1’ may indicate SFN mode) .
  • the control signaling 220 may indicate or identify a number of TCI states for the shared channel (e.g., up to eight TCI states for each TRP 210) . In some cases, the control signaling 220 may implicitly indicate the SFN mode for the shared channel transmission 230.
  • control signaling 220 may indicate or identify, for the shared channel, multiple TCI states corresponding to multiple TRPs 210. If UE 115-a receives control signaling 220 that indicates TCI states configured for multiple TRPs, UE 115-a may determine that an associated shared channel transmission 230 is SFNed.
  • control message 225 may explicitly or implicitly indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode.
  • the control message 225 may use a bit or a field (e.g., a dedicated field in DCI format 1–1) to indicate an SFN mode (e.g., a value of ‘0’ may indicate a non-SFN mode and a value of ‘1’ may indicate SFN mode) .
  • UE 115-a may be assigned a RNTI corresponding to an SFN mode (e.g., during cell acquisition or initialization procedures) .
  • UE 115-a may determine that the associated shared channel transmission 230 corresponds to an SFN mode. For example, UE 115-a may attempt to decode the control message 225 using each RNTI assigned to UE 115-a and may determine that the control message 225 is associated with an SFNed shared channel transmission 230 if the SFN RNTI successfully decodes (e.g., descrambles) the control message 225.
  • control message 225 may be associated with an SFN mode (e.g., a CORESET for the control message 225 may be SFNed) , and UE 115-a may determine that the associated shared channel transmission 230 corresponds to an SFN mode if the control message 225 is SFNed.
  • SFN mode e.g., a CORESET for the control message 225 may be SFNed
  • UE 115-a may determine that the SFN mode is enabled for the control message 225, for example, based on an implicit or explicit indication.
  • UE 115-a may receive one or more reference signals from each TRP 210 and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission 230 (e.g., via a QCL state or relationship) .
  • UE 115-a may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission 230 (e.g., a control signal on the control channel) .
  • the one or more reference signals may be associated (e.g., via a QCL state) with DMRS (e.g., one or more other reference signals) of the shared channel transmission 230 and UE 115-a may use the QCL state and the DMRS to decode the shared channel transmission 230.
  • DMRS e.g., one or more other reference signals
  • DMRS associated with the shared channel transmission 230 may be QCLed with one or more TRS.
  • the present disclosure further provides techniques for indicating (e.g., activating or triggering) one or more TCI states for the TRS associated with the shared channel transmission 230 or with the DMRS of the shared channel transmission 230.
  • a configuration 215 e.g., RRC configuration
  • Control signaling 220 e.g., a MAC CE
  • a control message 225 e.g., a DCI
  • UE 115-a may identify the activated TCI state (s) (e.g., beam configuration (s) ) for each TRS and may receive the TRS according to the activated TCI state (s) (e.g., beam configuration (s) ) .
  • the activated TCI state e.g., beam configuration (s)
  • the activated TCI state e.g., beam configuration (s)
  • FIGs. 3A and 3B illustrate respective examples of signaling schemes 301 and 302 in accordance with aspects of the present disclosure.
  • signaling schemes 301 and 302 may implement aspects of wireless communications system 100 or 200.
  • signaling schemes 301 and 302 may be implemented by a UE 115 and a base station 105, which may be examples of a UE 115 and base station 105 described with reference to FIGs. 1 and 2.
  • Signaling schemes 301 and 302 may also be implemented by two or more TRPs, where UE 115-a may communicate with the base station 105 via the two or more TRPs.
  • signaling schemes 301 and 302 may be implemented by two TRPs, which may correspond to the base station 105. While the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) .
  • references signals 310 e.g., tracking reference signals (TRS) , CSI-RS, or CRS
  • TRS tracking reference signals
  • SSBs 305 may be transmitted separately or independently from each TRP.
  • a first TRP may transmit an SSB 305-a to the UE 115 and a second TRP may independently transmit an SSB 305-b to the UE 115.
  • the first TRP may transmit a reference signal 310-a to the UE 115 and the second TRP may independently transmit a reference signal 310-b to the UE 115.
  • FIG. 3A a first TRP may transmit an SSB 305-a to the UE 115 and a second TRP may independently transmit an SSB 305-b to the UE 115.
  • the first TRP may transmit an SSB 305-c to the UE 115 and a second TRP may independently transmit an SSB 305-d to the UE 115.
  • the first TRP may transmit a reference signal 310-c to the UE 115 and the second TRP may independently transmit a reference signal 310-d to the UE 115.
  • the UE 115 may be configured with multiple QCL states (e.g., reference signal relationships) , where each QCL state may be associated with a reference signal 310 of one of the TRPs.
  • the UE 115 may be configured with multiple TCI states (e.g., one TCI state for each TRP) , where each TCI state may include QCL state information for a reference signal 310 of one of the TRPs.
  • the UE 115 may receive a configuration indicating that a downlink channel transmission 315 (e.g., a shared channel transmission) is associated with an SFN mode.
  • the SFN mode may, for example, represent a state in which the UE receives a transmission from two or more TRPs, where each TRP may be associated with a different reference signal QCL relationship for the downlink channel transmission 315.
  • a doppler profile of each TRP among other channel characteristics, may be estimated independently by the UE 115. Because channel characteristics may be estimated independently for each TRP, the downlink channel transmission 315 may support increased channel estimation performance, for example, compared to configurations where the UE 115 may be unaware of the SFN mode.
  • the DMRS of the downlink channel transmission 315 may be associated with multiple CSI-RS (e.g., one or more CSI-RS for each TRP) , which may increase channel estimation performance, for example, because transmissions from each TRP may be associated with different channel characteristics and different corresponding reference signal characteristics.
  • multiple CSI-RS e.g., one or more CSI-RS for each TRP
  • Signaling scheme 301 may represent a scheme associating a downlink channel transmission 315-a (e.g., a shared channel transmission) with reference signals 310-a and 310-b from two respective TRPs, where one DMRS port of downlink channel transmission 315-a may share a QCL relationship (e.g., may be QCLed) with reference signals 310-a and 310-b.
  • the DMRS of downlink channel transmission 315-a may be dependent based on the QCL relationship with both reference signal 310-a and 310-b.
  • Signaling scheme 301 may thus support composite channel estimation using one DMRS port, which may reduce DMRS overhead.
  • each DMRS port of downlink channel transmission 315-a may be associated with two TCI states (e.g., one TCI state for each TRP) , and each TCI state may include or indicate corresponding QCL state information.
  • Signaling scheme 302 may represent a scheme associating a downlink channel transmission 315-b (e.g., a shared channel transmission) with reference signals 310-c and 310-d from two respective TRPs, where multiple DMRS ports of downlink channel transmission 315-b may share a QCL relationship (e.g., may be QCLed) with reference signal 310-a or 310-b.
  • the DMRS of downlink channel transmission 315-a may be independent based on this QCL relationship.
  • Signaling scheme 302 may thus support composite channel estimation using multiple DMRS ports.
  • reference signal 310-c may be associated with a first group of DMRS ports, DMRS port group 320-a, and reference signal 310-d may be associated with a second group of DMRS ports, DMRS port group 320-b.
  • Each data layer of the downlink channel transmission 315-b may be associated with two TCI states (e.g., one TCI state for each TRP) via one port in DMRS port group 320-a and one port in DMRS port group 320-b.
  • the reference signals 310 represented by signaling scheme 301 or 302 may be associated an SFN mode for a related (e.g., QCLed) downlink channel transmission 315 (e.g., shared channel transmission) .
  • a configuration, control signaling (e.g., a MAC CE) , or a control message (e.g., a DCI) may include an explicit or an implicit indication of the SFN mode.
  • the configuration may further configure multiple TCI states or other candidate beam configurations (e.g., QCL states or associated reference signals 310) for the downlink channel transmission 315, and the control signaling and the control message may be used to activate one beam configuration for each TRP.
  • control signaling may identify up to eight TCI states for each TRP and the control message may indicate one activated TCI state of the eight identified TCI states for each TRP.
  • An activated TCI state may include QCL information for one TRP, which may provide a relationship between reference signals 310 and the downlink channel transmission 315.
  • the UE 115 may assume a default TCI state for the activated TCI state. For example, the UE 115 may assume the default TCI state if a time offset between reception of the control message and the downlink channel transmission 315 is less than a predetermined threshold.
  • the predetermined threshold may have a different value than for non-SFN modes, and may be indicated by the UE 115 via a separate capability through capability reporting or signaling.
  • the predetermined threshold for the SFN mode may be longer than the predetermined threshold for the non-SFN mode, based on an amount of time to determine multiple TCI states. If the offset time between the reception of the control message and the downlink channel transmission 315 is less than the predetermined threshold for the SFN mode, the UE 115 may use or assume a default TCI state for the downlink channel transmission 315.
  • the UE 115 may receive one or more reference signals 310 from each TRP and, based on an SFN indication, may determine that each of the one or more reference signals 310 is associated with the downlink channel transmission 315 (e.g., via a QCL state or relationship) .
  • the UE 115 may use information from the one or more reference signals 310 (e.g., channel estimation information) to receive the downlink channel transmission 315 (e.g., a control signal on the control channel) .
  • FIGs. 4A and 4B illustrate respective examples of control information 401 and 402 that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • control information 401 and 402 may implement aspects of wireless communications system 100 or 200.
  • control information 401 and 402 may be used by a UE 115 and a base station 105, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–3.
  • Control information 401 and 402 may also be used or transmitted by two or more TRPs, where the UE 115 may communicate with the base station 105 via the two or more TRPs.
  • control information 401 and 402 may be used by two TRPs, which may correspond to the base station 105. While the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) .
  • a configuration transmission may configure multiple TCI states or other candidate beam configurations (e.g., QCL states or associated reference signals) for a shared channel transmission, and associated control signaling (e.g., a MAC CE) and a control message (e.g., a DCI) may be used to activate one beam configuration for each TRP.
  • control signaling may identify up to eight TCI states for each TRP and the control message may indicate one activated TCI state of the eight identified TCI states for each TRP.
  • control signaling may represent a MAC CE
  • the MAC CE may include an activation command that may map the identified TCI states to codepoints of a field in the control message (e.g., a DCI field) .
  • the identified TCI states may be indicated in the MAC CE using a bitmap 405 where each field (e.g., T i ) of the bitmap 405 includes one bit that indicates an activation or deactivation status of a predefined TCI state (e.g., a TCI state with a TCI state identifier (ID) i) .
  • a predefined TCI state e.g., a TCI state with a TCI state identifier (ID) i
  • the control signaling may, in some cases, include two bitmaps, bitmap 405-a and bitmap 405-b (e.g., or any number of bitmaps 405 up to a number of TRPs communicating with the UE 115 in SFN mode) .
  • a first bitmap 405-a may correspond to fields indicating an activation or deactivation status of respective, predefined TCI states for a first TRP
  • a second bitmap 405-b may correspond to fields indicating an activation or deactivation status of respective, predefined TCI states for a second TRP.
  • the control signaling may also include control fields 410 for a reserved bit (e.g., control field 410-a) , a serving cell ID (e.g., control field 410-b) , and a BWP ID (e.g., control field 410-c) .
  • Each control field may correspond to a number of bits, for example, control field 410-a may correspond to one bit, control field 410-b may correspond to five bits, and control field 410-c may correspond to two bits.
  • a control message associated with the control signaling described with reference to FIG. 4A may indicate one activated TCI state for each TRP communicating with the UE 115 over the SFNed shared channel. For example, if two TRPs are communicating with the UE 115, the control message may activate two TCI states (e.g., one for each TRP) .
  • the activated TCI states may be indicated via a TCI field in the control message that comprises a number of bits (e.g., x bits) .
  • the TCI field may include six bits to indicate two independent TCI states from the TCI states identified by the control signaling, such that each TCI state may be indicated using three bits.
  • a first activated TCI state may correspond to a TCI state indicated using bitmap 405-a and a second activated TCI state may correspond to a TCI state indicated using bitmap 405-b.
  • the first and second activated TCI states may correspond to any TCI state in either bitmap 405-a or 405-b.
  • the UE 115 may be configured with a list or table of combinations of TCI states and the control message may indicate a combination from the table of combinations (e.g., a combination of two TCI states) .
  • the combination of TCI states may include a combination of the TCI states activated via the control signaling, and may be represented by the TCI field in the control message.
  • the TCI field may include five bits or another number of bits based on equation (1) :
  • x may represent a number of bits for the TCI field
  • n c may represent a number of chosen TCI states
  • M may represent a number of TCI states identified by the control signaling.
  • the value of the TCI field may represent an entry in the table of TCI state combinations, and the UE 115 may use the TCI field value to identify an activated combination of TCI states (e.g., two or more activated TCI states) .
  • the control signaling may include information indicating up to eight combinations 415 of TCI states (e.g., each combination 415 corresponding to a TCI state for each TRP communication with the UE 115 in SFN mode) .
  • the combinations 415 of TCI states may represent pairs of TCI states (e.g., when communicating with two TRPs) .
  • the combinations 415 of TCI states may be indicated via a TCI state ID 420 of each associated TCI state, for example, as configured by the base station 105. In one example illustrated by FIG.
  • a combination 415-a may indicate a first TCI state ID and a second TCI state ID
  • a combination 415-b may indicate a third TCI state ID and the second TCI state ID
  • a combination 415-c may indicate a fourth TCI state ID and the third TCI state ID
  • a combination 415-f may represent an eight combination 415 or a last combination 415 indicated by the control signaling.
  • the control signaling may also include control fields 410 for a reserved bit (e.g., control field 410-d) , a serving cell ID (e.g., control field 410-e) , and a BWP ID (e.g., control field 410-f) .
  • Each control field may correspond to a number of bits, for example, as described herein.
  • a control message associated with the control signaling described with reference to FIG. 4B may indicate one activated combination 415 of TCI states identified by the control signaling, for example, including one TCI state for each TRP communicating with the UE 115 over the SFNed shared channel. For example, if two TRPs are communicating with the UE 115, the control message may activate a combination 415 of two TCI states (e.g., one for each TRP) .
  • the activated combination 415 of TCI states may be indicated via a TCI field in the control message that comprises a number of bits (e.g., x bits) .
  • the TCI field may include three bits, for example, to indicate one of the eight combinations 415 of TCI states identified by the control signaling.
  • control signaling may also indicate or identify up to two TCI states for each TRS configured for the UE 115 (e.g., TCI states configured via RRC signaling) , for example, if the TRS is QCLed with DMRS identified via the TCI states identified by the control signaling.
  • the control message may indicate or activate one or two TCI states for each TRS.
  • a dedicated field in the control message may indicate activated TCI state (s) for the TRS (e.g., having a field size of one bit per TCI state) .
  • the TCI field may include an extra bit to indicate an activated TCI state from two TCI states identified by the control signaling or may include no extra bits to indicate that both TCI states identified by the control signaling are activated.
  • FIG. 5 illustrates an example of a process flow 500 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • process flow 500 may implement aspects of wireless communications systems 100 or 200.
  • Process flow 500 may include or be implemented by a base station 105-a and a UE 115-b, which may be examples of a base station 105 and UE 115 described with reference to FIGs. 1–4.
  • Process flow 500 may illustrate an example where UE 115-b may be notified of an SFN mode for a downlink signal and may activate two or more beam configurations for reception of the downlink signal (e.g., a shared channel signal, such as one or more reference signals) from base station 105-a.
  • a shared channel signal such as one or more reference signals
  • a control signal may be transmitted to UE 115-b via two or more TRPs (e.g., using an SFN state) .
  • base station 105-a may be associated with each of the two or more TRPs, or in some cases, base station 105-a may be associated with at least one of the two or more TRPs.
  • UE 115-b may be located on an HST.
  • base station 105-a may transmit, to UE 115-b, an indication of multiple candidate beam configurations (e.g., an indication of an SFN mode) for one or more reference signals (e.g., DMRS) of a shared channel, where the shared channel may be associated with control signal transmissions via the two or more TRPs.
  • the indication of the multiple candidate beam configurations may include or be included in an RRC message or an RRC configuration, a MAC CE, or a DCI.
  • the RRC configuration, MAC CE, or DCI may include an explicit indication of an SFN mode for shared channel transmissions via the two or more TRPs (e.g., via a PDSCH configuration) .
  • the RRC configuration, MAC CE, or DCI may exclude an explicit indication of the SFN mode and may include an implicit indication of the SFN mode, for example, as described herein.
  • base station 105-a may transmit, to UE 115-b, an indication of multiple candidate beam configurations (e.g., an indication of an SFN mode) for one or more TRS corresponding to a shared channel or corresponding to one or more reference signals (e.g., DMRS) of the share channel, where the shared channel may be associated with control signal transmissions via the two or more TRPs.
  • base station 105-a may transmit an RRC configuration including multiple TCI states for TRS.
  • base station 105-a may determine, based on the multiple candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel. For example, base station 105-a may identify the two or more TRPs associated with the control channel transmissions to UE 115-b (e.g., the control signal transmission) and may activate the two or more beam configurations based on identifying the two or more TRPs. In some cases, each beam configuration of the two or more activated beam configurations may correspond to a TRP of the two or more TRPs. In some cases, determining a beam configuration that corresponds to a TRP of the two or more TRPs may be based on one or more channel or spatial characteristics associated with the TRP.
  • base station 105-a may determine, for the one or more TRS of the shared channel, one or more beam configurations of the multiple candidate beam configurations. For example, base station 105-a may determine the one or more beam configurations based on the two or more TRPs, as described herein.
  • base station 105-a may transmit, to UE 115-b, an indication to activate, for the one or more reference signals of the shared channel, the two or more beam configurations of the multiple candidate beam configurations.
  • the indication to activate the two or more beam configurations may be received via control signaling and a control message, such as via a MAC CE and a DCI.
  • the control signaling may identify up to eight TCI states for each TRP associated with transmissions on the shared channel to UE 115-b.
  • the control signaling may indicate the TCI states using a bitmap or using combinations of two or more TCI states. Additionally, as described with reference to FIG.
  • the control message may activate one TCI state of the identified TCI states for each TRP associated with transmissions on the shared channel to UE 115-b.
  • the DCI may indicate two TCI states independently, may indicate a combination of two TCI states from two bitmaps, or may indicate an activated combination of TCI states from an identified combination.
  • base station 105-a may transmit, to UE 115-b, an indication to activate, for the one or more TRS of the shared channel, the one or more beam configurations.
  • a control signaling to UE 115-b may identify two TCI states for each TRP and a control message to UE 115-b may activate one or two TCI states for each TRS.
  • base station 105-a may transmit, to UE 115-b and based on the two or more activated beam configurations, the one or more reference signals on the shared channel, and UE 115-b may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • base station 105-a may transmit the one or more reference signals via the two or more TRPs.
  • base station 105-a may transmit the one or more reference signals via a PDSCH and based on the two or more activated beam configurations associated with the two or more TRPs.
  • base station 105-a may transmit the one or more reference signals via a TRP of the two or more TRPs based on a beam configuration (e.g., TCI state or QCL state) associated with the TRP and UE 115-b may receive the one or more reference signals from the TRP using the beam configuration (e.g., TCI state or QCL state) associated with the TRP (e.g., associated with one or more reference signals of the TRP) .
  • a beam configuration e.g., TCI state or QCL state
  • base station 105-a may transmit the one or more TRS on the shared channel according to the one or more activated beam configurations
  • UE 115-b may receive the one or more TRS on the shared channel according to the one or more activated beam configurations.
  • base station 105-a and UE 115-b may implement one of the methods described herein with reference to a shared channel transmission or a PDSCH to transmit or receive the TRS.
  • UE 115-b may decode a data signal of the shared channel based on the one or more received reference signals. For example, base station 105-a may transmit a data signal associated with the one or more reference signals. In some cases, UE 115-b may receive the one or more references signals, perform channel estimation using the one or more reference signals, receive the data signal, and decode the data signal using at least the channel estimation.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform the beam configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
  • the communications manager 615 may also receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • communications manager 615 may increase channel quality and throughput and decrease interference at a wireless device (e.g., a UE 115) by supporting identification of reference signals for multiple TRPs in an SFN mode.
  • the identification of the SFN mode may reduce delays, interference, and power consumption (or any combination thereof) compared to other systems and techniques, for example, that do not support identification of an SFN mode for transmissions involving multiple TRPs.
  • communications manager 615 may save power and increase battery life at a wireless device (e.g., a UE 115) by strategically increasing a quality of communications at a wireless device (e.g., a UE 115) .
  • FIG. 7 shows a block diagram 700 of a device 705 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 755.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a configuration reception component 720, an activation reception component 725, a reference signal reception component 730, a data decoding component 735, a TRS configuration reception component 740, a TRS activation reception component 745, and a TRS reception component 750.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the configuration reception component 720 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the activation reception component 725 may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the reference signal reception component 730 may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the data decoding component 735 may decode a data signal of the shared channel based on the one or more received reference signals.
  • the TRS configuration reception component 740 may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the TRS activation reception component 745 may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations.
  • the TRS reception component 750 may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the transmitter 755 may transmit signals generated by other components of the device 705.
  • the transmitter 755 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 755 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 755 may utilize a single antenna or a set of antennas.
  • the configuration reception component 720, activation reception component 725, reference signal reception component 730, data decoding component 735, TRS configuration reception component 740, TRS activation reception component 745, and TRS reception component 750 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration reception component 720, activation reception component 725, reference signal reception component 730, data decoding component 735, TRS configuration reception component 740, TRS activation reception component 745, and TRS reception component 750 discussed herein.
  • a transceiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a transceiver of the device.
  • a radio processor may be collocated with and/or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device.
  • a transmitter processor may be collocated with and/or communicate with (e.g., direct the operations of) a transmitter of the device.
  • a receiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a receiver of the device.
  • a processor of a wireless device may increase communication reliability and accuracy by decreasing interference, and increasing communication quality and available power.
  • the reduced interference may increase communication quality and throughput, which may reduce power consumption (e.g., via implementation of system components described with reference to FIG. 8) compared to other systems and techniques, for example, that do not support indication of an SFN mode, which may increase interference and power consumption.
  • the processor of the UE 115 may identify one or more aspects of an SFN mode indication and of multiple reference signals associated with the SFN mode to perform the processes described herein.
  • the processor of the wireless device may use the indication of the SFN mode and the multiple reference signals to perform one or more actions that may result in lower interference and power consumption, as well as save power and increase battery life at the wireless device (e.g., by strategically increasing communication quality and throughput) , among other benefits.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a configuration reception component 810, an activation reception component 815, a reference signal reception component 820, a data decoding component 825, a TRS configuration reception component 830, a TRS activation reception component 835, and a TRS reception component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the configuration reception component 810 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs. In some examples, the configuration reception component 810 may receive signaling configuring the shared channel for an SFN mode. In some examples, the configuration reception component 810 may receive signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration reception component 810 may receive configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  • the configuration reception component 810 may receive control signaling including a field indicating that the shared channel is configured for an SFN mode. In some examples, the configuration reception component 810 may receive control signaling including an indication that two or more TCI states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel. In some examples, the configuration reception component 810 may receive a control message including a field indicating that the shared channel is configured for an SFN mode. In some examples, the configuration reception component 810 may receive a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode. In some examples, the configuration reception component 810 may receive a control message according to two or more control channel beam configurations. In some cases, the control signaling includes a MAC CE. In some cases, the control message includes a DCI message.
  • the activation reception component 815 may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. In some examples, the activation reception component 815 may receive control signaling identifying two or more TCI states for the one or more reference signals of the shared channel. In some examples, the activation reception component 815 may receive, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
  • the activation reception component 815 may receive a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets. In some examples, the activation reception component 815 may receive a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the two or more identified TCI states. In some examples, the activation reception component 815 may compare the set of bits to a table to determine the activated combination of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
  • the activation reception component 815 may receive control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states. In some examples, the activation reception component 815 may receive a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the activation reception component 815 may receive a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
  • the reference signal reception component 820 may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations. In some examples, the reference signal reception component 820 may transmit capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where receiving the one or more reference signals on the shared channel is based on the second QCL time threshold.
  • the data decoding component 825 may decode a data signal of the shared channel based on the one or more received reference signals.
  • the TRS configuration reception component 830 may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the indication is received via RRC signaling.
  • the one or more reference signals of the shared channel include DMRSs.
  • the TRS activation reception component 835 may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations. In some examples, the TRS activation reception component 835 may receive control signaling identifying two or more TCI states for the one or more TRSs. In some examples, the TRS activation reception component 835 may receive a control message including an indication of one or more activated TCI states of the two or more identified TCI states. In some cases, the control signaling includes a MAC CE. In some cases, the indication of the one or more activated TCI states includes a field of the control message. In some cases, the indication of the one or more activated TCI states includes a subset of a TCI field of the control message. In some cases, the control message includes a DCI message.
  • the TRS reception component 840 may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the one or more TRSs have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel are associated with a signal frequency network state.
  • a first TRS of the one or more TRSs has a different QCL state from a second TRS of the one or more TRSs.
  • the configuration reception component 810, activation reception component 815, reference signal reception component 820, data decoding component 825, TRS configuration reception component 830, TRS activation reception component 835, and TRS reception component 840 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration reception component 810, activation reception component 815, reference signal reception component 820, data decoding component 825, TRS configuration reception component 830, TRS activation reception component 835, and TRS reception component 840 discussed herein.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
  • the communications manager 910 may also receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include RAM and ROM.
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting beam configuration indication for a downlink shared channel) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020.
  • the device 1005 may also include one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform the beam configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the communications manager 1015 may also transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
  • the communications manager 1015 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 1015 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1015, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1015, or its sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • the transmitter 1020 may transmit signals generated by other components of the device 1005.
  • the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1020 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1160.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein.
  • the communications manager 1115 may include a configuration transmission component 1120, a beam configuration determination component 1125, an activation transmission component 1130, a reference signal transmission component 1135, a TRS configuration transmission component 1140, a TRS beam configuration determination component 1145, a TRS activation transmission component 1150, and a TRS transmission component 1155.
  • the communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
  • the configuration transmission component 1120 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the beam configuration determination component 1125 may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
  • the activation transmission component 1130 may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the reference signal transmission component 1135 may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the TRS configuration transmission component 1140 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the TRS beam configuration determination component 1145 may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
  • the TRS activation transmission component 1150 may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations.
  • the TRS transmission component 1155 may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the transmitter 1160 may transmit signals generated by other components of the device 1105.
  • the transmitter 1160 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1160 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1160 may utilize a single antenna or a set of antennas.
  • the configuration transmission component 1120, beam configuration determination component 1125, activation transmission component 1130, reference signal transmission component 1135, TRS configuration transmission component 1140, TRS beam configuration determination component 1145, TRS activation transmission component 1150, and TRS transmission component 1155 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • a processor e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration transmission component 1120, beam configuration determination component 1125, activation transmission component 1130, reference signal transmission component 1135, TRS configuration transmission component 1140, TRS beam configuration determination component 1145, TRS activation transmission component 1150, and TRS transmission component 1155 discussed herein.
  • a transceiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a transceiver of the device.
  • a radio processor may be collocated with and/or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device.
  • a transmitter processor may be collocated with and/or communicate with (e.g., direct the operations of) a transmitter of the device.
  • a receiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a receiver of the device.
  • FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein.
  • the communications manager 1205 may include a configuration transmission component 1210, a beam configuration determination component 1215, an activation transmission component 1220, a reference signal transmission component 1225, a data transmission component 1230, a TRS configuration transmission component 1235, a TRS beam configuration determination component 1240, a TRS activation transmission component 1245, and a TRS transmission component 1250.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the configuration transmission component 1210 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the configuration transmission component 1210 may transmit signaling configuring the shared channel for an SFN mode. In some examples, the configuration transmission component 1210 may transmit signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration transmission component 1210 may transmit configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration transmission component 1210 may transmit control signaling including a field indicating that the shared channel is configured for an SFN mode.
  • the configuration transmission component 1210 may transmit control signaling including an indication that two or more TCI states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  • the configuration transmission component 1210 may transmit a control message including a field indicating that the shared channel is configured for an SFN mode.
  • the configuration transmission component 1210 may transmit a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode.
  • the configuration transmission component 1210 may transmit a control message based on two or more control channel beam configurations.
  • the control signaling includes a MAC CE.
  • the control message includes a DCI message.
  • the beam configuration determination component 1215 may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
  • the activation transmission component 1220 may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the activation transmission component 1220 may transmit control signaling identifying two or more TCI states for the one or more reference signals of the shared channel.
  • the activation transmission component 1220 may transmit, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
  • the activation transmission component 1220 may transmit a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
  • the activation transmission component 1220 may identify the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of TCI states of the two or more identified TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the activation transmission component 1220 may transmit a control message including the set of bits. In some examples, the activation transmission component 1220 may transmit control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
  • the activation transmission component 1220 may transmit a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the activation transmission component 1220 may transmit a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
  • the reference signal transmission component 1225 may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the reference signal transmission component 1225 may receive capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where transmitting the one or more reference signals on the shared channel is based on the second QCL time threshold.
  • the data transmission component 1230 may transmit a data signal of the shared channel based on the one or more transmitted reference signals.
  • the TRS configuration transmission component 1235 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the indication is transmitted via radio resource control signaling.
  • the one or more reference signals of the shared channel include DMRSs.
  • the TRS beam configuration determination component 1240 may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
  • the TRS activation transmission component 1245 may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations.
  • the TRS activation transmission component 1245 may transmit control signaling identifying two or more TCI states for the one or more TRSs of the shared channel.
  • the TRS activation transmission component 1245 may transmit a control message including an indication of one or more activated TCI states of the two or more identified TCI states.
  • the control signaling includes a MAC CE.
  • the indication of the one or more activated TCI states includes a field of the control message.
  • the indication of the one or more activated TCI states includes a subset of a TCI field of the control message.
  • the control message includes a DCI message.
  • the TRS transmission component 1250 may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the one or more TRSs have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel are associated with a signal frequency network state.
  • a first TRS of the one or more TRSs has a different QCL state from a second TRS of the one or more TRSs.
  • the configuration transmission component 1210, beam configuration determination component 1215, activation transmission component 1220, reference signal transmission component 1225, data transmission component 1230, TRS configuration transmission component 1235, TRS beam configuration determination component 1240, TRS activation transmission component 1245, and TRS transmission component 1250 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • a processor e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration transmission component 1210, beam configuration determination component 1215, activation transmission component 1220, reference signal transmission component 1225, data transmission component 1230, TRS configuration transmission component 1235, TRS beam configuration determination component 1240, TRS activation transmission component 1245, and TRS transmission component 1250 discussed herein.
  • FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
  • buses e.g., bus 1350
  • the communications manager 1310 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the communications manager 1310 may also transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1330 may include RAM, ROM, or a combination thereof.
  • the memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1340
  • the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1340 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1340.
  • the processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting beam configuration indication for a downlink shared channel) .
  • the inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an activation reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a reference signal reception component as described with reference to FIGs. 6 through 9.
  • the UE may decode a data signal of the shared channel based on the one or more received reference signals.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a data decoding component as described with reference to FIGs. 6 through 9.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive signaling configuring the shared channel for an SFN mode.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an activation reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a reference signal reception component as described with reference to FIGs. 6 through 9.
  • the UE may decode a data signal of the shared channel based on the one or more received reference signals.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a data decoding component as described with reference to FIGs. 6 through 9.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
  • the base station may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a beam configuration determination component as described with reference to FIGs. 10 through 13.
  • the base station may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an activation transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a reference signal transmission component as described with reference to FIGs. 10 through 13.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit signaling configuring the shared channel for an SFN mode.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
  • the base station may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a beam configuration determination component as described with reference to FIGs. 10 through 13.
  • the base station may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by an activation transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a reference signal transmission component as described with reference to FIGs. 10 through 13.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a TRS configuration reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a TRS reception component as described with reference to FIGs. 6 through 9.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a TRS configuration reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive control signaling identifying two or more TCI states for the one or more TRSs.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
  • the UE may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a TRS reception component as described with reference to FIGs. 6 through 9.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a TRS configuration transmission component as described with reference to FIGs. 10 through 13.
  • the base station may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a TRS beam configuration determination component as described with reference to FIGs. 10 through 13.
  • the base station may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a TRS transmission component as described with reference to FIGs. 10 through 13.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
  • the operations of method 2100 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs.
  • the operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a TRS configuration transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit control signaling identifying two or more TCI states for the one or more TRSs of the shared channel.
  • the operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
  • the base station may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
  • the operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by a TRS beam configuration determination component as described with reference to FIGs. 10 through 13.
  • the base station may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations.
  • the operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
  • the operations of 2125 may be performed according to the methods described herein. In some examples, aspects of the operations of 2125 may be performed by a TRS transmission component as described with reference to FIGs. 10 through 13.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described to indicate a single frequency network (SFN) mode and associated composite channel reference signals to a user equipment (UE). A UE and a base station may communicate via two or more transmission and reception points (TRPs) using an SFN transmission, which may represent a transmission having multiple beam configurations. The SFN mode may be explicitly or implicitly indicated in a configuration, a control signaling, or a control message. The base station may transmit an indication of activated beam configurations for the shared channel and for tracking reference signals corresponding to the shared channel. The UE may receive one or more reference signals from each TRP and, based on the SFN indication and the activated beam configurations, may use information from the one or more reference signals to receive transmissions associated with the control channel transmission.

Description

BEAM CONFIGURATION INDICATION FOR A DOWNLINK SHARED CHANNEL
FIELD OF TECHNOLOGY
The present disclosure relates generally to wireless communications and more specifically to beam configuration indication for a downlink shared channel.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-APro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A base station and a UE may communicate via multiple transmission and reception points (TRPs) for a downlink transmission. In some cases, the TRPs may be transparent to the UE such that the UE may fail to receive or identify one or more reference signals from different TRPs.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support beam configuration indication for a downlink shared channel. Generally, the described techniques provide for indicating a single frequency network (SFN) mode and associated composite channel reference signals to a user equipment (UE) . A UE and a base station may communicate via two or more transmission and reception points  (TRPs) , for example, to improve communication quality, speed, or throughput via SFN transmissions. Though SFN mode is used herein, SFN mode may refer more generally to a mode of operation where multiple TRPs provide a joint transmission (e.g., a joint, concurrent, or simultaneous, etc., transmission) on a same set of time and frequency resources. The base station may transmit a configuration associated with a shared channel that indicates whether shared channel transmissions (e.g., one or more reference signals) are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit. The UE may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a quasi co-location (QCL) state, mode, or relationship) . The UE may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., the one or more reference signals on the shared channel) .
An SFN mode may be represented as a channel configuration including multiple beam configurations or multiple candidate beam configurations (e.g., one beam configuration for each TRP) . The SFN mode may be explicitly or implicitly indicated in a configuration, a control signaling, or a control message. The configuration may also configure a number of transmission configuration indicator (TCI) states for control channel that may be used to respectively indicate QCL information for the TRPs. The control signaling and the control message may further activate a beam configuration for each TRP communicating with the UE. In a second example, the configuration may implicitly indicate the SFN mode for the control channel.
One or more TCI states may also be configured and activated for tracking reference signals (TRS) associated with the shared channel transmission or with the reference signals of the shared channel transmission. For example, a configuration may configure one or more TCI states for the TRS, control signaling may indicate or identify up to two TCI states for each TRS, and a control message may indicate or activate one or two TCI states for each TRS. The UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
A method of wireless communication at a UE is described. The method may include receiving, from a base station, an indication of a set of candidate beam configurations  for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decoding a data signal of the shared channel based on the one or more received reference signals.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for receiving, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decoding a data signal of the shared channel based on the one or more received reference signals.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the  indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving signaling configuring the shared channel for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving control signaling including a field indicating that the shared channel may be configured for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control signaling includes a media access control (MAC) control element (CE) .
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving control signaling including an indication that two or more TCI states may be configured for the one  or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message including a field indicating that the shared channel may be configured for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a downlink control information (DCI) message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the set of candidate beam configurations may include operations, features, means, or instructions for receiving a control message according to two or more control channel beam configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication to activate the two or more beam configurations may include operations, features, means, or instructions for receiving control signaling identifying two or more TCI states for the one or more reference signals of the shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or  more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the two or more identified TCI states, and comparing the set of bits to a table to determine the activated combination of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where receiving the one or more reference signals on the shared channel may be based on the second QCL time threshold.
A method of wireless communication at a base station is described. The method may include transmitting, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determining, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determining, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the  indicated set of candidate beam configurations, and transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting signaling configuring the shared channel for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting  control signaling including a field indicating that the shared channel may be configured for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control signaling includes a media access control control element.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting control signaling including an indication that two or more TCI states may be configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message including a field indicating that the shared channel may be configured for an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a DCI message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the set of candidate beam configurations may include operations, features, means, or instructions for transmitting a control message based on two or more control channel beam configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication to activate the two or more  beam configurations may include operations, features, means, or instructions for transmitting control signaling identifying two or more TCI states for the one or more reference signals of the shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of TCI states of the two or more identified TCI states, where the two or more activated TCI states include the activated combination of TCI states, and transmitting a control message including the set of bits.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including a set of bits, the set of bits indicating an activated  combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where transmitting the one or more reference signals on the shared channel may be based on the second QCL time threshold.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a data signal of the shared channel based on the one or more transmitted reference signals.
A method of wireless communication at a UE is described. The method may include receiving, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receiving the one or more TRSs on the shared channel according to the one or more activated beam configurations.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an  indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for receiving, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receiving an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receiving the one or more TRSs on the shared channel according to the one or more activated beam configurations.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be received via radio resource control (RRC) signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling identifying two or more TCI states for the one or more TRSs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control signaling includes a MAC CE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message including an indication of one or more activated TCI states of the two or more identified TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the one or more activated TCI states includes a field of the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the one or more activated TCI states includes a subset of a TCI field of the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a DCI message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more TRSs may have a same QCL state as one or more demodulation reference signals (DMRS) of the shared channel, where the one or more DMRSs and the shared channel may be associated with a signal frequency network state.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a first TRS of the one or more TRSs may have a different QCL state from a second TRS of the one or more TRSs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more reference signals of the shared channel include DMRSs.
A method of wireless communication at a base station is described. The method may include transmitting, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determining to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmitting an indication to activate, for the one or more TRSs of the shared channel, the one or more beam  configurations, and transmitting the one or more TRSs on the shared channel according to the one or more activated beam configurations.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determining to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmitting an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmitting the one or more TRSs on the shared channel according to the one or more activated beam configurations.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and  transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be transmitted via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting control signaling identifying two or more TCI states for the one or more TRSs of the shared channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control signaling includes a MAC CE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a control message including an indication of one or more activated TCI states of the two or more identified TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the one or more activated TCI states includes a field of the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the one or more activated TCI states includes a subset of a TCI field of the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a DCI message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more TRSs may have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel may be associated with a signal frequency network state.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a first TRS of the one or more TRSs may have a different QCL state from a second TRS of the one or more TRSs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more reference signals of the shared channel include DMRSs.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
FIGs. 3A and 3B illustrate respective examples of signaling schemes that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
FIGs. 4A and 4B illustrate respective examples of control information that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show block diagrams of devices in accordance with aspects of the present disclosure.
FIG. 12 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
FIG. 13 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
FIGs. 14 through 21 show flowcharts illustrating methods that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) and a base station may communicate via two or more transmission and reception points (TRPs) , for example, to improve communication quality, speed, or throughput. For example, a UE and a base station may communicate via a first TRP and a second TRP corresponding to the base station (e.g., when the UE 115 is located in a high speed train (HST) ) . While the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) . In some cases, the first and second TRPs may concurrently or simultaneously transmit a same downlink signal to the UE using a same frequency. Such downlink signals may be referred to as single frequency network (SFN) signals or signals having or operating according to an SFN mode (e.g., SFNed signals) . In some cases, the UE may receive SFN downlink signals as if the UE were receiving a single downlink signal (e.g., from the perspective of the UE, the UE may not distinguish or may be unable to distinguish between SFN signals (e.g., SFNed downlink data signals) received from one TRP and SFN signals (e.g., corresponding SFNed downlink data signals) received from a second TRP) . Though SFN mode is used herein, SFN mode may refer more generally to a mode of operation where multiple TRPs provide a transmission (e.g., a joint, concurrent, or simultaneous, etc., transmission) on a same set of time and frequency resources. As such, where “SFN mode” is used herein, other terms referring to the equivalent techniques may be substituted herein.
Communications between the UE and the first and second TRPs may represent multi-antenna transmissions, where the first and second TRPs may concurrently or simultaneously transmit downlink information to the UE, for example, using an SFN mode. In some cases, SFN transmissions from the first and second TRPs to the UE (e.g., control channel signals, shared channel signals, or both) may represent a composite (which may also be referred to as combined, joint, etc. ) channel that may be estimated using quasi co-location (QCL) state information or one or more other channel properties, among other examples. As  used herein, QCL state may refer to one more QCL relationships, and may also refer to or be referred to as a QCL mode. In some cases, the first and second TRPs may be associated with different downlink channel properties (e.g., spatial or other transmission properties, such as different QCL states) , such that if the UE is unaware of the SFN mode, the UE may be unable to decode or receive the respective signals from the first and second TRPs using a corresponding composite channel.
For example, if the UE is unaware of the SFN mode, the UE may expect to receive one set of reference signals for the channel instead of two sets of reference signals for the composite channel (e.g., one for each TRP) . If the UE is unaware of the SFN mode, the UE may process communications according to the one set of reference signals, which may result in communication errors or reduced communication quality, speed, or throughput. Accordingly, the present disclosure provides techniques for indicating an SFN mode and composite channel reference signals to a UE.
For example, the base station may transmit a configuration, control signaling, or a control message associated with a shared channel that may indicate whether shared channel transmissions are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit. In a first example, the SFN mode may be explicitly indicated as enabled or disabled in the configuration, the control signaling, or the control message. The configuration may also configure a number of transmission configuration indicator (TCI) states for control channel that may be used to respectively indicate QCL information for the first and second TRPs. The base station may also transmit the control signaling and the control message to identify and activate a TCI state for each TRP communicating with the UE.
In a second example, the configuration, the control signaling, or the control message may implicitly indicate the SFN mode for the control channel. For example, the configuration may configure a TCI state for the control channel such that the TCI state indicates two or more types of reference signals for a QCL type or state. In some cases, the control signaling may implicitly indicate the SFN mode by indicating multiple TCI states for the shared channel or for TRS of the shared channel. In some cases, the control message may implicitly indicate the SFN mode for the shared channel via a radio network temporary identifier (RNTI) or via an SFN mode of the control message.
In the examples described herein, the UE may determine that the SFN mode is enabled for the shared channel transmission, for example, based on an implicit or explicit indication in the configuration. The UE may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a QCL state or relationship) . The UE may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., one or more references signals on the shared channel) .
In some cases, one or more TCI states may also be configured and activated for tracking reference signals (TRS) associated with the shared channel transmission or with the reference signals of the shared channel transmission. For example, a configuration may configure one or more TCI states for the TRS, control signaling may indicate or identify up to two TCI states for each TRS, and a control message may indicate or activate one or two TCI states for each TRS. The UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to signaling schemes, control information, a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to beam configuration indication for a downlink shared channel.
FIG. 1 illustrates an example of a wireless communications system 100 in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-APro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having  different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may  include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme,  the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs)  ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM  techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial  applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to  as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or  more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna  elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type  codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio  bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
In some cases, one or more TCI states may be configured and activated for a UE 115 for a downlink transmission from a base station 105 (e.g., a downlink shared channel transmission or a downlink control channel transmission) . The one or more TCI states may be configured, for example, via RRC signaling, where up to 64 TCI states may be configured for a control channel and up to 128 TCI states may be configured for a shared channel. A MAC control element (CE) and a downlink control information (DCI) may be transmitted to the UE to activate a TCI state for the shared channel and a MAC CE may be transmitted to the UE to activate a TCI state for the control channel. A TCI state may include parameters for configuring a QCL relationship between one or two downlink reference signals and DMRS ports of the shared channel, the control channel, or a CSI-RS resource. The TCI state may indicate a QCL relationship for a first downlink reference signal (e.g., QCL Type-1) and a QCL relationship for a second downlink reference signal (e.g., QCL Type-2) , such that up to two QCL relationships may be configured for a TCI state.
The UE 115 may be associated with a predetermined threshold representing a time between reception of DCI and reception of a transmission on a shared channel. The predetermined threshold may represent a number of symbols (e.g., 7, 14, or 28 symbols) and may be indicated via UE capability signaling. If an offset between reception of the DCI and reception of the transmission on the shared channel is less than the predetermined threshold, the UE may assume a QCL state for the transmission corresponding to a configured CORESET having a lowest identifier (ID) . For example, if the offset is less than the predetermined threshold, the UE 115 may not have time to decode the DCI by tuning a receive beam to an indicated TCI state. If the offset between the DCI and the shared channel transmission is greater than the predetermined threshold, the UE 115 may determine whether the UE 115 has received a MAC CE. If the UE 115 has not received the MAC CE, the UE 115 may determine a QCL state based on a TCI parameter from RRC signaling, and may further determine the QCL state based on parameters associated with a CORESET of the DCI or cell acquisition. If the UE 115 has received a MAC CE (e.g., identifying TCI states for QCL information) , the UE 115 may determine the QCL state according to the TCI state indicated via a TCI field in the DCI.
UE 115 and a base station 105 may communicate via two or more TRPs, for example, to improve communication quality, speed, or throughput via SFN transmissions. The base station 105 may transmit a configuration, a control signaling, or a control message associated with a shared channel that indicates whether shared channel transmissions are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit. The UE 115 may receive one or more reference signals from each TRP and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission (e.g., via a QCL state or relationship) . The UE 115 may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission (e.g., one or more reference signals on the control channel) .
One or more TCI states may also be configured and activated for TRS associated with the shared channel transmission or with the reference signals of the shared channel transmission. For example, a configuration may configure one or more TCI states for the TRS, control signaling may indicate or identify up to two TCI states for each TRS, and a control message may indicate or activate one or two TCI states for each TRS. The UE may identify the activated TCI state (s) for each TRS and may receive the TRS according to the activated TCI state (s) .
FIG. 2 illustrates an example of a wireless communications system 200 in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. For example, wireless communications system 200 may include a UE 115-a and a base station 105, which may be examples of a UE 115 and base station 105 described with reference to FIG. 1. Wireless communications system 200 may also include two or more TRPs 210, where UE 115-a may communicate with the base station 105 via at least the two or more TRPs 210. For example, wireless communications system 200 may include TRP 210-a and TRP 210-b, which may correspond to the base station 105. While the examples described herein refer to two TRPs 210, it is to be understood that the same examples may also apply to any number of TRPs 210 (e.g., greater than two TRPs 210) .
UE 115-a may estimate properties of a channel (e.g., a shared channel or a control channel) used for transmissions from TRPs 210-a and 210-b based on one or more reference  signals transmitted over the channel. Among other examples, a channel property may include a phase change, a frequency offset, a channel synchronization, interference characteristics, or channel distortions. Channel estimation (e.g., channel property estimation) may support reception of downlink transmissions, among other examples. A QCL state may support channel estimation at UE 115-a by indicating relationships between different channels associated with different downlink transmissions received at different antenna ports. For example, a QCL state may indicate a relationship between respective antenna ports of a reference signal and a control channel or a shared channel (e.g., or reference signals thereof) . UE 115-a may determine a channel property of a first antenna port (e.g., of the reference signal) and apply the channel property to a second antenna port (e.g., of the shared or control channel) .
In some cases, a QCL state may indicate one or more reference signals (e.g., reference signal ports) that may be used for channel estimation for one or more antenna ports of a downlink channel. For example, the base station 105 may configure UE 115-a with a QCL state indicating that one or more antenna ports used for a downlink reference signal (e.g., a synchronization signal block (SSB) or CSI-RS) are QCLed (e.g., share one or more channel properties) with one or more antenna ports of a downlink channel such as a physical downlink shared channel (PDSCH) , a physical downlink control channel (PDCCH) , or CSI-RS. UE 115-a may receive QCL information from the base station 105 via a configuration (e.g., a TCI state configuration) indicating a QCL state.
QCL information may indicate a relationship between antenna ports, as well as a QCL type associated with the QCL relationship. A QCL relationship, mode, or type may indicate a relationship between two signals for one or more of a Doppler shift, Doppler spread, average delay, or one or more spatial receive parameters. For example, a first QCL relationship, mode, or type may indicate a relationship between the two signals for a Doppler shift, Doppler spread, and average delay, such as QCL-TypeA (e.g., associating channel properties including Doppler shift, Doppler spread, average delay, and delay spread) . In another example, a second QCL relationship, mode, or type may indicate a relationship between the two signals for a Doppler shift and a Doppler spread, such as QCL-TypeB (e.g., associating channel properties including Doppler shift and Doppler spread) . In another example, a third QCL relationship, mode, or type may indicate a relationship between the two signals for an average delay and a Doppler spread, such as QCL-TypeC (e.g., associating  channel properties including Doppler shift and average delay) . In another example, a fourth QCL relationship, mode, or type may indicate a relationship between the two signals for one or more spatial receive parameters, such as QCL-TypeD (e.g., associating channel properties including one or more spatial receive parameters) .
In some multi-TRP deployments, two or more TRPs 210 may communicate downlink signals (e.g., reference signals or other downlink signals) to UE 115-a. For example, UE 115-a may be located on an HST 205 and may receive downlink signals from two TRPs 210. In some cases, two or more of the TRPs 210 may concurrently or simultaneously transmit a same downlink signal to UE 115-a (e.g., a joint SFN downlink signal) using a same frequency. Such downlink signals may be referred to as SFNed downlink signals or downlink signals having an SFN mode or state. Additionally or alternatively, such downlink signals may be referred to as including multiple beam configurations or multiple candidate beam configurations (e.g., one beam configuration for each TRP 210) . SFNed downlink signals may represent nearly simultaneous transmissions from two or more geographically separated antennas (e.g., from two or more TRPs 210) . In some cases, UE 115-a may receive SFNed downlink signals as if UE 115-a were receiving a single downlink signal.
In some cases, TRPs 210-a and 210-b may transmit independent reference signals to UE 115-a (e.g., for independent channel estimation) and UE 115-a may use the independent reference signals to perform channel estimation for antenna ports QCLed with the ports of the independent reference signals. For example, UE 115-a may use independent reference signals to receive or decode SFNed downlink signals using antenna ports QCLed with the independent reference signal antenna ports. For example, DMRS ports corresponding to an SFN transmission on a shared channel or control channel may be QCLed with (e.g., associated with) one or more antenna ports of a reference signal (e.g., an SSB or CSI-RS) . UE 115-a may use the information from the one or more antenna ports of the reference signal to support channel estimation for the SFN transmission.
While the techniques described herein may apply to high speed scenarios, such as HST-SFN scenarios, such techniques may also be used for any type of communications link where a UE 115 communicates with multiple TRPs 210 using an SFN mode or similar communication mode. In one example, an HST wireless network may include a set of TRPs  210 spaced along a high speed railway, where UE 115-a may communicate with a number (e.g., two) of TRPs 210 of the set of TRPs 210 (e.g., TRPs 210-a and 210-b) in the downlink and/or uplink.
Communications between UE 115-a and TRPs 210-a and 210-b may represent multi-antenna transmissions, where TRPs 210-a and 210-b may concurrently or simultaneously transmit downlink information to UE 115-a, for example, using an SFN mode. In some cases, TRPs 210-a and 210-b may be transparent to UE 115-a, such that UE 115-a may be unaware of which TRP 210 a transmission is from, or unaware that a transmission is from both TRPs 210. In some cases, SFNed transmissions from TRPs 210-a and 210-b to UE 115-a (e.g., control channel signals, shared channel signals, or both) may represent a composite channel that may be estimated using QCL state information or one or more other channel properties, among other examples.
In some cases, the SFN mode may be transparent to UE 115-a, such that UE 115-a may be unaware that a downlink signal corresponds to an SFNed signal. However, in some cases, TRPs 210-a and 210-b may be associated with different downlink channel properties (e.g., spatial or other transmission properties, such as different QCL states) , such that if UE 115-a is unaware of the SFN mode, UE 115-a may be unable to decode or receive the respective signals from TRPs 210-a and 210-b using a corresponding composite channel. For example, if UE 115-a is unaware of the SFN mode, UE 115-a may expect to receive one set of reference signals for the channel instead of two sets of reference signals for the composite channel (e.g., one for each TRP 210) . If UE 115-a is unaware of the SFN mode, UE 115-a may process communications according to the one set of reference signals, which may result in communication errors or reduced communication quality, speed, or throughput. Accordingly, the present disclosure provides techniques for indicating an SFN mode and composite channel reference signals to a UE 115 (e.g., UE 115-a) .
For example, the base station 105 may transmit a configuration 215 (e.g., an RRC configuration) for a shared channel, which may carry a shared channel transmission 230. The configuration 215 may be transmitted via TRP 210-a, TRP 210-b, another TRP 210, or any combination thereof. The configuration 215 may indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode, where the indication of the SFN mode may be explicit or implicit. For example, an SFN mode may be  explicitly indicated as enabled or disabled in the configuration 215 (e.g., in a PDSCH configuration) . In some cases, the configuration 215 may indicate for UE 115-a to use a default TCI state or SFN mode, for example, configured during cell acquisition.
The configuration 215 may also configure a number of TCI states configured for the shared channel. In some cases, two of the configured TCI states, or two other TCI states, may be used to respectively indicate QCL information for the two TRPs 210. For example, control signaling 220 (e.g., a MAC CE) from the base station 105 may indicate or identify up to eight TCI states for each TRP 210 communicating with UE 115-a (e.g., TRPs 210-a and 210-b) , and a control message 225 (e.g., a DCI) from the base station 105 may indicate or activate a TCI state for each TRP 210 communicating with UE 115-a.
The control signaling 220 and control message 225 may either or both be transmitted via TRP 210-a, TRP 210-b, another TRP 210, or any combination thereof. The control message 225 may further represent a DCI or a grant to schedule the corresponding shared channel transmission 230.
In some cases, the configuration 215 may implicitly indicate the SFN mode for the shared channel transmission 230. For example, the configuration 215 may configure a TCI state for the shared channel transmissions 230 (e.g., for an associated PDSCH or PDCCH) such that the TCI state indicates two or more types of reference signals for a QCL type or state. If UE 115-a receives a configuration 215 that indicates multiple reference signals for a TCI state or for a QCL type, UE 115-a may determine that an associated shared channel transmission 230 is SFNed. In a first example, a QCL type of the TCI state may be associated with multiple (e.g., two or more) instances of QCL information. In a second example, a QCL type of the TCI state may be associated with one instance of QCL information, and the instance of QCL information may be associated with two or more reference signals.
In another example, the control signaling 220 (e.g., MAC CE) may explicitly or implicitly indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode. For example, the control signaling 220 may use a bit or a field (e.g., a reserved bit) to indicate an SFN mode (e.g., a value of ‘0’ may indicate a non-SFN mode and a value of ‘1’ may indicate SFN mode) . As described herein, the control signaling 220 may indicate or identify a number of TCI states for the shared channel (e.g., up to eight TCI states for each TRP 210) . In some cases, the control signaling 220 may implicitly  indicate the SFN mode for the shared channel transmission 230. For example, the control signaling 220 may indicate or identify, for the shared channel, multiple TCI states corresponding to multiple TRPs 210. If UE 115-a receives control signaling 220 that indicates TCI states configured for multiple TRPs, UE 115-a may determine that an associated shared channel transmission 230 is SFNed.
In a further example, the control message 225 (e.g., DCI) may explicitly or implicitly indicate whether shared channel transmissions 230 on the shared channel are associated with an SFN mode. For example, the control message 225 may use a bit or a field (e.g., a dedicated field in DCI format 1–1) to indicate an SFN mode (e.g., a value of ‘0’ may indicate a non-SFN mode and a value of ‘1’ may indicate SFN mode) . Additionally or alternatively, UE 115-a may be assigned a RNTI corresponding to an SFN mode (e.g., during cell acquisition or initialization procedures) . If the control message 225 is scrambled with the SFN RNTI, UE 115-a may determine that the associated shared channel transmission 230 corresponds to an SFN mode. For example, UE 115-a may attempt to decode the control message 225 using each RNTI assigned to UE 115-a and may determine that the control message 225 is associated with an SFNed shared channel transmission 230 if the SFN RNTI successfully decodes (e.g., descrambles) the control message 225. In some cases, the control message 225 may be associated with an SFN mode (e.g., a CORESET for the control message 225 may be SFNed) , and UE 115-a may determine that the associated shared channel transmission 230 corresponds to an SFN mode if the control message 225 is SFNed.
In any of the examples described herein, UE 115-a may determine that the SFN mode is enabled for the control message 225, for example, based on an implicit or explicit indication. UE 115-a may receive one or more reference signals from each TRP 210 and, based on the SFN indication, may determine that each of the one or more reference signals is associated with the shared channel transmission 230 (e.g., via a QCL state or relationship) . UE 115-a may use information from the one or more reference signals (e.g., channel estimation information) to receive the shared channel transmission 230 (e.g., a control signal on the control channel) . In some cases, the one or more reference signals may be associated (e.g., via a QCL state) with DMRS (e.g., one or more other reference signals) of the shared channel transmission 230 and UE 115-a may use the QCL state and the DMRS to decode the shared channel transmission 230.
In some cases, DMRS associated with the shared channel transmission 230 may be QCLed with one or more TRS. The present disclosure further provides techniques for indicating (e.g., activating or triggering) one or more TCI states for the TRS associated with the shared channel transmission 230 or with the DMRS of the shared channel transmission 230. For example, a configuration 215 (e.g., RRC configuration) may configure one or more TCI states for the TRS. Control signaling 220 (e.g., a MAC CE) may indicate or identify up to two TCI states for each TRS, and a control message 225 (e.g., a DCI) may indicate or activate one or two TCI states for each TRS. UE 115-a may identify the activated TCI state (s) (e.g., beam configuration (s) ) for each TRS and may receive the TRS according to the activated TCI state (s) (e.g., beam configuration (s) ) .
FIGs. 3A and 3B illustrate respective examples of signaling  schemes  301 and 302 in accordance with aspects of the present disclosure. In some examples, signaling  schemes  301 and 302 may implement aspects of  wireless communications system  100 or 200. For example, signaling  schemes  301 and 302 may be implemented by a UE 115 and a base station 105, which may be examples of a UE 115 and base station 105 described with reference to FIGs. 1 and 2.  Signaling schemes  301 and 302 may also be implemented by two or more TRPs, where UE 115-a may communicate with the base station 105 via the two or more TRPs. For example, signaling  schemes  301 and 302 may be implemented by two TRPs, which may correspond to the base station 105. While the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) .
In some cases, references signals 310 (e.g., tracking reference signals (TRS) , CSI-RS, or CRS) and SSBs 305 may be transmitted separately or independently from each TRP. In the example illustrated by FIG. 3A, a first TRP may transmit an SSB 305-a to the UE 115 and a second TRP may independently transmit an SSB 305-b to the UE 115. Similarly, the first TRP may transmit a reference signal 310-a to the UE 115 and the second TRP may independently transmit a reference signal 310-b to the UE 115. In the example illustrated by FIG. 3B, the first TRP may transmit an SSB 305-c to the UE 115 and a second TRP may independently transmit an SSB 305-d to the UE 115. Similarly, the first TRP may transmit a reference signal 310-c to the UE 115 and the second TRP may independently transmit a reference signal 310-d to the UE 115. The UE 115 may be configured with multiple QCL states (e.g., reference signal relationships) , where each QCL state may be associated with a  reference signal 310 of one of the TRPs. For example, the UE 115 may be configured with multiple TCI states (e.g., one TCI state for each TRP) , where each TCI state may include QCL state information for a reference signal 310 of one of the TRPs.
As described with reference to FIG. 2, the UE 115 may receive a configuration indicating that a downlink channel transmission 315 (e.g., a shared channel transmission) is associated with an SFN mode. The SFN mode may, for example, represent a state in which the UE receives a transmission from two or more TRPs, where each TRP may be associated with a different reference signal QCL relationship for the downlink channel transmission 315. In such configurations, a doppler profile of each TRP, among other channel characteristics, may be estimated independently by the UE 115. Because channel characteristics may be estimated independently for each TRP, the downlink channel transmission 315 may support increased channel estimation performance, for example, compared to configurations where the UE 115 may be unaware of the SFN mode. For example, the DMRS of the downlink channel transmission 315 may be associated with multiple CSI-RS (e.g., one or more CSI-RS for each TRP) , which may increase channel estimation performance, for example, because transmissions from each TRP may be associated with different channel characteristics and different corresponding reference signal characteristics.
Signaling scheme 301, in some examples, may represent a scheme associating a downlink channel transmission 315-a (e.g., a shared channel transmission) with reference signals 310-a and 310-b from two respective TRPs, where one DMRS port of downlink channel transmission 315-a may share a QCL relationship (e.g., may be QCLed) with reference signals 310-a and 310-b. The DMRS of downlink channel transmission 315-a may be dependent based on the QCL relationship with both reference signal 310-a and 310-b. Signaling scheme 301 may thus support composite channel estimation using one DMRS port, which may reduce DMRS overhead. In one example, each DMRS port of downlink channel transmission 315-a may be associated with two TCI states (e.g., one TCI state for each TRP) , and each TCI state may include or indicate corresponding QCL state information.
Signaling scheme 302, in some examples, may represent a scheme associating a downlink channel transmission 315-b (e.g., a shared channel transmission) with reference signals 310-c and 310-d from two respective TRPs, where multiple DMRS ports of downlink channel transmission 315-b may share a QCL relationship (e.g., may be QCLed) with  reference signal 310-a or 310-b. The DMRS of downlink channel transmission 315-a may be independent based on this QCL relationship. Signaling scheme 302 may thus support composite channel estimation using multiple DMRS ports. In one example, reference signal 310-c may be associated with a first group of DMRS ports, DMRS port group 320-a, and reference signal 310-d may be associated with a second group of DMRS ports, DMRS port group 320-b. Each data layer of the downlink channel transmission 315-b may be associated with two TCI states (e.g., one TCI state for each TRP) via one port in DMRS port group 320-a and one port in DMRS port group 320-b.
In some cases, the reference signals 310 represented by signaling  scheme  301 or 302 may be associated an SFN mode for a related (e.g., QCLed) downlink channel transmission 315 (e.g., shared channel transmission) . For example, as described with reference to FIG. 2, a configuration, control signaling (e.g., a MAC CE) , or a control message (e.g., a DCI) may include an explicit or an implicit indication of the SFN mode. The configuration may further configure multiple TCI states or other candidate beam configurations (e.g., QCL states or associated reference signals 310) for the downlink channel transmission 315, and the control signaling and the control message may be used to activate one beam configuration for each TRP. For example, the control signaling may identify up to eight TCI states for each TRP and the control message may indicate one activated TCI state of the eight identified TCI states for each TRP. An activated TCI state may include QCL information for one TRP, which may provide a relationship between reference signals 310 and the downlink channel transmission 315.
In some cases, the UE 115 may assume a default TCI state for the activated TCI state. For example, the UE 115 may assume the default TCI state if a time offset between reception of the control message and the downlink channel transmission 315 is less than a predetermined threshold. In an SFN mode, as described herein, the predetermined threshold may have a different value than for non-SFN modes, and may be indicated by the UE 115 via a separate capability through capability reporting or signaling. For example, the predetermined threshold for the SFN mode may be longer than the predetermined threshold for the non-SFN mode, based on an amount of time to determine multiple TCI states. If the offset time between the reception of the control message and the downlink channel transmission 315 is less than the predetermined threshold for the SFN mode, the UE 115 may use or assume a default TCI state for the downlink channel transmission 315.
In any of the examples described herein, the UE 115 may receive one or more reference signals 310 from each TRP and, based on an SFN indication, may determine that each of the one or more reference signals 310 is associated with the downlink channel transmission 315 (e.g., via a QCL state or relationship) . The UE 115 may use information from the one or more reference signals 310 (e.g., channel estimation information) to receive the downlink channel transmission 315 (e.g., a control signal on the control channel) .
FIGs. 4A and 4B illustrate respective examples of  control information  401 and 402 that support beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. In some examples, control  information  401 and 402 may implement aspects of  wireless communications system  100 or 200. For example, control  information  401 and 402 may be used by a UE 115 and a base station 105, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–3.  Control information  401 and 402 may also be used or transmitted by two or more TRPs, where the UE 115 may communicate with the base station 105 via the two or more TRPs. For example, control  information  401 and 402 may be used by two TRPs, which may correspond to the base station 105. While the examples described herein refer to two TRPs, it is to be understood that the same examples may also apply to any number of TRPs (e.g., greater than two TRPs) .
As described with reference to FIG. 2, a configuration transmission may configure multiple TCI states or other candidate beam configurations (e.g., QCL states or associated reference signals) for a shared channel transmission, and associated control signaling (e.g., a MAC CE) and a control message (e.g., a DCI) may be used to activate one beam configuration for each TRP. For example, the control signaling may identify up to eight TCI states for each TRP and the control message may indicate one activated TCI state of the eight identified TCI states for each TRP. In some examples, the control signaling may represent a MAC CE, and the MAC CE may include an activation command that may map the identified TCI states to codepoints of a field in the control message (e.g., a DCI field) . In such cases, the identified TCI states may be indicated in the MAC CE using a bitmap 405 where each field (e.g., T i) of the bitmap 405 includes one bit that indicates an activation or deactivation status of a predefined TCI state (e.g., a TCI state with a TCI state identifier (ID) i) .
As illustrated in FIG. 4A, the control signaling may, in some cases, include two bitmaps, bitmap 405-a and bitmap 405-b (e.g., or any number of bitmaps 405 up to a number of TRPs communicating with the UE 115 in SFN mode) . In the example of two TRPs communicating with the UE 115, a first bitmap 405-a may correspond to fields indicating an activation or deactivation status of respective, predefined TCI states for a first TRP and a second bitmap 405-b may correspond to fields indicating an activation or deactivation status of respective, predefined TCI states for a second TRP. The control signaling may also include control fields 410 for a reserved bit (e.g., control field 410-a) , a serving cell ID (e.g., control field 410-b) , and a BWP ID (e.g., control field 410-c) . Each control field may correspond to a number of bits, for example, control field 410-a may correspond to one bit, control field 410-b may correspond to five bits, and control field 410-c may correspond to two bits.
A control message associated with the control signaling described with reference to FIG. 4A may indicate one activated TCI state for each TRP communicating with the UE 115 over the SFNed shared channel. For example, if two TRPs are communicating with the UE 115, the control message may activate two TCI states (e.g., one for each TRP) . The activated TCI states may be indicated via a TCI field in the control message that comprises a number of bits (e.g., x bits) . In some cases, the TCI field may include six bits to indicate two independent TCI states from the TCI states identified by the control signaling, such that each TCI state may be indicated using three bits. In some cases, a first activated TCI state may correspond to a TCI state indicated using bitmap 405-a and a second activated TCI state may correspond to a TCI state indicated using bitmap 405-b. In some cases, the first and second activated TCI states may correspond to any TCI state in either bitmap 405-a or 405-b.
In some cases, the UE 115 may be configured with a list or table of combinations of TCI states and the control message may indicate a combination from the table of combinations (e.g., a combination of two TCI states) . The combination of TCI states may include a combination of the TCI states activated via the control signaling, and may be represented by the TCI field in the control message. In such cases, the TCI field may include five bits or another number of bits based on equation (1) :
x=log 2 (n c (M, 2) )   (1)
where x may represent a number of bits for the TCI field, n c may represent a number of chosen TCI states, and M may represent a number of TCI states identified by the control  signaling. The value of the TCI field may represent an entry in the table of TCI state combinations, and the UE 115 may use the TCI field value to identify an activated combination of TCI states (e.g., two or more activated TCI states) .
As illustrated in FIG. 4B, the control signaling may include information indicating up to eight combinations 415 of TCI states (e.g., each combination 415 corresponding to a TCI state for each TRP communication with the UE 115 in SFN mode) . In some cases, the combinations 415 of TCI states may represent pairs of TCI states (e.g., when communicating with two TRPs) . The combinations 415 of TCI states may be indicated via a TCI state ID 420 of each associated TCI state, for example, as configured by the base station 105. In one example illustrated by FIG. 4B, a combination 415-a may indicate a first TCI state ID and a second TCI state ID, a combination 415-b may indicate a third TCI state ID and the second TCI state ID, a combination 415-c may indicate a fourth TCI state ID and the third TCI state ID, and so forth. A combination 415-f may represent an eight combination 415 or a last combination 415 indicated by the control signaling. The control signaling may also include control fields 410 for a reserved bit (e.g., control field 410-d) , a serving cell ID (e.g., control field 410-e) , and a BWP ID (e.g., control field 410-f) . Each control field may correspond to a number of bits, for example, as described herein.
A control message associated with the control signaling described with reference to FIG. 4B may indicate one activated combination 415 of TCI states identified by the control signaling, for example, including one TCI state for each TRP communicating with the UE 115 over the SFNed shared channel. For example, if two TRPs are communicating with the UE 115, the control message may activate a combination 415 of two TCI states (e.g., one for each TRP) . The activated combination 415 of TCI states may be indicated via a TCI field in the control message that comprises a number of bits (e.g., x bits) . In some cases, the TCI field may include three bits, for example, to indicate one of the eight combinations 415 of TCI states identified by the control signaling.
In some cases, the control signaling may also indicate or identify up to two TCI states for each TRS configured for the UE 115 (e.g., TCI states configured via RRC signaling) , for example, if the TRS is QCLed with DMRS identified via the TCI states identified by the control signaling. In such cases, the control message may indicate or activate one or two TCI states for each TRS. In a first example, a dedicated field in the control  message may indicate activated TCI state (s) for the TRS (e.g., having a field size of one bit per TCI state) . In a second example, the TCI field may include an extra bit to indicate an activated TCI state from two TCI states identified by the control signaling or may include no extra bits to indicate that both TCI states identified by the control signaling are activated.
FIG. 5 illustrates an example of a process flow 500 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of  wireless communications systems  100 or 200. Process flow 500 may include or be implemented by a base station 105-a and a UE 115-b, which may be examples of a base station 105 and UE 115 described with reference to FIGs. 1–4. Process flow 500 may illustrate an example where UE 115-b may be notified of an SFN mode for a downlink signal and may activate two or more beam configurations for reception of the downlink signal (e.g., a shared channel signal, such as one or more reference signals) from base station 105-a. As described herein, a control signal may be transmitted to UE 115-b via two or more TRPs (e.g., using an SFN state) . In some cases, base station 105-a may be associated with each of the two or more TRPs, or in some cases, base station 105-a may be associated with at least one of the two or more TRPs. In some cases, as described herein, UE 115-b may be located on an HST.
At 505, base station 105-a may transmit, to UE 115-b, an indication of multiple candidate beam configurations (e.g., an indication of an SFN mode) for one or more reference signals (e.g., DMRS) of a shared channel, where the shared channel may be associated with control signal transmissions via the two or more TRPs. In some examples, the indication of the multiple candidate beam configurations may include or be included in an RRC message or an RRC configuration, a MAC CE, or a DCI. For example, the RRC configuration, MAC CE, or DCI may include an explicit indication of an SFN mode for shared channel transmissions via the two or more TRPs (e.g., via a PDSCH configuration) . In some cases, the RRC configuration, MAC CE, or DCI may exclude an explicit indication of the SFN mode and may include an implicit indication of the SFN mode, for example, as described herein.
In some cases, at 505, base station 105-a may transmit, to UE 115-b, an indication of multiple candidate beam configurations (e.g., an indication of an SFN mode) for one or more TRS corresponding to a shared channel or corresponding to one or more reference  signals (e.g., DMRS) of the share channel, where the shared channel may be associated with control signal transmissions via the two or more TRPs. For example, base station 105-a may transmit an RRC configuration including multiple TCI states for TRS.
At 510, base station 105-a may determine, based on the multiple candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel. For example, base station 105-a may identify the two or more TRPs associated with the control channel transmissions to UE 115-b (e.g., the control signal transmission) and may activate the two or more beam configurations based on identifying the two or more TRPs. In some cases, each beam configuration of the two or more activated beam configurations may correspond to a TRP of the two or more TRPs. In some cases, determining a beam configuration that corresponds to a TRP of the two or more TRPs may be based on one or more channel or spatial characteristics associated with the TRP.
In some cases, at 510, base station 105-a may determine, for the one or more TRS of the shared channel, one or more beam configurations of the multiple candidate beam configurations. For example, base station 105-a may determine the one or more beam configurations based on the two or more TRPs, as described herein.
At 515, base station 105-a may transmit, to UE 115-b, an indication to activate, for the one or more reference signals of the shared channel, the two or more beam configurations of the multiple candidate beam configurations. In some examples, the indication to activate the two or more beam configurations may be received via control signaling and a control message, such as via a MAC CE and a DCI. As described herein with reference to FIG. 4, the control signaling may identify up to eight TCI states for each TRP associated with transmissions on the shared channel to UE 115-b. The control signaling may indicate the TCI states using a bitmap or using combinations of two or more TCI states. Additionally, as described with reference to FIG. 4, the control message may activate one TCI state of the identified TCI states for each TRP associated with transmissions on the shared channel to UE 115-b. The DCI may indicate two TCI states independently, may indicate a combination of two TCI states from two bitmaps, or may indicate an activated combination of TCI states from an identified combination.
In some cases, at 515, base station 105-a may transmit, to UE 115-b, an indication to activate, for the one or more TRS of the shared channel, the one or more beam  configurations. For example, as described herein, a control signaling to UE 115-b may identify two TCI states for each TRP and a control message to UE 115-b may activate one or two TCI states for each TRS.
At 520, base station 105-a may transmit, to UE 115-b and based on the two or more activated beam configurations, the one or more reference signals on the shared channel, and UE 115-b may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations. In some cases, base station 105-a may transmit the one or more reference signals via the two or more TRPs. For example, base station 105-a may transmit the one or more reference signals via a PDSCH and based on the two or more activated beam configurations associated with the two or more TRPs. In some cases, base station 105-a may transmit the one or more reference signals via a TRP of the two or more TRPs based on a beam configuration (e.g., TCI state or QCL state) associated with the TRP and UE 115-b may receive the one or more reference signals from the TRP using the beam configuration (e.g., TCI state or QCL state) associated with the TRP (e.g., associated with one or more reference signals of the TRP) .
In some cases, at 520, base station 105-a may transmit the one or more TRS on the shared channel according to the one or more activated beam configurations, and UE 115-b may receive the one or more TRS on the shared channel according to the one or more activated beam configurations. For example, base station 105-a and UE 115-b may implement one of the methods described herein with reference to a shared channel transmission or a PDSCH to transmit or receive the TRS.
At 525, UE 115-b may decode a data signal of the shared channel based on the one or more received reference signals. For example, base station 105-a may transmit a data signal associated with the one or more reference signals. In some cases, UE 115-b may receive the one or more references signals, perform channel estimation using the one or more reference signals, receive the data signal, and decode the data signal using at least the channel estimation.
FIG. 6 shows a block diagram 600 of a device 605 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a  transmitter 620. The device 605 may also include one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform the beam configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals. The communications manager 615 may also receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a  digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
The actions performed by the communications manager 615 as described herein, among other examples, may be implemented to realize one or more potential advantages. For example, communications manager 615 may increase channel quality and throughput and decrease interference at a wireless device (e.g., a UE 115) by supporting identification of reference signals for multiple TRPs in an SFN mode. The identification of the SFN mode may reduce delays, interference, and power consumption (or any combination thereof) compared to other systems and techniques, for example, that do not support identification of an SFN mode for transmissions involving multiple TRPs. Accordingly, communications manager 615 may save power and increase battery life at a wireless device (e.g., a UE 115) by strategically increasing a quality of communications at a wireless device (e.g., a UE 115) .
FIG. 7 shows a block diagram 700 of a device 705 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the  present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 755. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a configuration reception component 720, an activation reception component 725, a reference signal reception component 730, a data decoding component 735, a TRS configuration reception component 740, a TRS activation reception component 745, and a TRS reception component 750. The communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The configuration reception component 720 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs.
The activation reception component 725 may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
The reference signal reception component 730 may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations.
The data decoding component 735 may decode a data signal of the shared channel based on the one or more received reference signals.
The TRS configuration reception component 740 may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs  corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs.
The TRS activation reception component 745 may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations.
The TRS reception component 750 may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
The transmitter 755 may transmit signals generated by other components of the device 705. In some examples, the transmitter 755 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 755 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 755 may utilize a single antenna or a set of antennas.
In some cases, the configuration reception component 720, activation reception component 725, reference signal reception component 730, data decoding component 735, TRS configuration reception component 740, TRS activation reception component 745, and TRS reception component 750 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration reception component 720, activation reception component 725, reference signal reception component 730, data decoding component 735, TRS configuration reception component 740, TRS activation reception component 745, and TRS reception component 750 discussed herein. A transceiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a transceiver of the device. A radio processor may be collocated with and/or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device. A transmitter processor may be collocated with and/or communicate with (e.g., direct the operations of) a transmitter of the device. A receiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a receiver of the device.
A processor of a wireless device (e.g., controlling the receiver 710, the transmitter 755, or the transceiver 920 as described with reference to FIG. 9) may increase  communication reliability and accuracy by decreasing interference, and increasing communication quality and available power. The reduced interference may increase communication quality and throughput, which may reduce power consumption (e.g., via implementation of system components described with reference to FIG. 8) compared to other systems and techniques, for example, that do not support indication of an SFN mode, which may increase interference and power consumption. Further, the processor of the UE 115 may identify one or more aspects of an SFN mode indication and of multiple reference signals associated with the SFN mode to perform the processes described herein. The processor of the wireless device may use the indication of the SFN mode and the multiple reference signals to perform one or more actions that may result in lower interference and power consumption, as well as save power and increase battery life at the wireless device (e.g., by strategically increasing communication quality and throughput) , among other benefits.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a configuration reception component 810, an activation reception component 815, a reference signal reception component 820, a data decoding component 825, a TRS configuration reception component 830, a TRS activation reception component 835, and a TRS reception component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The configuration reception component 810 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs. In some examples, the configuration reception component 810 may receive signaling configuring the shared channel for an SFN mode. In some examples, the configuration reception component 810 may receive signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration reception component 810 may receive configuration signaling configuring two or more reference signal sequences  for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
In some examples, the configuration reception component 810 may receive control signaling including a field indicating that the shared channel is configured for an SFN mode. In some examples, the configuration reception component 810 may receive control signaling including an indication that two or more TCI states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel. In some examples, the configuration reception component 810 may receive a control message including a field indicating that the shared channel is configured for an SFN mode. In some examples, the configuration reception component 810 may receive a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode. In some examples, the configuration reception component 810 may receive a control message according to two or more control channel beam configurations. In some cases, the control signaling includes a MAC CE. In some cases, the control message includes a DCI message.
The activation reception component 815 may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. In some examples, the activation reception component 815 may receive control signaling identifying two or more TCI states for the one or more reference signals of the shared channel. In some examples, the activation reception component 815 may receive, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states.
In some examples, the activation reception component 815 may receive a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets. In some examples, the activation reception component 815 may receive a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the  two or more identified TCI states. In some examples, the activation reception component 815 may compare the set of bits to a table to determine the activated combination of TCI states, where the two or more activated TCI states include the activated combination of TCI states.
In some examples, the activation reception component 815 may receive control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states. In some examples, the activation reception component 815 may receive a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the activation reception component 815 may receive a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
The reference signal reception component 820 may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations. In some examples, the reference signal reception component 820 may transmit capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where receiving the one or more reference signals on the shared channel is based on the second QCL time threshold.
The data decoding component 825 may decode a data signal of the shared channel based on the one or more received reference signals.
The TRS configuration reception component 830 may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs. In some cases, the indication is received via RRC signaling. In some cases, the one or more reference signals of the shared channel include DMRSs.
The TRS activation reception component 835 may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations. In some examples, the TRS activation  reception component 835 may receive control signaling identifying two or more TCI states for the one or more TRSs. In some examples, the TRS activation reception component 835 may receive a control message including an indication of one or more activated TCI states of the two or more identified TCI states. In some cases, the control signaling includes a MAC CE. In some cases, the indication of the one or more activated TCI states includes a field of the control message. In some cases, the indication of the one or more activated TCI states includes a subset of a TCI field of the control message. In some cases, the control message includes a DCI message.
The TRS reception component 840 may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations. In some cases, the one or more TRSs have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel are associated with a signal frequency network state. In some cases, a first TRS of the one or more TRSs has a different QCL state from a second TRS of the one or more TRSs.
In some cases, the configuration reception component 810, activation reception component 815, reference signal reception component 820, data decoding component 825, TRS configuration reception component 830, TRS activation reception component 835, and TRS reception component 840 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration reception component 810, activation reception component 815, reference signal reception component 820, data decoding component 825, TRS configuration reception component 830, TRS activation reception component 835, and TRS reception component 840 discussed herein.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an  I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, receive the one or more reference signals on the shared channel according to the two or more activated beam configurations, and decode a data signal of the shared channel based on the one or more received reference signals. The communications manager 910 may also receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs, receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations, and receive the one or more TRSs on the shared channel according to the one or more activated beam configurations.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as 
Figure PCTCN2020081552-appb-000001
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the  modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include RAM and ROM. The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting beam configuration indication for a downlink shared channel) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020. The device 1005 may also include one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that  are executable by the one or more processors to enable the one or more processors to perform the beam configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations. The communications manager 1015 may also transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations. The communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
The communications manager 1015, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor  logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1015, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1015, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1015, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1020 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1160. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to beam configuration indication for a downlink shared channel, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein. The communications manager 1115 may include a configuration transmission component 1120, a beam configuration determination component 1125, an activation transmission component 1130, a reference signal transmission component 1135, a TRS configuration transmission component 1140, a TRS beam configuration determination component 1145, a TRS activation transmission component 1150, and a TRS transmission component 1155. The communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
The configuration transmission component 1120 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
The beam configuration determination component 1125 may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
The activation transmission component 1130 may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations.
The reference signal transmission component 1135 may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
The TRS configuration transmission component 1140 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs.
The TRS beam configuration determination component 1145 may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
The TRS activation transmission component 1150 may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations.
The TRS transmission component 1155 may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
The transmitter 1160 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1160 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1160 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1160 may utilize a single antenna or a set of antennas.
In some cases, the configuration transmission component 1120, beam configuration determination component 1125, activation transmission component 1130, reference signal transmission component 1135, TRS configuration transmission component 1140, TRS beam configuration determination component 1145, TRS activation transmission component 1150, and TRS transmission component 1155 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration transmission component 1120, beam configuration determination component 1125, activation transmission component 1130, reference signal transmission component 1135, TRS configuration transmission component 1140, TRS beam configuration determination component 1145, TRS activation transmission component 1150, and TRS transmission component 1155 discussed herein. A transceiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a transceiver of the device. A radio processor may be collocated with and/or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device. A transmitter processor may be collocated with and/or communicate with (e.g., direct the operations of) a transmitter of the device. A receiver processor may be collocated with and/or communicate with (e.g., direct the operations of) a receiver of the device.
FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein. The communications manager 1205 may  include a configuration transmission component 1210, a beam configuration determination component 1215, an activation transmission component 1220, a reference signal transmission component 1225, a data transmission component 1230, a TRS configuration transmission component 1235, a TRS beam configuration determination component 1240, a TRS activation transmission component 1245, and a TRS transmission component 1250. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The configuration transmission component 1210 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs.
In some examples, the configuration transmission component 1210 may transmit signaling configuring the shared channel for an SFN mode. In some examples, the configuration transmission component 1210 may transmit signaling configuring two or more QCL states for one TCI state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration transmission component 1210 may transmit configuration signaling configuring two or more reference signal sequences for one QCL state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel. In some examples, the configuration transmission component 1210 may transmit control signaling including a field indicating that the shared channel is configured for an SFN mode.
In some examples, the configuration transmission component 1210 may transmit control signaling including an indication that two or more TCI states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel. In some examples, the configuration transmission component 1210 may transmit a control message including a field indicating that the shared channel is configured for an SFN mode. In some examples, the configuration transmission component 1210 may transmit a control message scrambled with a radio network temporary identifier that corresponds to an SFN mode. In some examples, the configuration transmission component 1210 may transmit a control message based on two or more control channel beam  configurations. In some cases, the control signaling includes a MAC CE. In some cases, the control message includes a DCI message.
The beam configuration determination component 1215 may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel.
The activation transmission component 1220 may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. In some examples, the activation transmission component 1220 may transmit control signaling identifying two or more TCI states for the one or more reference signals of the shared channel. In some examples, the activation transmission component 1220 may transmit, via the control signaling, a bitmap including two or more subsets of TCI states and indicating one or more selected TCI states in each of the two or more subsets, the one or more selected TCI states in each of the two or more subsets including the two or more identified TCI states. In some examples, the activation transmission component 1220 may transmit a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the one or more selected TCI states in each of the two or more subsets, where the two or more activated TCI states include the activated TCI state in each of the two or more subsets.
In some examples, the activation transmission component 1220 may identify the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of TCI states of the two or more identified TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the activation transmission component 1220 may transmit a control message including the set of bits. In some examples, the activation transmission component 1220 may transmit control signaling including an indication of at least one combination of two or more TCI states and an indication of one or more selected combinations of TCI states, the at least one combination of two or more TCI states including the two or more identified TCI states.
In some examples, the activation transmission component 1220 may transmit a control message including a set of bits, the set of bits indicating an activated combination of TCI states of the one or more selected combinations of TCI states, where the two or more activated TCI states include the activated combination of TCI states. In some examples, the  activation transmission component 1220 may transmit a control message including two or more sets of bits, each set of bits indicating an activated TCI state of the two or more identified TCI states.
The reference signal transmission component 1225 may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations. In some examples, the reference signal transmission component 1225 may receive capability signaling indicating a first QCL time threshold for a shared channel associated with one beam configuration and a second QCL time threshold for a shared channel associated with two or more beam configurations, where transmitting the one or more reference signals on the shared channel is based on the second QCL time threshold.
The data transmission component 1230 may transmit a data signal of the shared channel based on the one or more transmitted reference signals.
The TRS configuration transmission component 1235 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs. In some cases, the indication is transmitted via radio resource control signaling. In some cases, the one or more reference signals of the shared channel include DMRSs.
The TRS beam configuration determination component 1240 may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations.
The TRS activation transmission component 1245 may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations. In some examples, the TRS activation transmission component 1245 may transmit control signaling identifying two or more TCI states for the one or more TRSs of the shared channel. In some examples, the TRS activation transmission component 1245 may transmit a control message including an indication of one or more activated TCI states of the two or more identified TCI states. In some cases, the control signaling includes a MAC CE. In some cases, the indication of the one or more activated TCI states includes a field of the control message. In some cases, the indication of the one or more activated TCI states  includes a subset of a TCI field of the control message. In some cases, the control message includes a DCI message.
The TRS transmission component 1250 may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations. In some cases, the one or more TRSs have a same QCL state as one or more DMRSs of the shared channel, where the one or more DMRSs and the shared channel are associated with a signal frequency network state. In some cases, a first TRS of the one or more TRSs has a different QCL state from a second TRS of the one or more TRSs.
In some cases, the configuration transmission component 1210, beam configuration determination component 1215, activation transmission component 1220, reference signal transmission component 1225, data transmission component 1230, TRS configuration transmission component 1235, TRS beam configuration determination component 1240, TRS activation transmission component 1245, and TRS transmission component 1250 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of the configuration transmission component 1210, beam configuration determination component 1215, activation transmission component 1220, reference signal transmission component 1225, data transmission component 1230, TRS configuration transmission component 1235, TRS beam configuration determination component 1240, TRS activation transmission component 1245, and TRS transmission component 1250 discussed herein.
FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
The communications manager 1310 may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs, determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel, transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations, and transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations. The communications manager 1310 may also transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs, determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations, transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations, and transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations.
The network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM, ROM, or a combination thereof. The memory 1330 may store computer-readable code 1335 including instructions that, when  executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein. In some cases, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1340 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting beam configuration indication for a downlink shared channel) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 14 shows a flowchart illustrating a method 1400 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be  performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
At 1410, the UE may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an activation reception component as described with reference to FIGs. 6 through 9.
At 1415, the UE may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a reference signal reception component as described with reference to FIGs. 6 through 9.
At 1420, the UE may decode a data signal of the shared channel based on the one or more received reference signals. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a data decoding component as described with reference to FIGs. 6 through 9.
FIG. 15 shows a flowchart illustrating a method 1500 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of  the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more TRPs. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
At 1510, the UE may receive signaling configuring the shared channel for an SFN mode. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a configuration reception component as described with reference to FIGs. 6 through 9.
At 1515, the UE may receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an activation reception component as described with reference to FIGs. 6 through 9.
At 1520, the UE may receive the one or more reference signals on the shared channel according to the two or more activated beam configurations. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a reference signal reception component as described with reference to FIGs. 6 through 9.
At 1525, the UE may decode a data signal of the shared channel based on the one or more received reference signals. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a data decoding component as described with reference to FIGs. 6 through 9.
FIG. 16 shows a flowchart illustrating a method 1600 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105  or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
At 1610, the base station may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a beam configuration determination component as described with reference to FIGs. 10 through 13.
At 1615, the base station may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an activation transmission component as described with reference to FIGs. 10 through 13.
At 1620, the base station may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a reference signal transmission component as described with reference to FIGs. 10 through 13.
FIG. 17 shows a flowchart illustrating a method 1700 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the  present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more TRPs. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
At 1710, the base station may transmit signaling configuring the shared channel for an SFN mode. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a configuration transmission component as described with reference to FIGs. 10 through 13.
At 1715, the base station may determine, based on the set of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a beam configuration determination component as described with reference to FIGs. 10 through 13.
At 1720, the base station may transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated set of candidate beam configurations. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by an activation transmission component as described with reference to FIGs. 10 through 13.
At 1725, the base station may transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations. The operations  of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a reference signal transmission component as described with reference to FIGs. 10 through 13.
FIG. 18 shows a flowchart illustrating a method 1800 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a TRS configuration reception component as described with reference to FIGs. 6 through 9.
At 1810, the UE may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
At 1815, the UE may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a TRS reception component as described with reference to FIGs. 6 through 9.
FIG. 19 shows a flowchart illustrating a method 1900 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a UE 115 or its  components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1905, the UE may receive, from a base station, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more TRPs. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a TRS configuration reception component as described with reference to FIGs. 6 through 9.
At 1910, the UE may receive control signaling identifying two or more TCI states for the one or more TRSs. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
At 1915, the UE may receive an indication to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the indicated set of candidate beam configurations. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a TRS activation reception component as described with reference to FIGs. 6 through 9.
At 1920, the UE may receive the one or more TRSs on the shared channel according to the one or more activated beam configurations. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a TRS reception component as described with reference to FIGs. 6 through 9.
FIG. 20 shows a flowchart illustrating a method 2000 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be  performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a TRS configuration transmission component as described with reference to FIGs. 10 through 13.
At 2010, the base station may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a TRS beam configuration determination component as described with reference to FIGs. 10 through 13.
At 2015, the base station may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
At 2020, the base station may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a TRS transmission component as described with reference to FIGs. 10 through 13.
FIG. 21 shows a flowchart illustrating a method 2100 that supports beam configuration indication for a downlink shared channel in accordance with aspects of the present disclosure. The operations of method 2100 may be implemented by a base station 105  or its components as described herein. For example, the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2105, the base station may transmit, to a UE, an indication of a set of candidate beam configurations for one or more TRSs corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more TRPs. The operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a TRS configuration transmission component as described with reference to FIGs. 10 through 13.
At 2110, the base station may transmit control signaling identifying two or more TCI states for the one or more TRSs of the shared channel. The operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
At 2115, the base station may determine to activate, for the one or more TRSs of the shared channel, one or more beam configurations of the set of candidate beam configurations. The operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by a TRS beam configuration determination component as described with reference to FIGs. 10 through 13.
At 2120, the base station may transmit an indication to activate, for the one or more TRSs of the shared channel, the one or more beam configurations. The operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by a TRS activation transmission component as described with reference to FIGs. 10 through 13.
At 2125, the base station may transmit the one or more TRSs on the shared channel according to the one or more activated beam configurations. The operations of 2125  may be performed according to the methods described herein. In some examples, aspects of the operations of 2125 may be performed by a TRS transmission component as described with reference to FIGs. 10 through 13.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or  AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (187)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, from a base station, an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations;
    receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations; and
    decoding a data signal of the shared channel based at least in part on the one or more received reference signals.
  2. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving signaling configuring the shared channel for a single frequency network mode.
  3. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  4. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  5. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  6. The method of claim 5, wherein the control signaling comprises a media access control control element.
  7. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  8. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  9. The method of claim 8, wherein the control message comprises a downlink control information message.
  10. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  11. The method of claim 1, wherein receiving the indication of the plurality of candidate beam configurations comprises:
    receiving a control message according to two or more control channel beam configurations.
  12. The method of claim 1, wherein receiving the indication to activate the two or more beam configurations comprises:
    receiving control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  13. The method of claim 12, further comprising:
    receiving, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  14. The method of claim 13, further comprising:
    receiving a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  15. The method of claim 12, further comprising:
    receiving a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the two or more identified transmission configuration indicator states; and
    comparing the set of bits to a table to determine the activated combination of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  16. The method of claim 12, further comprising:
    receiving control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  17. The method of claim 16, further comprising:
    receiving a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  18. The method of claim 12, further comprising:
    receiving a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  19. The method of claim 1, further comprising:
    transmitting capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein receiving the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  20. A method for wireless communication at a base station, comprising:
    transmitting, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determining, based at least in part on the plurality of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel;
    transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations; and
    transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  21. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting signaling configuring the shared channel for a single frequency network mode.
  22. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  23. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  24. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  25. The method of claim 24, wherein the control signaling comprises a media access control control element.
  26. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  27. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  28. The method of claim 27, wherein the control message comprises a downlink control information message.
  29. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  30. The method of claim 20, wherein transmitting the indication of the plurality of candidate beam configurations comprises:
    transmitting a control message based at least in part on two or more control channel beam configurations.
  31. The method of claim 20, wherein transmitting the indication to activate the two or more beam configurations comprises:
    transmitting control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  32. The method of claim 31, further comprising:
    transmitting, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  33. The method of claim 32, further comprising:
    transmitting a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  34. The method of claim 31, further comprising:
    identifying the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of transmission configuration  indicator states of the two or more identified transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states; and
    transmitting a control message comprising the set of bits.
  35. The method of claim 31, further comprising:
    transmitting control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  36. The method of claim 35, further comprising:
    transmitting a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  37. The method of claim 31, further comprising:
    transmitting a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  38. The method of claim 20, further comprising:
    receiving capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein transmitting the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  39. The method of claim 20, further comprising:
    transmitting a data signal of the shared channel based at least in part on the one or more transmitted reference signals.
  40. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, from a base station, an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receiving an indication to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the indicated plurality of candidate beam configurations; and
    receiving the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  41. The method of claim 40, wherein the indication is received via radio resource control signaling.
  42. The method of claim 40, further comprising:
    receiving control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals.
  43. The method of claim 42, wherein the control signaling comprises a media access control control element.
  44. The method of claim 42, further comprising:
    receiving a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  45. The method of claim 44, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  46. The method of claim 44, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  47. The method of claim 44, wherein the control message comprises a downlink control information message.
  48. The method of claim 40, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  49. The method of claim 40, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  50. The method of claim 40, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  51. A method for wireless communication at a base station, comprising:
    transmitting, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determining to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the plurality of candidate beam configurations;
    transmitting an indication to activate, for the one or more tracking reference signals of the shared channel, the one or more beam configurations; and
    transmitting the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  52. The method of claim 51, wherein the indication is transmitted via radio resource control signaling.
  53. The method of claim 51, further comprising:
    transmitting control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals of the shared channel.
  54. The method of claim 53, wherein the control signaling comprises a media access control control element.
  55. The method of claim 53, further comprising:
    transmitting a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  56. The method of claim 55, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  57. The method of claim 55, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  58. The method of claim 55, wherein the control message comprises a downlink control information message.
  59. The method of claim 51, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  60. The method of claim 51, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  61. The method of claim 51, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  62. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations;
    receive the one or more reference signals on the shared channel according to the two or more activated beam configurations; and
    decode a data signal of the shared channel based at least in part on the one or more received reference signals.
  63. The apparatus of claim 62, wherein the instructions are further executable by the processor to receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive signaling configuring the shared channel for a single frequency network mode.
  64. The apparatus of claim 62, wherein the instructions are further executable by the processor to receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  65. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  66. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  67. The apparatus of claim 66, wherein the control signaling comprises a media access control control element.
  68. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  69. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  70. The apparatus of claim 69, wherein the control message comprises a downlink control information message.
  71. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  72. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    receive a control message according to two or more control channel beam configurations.
  73. The apparatus of claim 62, wherein the instructions are further executable by the processor receive the indication to activate the two or more beam configurations by being executable by the processor to cause the apparatus to:
    receive control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  74. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  75. The apparatus of claim 74, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  76. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the two or more identified transmission configuration indicator states; and
    compare the set of bits to a table to determine the activated combination of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  77. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  78. The apparatus of claim 77, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  79. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  80. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein receiving the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  81. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determine, based at least in part on the plurality of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel;
    transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations; and
    transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  82. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit signaling configuring the shared channel for a single frequency network mode.
  83. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  84. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  85. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  86. The apparatus of claim 85, wherein the control signaling comprises a media access control control element.
  87. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  88. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  89. The apparatus of claim 88, wherein the control message comprises a downlink control information message.
  90. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  91. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication of the plurality of candidate beam configurations by being executable by the processor to cause the apparatus to:
    transmit a control message based at least in part on two or more control channel beam configurations.
  92. The apparatus of claim 81, wherein the instructions are further executable by the processor transmit the indication to activate the two or more beam configurations by being executable by the processor to cause the apparatus to:
    transmit control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  93. The apparatus of claim 92, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  94. The apparatus of claim 93, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  95. The apparatus of claim 92, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of transmission configuration indicator states of the two or more identified transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states; and
    transmit a control message comprising the set of bits.
  96. The apparatus of claim 92, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  97. The apparatus of claim 96, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  98. The apparatus of claim 92, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  99. The apparatus of claim 81, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein transmitting the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  100. The apparatus of claim 81, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a data signal of the shared channel based at least in part on the one or more transmitted reference signals.
  101. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receive an indication to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the indicated plurality of candidate beam configurations; and
    receive the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  102. The apparatus of claim 101, wherein the indication is received via radio resource control signaling.
  103. The apparatus of claim 101, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals.
  104. The apparatus of claim 103, wherein the control signaling comprises a media access control control element.
  105. The apparatus of claim 103, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  106. The apparatus of claim 105, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  107. The apparatus of claim 105, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  108. The apparatus of claim 105, wherein the control message comprises a downlink control information message.
  109. The apparatus of claim 101, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  110. The apparatus of claim 101, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  111. The apparatus of claim 101, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  112. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determine to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the plurality of candidate beam configurations;
    transmit an indication to activate, for the one or more tracking reference signals of the shared channel, the one or more beam configurations; and
    transmit the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  113. The apparatus of claim 112, wherein the indication is transmitted via radio resource control signaling.
  114. The apparatus of claim 112, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals of the shared channel.
  115. The apparatus of claim 114, wherein the control signaling comprises a media access control control element.
  116. The apparatus of claim 114, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  117. The apparatus of claim 116, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  118. The apparatus of claim 116, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  119. The apparatus of claim 116, wherein the control message comprises a downlink control information message.
  120. The apparatus of claim 112, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  121. The apparatus of claim 112, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  122. The apparatus of claim 112, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  123. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, from a base station, an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    means for receiving an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations;
    means for receiving the one or more reference signals on the shared channel according to the two or more activated beam configurations; and
    means for decoding a data signal of the shared channel based at least in part on the one or more received reference signals.
  124. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving signaling configuring the shared channel for a single frequency network mode.
  125. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  126. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  127. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  128. The apparatus of claim 127, wherein the control signaling comprises a media access control control element.
  129. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  130. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  131. The apparatus of claim 130, wherein the control message comprises a downlink control information message.
  132. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  133. The apparatus of claim 123, wherein the means for receiving the indication of the plurality of candidate beam configurations comprises:
    means for receiving a control message according to two or more control channel beam configurations.
  134. The apparatus of claim 123, wherein the means for receiving the indication to activate the two or more beam configurations comprises:
    means for receiving control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  135. The apparatus of claim 134, further comprising:
    means for receiving, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  136. The apparatus of claim 135, further comprising:
    means for receiving a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  137. The apparatus of claim 134, further comprising:
    means for receiving a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the two or more identified transmission configuration indicator states; and
    means for comparing the set of bits to a table to determine the activated combination of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  138. The apparatus of claim 134, further comprising:
    means for receiving control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  139. The apparatus of claim 138, further comprising:
    means for receiving a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  140. The apparatus of claim 134, further comprising:
    means for receiving a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  141. The apparatus of claim 123, further comprising:
    means for transmitting capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein receiving the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  142. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    means for determining, based at least in part on the plurality of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel;
    means for transmitting an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations; and
    means for transmitting the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  143. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting signaling configuring the shared channel for a single frequency network mode.
  144. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting signaling configuring two or more quasi co-location states for one transmission configuration indicator state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  145. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting configuration signaling configuring two or more reference signal sequences for one quasi co-location state for the one or more reference signals of the shared channel or for a control channel associated with the shared channel.
  146. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting control signaling comprising a field indicating that the shared channel is configured for a single frequency network mode.
  147. The apparatus of claim 146, wherein the control signaling comprises a media access control control element.
  148. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting control signaling comprising an indication that two or more transmission configuration indicator states are configured for the one or more reference signals of the shared channel or for one or more other reference signals associated with the shared channel or associated with the one or more reference signals of the shared channel.
  149. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting a control message comprising a field indicating that the shared channel is configured for a single frequency network mode.
  150. The apparatus of claim 149, wherein the control message comprises a downlink control information message.
  151. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting a control message scrambled with a radio network temporary identifier that corresponds to a single frequency network mode.
  152. The apparatus of claim 142, wherein the means for transmitting the indication of the plurality of candidate beam configurations comprises:
    means for transmitting a control message based at least in part on two or more control channel beam configurations.
  153. The apparatus of claim 142, wherein the means for transmitting the indication to activate the two or more beam configurations comprises:
    means for transmitting control signaling identifying two or more transmission configuration indicator states for the one or more reference signals of the shared channel.
  154. The apparatus of claim 153, further comprising:
    means for transmitting, via the control signaling, a bitmap comprising two or more subsets of transmission configuration indicator states and indicating one or more selected transmission configuration indicator states in each of the two or more subsets, the one or more selected transmission configuration indicator states in each of the two or more subsets comprising the two or more identified transmission configuration indicator states.
  155. The apparatus of claim 154, further comprising:
    means for transmitting a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the one or more selected transmission configuration indicator states in each of the two or more subsets, wherein the two or more activated transmission configuration indicator states comprise the activated transmission configuration indicator state in each of the two or more subsets.
  156. The apparatus of claim 153, further comprising:
    means for identifying the two or more activated beam configurations in a table to determine a set of bits indicating an activated combination of transmission configuration indicator states of the two or more identified transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states; and
    means for transmitting a control message comprising the set of bits.
  157. The apparatus of claim 153, further comprising:
    means for transmitting control signaling comprising an indication of at least one combination of two or more transmission configuration indicator states and an indication of one or more selected combinations of transmission configuration indicator states, the at least one combination of two or more transmission configuration indicator states comprising the two or more identified transmission configuration indicator states.
  158. The apparatus of claim 157, further comprising:
    means for transmitting a control message comprising a set of bits, the set of bits indicating an activated combination of transmission configuration indicator states of the one or more selected combinations of transmission configuration indicator states, wherein the two or more activated transmission configuration indicator states comprise the activated combination of transmission configuration indicator states.
  159. The apparatus of claim 153, further comprising:
    means for transmitting a control message comprising two or more sets of bits, each set of bits indicating an activated transmission configuration indicator state of the two or more identified transmission configuration indicator states.
  160. The apparatus of claim 142, further comprising:
    means for receiving capability signaling indicating a first quasi co-location time threshold for a shared channel associated with one beam configuration and a second quasi co-location time threshold for a shared channel associated with two or more beam configurations, wherein transmitting the one or more reference signals on the shared channel is based at least in part on the second quasi co-location time threshold.
  161. The apparatus of claim 142, further comprising:
    means for transmitting a data signal of the shared channel based at least in part on the one or more transmitted reference signals.
  162. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, from a base station, an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    means for receiving an indication to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the indicated plurality of candidate beam configurations; and
    means for receiving the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  163. The apparatus of claim 162, wherein the indication is received via radio resource control signaling.
  164. The apparatus of claim 162, further comprising:
    means for receiving control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals.
  165. The apparatus of claim 164, wherein the control signaling comprises a media access control control element.
  166. The apparatus of claim 164, further comprising:
    means for receiving a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  167. The apparatus of claim 166, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  168. The apparatus of claim 166, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  169. The apparatus of claim 166, wherein the control message comprises a downlink control information message.
  170. The apparatus of claim 162, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  171. The apparatus of claim 162, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  172. The apparatus of claim 162, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  173. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    means for determining to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the plurality of candidate beam configurations;
    means for transmitting an indication to activate, for the one or more tracking reference signals of the shared channel, the one or more beam configurations; and
    means for transmitting the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  174. The apparatus of claim 173, wherein the indication is transmitted via radio resource control signaling.
  175. The apparatus of claim 173, further comprising:
    means for transmitting control signaling identifying two or more transmission configuration indicator states for the one or more tracking reference signals of the shared channel.
  176. The apparatus of claim 175, wherein the control signaling comprises a media access control control element.
  177. The apparatus of claim 175, further comprising:
    means for transmitting a control message comprising an indication of one or more activated transmission configuration indicator states of the two or more identified transmission configuration indicator states.
  178. The apparatus of claim 177, wherein the indication of the one or more activated transmission configuration indicator states comprises a field of the control message.
  179. The apparatus of claim 177, wherein the indication of the one or more activated transmission configuration indicator states comprises a subset of a transmission configuration indicator field of the control message.
  180. The apparatus of claim 177, wherein the control message comprises a downlink control information message.
  181. The apparatus of claim 173, wherein the one or more tracking reference signals have a same quasi co-location state as one or more demodulation reference signals of the shared channel, wherein the one or more demodulation reference signals and the shared channel are associated with a signal frequency network state.
  182. The apparatus of claim 173, wherein a first tracking reference signal of the one or more tracking reference signals has a different quasi co-location state from a second tracking reference signal of the one or more tracking reference signals.
  183. The apparatus of claim 173, wherein the one or more reference signals of the shared channel comprise demodulation reference signals.
  184. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receive an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations;
    receive the one or more reference signals on the shared channel according to the two or more activated beam configurations; and
    decode a data signal of the shared channel based at least in part on the one or more received reference signals.
  185. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more reference signals of a shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determine, based at least in part on the plurality of candidate beam configurations, two or more beam configurations to activate for the one or more reference signals of the shared channel;
    transmit an indication to activate, for the one or more reference signals of the shared channel, two or more beam configurations of the indicated plurality of candidate beam configurations; and
    transmit the one or more reference signals on the shared channel according to the two or more activated beam configurations.
  186. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions via two or more transmission and reception points;
    receive an indication to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the indicated plurality of candidate beam configurations; and
    receive the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
  187. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit, to a user equipment (UE) , an indication of a plurality of candidate beam configurations for one or more tracking reference signals corresponding to a shared channel or one or more reference signals of the shared channel, the shared channel associated with transmissions from two or more transmission and reception points;
    determine to activate, for the one or more tracking reference signals of the shared channel, one or more beam configurations of the plurality of candidate beam configurations;
    transmit an indication to activate, for the one or more tracking reference signals of the shared channel, the one or more beam configurations; and
    transmit the one or more tracking reference signals on the shared channel according to the one or more activated beam configurations.
PCT/CN2020/081552 2020-03-27 2020-03-27 Beam configuration indication for a downlink shared channel WO2021189395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081552 WO2021189395A1 (en) 2020-03-27 2020-03-27 Beam configuration indication for a downlink shared channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081552 WO2021189395A1 (en) 2020-03-27 2020-03-27 Beam configuration indication for a downlink shared channel

Publications (1)

Publication Number Publication Date
WO2021189395A1 true WO2021189395A1 (en) 2021-09-30

Family

ID=77889895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081552 WO2021189395A1 (en) 2020-03-27 2020-03-27 Beam configuration indication for a downlink shared channel

Country Status (1)

Country Link
WO (1) WO2021189395A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142961A1 (en) * 2022-01-27 2023-08-03 Mediatek Singapore Pte. Ltd. Method and apparatus for multi-trp beam management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180041319A1 (en) * 2016-08-08 2018-02-08 Futurewei Technologies, Inc. Systems and Methods for UE-Specific Beam Management for High Frequency Wireless Communication
CN107852220A (en) * 2015-07-31 2018-03-27 英特尔公司 Reception wave beam for 5G systems indicates
US20180241494A1 (en) * 2017-02-21 2018-08-23 Qualcomm Incorporated Variable length reference signaling for fast acquisition in shared spectrum
CN109076503A (en) * 2016-05-12 2018-12-21 高通股份有限公司 Mix class B FD-MIMO
CN110352579A (en) * 2017-02-21 2019-10-18 高通股份有限公司 For sharing the multi-beam and simple beam discovery reference signal of frequency spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852220A (en) * 2015-07-31 2018-03-27 英特尔公司 Reception wave beam for 5G systems indicates
CN109076503A (en) * 2016-05-12 2018-12-21 高通股份有限公司 Mix class B FD-MIMO
US20180041319A1 (en) * 2016-08-08 2018-02-08 Futurewei Technologies, Inc. Systems and Methods for UE-Specific Beam Management for High Frequency Wireless Communication
US20180241494A1 (en) * 2017-02-21 2018-08-23 Qualcomm Incorporated Variable length reference signaling for fast acquisition in shared spectrum
CN110352579A (en) * 2017-02-21 2019-10-18 高通股份有限公司 For sharing the multi-beam and simple beam discovery reference signal of frequency spectrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on reference signals and QCL", 3GPP DRAFT; R1-1808144 REMAINING ISSUES ON REFERENCE SIGNALS AND QCL_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051515546 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142961A1 (en) * 2022-01-27 2023-08-03 Mediatek Singapore Pte. Ltd. Method and apparatus for multi-trp beam management

Similar Documents

Publication Publication Date Title
WO2021189337A1 (en) Beam configuration indication for a downlink control channel
WO2021155505A1 (en) Repetition and time domain cover code based sounding reference signal resources for antenna switching
US20230179260A1 (en) Indication of doppler pre-compensation in multi-transmission reception point communications
US11817978B2 (en) Techniques for configuring multi-transmission reception point communication schemes
US11564248B2 (en) Techniques for activation and deactivation of resources configured across multiple component carriers
US11533729B2 (en) Transport block size determination for downlink transmissions including multiplexed downlink control information
EP4186199A1 (en) Communicating across a wideband using sub-bands
WO2021047539A1 (en) Uplink transmission timing patterns
WO2021226956A1 (en) Monitoring for downlink repetitions
WO2021189395A1 (en) Beam configuration indication for a downlink shared channel
US11659575B2 (en) Phase coherent demodulation reference signal techniques for cross-slot channel estimation
WO2021259159A1 (en) Support of flexible sounding reference signal switching capability
WO2022036625A1 (en) Techniques for user equipment requested cross-link interference measurement
US11729603B2 (en) Techniques for reporting uplink transmission continuity capability
US11716124B2 (en) Dynamic spectrum sharing with spatial division multiplexing
US11690103B2 (en) Techniques for selecting a random access channel occasion
US11528757B2 (en) Dynamic cyclic prefix selection
WO2023004732A1 (en) Fast antenna switching for sounding reference signals
US20230043953A1 (en) Reduced overhead beam sweep for initial access
WO2022027410A1 (en) Panel-specific slot format indication
WO2022087948A1 (en) Techniques for mapping sounding reference signal resources
WO2023027937A1 (en) Physical uplink channel repetition for full-duplex communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927536

Country of ref document: EP

Kind code of ref document: A1