WO2021187953A1 - 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템 - Google Patents

유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템 Download PDF

Info

Publication number
WO2021187953A1
WO2021187953A1 PCT/KR2021/003449 KR2021003449W WO2021187953A1 WO 2021187953 A1 WO2021187953 A1 WO 2021187953A1 KR 2021003449 W KR2021003449 W KR 2021003449W WO 2021187953 A1 WO2021187953 A1 WO 2021187953A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
harmful component
harmful
unit
light
Prior art date
Application number
PCT/KR2021/003449
Other languages
English (en)
French (fr)
Inventor
피도연
Original Assignee
주식회사 파이퀀트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210010325A external-priority patent/KR102421489B1/ko
Application filed by 주식회사 파이퀀트 filed Critical 주식회사 파이퀀트
Publication of WO2021187953A1 publication Critical patent/WO2021187953A1/ko
Priority to US17/821,753 priority Critical patent/US20220404201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0096Investigating consistence of powders, dustability, dustiness

Definitions

  • the present invention relates to a measuring device capable of analyzing the concentration and component of a hazardous component, and more particularly, a hazardous component measuring device capable of measuring the concentration of a hazardous component present in the air and analyzing the components included in the hazardous component is about
  • the level of risk may vary.
  • the present applicant has implemented a small device that can measure the concentration of harmful components as well as identify the components constituting the measured harmful components so that many people can obtain accurate information about the harmful components.
  • the present invention was devised.
  • the present invention for solving the above-described problems is to analyze the components and concentrations of harmful components by analyzing a light spectrum obtained using light incident upon colliding with harmful component particles.
  • the present invention is to analyze the components and concentrations of harmful components by acquiring a hyperspectral image of the external air introduced into the harmful component measuring device through a hyperspectral camera and analyzing it.
  • the present invention intends to determine the position of the harmful component measurement module according to the size of the target particle to be analyzed in consideration of the angle of the optical path that varies depending on the particle size.
  • the present invention intends to provide a hazardous component measuring device capable of measuring the concentration and component analysis of hazardous components, as well as noise, temperature, humidity, atmospheric pressure, illuminance, and early fire detection.
  • a harmful component measuring apparatus includes: an air distribution unit through which external air is introduced and circulated; a light emitting unit irradiating light to a predetermined area of the air circulation unit; a spectrometer comprising a light incident unit to which light whose path is changed by colliding with the harmful component particles in the air circulation unit is incident, and obtaining a light spectrum for the incident light; and a processor for deriving components and concentrations of harmful component particles in the external air introduced into the air distribution unit based on the light spectrum obtained through the spectrometer, wherein the spectrometer includes a light path that varies depending on the particle size.
  • the installation location is determined according to the size of the analysis target particle.
  • a harmful component measuring apparatus includes: an air distribution unit through which external air is introduced and circulated; a hyperspectral camera for acquiring a hyperspectral image of harmful component particles existing in the predetermined area by photographing a predetermined area of the air circulation unit; and an analysis unit for deriving components and concentrations of harmful component particles in the external air introduced into the air distribution unit based on the acquired hyperspectral image.
  • it may include at least one fan for introducing external air into the harmful component measuring device.
  • the fan may include: a first fan for introducing external air into the harmful component measuring device; and a second fan for introducing external air introduced by the first fan into the air distribution unit.
  • the harmful component measuring device further includes a case in which a harmful component measuring module including at least one of a light emitting unit, a spectrometer, a processor, a database, and a hyperspectral camera is installed, wherein the harmful component measuring module is the case It is installed on one side of the inner side, and the first fan is installed on the other side of the case, and the air volume or wind speed is higher than that of the second fan.
  • a harmful component measuring module including at least one of a light emitting unit, a spectrometer, a processor, a database, and a hyperspectral camera is installed, wherein the harmful component measuring module is the case It is installed on one side of the inner side, and the first fan is installed on the other side of the case, and the air volume or wind speed is higher than that of the second fan.
  • the harmful component measuring device may include: a noise measuring module capable of measuring external noise generated around the harmful component measuring device; and a communication unit for transmitting at least one of the measurement data of the noise measurement module and the result analyzed by the analysis unit to the server.
  • the harmful component measuring apparatus further includes a database storing light spectrum information for each component that may be included in the harmful component, and the analyzer analyzes the light spectrum or hyperspectral image based on the information stored in the database.
  • the component of the harmful component in the external air introduced into the air distribution unit is derived.
  • it characterized in that it further comprises a position adjusting means capable of adjusting the position of the spectrometer or the hyperspectral camera according to the size of the analysis target particle input from the user.
  • the hazardous component measuring device is air through which external air is introduced distribution department; a light emitting unit irradiating light to a predetermined area of the air circulation unit; a spectrometer comprising a light incident unit to which light whose path is changed by colliding with the harmful component particles in the air circulation unit is incident, and obtaining a light spectrum for the incident light; and a communication unit for transmitting the optical spectrum data obtained through the spectrometer to a server, wherein the spectrometer is installed in consideration of the angle of the optical path that varies depending on the particle size, the installation position is determined according to the size of the analysis target particle, The server analyzes the optical spectrum data received from the harmful component measuring device to derive the components and concentrations of the harmful component particles in the external air introduced into the air distribution unit.
  • the hazardous component measuring device is, air distribution; a hyperspectral camera for acquiring a hyperspectral image of harmful component particles existing in the predetermined area by photographing a predetermined area of the air circulation unit; and a communication unit for transmitting the acquired hyperspectral image to a server, wherein the server analyzes the hyperspectral image received from the harmful component measuring device to analyze the components of harmful component particles in the external air introduced into the air distribution unit It is characterized by deriving an excess concentration.
  • the effect of determining the size of the dust particle to be analyzed by determining the position of the harmful component measurement module according to the size of the target particle for analysis in consideration of the angle of the optical path that varies depending on the particle size have.
  • the harmful component measuring device exhibits the effect that noise measurement is possible.
  • FIG 1 and 2 are block diagrams of an apparatus for measuring harmful components according to an embodiment of the present invention.
  • FIG 3 is a view illustrating that the harmful component measuring device according to an embodiment of the present invention is installed on the ceiling.
  • FIG. 4 is a view illustrating the inside of the apparatus for measuring harmful components according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating the inside of a harmful component measuring device in order to explain the positions of the first fan and the second fan in the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating that a spectrometer acquires a light spectrum in an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating that the hyperspectral camera acquires a hyperspectral image of harmful component particles in an embodiment of the present invention.
  • FIGS. 8 and 9 are block diagrams of a system for measuring harmful components according to an embodiment of the present invention.
  • FIG. 1 and 2 are block diagrams of an apparatus 100 for measuring harmful components according to an embodiment of the present invention.
  • FIG 3 is a view illustrating that the harmful component measuring apparatus 100 according to an embodiment of the present invention is installed on the ceiling.
  • FIG 4 is a view illustrating the inside of the harmful component measuring apparatus 100 according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the inside of the harmful component measuring apparatus 100 to explain the positions of the first fan 143 and the second fan 147 in the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating that the spectrometer 120 acquires a light spectrum in an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating that the hyperspectral camera 190 acquires a hyperspectral image of harmful component particles in an embodiment of the present invention.
  • a harmful component measuring apparatus 100 will be described with reference to FIGS. 1 and 3 to 6 .
  • the harmful component measuring apparatus 100 may measure and analyze various harmful components, harmful gases, fine dust, and the like.
  • components such as COx, SOx, NOx, TVOC, O3, etc. may be applicable, but are not limited thereto, and any harmful component having a certain particle size can be measured and analyzed. can be a target
  • the harmful component measuring apparatus 100 includes a processor 110 , a spectrometer 120 , an analysis unit 130 , a fan 140 , a light emitting unit 150 , a database 160 , and a communication unit 170 . ), a noise measuring module 180 , a case 40 , a lid 45 , a hole 55 , and an air distribution unit 60 .
  • the hazardous component measuring device 100 and the hazardous component measuring device may include fewer or more components than the components shown in FIG. 1 .
  • components such as the lid 45, the hole 55, the air distribution unit 60 as shown in FIGS. 3 to 5 are the case 40 of the harmful component measuring device 100, the frame itself. It may be configured to be formed, and other components such as the processor 110 and the spectrometer 120 may be configured as the harmful component measurement module 90 .
  • the harmful component measuring device 100 includes a harmful component measuring module 90, the harmful component measuring module 90 is an air distribution unit 60, a light emitting unit 150, a spectrometer 120, It may include a database 160 , an analysis unit 130 , and a processor 110 .
  • the harmful component measurement device 100 includes a harmful component measurement module 90, and the harmful component measurement module 90 includes an air distribution unit 60, a hyperspectral camera 190, a database 160, It may include an analysis unit 130 and a processor 110 .
  • the air circulation unit 60 introduces and distributes external air for measuring harmful components.
  • the light-emitting unit 150 irradiates (light-emits) light to a predetermined area of the air circulation unit 60 , and may include at least one light source.
  • the light emitting unit 150 may include a lens unit (not shown) for condensing light emitted from a light source, or a filter capable of filtering light in a specific wavelength range.
  • the light emitting unit 150 and the air distribution unit 60 may be arranged such that the light irradiated from the light emitting unit 150 is vertically incident on the air distribution unit 60 , but is not limited thereto.
  • the spectrometer 120 includes a light incident unit 123 into which light whose path is changed by colliding with harmful component particles in the air distribution unit 60 is incident, and acquires a light spectrum for the incident light.
  • the light emitting unit 150 irradiates light perpendicularly to the air distribution unit 60 .
  • the external air present in the air distribution unit 60 contains harmful component particles.
  • the irradiated light collides with harmful components, and the light path is changed.
  • the path of the light is changed according to the particle size that the light strikes, and the harmful component measuring apparatus 100 according to the embodiment of the present invention can determine the size of the analysis target particle to be measured by using this point.
  • the spectrometer 120 may determine the size of the analysis target particle to be measured using this point.
  • an installation position of the spectrometer 120 in the harmful component measuring apparatus 100 may be determined according to the size of the analysis target particle in consideration of the angle of the optical path that varies depending on the particle size.
  • the size of the light incident part 123 may be determined to increase precision.
  • the light striking the larger or smaller particles that do not correspond to the harmful component does not pass through the light incident part 123 because the light path is changed to a different angle.
  • the control unit controls the analyzer 130 to analyze the light spectrum obtained through the spectrometer 120 to analyze at least one of the components and concentrations of harmful component particles in the external air introduced into the air distribution unit 60 .
  • the analysis unit 130 further includes a database 160 in which light spectrum information for each component that may be included in the harmful component is stored.
  • control unit analyzes the light spectrum obtained through the spectrometer 120 based on the information stored in the database 160 through the analysis unit 130, It is characterized by deriving components and concentrations.
  • the light vertically irradiated to the air distribution unit 60 collides with harmful component particles present in the air distribution unit 60, so that the light path is changed at a predetermined angle, and the light path is changed.
  • the spectrometer 120 acquires a light spectrum.
  • the spectrometer 120 is the light spectrum of the light incident to the light incident unit 123 . is obtained, so that it is possible to accurately derive the composition of the harmful component particles of the size to be detected.
  • FIG. 3 is a view illustrating the inside of the apparatus 100 for measuring harmful components with a lid 45 covered, and FIG. 4 with the lid 45 removed from FIG. 3 .
  • the harmful component measuring apparatus 100 includes at least one fan 140 that introduces external air into the harmful component measuring apparatus 100 .
  • the fan 140 is a first fan 143 that introduces external air into the harmful component measuring device 100 , and a first fan 143 that introduces external air introduced by the first fan 143 into the air distribution unit 60 .
  • a second fan 147 may be included.
  • the first fan 143 may be a configuration installed in the case 40
  • the second fan 147 may be a configuration installed in the harmful component measurement module.
  • a hole 55 is formed in the lid 45 of the harmful component measuring device 100 so that external air can be introduced by the first fan 143 .
  • the harmful component measuring apparatus 100 may further include a noise measuring module 180 capable of measuring external noise generated in the vicinity of the harmful component measuring apparatus 100 .
  • the noise measurement module 180 is controlled by the processor 110 , but in order to minimize noise generated by the fan 140 , it may be configured separately from the harmful component measurement module. For example, it may be included in the area indicated by A in FIG. 5 .
  • the communication unit 170 may also be configured separately from the harmful component measurement module in order to secure a space for the harmful component measurement module, and may be included in the area indicated by A.
  • the arrangement positions of the noise measuring module 180 and the communication unit 170 exemplified above are merely examples for space utilization and measurement efficiency in the harmful component measuring apparatus 100, and are not limited thereto.
  • the harmful component measuring module is a case 40 ) is installed on one side of the inside, and the first fan 143 is installed on the other side of the case 40 .
  • the air volume of the first fan 143 and the second fan 147 may be the same or different.
  • the first fan 143 may have a higher air volume or wind speed than the second fan 147 .
  • disposing the first fan 143 and the harmful component measuring module opposite to each other may cause a measurement error when the wind speed is too fast, so that this possibility is excluded and measurement accuracy is secured.
  • the second fan 147 introduces the external air once introduced into the harmful component measuring device 100 into the air circulation unit 60 slightly weaker than the first fan 143, the light emitting unit 150, It is possible to measure the light spectrum with high accuracy using the spectrometer 120 .
  • the harmful component measuring apparatus 100 may start measuring harmful components in a predetermined period of time or in response to a measurement request signal received from the outside, and first operates the first fan 143 and the second fan 147 . to introduce external air into the air distribution unit 60, stop the first fan 143 and the second fan 147 or reduce the wind speed, and irradiate light through the light emitting unit 150 to measure harmful components.
  • a measurement request signal received from the outside
  • the harmful component measuring apparatus 100 may start measuring harmful components in a predetermined period of time or in response to a measurement request signal received from the outside, and first operates the first fan 143 and the second fan 147 . to introduce external air into the air distribution unit 60, stop the first fan 143 and the second fan 147 or reduce the wind speed, and irradiate light through the light emitting unit 150 to measure harmful components.
  • the harmful component measuring device 100 is formed with an outlet (not shown) through which the external air that is introduced into the air distribution unit 60 and the measurement is completed is discharged. At this time, the external air introduced into the air inlet is discharged to the outside through the outlet by the wind power of the first fan 143 and the second fan 147 .
  • the noise measuring module 180 can measure external noise generated around the harmful component measuring device 100 .
  • the communication unit 170 may transmit at least one of the measurement data of the noise measurement module 180 and the result analyzed by the analysis unit 130 to the server.
  • the harmful component measuring apparatus 100 includes a processor 110 , an analysis unit 130 , a fan 140 , a database 160 , a communication unit 170 , and a noise level. It includes a measurement module 180 and a hyperspectral camera 190 .
  • the difference between the harmful component measuring apparatus 100 shown in FIGS. 1 and 2 is that the harmful component measuring apparatus of FIG. 1 uses the configuration of the light emitting unit 150 and the spectrometer 120 to obtain a light spectrum for harmful component particles and that the harmful component measuring device of FIG. 2 acquires a hyperspectral image of harmful component particles by using the hyperspectral camera 190 .
  • the hyperspectral camera 190 replaces the light emitting unit 150 and the spectrometer 120 , and the remaining components may be included in the same manner.
  • the hyperspectral camera 190 acquires a hyperspectral image of the harmful component particles existing in the predetermined area by photographing a predetermined area of the air distribution unit 60 .
  • the processor 110 derives the components and concentrations of harmful component particles in the external air introduced into the air distribution unit 60 based on the hyperspectral image through the analysis unit 130 .
  • the harmful component measuring apparatus 100 may further include a temperature and humidity measuring sensor, a barometric pressure measuring sensor, an illuminance measuring sensor, a noise measuring sensor, and a fire detecting sensor.
  • the fire detection sensor is capable of detecting a fire occurring within a certain distance from the device 100
  • the noise sensor is capable of measuring external noise generated around the device 100, and each of the sensors The measured value may be provided to the processor 110 at every preset period.
  • the harmful component measuring apparatus 100 can measure and analyze the harmful component as well as measure temperature and humidity, atmospheric pressure, illuminance, noise, etc. as well as detect fire. contains functions.
  • FIG 8 and 9 are block diagrams of the harmful component measurement system 10 according to an embodiment of the present invention.
  • the hazardous component measuring device 100 only plays a role of measuring the hazardous component and transmits the measured light spectrum or hyperspectral image to the server, so the analysis unit 130 and the database 160 ) can be included in the server.
  • the hazardous component measurement system 10 includes the hazardous component measuring device 100 and the hazardous component analysis server 200 .
  • the harmful component measuring device 100 includes an air distribution unit 60 , a light emitting unit 150 , a processor 110 , a spectrometer 120 , a fan 140 , a communication unit 170 , and a noise measuring module 180 , etc. do.
  • the air circulation unit 60 introduces and distributes external air.
  • the fan 140 introduces external air into the harmful component measuring device 100 .
  • the light emitting unit 150 irradiates light to a predetermined area of the air circulation unit 60 .
  • the spectrometer 120 includes an incident portion to which the light whose path is changed by colliding with the harmful component particles in the air distribution unit 60 is incident, and acquires a light spectrum for the incident light.
  • the processor 110 is responsible for controlling the components in the harmful component measuring device 100 , and controls the analysis unit 130 to flow into the air distribution unit 60 based on the light spectrum obtained through the spectrometer 120 . At least one of the constituents and concentrations of harmful component particles in the fresh air is derived.
  • an installation position of the spectrometer 120 may be determined according to the size of the analysis target particle in consideration of the angle of the light path that varies depending on the particle size.
  • the communication unit 170 transmits the optical spectrum data obtained through the spectrometer 120 to the server.
  • the harmful component analysis server 200 includes a processor 210 , an analysis unit 230 , a database 260 , and a communication unit 270 .
  • the communication unit 270 receives optical spectrum data from the communication unit 170 of the harmful component measuring apparatus 100 .
  • the database 260 stores light spectrum information for each component that may be included in the harmful component.
  • the processor 210 controls the analysis unit 230 to analyze the light spectrum data to derive the components and concentrations of harmful component particles in the external air introduced into the air distribution unit 60 .
  • the analysis unit 230 may analyze the components of harmful components in the external air introduced into the air distribution unit 60 by using the information stored in the database 260 .
  • the hazardous component measuring system 10 includes a hazardous component measuring device 100 and a hazardous component analysis server 200 .
  • the harmful component measuring apparatus 100 includes an air distribution unit 60 , a processor 110 , a fan 140 , a hyperspectral camera 190 , a communication unit 170 , and a noise measuring module 180 .
  • the air circulation unit 60 introduces and distributes external air.
  • the fan 140 introduces external air into the harmful component measuring device 100 .
  • the processor 110 is responsible for controlling the components in the harmful component measuring device 100,
  • the processor 110 controls the hyperspectral camera 190 to photograph a certain area of the air distribution unit 60 to obtain a hyperspectral image of the harmful component particles present in the corresponding area.
  • the communication unit 170 transmits the hyperspectral image obtained through the hyperspectral camera 190 to the server.
  • the harmful component analysis server 200 includes a processor 210 , an analysis unit 230 , a database 260 , and a communication unit 270 .
  • the communication unit 270 receives the hyperspectral image from the communication unit 170 of the harmful component measuring apparatus 100 .
  • the database 260 stores light spectrum information for each component that may be included in the harmful component.
  • the processor 210 controls the analysis unit 230 to analyze the hyperspectral image to derive at least one of the components and concentrations of harmful component particles in the external air introduced into the air distribution unit 60 .
  • the analysis unit 230 may analyze the components of harmful components in the external air introduced into the air distribution unit 60 by using the information stored in the database 260 .
  • noise measurement module 190 hyperspectral camera

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 다양한 유해성분에 대한 농도 및 성분 분석이 가능한 유해성분 측정 장치에 관한 것으로, 분광기를 통해 획득된 광 스펙트럼 또는 초분광 카메라를 통해 획득된 초분광 영상을 분석함으로써, 측정 대상 유해성분에 대한 농도 및 성분을 분석할 수 있는 효과가 있다.

Description

유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템
본 발명은 유해성분의 농도 및 성분 분석이 가능한 측정 장치에 관한 것으로, 측정 장치 보다 상세하게는 공기 중에 존재하는 유해성분의 농도를 측정하고, 유해성분 내에 포함된 성분들의 분석이 가능한 유해성분측정 장치에 관한 것이다.
최근 들어, 유해성분에 대한 관심도가 증가하여 유해성분 관련 법안이 증가하고 있다.
예를 들어, 대표적인 유해성분인 미세먼지와 관련된 공기청정기, 마스크 등과 같은 제품들의 시장이 급격하게 성장하고 있다.
이러한 미세먼지에 대한 정보들은 대부분 미세먼지의 농도만을 알려주고 있는데, 미세먼지의 농도만 중요한 것이 아니라 미세먼지를 구성하고 있는 성분에 따라서 인체에 치명적인 성분이 포함되어 있을 수도 있다.
예를 들어, 유사한 유해성분 농도라 할지라도 유해성분에 포함된 성분이 화학 물질이거나 중금속을 기반으로 한 공장 혹은 산업현장에서 발생한 성분일 경우에는 그 위험수준이 천차만별일 수 있다.
하지만, 기존에 대표적으로 사용하던 유해성분 측정 방법들은 유해성분의 양을 측정하는데 국한되어 있었고, 유해성분의 구성성분까지 측정하는 것에는 한계가 있었다.
또한, 유해성분의 농도 이외에 유해성분 내 구성성분까지 측정하는 장치를 소형 측정 장치로 구현하는 기술은 현재로서는 공개되어 있지 않은 실정이다.
이에, 본 출원인은 유해성분의 농도를 측정하는 것은 물론, 측정된 유해성분을 구성하고 있는 성분까지 파악할 수 있는 장치를 소형으로 구현하여 많은 사람들이 유해성분에 대한 정확한 정보를 획득할 수 있도록 하기 위해 본 발명을 안출하게 되었다.
상술한 바와 같은 문제점을 해결하기 위한 본 발명은 유해성분 입자에 부딪혀 입사되는 광을 이용하여 획득되는 광 스펙트럼을 분석함으로써, 유해성분의 성분 및 농도를 분석하고자 한다.
또한, 본 발명은 초분광 카메라를 통해 유해성분 측정 장치 내로 유입된 외부 공기에 대한 초분광 영상을 획득하고, 이를 분석함으로써 유해성분의 성분 및 농도를 분석하고자 한다.
또한, 본 발명은 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 유해성분 측정모듈의 위치를 결정하고자 한다.
또한, 본 발명은 유해성분의 농도, 성분 분석은 물론, 소음, 온도, 습도, 기압, 조도, 조기화재감지까지 측정이 가능한 유해성분 측정 장치를 제공하고자 한다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 유해성분 측정 장치는, 외부 공기가 유입되어 유통되는 공기 유통부; 상기 공기 유통부의 일정 영역으로 광을 조사하는 발광부; 상기 공기 유통부 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 광 입사부를 포함하며, 상기 입사된 광에 대한 광 스펙트럼을 획득하는 분광기; 및 상기 분광기를 통해 획득된 광 스펙트럼을 기반으로, 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 프로세서를 포함하고, 상기 분광기는, 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 설치 위치가 결정된 것으로 특징으로 한다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 유해성분 측정 장치는, 외부 공기가 유입되어 유통되는 공기 유통부; 상기 공기 유통부의 일정 영역을 촬영하여 상기 일정 영역 내 존재하는 유해성분 입자의 초분광 영상을 획득하는 초분광 카메라; 및 상기 획득된 초분광 영상을 기반으로, 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 분석부를 포함한다.
또한, 상기 유해성분 측정 장치 내로 외부 공기를 유입시키는 적어도 하나의 팬을 포함할 수 있다.
또한, 상기 팬은, 상기 유해성분 측정 장치 내로 외부 공기를 유입시키는 제1 팬; 및 제1 팬에 의해 유입된 외부 공기를 상기 공기 유통부로 유입시키는 제2 팬을 포함하는 것을 특징으로 한다.
또한, 상기 유해성분 측정 장치는, 발광부, 분광기, 프로세서, 데이터베이스 및 초분광 카메라 중 적어도 하나의 구성을 포함하는 유해성분 측정모듈이 설치되는 케이스를 더 포함하고, 상기 유해성분 측정모듈은 상기 케이스 내 일측에 설치되고, 상기 제1 팬은 상기 케이스 내 타측에 설치되고, 상기 제2 팬보다 풍량 또는 풍속이 높은 것을 특징으로 한다.
또한, 상기 유해성분 측정 장치는, 상기 유해성분 측정 장치 주변에 발생하는 외부 소음의 측정이 가능한 소음측정 모듈; 및 상기 소음측정 모듈의 측정 데이터 및 상기 분석부를 통해 분석된 결과 중 적어도 하나를 서버로 전송하는 통신부를 더 포함할 수 있다.
또한, 상기 유해성분 측정 장치는, 유해성분 내 포함될 수 있는 각 성분에 대한 광 스펙트럼 정보가 저장된 데이터베이스를 더 포함하고, 상기 분석부는, 상기 데이터베이스에 저장된 정보를 기반으로 광 스펙트럼 또는 초분광 영상을 분석하여, 상기 공기 유통부에 유입된 외부 공기 내 유해성분의 성분을 도출하는 것을 특징으로 한다.
또한, 사용자로부터 입력받은 분석 목표 입자의 크기에 따라 상기 분광기 또는 상기 초분광 카메라의 위치가 조절 가능한 위치조절수단을 더 포함하는 것을 특징으로 한다.
또한, 상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 유해성분 측정 시스템은, 유해성분 측정 장치를 이용한 유해성분 측정 시스템에 있어서, 상기 유해성분 측정 장치는 외부 공기가 유입되어 유통되는 공기 유통부; 상기 공기 유통부의 일정 영역으로 광을 조사하는 발광부; 상기 공기 유통부 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 광 입사부를 포함하며, 상기 입사된 광에 대한 광 스펙트럼을 획득하는 분광기; 및 상기 분광기를 통해 획득된 광 스펙트럼 데이터를 서버로 전송하는 통신부를 포함하고, 상기 분광기는, 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 설치 위치가 결정되고, 상기 서버는, 상기 유해성분 측정 장치로부터 수신된 광 스펙트럼 데이터를 분석하여 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 것을 특징으로 한다.
또한, 상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 유해성분 측정 시스템은, 유해성분 측정 장치를 이용한 유해성분 측정 시스템에 있어서, 상기 유해성분 측정 장치는, 외부 공기가 유입되어 유통되는 공기 유통부; 상기 공기 유통부의 일정 영역을 촬영하여 상기 일정 영역 내 존재하는 유해성분 입자의 초분광 영상을 획득하는 초분광 카메라; 및 상기 획득된 초분광 영상을 서버로 전송하는 통신부를 포함하고, 상기 서버는, 상기 유해성분 측정 장치로부터 수신된 초분광 영상을 분석하여 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 것을 특징으로 한다.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 다른 시스템 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체가 더 제공될 수 있다.
상기와 같은 본 발명에 따르면, 유해성분 입자에 부딪혀 입사되는 광을 이용하여 획득되는 광 스펙트럼을 기반으로 유해성분의 성분을 분석할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 초분광 카메라를 통해 유해성분 측정 장치 내로 유입된 외부 공기에 대한 초분광 영상을 획득함으로써, 이를 기반으로 유해성분의 성분 및 농도 중 적어도 하나를 분석할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 유해성분 측정모듈의 위치를 결정함으로써, 분석하고자 하는 먼지 입자의 크기를 결정할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 유해성분 측정 장치는 소음측정도 가능한 효과를 발휘하게 된다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1 및 도 2는 본 발명의 실시예에 따른 유해성분 측정 장치의 블록도이다.
도 3은 본 발명의 실시예에 따른 유해성분 측정 장치가 천장에 설치된 것을 예시한 도면이다.
도 4는 본 발명의 실시예에 따른 유해성분 측정 장치의 내부를 예시한 도면이다.
도 5는 본 발명의 실시예에서 제1 팬과 제2 팬의 위치를 설명하기 위해 유해성분 측정 장치의 내부를 예시한 도면이다.
도 6은 본 발명의 실시예에서 분광기가 광 스펙트럼을 획득하는 것을 예시한 도면이다.
도 7은 본 발명의 실시예에서 초분광 카메라가 유해성분 입자의 초분광 영상을 획득하는 것을 예시한 도면이다.
도 8 및 도 9는 본 발명의 실시예에 따른 유해성분 측정 시스템의 블록도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1 및 도 2는 본 발명의 실시예에 따른 유해성분 측정 장치(100)의 블록도이다.
도 3은 본 발명의 실시예에 따른 유해성분 측정 장치(100)가 천장에 설치된 것을 예시한 도면이다.
도 4는 본 발명의 실시예에 따른 유해성분 측정 장치(100)의 내부를 예시한 도면이다.
도 5는 본 발명의 실시예에서 제1 팬(143)과 제2 팬(147)의 위치를 설명하기 위해 유해성분 측정 장치(100)의 내부를 예시한 도면이다.
도 6은 본 발명의 실시예에서 분광기(120)가 광 스펙트럼을 획득하는 것을 예시한 도면이다.
도 7은 본 발명의 실시예에서 초분광 카메라(190)가 유해성분 입자의 초분광 영상을 획득하는 것을 예시한 도면이다.
도 1과 도 3 내지 도 6을 참조하여 본 발명의 실시예에 따른 유해성분 측정 장치(100)에 대해서 설명하도록 한다.
본 발명의 실시예에서 유해성분 측정 장치(100)는 다양한 유해성분, 유해한 가스, 미세먼지 등에 대한 측정, 분석을 수행할 수 있다.
유해성분, 유해가스에 대한 예를 들면, COx, SOx, NOx, TVOC, O3 등과 같은 성분들이 해당될 수 있으나, 이에 한정되는 것은 아니며 일정 정도의 입자크기를 갖고 있는 유해성분이라면 무엇이든 측정, 분석 대상이 될 수 있다.
본 발명의 실시예에 따른 유해성분 측정 장치(100)는 프로세서(110), 분광기(120), 분석부(130), 팬(140), 발광부(150), 데이터베이스(160), 통신부(170), 소음측정 모듈(180), 케이스(40), 뚜껑(45), 홀(55), 공기 유통부(60)를 포함한다.
다만, 몇몇 실시예에서 유해성분 측정 장치(100), 유해성분 측정장치는 도 1에 도시된 구성요소보다 더 적은 수의 구성요소나 더 많은 구성요소를 포함할 수도 있다.
또한, 몇몇 실시예에서, 도 3 내지 도 5와 같이 뚜껑(45), 홀(55), 공기 유통부(60)와 같은 구성들은 유해성분 측정 장치(100)의 케이스(40), 프레임 자체에 형성되도록 구성될 수도 있고, 그 외에 프로세서(110), 분광기(120) 등과 같은 다른 구성들은 유해성분 측정 모듈(90)로 구성될 수도 있다.
일 실시예로, 유해성분 측정 장치(100)는 유해성분 측정 모듈(90)을 포함하며, 유해성분 측정 모듈(90)은 공기 유통부(60), 발광부(150), 분광기(120), 데이터베이스(160), 분석부(130) 및 프로세서(110)를 포함할 수 있다.
또 다른 예로, 유해성분 측정 장치(100)는 유해성분 측정 모듈(90)을 포함하며, 유해성분 측정 모듈(90)은 공기 유통부(60), 초분광 카메라(190), 데이터베이스(160), 분석부(130) 및 프로세서(110)를 포함할 수 있다.
공기 유통부(60)는 유해성분 측정을 위한 외부 공기가 유입되어 유통된다.
발광부(150)는 공기 유통부(60)의 일정 영역으로 광을 조사(발광)하며, 적어도 하나의 광원을 포함할 수 있다.
일 실시예로, 발광부(150)는 광원에서 방출되는 광을 집광시키는 렌즈부(미도시), 혹은 특정 파장 영역대의 광을 필터링할 수 있는 필터가 포함될 수 있다.
발광부(150)와 공기 유통부(60)는 발광부(150)에서 조사된 광이 공기 유통부(60)에 수직으로 입사되도록 배치될 수 있으나, 이에 한정되는 것은 아니다.
분광기(120, Spectrometer)는 공기 유통부(60) 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 광 입사부(123)를 포함하며, 입사된 광에 대한 광 스펙트럼을 획득한다.
이때, 발광부(150)로부터 조사된 광이 공기 유통부(60) 내 유해성분 입자에 부딪혀 경로가 변경되는 것은 빛이 산란되는 것을 의미한다.
또한, 위에서 언급한 바와 같이 발광부(150)는 공기 유통부(60)에 수직으로 광을 조사하게 되는데, 이때 공기 유통부(60)에 존재하는 외부 공기 내에는 유해성분 입자가 포함되어 있기 때문에 조사된 광은 유해성분에 부딪히게 되고, 광 경로가 변경된다.
이때, 광이 부딪히는 입자 크기에 따라서 광의 경로가 달라지게 되는데, 본 발명의 실시예에 따른 유해성분 측정 장치(100)는 이러한 점을 이용하여 측정하고자 하는 분석 목표 입자의 크기를 결정할 수 있게 된다.
또한, 광이 부딪히는 입자 크기에 따라서 광 경로가 달라질 수 있기 때문에, 본 발명의 실시예에서 분광기(120)는 이러한 점을 이용하여 측정하고자 하는 분석 목표 입자의 크기를 결정할 수 있게 된다.
이를 위해서, 분광기(120)는 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라서 유해성분 측정 장치(100) 내 설치 위치가 결정될 수 있다.
일 실시예로, 보다 정밀도를 높이기 위해서 광 입사부(123)의 크기가 결정될 수도 있다.
따라서, 유해성분에 해당하지 않는 더 큰 입자들 혹은 더 작은 입자들에 부딪힌 광은 광 경로가 다른 각도로 변경되기 때문에 광 입사부(123)를 통과하지 못하게 된다.
제어부는 분석부(130)를 제어하여, 분광기(120)를 통해 획득된 광 스펙트럼을 분석하여 공기 유통부(60)에 유입된 외부 공기 내 유해성분 입자의 성분 및 농도 중 적어도 하나를 분석한다.
보다 상세하게는, 분석부(130)는 유해성분 내 포함될 수 있는 각 성분에 대한 광 스펙트럼 정보가 저장된 데이터베이스(160)를 더 포함한다.
그리고, 제어부는 분석부(130)를 통해 데이터베이스(160)에 저장된 정보를 기반으로 분광기(120)를 통해 획득된 광 스펙트럼을 분석하여, 공기 유통부(60)에 유입된 외부 공기 내 유해성분의 성분, 농도를 도출하는 것을 특징으로 한다.
상술한 설명과 함께 도 6을 참조하면, 공기 유통부(60)로 수직으로 조사된 광이 공기 유통부(60) 내에 존재하는 유해성분 입자에 부딪혀 소정각도 광 경로가 변경되었고, 광 경로가 변경된 광이 분광기(120)의 광 입사부(123)를 통과하여 프리즘(127)을 거치게 됨으로써 분광기(120)가 광 스펙트럼을 획득하게 된다.
상술한 바와 같이, 측정하고자 하는 분석 목표 입자의 크기에 해당하는 유해성분 입자에 부딪힌 광만 광 입사부(123)로 입사하게 되고, 분광기(120)가 광 입사부(123)로 입사된 광의 광 스펙트럼을 획득하게 되므로, 검출하고자 하는 크기의 유해성분 입자들이 어떠한 성분으로 구성되어 있는지 정확하게 도출할 수 있는 효과를 발휘하게 된다.
도 3은 유해성분 측정 장치(100)에 뚜껑(45)이 덮어져 있고, 도 4는 도 3에서 뚜껑(45)이 제거되어 유해성분 측정 장치(100) 내부를 예시한 도면이다.
유해성분 측정 장치(100)는 외부 공기를 유해성분 측정 장치(100) 내로 유입시키는 적어도 하나의 팬(140, Fan)을 포함한다.
이때, 팬(140)은 외부 공기를 유해성분 측정 장치(100) 내로 유입시키는 제1 팬(143), 그리고 제1 팬(143)에 의해 유입된 외부 공기를 공기 유통부(60)로 유입시키는 제2 팬(147)을 포함할 수 있다.
보다 상세하게는, 제1 팬(143)은 케이스(40)에 설치된 구성이고, 제2 팬(147)은 유해성분 측정모듈에 설치된 구성일 수 있다.
또한, 유해성분 측정 장치(100)의 뚜껑(45)에는 제1 팬(143)에 의해 외부 공기가 유입될 수 있도록 홀(55)이 형성되어 있다.
또한, 유해성분 측정 장치(100)는 유해성분 측정 장치(100) 주변에서 발생하는 외부 소음의 측정이 가능한 소음측정 모듈(180)을 더 포함할 수 있다.
이때, 소음측정 모듈(180)은 프로세서(110)에 의해 제어되지만, 팬(140)에서 발생되는 소음을 최소화하기 위하여 유해성분 측정모듈과 별개로 구성될 수 있다. 예를 들어, 도 5에서 A로 도시된 영역에 포함될 수 있다.
통신부(170) 또한, 유해성분 측정모듈의 공간 확보를 위해서 유해성분 측정모듈과 별개로 구성될 수 있고, A로 도시된 영역에 포함될 수 있다.
위와 같이 예시한 소음측정 모듈(180), 통신부(170)의 배치 위치는 유해성분 측정 장치(100) 내 공간 활용도와 측정 효율을 위한 예시일 뿐, 이에 한정되는 것은 아니다.
도 5는 도 4의 내부도를 보다 상세하게 도시하여, 제1 팬(143)과 제2 팬(147)의 위치를 예시하기 위한 도면으로 도 5를 참조하면, 유해성분 측정모듈은 케이스(40) 내 일측에 설치되고, 제1 팬(143)은 케이스(40) 내 타측에 설치된다.
그리고, 제1 팬(143)과 제2 팬(147)은 풍량이 같거나 다를 수 있다.
보다 상세하게는, 제1 팬(143)은 제2 팬(147)보다 풍량 또는 풍속이 높을 수 있다.
*이와 같이 설계된 이유는, 외부 공기를 유해성분 측정 장치(100) 내로(정확하게는 공기 유통부(60) 내로) 유입시키기 위한 것이다.
그리고, 제1 팬(143)에 의해서 외부 공기가 유해성분 측정 장치(100) 내부로 유입되었기 때문에, 제1 팬(143)보다 풍량 또는 풍속이 낮은 제2 팬(147)을 이용하여 공기 유통부(60)로 외부 공기를 유입시키게 된다.
이때, 제1 팬(143)과 유해성분 측정모듈을 서로 반대편에 배치하는 것은 풍속이 너무 빠른 경우에는 이로 인해 측정 오차가 발생할 수도 있으므로, 이러한 가능성을 배제시키고 측정 정확도를 확보하기 위한 것이다.
또한, 일단 유해성분 측정 장치(100) 내부로 유입된 외부 공기를 제2 팬(147)이 제1 팬(143)보다 다소 약하게 공기 유통부(60)로 유입시키기 때문에, 발광부(150), 분광기(120)를 이용하여 높은 정확도로 광 스펙트럼을 측정할 수 있게 된다.
일 실시예로, 유해성분 측정 장치(100)는 일정시간 주기 혹은 외부로부터 수신된 측정 요청신호에 의해 유해성분 측정이 시작될 수 있으며, 우선 제1 팬(143)과 제2 팬(147)을 작동시켜 공기 유통부(60)로 외부 공기를 유입시키고, 제1 팬(143), 제2 팬(147)을 정지 혹은 풍속을 감소시키고 발광부(150)를 통해 광을 조사하여 유해성분을 측정할 수도 있다.
이와 같은 프로세스로 진행하게 되면, 공기 유통부(60) 내에 이미 외부 공기는 유입되어 있고 공기가 유통되는 속도는 감소된 상태에서 측정을 시작하기 때문에 보다 높은 정확도로 측정할 수 있게 된다.
또한, 유해성분 측정 장치(100)는 공기 유통부(60)에 유입되어 측정이 완료된 외부 공기가 배출되는 배출구(미도시)가 형성되어 있다. 이때, 공기 유입부에 유입된 외부 공기는 제1 팬(143)과 제2 팬(147)의 풍력에 의해서 배출구를 통해 외부로 배출된다.
소음측정 모듈(180)은 유해성분 측정 장치(100) 주변에 발생하는 외부 소음의 측정이 가능하다.
통신부(170)는 소음측정 모듈(180)의 측정 데이터, 및 분석부(130)를 통해 분석된 결과 중 적어도 하나를 서버로 전송할 수 있다.
또한, 도 2를 참조하면, 본 발명의 실시예에 따른 유해성분 측정 장치(100)는 프로세서(110), 분석부(130), 팬(140), 데이터베이스(160), 통신부(170), 소음측정 모듈(180) 및 초분광 카메라(190)를 포함한다.
도 1과 도 2에 도시된 유해성분 측정 장치(100)의 차이점은 도 1의 유해성분 측정장치는 발광부(150), 분광기(120)의 구성을 이용하여 유해성분 입자에 대한 광 스펙트럼을 획득하는 것이고, 도 2의 유해성분 측정장치는 초분광 카메라(190)를 이용하여 유해성분 입자의 초분광 영상을 획득한다는 것이다.
따라서, 도 2에 도시된 유해성분 측정 장치(100)는 발광부(150), 분광기(120)의 구성을 초분광 카메라(190)가 대치할 뿐, 나머지 구성들은 동일하게 포함될 수 있다.
초분광 카메라(190)는 공기 유통부(60)의 일정 영역을 촬영하여 상기 일정 영역 내 존재하는 유해성분 입자의 초분광 영상을 획득한다.
프로세서(110)는 분석부(130)를 통해 초분광 영상을 기반으로 공기 유통부(60)에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출한다.
일 실시예로, 본 발명의 실시예에 따른 유해성분 측정 장치(100)는 온습도 측정 센서, 기압 측정 센서, 조도 측정 센서, 소음측정 센서 및 화재감지 센서 등을 더 포함할 수 있다.
상세하게는, 화재감지 센서는 장치(100)로부터 일정 거리 내에서 발생하는 화재의 감지가 가능하며, 소음측정 센서는 장치(100) 주변에 발생하는 외부 소음의 측정이 가능하고, 각각의 센서들은 기 설정된 주기마다 측정값을 프로세서(110)로 제공할 수 있다.
이 같은 구성을 통해서, 본 발명의 실시예에 따른 유해성분 측정 장치(100)는 유해성분에 대한 측정, 분석은 물론 온습도, 기압, 조도, 소음 등을 측정하는 하는 것은 물론 화재까지 감지할 수 있는 기능을 포함하고 있다.
도 8 및 도 9는 본 발명의 실시예에 따른 유해성분 측정 시스템(10)의 블록도이다.
도 1 내지 도 7을 통해 설명하였던 유해성분 측정 장치(100)와 도 8 및 도 9에 도시된 유해성분 측정 시스템(10)의 차이는 아래와 같다.
유해성분 측정 시스템(10)에서 유해성분 측정 장치(100)는 유해성분을 측정하는 역할만 담당하여, 측정된 광 스펙트럼 또는 초분광 영상을 서버로 전송하기 때문에, 분석부(130) 및 데이터베이스(160)의 구성은 서버에 포함될 수 있다.
상세하게는, 도 8을 참조하면, 유해성분 측정 시스템(10)은 유해성분 측정 장치(100) 및 유해성분 분석 서버(200)를 포함한다.
유해성분 측정 장치(100)는 공기 유통부(60), 발광부(150), 프로세서(110), 분광기(120), 팬(140), 통신부(170) 및 소음측정 모듈(180) 등을 포함한다.
공기 유통부(60)는 외부 공기가 유입되어 유통된다.
팬(140)은 유해성분 측정 장치(100) 내로 외부 공기를 유입시킨다.
발광부(150)는 공기 유통부(60)의 일정 영역으로 광을 조사한다.
분광기(120)는 공기 유통부(60) 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 입사부를 포함하며, 입사된 광에 대한 광 스펙트럼을 획득한다.
프로세서(110)는 유해성분 측정 장치(100) 내 구성들의 제어를 담당하며, 분석부(130)를 제어하여 분광기(120)를 통해 획득된 광 스펙트럼을 기반으로, 공기 유통부(60)에 유입된 외부 공기 내 유해성분 입자의 성분 및 농도 중 적어도 하나를 도출한다.
또한, 분광기(120)는 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 설치 위치가 결정될 수 있다.
통신부(170)는 분광기(120)를 통해 획득된 광 스펙트럼 데이터를 서버로 전송한다.
유해성분 분석 서버(200)는 프로세서(210), 분석부(230), 데이터베이스(260) 및 통신부(270)를 포함한다.
통신부(270)는 유해성분 측정 장치(100)의 통신부(170)로부터 광 스펙트럼 데이터를 수신한다.
데이터베이스(260)는 유해성분 내 포함될 수 있는 각 성분에 대한 광 스펙트럼 정보가 저장되어 있다.
프로세서(210)는 분석부(230)를 제어하여, 광 스펙트럼 데이터를 분석하여 공기 유통부(60)에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출한다.
보다 상세하게는, 분석부(230)는 데이터베이스(260)에 저장된 정보를 이용하여 공기 유통부(60)에 유입된 외부 공기 내 유해성분의 성분을 분석할 수 있다.
도 9를 참조하면, 유해성분 측정 시스템(10)은 유해성분 측정 장치(100) 및 유해성분 분석 서버(200)를 포함한다.
유해성분 측정 장치(100)는 공기 유통부(60), 프로세서(110), 팬(140), 초분광 카메라(190), 통신부(170) 및 소음측정 모듈(180) 등을 포함한다.
공기 유통부(60)는 외부 공기가 유입되어 유통된다.
팬(140)은 유해성분 측정 장치(100) 내로 외부 공기를 유입시킨다.
프로세서(110)는 유해성분 측정 장치(100) 내 구성들의 제어를 담당하며,
프로세서(110)는 초분광 카메라(190)를 제어하여, 공기 유통부(60)의 일정 영역을 촬영하여, 해당 영역 내에 존재하는 유해성분 입자의 초분광 영상을 획득한다.
통신부(170)는 초분광 카메라(190)를 통해 획득된 초분광 영상을 서버로 전송한다.
유해성분 분석 서버(200)는 프로세서(210), 분석부(230), 데이터베이스(260) 및 통신부(270)를 포함한다.
통신부(270)는 유해성분 측정 장치(100)의 통신부(170)로부터 초분광 영상을 수신한다.
데이터베이스(260)는 유해성분 내 포함될 수 있는 각 성분에 대한 광 스펙트럼 정보가 저장되어 있다.
프로세서(210)는 분석부(230)를 제어하여, 초분광 영상을 분석하여 공기 유통부(60)에 유입된 외부 공기 내 유해성분 입자의 성분 및 농도 중 적어도 하나를 도출한다.
보다 상세하게는, 분석부(230)는 데이터베이스(260)에 저장된 정보를 이용하여 공기 유통부(60)에 유입된 외부 공기 내 유해성분의 성분을 분석할 수 있다.
상술한 차이점 이외의 구성들은 도 1 내지 도 7을 통해 설명한 유해성분 측정 장치(100)와 동일하므로, 중복되는 설명은 생략하도록 한다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
10: 유해성분 측정 시스템
40: 케이스 45: 뚜껑
55: 홀 60: 공기 유통부
70: 소음측정 모듈 90: 유해성분 측정 모듈
100: 유해성분 측정 장치 110: 프로세서
120: 분광기 123: 광 입사부
127: 프리즘 130: 분석부
140: 팬 143: 제1 팬
147: 제2 팬 150: 발광부
160: 데이터베이스 170: 통신부
180: 소음측정 모듈 190: 초분광 카메라
200: 유해성분 분석 서버 230: 분석부
260: 데이터베이스 270: 통신부

Claims (10)

  1. 외부 공기가 유입되어 유통되는 공기 유통부;
    상기 공기 유통부의 일정 영역으로 광을 조사하는 발광부;
    상기 공기 유통부 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 광 입사부를 포함하며, 상기 입사된 광에 대한 광 스펙트럼을 획득하는 분광기; 및
    상기 분광기를 통해 획득된 광 스펙트럼을 기반으로, 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 프로세서를 포함하고,
    상기 분광기는, 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 설치 위치가 결정된 것으로 특징으로 하는,
    유해성분 측정 장치.
  2. 외부 공기가 유입되어 유통되는 공기 유통부;
    상기 공기 유통부의 일정 영역을 촬영하여 상기 일정 영역 내 존재하는 유해성분 입자의 초분광 영상을 획득하는 초분광 카메라; 및
    상기 획득된 초분광 영상을 기반으로, 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 분석부를 포함하는,
    유해성분 측정 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 유해성분 측정 장치 내로 외부 공기를 유입시키는 적어도 하나의 팬을 포함하는,
    유해성분 측정 장치.
  4. 제3항에 있어서,
    상기 팬은,
    상기 유해성분 측정 장치 내로 외부 공기를 유입시키는 제1 팬; 및
    제1 팬에 의해 유입된 외부 공기를 상기 공기 유통부로 유입시키는 제2 팬을 포함하는 것을 특징으로 하는,
    유해성분 측정 장치.
  5. 제4항에 있어서,
    상기 유해성분 측정 장치는,
    발광부, 분광기, 프로세서, 데이터베이스 및 초분광 카메라 중 적어도 하나의 구성을 포함하는 유해성분 측정모듈이 설치되는 케이스를 더 포함하고,
    상기 유해성분 측정모듈은 상기 케이스 내 일측에 설치되고,
    상기 제1 팬은 상기 케이스 내 타측에 설치되고, 상기 제2 팬보다 풍량 또는 풍속이 높은 것을 특징으로 하는,
    유해성분 측정 장치.
  6. 제1항 또는 제2항에 있어서,
    상기 유해성분 측정 장치는,
    상기 유해성분 측정 장치 주변에 발생하는 외부 소음의 측정이 가능한 소음측정 모듈; 및
    상기 소음측정 모듈의 측정 데이터 및 상기 분석부를 통해 분석된 결과 중 적어도 하나를 서버로 전송하는 통신부를 더 포함하는,
    유해성분 측정 장치.
  7. 제1항 또는 제2항에 있어서,
    상기 유해성분 측정 장치는,
    유해성분 내 포함될 수 있는 각 성분에 대한 광 스펙트럼 정보가 저장된 데이터베이스를 더 포함하고,
    상기 분석부는,
    상기 데이터베이스에 저장된 정보를 기반으로 광 스펙트럼 또는 초분광 영상을 분석하여, 상기 공기 유통부에 유입된 외부 공기 내 유해성분의 성분을 도출하는 것을 특징으로 하는,
    유해성분 측정 장치.
  8. 제1항 또는 제2항에 있어서,
    사용자로부터 입력받은 분석 목표 입자의 크기에 따라 상기 분광기 또는 상기 초분광 카메라의 위치가 조절 가능한 위치조절수단을 더 포함하는 것을 특징으로 하는,
    유해성분 측정 장치.
  9. 유해성분 측정 장치를 이용한 유해성분 측정 시스템에 있어서,
    상기 유해성분 측정 장치는
    외부 공기가 유입되어 유통되는 공기 유통부;
    상기 공기 유통부의 일정 영역으로 광을 조사하는 발광부;
    상기 공기 유통부 내 유해성분 입자에 부딪혀 경로가 변경된 광이 입사되는 광 입사부를 포함하며, 상기 입사된 광에 대한 광 스펙트럼을 획득하는 분광기; 및
    상기 분광기를 통해 획득된 광 스펙트럼 데이터를 서버로 전송하는 통신부를 포함하고,
    상기 분광기는, 입자 크기에 따라 달라지는 광 경로의 각도를 고려하여, 분석 목표 입자의 크기에 따라 설치 위치가 결정되고,
    상기 서버는,
    상기 유해성분 측정 장치로부터 수신된 광 스펙트럼 데이터를 분석하여 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 것을 특징으로 하는,
    유해성분 측정 시스템.
  10. 유해성분 측정 장치를 이용한 유해성분 측정 시스템에 있어서,
    상기 유해성분 측정 장치는,
    외부 공기가 유입되어 유통되는 공기 유통부;
    상기 공기 유통부의 일정 영역을 촬영하여 상기 일정 영역 내 존재하는 유해성분 입자의 초분광 영상을 획득하는 초분광 카메라; 및
    상기 획득된 초분광 영상을 서버로 전송하는 통신부를 포함하고,
    상기 서버는, 상기 유해성분 측정 장치로부터 수신된 초분광 영상을 분석하여 상기 공기 유통부에 유입된 외부 공기 내 유해성분 입자의 성분과 농도를 도출하는 것을 특징으로 하는,
    유해성분 측정 시스템.
PCT/KR2021/003449 2020-03-20 2021-03-19 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템 WO2021187953A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/821,753 US20220404201A1 (en) 2020-03-20 2022-08-23 Hazardous ingredient measuring apparatus and hazardous ingredient analyzing system using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200034577 2020-03-20
KR10-2020-0034577 2020-03-20
KR10-2021-0010325 2021-01-25
KR1020210010325A KR102421489B1 (ko) 2020-03-20 2021-01-25 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/821,753 Continuation US20220404201A1 (en) 2020-03-20 2022-08-23 Hazardous ingredient measuring apparatus and hazardous ingredient analyzing system using same

Publications (1)

Publication Number Publication Date
WO2021187953A1 true WO2021187953A1 (ko) 2021-09-23

Family

ID=77771500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003449 WO2021187953A1 (ko) 2020-03-20 2021-03-19 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템

Country Status (3)

Country Link
US (1) US20220404201A1 (ko)
KR (1) KR102522175B1 (ko)
WO (1) WO2021187953A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532174B1 (ko) * 2014-07-08 2015-06-26 김영웅 공기질측정장치와 무선단말기를 연동한 공기질 알림장치 및 그 공기질 알림방법
KR20170135019A (ko) * 2016-05-30 2017-12-08 주식회사 파이퀀트 대상체의 성분 분석이 가능한 분광 장치 및 이를 포함하는 전자 장치
US20180160510A1 (en) * 2016-12-05 2018-06-07 Abl Ip Holding Llc Lighting device incorporating a hyperspectral imager as a reconfigurable sensing element
KR20180060307A (ko) * 2016-11-28 2018-06-07 주식회사 히타치엘지 데이터 스토리지 코리아 먼지 센서
KR20190084691A (ko) * 2018-01-09 2019-07-17 채규욱 광학식 미세먼지 센서

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110638A (ja) * 1990-08-31 1992-04-13 Hitachi Ltd 粒子計測装置
JP2000258333A (ja) * 1999-03-11 2000-09-22 Mitsubishi Heavy Ind Ltd 粒子状物質の分析システム
US20140226158A1 (en) * 2004-03-06 2014-08-14 Michael Trainer Methods and apparatus for determining particle characteristics
EP1784912A4 (en) * 2004-07-30 2012-03-14 Biovigilant Systems Inc METHOD AND SYSTEM FOR DETECTING PATHOGENS AND PARTICLES
KR100910871B1 (ko) * 2007-09-20 2009-08-06 (주)다산알앤디 Co₂간섭을 배제한 굴뚝용 실시간 수분측정방법 및 장치
GB0808385D0 (en) * 2008-05-08 2008-06-18 Naneum Ltd A condensation apparatus
KR20100101305A (ko) * 2009-03-09 2010-09-17 이중하 적외선 파장 분할 영상 이미지를 이용한 분광기
KR101088863B1 (ko) * 2010-05-19 2011-12-06 (주)에이치시티 입자 측정 장치
KR102133715B1 (ko) 2018-07-20 2020-07-14 순천향대학교 산학협력단 미세먼지 측정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532174B1 (ko) * 2014-07-08 2015-06-26 김영웅 공기질측정장치와 무선단말기를 연동한 공기질 알림장치 및 그 공기질 알림방법
KR20170135019A (ko) * 2016-05-30 2017-12-08 주식회사 파이퀀트 대상체의 성분 분석이 가능한 분광 장치 및 이를 포함하는 전자 장치
KR20180060307A (ko) * 2016-11-28 2018-06-07 주식회사 히타치엘지 데이터 스토리지 코리아 먼지 센서
US20180160510A1 (en) * 2016-12-05 2018-06-07 Abl Ip Holding Llc Lighting device incorporating a hyperspectral imager as a reconfigurable sensing element
KR20190084691A (ko) * 2018-01-09 2019-07-17 채규욱 광학식 미세먼지 센서

Also Published As

Publication number Publication date
US20220404201A1 (en) 2022-12-22
KR20220103084A (ko) 2022-07-21
KR102522175B1 (ko) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2014163375A1 (ko) 기판의 이물질 검사방법
CA2018190A1 (en) Remote sensing gas analyzer
CA2077707A1 (en) Optical smoke detector with active self-monitoring
WO2016024652A1 (ko) 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치
WO2019045488A1 (ko) 검출기
WO2020106036A1 (en) Multimodal dust sensor
EP3850333A1 (en) Multimodal dust sensor
WO2021187953A1 (ko) 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템
WO2020235914A1 (ko) 피부 상태 측정 및 케어용 디바이스, 및 이를 포함하는 피부 상태 측정 및 케어 시스템
WO2015174562A1 (ko) 오염물질 모니터링 장치
WO2016140494A1 (en) Apparatus and method for detecting pollution location and computer readable recording medium
WO2020101280A1 (ko) 다중진단 기능을 갖는 일체형 면역진단 형광 리더기
WO2015126111A1 (ko) 그래핀의 전도성 검사 장치 및 검사 방법
WO2015080410A1 (ko) 가스 검출 장치 및 가스 검출 방법
WO2024085437A1 (ko) 인-챔버 타입 박막 분석 장치
WO2020226273A1 (ko) 가상의 그리드 선을 이용한 미세 입자 계수용 이미지 센서 패키지, 미세 입자 계수 시스템 및 방법
WO2014137123A1 (ko) 시료 분석을 위한 광경로 자동조절 방법 및 이를 포함하는 시료 분석 방법과 그 장치.
WO2018097543A1 (ko) 화염 진단 장치 및 이에 의한 화염 제어방법
WO2018062963A2 (ko) 유동 채널을 갖는 렌즈프리 cmos 광 어레이 센서 패키지 모듈의 유체흐름 특성 평가 방법
WO2022098061A1 (ko) 바이오에어로졸 제거 성능 평가 시스템 및 방법
WO2020032319A1 (ko) 먼지 측정 장치
WO2021210844A1 (ko) 먼지센서
WO2024101857A1 (ko) 컬러 조명과 카메라를 이용한 도포 농도 검사 장치 및 그 방법
WO2016195464A2 (ko) 의료용 복합 이미징 시스템
KR102421489B1 (ko) 유해성분 측정 장치 및 이를 이용한 유해성분 분석 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21771807

Country of ref document: EP

Kind code of ref document: A1