WO2021189344A1 - Method for disabling network connectivity mode - Google Patents

Method for disabling network connectivity mode Download PDF

Info

Publication number
WO2021189344A1
WO2021189344A1 PCT/CN2020/081350 CN2020081350W WO2021189344A1 WO 2021189344 A1 WO2021189344 A1 WO 2021189344A1 CN 2020081350 W CN2020081350 W CN 2020081350W WO 2021189344 A1 WO2021189344 A1 WO 2021189344A1
Authority
WO
WIPO (PCT)
Prior art keywords
rat
network
mode
support
lte
Prior art date
Application number
PCT/CN2020/081350
Other languages
French (fr)
Inventor
Hao Zhang
Jian Li
Haibo Liu
Quanling ZHANG
Hong Wei
Wei He
Jianfu ZHANG
Xiaomin Dong
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/081350 priority Critical patent/WO2021189344A1/en
Publication of WO2021189344A1 publication Critical patent/WO2021189344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to management of connectivity for a user equipment (UE) connecting to a wireless network.
  • UE user equipment
  • NR non-standalone
  • 5G NR network and devices will be supported by existing E-UTRA, also referred to as LTE or 4G, infrastructure.
  • E-UTRA also referred to as LTE or 4G
  • 5G devices can, for example, connect to the NR network for data-throughput improvements and can use LTE for low throughput and/or non-data duties.
  • a method for wireless communications comprises determining, by a UE having a capability of communicating using a first radio access technology (RAT) and a second RAT, whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof.
  • RAT radio access technology
  • SIM subscriber identity module
  • the method continues with disabling, by the UE, the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT. Then, the method continues with attaching to the network using the second RAT.
  • NSA non-standalone
  • a user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT comprises a memory, a transceiver, and a processor in communication with the memory and the transceiver.
  • the processor is configured to determine whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof.
  • UIM user identity module
  • UICC universal integrated circuit card
  • SIM subscriber identity module
  • the processor is further configured to disable the SA mode of the UE while enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT.
  • the processor is configured to attach, via the transceiver, to the network using the second RAT.
  • a user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT comprises means for determining whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof; means for, responsive to a determination that the support for the first RAT is not indicated, disabling the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and means for attaching to the network using the second RAT.
  • a user identity module UICC
  • SIM subscriber identity module
  • a non-transitory, computer-readable medium stores code thereon, the code comprising instructions that, when executed by one or more processors of a user equipment (UE) , instruct the one or more processors to determine whether support for a first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof, the UE having a capability of communicating using the first RAT and a second RAT; responsive to a determination that the support for the first RAT is not indicated, disable the SA mode of the UE but enable a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and attach to the network using the second RAT.
  • a user identity module UICC
  • SIM subscriber identity module
  • FIGs. 1A and 1B illustrate an example of wireless communications systems in accordance with various aspects of the present disclosure.
  • FIG. 2 illustrates a sample flow diagram in which a user equipment (UE) that is already attached to an Evolved Universal Terrestrial Radio Access (E-UTRA) or Long-term Evolution (LTE) network or base station can add a connection to a New Radio (NR) or 5G network or base station in a Dual Connectivity (EN-DC) mode.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE Long-term Evolution
  • NR New Radio
  • EN-DC Dual Connectivity
  • FIG. 3 illustrates a sample flow diagram in which a UE can determined whether to request registration to a 5G network in Standalone (SA) mode or to request attach to an LTE network.
  • SA Standalone
  • FIG. 4 illustrates an example method for wireless communications where a UE determines whether to disable a standalone (SA) mode.
  • SA standalone
  • FIG. 5 shows a diagram of a system including a device that supports non-standalone (NSA) connectivity in accordance with aspects of the present disclosure.
  • NSA non-standalone
  • FIGs. 1A and 1B illustrate an example of a wireless communications systems in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long-Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, a New Radio (NR) network, or a combination thereof.
  • Wireless communication system 100 may support multi-connectivity UE but may not support a standalone mode for the UE to connect to the network via a first radio access technology (RAT) , e.g., NR.
  • RAT radio access technology
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation Node B or giga-nodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 120 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 120 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions, from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 120 for a base station 105 may be divided into sectors making up only a portion of the geographic coverage area 120, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 120.
  • different geographic coverage areas 120 associated with different technologies may overlap and overlapping geographic coverage areas 120 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the same base station 105 or different base stations 105 may be configured to communicate using multiple radio access technologies (RATs) , such as 5G NR and 4G LTE, simultaneously, and the coverage areas 120 associated with the multiple RATs may overlap completely or partly.
  • RATs radio access technologies
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 120.
  • cell refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 120 (e.g., a sector) over which the logical entity operates.
  • a single physical base station 105 may be associated with more than one cell.
  • one cell can be associated with a master node (and can be referred to as a PCell) where another cell is associated with a secondary node (and can be referred to as a PSCell) .
  • both the PCell and the PSCell can have equipment installed on the same base station 105.
  • the PCell can be an LTE cell and the PSCell can be an NR cell associated with the same base station 105.
  • the PCell can be an NR cell operating in a first frequency range and the PSCell can also be an NR cell but operating in a second frequency range different than the first frequency range, and both cells can be associated with the same base station 105.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 120 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 120 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base station
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1 or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2 or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • backhaul links 132 e.g., via an S1 or other interface
  • backhaul links 134 e.g., via an X2 or other interface
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 MHz to 300 GHz.
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that can tolerate interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115 (e.g., for multiple-input multiple-output (MIMO) operations such as spatial multiplexing, or for directional beamforming) .
  • MIMO multiple-input multiple-output
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ LTE License Assisted Access (LTE-LAA) or LTE-Unlicensed (LTE-U) radio access technology or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LTE-LAA LTE License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a CA configuration in conjunction with component carriers (CCs) operating in a licensed band.
  • CCs component carriers
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the antennas of a base station 105 or UE 115 may be located within one or more antennas or antenna arrays, which may support MIMO operations such as spatial multiplexing, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • MIMO wireless systems use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where both transmitting device and the receiving device are equipped with multiple antennas.
  • MIMO communications may employ multipath signal propagation to increase the utilization of a radio frequency spectrum band by transmitting or receiving different signals via different spatial paths, which may be referred to as spatial multiplexing.
  • the different signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the different signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the different signals may be referred to as a separate spatial stream, and the different antennas or different combinations of antennas at a given device (e.g., the orthogonal resource of the device associated with the spatial dimension) may be referred to as spatial layers.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a direction between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain phase offset, timing advance/delay, or amplitude adjustment to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may multiple use antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, signals may be transmitted multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission.
  • a receiving device e.g., a UE 115, which may be an example of a mmW receiving device
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • PHY Physical
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include ten subframes numbered from 0 to 9, and each subframe may have a duration of 1 millisecond.
  • a subframe may be further divided into two slots each having a duration of 0.5 milliseconds, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols and in some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • Some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots may be aggregated together for communication between a UE 115 and a base station 105.
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier (e.g., a 15 kHz frequency range) .
  • a resource block may contain 12 consecutive subcarriers in the frequency domain (e.g., collectively forming a “carrier” ) and, for a normal cyclic prefix in each orthogonal frequency-division multiplexing (OFDM) symbol, 7 consecutive OFDM symbol periods in the time domain (1 slot) , or 84 total resource elements across the frequency and time domains.
  • the number of bits carried by each resource element may depend on the modulation scheme (the configuration of modulation symbols that may be applied during each symbol period) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum band resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • carrier refers to a set of radio frequency spectrum resources having a defined organizational structure for supporting uplink or downlink communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that may also be referred to as a frequency channel.
  • a carrier may be made up of multiple sub-carriers (e.g., waveform signals of multiple different frequencies) .
  • a carrier may be organized to include multiple physical channels, where each physical channel may carry user data, control information, or other signaling.
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, NR, etc. ) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, or 20 MHz) .
  • the system bandwidth may refer to a minimum bandwidth unit for scheduling communications between a base station 105 and a UE 115.
  • a base station 105 or a UE 115 may also support communications over carriers having a smaller bandwidth than the system bandwidth.
  • the system bandwidth may be referred to as “wideband” bandwidth and the smaller bandwidth may be referred to as a “narrowband” bandwidth.
  • wideband communications may be performed according to a 20 MHz carrier bandwidth and narrowband communications may be performed according to a 1.4 MHz carrier bandwidth.
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • base stations 105 or UEs 115 may perform some communications according to a system bandwidth (e.g., wideband communications) , and may perform some communications according to a smaller bandwidth (e.g., narrowband communications) .
  • the wireless communications system 100 may include base stations 105 and/or UEs that can support simultaneous communications via carriers associated with more than one different bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation (CA) or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink CCs and one or more uplink CCs according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other CCs, which may include use of a reduced symbol duration as compared with symbol durations of the other CCs.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications systems such as an NR system may use a combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across frequency) and horizontal (e.g., across time) sharing of resources.
  • UEs 115 may be configured as multi-connectivity UEs in which UEs 115 are configured to communicate with one or more base stations 105 using multiple RATs (e.g., 5G NR, 4G LTE) .
  • UEs 115 may be capable of connecting to the network using 5G NR, however, if a network operator does not support a standalone (SA) mode, the 5G NR-capable UE may then attach to the network using LTE and add an NR base station for additional connectivity where primary control of the connection of the UE to the network is through LTE.
  • SA standalone
  • a UE 115 can determine or infer whether the network operator supports SA operation, and if not, the UE can disable a SA mode. Instead, the UE can determine to connect to LTE only or to connect to both in an E-UTRA NR dual connectivity (EN-DC) mode.
  • EN-DC E-UTRA NR dual connectivity
  • communications system 100′ may implement aspects of wireless communications system 100.
  • wireless communications system 100′ includes an LTE base station 105-a, an NR base station 105-b, and a UE 115-a, which may be examples of the corresponding devices described with reference to FIG. 1A.
  • Wireless communications system 100′ may support the use of techniques where an SA capable UE connects to a network in an NSA mode where, for various reasons, a network operator has not deployed or not yet deployed SA capability in the network.
  • a UE 115-a may communicate with a network using a multi-connectivity, for example, dual-connectivity (DC) configuration.
  • DC dual-connectivity
  • UE 115-a may simultaneously communicate with different base stations 105 (e.g., LTE base station 105-a and NR base station 105-b) .
  • LTE base station 105-a may provide a first cell 110-a and LTE base station 105-a may be referred to as a master node (MN) .
  • MN master node
  • First cell 110-a may correspond to a PCell in the DC deployment.
  • NR base station 105-b may provide a second cell 110-b of the DC configuration, and NR base station 105-b may be referred to as a secondary node (SN) .
  • second cell 110-b may correspond to a PSCell in the DC deployment, which may be configured with time-frequency resources for PUCCH.
  • Additional SCells may be associated with each base station 105-a and 105-b.
  • a master cell group (MCG) may then refer to a group of serving cells associated with the MN, comprising the PCell and optionally one or more SCells
  • SCG secondary cell group
  • the SCells can provide additional carriers in addition to carriers of the PCell or PSCell for carrier aggregation.
  • a multi-connectivity implementation such as dual-connectivity
  • control of multi-connectivity remains with the MN.
  • Other non-scheduling related control information related to the SN can also be routed through the MN, while scheduling for the SN can be handled by the SN through the SN’s own physical downlink control channel (PDCCH) .
  • PDCCH physical downlink control channel
  • the PCell of the MN and the PSCell of the SN may be separate cells that are installed on the same physical base station.
  • the UE can indicate to the MN (e.g., LTE base station 105-a) a multi-connectivity (e.g., dual-connectivity) capability informing the MN that the UE (e.g., LTE base station 105-a) supports multi-connectivity.
  • the MN can initiate a process to add an SN (e.g., NR base station 105-b) connection between the UE and the network.
  • the MN can instruct the UE to make measurements of signals associated with the SN and to report the measurements to MN.
  • the MN provides the UE and the SN with all the parameters for them to establish a connection.
  • the MN can be configured to control whether the SN is added or not.
  • the different base stations 105 and corresponding cells of the DC deployment may be associated with a same or different RAT.
  • LTE base station 105-a and NR base station 105-b may communicate using a second RAT and a first RAT, respectively.
  • DC deployments may use different radio bearers for transmitted messages for each cell.
  • LTE base station 105-a when LTE base station 105-a is configured as a master node that provides a set of serving cells corresponding to the MCG, LTE base station 105-a may use a first set of signaling radio bearers (SRBs) (e.g., SRB1, SRB2) to transport messages for the MCG, such as RRC messages.
  • SRBs signaling radio bearers
  • NR base station 105-b may provide another set of serving cells that correspond to the SCG and may use a second set of SRBs (e.g., SRB3) to transport messages for the SCG.
  • SRBs signaling radio bearers
  • a split bearer configuration may be supported, where a particular protocol layer (e.g., a packet data convergence protocol (PDCP) layer) for both the master node and secondary node may be used to route data streams to/from UE 115-a.
  • a particular protocol layer e.g., a packet data convergence protocol (PDCP) layer
  • PDCP packet data convergence protocol
  • an SRB e.g., SRB1/SRB2
  • downlink messages sent from the master node to UE 115-a may be routed via lower-layers (e.g., radio link control (RLC) , medium access control (MAC) , physical (PHY) , etc.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • LTE base station 105-a e.g., the master node
  • NR base station 105-b e.g., the secondary node
  • downlink messages may be routed via the lower-layers of both the master and secondary nodes.
  • RRC messages from UE 115-a may be transmitted to the master node via the secondary node using the split bearer (e.g., via a “leg” associated with the secondary node) .
  • split bearer e.g., via a “leg” associated with the secondary node
  • respective data radio bearers may be used by the MCG and SCG.
  • UE 115-a may communicate with a single base station 105 (e.g., LTE base station 105-a) using multiple carriers (e.g., CCs, which may also be referred to as layers, channels, etc. ) .
  • a CC may refer to each of the carriers used by UE 115-a in carrier aggregation (CA) operations.
  • a serving cell of LTE base station 105-a may correspond to each CC used in CA operation, where each serving cell may be different (e.g., based on the path loss experienced by different CCs on different radio frequency (RF) spectrum bands) .
  • RF radio frequency
  • one carrier may be designated as a primary carrier, or primary CC (PCC) , for UE 115-a, which may be served by a PCell of LTE base station 105-a.
  • Additional carriers may be designated as secondary carriers, or secondary CCs (SCCs) , which may be served by SCells of LTE base station 105-a.
  • CA operations may use the same or different RF bands for communications.
  • FIG. 2 illustrates a sample flow diagram in which a UE that is already attached to an E-UTRA or LTE network or base station can enter an multi-radio connectivity mode (e.g., EN-DC mode) where a connection to an NR or 5G network or base station is added.
  • an multi-radio connectivity mode e.g., EN-DC mode
  • the sample flow 200 is provided for illustrative purposes, and is merely one example of a scenario where a UE 115 can enter a multi-radio connectivity mode, e.g., a dual connectivity mode, e.g., an EN-DC mode, after, for example, a determination that an operator of a network does not support, for example, SA NR.
  • the UE is attached to an LTE network and a connection to an NR network is added.
  • the UE may attach to the network using a second RAT and add a connection to a first RAT.
  • the UE attaches to the network using the second RAT in an non-standalone (NSA) mode in which the UE attaches to the network using the second RAT, e.g., LTE, but can also receive data using the first RAT, e.g., NR, in the multi-radio connectivity mode.
  • NSA non-standalone
  • a random access procedure or random access control channel (RACH) procedure may have occurred for the UE 115 to gain access to, attach to, and/or be connected to the LTE network 201, for example, through a special cell (SpCell) of the LTE network 201.
  • RACH random access control channel
  • the LTE network 201 and the UE may have exchanged data, including downlink (DL) and/or uplink (UL) data, for example, where data exchanged with the network is exchanged using only LTE and is therefore LTE-only traffic.
  • data can include control data or configuration data.
  • the UE 115 may indicate such capability to the LTE network 201.
  • the UE 115 can indicate to the LTE network 201 that it has capability of connecting in EN-DC.
  • the network 201 can take steps to add a 5G/NR node to enable the UE to exchange data with the 5G/NR node in addition to the LTE node, for example, in an EN-DC mode as described further below.
  • the LTE Network 201 can send an addition request to the NR Network 202 (where the addition request, for example, is subsequent to receipt of an indication by the UE of EN-DC capability of the UE 115) .
  • the addition request can be an SgNB Addition Request message.
  • the LTE Network 201 can determine that the UE 115 is in a good signalling environment for NR signals based on measurements by the UE 115 of reference signals measured, for example, based on an RRC configuration sent to the UE 115 from the LTE Network 201.
  • the addition request can serve as a resource request, in which the LTE Network 201 requests the NR Network 202 to allocate resources for the UE 115.
  • the addition request may include information to enable the NR Network 202 to determine whether it can accommodate the resource allocation request, for example, reference signal measurements of NR signals reported by the UE 115 to the LTE Network 201 as well as other information useful to the NR Network 202 to determine whether it can accept the request.
  • the NR Network 202 can respond to the addition request message with an acknowledge message, for example, an SgNB Addition Request Acknowledge message.
  • the NR Network 202 can decide the PSCell and other SCG SCells and, for example, provide a new SCG radio resource configuration to the LTE Network 201 in an NR RRC configuration message, which can be contained in some embodiments, in the SgNB Addition Request Acknowledge message.
  • the LTE Network 201 can send to the UE 115 an RRCConnectionReconfiguration message which can, for example, include the NR RRC configuration message received from the NR Network 202.
  • the UE 115 can then apply the new configuration and, at 212, reply to the LTE Network 201 with a RRCConnectionReconfigurationComplete message. If, for some reason, the UE 115 is unable to comply with the configuration included in the RRCConnectionReconfiguration message, it can perform a reconfiguration failure procedure (not shown at 212) .
  • performing the reconfiguration failure procedure can include the UE 115 sending a SCGFailureInformationNR message to the LTE Network 201 (not shown at 212) and setting a failure type in the message to correspond to a failure type associated with RRC reconfiguration failure, such as, for example, scg-reconfigFailure.
  • RRC reconfiguration failure when there is an RRC reconfiguration failure, the UE 115 does not apply any part of the reconfiguration and continues using the configuration it was using prior to the RRCConnectionReconfiguration message of 209. Where the reconfiguration fails, the UE remains connected to the LTE Network 201 and does not connect to the NR Network 202 (for example, does not connect to NR Network 202 in the EN-DC mode) .
  • the LTE Network 201 can send a reconfiguration complete message to the NR Network 202 to inform the NR Network 202 that the reconfiguration of the UE 115 was successful.
  • a message can be a SgNB ReconfigurationComplete message.
  • This reconfiguration complete message can include, for example, any information provided to the LTE Network 201 from the UE 115, for example, in the RRCConnectionReconfigurationComplete message of 212.
  • the UE 115 performs registration with the NR Network 202.
  • the UE can perform registration procedure through a SpCell of the SN (also referred to as a PSCell) .
  • Aspects of registration to the 5G network can include synchronization of downlink framing, RACH procedure, and initial scheduling of data to be communicated over the NR Network 202.
  • the UE 115 is connected to the NR Network 202.
  • the UE 115 is now connected to both the LTE Network 201 and the NR Network 202.
  • the UE 115 can communicate with the LTE Network 201. Simultaneously, at 224, the UE 115 can also communicate with the NR Network 202. Since, typically, the SN has greater data throughput capacity, data communications between the UE 115 and the NR Network 202 at 224 can include data associated with high throughput, real time applications such as video streaming or virtual/augmented reality, to name a few examples. Otherwise, low throughput applications can, for example, be routed through the LTE Network 201 as shown in 221. In one implementation, only the MN provides control plane connection to the core network which, in the illustrated embodiment is the LTE MN of the LTE Network 201.
  • UE 115 Since the UE 115 is now in an EN-DC mode, UE 115 is connected to both LTE Network 201 and NR Network 202 in a dual connection mode.
  • the UE 115 can send and receive control and user data with the LTE Network 201 (including non-scheduling control data related to the NR Network 202) , but only sends and receives user data (along with scheduling related to the user data) to/from the NR Network 202.
  • 221 is illustrated as labeled “LTE data traffic, ” it is understood that traffic sent over LTE can include data as well as control for both the LTE connection as well as non-scheduling control data related to the NR Network 202.
  • FIG. 3 illustrates a sample flow diagram in which a UE can determined whether to request registration to a 5G network in Standalone (SA) mode or to request attach to an LTE network.
  • SA Standalone
  • the UE can still communicate via NR in a multi-radio connectivity mode such as EN-DC in an NSA mode by adding a connection to a base station using NR, as described above with reference to FIG. 2.
  • Flow 300 begins at 304 where the UE is powered on.
  • the UE may power on due to detection of a trigger such as detecting a face or other always-on authentication or by detecting that the user has manually turned on the device, or through other means of being powered on.
  • the UE determines whether to check to see what RATs the network operator can support.
  • the UE can have the capability (including both hardware and software capability) of registering or connecting to the network using NR in an SA mode.
  • the operator may not have implemented network infrastructure to enable the UE to connect to the network in an SA mode.
  • a newer UE 115 may be capable of connecting via NR, but the newer UE 115 may have an older user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) that does not indicate that the operator supports NR.
  • UIM user identity module
  • UICC universal integrated circuit card
  • SIM subscriber identity module
  • UIM universal SIM
  • the UIM may contain information such as the number assignment module (NAM) and subscription feature information. Additionally, the UIM may contain information about the RATs supported by the network operator. In various implementations, the UIM may be integrated into the UE 115 or it may be removable.
  • flow 300 continues at 308 with reading an elementary file (EF) on the UIM.
  • EF elementary file
  • the EF is used by some operators to indicate RATs supported by the network operator.
  • the UE e.g., processor 520 with reference to FIG. 5
  • sends a request e.g., a READ_EF_REQ message, to the UIM (e.g., UIM 560 with reference to FIG. 5) .
  • the UE may receive at 310 a response from the UIM, e.g., a READ_EF_CNF message that contains information relating to the RATs supported by the network operator.
  • the EF indicating supported RATs can have a particular ID to enable the UE to read the file.
  • the UE may determine whether the configuration message provides information that can enable the UE to connect to the network using NR in an SA mode. For example, the information in the configuration message may not include any information to enable the UE to connect to the network using NR or may otherwise indicate that NR is not supported. However, in some situations, even though there is no indication that NR is supported, the network operator may still support NR in an NSA mode. This may occur in situations where the information in the UIM may be old or not updated (even though the UE 115 may have capability to connect to network using NR in SA mode) , or the network operator for other reasons chooses not to indicate support for NR even when NR in NSA mode may still be supported by network infrastructure.
  • the UE Responsive to a determination that the configuration message does not indicate information to enable the UE 115 to connect to the network using NR in an SA mode, at 314 the UE disables a standalone mode within the UE.
  • the UE requests attachment to the network using LTE. Once attached to the network via LTE, the UE may also subsequently attach to the network using NR in an EN-DC mode, as described in further detail in FIG. 2.
  • flow 300 illustrated from the determination to check operator supported RATs at 306 and from the determination that there is no information to enable an SA mode at 312, ends.
  • flow 300 may proceed to 320 with requesting registration on NR network in an SA mode. Whether the UE reads or checks the EF can depend upon a network operator, where some operators may require that the UE reads the EF and others may not. Additionally or alternatively, returning to 312, responsive to a determination that the information received in the configuration message does enable the UE to connect to the network using NR in an SA mode, flow 300 may proceed to 320 with requesting registration on NR network in an SA mode.
  • flow 300 illustrated from the determination not to check operator supported RATs at 306 and from the determination that there is information to enable an SA mode at 312, ends.
  • FIG. 4 illustrates an example method 400 for wireless communications where a UE determines whether to disable an SA mode.
  • Method 400 begins at 410 with determining, by a UE, whether supports for a first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof as shown in 306, 308, and 310 with reference to FIG. 3.
  • the UE can be UE 115 with reference to FIGs. 1A, 1B, 2, and 3.
  • the UE performing method 400 has a capability of communicating using a first RAT and a second RAT.
  • the first RAT is NR and the second RAT is LTE.
  • the UE can determine whether support for the first RAT is indicated by reading an EF as shown in 308 with reference to FIG. 3.
  • the method 400 moves to 420 with disabling, by the UE, the SA mode of the UE but enabling a non-standalone (NSA) mode.
  • the SA mode is a mode in which the UE attaches to the network using the first RAT
  • the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT.
  • the determination that the support for the first RAT is not indicated can be based upon the UE reading the UIM and the UIM failing to indicate support for the first RAT. In such a case, the UE can assume that the first RAT in the SA mode is not supported.
  • Means for performing the functionality of blocks 410, 415, and 420 can, but not necessarily, include UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
  • Method 400 continues at 430 with attaching to the network using the second RAT.
  • the SA mode is disabled at 420, the UE connecting to the network using the first RAT in an SA mode has been disabled. As such, the UE will then default to connecting to the network using the second RAT. However, as the UE is capable of connecting to the first RAT, the UE may still exchange information with the network using the first RAT in a multi-radio connectivity mode. In an example where the first RAT is NR and the second RAT is LTE, the UE may exchange information with the network using NR in an EN-DC mode.
  • Means for performing the functionality of block 430 can, but not necessarily, include antenna 540, transceiver 535, bus 510, UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
  • the method moves to attaching or registering with a base station or node associated with first RAT in an SA mode, as illustrated, for example, at block 320 with reference to FIG. 3.
  • the UE may begin a RACH procedure with a base station (s) using the first RAT, e.g., NR.
  • method 400 continues at 440 with signaling, by the UE, to the network the UE capability to communicate using the first RAT.
  • the UE can signal to the network a capability of the UE to communicate using the first RAT, e.g., NR.
  • this capability can be reported as a capability of the UE to support multi-radio connectivity, e.g., EN-DC. This can enable the network to initiate multi-radio connectivity, e.g., EN-DC, as explained with reference to FIG. 2.
  • method 400 continues at 450 with receiving, at the UE, a radio resource configuration (RRC) connection reconfiguration message from the network with an identity of a first RAT base station, e.g., an NR gNodeB.
  • RRC radio resource configuration
  • the RRC connection reconfiguration message can be RRCConnectionReconfiguration 209 with reference to FIG. 2.
  • method 400 continues at 460 with connecting, by the UE, to the first RAT base station, e.g., NR gNodeB, while maintaining connection to a second RAT base station, e.g., LTE eNodeB.
  • the UE can connect to a first RAT base station while maintaining a connection to the second RAT base station as illustrated at 218, 221, and 224 with reference to FIG. 2.
  • Means for performing the functionality of any of blocks 440, 450, and/or 460 can, but not necessarily, include antenna 540, transceiver 535, bus 510, UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
  • FIG. 5 shows a diagram of a system 500 including a device 505 that supports non-standalone (NSA) connectivity in accordance with aspects of the present disclosure.
  • Device 505 may be an example of or include the components of UE 115 as described above, e.g., with reference to FIGs. 1 through 4.
  • Device 505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including UE communications manager 515, processor 520, memory 525, software 530, transceiver 535, antenna 540, I/O controller 545, and I/O component (s) 550. These components may be in communication (e.g., electronic communication) , or coupled, via one or more buses (e.g., bus 510) .
  • device 505 may include a battery 555.
  • Device 505 may communicate wirelessly with one or more base stations, for example base station 105-a and 105-b (as described above, for example, with reference to FIG. 1B) .
  • UE communications manager 515 of FIG. 5 may include a modem manager 516 associated with a master node and a modem manager 517 associated with a secondary node.
  • modem manager 517 can, for example, be associated with a first RAT, such as NR, while modem manager 516 can, for example, be associated with a second RAT, such as LTE.
  • Processor 520 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • processor 520 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 520.
  • Processor 520 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting power savings in a multi-connectivity UE) .
  • Information such as operating system (OS) information, application statistics, application throughputs, temperatures, battery charge or voltage status may be inter-communicated between various parts of device 505 via bus 510 and the inter-communication may incorporate an interface such as a modem to application processor interface.
  • OS operating system
  • Memory 525 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 525 may be a non-transitory computer-readable medium storing store computer-readable, computer-executable code or software 530 including instructions that, when executed, instruct a processor (e.g., processor 520, UE communications manager 515) to perform various functions described herein, for example, as described in FIGs. 2, 3, and/or 4.
  • a processor e.g., processor 520, UE communications manager 515) to perform various functions described herein, for example, as described in FIGs. 2, 3, and/or 4.
  • the memory 525 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • Software 530 may include code to implement aspects of the present disclosure, including code to support power savings in a multi-connectivity UE.
  • Software 530 may be stored in a non-transitory computer-readable medium such as system memory or other memory.
  • the software 530 may not be directly executable by a processor but may instruct a computer (e.g., when compiled and executed) to perform functions described herein, for example, as described in FIGs. 2, 3, and/or 4.
  • Transceiver 535 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 535 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 535 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets from signals received from the antennas.
  • transceiver 535 may include multiple modems (separate or integrated) associated with multiple RATs.
  • transceiver 535 may include at least a 5G /NR modem and a 4G /LTE modem, although it is understood that, in other implementations, a single modem may perform modulation/demodulation for both 5G and 4G. In such a single modem implementation, it is understood that it may be possible to reduce power or power down certain subcomponents of the single modem.
  • the wireless device may include a single antenna 540. However, in some cases the device may have more than one antenna 540, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. Additionally or alternatively, antenna (s) 540 can include one or more antenna arrays, where each antenna array comprises a plurality of antenna elements.
  • I/O controller 545 may manage input and output signals for device 505. I/O controller 545 may also manage peripherals not integrated into device 505. In some cases, I/O controller 545 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 545 may utilize an operating system such as or another known operating system. In other cases, I/O controller 545 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, I/O controller 545 may be implemented as part of a processor. In some cases, a user may interact with device 505 via I/O controller 545 or via hardware components controlled by I/O controller 545.
  • I/O component (s) 550 may include various components and/or parts that enable interaction with device 505.
  • I/O components (s) may include a screen, touchscreen, speaker, microphone, keyboard or other I/O device.
  • UIM 560 may also be connected to the processor 520 via bus 510.
  • UIM 560 may have stored thereon an EF which provides information to enable the UE to connect to the network of a particular operator.
  • Such information can include, for example, RATs supported by the network operator.
  • RATs supported by the network operator.
  • the EF stored on the UIM 560 indicates support for a first RAT, e.g., NR, this can indicate that the network operator supports connection via the first RAT in an SA mode.
  • the UIM 560 does not indicate support for the first RAT, it still may be possible to connect to the first RAT in an NSA if the network operator has deployed network infrastructure to support NSA.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , E-UTRA, Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 WiMAX
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) .
  • 3GPP 3rd Generation Partnership Project
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
  • the wireless communications system 100 or systems described herein may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timing, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timing, and transmissions from different base stations 105 may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may comprise random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus are described for determining whether a first RAT capable UE connects to the network using a standalone mode of the first RAT or instead attaches to the network using a second RAT and/or a non-standalone mode of the first RAT.

Description

METHOD FOR DISABLING A NETWORK CONNECTIVITY MODE BACKGROUND Field
This application relates to management of connectivity for a user equipment (UE) connecting to a wireless network.
Background
As New Radio (NR) networks begin deployment, it is expected that the first wave of networks and devices will be classed as non-standalone (NSA) . NR is often also referred to as 5G. NSA network and devices will be supported by existing E-UTRA, also referred to as LTE or 4G, infrastructure. When operating in an NSA mode, 5G devices can, for example, connect to the NR network for data-throughput improvements and can use LTE for low throughput and/or non-data duties.
SUMMARY
In one aspect, a method for wireless communications comprises determining, by a UE having a capability of communicating using a first radio access technology (RAT) and a second RAT, whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof. Responsive to a determination that support for the first RAT is not indicated, the method continues with disabling, by the UE, the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT. Then, the method continues with attaching to the network using the second RAT.
In another aspect, a user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT comprises a memory, a transceiver, and a processor in communication with the memory and the transceiver.  The processor is configured to determine whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof. Responsive to a determination that the support for the first RAT is not indicated, the processor is further configured to disable the SA mode of the UE while enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT. Finally, the processor is configured to attach, via the transceiver, to the network using the second RAT.
In another aspect, a user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT comprises means for determining whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof; means for, responsive to a determination that the support for the first RAT is not indicated, disabling the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and means for attaching to the network using the second RAT.
In another aspect, a non-transitory, computer-readable medium stores code thereon, the code comprising instructions that, when executed by one or more processors of a user equipment (UE) , instruct the one or more processors to determine whether support for a first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof, the UE having a capability of communicating using the first RAT and a second RAT; responsive to a determination that the support for the first RAT is not indicated, disable the SA mode of the UE but enable a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and attach to the network using the second RAT.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1A and 1B illustrate an example of wireless communications systems in accordance with various aspects of the present disclosure.
FIG. 2 illustrates a sample flow diagram in which a user equipment (UE) that is already attached to an Evolved Universal Terrestrial Radio Access (E-UTRA) or Long-term Evolution (LTE) network or base station can add a connection to a New Radio (NR) or 5G network or base station in a Dual Connectivity (EN-DC) mode.
FIG. 3 illustrates a sample flow diagram in which a UE can determined whether to request registration to a 5G network in Standalone (SA) mode or to request attach to an LTE network.
FIG. 4 illustrates an example method for wireless communications where a UE determines whether to disable a standalone (SA) mode.
FIG. 5 shows a diagram of a system including a device that supports non-standalone (NSA) connectivity in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
FIGs. 1A and 1B illustrate an example of a wireless communications systems in accordance with various aspects of the present disclosure. With reference to FIG. 1A. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long-Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, a New Radio (NR) network, or a combination thereof. Wireless communication system 100 may support multi-connectivity UE but may not support a standalone mode for the UE to connect to the network via a first radio access technology (RAT) , e.g., NR. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation Node B or giga-nodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system  100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 120 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 120 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions, from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 120 for a base station 105 may be divided into sectors making up only a portion of the geographic coverage area 120, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 120. In some examples, different geographic coverage areas 120 associated with different technologies may overlap and overlapping geographic coverage areas 120 associated with different technologies may be supported by the same base station 105 or by different base stations 105. For example, the same base station 105 or different base stations 105 may be configured to communicate using multiple radio access technologies (RATs) , such as 5G NR and 4G LTE, simultaneously, and the coverage areas 120 associated with the multiple RATs may overlap completely or partly. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 120.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a  carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 120 (e.g., a sector) over which the logical entity operates. Furthermore, a single physical base station 105 may be associated with more than one cell. For example, one cell can be associated with a master node (and can be referred to as a PCell) where another cell is associated with a secondary node (and can be referred to as a PSCell) . In some implementations, both the PCell and the PSCell can have equipment installed on the same base station 105. In one example, the PCell can be an LTE cell and the PSCell can be an NR cell associated with the same base station 105. In another example, the PCell can be an NR cell operating in a first frequency range and the PSCell can also be an NR cell but operating in a second frequency range different than the first frequency range, and both cells can be associated with the same base station 105.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the  information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 120 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 120 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1 or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2 or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 MHz to 300 GHz. Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial,  scientific, and medical (ISM) bands, which may be used opportunistically by devices that can tolerate interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115 (e.g., for multiple-input multiple-output (MIMO) operations such as spatial multiplexing, or for directional beamforming) . However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ LTE License Assisted Access (LTE-LAA) or LTE-Unlicensed (LTE-U) radio access technology or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a CA configuration in conjunction with component carriers (CCs) operating in a licensed band. Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antennas or antenna arrays, which may support MIMO operations such as spatial multiplexing, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may  have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
MIMO wireless systems use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where both transmitting device and the receiving device are equipped with multiple antennas. MIMO communications may employ multipath signal propagation to increase the utilization of a radio frequency spectrum band by transmitting or receiving different signals via different spatial paths, which may be referred to as spatial multiplexing. The different signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the different signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the different signals may be referred to as a separate spatial stream, and the different antennas or different combinations of antennas at a given device (e.g., the orthogonal resource of the device associated with the spatial dimension) may be referred to as spatial layers.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a direction between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain phase offset, timing advance/delay, or amplitude adjustment to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may multiple use antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, signals may be transmitted multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical (PHY) layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput  at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of Ts = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (Tf = 307200 *Ts) . The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include ten subframes numbered from 0 to 9, and each subframe may have a duration of 1 millisecond. A subframe may be further divided into two slots each having a duration of 0.5 milliseconds, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols and in some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots may be aggregated together for communication between a UE 115 and a base station 105.
A resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier (e.g., a 15 kHz frequency range) . A resource block may contain 12 consecutive subcarriers in the frequency domain (e.g., collectively forming a “carrier” ) and, for a normal cyclic prefix in each orthogonal frequency-division multiplexing (OFDM) symbol, 7 consecutive OFDM symbol periods in the time domain (1 slot) , or 84 total resource elements across the frequency and time  domains. The number of bits carried by each resource element may depend on the modulation scheme (the configuration of modulation symbols that may be applied during each symbol period) . Thus, the more resource elements that a UE 115 receives and the higher the modulation scheme (e.g., the higher the number of bits that may be represented by a modulation symbol according to a given modulation scheme) , the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum band resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined organizational structure for supporting uplink or downlink communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that may also be referred to as a frequency channel. In some examples a carrier may be made up of multiple sub-carriers (e.g., waveform signals of multiple different frequencies) . A carrier may be organized to include multiple physical channels, where each physical channel may carry user data, control information, or other signaling.
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, NR, etc. ) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a  common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, or 20 MHz) . In some examples the system bandwidth may refer to a minimum bandwidth unit for scheduling communications between a base station 105 and a UE 115. In other examples a base station 105 or a UE 115 may also support communications over carriers having a smaller bandwidth than the system bandwidth. In such examples, the system bandwidth may be referred to as “wideband” bandwidth and the smaller bandwidth may be referred to as a “narrowband” bandwidth. In some examples of the wireless communications system 100, wideband communications may be performed according to a 20 MHz carrier bandwidth and narrowband communications may be performed according to a 1.4 MHz carrier bandwidth.
Devices of the wireless communications system 100 (e.g., base stations or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. For example, base stations 105 or UEs 115 may perform some communications according to a system bandwidth (e.g., wideband communications) , and may perform some communications according to a smaller bandwidth (e.g., narrowband communications) . In some examples, the wireless communications system 100 may include base stations 105 and/or UEs that can support simultaneous communications via carriers associated with more than one different bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation (CA) or multi-carrier operation. A UE 115 may be configured with multiple downlink CCs and one or more uplink CCs according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features  including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other CCs, which may include use of a reduced symbol duration as compared with symbol durations of the other CCs. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications systems such as an NR system may use a combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across frequency) and horizontal (e.g., across time) sharing of resources.
UEs 115 may be configured as multi-connectivity UEs in which UEs 115 are configured to communicate with one or more base stations 105 using multiple RATs (e.g., 5G NR, 4G LTE) . UEs 115 may be capable of connecting to the network using 5G NR, however, if a network operator does not support a standalone (SA) mode, the 5G NR-capable UE may then attach to the network using LTE and add an NR base station for additional connectivity where primary control of the connection of the UE to the network is through LTE. A UE 115 can determine or infer whether the network operator supports SA operation, and if not, the UE can disable a SA mode. Instead, the UE can determine to connect to LTE only or to connect to both in an E-UTRA NR dual connectivity (EN-DC) mode.
With reference to FIG. 1B, communications system 100′ may implement aspects of wireless communications system 100. For example, wireless communications system 100′ includes an LTE base station 105-a, an NR base station 105-b, and a UE 115-a, which may be examples of the corresponding devices described with reference to FIG. 1A. Wireless communications system 100′ may support the use of techniques where an SA capable UE connects to a network in an NSA mode where, for various reasons, a network operator has not deployed or not yet deployed SA capability in the network.
In wireless communications system 100′, a UE 115-a may communicate with a network using a multi-connectivity, for example, dual-connectivity (DC) configuration. In such cases, UE 115-a may simultaneously communicate with different base stations 105 (e.g., LTE base station 105-a and NR base station 105-b) . LTE base station 105-a may provide a first cell 110-a and LTE base station 105-a may be referred to as a master node (MN) . First cell 110-a may correspond to a PCell in the DC deployment. Additionally, NR base station 105-b may provide a second cell 110-b of the DC configuration, and NR base station 105-b may be referred to as a secondary node (SN) . In some cases, second cell 110-b may correspond to a PSCell in the DC deployment, which may be configured with time-frequency resources for PUCCH. Additional SCells may be associated with each base station 105-a and 105-b. A master cell group (MCG) may then refer to a group of serving cells associated with the MN, comprising the PCell and optionally one or more SCells, and a secondary cell group (SCG) may then refer to a group of serving cells associated with the SN, comprising the PSCell and optionally one or more SCells. In some implementations, the SCells can provide additional carriers in addition to carriers of the PCell or PSCell for carrier aggregation. In a multi-connectivity implementation, such as dual-connectivity, while the transfer of data is split between the MN and the SN, control of multi-connectivity remains with the MN. Other non-scheduling related control information related to the SN can also be routed through the MN, while scheduling for the SN can be handled by the SN through the SN’s own physical downlink control channel (PDCCH) . Although shown as two different base stations 105-a and 105-b for purposes of illustration, it is understood that in some implementations, the PCell of the MN and the PSCell of the SN may be separate cells that are installed on the same physical base station.
The UE can indicate to the MN (e.g., LTE base station 105-a) a multi-connectivity (e.g., dual-connectivity) capability informing the MN that the UE (e.g., LTE base station 105-a) supports multi-connectivity. Once the UE is attached to the MN, the MN can initiate a process to add an SN (e.g., NR base station 105-b) connection between the UE and the network. The MN can instruct the UE to make measurements of signals associated with the SN and to report the measurements to MN. If the reported signal measurements suggest that a good communication link between the UE and the SN can be established, the MN provides the UE and the SN with all the parameters for them to establish a connection. The MN can be configured to control whether the SN is added or not.
In some cases, the different base stations 105 and corresponding cells of the DC deployment may be associated with a same or different RAT. For instance, LTE base station 105-a and NR base station 105-b may communicate using a second RAT and a first RAT, respectively.
In some cases, DC deployments may use different radio bearers for transmitted messages for each cell. For instance, when LTE base station 105-a is configured as a master node that provides a set of serving cells corresponding to the MCG, LTE base station 105-a may use a first set of signaling radio bearers (SRBs) (e.g., SRB1, SRB2) to transport messages for the MCG, such as RRC messages. Additionally, when NR base station 105-b is configured as a secondary node, NR base station 105-b may provide another set of serving cells that correspond to the SCG and may use a second set of SRBs (e.g., SRB3) to transport messages for the SCG. In some examples, a split bearer configuration may be supported, where a particular protocol layer (e.g., a packet data convergence protocol (PDCP) layer) for both the master node and secondary node may be used to route data streams to/from UE 115-a. Here, an SRB (e.g., SRB1/SRB2) may be split between the master node and the secondary node, and downlink messages sent from the master node to UE 115-a may be routed via lower-layers (e.g., radio link control (RLC) , medium access control (MAC) , physical (PHY) , etc. ) of either LTE base station 105-a (e.g., the master node) or NR base station 105-b (e.g., the secondary node) . In other cases, downlink messages may be routed via the lower-layers of both the master and secondary nodes. In the uplink, RRC messages from UE 115-a may be transmitted to the master node via the secondary node using the split bearer (e.g., via a “leg”  associated with the secondary node) . For the signaling of data in the user plane, respective data radio bearers (DRBs) may be used by the MCG and SCG.
Additionally or alternatively, UE 115-a may communicate with a single base station 105 (e.g., LTE base station 105-a) using multiple carriers (e.g., CCs, which may also be referred to as layers, channels, etc. ) . In such cases, a CC may refer to each of the carriers used by UE 115-a in carrier aggregation (CA) operations. Further, a serving cell of LTE base station 105-a may correspond to each CC used in CA operation, where each serving cell may be different (e.g., based on the path loss experienced by different CCs on different radio frequency (RF) spectrum bands) . In some examples, one carrier may be designated as a primary carrier, or primary CC (PCC) , for UE 115-a, which may be served by a PCell of LTE base station 105-a. Additional carriers may be designated as secondary carriers, or secondary CCs (SCCs) , which may be served by SCells of LTE base station 105-a. CA operations may use the same or different RF bands for communications.
FIG. 2 illustrates a sample flow diagram in which a UE that is already attached to an E-UTRA or LTE network or base station can enter an multi-radio connectivity mode (e.g., EN-DC mode) where a connection to an NR or 5G network or base station is added. It is understood that the sample flow 200 is provided for illustrative purposes, and is merely one example of a scenario where a UE 115 can enter a multi-radio connectivity mode, e.g., a dual connectivity mode, e.g., an EN-DC mode, after, for example, a determination that an operator of a network does not support, for example, SA NR. In the particular example provided here, the UE is attached to an LTE network and a connection to an NR network is added. However, it is understood that more generally the UE may attach to the network using a second RAT and add a connection to a first RAT. In one example, the UE attaches to the network using the second RAT in an non-standalone (NSA) mode in which the UE attaches to the network using the second RAT, e.g., LTE, but can also receive data using the first RAT, e.g., NR, in the multi-radio connectivity mode.
Although not discussed in detail with reference to flow 200, it is understood that certain messages, communications, or processes may have occurred prior to 203. For example, a random access procedure or random access control channel (RACH) procedure may have occurred for the UE 115 to gain access to, attach to, and/or be connected to the LTE network 201, for example, through a special cell (SpCell) of the  LTE network 201. In addition, after connection is established, the LTE network 201 and the UE may have exchanged data, including downlink (DL) and/or uplink (UL) data, for example, where data exchanged with the network is exchanged using only LTE and is therefore LTE-only traffic. Such data can include control data or configuration data. Furthermore, for a UE that is 5G/NR capable, the UE 115 may indicate such capability to the LTE network 201. For example, in a situation where the network does not support NR in a SA mode, the UE 115 can indicate to the LTE network 201 that it has capability of connecting in EN-DC. As noted above, responsive to the indication by the UE 115 of EN-DC capability, the network 201 can take steps to add a 5G/NR node to enable the UE to exchange data with the 5G/NR node in addition to the LTE node, for example, in an EN-DC mode as described further below.
At 203, the LTE Network 201 can send an addition request to the NR Network 202 (where the addition request, for example, is subsequent to receipt of an indication by the UE of EN-DC capability of the UE 115) . In one example, the addition request can be an SgNB Addition Request message. The LTE Network 201, for example, can determine that the UE 115 is in a good signalling environment for NR signals based on measurements by the UE 115 of reference signals measured, for example, based on an RRC configuration sent to the UE 115 from the LTE Network 201. The addition request can serve as a resource request, in which the LTE Network 201 requests the NR Network 202 to allocate resources for the UE 115. As such, the addition request, may include information to enable the NR Network 202 to determine whether it can accommodate the resource allocation request, for example, reference signal measurements of NR signals reported by the UE 115 to the LTE Network 201 as well as other information useful to the NR Network 202 to determine whether it can accept the request.
At 206, if the NR Network 202 is able to admit the resource request, it can respond to the addition request message with an acknowledge message, for example, an SgNB Addition Request Acknowledge message. The NR Network 202 can decide the PSCell and other SCG SCells and, for example, provide a new SCG radio resource configuration to the LTE Network 201 in an NR RRC configuration message, which can be contained in some embodiments, in the SgNB Addition Request Acknowledge message.
At 209, the LTE Network 201 can send to the UE 115 an RRCConnectionReconfiguration message which can, for example, include the NR RRC configuration message received from the NR Network 202. The UE 115 can then apply the new configuration and, at 212, reply to the LTE Network 201 with a RRCConnectionReconfigurationComplete message. If, for some reason, the UE 115 is unable to comply with the configuration included in the RRCConnectionReconfiguration message, it can perform a reconfiguration failure procedure (not shown at 212) . In one example, performing the reconfiguration failure procedure can include the UE 115 sending a SCGFailureInformationNR message to the LTE Network 201 (not shown at 212) and setting a failure type in the message to correspond to a failure type associated with RRC reconfiguration failure, such as, for example, scg-reconfigFailure. In one implementation, when there is an RRC reconfiguration failure, the UE 115 does not apply any part of the reconfiguration and continues using the configuration it was using prior to the RRCConnectionReconfiguration message of 209. Where the reconfiguration fails, the UE remains connected to the LTE Network 201 and does not connect to the NR Network 202 (for example, does not connect to NR Network 202 in the EN-DC mode) .
At 215 the LTE Network 201 can send a reconfiguration complete message to the NR Network 202 to inform the NR Network 202 that the reconfiguration of the UE 115 was successful. In one example, such a message can be a SgNB ReconfigurationComplete message. This reconfiguration complete message can include, for example, any information provided to the LTE Network 201 from the UE 115, for example, in the RRCConnectionReconfigurationComplete message of 212.
At 218, the UE 115 performs registration with the NR Network 202. In one example, the UE can perform registration procedure through a SpCell of the SN (also referred to as a PSCell) . Aspects of registration to the 5G network can include synchronization of downlink framing, RACH procedure, and initial scheduling of data to be communicated over the NR Network 202. Once registration is complete, the UE 115 is connected to the NR Network 202. In this example, the UE 115 is now connected to both the LTE Network 201 and the NR Network 202.
At 221, the UE 115 can communicate with the LTE Network 201. Simultaneously, at 224, the UE 115 can also communicate with the NR Network 202. Since, typically, the SN has greater data throughput capacity, data communications  between the UE 115 and the NR Network 202 at 224 can include data associated with high throughput, real time applications such as video streaming or virtual/augmented reality, to name a few examples. Otherwise, low throughput applications can, for example, be routed through the LTE Network 201 as shown in 221. In one implementation, only the MN provides control plane connection to the core network which, in the illustrated embodiment is the LTE MN of the LTE Network 201. Since the UE 115 is now in an EN-DC mode, UE 115 is connected to both LTE Network 201 and NR Network 202 in a dual connection mode. In one example scenario of a dual connection mode, the UE 115 can send and receive control and user data with the LTE Network 201 (including non-scheduling control data related to the NR Network 202) , but only sends and receives user data (along with scheduling related to the user data) to/from the NR Network 202. Although 221 is illustrated as labeled “LTE data traffic, ” it is understood that traffic sent over LTE can include data as well as control for both the LTE connection as well as non-scheduling control data related to the NR Network 202.
FIG. 3 illustrates a sample flow diagram in which a UE can determined whether to request registration to a 5G network in Standalone (SA) mode or to request attach to an LTE network. Once attached to the LTE network, the UE can still communicate via NR in a multi-radio connectivity mode such as EN-DC in an NSA mode by adding a connection to a base station using NR, as described above with reference to FIG. 2.
Flow 300 begins at 304 where the UE is powered on. In one example, the UE may power on due to detection of a trigger such as detecting a face or other always-on authentication or by detecting that the user has manually turned on the device, or through other means of being powered on.
At 306, the UE determines whether to check to see what RATs the network operator can support. In one example, the UE can have the capability (including both hardware and software capability) of registering or connecting to the network using NR in an SA mode. However, the operator may not have implemented network infrastructure to enable the UE to connect to the network in an SA mode. Additionally or alternatively, a newer UE 115 may be capable of connecting via NR, but the newer UE 115 may have an older user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) that does not indicate that the operator supports NR. For ease of explanation, the remaining description will focus on the example of a UIM, although it is understood that the same may apply in the case of a  UICC, SIM, universal SIM (USIM) , or other similar module or circuit that indicates to the UE information associated with a given network operator to enable the UE to connect to a wireless network operated by the operator, or any combination thereof. The UIM may contain information such as the number assignment module (NAM) and subscription feature information. Additionally, the UIM may contain information about the RATs supported by the network operator. In various implementations, the UIM may be integrated into the UE 115 or it may be removable.
If it is determined that the UE should check what RATs the operator supports, flow 300 continues at 308 with reading an elementary file (EF) on the UIM. The EF is used by some operators to indicate RATs supported by the network operator. In the illustrated example, the UE (e.g., processor 520 with reference to FIG. 5) sends a request, e.g., a READ_EF_REQ message, to the UIM (e.g., UIM 560 with reference to FIG. 5) .
Responsive to the READ_EF_REQ message, the UE may receive at 310 a response from the UIM, e.g., a READ_EF_CNF message that contains information relating to the RATs supported by the network operator. In various implementations, the EF indicating supported RATs can have a particular ID to enable the UE to read the file.
At 312, the UE may determine whether the configuration message provides information that can enable the UE to connect to the network using NR in an SA mode. For example, the information in the configuration message may not include any information to enable the UE to connect to the network using NR or may otherwise indicate that NR is not supported. However, in some situations, even though there is no indication that NR is supported, the network operator may still support NR in an NSA mode. This may occur in situations where the information in the UIM may be old or not updated (even though the UE 115 may have capability to connect to network using NR in SA mode) , or the network operator for other reasons chooses not to indicate support for NR even when NR in NSA mode may still be supported by network infrastructure.
Responsive to a determination that the configuration message does not indicate information to enable the UE 115 to connect to the network using NR in an SA mode, at 314 the UE disables a standalone mode within the UE.
At 316, since no information was indicated to enable connection to the network using NR in an SA mode, the UE requests attachment to the network using LTE. Once  attached to the network via LTE, the UE may also subsequently attach to the network using NR in an EN-DC mode, as described in further detail in FIG. 2.
At 318 flow 300, illustrated from the determination to check operator supported RATs at 306 and from the determination that there is no information to enable an SA mode at 312, ends.
Returning to 306, responsive to a determination not to check the operator supported RATs, flow 300 may proceed to 320 with requesting registration on NR network in an SA mode. Whether the UE reads or checks the EF can depend upon a network operator, where some operators may require that the UE reads the EF and others may not. Additionally or alternatively, returning to 312, responsive to a determination that the information received in the configuration message does enable the UE to connect to the network using NR in an SA mode, flow 300 may proceed to 320 with requesting registration on NR network in an SA mode.
At 322 flow 300, illustrated from the determination not to check operator supported RATs at 306 and from the determination that there is information to enable an SA mode at 312, ends.
FIG. 4 illustrates an example method 400 for wireless communications where a UE determines whether to disable an SA mode.
Method 400 begins at 410 with determining, by a UE, whether supports for a first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof as shown in 306, 308, and 310 with reference to FIG. 3. In one implementation, the UE can be UE 115 with reference to FIGs. 1A, 1B, 2, and 3. The UE performing method 400 has a capability of communicating using a first RAT and a second RAT. In one example, as in FIG. 3, the first RAT is NR and the second RAT is LTE. The UE can determine whether support for the first RAT is indicated by reading an EF as shown in 308 with reference to FIG. 3.
At 415, responsive to a determination that the support for the first RAT is not indicated, the method 400 moves to 420 with disabling, by the UE, the SA mode of the UE but enabling a non-standalone (NSA) mode. The SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT. The determination that the support for the first RAT is not indicated can be based  upon the UE reading the UIM and the UIM failing to indicate support for the first RAT. In such a case, the UE can assume that the first RAT in the SA mode is not supported. However, it may be possible that the UE can connect to the first RAT in the NSA mode. Means for performing the functionality of  blocks  410, 415, and 420 can, but not necessarily, include UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
Method 400 continues at 430 with attaching to the network using the second RAT. As the SA mode is disabled at 420, the UE connecting to the network using the first RAT in an SA mode has been disabled. As such, the UE will then default to connecting to the network using the second RAT. However, as the UE is capable of connecting to the first RAT, the UE may still exchange information with the network using the first RAT in a multi-radio connectivity mode. In an example where the first RAT is NR and the second RAT is LTE, the UE may exchange information with the network using NR in an EN-DC mode. Means for performing the functionality of block 430 can, but not necessarily, include antenna 540, transceiver 535, bus 510, UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
Returning to 415, responsive to a determination that the support for the first RAT is indicated, the method moves to attaching or registering with a base station or node associated with first RAT in an SA mode, as illustrated, for example, at block 320 with reference to FIG. 3. In one example, the UE may begin a RACH procedure with a base station (s) using the first RAT, e.g., NR.
Optionally, method 400 continues at 440 with signaling, by the UE, to the network the UE capability to communicate using the first RAT. Once the UE is attached to the network using the second RAT, the UE can signal to the network a capability of the UE to communicate using the first RAT, e.g., NR. In one implementation, this capability can be reported as a capability of the UE to support multi-radio connectivity, e.g., EN-DC. This can enable the network to initiate multi-radio connectivity, e.g., EN-DC, as explained with reference to FIG. 2.
Optionally, method 400 continues at 450 with receiving, at the UE, a radio resource configuration (RRC) connection reconfiguration message from the network with an identity of a first RAT base station, e.g., an NR gNodeB. In one example, the  RRC connection reconfiguration message can be RRCConnectionReconfiguration 209 with reference to FIG. 2.
Optionally, method 400 continues at 460 with connecting, by the UE, to the first RAT base station, e.g., NR gNodeB, while maintaining connection to a second RAT base station, e.g., LTE eNodeB. In one example, the UE can connect to a first RAT base station while maintaining a connection to the second RAT base station as illustrated at 218, 221, and 224 with reference to FIG. 2.
Means for performing the functionality of any of  blocks  440, 450, and/or 460 can, but not necessarily, include antenna 540, transceiver 535, bus 510, UE communications manager 515, modem manager 516, modem manager 517, processor 520, and/or memory 525 with reference to FIG. 5.
FIG. 5 shows a diagram of a system 500 including a device 505 that supports non-standalone (NSA) connectivity in accordance with aspects of the present disclosure. Device 505 may be an example of or include the components of UE 115 as described above, e.g., with reference to FIGs. 1 through 4. Device 505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including UE communications manager 515, processor 520, memory 525, software 530, transceiver 535, antenna 540, I/O controller 545, and I/O component (s) 550. These components may be in communication (e.g., electronic communication) , or coupled, via one or more buses (e.g., bus 510) . To power the other components, device 505 may include a battery 555. Device 505 may communicate wirelessly with one or more base stations, for example base station 105-a and 105-b (as described above, for example, with reference to FIG. 1B) .
UE communications manager 515 of FIG. 5 may include a modem manager 516 associated with a master node and a modem manager 517 associated with a secondary node. In scenarios where the MN and SN operate using different RATs, modem manager 517 can, for example, be associated with a first RAT, such as NR, while modem manager 516 can, for example, be associated with a second RAT, such as LTE.
Processor 520 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, processor 520 may be configured to operate a memory array using a memory controller. In other  cases, a memory controller may be integrated into processor 520. Processor 520 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting power savings in a multi-connectivity UE) . Information such as operating system (OS) information, application statistics, application throughputs, temperatures, battery charge or voltage status may be inter-communicated between various parts of device 505 via bus 510 and the inter-communication may incorporate an interface such as a modem to application processor interface.
Memory 525 may include random access memory (RAM) and read only memory (ROM) . The memory 525 may be a non-transitory computer-readable medium storing store computer-readable, computer-executable code or software 530 including instructions that, when executed, instruct a processor (e.g., processor 520, UE communications manager 515) to perform various functions described herein, for example, as described in FIGs. 2, 3, and/or 4. In some cases, the memory 525 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
Software 530 may include code to implement aspects of the present disclosure, including code to support power savings in a multi-connectivity UE. Software 530 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 530 may not be directly executable by a processor but may instruct a computer (e.g., when compiled and executed) to perform functions described herein, for example, as described in FIGs. 2, 3, and/or 4.
Transceiver 535 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 535 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 535 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets from signals received from the antennas. In one example, transceiver 535 may include multiple modems (separate or integrated) associated with multiple RATs. For example, transceiver 535 may include at least a 5G /NR modem and a 4G /LTE modem, although it is understood that, in other implementations, a single modem may perform modulation/demodulation for both 5G and 4G. In such a  single modem implementation, it is understood that it may be possible to reduce power or power down certain subcomponents of the single modem.
In some cases, the wireless device may include a single antenna 540. However, in some cases the device may have more than one antenna 540, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. Additionally or alternatively, antenna (s) 540 can include one or more antenna arrays, where each antenna array comprises a plurality of antenna elements.
I/O controller 545 may manage input and output signals for device 505. I/O controller 545 may also manage peripherals not integrated into device 505. In some cases, I/O controller 545 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 545 may utilize an operating system such as 
Figure PCTCN2020081350-appb-000001
or another known operating system. In other cases, I/O controller 545 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, I/O controller 545 may be implemented as part of a processor. In some cases, a user may interact with device 505 via I/O controller 545 or via hardware components controlled by I/O controller 545.
I/O component (s) 550 may include various components and/or parts that enable interaction with device 505. For example, I/O components (s) may include a screen, touchscreen, speaker, microphone, keyboard or other I/O device.
UIM 560 may also be connected to the processor 520 via bus 510. UIM 560 may have stored thereon an EF which provides information to enable the UE to connect to the network of a particular operator. Such information can include, for example, RATs supported by the network operator. For example, in one implementation, if the EF stored on the UIM 560 indicates support for a first RAT, e.g., NR, this can indicate that the network operator supports connection via the first RAT in an SA mode. However, in other implementations where the UIM 560 does not indicate support for the first RAT, it still may be possible to connect to the first RAT in an NSA if the network operator has deployed network infrastructure to support NSA.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC- FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , E-UTRA, Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
The wireless communications system 100 or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timing, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timing, and transmissions from different base stations 105 may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may comprise random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a  computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances,  well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (25)

  1. A method for wireless communications comprising:
    determining, by a UE having a capability of communicating using a first radio access technology (RAT) and a second RAT, whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof;
    responsive to a determination that the support for the first RAT is not indicated, disabling, by the UE, the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and
    attaching to the network using the second RAT.
  2. The method of claim 1, wherein determining whether the support for the first RAT is indicated comprises reading an elementary file (EF) stored on the UIM, UICC, or SIM, or any combination thereof.
  3. The method of claim 1, wherein attaching to the network using the second RAT comprises attaching to the network in a dual connectivity mode.
  4. The method of claim 3, wherein the first RAT is New Radio (NR) , the second RAT is Long-Term Evolution (LTE) , and the dual connectivity mode is an Evolved Universal Terrestrial Radio Access (E-UTRA) NR Dual Connectivity (EN-DC) mode.
  5. The method of claim 4, further comprising:
    signaling, by the UE, to the network a capability of the UE to communicate using NR.
  6. The method of claim 5, further comprising:
    receiving a radio resource configuration (RRC) connection reconfiguration message from the network with an identity of an NR gNodeB.
  7. The method of claim 6, further comprising:
    connecting to the NR gNodeB while maintaining connection to an LTE eNodeB.
  8. The method of claim 4, further comprising responsive to a determination that the support for NR is indicated, registering with the network using NR in the SA mode.
  9. A user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT, the UE comprising:
    a memory;
    a transceiver; and
    a processor in communication with the memory and the transceiver, the processor configured to:
    determine whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof,
    responsive to a determination that the support for the first RAT is not indicated, disable the SA mode of the UE while enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT, and
    attach, via the transceiver, to the network using the second RAT.
  10. The UE of claim 9, wherein the processor configured to determine whether the support for the first RAT is indicated comprises the processor configured to read an elementary file (EF) stored on the UIM, UICC, or SIM, or any combination thereof.
  11. The UE of claim 9, wherein the processor configured to attach, via the transceiver, to the network using the second RAT comprises the processor configured to attach, via the transceiver, to the network in a dual connectivity mode.
  12. The UE of claim 11, wherein the first RAT is New Radio (NR) , the second RAT is Long-Term Evolution (LTE) , and the dual connectivity mode is an Evolved Universal Terrestrial Radio Access (E-UTRA) NR Dual Connectivity (EN-DC) mode.
  13. The UE of claim 12, the processor further configured to:
    signal to the network a capability of the UE to communicate using NR.
  14. The UE of claim 13, the processor further configured to:
    receive a radio resource configuration (RRC) connection reconfiguration message from the network with an identity of an NR gNodeB.
  15. The UE of claim 14, the processor further configured to:
    connect to the NR gNodeB while maintaining connection to an LTE eNodeB.
  16. The UE of claim 12, the processor further configured to, responsive to a determination that the support for NR is indicated, register, via the transceiver, with the network using NR in the SA mode.
  17. A user equipment (UE) having a capability of communicating using a first radio access technology (RAT) and a second RAT, the UE comprising:
    means for determining whether support for the first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof;
    means for, responsive to a determination that the support for the first RAT is not indicated, disabling the SA mode of the UE but enabling a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and
    means for attaching to the network using the second RAT.
  18. The UE of claim 17, wherein the means for determining whether the support for the first RAT is indicated comprises means for reading an elementary file (EF) stored on the UIM, UICC, or SIM, or any combination thereof.
  19. The UE of claim 17, wherein means for attaching to the network using the second RAT comprises means for attaching to the network in a dual connectivity mode.
  20. The UE of claim 19, wherein the first RAT is New Radio (NR) , the second RAT is Long-Term Evolution (LTE) , and the dual connectivity mode is an Evolved Universal Terrestrial Radio Access (E-UTRA) NR Dual Connectivity (EN-DC) mode.
  21. The UE of claim 20, further comprising:
    means for signaling, by the UE, to the network the capability of the UE to communicate using NR.
  22. The UE of claim 21, further comprising:
    means for receiving a radio resource configuration (RRC) connection reconfiguration message from the network with an identity of an NR gNodeB.
  23. The UE of claim 22, further comprising:
    means for connecting to the NR gNodeB while maintaining connection to an LTE eNodeB.
  24. The UE of claim 20, further comprising, responsive to a determination that the support for NR is indicated, means for registering with the network using NR in the SA mode.
  25. A non-transitory, computer-readable medium storing code thereon, the code comprising instructions that, when executed by one or more processors of a user equipment (UE) , instruct the one or more processors to:
    determine whether support for a first RAT is indicated by a user identity module (UIM) , universal integrated circuit card (UICC) , or subscriber identity module (SIM) , or any combination thereof, the UE having a capability of communicating using the first RAT and a second RAT;
    responsive to a determination that the support for the first RAT is not indicated, disable the SA mode of the UE but enable a non-standalone (NSA) mode, wherein the SA mode is a mode in which the UE attaches to the network using the first RAT and the NSA mode is a mode in which the UE attaches to the network using the second RAT but can receive data using the first RAT; and
    attach to the network using the second RAT.
PCT/CN2020/081350 2020-03-26 2020-03-26 Method for disabling network connectivity mode WO2021189344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081350 WO2021189344A1 (en) 2020-03-26 2020-03-26 Method for disabling network connectivity mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081350 WO2021189344A1 (en) 2020-03-26 2020-03-26 Method for disabling network connectivity mode

Publications (1)

Publication Number Publication Date
WO2021189344A1 true WO2021189344A1 (en) 2021-09-30

Family

ID=77889915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081350 WO2021189344A1 (en) 2020-03-26 2020-03-26 Method for disabling network connectivity mode

Country Status (1)

Country Link
WO (1) WO2021189344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003855A1 (en) * 2022-06-30 2024-01-04 Jio Platforms Limited System and method to select multi-radio access technology in a user equipment during sim initialization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180368016A1 (en) * 2017-05-19 2018-12-20 Qualcomm Incorporated Options to provide a network icon in non-standalone mode
US20190053115A1 (en) * 2017-08-09 2019-02-14 Qualcomm Incorporated Methods and apparatus for mitigating co-existence issues in communcation systems
US20190357095A1 (en) * 2017-10-10 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Report nsa/sa nr indicator
WO2020022762A1 (en) * 2018-07-24 2020-01-30 Samsung Electronics Co., Ltd. Electronic device for displaying indicator regarding network and method thereof
US20200092879A1 (en) * 2018-09-14 2020-03-19 Google Llc Transmitting User Equipment Capabilities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180368016A1 (en) * 2017-05-19 2018-12-20 Qualcomm Incorporated Options to provide a network icon in non-standalone mode
US20190053115A1 (en) * 2017-08-09 2019-02-14 Qualcomm Incorporated Methods and apparatus for mitigating co-existence issues in communcation systems
US20190357095A1 (en) * 2017-10-10 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Report nsa/sa nr indicator
WO2020022762A1 (en) * 2018-07-24 2020-01-30 Samsung Electronics Co., Ltd. Electronic device for displaying indicator regarding network and method thereof
US20200092879A1 (en) * 2018-09-14 2020-03-19 Google Llc Transmitting User Equipment Capabilities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM, NTT DOCOMO, HUAWEI, ERICSSON, ZTE, OPPO, MEDIATEK, VIVO: "Support of inter-RAT HO from SA to EN-DC in Rel-16", 3GPP DRAFT; R2-1912447 SUPPORT OF INTER-RAT HO FROM SA TO EN-DC IN REL-16, vol. RAN WG2, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 4, XP051790492 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003855A1 (en) * 2022-06-30 2024-01-04 Jio Platforms Limited System and method to select multi-radio access technology in a user equipment during sim initialization

Similar Documents

Publication Publication Date Title
EP3834473B1 (en) Bandwidth configuration techniques in wireless communications
US20220295410A1 (en) Enhanced power savings through mobile initiated dormancy
CA3068745A1 (en) Uplink-based positioning reference signaling in multi-beam systems
US10750424B2 (en) Preemptive indication of inter-rat mobility
US11601880B2 (en) Power management for a user equipment in a multi-radio connectivity mode or carrier aggregation mode
WO2020061984A1 (en) Measurement gap configuration and coordination
WO2020098572A1 (en) Resuming communication with a secondary node in dual connectivity
US11115911B2 (en) Reuse of control channel resource associated with initial access
US20190373663A1 (en) Radio link failure (rlf) procedure with generic cell group management
WO2020088382A1 (en) Data transmission with expiration time
EP4032348A1 (en) Transmission configuration indicator state activation techniques for carrier aggregation
JP7225213B2 (en) Carrier Aggregation Configuration in Wireless Systems
US11395369B2 (en) Methods, apparatuses and systems for dynamic spectrum sharing between legacy and next generation networks
US11330571B2 (en) Random access techniques in beamformed wireless communications
US10904795B2 (en) Remapping quality of service flows among data radio bearers
US20220117022A1 (en) Nr blind resume
WO2020154841A1 (en) Measurement-based dual connectivity and carrier aggregation activation
EP3909354A1 (en) Distance based resource exclusion
WO2021189344A1 (en) Method for disabling network connectivity mode
WO2021092828A1 (en) Random access channel procedures with external assistance
WO2021217492A1 (en) Recovery method for missing data bearer during handoff in a multi-connectivity mode
WO2021217490A1 (en) Multi-connectivity data stall recovery
US11412419B2 (en) Communications during handover procedure
CN112970326B (en) Restoring communication with a secondary node in dual connectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927155

Country of ref document: EP

Kind code of ref document: A1