WO2021189159A1 - Air filter comprising copper-based magnetic alloys for reducing microorganisms in polluted air, and production method thereof - Google Patents

Air filter comprising copper-based magnetic alloys for reducing microorganisms in polluted air, and production method thereof Download PDF

Info

Publication number
WO2021189159A1
WO2021189159A1 PCT/CL2021/050020 CL2021050020W WO2021189159A1 WO 2021189159 A1 WO2021189159 A1 WO 2021189159A1 CL 2021050020 W CL2021050020 W CL 2021050020W WO 2021189159 A1 WO2021189159 A1 WO 2021189159A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
air
air filter
alloys
magnetic alloys
Prior art date
Application number
PCT/CL2021/050020
Other languages
Spanish (es)
French (fr)
Inventor
Marta Lorena María LÓPEZ JENSSEN
Christopher Gonzalo SALVO MEDALLA
Felipe Aber SANHUEZA GÓMEZ
Helia Magaly BELLO TOLEDO
Emky Héctor VALDEBENITO ROLACK
Cristian Alberto CUEVAS BARRAZA
José Antonio JIMÉNEZ
Ramalinga Viswanathan MANGALARAJA
Original Assignee
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Concepcion filed Critical Universidad De Concepcion
Publication of WO2021189159A1 publication Critical patent/WO2021189159A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Definitions

  • the technology is oriented to the environmental area, more particularly, it corresponds to an air filter made of copper-based magnetic alloys, useful for reducing microorganisms in suspension inside hospital rooms and other closed rooms with a high density of microbial load.
  • Microbial contamination is one of the most important parameters of air pollution inside clinical settings (Chang et al., 2015). These microorganisms (bacteria and fungi) cause intra-hospital (nosocomial) infections, diseases contracted by contact, respiratory tract and infections during surgery (Chang et al., 2015; Stauning et al., 2018). This is a potential risk, not only for patients, but also for health workers (Cabo Verde et al., 2015). For this reason, nosocomial diseases are a global health concern and, for that same reason, it is vitally important to know the maximum limits of microbial load in a clinical care setting (Bhattacharyya et al., 2015).
  • HEPA High Efficiency Air Purifying
  • aeruginosa 0.5 to 1 mhi, Kocuria rizophila, 1 to 1.5 mhi (Kovács et al., 1999; Dworkin et al., 2006; Day et al., 2017; Lagree et al., 2018).
  • HEPAs are difficult to clean and maintain when particulate matter has already accumulated in them (Day et al., 2017).
  • the pore size is not regular and strongly depends on the disposition and size of the fibers of the polymer from which they are made (Balgis et al., 2017). These factors make HEPA systems more of a problem than a long-term solution. Given this, the design of an air filter with a regular pore size and a material with bactericidal action is of vital importance.
  • Cu Copper
  • Cu-derived technology is very broad, due to the combination of its anticorrosive properties, electrical and thermal conductivity.
  • Cu Currently, in addition to its excellent anticorrosive properties, electrical and thermal conductivity, Cu possesses antimicrobial properties that other metals do not possess, which have generated increasing interest in exacerbating its applicability throughout the world.
  • Cu is widely used, mainly in surface coating (Brenner et al., 2003; Marra et al., 011).
  • This metal has been investigated on food-borne pathogenic bacteria, such as Salmonella typhimurium and Listeria monocytogenes; on Salmonella enteric, Campylobacter jejuni, E. coli 0157: H7, methicillin-resistant S. aureus (MRSA) and, recently, copper activity has been reported on microorganisms isolated from bovine mastitis, such as E. coli, coagulase negative Staphylococcus (CNS), S. Uberis and S.
  • CNS coagulase negative Staphylococcus
  • aeruginosa are significantly suppressed by magnetic fields, which, in addition, enhance the effect of antibiotics such as ciprofloxacin (Bandara et al., 2015).
  • the limitation of these studies was that they all tested conventional magnetic materials based on ferrite (Fe203), whose magnetic field consists of a remanence of 0.32 T and a low energy range between 2 to 80 KJ nr 3 .
  • High-energy magnetic materials are those whose range exceeds 80 KJ nr 3 , among which samarium cobalt (SmCos) stands out with an energy of 170 KJ nr 3 and a remanence of 0.92 T (Ramanujan, 2009 ).
  • SmCos was shown to have bactericidal activity on pathogens such as Escherichia coli and Staphylococcus aureus from 24 h to 48 h of exposure (Abdel-Kader et al., 2012).
  • pathogens such as Escherichia coli and Staphylococcus aureus from 24 h to 48 h of exposure
  • SmCos included in dental brackets has been shown to have a suppressive effect in vitro on bacteria typical of the oral microbiota and the fungus C. albicans, the latter being the most sensitive to the mentioned material (Staffolani et al., 1991).
  • the use of combinations of 2 antibiotics is widely recommended to avoid the selection of bacteria resistant to these agents (Leekha et al., 2011; Paterson et al., 2016).
  • WO 2018/199579 Discloses an antibacterial copper filter, which uses an antibacterial copper network, which is configured in such a way that the filter itself has an antibacterial and sterilizing function to eradicate a virus, a bacteria and a fungus of the filter, where the antibacterial copper member includes a support frame to maintain a shape and a metal mesh arranged within the frame support, and formed by a copper filament with a purity of 99% or more or a copper alloy with a copper content of 60% or more.
  • Figure 1 SEM images of the morphology, roughness and particle size of the alloys made of Cu-Co-Fe, processed by mechanical grinding
  • Figure 2 Images of the manufactured specimens, where (a) corresponds to the pure copper cylindrical specimen , (b) corresponds to the same specimen, but with a closer approach (50x), where the morphology of the pores is observed; Images (c), (d), (e) and (f) correspond to SEM images with high magnification where the basal and lateral surface of the Cu cylindrical specimen is shown, with the interconnected porosities and the surface junction between the particles of Cu.
  • Figure 3 X-ray diffraction images (DR-x) of the ground Cu-Co-Fe alloys, where the spectra identify the different solid phases formed and the% pp, their lattice parameter, crystalline structure
  • Figure 4 Graphs of magnetism of Cu-Co-Fe alloys.
  • Figure 5 Graph of the pressure drop of a magnetic filter.
  • Figure 6 Design and construction of filter holders.
  • Figure 7 Assembly of the filtering system.
  • Figure 8 Graph on the bacterial count in ATS plates, under use of the prototype at low bacterial load in the waiting room of the Primary Health Center.
  • Figure 9 Graph on the count of bacteria in ATS plates, under use of the prototype at high bacterial load in the waiting room of the Primary Health Center.
  • Figure 10 Graph of the fungal count on Sabouraud agar plates, under use of the prototype, at low fungal load in the waiting room of the Primary Health Center.
  • Figure 11 Graph of the fungal count on Sabouraud agar plates, under use of the prototype, at high fungal load in the waiting room of the Primary Health Center.
  • the present technology corresponds to an air filter made of copper-based magnetic alloys, useful for reducing microorganisms in suspension inside hospital rooms and other closed rooms with a high density of microbial load; in addition to the process of making said filter.
  • this air filter is made up of porous plates of copper-based magnetic alloys, preferably Cu-Co-Fe alloys, where their alloys (Co and Fe) can be found between the ranges 5 - 10% w / w of Co and 5 - 10% w / w Fe.
  • Other magnetic alloys that can be used in porous plates are a Cu-SmCos mixture where the range can vary between 10-15% pp of SmCos.
  • This air filter advantageously causes cellular deterioration and rapid death on different pathogens such as Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aerug inosa, Candida albicans and Kocuria rizophila.
  • Obtaining magnetic copper plates is achieved by reinforcing high purity copper powder with a dispersion of very fine particles of a magnetic nature.
  • the Cu-Co-Fe or Cu-SmCos alloys are processed by powder metallurgy, through a mechanical grinding of a mixture of powders of the elements Cu, Co and Fe, or Cu and SmCos generating powders of the required composite alloy. This technique makes it possible to obtain stable alloys with a homogeneous composition.
  • the air filter manufacturing process comprises the following stages: a. Obtaining magnetic alloys by mechanical grinding: a.1. Preparation of the mixture of powders of the elements Cu, Co and Fe: the Fe and Co powders must be weighed in the fixed proportion, between 5 - 10% w / w for a maximum content of 15% of these alloys and copper in powder between 90 - 95% w / w. This handling of powders must be carried out inside an oxygen-free chamber, which must be connected to an air extractor pump and argon gas with 99.9% purity, in order to extract air and inject pure argon into the air. minus 3 cycles of air-argon dump and 3 cycles of argon fill, to eliminate the likelihood of contamination and surface oxidation of powders.
  • the Cu-Fe-Co powders must be introduced into a cylindrical plastic container with ceramic balls, also under argon, the cylinder must be hermetically closed and placed in a bar mill at low speed (20 - 30 rpm ) for 15 to 30 min (depending on the volume of powder). This makes it possible to homogenize the mixture of powders and thus reduce the phenomena of chemical segregation of elements in the final consolidated product. a.2.
  • Dispersants act as a controlling agent of the process to minimize agglomeration of the particles during grinding and thus reduce the cold welding between particles that occurs due to excessive plastic deformation of the ductile particles during the impacts of these between balls and balls with the wall. . These dispersants also act as a lubricant and coolant, and are easily removed in the first phase of sintering.
  • the jars are removed from the mill containing the balls and the powdered alloy, which are introduced into an oxygen-free chamber, where a vacuum is made and pure argon is applied, repeating the filling / filling cycles. drained to avoid contamination of the oxygen-alloyed mixture, once opened.
  • the powdered alloy content can be stored under vacuum in larger containers for long periods until it is used in the fabrication of the porous plates.
  • the consolidation of the alloys is carried out through hot compaction under an inert atmosphere of pure argon, preferably in a hot press.
  • a graphite matrix is used, where the internal cavity of this and the punch that compacts the magnetic alloy powder have the final diameter of the porous plates.
  • the copper powders and the corresponding magnetic alloy must be mixed (generating a Cu base compound) with a preferred type spacer agent, NaCl (30 - 50% w / w) with a particle size between 100 to 400 microns. according to the density and size of the required pores, to ensure the efficient passage of air through the filter plate.
  • the mixing of the powders is carried out for 10-20 min, to ensure homogeneity of mixing.
  • porous plates with interconnected and distorted porosity allow the air to circulate through all the irregular and interconnected caverns upon entering, extending the air path in a sufficient time for the bacteria to be in contact with surfaces for a longer period.
  • made of magnetic copper By contrast, a porosity of tubular morphology straight and smooth surface, it will not make it easier for bacteria to get trapped on that surface.
  • the efficiency of the air filtering system considerably reduces the death time of bacteria, higher than 50% on average compared to pure copper, which will depend on the type of bacteria.
  • the remaining magnetism of the magnetic copper causes cellular deterioration and rapid death on different pathogens, such as Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa and Candida albicans.
  • the porous plates advantageously facilitate the removal and cleaning of the air filter, which is only limited to normal washing and drying, unlike commercial filters that need to be replaced every four months.
  • Example 1 Air filter manufacturing process.
  • the powders of the elements Co, Fe and Cu were added (according to the% by weight of the alloy to be developed), which were previously weighed in a precision balance (3 digits after comma) arranged into an internal chamber of the so-called glove box, which was connected to an air extractor pump and argon gas with 99.9% purity, to extract the air and inject pure argon during 3 cycles of emptying air- argon and 3 argon fill cycles.
  • 13 martensitic stainless steel balls of 20 mm diameter were added per 500 cc grinding container / jar and the homogeneous mixture of Cu-10% Fe-5% Co powders (% by weight) from the mill was added.
  • Compaction of porous copper and copper alloy plates the consolidation of the alloys was carried out through hot compaction under an inert atmosphere of pure argon, in a press with a built-in furnace, which could work in vacuum, argon and other atmospheres , known as ⁇ OT PRESS ”or Hot Press.
  • a graphite matrix was used, where the internal cavity of this and the punch that compacted the magnetic alloy powder would be the equivalent to the final diameter of the porous plates.
  • copper and magnetic alloy powders were mixed with 30% w / w NaCl as a spacer agent with a particle size between 100 to 400 microns according to the density and size of the required pores, to ensure efficient passage. of air through the filter plate.
  • This sample holder was introduced in a Bruker D4 Endeavor Diffraction equipment, using Cu-Ka radiation under 40kV and 20 mA in a range of 5 - 90 °.
  • the structural properties were studied at the CENIM in Madrid (Spain) by means of Rietveld refinement, obtaining the crystalline structure, network parameters and% by weight of each solid phase.
  • the DR-x patterns with their respective refinements are presented in Figure 3, where specifically, the spectra correspond to the powdered alloys of: Cu-10% Co with 200 rpm and 30 h of grinding (A); Cu-5% Co-5% Fe 156 rpm and 30 h of milling (B); Cu-10% Co-5% Fe with 250 rpm and 20 h of milling (C); Cu-5% Co-5% Fe 200 rpm with 20 h of milling (D); Cu-5% Co-10% Fe with 200 rpm and 20 h of milling (E); and Cu-15% SmCos with 180 rpm and 10 h of milling (F).
  • the DR-x results of the 6 alloys are summarized in Table 1.
  • alloy B was very heterogeneous and oxidized forming cuprite (CU2O).
  • the best powdered alloys processed were C, D, E and F, where Co and Fe were dissolved in copper in solid solution; and in particular alloy D, evidenced an FeCo magnetic phase, which increased the remaining magnetism.
  • alloys C, D and E were cheaper compared to F (SmCo5) and required only 20 hours of grinding compared to A and B, which required 30 hours.
  • Figure 2 shows the SEM images of the morphology and particle size of the composite alloys processed by mechanical grinding: Cu-5% Co-5% Fe produced under 156 rpm and 30 h of grinding- 500x (A); Cu-5% Co-5% Fe with 156 rpm and 30 h of milling - 500x (B); Cu-10% Co-5% Fe with 250 rpm and 20 h of grinding - 500x (C); Cu-5% Co-5% Fe 250 rpm with 20 h of grinding - 500x (D); Cu-5% Co-10% Fe with 200 rpm and 20 h of grinding - 500x (E); Cu-15% SmCo5 with 180 rpm and 10 h of grinding - 500x (F). It is deduced from these results that the size and morphology of the particles obtained depends on the amount% w / w of alloys (Fe, Co and others), on the time and grinding speed.
  • the magnetic measurement test was performed with a 1 TESLA Vibrating Sample Magnetometer (VSM). This test allowed to evaluate and know the magnetic behavior of the magnetic copper-based alloys. The Hysteresis curve that was obtained for each alloy, and allowed to deduce the Coercive Field and the remanent magnetism, in addition to the saturation magnetism. To know and verify the efficiency of the magnetic alloy, it is important that the remaining magnetism (remains) in the porous plate, is the magnetism that breaks the shell of the bacteria and causes their death.
  • VSM Vibrating Sample Magnetometer
  • Figure 4 shows the results obtained for the magnetic determination carried out on the Cu-10% Co-5% Fe alloys with 250 rpm and 20 h of grinding - 500x (C); Cu-5% Co-5% Fe 200 rpm with 20 h of grinding - 500x (D); and Cu-5% Co-10% Fe with 200 rpm and 20 h of grinding - 500x (E).
  • Table 2 shows the Coercive Field (He) and remanent magnetism (Br) values obtained for each alloy, according to its chemical composition and grinding parameters. The results indicate that all alloys have adequate remanent magnetism to kill bacteria. The alloys E and F exhibited greater remanent magnetism and eliminated bacteria in less time. It should be considered that alloy E and D are more economical to process.
  • Example 3 Evaluation of a prototype for the validation of the air filter.
  • Example 1 To validate the filters developed in Example 1, a prototype was designed, sized and built to eliminate microorganisms present in the air. In particular, it was validated for copper filters with a diameter of 25 mm and a thickness of 5 mm. The system was sized to have an overpressure upstream of the filters of 250 to 300 Pa.
  • a commercial fan was adapted to the restrictions imposed by the bacteria filter, for which a bypass was incorporated in order to determine the properties of the filter to be tested through its pressure drop and the air flow that circulated through the he.
  • This prototype was able to filter a stream of air from 4.22 to 4.77 m 3 / h.
  • the design of the air filtering system was composed of a filter for particles and dust; a fan; then a bacteria filter and finally a bacteria filter air discharge zone. Where the particle and dust filter was located at the fan inlet to protect the magnetic filters from bacteria from the entry of larger particles that could cover them, and thus increase their pressure drop.
  • the pressure drop graphs of each filter which are shown in Figure 5, were considered for the design.
  • the prototype of the magnetic filters was evaluated in a health care facility for the determination of the microbial load (bacteria and fungi) of the air. Specifically, for the collection of samples, the Medical Center for Family Health (CECOSF) Centinela, ses of Talcahuano, B ⁇ o-B ⁇ o Region, Chile was considered. This enclosure has an area of 258 m 2 and is intended for 5,000 users per month, from the nearby area.
  • CECOSF Medical Center for Family Health
  • the air in the waiting room of the health facility was filtered, where the sampling was carried out actively (by impact on the plate), using a MAS-100 NT air sampler (Merck, Germany, no. series: 15986), equipment recommended by the Chilean Public Health Institute for microbiological air sampling.
  • this equipment was placed in the center of the room, on a table at a height of 1 m to simulate the breathing zone and was programmed to collect 250 L of air at a flow of 100 L min 1 (Valenzuela 2011; Cabo Verde et al., 2015).
  • the filtered air impacted on plates containing 20 ml of trypticase-soy agar (culture medium for bacteria) and Sabouraud agar (culture medium for fungi).
  • the prototype magnetized Cu air filter significantly decreased the bacterial count of the air in the waiting room at the health center, both at low bacterial load ( Figure 9) and at high load ( Figure 10).
  • This bactericidal effect coincided with that described in the literature regarding Cu, magnetic materials and their combination.
  • this is the first study in which its effectiveness as an air filter has been proven (Souli et al., 2013; Zeiger et al., 2014; Rózahska et al., 2018; Rub ⁇ n et al., 2018; Zhang et al., 2018).
  • These results strongly suggest that the prototype air filter based on Cu-magnetic alloy is suitable for production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Behavior & Ethology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

Disclosed is an air filter comprising copper-based magnetic alloys, which is useful for reducing microorganisms suspended inside hospital facilities and other enclosed spaces with a high microbial load density. The air filter comprises porous plates of copper-based magnetic alloys of the type Cu-Co-Fe, wherein the alloying agents Co and Fe are present in an amount of 5-10% w/w Co and 5-10% w/w/ Fe, or of the type Cu-SmCo5, wherein the alloying agent SmCo5 is 10-15% w/w. Also disclosed is a production method comprising the steps of: obtaining the magnetic alloys by means of mechanical grinding; compacting the porous plates of copper alloys; and preforming by compaction of the porous plates.

Description

FILTRO DE AIRE DE ALEACIONES MAGNÉTICAS BASE COBRE PARA REDUCIR MICROORGANISMOS EN AIRE CONTAMINADO, Y SU PROCESO DE ELABORACIÓN. AIR FILTER OF COPPER BASED MAGNETIC ALLOYS TO REDUCE MICROORGANISMS IN POLLUTED AIR, AND ITS MANUFACTURING PROCESS.
Sector Técnico Technical Sector
La tecnología está orientada al área medioambiental, más particularmente, corresponde un filtro de aire de aleaciones magnéticas base cobre, útil para reducir microorganismos en suspensión al interior de recintos hospitalarios y otros recintos cerrados con alta densidad de carga microbiana. The technology is oriented to the environmental area, more particularly, it corresponds to an air filter made of copper-based magnetic alloys, useful for reducing microorganisms in suspension inside hospital rooms and other closed rooms with a high density of microbial load.
Técnica Anterior Previous Technique
La contaminación microbiana es uno de los parámetros más importantes de la contaminación del aire al interior de recintos clínicos (Chang et al., 2015). Dichos microorganismos (bacterias y hongos) causan infecciones intrahospitalarias (nosocomiales), enfermedades contraídas por contacto, por vías respiratorias e infecciones durante cirugía (Chang et al., 2015; Stauning et al., 2018). Esto es un riesgo potencial, no sólo para pacientes, sino que también para los trabajadores de la salud (Cabo Verde et al., 2015). Por esto, las enfermedades nosocomiales son una preocupación de salud mundial y, por esa misma razón, es de vital importancia conocer los límites máximos de carga microbiana en un establecimiento de atención clínica (Bhattacharyya et al., 2015). Sin embargo, la Organización Internacional para la estandarización (ISO) no ha establecido rangos de carga microbiana en ambientes hospitalarios, sólo remitiéndose a estandarizar los rangos de microbiota aérea en laboratorios y los procedimientos para la toma de muestras de aire, para su análisis microbiológico (Napoli et al., 2012; Aguiar et al., 2014; Cabo Verde et al., 2015). Microbial contamination is one of the most important parameters of air pollution inside clinical settings (Chang et al., 2015). These microorganisms (bacteria and fungi) cause intra-hospital (nosocomial) infections, diseases contracted by contact, respiratory tract and infections during surgery (Chang et al., 2015; Stauning et al., 2018). This is a potential risk, not only for patients, but also for health workers (Cabo Verde et al., 2015). For this reason, nosocomial diseases are a global health concern and, for that same reason, it is vitally important to know the maximum limits of microbial load in a clinical care setting (Bhattacharyya et al., 2015). However, the International Organization for Standardization (ISO) has not established ranges of microbial load in hospital environments, only referring to standardizing the ranges of airborne microbiota in laboratories and the procedures for taking air samples for their microbiological analysis ( Napoli et al., 2012; Aguiar et al., 2014; Cabo Verde et al., 2015).
Numerosos estudios acerca de la carga de la microbiota aérea tanto de ambientes clínicos y de otros tipos, han surgido recientemente. Muchos de estos hacen referencia a los rangos de microbiota aérea permitidos por los organismos de salud de los respectivos países (Chang et al., 2015; Cabo Verde et al., 2015; Fujiyoshi et al., 2017; Svajlenka et al., 2018; Stauning et al., 2018). La mayoría trata sobre hongos, habiendo escasa información acerca de bacterias (Fujiyoshi et al., 2017). Entre las mencionadas normas, destacan la norma británica de la Sociedad de Infección de la Salud ( Healthcare Infection Society, HIS) y la italiana del Instituto Italiano para la Seguridad Ocupacional y Prevención (ISPESL), que coinciden en un máximo de 35 UFC nr3 para espacios vacíos y de 180 UFC nr3 para espacios ocupados; la norma portuguesa del Ministerio del Ambiente portugués establece un máximo de 350 UFC nr3, y la recomendación taiwanesa de la Administración de Protección del Medioambiente (EPA) estima un máximo de 1000 UFC nr3 (Napoli et al., 2012; Chang et al., 2015; Stauning et al., 2018; Cabo Verde et al., 2015). En Chile, no existen estudios acabados al respecto, por lo que determinar cuantitativamente la cantidad de bacterias y hongos, y disminuirlos en el aire de centros clínicos es primordial. Hasta ahora, los sistemas purificadores de aire de alta eficiencia (HEPA) han representado el estándar de la industria en la filtración de partículas en el aire al interior de los centros clínicos. Estos dispositivos retienen el 99,7% de las partículas de tamaño mayor a 0,3 mhi, lo que es efectivo para hongos como C. albicans, con un diámetro de 5 mhi para levaduras y 2 mhi para hifas, y para bacterias patógenas como S. aureus cuyo diámetro es de 0,5 a 1,5 mhi, E. coli , 0,5 mGh, A. baumanii, 0,9 a 1,6 mhi, P. aeruginosa, 0,5 a 1 mhi , Kocuria rizophila, 1 a 1,5 mhi (Kovács et al., 1999; Dworkin et al., 2006; Day et al., 2017; Lagree et al., 2018). Sin embargo, los HEPA son difíciles de limpiar y mantener cuando ya se ha acumulado material particulado en ellos (Day et al., 2017). Además, el tamaño de poro no es regular y depende fuertemente de la disposición y tamaño de las fibras del polímero del que están constituidos (Balgis et al., 2017). Estos factores hacen que los sistemas HEPA sean más un problema que una solución a largo plazo. Dado esto, el diseño de un filtro de aire con un tamaño de poro regular y con un material de acción bactericida es de vital importancia. Numerous studies on the burden of the aerial microbiota from both clinical and other environments have emerged recently. Many of these refer to the aerial microbiota ranges allowed by the health organizations of the respective countries (Chang et al., 2015; Cabo Verde et al., 2015; Fujiyoshi et al., 2017; Svajlenka et al., 2018 ; Stauning et al., 2018). Most are about fungi, with little information about bacteria (Fujiyoshi et al., 2017). Among the aforementioned standards, the British standard of the Healthcare Infection Society (HIS) and the Italian standard of the Italian Institute for Occupational Safety and Prevention (ISPESL) stand out, which coincide in a maximum of 35 CFU nr 3 for empty spaces and 180 CFU nr 3 for occupied spaces; the Portuguese regulation of the Portuguese Ministry of the Environment establishes a maximum of 350 CFU nr 3 , and the Taiwanese recommendation of the Environmental Protection Administration (EPA) estimates a maximum of 1000 CFU nr 3 (Napoli et al., 2012; Chang et al. ., 2015; Stauning et al., 2018; Cape Verde et al., 2015). In Chile, there are no finished studies in this regard, so quantitatively determining the amount of bacteria and fungi, and reducing them in the air of clinical centers is essential. Until now, High Efficiency Air Purifying (HEPA) systems have represented the industry standard for filtering airborne particulate matter within clinical settings. These devices retain 99.7% of the particles larger than 0.3 mhi, which is effective for fungi such as C. albicans, with a diameter of 5 mhi for yeast and 2 mhi for hyphae, and for pathogenic bacteria such as S. aureus whose diameter is 0.5 to 1.5 mhi, E. coli, 0.5 mGh, A. baumanii, 0.9 to 1.6 mhi, P. aeruginosa, 0.5 to 1 mhi, Kocuria rizophila, 1 to 1.5 mhi (Kovács et al., 1999; Dworkin et al., 2006; Day et al., 2017; Lagree et al., 2018). However, HEPAs are difficult to clean and maintain when particulate matter has already accumulated in them (Day et al., 2017). In addition, the pore size is not regular and strongly depends on the disposition and size of the fibers of the polymer from which they are made (Balgis et al., 2017). These factors make HEPA systems more of a problem than a long-term solution. Given this, the design of an air filter with a regular pore size and a material with bactericidal action is of vital importance.
Por otra parte, las propiedades bactericidas de numerosos materiales han sido probadas a lo largo de la historia. El cobre (Cu) se ha posicionado como uno de los metales fundamentales a nivel mundial y está presente en la vida cotidiana del hombre en todos los ámbitos. La tecnología derivada del Cu es muy amplia, debido a la combinación de sus propiedades anticorrosivas, conductividad eléctrica y térmica. Actualmente, además de las excelentes propiedades anticorrosivas, conductividad eléctrica y térmica, el Cu posee propiedades antimicrobianas que no poseen otros metales, que han suscitado un interés creciente de exacerbar su aplicabilidad en todo el mundo. On the other hand, the bactericidal properties of numerous materials have been proven throughout history. Copper (Cu) has positioned itself as one of the fundamental metals worldwide and is present in the daily life of man in all areas. Cu-derived technology is very broad, due to the combination of its anticorrosive properties, electrical and thermal conductivity. Currently, in addition to its excellent anticorrosive properties, electrical and thermal conductivity, Cu possesses antimicrobial properties that other metals do not possess, which have generated increasing interest in exacerbating its applicability throughout the world.
En 2008, la U.S. Environmental Protection Agency (EPA) aprobó el registro de 275 aleaciones base Cu, reconociendo su propiedad antibacteriana, para su uso en superficies de contacto sólidas con aplicación en salud, posicionando al cobre como el primer metal que cuenta con la certificación de esta propiedad. Lo destacable, según los estudios clínicos realizados en Estados Unidos y Chile, es que la acción del cobre es continua, permanente y altamente efectiva como metal antimicrobiano, capaz de eliminar el 99,99% de las bacterias en un corto período de tiempo. Lo anterior se atribuye a que el cobre es un inhibidor natural del crecimiento de bacterias, donde los microbios desaparecen o inhiben al entrar en contacto con este metal. In 2008, the U.S. Environmental Protection Agency (EPA) approved the registration of 275 Cu-base alloys, recognizing their antibacterial property, for use on solid contact surfaces with health applications, positioning copper as the first metal to be certified for this property. What is remarkable, according to clinical studies carried out in the United States and Chile, is that the action of copper is continuous, permanent and highly effective as an antimicrobial metal, capable of eliminating 99.99% of bacteria in a short period of time. This is attributed to the fact that copper is a natural inhibitor of the growth of bacteria, where microbes disappear or inhibit when they come into contact with this metal.
El Cu es ampliamente usado, principalmente, en el recubrimiento de superficies (Brenner et al., 2003; Marra et al., 011). Dicho metal ha sido investigado sobre bacterias patógenas transmitidas por alimentos, como Salmonella typhimurium y Listeria monocytogenes ; sobre Salmonella entérica, Campylobacter jejuni, E. coli 0157:H7, S. aureus resistente a meticilina (SARM) y, recientemente, se ha informado de la actividad del cobre sobre microorganismos aislados de mastitis bovina, como E. coli, Staphylococcus coagulasa negativa (CNS), S. Uberis y S. aureus (Mittal et al., 2002; Tang et al., 2009; Miaskiewicz-Peska et al., 2011; Salgado et al., 2013; Reyes et al., 2016). En otro estudio, el Cu redujo en 83% las bacterias depositadas en componentes fabricados en base a dicho metal ( World health organization, WHO, 2009). Así, se ha determinado que el Cu reduce la tasa de infección en 58% en salas de pacientes con componentes elaborados de cobre, en comparación a salas con componentes de materiales plásticos y de acero inoxidable, entre otros. Hasta ahora, se ha informado que la acción bactericida del Cu ocurre entre 15 min hasta 60 min de contacto (Bailo et al., 2016; Galani et al., 2016; González et al., 2017). También se ha registrado el efecto bactericida del Cu sobre biopelículas de bacterias patógenas hasta con 6 h de exposición (Singh et al., 2017). Además, SARM, uno de los principales patógenos de las infecciones asociadas a atención de salud (IAAS), desaparece en menos de 1h en una superficie de cobre puro, mientras que en superficies de acero inoxidable SARM permanece viable por sobre 72 h (Salgado et al., 2013). Los estudios expuestos anteriormente, junto a variadas aplicaciones antimicrobianas como tejidos auto-desinfectantes, en guantes de látex, colchones, ropa de cama y pinturas con contenido en cobre para superficies en el ámbito hospitalario y superficies de catéteres, demuestran que el cobre es un efectivo material bactericida. Cu is widely used, mainly in surface coating (Brenner et al., 2003; Marra et al., 011). This metal has been investigated on food-borne pathogenic bacteria, such as Salmonella typhimurium and Listeria monocytogenes; on Salmonella enteric, Campylobacter jejuni, E. coli 0157: H7, methicillin-resistant S. aureus (MRSA) and, recently, copper activity has been reported on microorganisms isolated from bovine mastitis, such as E. coli, coagulase negative Staphylococcus (CNS), S. Uberis and S. aureus (Mittal et al., 2002; Tang et al., 2009; Miaskiewicz-Peska et al., 2011; Salgado et al., 2013; Reyes et al., 2016). In another study, Cu reduced by 83% the bacteria deposited in components made from this metal (World health organization, WHO, 2009). Thus, it has been determined that Cu reduces the infection rate by 58% in patient rooms with components made of copper, compared to rooms with components made of plastic materials and stainless steel, among others. Until now, it has been reported that the bactericidal action of Cu occurs between 15 min and 60 min of contact (Bailo et al., 2016; Galani et al., 2016; González et al., 2017). The bactericidal effect of Cu on biofilms of pathogenic bacteria has also been recorded with up to 6 h of exposure (Singh et al., 2017). In addition, MRSA, one of the main pathogens of health care associated infections (HAI), disappears in less than 1 hour on a pure copper surface, while on stainless steel surfaces MRSA remains viable for over 72 h (Salgado et al., 2013). The studies exposed above, together with various antimicrobial applications such as self-disinfectant fabrics, in latex gloves, mattresses, bedding and paints with copper content for surfaces in the hospital environment and catheter surfaces, show that copper is an effective bactericidal material.
Por otro lado, la actividad bactericida de materiales magnéticos también es conocida (Staffolani et al., 1991; Háfeli et al., 1997). Sin embargo, escasos estudios se han realizado al respecto y los avances alcanzados son recientes. Así, se ha encontrado que el campo magnético disminuyó el crecimiento de bacterias propias de la placa bacteriana de cavidad oral, como Streptococcus parasanguinis, Staphylococcus epidermidis, Rhodococcus equi y el hongo C. albicans, dándose en esta última especie el efecto más importante (Brkovic et al., 2014). También, se ha informado que biopelículas de P. aeruginosa son suprimidas significativamente por campos magnéticos, los que, además, potencian el efecto de antibióticos como ciprofloxacina (Bandara et al., 2015). La limitación de estos estudios fue que todos probaron materiales magnéticos convencionales basados en ferrita (Fe203), cuyo campo magnético consta con una remanencia de 0,32 T y un rango de energía bajo entre 2 a 80 KJ nr3. Los materiales magnéticos de alta energía son aquellos cuyo rango de la misma excede los 80 KJ nr3, entre los que destaca el samario cobalto (SmCos) con una energía de 170 KJ nr3 y una remanencia de 0,92 T (Ramanujan, 2009).On the other hand, the bactericidal activity of magnetic materials is also known (Staffolani et al., 1991; Háfeli et al., 1997). However, few studies have been carried out in this regard and the advances made are recent. Thus, it has been found that the magnetic field decreased the growth of bacteria typical of the oral cavity bacterial plaque, such as Streptococcus parasanguinis, Staphylococcus epidermidis, Rhodococcus equi and the fungus C. albicans, with the most important effect in the latter species (Brkovic et al., 2014). Also, it has been reported that biofilms of P. aeruginosa are significantly suppressed by magnetic fields, which, in addition, enhance the effect of antibiotics such as ciprofloxacin (Bandara et al., 2015). The limitation of these studies was that they all tested conventional magnetic materials based on ferrite (Fe203), whose magnetic field consists of a remanence of 0.32 T and a low energy range between 2 to 80 KJ nr 3 . High-energy magnetic materials are those whose range exceeds 80 KJ nr 3 , among which samarium cobalt (SmCos) stands out with an energy of 170 KJ nr 3 and a remanence of 0.92 T (Ramanujan, 2009 ).
Estudios han demostrado que los campos magnéticos sobre las bacterias afectan su deterioro celular. Particularmente, se demostró que el SmCos, posee una actividad bactericida sobre patógenos como Escherichia coli y Staphylococcus aureus desde 24 h hasta 48 h de exposición (Abdel-Kader et al., 2012). El efecto supresor de microorganismos del SmCos ha sido escasamente investigado, siendo probado principalmente en la elaboración de implantes ortodónticos. Así, el SmCos incluido en brackets dentales, ha demostrado tener un efecto supresor in vitro sobre bacterias propias de la microbiota oral y el hongo C. albicans, siendo este último el más sensible al mencionado material (Staffolani et al., 1991). Además, el uso de combinaciones de 2 antibióticos es ampliamente recomendado para evitar la selección de bacterias resistentes a dichos agentes (Leekha et al., 2011; Paterson et al., 2016). Studies have shown that magnetic fields on bacteria affect their cellular deterioration. In particular, SmCos was shown to have bactericidal activity on pathogens such as Escherichia coli and Staphylococcus aureus from 24 h to 48 h of exposure (Abdel-Kader et al., 2012). The suppressive effect of microorganisms of SmCos has been little investigated, being mainly tested in the manufacture of orthodontic implants. Thus, SmCos included in dental brackets has been shown to have a suppressive effect in vitro on bacteria typical of the oral microbiota and the fungus C. albicans, the latter being the most sensitive to the mentioned material (Staffolani et al., 1991). In addition, the use of combinations of 2 antibiotics is widely recommended to avoid the selection of bacteria resistant to these agents (Leekha et al., 2011; Paterson et al., 2016).
A continuación, se detallan algunas patentes vinculas con la presente tecnología: Some patents related to this technology are detailed below:
1.- Solicitud WO 2018/199579 (Je Dong Hyun et al.) divulga un filtro de cobre antibacteriano, que usa una red de cobre antibacterial, el cual está configurado de tal manera que el propio filtro tiene una función antibacteriana y esterilizante para erradicar un virus, una bacteria y un hongo del filtro, en donde el miembro antibacteriano de cobre incluye un marco de soporte para mantener una forma y una malla metálica dispuesta dentro del soporte marco, y formada por un filamento de cobre con una pureza del 99% o más o una aleación de cobre con un contenido de cobre del 60% o más. 1.- Application WO 2018/199579 (Je Dong Hyun et al.) Discloses an antibacterial copper filter, which uses an antibacterial copper network, which is configured in such a way that the filter itself has an antibacterial and sterilizing function to eradicate a virus, a bacteria and a fungus of the filter, where the antibacterial copper member includes a support frame to maintain a shape and a metal mesh arranged within the frame support, and formed by a copper filament with a purity of 99% or more or a copper alloy with a copper content of 60% or more.
2.- Solicitud US 2018/0085697 (Piry et al.) menciona un medio de filtro con acción antimicrobiana y un filtro de aire de cabina para filtrar aire en el interior de vehículos, que tiene al menos una primera capa de filtro donde se pueden retener los contaminantes, y una segunda capa adyacente a la primera capa que contiene agentes antimicrobianos, entre ellos metales antimicrobianos de cobre o compuestos de cobre. 2.- Application US 2018/0085697 (Piry et al.) Mentions a filter medium with antimicrobial action and a cabin air filter to filter air inside vehicles, which has at least a first filter layer where they can be retain contaminants, and a second layer adjacent to the first layer containing antimicrobial agents, including antimicrobial copper metals or copper compounds.
3.- Patente US 9,561,458 B2 (Baek et al.) resguarda un filtro antibacteriano que comprende un compuesto de azufre a base de cobre. El filtro se procesa fácilmente, no tiene toxicidad y tiene excelente actividad anti bacteriana y desodorizante. Este filtro comprende un portador poroso que incluye microporos formados en el mismo y permite así que un fluido pase a través de los poros. 3.- US Patent 9,561,458 B2 (Baek et al.) Protects an antibacterial filter that comprises a copper-based sulfur compound. The filter is easily processed, non-toxic, and has excellent antibacterial and deodorizing activity. This filter comprises a porous carrier that includes micropores formed therein and thus allows a fluid to pass through the pores.
4 - Solicitud US 2012/0285459 (Sata et al.) resguarda un dispositivo de limpieza y desinfección que incluye un filtro de lámina de cobre del tipo lámina fotocatalítica permeable al aire. 4 - Application US 2012/0285459 (Sata et al.) Protects a cleaning and disinfection device that includes a copper foil filter of the air-permeable photocatalytic foil type.
5.- Patente US 5,840,245 (Coombs et al.) protege productos para el filtrado de aire que contiene un agente antimicrobiano, que reduce la cantidad de microorganismos presentes en el aire contaminado cuando éste se hace pasar a través de un filtro de aire. Donde el producto es fibra de vidrio poroso al aire y donde se encuentra un compuesto antimicrobiano orgánico de plata, cobre, oro o zinc. 5.- US Patent 5,840,245 (Coombs et al.) Protects air filtering products that contain an antimicrobial agent, which reduces the amount of microorganisms present in polluted air when it is passed through an air filter. Where the product is air porous fiberglass and where an organic silver, copper, gold or zinc antimicrobial compound is found.
6.- Solicitudes WO 2019/173849 (Hong et al.) y US 2019/021704 (Shastry et al.) divulgan la fabricación exitosa de espumas de aleación porosa de cobre y níquel, con propiedades potencialmente mejoradas y con una aplicabilidad más amplia respecto de las espumas metálicas puras. El procesamiento de las espumas se logra a través de la reducción de polvo de óxidos o procesos de sinterización del polvo de solución sólida Cu-Ni, con estructuras de poro abierto y variada en tamaño y morfología. Las espumas de estas soluciones sólidas con diferentes % Cu-Ni, ofrecen una resistencia a la corrosión superior respecto de espumas de Cu o Ni puro. 7.- Solicitud CN109778155 (Li Chanjuan) describe un método para preparar espuma de cobre mediante electrodeposición en cuatro etapas, empleando para ello estructura de espuma de poliuretano que se introduce en una solución química de cobre con agentes complejantes seguido de un estabilizador. Luego se realiza la galvanoplastia de cobre, donde el material de espuma se introduce en una solución de sulfato de cobre y luego se electrifica. Finalmente, se realiza la sinterización y reducción de la espuma. 6.- Applications WO 2019/173849 (Hong et al.) And US 2019/021704 (Shastry et al.) Disclose the successful manufacture of porous copper-nickel alloy foams, with potentially improved properties and with a broader applicability regarding of pure metallic foams. The processing of the foams is achieved through the reduction of oxide dust or sintering processes of the Cu-Ni solid solution powder, with open pore structures and varied in size and morphology. The foams of these solid solutions with different% Cu-Ni offer superior corrosion resistance compared to pure Cu or Ni foams. 7.- Application CN109778155 (Li Chanjuan) describes a method to prepare copper foam by electrodeposition in four stages, using a polyurethane foam structure that is introduced into a chemical solution of copper with complexing agents followed by a stabilizer. Then copper plating is done, where the foam material is dipped into a copper sulfate solution and then electrified. Finally, the sintering and reduction of the foam is carried out.
En base a estos antecedentes aún persiste la necesidad de desarrollar nuevas alternativas para el filtrado de aire en lugares semi-cerrados. Based on these antecedents, there is still a need to develop new alternatives for air filtering in semi-closed places.
Breve descripción de las figuras Brief description of the figures
Figura 1: Imágenes SEM de la morfología, rugosidad y tamaño de partículas de las aleaciones compuestas de Cu-Co-Fe, procesadas por molienda mecánica Figura 2: Imágenes de las probetas elaboradas, donde (a) corresponde a la probeta cilindrica de cobre puro, (b) corresponde a la misma probeta, pero con mayor acercamiento (50x), donde se observa la morfología de los poros; imágenes (c), (d), (e) y (f) corresponden a imágenes SEM con alta magnificación donde se muestra la superficie basal y lateral de la probeta cilindrica de Cu, con las porosidades interconectadas y la unión superficial entre las partículas de Cu. Figure 1: SEM images of the morphology, roughness and particle size of the alloys made of Cu-Co-Fe, processed by mechanical grinding Figure 2: Images of the manufactured specimens, where (a) corresponds to the pure copper cylindrical specimen , (b) corresponds to the same specimen, but with a closer approach (50x), where the morphology of the pores is observed; Images (c), (d), (e) and (f) correspond to SEM images with high magnification where the basal and lateral surface of the Cu cylindrical specimen is shown, with the interconnected porosities and the surface junction between the particles of Cu.
Figura 3: Imágenes de difracción de rayos-x (DR-x) de las aleaciones molidas Cu-Co-Fe, donde los espectros identifican las diferentes fases sólidas formadas y los % pp, su parámetro de red, estructura cristalina Figura 4: Gráficos de magnetismo de las aleaciones Cu-Co-Fe. Figure 3: X-ray diffraction images (DR-x) of the ground Cu-Co-Fe alloys, where the spectra identify the different solid phases formed and the% pp, their lattice parameter, crystalline structure Figure 4: Graphs of magnetism of Cu-Co-Fe alloys.
Figura 5: Gráfica sobre la caída de presión de un filtro magnético. Figure 5: Graph of the pressure drop of a magnetic filter.
Figura 6: Diseño y construcción de portafiltros. Figure 6: Design and construction of filter holders.
Figura 7: Ensamble del sistema de filtrado. Figure 7: Assembly of the filtering system.
Figura 8: Gráfica sobre el recuento de bacterias en placas de ATS, bajo uso del prototipo a baja carga bacteriana en la sala de espera del Centro de Salud Primaria. Figure 8: Graph on the bacterial count in ATS plates, under use of the prototype at low bacterial load in the waiting room of the Primary Health Center.
Figura 9: Gráfica sobre el recuento de bacterias en placas de ATS, bajo uso del prototipo a alta carga bacteriana en la sala de espera del Centro de Salud Primaria. Figure 9: Graph on the count of bacteria in ATS plates, under use of the prototype at high bacterial load in the waiting room of the Primary Health Center.
Figura 10: Gráfica sobre el recuento de hongos en placas de agar Sabouraud, bajo uso del prototipo, a baja carga fúngica en la sala de espera del Centro de Salud Primaria. Figure 10: Graph of the fungal count on Sabouraud agar plates, under use of the prototype, at low fungal load in the waiting room of the Primary Health Center.
Figura 11: Gráfica sobre el recuento de hongos en placas de agar Sabouraud, bajo uso del prototipo, a alta carga fúngica en la sala de espera del Centro de Salud Primaria. Figure 11: Graph of the fungal count on Sabouraud agar plates, under use of the prototype, at high fungal load in the waiting room of the Primary Health Center.
Divulgación de la Invención Disclosure of the Invention
La presente tecnología corresponde a un filtro de aire de aleaciones magnéticas base cobre, útil para reducir microorganismos en suspensión al interior de recintos hospitalarios y otros recintos cerrados con alta densidad de carga microbiana; además del proceso de elaboración de dicho filtro. Más particularmente, este filtro de aire se compone de placas porosas de aleaciones magnéticas de base cobre, siendo preferentemente aleaciones de Cu-Co-Fe, donde sus aleantes (Co y Fe) pueden encontrarse entre los rangos 5 - 10% p/p de Co y 5 - 10% p/p Fe. Otras aleaciones magnéticas factibles de utilizar en las placas porosas son una mezcla Cu-SmCos donde el rango puede variar entre 10-15%pp de SmCos. Sin embargo, debe tenerse en cuenta que el valor comercial del SmCo5 es muy superior al de Fe y Co y, por tanto, encarece el costo de las placas porosas. Este filtro de aire ventajosamente provoca el deterioro celular y mortandad rápida sobre diferentes patógenos del tipo Escherichia coli , Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aerug inosa, Candida albicans y Kocuria rizophila. The present technology corresponds to an air filter made of copper-based magnetic alloys, useful for reducing microorganisms in suspension inside hospital rooms and other closed rooms with a high density of microbial load; in addition to the process of making said filter. Plus In particular, this air filter is made up of porous plates of copper-based magnetic alloys, preferably Cu-Co-Fe alloys, where their alloys (Co and Fe) can be found between the ranges 5 - 10% w / w of Co and 5 - 10% w / w Fe. Other magnetic alloys that can be used in porous plates are a Cu-SmCos mixture where the range can vary between 10-15% pp of SmCos. However, it must be taken into account that the commercial value of SmCo5 is much higher than that of Fe and Co and, therefore, increases the cost of porous plates. This air filter advantageously causes cellular deterioration and rapid death on different pathogens such as Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aerug inosa, Candida albicans and Kocuria rizophila.
La obtención de placas de cobre magnético se logra, reforzando polvo de cobre de alta pureza, con una dispersión de partículas muy finas de naturaleza magnética. Donde las aleaciones Cu-Co-Fe o Cu-SmCos son procesadas mediante pulvimetalurgia, a través de una molienda mecánica de mezcla de polvos de los elementos Cu, Co y Fe, o Cu y SmCos generando polvos de la aleación compuesta requerida. Esta técnica permite obtener aleaciones estables con una composición homogénea. Obtaining magnetic copper plates is achieved by reinforcing high purity copper powder with a dispersion of very fine particles of a magnetic nature. Where the Cu-Co-Fe or Cu-SmCos alloys are processed by powder metallurgy, through a mechanical grinding of a mixture of powders of the elements Cu, Co and Fe, or Cu and SmCos generating powders of the required composite alloy. This technique makes it possible to obtain stable alloys with a homogeneous composition.
Específicamente, el proceso de elaboración del filtro de aire comprende las siguientes etapas: a. Obtención de las aleaciones magnéticas mediante molienda mecánica: a.1. Preparación de la mezcla de polvos de los elementos Cu, Co y Fe: se deben pesar los polvos de Fe y Co en la proporción fijada, entre 5 - 10%p/p para un contenido máximo de 15% de estos aleantes y cobre en polvo entre 90 - 95% p/p. Esta manipulación de polvos se debe realizar al interior de una cámara libre de oxígeno, la cual debe estar conectada a una bomba extractora de aire y a gas de argón con 99,9% de pureza, de manera de extraer aire e inyectar argón puro en al menos 3 ciclos de vaciado aire-argón y 3 ciclos de llenado de argón, para eliminar la probabilidad de contaminación y oxidación superficial de los polvos. A continuación, los polvos de Cu-Fe-Co se deben introducir en un contenedor cilindrico de plástico con bolas de cerámicas, también bajo argón, se debe cerrar herméticamente el cilindro y ubicarlo en un molino de barras a baja velocidad (20 - 30 rpm) durante 15 a 30 min (dependiendo del volumen de polvo). Lo anterior permite homogeneizar la mezcla de polvos y reducir así fenómenos de segregación química de elementos en el producto final consolidado. a.2. Proceso aleado mecánico: en un molino planetario compuesto por jarros de acero inoxidable martensítico de al menos 500cc, se deben introducir bolas de 20 mm de diámetro de acero inoxidable martensítico en cada jarro, la mezcla de polvo homogeneizada y un agente dispersante del tipo preferente etilenglicol o copolímero de fósforo y ácido carboxílico (PCA) (1 - 5%vol.), que se dispersa en gotas sobre las bolas y la mezcla de polvo. La cantidad de gotas añadidas es acorde al volumen de polvos Cu-Co-Fe que se mezclan (por cada 50 g de polvo se requieren 3%vol. de gotas). Este molino debe operar a una velocidad entre 200 - 250 rpm durante 5 - 20 h de molienda efectiva, con ciclos de detención y operación, cambiando sentido de giro y con una razón de carga entre masa bolas/masa polvo igual a 10/1 o 20/1. Los dispersantes actúan como agente controlador del proceso para minimizar la aglomeración de las partículas durante la molienda y reducir así la soldadura en frío entre partículas que se produce por excesiva deformación plástica de las partículas dúctiles durante los impactos de éstas entre bolas y bolas con la pared. Estos dispersantes, además, actúan como lubricante y refrigerante, y son removidos fácilmente en la primera fase de la sinterización. Una vez completada la molienda, se retiran los jarros del molino conteniendo las bolas y la aleación en polvo, los que se introducen al interior de una cámara libre de oxígeno, donde se hace vacío y se aplica argón puro, repitiendo los ciclos de llenado/vaciado para evitar la contaminación de la mezcla aleada por oxígeno, una vez abiertos. El contenido de aleación en polvo se puede almacenar en vacío en contenedores mayores, durante períodos largos hasta su utilización en la fabricación de las placas porosas. b. Compactación de las placas porosas de aleaciones de cobre: Specifically, the air filter manufacturing process comprises the following stages: a. Obtaining magnetic alloys by mechanical grinding: a.1. Preparation of the mixture of powders of the elements Cu, Co and Fe: the Fe and Co powders must be weighed in the fixed proportion, between 5 - 10% w / w for a maximum content of 15% of these alloys and copper in powder between 90 - 95% w / w. This handling of powders must be carried out inside an oxygen-free chamber, which must be connected to an air extractor pump and argon gas with 99.9% purity, in order to extract air and inject pure argon into the air. minus 3 cycles of air-argon dump and 3 cycles of argon fill, to eliminate the likelihood of contamination and surface oxidation of powders. Next, the Cu-Fe-Co powders must be introduced into a cylindrical plastic container with ceramic balls, also under argon, the cylinder must be hermetically closed and placed in a bar mill at low speed (20 - 30 rpm ) for 15 to 30 min (depending on the volume of powder). This makes it possible to homogenize the mixture of powders and thus reduce the phenomena of chemical segregation of elements in the final consolidated product. a.2. Mechanical alloying process: in a planetary mill composed of martensitic stainless steel jugs of at least 500cc, balls of 20 mm diameter of martensitic stainless steel must be introduced in each jug, the homogenized powder mixture and a dispersing agent of the preferred type ethylene glycol or copolymer of phosphorus and carboxylic acid (PCA) (1-5% vol.), which is dispersed in drops on the balls and the powder mixture. The amount of drops added is according to the volume of Cu-Co-Fe powders that are mixed (for every 50 g of powder, 3% vol. Of drops are required). This mill must operate at a speed between 200 - 250 rpm for 5 - 20 h of grinding effective, with stopping and operating cycles, changing direction of rotation and with a load ratio between ball mass / powder mass equal to 10/1 or 20/1. Dispersants act as a controlling agent of the process to minimize agglomeration of the particles during grinding and thus reduce the cold welding between particles that occurs due to excessive plastic deformation of the ductile particles during the impacts of these between balls and balls with the wall. . These dispersants also act as a lubricant and coolant, and are easily removed in the first phase of sintering. Once the grinding is completed, the jars are removed from the mill containing the balls and the powdered alloy, which are introduced into an oxygen-free chamber, where a vacuum is made and pure argon is applied, repeating the filling / filling cycles. drained to avoid contamination of the oxygen-alloyed mixture, once opened. The powdered alloy content can be stored under vacuum in larger containers for long periods until it is used in the fabrication of the porous plates. b. Compaction of porous copper alloy plates:
La consolidación de las aleaciones se realiza a través de la compactación en caliente bajo atmósfera inerte de argón puro, preferentemente, en una prensa caliente. Se utiliza una matriz de grafito, donde la cavidad interna de ésta y el punzón que compacta el polvo de aleación magnética poseen el diámetro final de las placas porosas. Para ello, se deben mezclar los polvos de cobre y de la aleación magnética correspondiente (generando un compuesto base Cu) con un agente espaciador tipo preferente, NaCI (30 - 50% p/p) con un tamaño de partícula entre 100 a 400 micrones acorde a la densidad y tamaño de los poros requeridos, para asegurar el paso eficiente del aire a través de la placa-filtro. El mezclado de los polvos se realiza durante 10 - 20 min, para asegurar la homogeneidad de mezclado. Se adiciona proporcionalmente un 1% en peso de aglutinante (etanol) en forma de gotas a la mezcla de polvo y, a continuación, esta mezcla se debe verter en una matriz de grafito de prensa caliente. Las mezclas se pre-consolidan a diferentes temperaturas que varían entre 350 - 450°C, aplicando una carga variable entre 500 - 1000 kg, en atmósfera de argón para prevenir la oxidación del material. Una vez extraídas las muestras del proceso de prensado en caliente, son sometidas a ciclos de remoción del agente espaciador en agua destilada caliente a 60°C, hasta comprobar por diferencia de masa que todo el espaciador fue removido. c. Preforma de compactación de las placas porosas: The consolidation of the alloys is carried out through hot compaction under an inert atmosphere of pure argon, preferably in a hot press. A graphite matrix is used, where the internal cavity of this and the punch that compacts the magnetic alloy powder have the final diameter of the porous plates. To do this, the copper powders and the corresponding magnetic alloy must be mixed (generating a Cu base compound) with a preferred type spacer agent, NaCl (30 - 50% w / w) with a particle size between 100 to 400 microns. according to the density and size of the required pores, to ensure the efficient passage of air through the filter plate. The mixing of the powders is carried out for 10-20 min, to ensure homogeneity of mixing. 1% by weight of binder (ethanol) is proportionally added dropwise to the powder mixture, and then this mixture must be poured into a hot press graphite matrix. The mixtures are pre-consolidated at different temperatures that vary between 350 - 450 ° C, applying a variable load between 500 - 1000 kg, in an argon atmosphere to prevent the oxidation of the material. Once the samples have been extracted from the hot pressing process, they are subjected to cycles of removal of the spacer agent in hot distilled water at 60 ° C, until verifying by mass difference that all the spacer was removed. c. Compaction preform of porous plates:
Se realiza a través de una sinterización convencional a una temperatura inferior o igual a 750°C durante al menos 30 minutos en atmósfera de argón, obteniendo la placa porosa base cobre permeable con resistencia mecánica adecuada para la aplicación propuesta. It is carried out through conventional sintering at a temperature lower than or equal to 750 ° C for at least 30 minutes in an argon atmosphere, obtaining the porous permeable copper base plate with adequate mechanical resistance for the proposed application.
Estas placas porosas con porosidad distorsionada e interconectada, permiten que el aire al ingresar, circule a través de todas las cavernas irregulares e interconectadas, extendiendo el recorrido del aire en un tiempo suficiente para que las bacterias estén por un periodo más extenso en contacto con superficies de cobre magnético. Por contraposición, una porosidad de morfología tubular recta y de superficie lisa, no facilitará que las bacterias queden atrapadas en esa superficie. These porous plates with interconnected and distorted porosity, allow the air to circulate through all the irregular and interconnected caverns upon entering, extending the air path in a sufficient time for the bacteria to be in contact with surfaces for a longer period. made of magnetic copper. By contrast, a porosity of tubular morphology straight and smooth surface, it will not make it easier for bacteria to get trapped on that surface.
Finalmente, la eficiencia del sistema de filtrado del aire, reduce considerablemente el tiempo de mortandad de las bacterias, superior al 50% en promedio respecto a cobre puro, lo que dependerá del tipo de bacteria. El magnetismo remanente del cobre magnético, provoca el deterioro celular y mortandad rápida sobre diferentes patógenos, como Escherichia coli , Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa y Candida albicans. Además, las placas porosas ventajosamente facilitan la extracción y limpieza del filtro de aire, que sólo se limita a un lavado y secado normal, a diferencia de los filtros comerciales que necesitan ser reemplazados cada cuatro meses. Finally, the efficiency of the air filtering system considerably reduces the death time of bacteria, higher than 50% on average compared to pure copper, which will depend on the type of bacteria. The remaining magnetism of the magnetic copper causes cellular deterioration and rapid death on different pathogens, such as Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa and Candida albicans. In addition, the porous plates advantageously facilitate the removal and cleaning of the air filter, which is only limited to normal washing and drying, unlike commercial filters that need to be replaced every four months.
Ejemplos de aplicación Application examples
Ejemplo 1. Proceso de elaboración de filtros de aire. Example 1. Air filter manufacturing process.
Se procedió primeramente a la obtención de placas porosas a partir de 6 aleaciones magnéticas, las que se detallan a continuación, con su respectiva velocidad y tiempo de molienda (parámetros de operación molienda mecánica): We first proceeded to obtain porous plates from 6 magnetic alloys, which are detailed below, with their respective grinding speed and time (mechanical grinding operation parameters):
A. Cu-5%Co-5%Fe con 156 rpm y 30 h de molienda; A. Cu-5% Co-5% Fe with 156 rpm and 30 h of milling;
B. Cu-5%Co-5%Fe con 156 rpm y 30 h de molienda; B. Cu-5% Co-5% Fe with 156 rpm and 30 h of milling;
C. Cu-10%Co-5%Fe con 250 rpm y 20 h de molienda; C. Cu-10% Co-5% Fe with 250 rpm and 20 h of milling;
D. Cu-5%Co-5%Fe 250 rpm con 20 h de molienda; D. Cu-5% Co-5% Fe 250 rpm with 20 h of milling;
E. Cu-5%Co-10%Fe con 200 rpm y 20 h de molienda; E. Cu-5% Co-10% Fe with 200 rpm and 20 h of milling;
F. Cu-15%SmCo5Con 180 rpm y 10 h de molienda. F. Cu-15% SmCo5 With 180 rpm and 10 h of grinding.
El proceso aplicado fue similar para todas las aleaciones propuestas y se describe en detalle a continuación como ejemplo para la aleación E: a. Molienda mecánica: se utilizó un molino de bolas Planetario, marca RETSCH modelo PM400, que permitía trabajar como máximo con 4 jarros de 500cc, simultáneamente. Se utilizaron sólo 2 jarros a la vez por molienda. Inicialmente, en un contenedor de plástico, se adicionaron los polvos de los elementos Co, Fe y Cu (según los % en peso de la aleación a desarrollar), los que fueron previamente pesados en balanza de precisión (3 dígitos después de coma) dispuesta al interior de una cámara interna de la denominada caja de Guantes, la cual estaba conectada a una bomba extractora de aire y a gas de argón con 99,9% de pureza, para extraer el aire e inyectar argón puro durante 3 ciclos de vaciado aire-argón y 3 ciclos de llenado de argón. A continuación, se agregaron 13 bolas de acero inoxidable martensítico de 20 mm de diámetro por recipiente/jarro de molienda de 500 cc y se incorporó la mezcla homogénea de polvos de Cu- 10%Fe-5%Co (% en peso) del molino de barras y 2% en volumen de etilenglicol como dispersante/lubricante, que se dispersó en gotas, sobre las bolas y la mezcla de polvo. El molino de bolas operó a una velocidad de 200 rpm durante 20 h de molienda, con detenciones de 10 minutos cada 20 min de molienda y cambio de giro en cada reinicio. Se utilizó una razón de carga entre masa bolas/masa polvo igual 10/1. Una vez finalizada la molienda se aplicó vacío en la cámara interna y se adicionó argón puro, repitiendo los ciclos de llenado/vaciado para evitar la contaminación de la mezcla aleada por oxígeno, una vez abiertos. La Figura 1, muestra las imágenes SEM de la morfología, rugosidad y tamaño de partículas de las diferentes aleaciones compuestas de Cu-Co-Fe y Cu-SmCos, procesadas por molienda mecánica. b. Compactación de las placas porosas de cobre y aleaciones de cobre: la consolidación de las aleaciones se realizó a través de la compactación en caliente bajo atmósfera inerte de argón puro, en una prensa con horno incorporado, que podía trabajar en vacío, argón y otras atmósferas, conocidas como ΉOT PRESS” o Prensa Caliente. Se utilizó una matriz de grafito, donde la cavidad interna de ésta y el punzón que compactaba el polvo de aleación magnética serían el equivalente al diámetro final de las placas porosas. Para ello, se mezclaron polvos de cobre y de la aleación magnética con 30% p/p de NaCI como agente espaciador con un tamaño de partícula entre 100 a 400 micrones acorde a la densidad y tamaño de los poros requeridos, para asegurar el paso eficiente del aire a través de la placa-filtro. El mezclado de los polvos se realizó durante 15 min, para asegurar la homogeneidad de mezclado. Se adicionó un 1% en peso de etanol como aglutinante en forma de gotas a la mezcla y, a continuación, esta mezcla fue vertida en una matriz de grafito de la prensa caliente. Las mezclas se pre-consolidaron a diferentes temperaturas (350 - 450°C), aplicando una carga variable entre 500 - 1000 kg, en atmósfera de argón para prevenir la oxidación del material. Una vez extraídas las muestras del proceso de prensado en caliente, éstas fueron sometidas a ciclos de remoción del agente espaciador en agua destilada caliente a 60°C, hasta comprobar por diferencia de masa que todo el espaciador había sido removido. c. Preforma de compactación de las placas: se realizó a través de una sinterización convencional a una temperatura de 700°C durante 30 minutos en atmósfera de argón extrapuro, obteniendo la placa porosa de base cobre permeable con resistencia mecánica. The applied process was similar for all the proposed alloys and is described in detail below as an example for Alloy E: a. Mechanical grinding: a Planetary ball mill, RETSCH model PM400, was used, which allowed working with a maximum of 4 500cc jugs, simultaneously. Only 2 jars were used at a time per grind. Initially, in a plastic container, the powders of the elements Co, Fe and Cu were added (according to the% by weight of the alloy to be developed), which were previously weighed in a precision balance (3 digits after comma) arranged into an internal chamber of the so-called glove box, which was connected to an air extractor pump and argon gas with 99.9% purity, to extract the air and inject pure argon during 3 cycles of emptying air- argon and 3 argon fill cycles. Next, 13 martensitic stainless steel balls of 20 mm diameter were added per 500 cc grinding container / jar and the homogeneous mixture of Cu-10% Fe-5% Co powders (% by weight) from the mill was added. of bars and 2% by volume of ethylene glycol as dispersant / lubricant, which was dispersed in drops, on the balls and the powder mixture. The ball mill operated at a speed of 200 rpm for 20 h of grinding, with stops of 10 minutes every 20 min. grinding and turning change on every restart. A loading ratio between ball mass / powder mass equal to 10/1 was used. Once the grinding was finished, a vacuum was applied in the internal chamber and pure argon was added, repeating the filling / emptying cycles to avoid contamination of the mixture alloyed by oxygen, once opened. Figure 1 shows the SEM images of the morphology, roughness and particle size of the different alloys composed of Cu-Co-Fe and Cu-SmCos, processed by mechanical grinding. b. Compaction of porous copper and copper alloy plates: the consolidation of the alloys was carried out through hot compaction under an inert atmosphere of pure argon, in a press with a built-in furnace, which could work in vacuum, argon and other atmospheres , known as ΉOT PRESS ”or Hot Press. A graphite matrix was used, where the internal cavity of this and the punch that compacted the magnetic alloy powder would be the equivalent to the final diameter of the porous plates. For this, copper and magnetic alloy powders were mixed with 30% w / w NaCl as a spacer agent with a particle size between 100 to 400 microns according to the density and size of the required pores, to ensure efficient passage. of air through the filter plate. The mixing of the powders was carried out for 15 min, to ensure mixing homogeneity. 1% by weight of ethanol was added as a binder dropwise to the mixture, and then this mixture was poured into a graphite matrix from the hot press. The mixtures were pre-consolidated at different temperatures (350 - 450 ° C), applying a variable load between 500 - 1000 kg, in an argon atmosphere to prevent the oxidation of the material. Once the samples were extracted from the hot pressing process, they were subjected to cycles of removal of the spacer agent in hot distilled water at 60 ° C, until verifying by mass difference that all the spacer had been removed. c. Plate compaction preform: it was carried out through conventional sintering at a temperature of 700 ° C for 30 minutes in an atmosphere of extra-pure argon, obtaining a porous plate with a permeable copper base with mechanical resistance.
Todas las placas-probetas obtenidas presentaron un diámetro de 25,4 mm y una altura de 16 mm, las que se observan en la Figura 2, donde (a) corresponde a la probeta cilindrica de cobre puro y (b) a la misma probeta, pero con mayor magnificación (50x). Se puede apreciar la distribución regular y homogénea de los poros luego de la eliminación de la sal de cloruro de sodio. En la misma Figura 2, pero con mayor magnificación (c, d, e y f) se muestran imágenes SEM de la superficie basal y lateral de la probeta cilindrica de Cu, con las porosidades interconectadas. En particular en la Figura 2 (e) se exhibe la unión superficial entre las partículas de Cu. Ejemplo 2. Evaluación de las propiedades de los filtros de aire. All the plates-specimens obtained had a diameter of 25.4 mm and a height of 16 mm, which are observed in Figure 2, where (a) corresponds to the pure copper cylindrical specimen and (b) to the same specimen , but with higher magnification (50x). The regular and homogeneous distribution of the pores can be appreciated after the elimination of the sodium chloride salt. In the same Figure 2, but with higher magnification (c, d, e and f), SEM images of the basal and lateral surface of the Cu cylindrical specimen are shown, with interconnected porosities. In particular, Figure 2 (e) shows the surface bond between the Cu particles. Example 2. Evaluation of the properties of air filters.
Para la determinación de las propiedades de los materiales aleados en polvo elaborados en el Ejemplo 1, se realizaron los siguientes ensayos: For the determination of the properties of the alloyed materials in powder elaborated in Example 1, the following tests were carried out:
2.1.- Difracción de Rayos-X (DRx): este ensayo se realizó con la finalidad de evaluar las fases sólidas precipitadas y/o generadas durante la molienda mecánica. Específicamente, permitió evaluar la estructura cristalina, los parámetros de red y el % p/p de cada fase presente en cada aleación. El ensayo consistió en colocar polvo de aleación procesada por aleado mecánico en un portamuestra cilindrico de 2 cm diámetro y a una altura de 3 mm. La aleación en polvo debía ser de morfología y tamaño de partícula bastante homogénea. Si era muy granular o heterogénea, se debía moler en mortero hasta obtener un tamaño de partículas homogéneas. Este portamuestra se introdujo en un equipo de Difracción Bruker D4 Endeavour, utilizando radiación de Cu-Ka bajo 40kV y 20 mA en un rango de 5 - 90°. Las propiedades estructurales fueron estudiadas en el CENIM de Madrid (España) mediante refinamiento Rietveld, obteniendo la estructura cristalina, parámetros de red y % en peso de cada fase sólida. Los patrones de DR-x con sus respectivos refinamientos se presentan en la Figura 3, donde específicamente, los espectros corresponden a las aleaciones en polvo de: Cu-10%Co con 200 rpm y 30 h de molienda (A); Cu-5%Co-5%Fe 156 rpm y 30 h de molienda (B); Cu-10%Co-5%Fe con 250 rpm y 20 h de molienda (C); Cu-5%Co-5%Fe 200 rpm con 20 h de molienda (D); Cu-5%Co-10%Fe con 200 rpm y 20 h de molienda (E); y Cu-15%SmCos con 180 rpm y 10 h de molienda (F). Los resultados de DR-x de las 6 aleaciones, se resumen en la Tabla 1. 2.1.- X-ray diffraction (DRx): this test was carried out in order to evaluate the solid phases precipitated and / or generated during mechanical grinding. Specifically, it allowed to evaluate the crystalline structure, the lattice parameters and the% w / w of each phase present in each alloy. The test consisted in placing alloy powder processed by mechanical alloying in a cylindrical sample holder with a diameter of 2 cm and a height of 3 mm. The powdered alloy had to be of fairly homogeneous particle size and morphology. If it was very granular or heterogeneous, it had to be ground in a mortar until obtaining a homogeneous particle size. This sample holder was introduced in a Bruker D4 Endeavor Diffraction equipment, using Cu-Ka radiation under 40kV and 20 mA in a range of 5 - 90 °. The structural properties were studied at the CENIM in Madrid (Spain) by means of Rietveld refinement, obtaining the crystalline structure, network parameters and% by weight of each solid phase. The DR-x patterns with their respective refinements are presented in Figure 3, where specifically, the spectra correspond to the powdered alloys of: Cu-10% Co with 200 rpm and 30 h of grinding (A); Cu-5% Co-5% Fe 156 rpm and 30 h of milling (B); Cu-10% Co-5% Fe with 250 rpm and 20 h of milling (C); Cu-5% Co-5% Fe 200 rpm with 20 h of milling (D); Cu-5% Co-10% Fe with 200 rpm and 20 h of milling (E); and Cu-15% SmCos with 180 rpm and 10 h of milling (F). The DR-x results of the 6 alloys are summarized in Table 1.
Tabla 1 . Resultados de Difracción de Rayos-x para diferentes variables de procesamiento
Figure imgf000012_0001
Figure imgf000013_0001
Table 1 . X-Ray Diffraction Results for Different Processing Variables
Figure imgf000012_0001
Figure imgf000013_0001
Los resultados de DR-x obtenidos de las 6 aleaciones desarrolladas, donde variaban los %pp de aleantes Co y Fe, además de la velocidad y tiempo de molienda, indican: la aleación B era muy heterogénea y se oxidó formando cuprita (CU2O). Las mejores aleaciones en polvo procesadas fueron C, D, E y F, donde el Co y Fe estaban disueltos en el cobre en solución sólida; y en particular la aleación D, evidenció una fase magnética FeCo, que incrementó el magnetismo remanente. Además, las aleaciones C, D y E resultaron más económicas comparadas con F (SmCo5) y requirieron sólo 20h de molienda respecto de A y B, que requirieron de 30h. The DR-x results obtained from the 6 alloys developed, where the% pp of Co and Fe alloys varied, in addition to grinding speed and time, indicate: alloy B was very heterogeneous and oxidized forming cuprite (CU2O). The best powdered alloys processed were C, D, E and F, where Co and Fe were dissolved in copper in solid solution; and in particular alloy D, evidenced an FeCo magnetic phase, which increased the remaining magnetism. In addition, alloys C, D and E were cheaper compared to F (SmCo5) and required only 20 hours of grinding compared to A and B, which required 30 hours.
2.2.- Microscopía Electrónica de Barrido (MEB) y Microanálisis con Espectrometría de Energía Dispersada (EDS): se realizaron estos ensayos con la finalidad de evaluar la morfología y tamaño de partículas de las aleaciones en polvo. Con el EDS se realizó un microanálisis composicional a las partículas de aleación; donde se evaluó la distribución y % de los elementos en diferentes áreas. Los resultados promedios de los microanálisis puntuales y de área realizados a las 6 aleaciones, mostraron homogeneidad química relativa de Fe, Co y también de SmCos (muestra F) entre las diferentes zonas de cada muestra analizada con EDS, con variaciones menores dependiendo del área o puntos seleccionados. 2.2.- Scanning Electron Microscopy (SEM) and Microanalysis with Energy Dispersed Spectrometry (EDS): these tests were carried out in order to evaluate the morphology and particle size of the powdered alloys. With the EDS, a compositional microanalysis was performed on the alloy particles; where the distribution and% of the elements in different areas were evaluated. The average results of the point and area microanalyses performed on the 6 alloys, showed relative chemical homogeneity of Fe, Co and also of SmCos (sample F) between the different zones of each sample analyzed with EDS, with minor variations depending on the area or selected points.
En la Figura 2 se presentan las imágenes SEM de la morfología y tamaño de partículas de las aleaciones compuestas procesadas por molienda mecánica: Cu-5%Co-5%Fe producidas bajo 156 rpm y 30 h de molienda- 500x (A); Cu- 5%Co-5%Fe con 156 rpm y 30 h de molienda - 500x (B); Cu-10%Co-5%Fe con 250 rpm y 20 h de molienda - 500x (C); Cu-5%Co-5%Fe 250 rpm con 20 h de molienda - 500x (D); Cu-5%Co-10%Fe con 200 rpm y 20 h de molienda - 500x (E); Cu-15%SmCo5 con 180 rpm y 10 h de molienda - 500x (F). Se deduce de estos resultados, que el tamaño y morfología de las partículas obtenidas, depende de la cantidad %p/p de aleantes (Fe, Co y otros), del tiempo y velocidad de molienda. Figure 2 shows the SEM images of the morphology and particle size of the composite alloys processed by mechanical grinding: Cu-5% Co-5% Fe produced under 156 rpm and 30 h of grinding- 500x (A); Cu-5% Co-5% Fe with 156 rpm and 30 h of milling - 500x (B); Cu-10% Co-5% Fe with 250 rpm and 20 h of grinding - 500x (C); Cu-5% Co-5% Fe 250 rpm with 20 h of grinding - 500x (D); Cu-5% Co-10% Fe with 200 rpm and 20 h of grinding - 500x (E); Cu-15% SmCo5 with 180 rpm and 10 h of grinding - 500x (F). It is deduced from these results that the size and morphology of the particles obtained depends on the amount% w / w of alloys (Fe, Co and others), on the time and grinding speed.
2.3.- Magnetismo: este ensayo permitió evaluar las propiedades magnéticas de las aleaciones en polvo. 2.3.- Magnetism: this test allowed to evaluate the magnetic properties of the powdered alloys.
El ensayo de mediciones magnéticas, se realizó con un Magnetómetro de muestra Vibrante (VSM) de 1 TESLA. Este ensayo permitió evaluar y conocer el comportamiento magnético de las aleaciones de base cobre magnéticas. La curva de Histéresis que se obtuvo para cada aleación, y permitió deducir el Campo Coercitivo y el magnetismo remanente, además del magnetismo de saturación. Para conocer y verificar la eficiencia de la aleación magnética, es importante que el magnetismo remanente (permanece) en la placa porosa, es el magnetismo que rompe la coraza de las bacterias y produce la mortandad de éstas. En la Figura 4 se presentan los resultados obtenidos para la determinación magnética realizada a las aleaciones Cu-10%Co-5%Fe con 250 rpm y 20 h de molienda - 500x (C); Cu-5%Co-5%Fe 200 rpm con 20 h de molienda - 500x (D); y Cu-5%Co-10%Fe con 200 rpm y 20 h de molienda - 500x(E). La Tabla 2 muestra los valores de Campo Coercitivo (He) y magnetismo remanente (Br) obtenidos para cada aleación, acorde a su composición química y parámetros de molienda. Los resultados indican que todas las aleaciones tienen magnetismo remanente adecuado para eliminar bacterias. Las aleaciones E y F exhibieron mayor magnetismo remanente y eliminaron en menor tiempo las bacterias. Debe considerarse que la aleación E y D son más económicas de procesar. The magnetic measurement test was performed with a 1 TESLA Vibrating Sample Magnetometer (VSM). This test allowed to evaluate and know the magnetic behavior of the magnetic copper-based alloys. The Hysteresis curve that was obtained for each alloy, and allowed to deduce the Coercive Field and the remanent magnetism, in addition to the saturation magnetism. To know and verify the efficiency of the magnetic alloy, it is important that the remaining magnetism (remains) in the porous plate, is the magnetism that breaks the shell of the bacteria and causes their death. Figure 4 shows the results obtained for the magnetic determination carried out on the Cu-10% Co-5% Fe alloys with 250 rpm and 20 h of grinding - 500x (C); Cu-5% Co-5% Fe 200 rpm with 20 h of grinding - 500x (D); and Cu-5% Co-10% Fe with 200 rpm and 20 h of grinding - 500x (E). Table 2 shows the Coercive Field (He) and remanent magnetism (Br) values obtained for each alloy, according to its chemical composition and grinding parameters. The results indicate that all alloys have adequate remanent magnetism to kill bacteria. The alloys E and F exhibited greater remanent magnetism and eliminated bacteria in less time. It should be considered that alloy E and D are more economical to process.
Tabla 2. Resultados de propiedades magnéticas
Figure imgf000014_0001
Table 2. Results of magnetic properties
Figure imgf000014_0001
2.4.- Espectrometría por Absorción Atómica: este ensayo se realizó para evaluar la contaminación de las aleaciones por presencia de hierro (Fe) y cromo (Cr), como desgaste del acero inoxidable de bolas y paredes del jarro durante la molienda. Los resultados indicaron que no hubo contaminación por cromo (Cr) y la contaminación por hierro (Fe) fue del orden de 0,7 - 1,0%p/p en las diferentes aleaciones, atribuible al desgaste de paredes de los jarros y de las bolas. 2.4.- Atomic Absorption Spectrometry: this test was carried out to evaluate the contamination of the alloys by the presence of iron (Fe) and chromium (Cr), such as wear of the stainless steel of the balls and walls of the jar during grinding. The results indicated that there was no contamination by chromium (Cr) and the contamination by iron (Fe) was of the order of 0.7 - 1.0% w / w in the different alloys, attributable to the wear of the walls of the jugs and of the the balls.
Ejemplo 3. Evaluación de un prototipo para la validación del filtro de aire. Example 3. Evaluation of a prototype for the validation of the air filter.
3.1.- Construcción del prototipo de filtro de aire. 3.1.- Construction of the air filter prototype.
Para validar los filtros desarrollados en el Ejemplo 1, se diseñó, dimensionó y construyó un prototipo para eliminar microorganismos presentes en el aire. Particularmente, se validó para filtros de cobre de 25 mm de diámetro y de un espesor de 5 mm. El sistema se dimensionó para tener una sobrepresión aguas arriba de los filtros de 250 a 300 Pa. To validate the filters developed in Example 1, a prototype was designed, sized and built to eliminate microorganisms present in the air. In particular, it was validated for copper filters with a diameter of 25 mm and a thickness of 5 mm. The system was sized to have an overpressure upstream of the filters of 250 to 300 Pa.
Se adaptó un ventilador comercial a las restricciones que imponía el filtro de bacterias, para lo cual se incorporó un bypass con la finalidad de determinar las propiedades del filtro a ensayar a través de su pérdida de carga y del flujo de aire que circulaba a través de él. Este prototipo fue capaz de filtrar un flujo de aire de 4,22 a 4,77 m3/h. El diseño del sistema de filtrado de aire estuvo compuesto por un filtro de partículas y polvo; un ventilador; a continuación, un filtro de bacterias y finalmente una zona de descarga de aire del filtro de bacterias. Donde el filtro de partículas y polvo se ubicó a la entrada del ventilador para proteger a los filtros magnéticos de bacterias de la entrada de partículas de mayor tamaño que los pudiesen tapar, y con ello, aumentar su pérdida de carga. Además, se consideró para el diseño las gráficas de caída de presión de cada filtro, que se muestran en la Figura 5. A commercial fan was adapted to the restrictions imposed by the bacteria filter, for which a bypass was incorporated in order to determine the properties of the filter to be tested through its pressure drop and the air flow that circulated through the he. This prototype was able to filter a stream of air from 4.22 to 4.77 m 3 / h. The design of the air filtering system was composed of a filter for particles and dust; a fan; then a bacteria filter and finally a bacteria filter air discharge zone. Where the particle and dust filter was located at the fan inlet to protect the magnetic filters from bacteria from the entry of larger particles that could cover them, and thus increase their pressure drop. In addition, the pressure drop graphs of each filter, which are shown in Figure 5, were considered for the design.
Por último, para el prototipo se consideró el uso de seis filtros magnéticos de 25 mm de diámetro y 5 mm de espesor. Estos filtros se instalaron sobre una placa de cobre con la finalidad de no tener materiales distintos que generaran con el uso (humedad) corrosión por pila galvánica en la zona de ensamblado, y hacer más eficiente el sistema, según la disposición mostrada en la Figura 6. Una vez dimensionado todas las variables del sistema de filtrado, se procedió a ensamblar cada una de las piezas que componían el diseño, según se puede apreciar en la Figura 7. Finally, for the prototype, the use of six magnetic filters 25 mm in diameter and 5 mm thick was considered. These filters were installed on a copper plate in order not to have different materials that generated with use (humidity) galvanic cell corrosion in the assembly area, and to make the system more efficient, according to the arrangement shown in Figure 6. Once all the variables of the filtering system had been dimensioned, we proceeded to assemble each of the pieces that made up the design, as can be seen in Figure 7.
3.2. Evaluación del prototipo de filtro de aire en un Recinto de Atención Médica.3.2. Evaluation of the air filter prototype in a Medical Care Facility.
El prototipo de los filtros magnéticos se evaluó en un recinto de atención médica para la determinación de la carga microbiana (bacterias y hongos) del aire. Específicamente, para la toma de muestras se consideró el recinto médico Centro Comunitario de Salud Familiar (CECOSF) Centinela, comuna de Talcahuano, Región del Bío-Bío, Chile. Este recinto tiene una superficie de 258 m2 y está destinado para 5.000 usuarios al mes, de la zona cercana. The prototype of the magnetic filters was evaluated in a health care facility for the determination of the microbial load (bacteria and fungi) of the air. Specifically, for the collection of samples, the Medical Center for Family Health (CECOSF) Centinela, commune of Talcahuano, Bío-Bío Region, Chile was considered. This enclosure has an area of 258 m 2 and is intended for 5,000 users per month, from the nearby area.
Primeramente, se procedió a filtrar el aire de la sala de espera del recinto de salud, donde el muestreo se realizó de manera activa (por impacto en placa), mediante un muestreador de aire MAS-100 NT (Merck, Alemania, n° de serie: 15986), equipo recomendado por el Instituto de Salud Pública de Chile para toma de muestra microbiológica de aire. Para proceder a la toma de muestras de aire, este equipo fue dispuesto en el centro de la sala, sobre una mesa a una altura de 1 m para simular la zona de respiración y se programó para colectar 250 L de aire a un flujo de 100 L min 1 (Valenzuela 2011; Cabo Verde et al., 2015). El aire filtrado impactó sobre placas conteniendo 20 ml_ de agar tripticasa-soya (medio de cultivo para bacterias) y agar Sabouraud (medio de cultivo para hongos). First, the air in the waiting room of the health facility was filtered, where the sampling was carried out actively (by impact on the plate), using a MAS-100 NT air sampler (Merck, Germany, no. series: 15986), equipment recommended by the Chilean Public Health Institute for microbiological air sampling. To proceed with the air sampling, this equipment was placed in the center of the room, on a table at a height of 1 m to simulate the breathing zone and was programmed to collect 250 L of air at a flow of 100 L min 1 (Valenzuela 2011; Cabo Verde et al., 2015). The filtered air impacted on plates containing 20 ml of trypticase-soy agar (culture medium for bacteria) and Sabouraud agar (culture medium for fungi).
Para estudiar el efecto del prototipo de filtro de aire en base a cobre magnetizado, se procedió a encender éste y permitir su funcionamiento por 2 - 3 h; transcurrido este tiempo se procedió a tomar muestras de aire de la misma forma descrita anteriormente. Se debe tener en consideración que el equipo MAS-100 NT se encontraba a la misma altura antes descrita y, en este caso, junto a la salida de aire del prototipo filtrador magnético. Dicho experimento fue repetido 3 veces, y el muestreo con cada tipo de medio de cultivo se realizó por triplicado. 3.2.1.- Recuento de microorganismos. To study the effect of the prototype air filter based on magnetized copper, it was turned on and allowed to operate for 2 - 3 h; after this time, air samples were taken in the same way as described above. It must be taken into consideration that the MAS-100 NT equipment was at the same height as described above and, in this case, next to the air outlet of the magnetic filter prototype. This experiment was repeated 3 times, and the sampling with each type of culture medium was carried out in triplicate. 3.2.1.- Microorganism count.
Se realizó el recuento de las colonias obtenidas en las placas de medio de cultivo sólido descritas en el punto anterior. Dado que el septo del MAS-100 NT tenía 300 agujeros y por ellos podía ingresar más de un microorganismo e impactar la placa con medio sólido, se debió corregir los recuentos en función del número de perforaciones, según la expresión de Feller que se detalla a continuación (Valenzuela 2011): S -í- 0,5 The colonies obtained were counted in the solid culture medium plates described in the previous point. Given that the septum of the MAS-100 NT had 300 holes and through them more than one microorganism could enter and impact the plate with solid medium, the counts had to be corrected according to the number of perforations, according to the Feller expression detailed below. continuation (Valenzuela 2011): S -í- 0.5
Pr = 1 n ¿V - r 4- Q,s! (1)Pr = 1 n ¿V - r 4- Q, s! (1)
Donde Pr es el número probable (calculado) de colonias bacterianas en la placa del instrumento de muestreo, expresado en unidades formadoras de colonia (UFC); res el recuento observado de colonias de la placa expresado en UFC; y N es el total de orificios de la tapa a través de la cual se recibe el aire del área que se muestrea en dirección a la placa de Petri con el medio de cultivo sólido (En este caso N= 300). Where Pr is the probable (calculated) number of bacterial colonies on the plate of the sampling instrument, expressed in colony forming units (CFU); res is the observed plate colony count expressed in CFU; and N is the total number of holes in the lid through which the air is received from the area being sampled towards the Petri dish with the solid culture medium (In this case N = 300).
El recuento calculado ( Pr) estaba dado por cada 250 L de muestra de aire. Finalmente se informó el recuento calculado por cada metro cúbico, expresado en UFC nr3 (Nunes et al., 2005; Yao y Mainelis, 2007; Van Droogenbroeck et al., 2009; Chang y Chou, 2011; Valenzuela 2011 ; Aguiar et al., 2014; Cabo Verde et al., 2015; Chang et al., 2015; Stauning et al., 2018). Los datos de recuento fueron graficados cronológicamente. The calculated count (Pr) was given for every 250 L of air sample. Finally, the count calculated for each cubic meter, expressed in CFU nr 3, was reported (Nunes et al., 2005; Yao and Mainelis, 2007; Van Droogenbroeck et al., 2009; Chang and Chou, 2011; Valenzuela 2011; Aguiar et al. ., 2014; Cape Verde et al., 2015; Chang et al., 2015; Stauning et al., 2018). The count data was plotted chronologically.
Se consideró una baja carga de microorganismos, cuando el recuento inicial estuvo bajo 180 UFC nr3 según la recomendación británica del HIS, que es la norma más restrictiva a nivel mundial y se asumió alta carga de microorganismos cuando el recuento inicial fue mayor a 1.000 UFC nr3 según la norma taiwanesa, que es la menos restrictiva en el mundo (Chang et al., 2015; Stauning et al., 2018). A low load of microorganisms was considered, when the initial count was under 180 CFU nr 3 according to the British HIS recommendation, which is the most restrictive standard worldwide, and a high load of microorganisms was assumed when the initial count was greater than 1,000 CFU nr 3 according to the Taiwanese standard, which is the least restrictive in the world (Chang et al., 2015; Stauning et al., 2018).
3.2.2.- Análisis estadístico de la carga microbiana de aire en la sala de espera del CECOSF Centinela. 3.2.2.- Statistical analysis of the microbial load of the air in the waiting room of the CECOSF Centinela.
Los datos obtenidos en cada tiempo, en condiciones sin filtración y con filtración de aire mediante el prototipo de filtro de aire en base a cobre magnetizado, fueron comparados y analizados mediante Test t student (Graph Pad, USA, 2016). The data obtained at each time, under conditions without filtration and with air filtration through the prototype of an air filter based on magnetized copper, were compared and analyzed using the Student t test (Graph Pad, USA, 2016).
Se observó una disminución sostenida y significativa del recuento bacteriano después de 2 y 3 h de encendido el prototipo de filtro de aire en base a cobre magnetizado (P < 0,05). En cambio, en relación con el recuento de hongos, no se observaron diferencias significativas con y sin uso del prototipo de filtro de aire en base a cobre magnetizado (P > 0,05). A sustained and significant decrease in the bacterial count was observed after 2 and 3 h after the prototype of the air filter based on magnetized copper was switched on (P <0.05). On the other hand, in relation to the mushroom count, no significant differences were observed with and without the use of the prototype air filter based on magnetized copper (P> 0.05).
Por otro lado, se observó una mayor carga de microorganismos a humedad relativa mayores tanto internas como externas, siendo estas diferencias estadísticamente significativas (P < 0,05). Sin embargo, las temperaturas no mostraron diferencias significativas a baja o alta carga de microorganismos (P > 0,05). De igual manera, no se observó diferencia significativa entre número de personas a baja o alta carga de microorganismos (P > 0,05). 3.2.3.- Recuento bacteriano y fúngico en la sala del Centro de salud. On the other hand, a higher load of microorganisms was observed at higher relative humidity both internally and externally, these differences being statistically significant (P <0.05). However, the temperatures are not showed significant differences at low or high microorganism load (P> 0.05). Similarly, no significant difference was observed between the number of people with a low or high load of microorganisms (P> 0.05). 3.2.3.- Bacterial and fungal count in the Health Center room.
Los resultados del recuento bacteriano y fúngico en la sala de espera del CECOSF Centinela, fueron expresados en los gráficos para baja y alta carga bacteriana (Figuras 8 y 9, respectivamente) y para alta y baja carga fúngica (Figuras 10 y 11, respectivamente). The results of the bacterial and fungal count in the CECOSF Sentinel waiting room were expressed in the graphs for low and high bacterial load (Figures 8 and 9, respectively) and for high and low fungal load (Figures 10 and 11, respectively). .
El prototipo de filtro de aire de Cu magnetizado disminuyó significativamente el recuento bacteriano del aire de la sala de espera en el centro de salud, tanto a baja carga bacteriana (Figura 9), como a alta carga (Figura 10). Este efecto bactericida coincidió con lo descrito en la literatura en cuanto al Cu, a materiales magnéticos y su combinación. Sin embargo, este es el primer estudio en el que se ha probado su efectividad como filtro de aire (Souli et al., 2013; Zeiger et al., 2014; Rózahska et al., 2018; Rubín et al., 2018; Zhang et al., 2018). Estos resultados sugieren fuertemente que el prototipo de filtro de aire en base a aleación Cu-magnético es apto para su producción. The prototype magnetized Cu air filter significantly decreased the bacterial count of the air in the waiting room at the health center, both at low bacterial load (Figure 9) and at high load (Figure 10). This bactericidal effect coincided with that described in the literature regarding Cu, magnetic materials and their combination. However, this is the first study in which its effectiveness as an air filter has been proven (Souli et al., 2013; Zeiger et al., 2014; Rózahska et al., 2018; Rubín et al., 2018; Zhang et al., 2018). These results strongly suggest that the prototype air filter based on Cu-magnetic alloy is suitable for production.

Claims

Reivindicaciones Claims
1.- Un filtro de aire de aleaciones magnéticas base cobre, útil para reducir microorganismos en suspensión al interior de recintos hospitalarios y otros recintos cerrados con alta densidad de carga microbiana, CARACTERIZADO porque comprende placas porosas de aleaciones magnéticas de base cobre del tipo Cu-Co-Fe, donde sus aleantes Co y Fe están presentes entre 5 - 10% p/p de Co y 5 - 10% p/p Fe; o Cu-SmCos, donde el aleante SmCos varía entre 10 - 15%pp. 1.- An air filter made of copper-based magnetic alloys, useful for reducing microorganisms in suspension inside hospital rooms and other closed rooms with a high density of microbial load, CHARACTERIZED because it comprises porous plates of copper-based magnetic alloys of the type Cu- Co-Fe, where its alloys Co and Fe are present between 5-10% w / w Co and 5-10% w / w Fe; or Cu-SmCos, where the alloying SmCos varies between 10 - 15% pp.
2.- Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 1, CARACTERIZADO porque comprende al menos las siguientes etapas: a.- Obtención de las aleaciones magnéticas mediante molienda mecánica: a.1 Preparación de la mezcla de polvos de los elementos Cu, Co y Fe: se deben pesar polvos de Fe y Co entre 5 - 10%pp para un contenido máximo de 15% de estos aleantes y cobre en polvo entre 90 - 95% pp, al interior de una cámara libre de oxígeno, la cual debe estar conectada a una bomba extractora de aire y a gas de argón con 99,9% de pureza, para extraer aire e inyectar argón puro en al menos 3 ciclos de vaciado aire-argón y 3 ciclos de llenado de argón, para eliminar la probabilidad de contaminación y oxidación superficial de los polvos; a continuación, los polvos de Cu-Fe-Co se deben introducir en un contenedor cilindrico con bolas de cerámicas, también bajo argón, el cual debe cerrarse herméticamente y luego se ubica en un molino de barras a una velocidad entre 20 - 30 rpm durante 15 a 30 min, para homogeneizar la mezcla de polvos y reducir fenómenos de segregación química de elementos en el producto final consolidado; a.2 Proceso aleado mecánico: en los jarros de un molino planetario se deben disponer bolas de al menos 20 mm de diámetro de acero inoxidable martensítico, además de la mezcla de polvo homogeneizada en la etapa a.1 y un agente dispersante entre 1 - 5 %volumen, que se adiciona en gotas sobre las bolas y la mezcla de polvo; y donde el molino debe operar a una velocidad entre 200 - 250 rpm durante 5 - 20 h de molienda efectiva, con ciclos de detención y operación, cambiando sentido de giro y con una razón de carga entre masa bolas/masa polvo igual a 10/1 o 20/1; una vez completada la molienda, se deben retirar los jarros del molino conteniendo las bolas y la aleación en polvo, y se introducen al interior de una cámara libre de oxígeno, donde se hace vacío y se aplica argón puro, repitiendo los ciclos de llenado/vaciado para evitar la contaminación de la mezcla aleada por oxígeno, una vez abiertos; y donde el contenido de aleación en polvo se almacena en vacío en contenedores. b. Compactación de las placas porosas de aleaciones de cobre: la consolidación de las aleaciones se realiza a través de la compactación en caliente bajo atmósfera inerte de argón puro en una prensa caliente, donde se utiliza una matriz de grafito, donde la cavidad interna de ésta y el punzón que compacta el polvo de aleación magnética poseen el diámetro final de las placas porosas; para ello, se deben mezclar los polvos de cobre y de la aleación magnética correspondiente con 30 - 50% p/p de un agente espaciador con un tamaño de partícula entre 100 a 400 micrones acorde a la densidad y tamaño de los poros requeridos, para asegurar el paso eficiente del aire a través de la placa-filtro; donde el mezclado de los polvos se realiza durante 10 - 20 min para asegurar la homogeneidad de mezclado; luego se debe adicionar 1% en peso de aglutinante en forma de gotas a la mezcla y, a continuación, se debe verter la mezcla en una matriz de grafito de prensa caliente, donde las mezclas se pre-consolidan a diferentes temperaturas entre 350 - 450°C, aplicando una carga variable entre 500 - 1000 kg, en atmósfera de argón para prevenir la oxidación del material; una vez extraídas las muestras del proceso de prensado en caliente, éstas deben ser sometidas a ciclos de remoción del agente espaciador en agua destilada caliente a 60°C, hasta comprobar por diferencia de masa que todo el espaciador fue removido. c. Preforma de compactación de las placas porosas: se realiza a través de una sinterización convencional a una temperatura inferior o igual a 750°C durante al menos 30 minutos en atmósfera de argón, obteniendo la placa porosa base cobre permeable. 2.- A process for the elaboration of the air filter of magnetic alloys according to claim 1, CHARACTERIZED because it comprises at least the following stages: a.- Obtaining the magnetic alloys by means of mechanical grinding: a.1 Preparation of the mixture of powders of elements Cu, Co and Fe: Fe and Co powders between 5 - 10% pp must be weighed for a maximum content of 15% of these alloys and copper powder between 90 - 95% pp, inside a chamber free of oxygen, which must be connected to an air extraction pump and argon gas with 99.9% purity, to extract air and inject pure argon in at least 3 air-argon emptying cycles and 3 argon filling cycles, to eliminate the probability of contamination and surface oxidation of powders; Next, the Cu-Fe-Co powders must be introduced into a cylindrical container with ceramic balls, also under argon, which must be hermetically sealed and then placed in a bar mill at a speed between 20 - 30 rpm during 15 to 30 min, to homogenize the powder mixture and reduce the phenomena of chemical segregation of elements in the final consolidated product; a.2 Mechanical alloying process: in the jars of a planetary mill, martensitic stainless steel balls with a diameter of at least 20 mm must be placed, in addition to the homogenized powder mixture in stage a.1 and a dispersing agent between 1 - 5% volume, which is added dropwise on the balls and the powder mixture; and where the mill must operate at a speed between 200 - 250 rpm during 5 - 20 h of effective grinding, with stopping and operating cycles, changing direction of rotation and with a load ratio between ball mass / powder mass equal to 10/1 or 20/1; Once the grinding is completed, the jars should be removed from the mill containing the balls and the powdered alloy, and they are introduced into an oxygen-free chamber, where a vacuum is made and pure argon is applied, repeating the filling / filling cycles. emptying to avoid contamination of the mixture alloyed by oxygen, once opened; and where the powdered alloy content is stored under vacuum in containers. b. Compaction of porous copper alloy plates: the consolidation of the alloys is carried out through hot compaction under an inert atmosphere of pure argon in a hot press, where a graphite matrix is used, where the internal cavity of this and the punch that compacts the magnetic alloy powder possess the final diameter of the porous plates; To do this, the copper powders and the corresponding magnetic alloy must be mixed with 30 - 50% w / w of a spacer agent with a particle size between 100 to 400 microns according to the density and size of the required pores, to ensure efficient passage of air through the filter plate; where the mixing of the powders is carried out for 10-20 min to ensure homogeneity of mixing; then 1% by weight of binder must be added in the form of drops to the mixture and then the mixture must be poured into a hot press graphite matrix, where the mixtures are pre-consolidated at different temperatures between 350 - 450 ° C, applying a variable load between 500 - 1000 kg, in an argon atmosphere to prevent the oxidation of the material; Once the samples have been extracted from the hot pressing process, they must be subjected to cycles of removal of the spacer agent in hot distilled water at 60 ° C, until verifying by mass difference that all the spacer was removed. c. Compaction preform of porous plates: it is carried out through conventional sintering at a temperature lower than or equal to 750 ° C for at least minus 30 minutes in an argon atmosphere, obtaining the porous permeable copper base plate.
3.- Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 2, CARACTERIZADO porque el agente dispersante de la etapa a.2 es etilenglicol. 3. A process for the elaboration of the air filter of magnetic alloys according to claim 2, CHARACTERIZED because the dispersing agent of stage a.2 is ethylene glycol.
4 Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 2, CARACTERIZADO porque el agente dispersante de la etapa a.2 es un copolímero de fósforo y ácido carboxílico, PCA. 4 A process for the manufacture of the air filter of magnetic alloys according to claim 2, CHARACTERIZED in that the dispersing agent of stage a.2 is a copolymer of phosphorus and carboxylic acid, PCA.
5.- Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 2, CARACTERIZADO porque el agente dispersante se adiciona 3%vol. de gotas por cada 50g de polvo. 5.- A process for the elaboration of the air filter of magnetic alloys according to claim 2, CHARACTERIZED in that the dispersing agent is added 3% vol. drops per 50g of powder.
6.- Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 2, CARACTERIZADO porque el agente espaciador de la etapa b es NaCI. 6.- A process for the elaboration of the air filter of magnetic alloys according to claim 2, CHARACTERIZED in that the spacer agent of stage b is NaCI.
7.- Un proceso para la elaboración del filtro de aire de aleaciones magnéticas según reivindicación 2, CARACTERIZADO porque el aglutinante de la etapa b es etanol. 7.- A process for the elaboration of the air filter of magnetic alloys according to claim 2, CHARACTERIZED because the binder of stage b is ethanol.
PCT/CL2021/050020 2020-03-27 2021-03-26 Air filter comprising copper-based magnetic alloys for reducing microorganisms in polluted air, and production method thereof WO2021189159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL0808-2020 2020-03-27
CL2020000808A CL2020000808A1 (en) 2020-03-27 2020-03-27 Air filter made of copper-based magnetic alloys to reduce microorganisms in polluted air, and its manufacturing process.

Publications (1)

Publication Number Publication Date
WO2021189159A1 true WO2021189159A1 (en) 2021-09-30

Family

ID=72266976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050020 WO2021189159A1 (en) 2020-03-27 2021-03-26 Air filter comprising copper-based magnetic alloys for reducing microorganisms in polluted air, and production method thereof

Country Status (2)

Country Link
CL (1) CL2020000808A1 (en)
WO (1) WO2021189159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118003540A (en) * 2024-04-09 2024-05-10 太原理工大学 Foam metal filled seamless composite pipe heat treatment foaming device and preparation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155124A (en) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp Antibacterial metallic air filter and its production
WO2012007550A1 (en) * 2010-07-15 2012-01-19 Höganäs Ab Iron copper compositions for fluid purification
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr
WO2017117527A1 (en) * 2015-12-30 2017-07-06 Mott Corporation Porous devices made by laser additive manufacturing
GB2551755A (en) * 2016-06-29 2018-01-03 Versarien Tech Limited Porous metallic foam and related methods of production
US20180085697A1 (en) * 2011-06-06 2018-03-29 Mann+Hummel Gmbh Antimicrobial filter medium and cabin air filter
WO2019173849A1 (en) * 2018-03-09 2019-09-12 Cellmobility, Inc. Method of making copper-nickel alloy foams
US10471170B2 (en) * 2015-06-29 2019-11-12 Puresys Co., Ltd. Air purifying sterilizer module with improved catalytic performance and air purifying sterilizer including the same
US10590529B2 (en) * 2015-11-20 2020-03-17 Fourté International, Sdn. Bhd Metal foams and methods of manufacture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155124A (en) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp Antibacterial metallic air filter and its production
WO2012007550A1 (en) * 2010-07-15 2012-01-19 Höganäs Ab Iron copper compositions for fluid purification
US20180085697A1 (en) * 2011-06-06 2018-03-29 Mann+Hummel Gmbh Antimicrobial filter medium and cabin air filter
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr
US10471170B2 (en) * 2015-06-29 2019-11-12 Puresys Co., Ltd. Air purifying sterilizer module with improved catalytic performance and air purifying sterilizer including the same
US10590529B2 (en) * 2015-11-20 2020-03-17 Fourté International, Sdn. Bhd Metal foams and methods of manufacture
WO2017117527A1 (en) * 2015-12-30 2017-07-06 Mott Corporation Porous devices made by laser additive manufacturing
GB2551755A (en) * 2016-06-29 2018-01-03 Versarien Tech Limited Porous metallic foam and related methods of production
WO2019173849A1 (en) * 2018-03-09 2019-09-12 Cellmobility, Inc. Method of making copper-nickel alloy foams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LÓPEZ M L, JIMÉNEZ J A, RAMAM K, GÓMEZ M E, REYES D, MANGALARAJA R V: "Magnetic and structural properties of hot pressed Cu–SmCo 5 composites obtained by mechanical alloying", POWDER METALLURGY., MANEY PUBLISHING, LONDON., GB, vol. 55, no. 5, 1 December 2012 (2012-12-01), GB , pages 415 - 420, XP055899146, ISSN: 0032-5899, DOI: 10.1179/1743290112Y.0000000018 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118003540A (en) * 2024-04-09 2024-05-10 太原理工大学 Foam metal filled seamless composite pipe heat treatment foaming device and preparation method
CN118003540B (en) * 2024-04-09 2024-06-04 太原理工大学 Foam metal filled seamless composite pipe heat treatment foaming device and preparation method

Also Published As

Publication number Publication date
CL2020000808A1 (en) 2020-08-07

Similar Documents

Publication Publication Date Title
Tran et al. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives
Nisar et al. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action
Kanwal et al. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@ AgNPs) and their density-dependent antibacterial activity
Marková et al. Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal
Rim et al. Toxicological evaluations of rare earths and their health impacts to workers: a literature review
US20210154610A1 (en) Copper microbicidal filter
WO2021189159A1 (en) Air filter comprising copper-based magnetic alloys for reducing microorganisms in polluted air, and production method thereof
Xiong et al. One‐step synthesis of silver nanoparticle‐decorated hydroxyapatite nanowires for the construction of highly flexible free‐standing paper with high antibacterial activity
JP2007144212A (en) Filtering device incorporating nanoparticles
Zhu et al. Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation
DE602005026133D1 (en) DENSITY MIXED OXIDE POWDER COMPOUND OF TITANIUM AND LITHIUM, METHOD OF MANUFACTURING THEREOF, AND ELECTRODE THEREFOR
Martínez et al. Dual antifungal activity against Candida albicans of copper metallic nanostructures and hierarchical copper oxide marigold‐like nanostructures grown in situ in the culture medium
JP6527277B2 (en) Chlorine dioxide gas generation system, chlorine dioxide gas generator and chlorine dioxide gas generation method
JP5970453B2 (en) Iron-copper composition for fluid purification
KR20210073421A (en) Quantum energy irradiating smart farm for decreasing greenhouse gas emited
ES2586300T3 (en) Filter medium containing fibers
Sayed et al. Antimicrobial activity of Novel spinel nanoferrites against pathogenic fungi and bacteria
Hoseinzadeh et al. Antimicrobial efficacy of zinc oxide nanoparticles suspension against Gram negative and Gram positive bacteria
Zheng et al. Particulate respirators functionalized with silver nanoparticles showed excellent real-time antimicrobial effects against pathogens
Zhao et al. Synthesis and characterization of silver-incorporated calcium phosphate antibacterial nanocomposites for mask filtration material
Saadh Synthesis, role in antibacterial, antiviral, and hazardous effects of silver nanoparticles
WO2017113033A1 (en) Antimicrobial composition for coating surfaces
Takkar et al. Usage of magnetic spinel nano-ferrites in waste water treatment
US20230241427A1 (en) Improved filtering mask
Lozhkomoev et al. New approach to production of antimicrobial Al2O3-Ag nanocomposites by electrical explosion of two wires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774799

Country of ref document: EP

Kind code of ref document: A1