WO2021187556A1 - Optical film laminate, and polarizing plate laminate and display that use same - Google Patents

Optical film laminate, and polarizing plate laminate and display that use same Download PDF

Info

Publication number
WO2021187556A1
WO2021187556A1 PCT/JP2021/011057 JP2021011057W WO2021187556A1 WO 2021187556 A1 WO2021187556 A1 WO 2021187556A1 JP 2021011057 W JP2021011057 W JP 2021011057W WO 2021187556 A1 WO2021187556 A1 WO 2021187556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
layer
optical film
film laminate
laminate
Prior art date
Application number
PCT/JP2021/011057
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 仁英
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to CN202180021014.XA priority Critical patent/CN115335735A/en
Priority to JP2022508430A priority patent/JPWO2021187556A1/ja
Publication of WO2021187556A1 publication Critical patent/WO2021187556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • Thin displays such as conventional liquid crystal displays and organic EL displays have been used in various modes with their widespread use.
  • the collective unit panel which is the main part of the instrument panel in automobiles, that is, a part of the display system of the meter cluster panel or the entire panel has been made into a thin display, and the center information display (CID) has been made into a thin display.
  • CID center information display
  • Black (dark) interiors are mainly used for the interior of automobiles to prevent diplomatic reflection, but from the viewpoint of design, the front plate, which is the outermost surface of the image display part of the thin display, and the periphery of the front plate Seamless (neutral gray) is used to make it difficult to see the boundary with the material (interior, etc.) and to recognize the existence of the front panel.
  • the front plate of the thin display is corrected with black to make the boundary of the thin display inconspicuous (Patent Document 1).
  • Patent Document 1 The seamlessness proposed in Patent Document 1 is performed by adjusting the color of the front plate of the thin display with a black pigment or dye, so that the transmittance of light emitted from the thin display is reduced and the display is lit. The visibility of the time is reduced. Therefore, it is necessary to take measures such as increasing the backlight output of the display to ensure visibility.
  • the present invention is an optical film laminate capable of suppressing a decrease in visibility when the display is lit and causing blurring of the screen, and making it seamless with respect to the peripheral material of the display in which a white or light color is used.
  • the purpose is to provide.
  • the optical film laminate of the present invention is characterized by having a reflective polarizer layer and a diffusing element layer, and is characterized in that it is used for a display. That is, the present invention is as follows.
  • the present invention (1) An optical film laminate for a display used by being directly or indirectly laminated with a polarizing plate (A).
  • the display includes a display panel device.
  • the polarizing plate (A) is laminated on the visual side of the display panel device directly or via another layer (b).
  • the reflective polarizer layer and the diffusing element layer are laminated directly or via another layer (a).
  • the diffuser layer is arranged on the visual side of the reflective polarizer layer.
  • the optical film laminate is laminated directly on the visible side of the polarizing plate (A) or via another layer (c).
  • the optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer have a relationship of 0 ⁇ 30 ° or 180 ⁇ 30 °.
  • the reflective polarizer layer is an optical film laminate characterized by reflecting polarized light orthogonal to the transmission axis of the polarizing plate (A).
  • the reflective polarizer layer includes a first polymer layer and a second polymer layer.
  • the optical film laminate according to the invention (1), wherein either the first polymer layer or the second polymer layer is a naphthalate-based polymer.
  • the diffusion element layer is any one of a diffusion film in which fine particles are dispersed, a diffusion pressure-sensitive adhesive layer in which fine particles are dispersed, a non-woven fabric, a diffusion film having irregularities on the surface, and a porous film.
  • the optical film laminate is The transmitted light (T1) emitted from the light of the C light source incident from the reflection polarizer layer side of the optical film laminate through the optical film laminate on the diffuser layer side of the optical film laminate is emitted from JIS Z8722: After measuring in a 2 ° field according to the 2009 standard, the transmitted Y value calculated by the C light source is 20 or more and 50 or less.
  • the light of the C light source incident from the diffuser element layer side of the optical film laminate is reflected by the reflection polarizer of the optical film laminate, and the reflected light (reflected light) emitted through the optical film laminate to the diffuser layer side.
  • SCE specular reflection light removal method
  • the present invention (7) A polarizing plate laminate containing the optical film laminate according to any one of the inventions (1) to (6) and the polarizing plate (A).
  • the polarizing plate (A) is laminated on the reflective polarizer layer of the optical film laminate on the side opposite to the diffuser element layer of the optical film laminate, either directly or via another layer (d).
  • the transmission axis of the polarizing plate (A) and the transmission axis of the reflective polarizer layer of the optical film laminate are arranged so as to be in a direction of 0 ⁇ 30 ° or 180 ⁇ 30 °. It is a polarizing plate laminate.
  • the present invention (8)
  • the polarizing plate laminate is The transmitted light (T2) emitted from the light of the C light source incident from the polarizing plate side of the polarizing plate laminate through the polarizing plate laminate on the diffusion element layer side of the polarizing plate laminate is according to JIS Z8722: 2009 standard.
  • the transmitted Y value calculated by the C light source after measuring in the 2 ° field according to the above is 15 or more and 40 or less.
  • the light of the C light source incident from the diffuser element layer side of the polarizing plate laminate is reflected by the reflective polarizer of the polarizing plate laminate, and the reflected light emitted through the polarizing plate laminate side to the diffuser layer side ( R2) is measured in a 2 ° field according to the JIS Z8722: 2009 standard, and then the reflected Y value calculated by the C light source is 40 or more and 80 or less.
  • the present invention (9) A display (D1) having a laminated structure including a display panel device, a polarizing plate (A) on the visual side of the display panel device, and an optical film laminate according to any one of claims 1 to 6.
  • the polarizing plate (A) is laminated directly on the visible side of the display panel device or via another layer (b).
  • the optical film laminate is laminated directly or via another layer (a) on the viewing side of the polarizing plate (A) so that the diffusion element layer is on the viewing side of the reflective polarizer layer.
  • the optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer are oriented in a direction of 0 ⁇ 30 ° or 180 ⁇ 30 °.
  • the reflection polarizer layer is a display characterized by reflecting polarized light orthogonal to the transmission axis of the polarizing plate (A).
  • the present invention (10) A display (D2) having a laminated structure, which includes a display panel device and does not include a polarizing plate on the visual side of the display panel device.
  • the display (D2) includes the polarizing plate laminate of the invention (7) or (8).
  • the polarizing plate laminate is laminated directly on the visible side of the display panel device or via another layer (c).
  • the polarizing plate laminate is a display characterized in that the reflective polarizing element layer of the polarizing plate laminate is arranged so as to be on the visual side of the polarizing plate (A) of the polarizing plate laminate. ..
  • the present invention with respect to a display having a liquid crystal panel or an organic EL panel and having a polarizing plate on the visual side of the liquid crystal panel or the organic EL panel, deterioration of visibility when the display is lit and occurrence of screen blur are suppressed. It is possible to provide an optical film laminate that can be made seamless with respect to a peripheral material of a display in which a white or light color is used.
  • FIG. 1 is a schematic view illustrating an example of arrangement of the optical film laminate of the present invention and the laminated structure of the display when the display includes the polarizing plate (A).
  • FIG. 2 is a schematic view illustrating an example of an arrangement of a polarizing plate laminate including the optical film laminate of the present invention and a laminated structure of the display when the display does not include the polarizing plate (A).
  • FIG. 3 is a schematic view illustrating the measurement of the Y value of the optical film laminate of the present invention.
  • FIG. 4 is a schematic view illustrating the measurement of the Y value of the polarizing plate laminate of the present invention.
  • the display panel device refers to a drive panel for displaying images such as a liquid crystal display panel, an organic EL panel, and a micro LED panel.
  • the drive panel of the liquid crystal display panel means a device including elements necessary for display such as a liquid crystal cell, a backlight, and a color filter, and in the present invention, the display panel device is on the visual side. It shall include the presence or absence of the polarizing plate.
  • the drive panel is a panel such as a liquid crystal cell that controls the polarization of the liquid crystal to transmit and block light (opening and closing the shutter), and a light emitting element such as an organic EL panel and a micro LED panel. Is turned ON / OFF to form an image.
  • a liquid crystal cell is a cell in which liquid crystal molecules are sandwiched between two glass substrates incorporating a transparent electrode, or a cell in which a color filter is further included, and includes an optical film such as a light source and a polarizing plate. Make it not exist.
  • An organic EL panel is a negative electrode such as metal / electron injection layer / electron transport layer / light emitting layer / hole transport layer / hole injection layer / positive electrode such as ITO, and a substrate such as a glass plate or a transparent plastic plate. Therefore, optical films such as polarizing plates and color filters are not included.
  • a polarizing plate is not used in the organic EL display, but some organic EL displays are provided with a polarizing plate on the visual side of the organic EL panel in order to prevent internal reflection.
  • the micro LED panel refers to a substrate on which a micro LED is configured, and a polarizing plate may be used for the purpose of preventing internal reflection or the like.
  • the viewing side means the side of the display close to the viewer. Therefore, when it is the viewing side of the display panel device, the direction of the viewing panel device is indicated.
  • the optical film laminate of the present invention includes a reflective polarizer layer and a diffusing element layer.
  • the reflective polarizer layer and the diffusing element layer are laminated directly or via another layer (a).
  • the optical film laminate of the present invention is used by being directly or indirectly laminated with a polarizing plate (A) arranged to face the visual side of a display panel device included in a display (see FIGS. 1 and 2). ).
  • the optical film laminate of the present invention is used so that the diffusion element layer of the optical film laminate is arranged on the visual side of the reflection polarization element of the optical film laminate (FIG. 1 or 2).
  • the optical film laminate of the present invention is laminated on the viewing side of the polarizing plate (A) directly with the polarizing plate (A) or via another layer (b) (see FIGS. 1 and 2).
  • the optical film laminate of the present invention is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer of the optical film laminate are in a relationship of 0 ⁇ 30 ° or 180 ⁇ 30 °.
  • the reflective polarizer layer of the optical film laminate of the present invention reflects polarized light orthogonal to the transmission axis of the polarizing plate (A).
  • the thickness of the optical film laminate is not particularly limited as long as the effect of the present invention is not impaired, but can be, for example, 10 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 15 from the viewpoint of thinning. It is ⁇ 100 ⁇ m.
  • the reflection polarizer layer has a function of separating the emitted light from the liquid crystal panel or the organic EL panel into transmitted polarized light and reflected polarized light.
  • the reflected polarizing element layer according to the present invention is a layer that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in at least one other vibration direction.
  • the transmission axis of the reflection polarizer layer and the transmission axis of the polarizing plate (A) are 0 ⁇ 30 ° or It is arranged so as to be in the direction of 180 ⁇ 30 °.
  • the reflective polarizer layer reflects polarized light orthogonal to the transmission axis of the polarizing plate (A).
  • Is within the range of 0 ° or 180 ° to ⁇ 30 ° the seamlessness between the display and the white or light-colored display peripheral member can be easily adjusted. can.
  • the reflective polarizing element layer includes, for example, two types of resins (for example, polyethylene naphthalate as the first polymer layer and a second polymer layer) having different refractive indexes in the stretching direction when stretched as the reflective polarizer layer (1).
  • Polyethylene naphthalate copolymer as a polymer layer is alternately laminated by an extrusion molding technique, and the layers are stretched (specifically, DBEF manufactured by 3M Co., Ltd.).
  • the reflective polarizer layer (2) As the reflective polarizer layer (2), a cholesteric liquid crystal polymer layer and a 1/4 wave plate are laminated, and light incident from the cholesteric liquid crystal polymer layer side is separated into two circularly polarized lights in opposite directions, and one of them is separated. Those that transmit, reflect the other, and convert the transmitted circularly polarized light into linearly polarized light by a 1/4 wave plate (specifically, Nipox manufactured by Nitto Denko, Tranmax manufactured by Merck, etc. (Refer to the Gazette, etc.); As the reflective polarizer layer (3), a metal lattice reflective polarized light (see US Pat. No.
  • the metal is finely processed to emit reflected polarized light even in the visible light region, and metal fine particles are polymerized.
  • a film added and stretched in a matrix see JP-A-8-184701, etc.
  • a resin film in which a wire grid is formed with metal nanowires specifically, WGF manufactured by Asahi Kasei Co., Ltd., JP-A-2017). -173832 (see, etc.)) and the like;
  • the reflective polarizer layer (1) is preferably used because of its excellent productivity and workability.
  • the reflective polarizer layer (3) is preferably used.
  • the reflective polarizer layer (1) includes at least a first polymer layer and a second polymer layer.
  • the materials of the first polymer layer and the second polymer layer are not particularly limited as long as the effects of the present application are not impaired, but the first polymer is easily molecularly oriented when the polymer is stretched, and from the viewpoint of productivity. It is desirable that either the layer or the second polymer layer is a naphthalate polymer. Further, both the first polymer layer and the second polymer layer may be naphthalate-based polymers.
  • the naphthalate-based polymer means a polymer containing a naphthalate functional group in its molecular structure.
  • the naphthalate polymer can be obtained by polymerizing this naphthalate monomer.
  • the naphthalate-based monomer that can be used to form the naphthalate-based polymer is not particularly limited as long as the effect of the present invention is not impaired, and is, for example, 2,6-, 1,4-, 1,5-2. , 7- and 2,3-naphthalene dicarboxylic acids and other naphthalates and esters thereof.
  • Naphthalate-based monomers can form polyesters by polymerizing the monomers with diols such as alkane glycol and cycloalcan glycol, 2,6-, 1,4-, 1,5-, 2,7-. And / or polyethylene naphthalate, which is a copolymer of 2,3-naphthalene-dicarboxylic acid and ethylene glycol.
  • diols such as alkane glycol and cycloalcan glycol, 2,6-, 1,4-, 1,5-, 2,7-.
  • polyethylene naphthalate which is a copolymer of 2,3-naphthalene-dicarboxylic acid and ethylene glycol.
  • copolymer of 2,6-, 1,4-, 1,5-, 2,7- or 2,3-naphthalene-dicarboxylic acid, terephthalic acid, and ethylene glycol.
  • This copolymer is generally called coPEN.
  • the thickness of the first polymer layer and the second polymer layer is not particularly limited. A plurality of laminated layers of the first polymer layer and the second polymer layer are further laminated and stretched to obtain a reflective polarizer layer having a desired thickness, so that the first polymer layer and the second polymer layer in the reflective polarizer layer are obtained. The thickness of the polymer in is difficult to measure.
  • the laminated product of the first polymer layer and the second polymer layer is generally laminated up to about 100 layers.
  • the thickness of the reflective polarizing element layer can be 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m from the viewpoint of thinning, and more preferably 10 to 30 ⁇ m.
  • the total light transmittance of the reflected polarizing element layer is not particularly limited as long as the effect of the present invention is not impaired.
  • the total light transmittance of the reflective polarizer layer can be, for example, 30% or more and 70% or less, preferably 40% or more and 60% or less, and when the total light transmittance is in the range, from the display.
  • a high degree of whiteness can be obtained without reducing the emitted light of. That is, it is possible to obtain a display that has excellent visibility and can be made seamless with respect to the peripheral material of the display in which a white or light color is used.
  • the total light transmittance of the reflective polarizer layer can be measured by the method described in JIS K7361-1: 1997 "Plastic-Transparent Material Total Light Transmittance Test Method".
  • the light source of the measuring instrument since it is not a little polarized, it should be calculated by averaging the values measured in the predetermined arrangement and the values measured in the arrangement rotated 90 ° with respect to the measuring instrument. Therefore, since it is possible to obtain a measured value that is not affected by the polarization of the light source, in the present invention, the average value of these two total light transmittances is shown as the total light transmittance.
  • the diffusing element layer is a layer having a function of diffusing the transmitted light.
  • the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired.
  • the thickness of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but can be 1 to 100 ⁇ m, preferably 15 to 50 ⁇ m.
  • the diffusing element layer (1) fine particles are dispersed in a material having translucency (transparent or translucent property in the present invention) such as an adhesive, an adhesive, a resin, glass, and a non-woven fabric;
  • a material having translucency transparent or translucent property in the present invention
  • the diffusing element layer (2) one having an uneven structure by processing the surface of a translucent material such as resin or glass;
  • the diffusion element layer (3) has a porous structure inside a translucent material such as resin, glass, or non-woven fabric;
  • Diffusing element layer (4) having a plurality of through holes or non-penetrating holes extending from one surface of a translucent material such as resin, glass, or non-woven fabric to the other surface;
  • a plurality of regions having different refractive indexes for example, a columnar region
  • a certain layer is a plurality of diffusing element layers, such as a material in which fine particles of the diffusing element layer (1) are dispersed and a non-woven fabric of the diffusing element layer (3) and the diffusing element layer (4). May be applicable as.
  • the diffusion element layer (1) is a base material such as an adhesive, an adhesive, a resin, glass, or a non-woven fabric in which fine particles having a refractive index different from that of the base material are dispersed. These can be appropriately combined in consideration of the required light diffusivity performance.
  • the light diffusivity performance indicates the light diffusivity derived from the difference in the light transmittance and the refractive index between the base material and the fine particles.
  • the amount of fine particles added is 40% or more and 95% or less in haze when used as a diffusing element layer, and 30% or more and 88% or less in total light transmittance. If this is the case, it can be appropriately selected, but as an example, when the entire diffusion element layer is 100% by mass, it can be 10.0 to 50.0% by mass.
  • acrylic pressure-sensitive adhesive for example, acrylic pressure-sensitive adhesive; silicone pressure-sensitive adhesive; urethane pressure-sensitive adhesive; rubber-based pressure-sensitive adhesive; epoxy adhesive; olefin adhesive; polycarbonate resin; (meth) acrylic resin; Polystyrene resin; polyolefin resin; polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, terebutylene terephthalate; various glasses; non-woven fabric made of glass fiber, non-woven fabric made of polyolefin resin fiber such as polypropylene fiber; and the like.
  • the material of the fine particles of the diffusing element layer (1) is not limited to the side as long as the effect of the present invention is not impaired, and for example, silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, clay, talc, titanium dioxide and the like.
  • Inorganic white pigments silicone resin, acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin and other resin fine particles having a refractive index different from that of the pressure-sensitive adhesive can be mentioned. These can be used alone or in combination of two or more.
  • the average particle size of the fine particles can be appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. As, 0.1 to 50 ⁇ m can be mentioned.
  • the average particle size of the fine particles can be measured by a particle counter.
  • the diffusion element layer (2) has an uneven structure by processing the surface of a translucent material such as resin or glass.
  • the material of the diffusing element layer (2) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and the like.
  • Polyethylene resin such as terebutylene terephthalate; various types of glass and the like can be mentioned.
  • the uneven structure may have concave and / or convex portions on the surface, and its shape, size, quantity, distribution, distribution density, and regularity of distribution are not particularly limited.
  • the uneven structure includes, for example, a groove structure having a semicircular cross section, a polygonal shape, a corrugated shape, or the like; a concave dot structure having a hemispherical shape, a conical shape, a cylindrical shape, a polygonal weight shape, a polygonal column shape, a lens shape, or the like.
  • a convex dot structure can be mentioned. These can be used alone or in combination of two or more.
  • the size of the uneven structure can be appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less.
  • the average width of the groove is 0.1 to 50 ⁇ m
  • the average length of the structure can be 0.1 to 50 ⁇ m.
  • 20 groove structures or uneven structures are randomly selected, a scanning electron microscope image is taken, the length is measured, and the average of 20 is calculated. It can be obtained by doing.
  • the diffusion element layer (3) has a porous structure inside a translucent material such as resin, glass, or non-woven fabric.
  • the resin or glass can be formed into a porous structure by forming bubbles inside by heating and melting the resin or glass and then solidifying the resin or glass while inflowing gas.
  • the porous structure may be an independent hole (independent hole), a communication structure in which independent holes are connected, or a combination of these. Further, the porous structure may reach the surface of the diffusion element layer.
  • the non-woven fabric is an aggregate of fibers without weaving them, and the voids between the fibers can be regarded as a porous structure.
  • the average diameter of the independent holes forming the porous structure or the individual holes forming the communicating structure is 40% or more and 95% or less in the haze when the diffusing element layer is used, and the total light beam. If the transmittance is 30% or more and 88% or less, it can be appropriately selected, and as an example, 0.1 to 500 ⁇ m can be mentioned.
  • the average diameter of the individual holes forming the independent holes or the communicating structure 20 individual holes forming the independent holes or the communicating structure are randomly selected from the cross section of the resin or glass having the porous structure. , It can be obtained by taking an image with a scanning microscope, measuring the diameter thereof, and calculating the average of 20 pieces.
  • a non-woven fabric when used as the diffusing element layer, it can be appropriately selected as long as the haze when used as the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less.
  • a non-woven fabric having a fiber diameter of 3 to 20 ⁇ m and a fiber length of 0.1 to 2 mm produced by wet papermaking and having a grain size of 5 to 30 g / m 2 or less can be mentioned.
  • the material of the diffusing element layer (3) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; (meth) acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, poly.
  • Polybutylene terephthalate, terebutylene terephthalate and other polyester resins various glasses; glass fiber non-woven fabrics, polyolefin resin fiber non-woven fabrics such as polypropylene fibers; and the like can be mentioned.
  • the diffusion element layer (4) has a plurality of through holes or non-penetrating holes extending from one surface of a translucent material such as resin, glass, or non-woven fabric to the other surface. Further, in the non-woven fabric, voids communicate with each other from one surface to the other surface. That is, the voids of the non-woven fabric can be treated as through holes, but the through holes in the diffusion element layer (4) mean that the non-woven fabric is formed by processing through holes different from the voids of the non-woven fabric.
  • the shape of the through hole and the hole that does not penetrate is not particularly limited, and the cross-sectional shape on the surface of the diffusion element layer may be any of a circular shape, an elliptical shape, a polygonal shape, and the like.
  • the average diameter of the through hole and the non-penetrating hole is appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. However, as an example, 0.1 to 50 ⁇ m can be mentioned.
  • 20 through holes and the non-penetrating hole were randomly selected, photographed with a scanning microscope, and the diameter was measured to obtain the average of 20 holes. It can be obtained by calculating.
  • the size of the through hole as a void is not measured, but only the through hole produced by processing or the like is measured.
  • the material of the diffusing element layer (4) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; (meth) acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, poly. Polybutylene terephthalate, terebutylene terephthalate and other polyester resins; various glasses; glass fiber non-woven fabrics, polyolefin resin fiber non-woven fabrics such as polypropylene fibers; and the like can be mentioned.
  • the through hole and the non-penetrating hole of the diffusion element layer (4) can be formed by a known method such as a laser processing method.
  • Examples of the diffusing element layer (5) include those in which a plurality of regions having different refractive indexes (for example, a columnar region) are formed inside the resin. These can be used alone or in combination of two or more.
  • a diffusion element layer (5) for example, one disclosed in International Publication WO2015 / 111523 as having a pillar structure, and one disclosed in Japanese Patent Application Laid-Open No. 2015-12789 as having a louver structure. Can be used.
  • diffusion element layers (1) to (5) a diffusion film in which fine particles are dispersed, a diffusion adhesive layer in which fine particles are dispersed, a non-woven fabric in which fine particles are dispersed, a diffusion film having irregularities on the surface, and a porous film. , Is preferable from the viewpoint of productivity and cost.
  • These diffusing element layers (1) to (5) can be colored with a pigment or dye of white or other colors. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
  • the haze of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but 40% or more and 95% or less is preferable, 50% or more and 94% or less is more preferable, and 80% or more and 92% or less. It is more suitable.
  • the haze is in the range, the diffusivity and the reflectivity are increased, so that the whiteness is increased and the image on the display can be made clearer.
  • the haze of the diffusing element layer is obtained by the method described in JIS K7136: 2000 "Plastic-How to obtain haze of transparent material".
  • the total light transmittance of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 30% or more and 88% or less, more preferably 40% or more and 80% or less, and 50% or more. 70% or less is more preferable.
  • the total light transmittance is in the range, the sharpness of the image on the display is high, and the whiteness is high because of the excellent diffusivity and reflectivity, and seamlessness can be realized.
  • the optical film laminate of the present invention can include another layer (a).
  • the reflective polarizer layer and the diffusing element layer may be laminated via another layer (a).
  • the other layer (a) is not particularly limited, but is an adhesive layer; an adhesive layer; a void layer, a retardation film, a color filter, a layer on which a pattern or pattern is printed, a film containing the printing, or the like. Can be used.
  • the void layer indicates voids at regular intervals.
  • the other layer (a) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member. In addition, it is possible to easily adjust the seamlessness with the display peripheral members by the pattern or pattern.
  • the outermost surface layer may be used on the outermost surface on the visual side, that is, on the surface of the diffusion element layer of the optical film laminate.
  • the outermost surface layer is not particularly limited, but for example, a layer on which a pattern or pattern is printed, a film including the printing thereof, or the like can be used.
  • a display using an optical film laminate is embedded in a material using white or light colors such as automobiles and houses, if the outermost surface layer has the same color or pattern as the peripheral material of the display, seamlessness is achieved. Can be enhanced.
  • the transmitted light (T1) emitted from the light of the C light source incident from the reflection polarizer layer side of the optical film laminate to the diffuser layer side of the optical film laminate was measured according to the JIS Z8722: 2009 standard, and then used as the C light source.
  • the transmission Y value calculated in the above is not particularly limited as long as the effect of the present invention is not impaired, and can be 20 or more and 50 or less, preferably 20 or more and 35 or less (see FIG. 3A).
  • the Y value of T1 is within the applicable range, the brightness (visibility) is excellent and sufficient whiteness can be obtained, so that the display can be seamlessly connected to the white or light-colored display peripheral members. Can be obtained.
  • the reflection Y value calculated by the C light source is not particularly limited as long as the effect of the present invention is not impaired, and can be 40 or more and 80 or less, preferably 50 or more and 80 or less, and more preferably 55 or more and 75 or less (). See FIG. 3 (b)).
  • the Y value of R1 is within such a range, appropriate diffusivity is obtained, so that the screen is excellent in sharpness, and sufficient whiteness is obtained, so that it is seamless with white or light-colored display peripheral members. Can be obtained.
  • the Y value indicates the visual reflectance (or visual transmittance), and after measuring by the method described in JIS Z8722: 2009 "Color measurement method-reflection and transmission object color", the C light source is used. calculate.
  • the C light source indicates an auxiliary illuminant C specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
  • the optical film laminate of the present invention can have a whiteness WI value of 45 or more and 90 or less in the specular reflection light removal method (SCE) of the D65 light source in the spectrophotometer, preferably 55 or more and 90 or less, and 70. More than 90 or less is more preferable.
  • the D65 light source refers to the standard illuminant D65 specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
  • the specular light removal method (SCE) indicates a method of measuring only the diffused light contained in the reflected light.
  • the whiteness WI value indicates a numerical value specified in ASTM E313-73, and is a numerical value indicating the degree of whiteness.
  • the whiteness WI value of the optical film laminate is within such a range, it has appropriate diffusivity and therefore has excellent visibility, and since sufficient whiteness can be obtained, it can be used as a white or light-colored display peripheral member. It is possible to obtain a display that can realize seamlessness.
  • the whiteness WI of the optical film laminate of the present invention can be measured by the method described in ASTM E313-73.
  • the whiteness WI measured by SCE excluding the specular reflection component of the D65 light source was used in a spectrocolorimeter (CM-700D manufactured by Konica Minolta).
  • the optical film laminate of the present invention can be produced by laminating a reflective polarizer layer and a diffusing element layer directly or via another layer (a).
  • a the pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive is previously applied on the release film to form the pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer is applied to the reflective polarizing element layer.
  • Laminate by laminating and heating laminating.
  • An optical film laminate can be obtained by removing the release film of the obtained laminate, overlaying the diffusion element layer on the adhesive layer, and performing heat laminating. The heat laminating can be performed using a known laminator.
  • the optical film laminate of the present invention is an optical film laminate for a display, and is used by being directly or indirectly laminated with the polarizing plate (A).
  • the display according to the present invention is particularly applicable to displays such as automobile display panels, home appliance display panels, liquid crystal displays embedded in walls, floors, and ceilings of furniture and buildings, organic EL displays, and micro LED displays. Used.
  • the display according to the present invention may or may not include a polarizing plate (A) (display (D1)) or not (display (D2)).
  • the polarizing plate (A) is a plate that allows only light that is polarized or polarized in a specific direction to pass through.
  • a known polarizing plate can be used as the polarizing plate (A), and the polarizing plate (A) is not particularly limited as long as the effect of the present invention is not impaired. Those generally used for displays can be used.
  • the polarizing plate (A) is arranged on the visual side of the display panel device of the display.
  • the polarizing plate (A) is (I) The display panel device included in the display can be stacked and used facing the visible side (that is, when the polarizing plate (A) is included in the display, that is, in the case of the display (D1)). (II) The polarizing plate (A) is not included in the visible side of the display panel device included in the display (in the case of the display (D2)), and can be used by being laminated on the surface of the display on the visible side. (III) The polarizing plate (A) is not included in the visible side of the display panel device included in the display (in the case of the display (D2)), and can be laminated on the optical fill laminate of the present invention and used as the polarizing plate laminate.
  • a polarizing plate (a polarizing plate (B) different from the polarizing plate (A)) is provided on the visible side of the display panel device of the display, and can be further laminated and used on the surface of the display on the visible side.
  • a polarizing plate (a polarizing plate (B) different from the polarizing plate (A)) is provided on the visible side of the display panel device of the display, and is laminated on the optical fill laminate of the present invention.
  • the polarizing plate (B) may be the same as or different from the polarizing plate (A), but the polarizing plates (B) may be arranged so that their transmission axes are in the direction of 0 ⁇ 30 ° or 180 ⁇ 30 °. ..
  • the polarizing plate (A) is used by being laminated directly or via another layer (b) when laminated.
  • the other layer (b) is not particularly limited, but an adhesive layer; an adhesive layer or the like can be used.
  • the other layer (b) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
  • the optical film laminate of the present invention is arranged in the display on the visible side of the polarizing plate (A) directly or via another layer (c) (see FIGS. 1 and 2).
  • the diffusing element layer of the optical film laminate is arranged so as to be on the visual side of the reflective polarizer layer (see FIGS. 1 and 2).
  • the other layer (c) is not particularly limited, but an adhesive layer; an adhesive layer; a retardation film, a color filter, or the like can be used.
  • the other layer (c) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
  • the transmission axis of the reflection polarizer of the optical film laminate and the transmission axis of the polarizing plate (A) are oriented in the direction of 0 ⁇ 30 ° or 180 ⁇ 30 °. Is placed in. Further, the polarized light orthogonal to the transmission axis of the polarizing plate (A) is reflected by the reflective polarizer layer.
  • the light emitted from the liquid crystal panel or the organic EL panel is transmitted polarized light by the polarizing plate (A) located on the viewing side. Reflection is achieved by aligning the transmission axis of the reflective polarizer layer of the optical film laminate of the present invention with the transmission axis of the polarizing plate (A) located on the viewing side of the display in the direction of 0 ⁇ 30 ° or 180 ⁇ 30 °.
  • the polarizer layer can (1) suppress a decrease in the transmittance of the light emitted from the polarizing plate (A), and (2) reflect the external light and the diffused light from the diffusing element layer to the reflective polarizer layer. It will be possible. By the interaction between this reflected light and the diffused light generated by the diffused element layer, (3) the white brightness of the display can be enhanced while maintaining good visibility, and it is seamless in white. Can be achieved.
  • the optical film laminate of the present invention can be used as a polarizing plate laminate by laminating it with the polarizing plate (A) (see FIG. 2).
  • the polarizing plate laminate is laminated on the reflective polarizer layer of the optical film laminate on the side opposite to the diffuser element layer of the optical film laminate, either directly or via another layer (b) (FIG. 2). reference).
  • the transmission axis of the polarizing plate (A) of the polarizing plate laminate and the transmission axis of the reflective polarizer layer are arranged so as to have a relationship of 0 ⁇ 30 ° or 180 ⁇ 30 °.
  • the transmitted light (T2) emitted from the light of the C light source incident from the polarizing plate side of the polarizing plate laminate to the diffusion element layer side of the polarizing plate laminate is measured according to the JIS Z8722: 2009 standard, and then the C light source is used.
  • the transmission Y value calculated in the above is not particularly limited as long as the effect of the present invention is not impaired, and can be 15 or more and 40 or less, preferably 20 or more and 40 or less, and more preferably 25 or more and 40 or less (FIG. 4 (FIG. 4). a) See).
  • the Y value of T2 is within the applicable range, the brightness (visibility) is excellent and sufficient whiteness can be obtained, so that the display can be seamlessly connected to the white or light-colored display peripheral members. Can be obtained.
  • the reflection Y value calculated by the C light source is not particularly limited as long as the effect of the present invention is not impaired, and can be 40 or more and 80 or less, preferably 50 or more and 80 or less, and more preferably 65 or more and 80 or less ( See FIG. 4 (b)).
  • the Y value of R1 is within such a range, appropriate diffusivity is obtained, so that the screen is excellent in sharpness, and sufficient whiteness is obtained, so that it is seamless with white or light-colored display peripheral members. Can be obtained.
  • the Y value indicates the visual reflectance (or visual transmittance), and after measuring by the method described in JIS Z8722: 2009 "Color measurement method-reflection and transmission object color", the C light source is used. calculate.
  • the C light source indicates an auxiliary illuminant C specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
  • the polarizing plate laminate of the present invention can have a whiteness WI value of 45 or more and 90 or less in the specular reflection light removal method (SCE) of the D65 light source in the spectrophotometer, preferably 55 or more and 90 or less, and 70. More than 90 or less is more preferable.
  • the D65 light source refers to the standard illuminant D65 specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
  • the specular light removal method (SCE) indicates a method of measuring only the diffused light contained in the reflected light.
  • the whiteness WI value indicates a numerical value specified in ASTM E313-73, and is a numerical value indicating the degree of whiteness.
  • the whiteness WI value of the optical film laminate is within such a range, it has appropriate diffusivity and therefore has excellent visibility, and since sufficient whiteness can be obtained, it can be used as a white or light-colored display peripheral member. It is possible to obtain a display that can realize seamlessness.
  • the whiteness WI of the polarizing plate laminate of the present invention can be measured by the method described in ASTM E313-73.
  • the whiteness WI measured by SCE excluding the specular reflection component of the D65 light source was used in a spectrocolorimeter (CM-700D manufactured by Konica Minolta).
  • the polarizing plate laminate of the present invention can be produced by laminating it directly with an optical film laminate or via another layer (d).
  • the other layer (d) is not particularly limited, but an adhesive layer; an adhesive layer; a retardation film, a color filter, or the like can be used.
  • the other layer (d) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
  • the pressure-sensitive adhesive layer is used as the other layer (d)
  • the pressure-sensitive adhesive is previously applied onto the release film to form the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is formed on the optical film laminate.
  • a polarizing plate laminate can be obtained by removing the release film of the obtained laminate, overlaying the polarizing plate (A) on the pressure-sensitive adhesive layer, and performing heat lamination.
  • the heat laminating can be performed using a known laminator.
  • Examples 1 to 7 An acrylic resin paint in which titanium oxide fine particles are dispersed is applied onto a 100 ⁇ m-thick transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) and dried to have a specific haze and a specific total light transmittance. Each diffusion element layer 1 to 7 with a PET film was obtained. The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the titanium oxide fine particles and the thickness of the diffusing element layer.
  • the diffusing element layers 1 to 6 are a reflective polarizing element (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film, and the diffusing element layer 7 is a diffusing element layer 7.
  • a reflective polarizing element manufactured by Asahi Kasei Co., Ltd., WGF
  • WGF Reflective polarizing element
  • TD06A acrylic transparent adhesive
  • Example 8 An acrylic pressure-sensitive adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06D92) having a thickness of 25 ⁇ m in which titanium oxide fine particles are dispersed, a haze of 92%, and a total light transmittance of 40% is used as a diffusing element layer 8.
  • the haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the titanium oxide fine particles and the thickness of the diffusing element layer.
  • Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
  • Example 9 A diffusing film (LCF, SO16 manufactured by Tomagawa Paper Co., Ltd.) having a haze of 92% and a total light transmittance of 85%, in which a plurality of columnar regions having different refractive indices are formed inside a transparent resin, is used as a diffusing element.
  • a layer 9 is formed, and a reflective polarizing element (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film is attached to the diffusion element layer via a 25 ⁇ m acrylic transparent adhesive (manufactured by Togawa Paper Co., Ltd., TD06A).
  • Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
  • Example 10 A diffusing film (Yupo Corporation, YUPO lighting paper BCR) having a porous resin with a haze of 92% and a total light transmittance of 51% is used as the diffusing element layer 10, and the diffusing element layer has multiple layers. Lamination of the optical film of Example 10 by laminating a reflective polarizer (manufactured by 3M, APF-V3) made of a polymer stretched film via a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06A). I got a body 10. Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
  • a reflective polarizer manufactured by 3M, APF-V3
  • Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and
  • Example 11 A diffusion film (High Tier YUPO WSF manufactured by YUPO Corporation) having a haze of 95% and a total light transmittance of 31%, which is a composite of a film having porousness inside the resin and a non-woven fabric, is used as the diffusion element layer 11.
  • the diffusing element layer is carried out by laminating a reflective polarizer (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film via a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06A).
  • the optical film laminate 11 of Example 11 was obtained. Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
  • Example 12 The acrylic resin coating material in which the titanium oxide fine particles used in Example 4 are dispersed is applied onto the surface of a reflective polarizer (APF-V3 manufactured by 3M) made of a multilayer polymer stretched film, dried, and applied to the surface of the reflective polarizer.
  • the optical film laminate 12 of the present invention provided with the direct diffusing element layer 12 was obtained.
  • the acrylic resin paint was applied on the treated surface of a transparent PET film (manufactured by Toyobo Co., Ltd., Cosmoshine A4301) having a thickness of 100 ⁇ m under the same conditions as in the production of the diffuser 12 of this example.
  • the diffuser layer haze with the PET film obtained by coating and drying was 92%, and the total light transmittance was 50%.
  • the transmittances are summarized and shown in Table 1.
  • Comparative Example 1 ⁇ Manufacturing of Comparative Example Optical Film Laminate, Diffusing Element Layer, Reflective Polarizer Layer> (Comparative Example 1) Acrylic resin paint in which silicone fine particles are dispersed is applied on a transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) with a thickness of 100 ⁇ m and dried, and the haze is 25% and the total light transmittance is 90%. The diffusion element layer a of Example 1 was obtained. The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the silicone fine particles and the thickness of the diffusing element layer. Table 1 summarizes the materials used for the diffusing element layer, haze, and total light transmittance.
  • Example 13 ⁇ Manufacturing a polarizing plate laminate using an optical film laminate> (Example 13) A polarizing plate (polarization degree 99.9%, transmittance 42%) was applied to the optical film laminate 4 produced in Example 4 via a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A). The polarizing film laminate 13 of Example 13 was obtained by laminating it on the surface of the optical film laminate on the reflection polarizer side. The bonding with the polarizing plate was configured such that the transmission axis of the polarizing plate was shifted by 15 ° with respect to the transmission axis of the reflective polarizer.
  • Example 14 The same procedure as in Example 13 was carried out except that the transmission axis of the polarizing plate was shifted by 30 ° with respect to the transmission axis of the reflection polarizer of the optical film laminate to obtain the polarizing plate laminate 14 of Example 14. ..
  • Example 6 The same procedure as in Example 13 was carried out except that the transmission axis of the polarizing plate was shifted by 45 ° with respect to the transmission axis of the reflection polarizer of the optical film laminate to obtain the polarizing plate laminate e of Comparative Example 6. ..
  • Comparative Example 7 A polarizing plate (polarization degree 99.9%, transmittance 42%) was applied to the optical film laminate 4 produced in Example 4 via a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A). It was bonded to the surface of the optical film laminate on the diffuser layer side to obtain the polarizing plate laminate f of Comparative Example 7. The bonding with the polarizing plate was such that the transmission axis of the reflective polarizer and the transmission axis of the polarizing plate were in the direction of 0 °.
  • ⁇ Measurement> (Measurement of total light transmittance and haze)
  • the total light transmittance and haze of the diffusing element layer and the optical film laminate were both measured using a haze meter (NDH-2000 manufactured by Nippon Denshoku Co., Ltd.), and the total light transmittance was JIS K7361-1. : 1997, Haze measured according to JIS K7136: 2000.
  • a sample having a transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) on one surface of the diffusing element layer was used for the measurement.
  • the transmitted Y value is the transmitted light (T1) that the light of the C light source incident from the reflected polarizer layer side of the optical film laminate emits to the diffuser layer side of the optical film laminate.
  • T1 the transmitted light
  • the transmitted light emitted by the light of the C light source incident on the reflective polarizer layer from one surface side, transmitted through the reflective polarizer layer and transmitted from the other surface side is emitted from JIS Z8722: 2009.
  • the reflected Y value is the reflected light (R1) in which the light of the C light source incident from the diffuser layer side of the optical film laminate is reflected by the optical film laminate and emitted to the diffuser layer side. )
  • the diffusing element layer the light of the C light source incident on the diffusing element layer from one surface side is reflected in the diffusing element layer, and the reflected light emitted to the one surface side of the diffusing element layer is emitted.
  • the reflected polarizer layer the light of the C light source incident on the reflected polarizer layer from one surface side is reflected in the reflected polarizer layer and emitted to the one surface side of the reflected polarizer layer.
  • the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, for all the examples and comparative examples, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate or the reflective polarizer layer, first, the transmission axes possessed by them are present.
  • the azimuth angle is set to 0 ° with reference to the direction, and the average value of the measured value at that time and the measured value when the azimuth is rotated by 90 ° with reference to it is calculated, and the transmission Y value of the evaluation sample is calculated. And the reflection Y value.
  • an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. was calculated and used as the transmission Y value and the reflection Y value of the evaluation sample.
  • the bonding with the polarizing plate was arranged so that the transmission axis of the reflection polarizer and the transmission axis of the polarizing plate were the same (0 ° or 180 °). ..
  • the transmitted Y value is the transmitted light (T2) in which the light of the C light source incident from the polarizing plate side of the polarizing plate laminate is emitted to the diffuser element layer side of the polarizing plate laminate. )
  • T2 transmitted light
  • the light of the C light source incident from the polarizing plate side of the polarizing plate diffusion element layer passes through the polarizing plate diffusion element layer to the spreading element layer side of the polarizing plate diffusion element layer.
  • the light of the C light source incident from the polarizing plate side of the polarizing plate reflective polarizer layer is the reflected light of the polarizing plate reflective polarizer layer.
  • the transmitted light transmitted through the reflecting polarizing element layer to the side was measured according to the JIS Z8722: 2009 standard, and then the value calculated by the C light source was used as the transmitted Y value.
  • the reflection Y value is such that the light of the C light source incident from the diffuser layer side of the polarizing plate laminate is reflected by the polarizing plate laminate and emitted to the diffuser layer side.
  • the reflected light (R1) is reflected by the light of the C light source incident from the diffuser element layer side of the polarizing plate diffuser layer in the diffused polarizer of the polarizing plate diffuser layer.
  • the reflected light transmitted through the polarizing plate diffuser layer and emitted to the diffuser layer side is incident from the reflected polarizer layer side of the polarizing plate reflective polarizer layer.
  • the reflected light emitted from the light of the light source is reflected in the reflected polarizer layer of the polarizing plate reflective polarizer layer and transmitted through the polarizing plate reflective polarizer layer to the reflected polarizer layer side, and the reflected light is measured according to the JIS Z8722: 2009 standard. After that, the value calculated by the C light source was used as the reflection Y value.
  • the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, in contrast to all the examples and comparative examples in which the polarizing plates are bonded, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate or the reflective polarizer layer, first , The azimuth angle is 0 ° with reference to the transmission axis direction of them, and the average value of the measured value at that time and the measured value when the azimuth angle is rotated by 90 ° with reference to it is calculated. The transmission Y value and the reflection Y value of the evaluation sample were used.
  • an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. was calculated and used as the transmission Y value and the reflection Y value of the evaluation sample.
  • the optical film laminate has a reflective polarizer surface.
  • a black PET film with a transmittance of 0% is applied to one side of the diffuser layer on one side of the diffuser layer and on one side of the reflective polarizer layer in the reflective polarizer layer, and a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd.).
  • the optical film laminate and the diffuser layer were bonded together via TD06A), and the whiteness was measured from the diffuser side of the optical film laminate and the diffuser layer, and from the reflection polarizer layer side of the reflective polarizer layer.
  • a spectrocolorimeter CM-700D, manufactured by Konica Minolta was used to determine the whiteness: WI (based on ASTM E313-73 standard) in SCE mode and a D65 light source.
  • the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate and the reflective polarizer layer, they are compared with all the examples and the comparative examples in which the black PET film is bonded. Calculates the average value of the measured values when the transmission axis of the is perpendicular to the ground (referred to as the azimuth angle 0 °) and the measured values when the azimuth angle is rotated by 90 ° with reference to it. Then, the transmission Y value and the reflection Y value of the evaluation sample were used.
  • an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. was calculated and used as the whiteness WI value of the evaluation sample.
  • Table 3 summarizes the transmission Y value, the reflection Y value, and the whiteness WI value of the structure based on each example.
  • the polarizing plate laminates in which the polarizing plates were bonded to the optical film laminates of Examples 1 to 12 and the polarizing plate laminates of Examples 13 and 14 had a high transmission Y value of 15 or more. Moreover, the reflection Y value could be as high as 40 or more.
  • the transmission Y value which is an index of the brightness of the display
  • the transmission Y value is higher than 20 in Examples 1 to 5, 7 to 10, and 12, and in particular, Examples 1 to 4, 9, and 12 have a higher value than 20.
  • An even higher value of 25 or more was obtained, indicating that the display was bright and clear.
  • the reflection Y value which is a seamless index, has a higher value of 50 or more in Examples 3 to 14, and in particular, Examples 4 to 6, 10 to 12 have a higher value of 65 or more. It was obtained and showed that a seamless display could be obtained.
  • the whiteness the higher the reflection Y value, the higher the whiteness WI value, and in this example, a whiteness WI value of 45 or more could be obtained. Further, in Examples 3 to 14, higher numerical values of 55 or more were obtained, and in particular, Examples 4 to 6 and 11 to 14 obtained higher numerical values of 70 or more.
  • the optical film laminate of this example in a display, all the values of the transmission Y value, the reflection Y value, and the whiteness WI value can be increased.
  • all the values of the transmission Y value, the reflection Y value and the whiteness WI value can be made higher, and in particular, the optics of Examples 4 and 12 In the film laminate, all the values of the transmission Y value, the reflection Y value, and the whiteness WI value could be further increased.
  • the transmission Y value and the reflection Y value when the optical film laminate is combined with a polarizing plate determine the display characteristics of the display and the superiority or inferiority of seamlessness. It is conceivable that. From the above, in the embodiment of the present invention, since the transmission Y value is sufficiently high, the brightness and sharpness are less likely to be impaired in the visibility when the display is lit, and the reflection Y value is sufficiently high, so that the display is displayed. Since it is possible to realize a seamless white or light color when the light is turned off, it is considered that the display and the seamlessness can be well-balanced.
  • the optical film laminates of Examples 1, 4, 9 and 12 are used with respect to a display having a polarizing plate on the viewing side, and the transmission axis of the polarizing plate on the viewing side of the display and the reflection of the optical film laminate.
  • the visibility was confirmed by laminating with a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A) in the same direction as the transmission axis of the polarizing element layer.
  • the seamlessness was good and the existence of the display could be sufficiently hidden.
  • the visibility when the display was lit was also bright enough to allow the images and characters to be sufficiently visually recognized on the display having all the optical film laminates, and was clear with little blurring.
  • Comparative Example 1 when attached to the polarizing plate, the transmission Y value was as high as 43.1, but the whiteness WI value was 19.6, which was less than half the value of this example. Shown gray.
  • the whiteness WI value was the lowest at 2.1, it had a metallic luster, and it reflected like a mirror, and it was not possible to realize seamlessness of white or light color.
  • Comparative Example 6 is not suitable for the present invention because the transmission axes of the reflective polarizer layer and the polarizing plate are largely deviated from each other by 45 °, so that the transmission Y value is low and the visibility of the display is low. ..
  • the reflective polarizer layer is arranged on the viewer side due to the relationship with the polarizing plate. Therefore, the whiteness WI value is as low as 2.3 and has a metallic luster. However, it was reflected like a mirror, and it was not possible to realize seamless white or light color.
  • the optical film laminate of Comparative Example 4 is used with respect to a display having a polarizing plate on the viewing side, and the transmission axis of the polarizing plate on the viewing side of the display and optics.
  • the visibility was confirmed by laminating them with a 25 ⁇ m acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A) in the same direction as the transmission axis of the reflective polarizing element layer of the film laminate.
  • TD06A acrylic transparent adhesive
  • the whiteness WI value is focused on in the present invention, it is also possible to intentionally color it to bring it closer to the surrounding hue, or to print a pattern or pattern to bring it closer to the surrounding pattern or pattern. In that case, it does not depend on the whiteness WI value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention provides an optical film laminate capable of suppressing reduction in viewability and occurrence of blurring of a screen while a display is on, and making a white or light-colored peripheral material of the display seamless. This optical film laminate is an optical film laminate for a display and used while laminated directly or indirectly on a polarizing plate (A). The display includes a display panel device, the polarizing plate (A) is laminated directly or via another layer (b) on the viewing side from the display panel device, a reflective polarizer layer and a diffusion element layer are laminated directly or via another layer (a), the diffusion element layer is disposed on the viewing side from the reflective polarizer layer, the optical film laminate is laminated directly or via another layer (c) on the viewing side from the polarizing plate (A), the optical film laminate is disposed such that the transmission axis of the polarizing plate (A) and the transmission axis of the reflective polarizer layer have a relationship of 0±30° or 180±30°, and the reflective polarizer layer reflects polarized light orthogonal to the transmission axis of the polarizing plate (A).

Description

光学フィルム積層体及びそれを用いた、偏光板積層体及びディスプレイOptical film laminate and polarizing plate laminate and display using it
 光学フィルム積層体及びそれを用いた、偏光板積層体及びディスプレイに関する。 Regarding an optical film laminate, a polarizing plate laminate using the same, and a display.
 従来の液晶ディスプレイや有機ELディスプレイ等の薄型ディスプレイは、その普及にともない、様々な態様で用いられてきた。
 近年、自動車における、インスツルメントパネルの主要部である集合ユニットパネル、即ち、メータークラスターパネルの一部の表示系やパネル全体を薄型ディスプレイとしたり、センター・インフォメーション・ディスプレイ(CID)を薄型ディスプレイとしたりする商品開発が進んでいる。
 自動車の内装は、外交反射を防ぐため、主に黒色系(暗色系)の内装が用いられているが、デザイン性の観点から薄型ディスプレイの画像表示部の最表面にあたる前面板と、前面板周辺の素材(内装など)との境界を見え難く、かつ、前面板の存在を認識し難くするシームレス化(ニュートラルグレー化)が行われている。黒色系の配色の自動車の内装に対しては、薄型ディスプレイの前面板を黒色で補正して、薄型ディスプレイの境界を目立たなくするシームレス化が行われている(特許文献1)。
Thin displays such as conventional liquid crystal displays and organic EL displays have been used in various modes with their widespread use.
In recent years, the collective unit panel, which is the main part of the instrument panel in automobiles, that is, a part of the display system of the meter cluster panel or the entire panel has been made into a thin display, and the center information display (CID) has been made into a thin display. Product development is progressing.
Black (dark) interiors are mainly used for the interior of automobiles to prevent diplomatic reflection, but from the viewpoint of design, the front plate, which is the outermost surface of the image display part of the thin display, and the periphery of the front plate Seamless (neutral gray) is used to make it difficult to see the boundary with the material (interior, etc.) and to recognize the existence of the front panel. For the interior of an automobile having a black color scheme, the front plate of the thin display is corrected with black to make the boundary of the thin display inconspicuous (Patent Document 1).
 また、テレビやモニター以外の様々な家電製品に薄型ディスプレイが埋め込まれるケースが増えており、さらに将来、家具に薄型ディスプレイが埋め込まれるケース、建築物の壁、床、天井などに埋め込まれるケースが増えることが予想されている。家電製品、家具、建築物の壁、床、天井などは、黒色系(暗色系)の配色に限られず、白色系や淡色系に配色されたデザインのものが数多く存在している。
 また、自動車においても、自動運転技術の開発が進むなか、車内空間の利用方法について様々な検討がなされている。なかには、人による運転割合が減少していくと、車内空間は、住宅におけるリビングルームのような空間となる可能性が挙げられており、車内の内装色は、住宅における、壁、床、天井等のように、白色系や淡色系の色のような明るい色の使用が検討されている。
In addition, the number of cases where thin displays are embedded in various home appliances other than TVs and monitors is increasing, and in the future, cases where thin displays are embedded in furniture, walls, floors, ceilings, etc. of buildings will increase. Is expected. Home appliances, furniture, walls, floors, ceilings, etc. of buildings are not limited to black (dark) colors, but there are many designs with white or light colors.
Also, in automobiles, as the development of autonomous driving technology progresses, various studies are being conducted on how to use the space inside the vehicle. Among them, it is mentioned that as the ratio of driving by people decreases, the interior space of the car may become a space like a living room in a house, and the interior color of the car is the wall, floor, ceiling, etc. in the house. The use of bright colors such as white and light colors is being considered.
特開2000-265133号公報Japanese Unexamined Patent Publication No. 2000-265133
 特許文献1に提案されているシームレス化は、薄型ディスプレイの前面板に、黒色系顔料又は染料で色味を調整して行うため、薄型ディスプレイから出射される光の透過率が低下し、ディスプレイ点灯時の視認性が低下してしまう。このため、ディスプレイのバックライト出力を上げる等の対策を行い、視認性を確保する必要がある。 The seamlessness proposed in Patent Document 1 is performed by adjusting the color of the front plate of the thin display with a black pigment or dye, so that the transmittance of light emitted from the thin display is reduced and the display is lit. The visibility of the time is reduced. Therefore, it is necessary to take measures such as increasing the backlight output of the display to ensure visibility.
 また、自動車や住宅で白や淡色系の色を使用した環境に液晶ディスプレイや有機ELディスプレイを埋め込む場合や配置する場合、従来のこれらディスプレイの前面板表面は、消灯時には黒色であることから、ディスプレイの周辺素材に対するシームレス化が難しい。特許文献1の発明のように、黒色系のシームレス化と同様に、前面板を白色系顔料又は染料で色味調整を行うと、ディスプレイから出射される光の透過率が低下し、点灯時の視認性が低下してしまうという問題もある。加えて、白色化すると、ディスプレイ内での光の拡散性及び反射性が高くなるため、画像にボケが生じてしまうという問題がある。 In addition, when embedding or arranging a liquid crystal display or an organic EL display in an environment using white or light colors in an automobile or a house, the front plate surface of these conventional displays is black when the lights are turned off. It is difficult to make it seamless with the surrounding materials. Similar to the invention of Patent Document 1, when the color tone of the front plate is adjusted with a white pigment or dye as in the case of seamless black color, the transmittance of the light emitted from the display is lowered and the light is lit. There is also a problem that the visibility is lowered. In addition, whitening enhances the diffusivity and reflectivity of light in the display, which causes a problem that the image is blurred.
 そこで、本発明は、ディスプレイ点灯時の視認性の低下及び画面のボケ発生を抑制し、白色又は淡色系の色が用いられたディスプレイの周辺素材に対し、シームレス化することができる光学フィルム積層体を提供することを目的とする。 Therefore, the present invention is an optical film laminate capable of suppressing a decrease in visibility when the display is lit and causing blurring of the screen, and making it seamless with respect to the peripheral material of the display in which a white or light color is used. The purpose is to provide.
 上記課題を解決するために、本発明の光学フィルム積層体は、反射偏光子層と拡散素子層を有することを特徴とし、ディスプレイに用いることを特徴とする。即ち、本発明は下記の通りである。
 本発明(1)は、
 偏光板(A)と直接又は間接的に積層されて用いられるディスプレイ用の光学フィルム積層体であって、
 前記ディスプレイは、表示パネルデバイスを含み、
 前記偏光板(A)は、前記表示パネルデバイスよりも視認側に、直接又は他の層(b)を介して積層され、
 前記光学フィルム積層体は、反射偏光子層と拡散素子層とが、直接又は他の層(a)を介して積層され、
 前記拡散素子層は、前記反射偏光子層よりも視認側に配置され、
 前記光学フィルム積層体は、前記偏光板(A)の視認側に、直接又は他の層(c)を介して積層され、
 前記光学フィルム積層体は、前記偏光板(A)の透過軸と前記反射偏光子層の透過軸とが0±30°又は180±30°の関係となるよう配置され、
 前記反射偏光子層は、前記偏光板(A)の透過軸に直交する偏光を反射することを特徴とする、光学フィルム積層体である。
 本発明(2)は、
 前記反射偏光子層は、第1のポリマー層と、第2のポリマー層と、を含み、
 前記第1のポリマー層又は前記第2のポリマー層のいずれかが、ナフタレート系ポリマーであることを特徴とする、前記発明(1)の光学フィルム積層体である。
 本発明(3)は、
 前記拡散素子層は、微粒子が分散された拡散フィルム、微粒子が分散された拡散粘着剤層、不織布、表面に凹凸を有する拡散フィルム、多孔質フィルム、のいずれかであることを特徴とする、前記発明(1)又は(2)の光学フィルム積層体である。
 本発明(4)は、
 前記拡散素子層のヘーズが40%以上95%以下であり、全光線透過率が30%以上88%以下であることを特徴とする、前記発明(1)~(3)のいずれかの光学フィルム積層体である。
 本発明(5)は、
 前記光学フィルム積層体は、
 前記光学フィルム積層体の反射偏光子層側から入射したC光源の光が前記光学フィルム積層体の拡散素子層側に光学フィルム積層体を透過して出射した透過光(T1)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した透過Y値が、20以上50以下であり、
 前記光学フィルム積層体の拡散素子層側から入射したC光源の光が前記光学フィルム積層体の反射偏光子で反射して拡散素子層側に前記光学フィルム積層体を透過して出射した反射光(R1)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した反射Y値が、40以上80以下であることを特徴とする、前記発明(1)~(4)のいずれかの光学フィルム積層体である。
 本発明(6)は、
 前記光学フィルム積層体は、ASTM E313-73規格に従った分光測色計におけるD65光源の正反射光除去方式(SCE)での白色度WI値が45以上90以下であることを特徴とする、前記発明(1)~(5)のいずれかに記載の光学フィルム積層体である。
 本発明(7)は、
 前記発明(1)~(6)のいずれかの光学フィルム積層体と、前記偏光板(A)とを含む偏光板積層体であって、
 前記偏光板(A)は、前記光学フィルム積層体の反射偏光子層に対し、前記光学フィルム積層体の拡散素子層とは反対側に、直接又は他の層(d)を介して積層され、
 前記偏光板(A)の透過軸と、前記光学フィルム積層体の反射偏光子層の透過軸とが、0±30°又は180±30°の方向となるよう配置されることを特徴とする、偏光板積層体である。
 本発明(8)は、
 前記偏光板積層体は、
 前記偏光板積層体の偏光板側から入射したC光源の光が前記偏光板積層体の拡散素子層側に偏光板積層体を透過して出射した透過光(T2)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した透過Y値が、15以上40以下であり、
 前記偏光板積層体の拡散素子層側から入射したC光源の光が前記偏光板積層体の反射偏光子で反射して拡散素子層側に前記偏光板積層体を透過して出射した反射光(R2)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した反射Y値が、40以上80以下であることを特徴とする、前記発明(7)の偏光板積層体である。
 本発明(9)は、
 表示パネルデバイスと、表示パネルデバイスの視認側に偏光板(A)と、請求項1~6のいずれか一項に記載の光学フィルム積層体と、を含む積層構造を有するディスプレイ(D1)であって、
 前記偏光板(A)は、表示パネルデバイスの視認側に直接又は他の層(b)を介して積層され、
 前記光学フィルム積層体は、前記偏光板(A)のさらに視認側に、前記拡散素子層が前記反射偏光子層よりも視認側になるよう、直接又は他の層(a)を介して積層され、
 前記光学フィルム積層体は、前記偏光板(A)の透過軸と、前記反射偏光子層の透過軸と、が、0±30°又は180±30°の方向となるよう配置され、
 前記反射偏光子層は、前記偏光板(A)の透過軸に直交する偏光を反射することを特徴とする、ディスプレイである。
 本発明(10)は、
 表示パネルデバイスを含み、表示パネルデバイスの視認側に偏光板を含まない、積層構造を有するディスプレイ(D2)であって、
 前記ディスプレイ(D2)は、前記発明(7)又は(8)の偏光板積層体を含み、
 前記偏光板積層体は、表示パネルデバイスの視認側に直接又は他の層(c)を介して積層され、
 前記偏光板積層体は、前記偏光板積層体の反射偏光子層が、前記偏光板積層体の偏光板(A)よりも視認側となるように配置されることを特徴とする、ディスプレイである。
In order to solve the above problems, the optical film laminate of the present invention is characterized by having a reflective polarizer layer and a diffusing element layer, and is characterized in that it is used for a display. That is, the present invention is as follows.
The present invention (1)
An optical film laminate for a display used by being directly or indirectly laminated with a polarizing plate (A).
The display includes a display panel device.
The polarizing plate (A) is laminated on the visual side of the display panel device directly or via another layer (b).
In the optical film laminate, the reflective polarizer layer and the diffusing element layer are laminated directly or via another layer (a).
The diffuser layer is arranged on the visual side of the reflective polarizer layer.
The optical film laminate is laminated directly on the visible side of the polarizing plate (A) or via another layer (c).
The optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer have a relationship of 0 ± 30 ° or 180 ± 30 °.
The reflective polarizer layer is an optical film laminate characterized by reflecting polarized light orthogonal to the transmission axis of the polarizing plate (A).
The present invention (2)
The reflective polarizer layer includes a first polymer layer and a second polymer layer.
The optical film laminate according to the invention (1), wherein either the first polymer layer or the second polymer layer is a naphthalate-based polymer.
The present invention (3)
The diffusion element layer is any one of a diffusion film in which fine particles are dispersed, a diffusion pressure-sensitive adhesive layer in which fine particles are dispersed, a non-woven fabric, a diffusion film having irregularities on the surface, and a porous film. The optical film laminate according to the invention (1) or (2).
The present invention (4)
The optical film according to any one of the inventions (1) to (3), wherein the haze of the diffusing element layer is 40% or more and 95% or less, and the total light transmittance is 30% or more and 88% or less. It is a laminated body.
The present invention (5)
The optical film laminate is
The transmitted light (T1) emitted from the light of the C light source incident from the reflection polarizer layer side of the optical film laminate through the optical film laminate on the diffuser layer side of the optical film laminate is emitted from JIS Z8722: After measuring in a 2 ° field according to the 2009 standard, the transmitted Y value calculated by the C light source is 20 or more and 50 or less.
The light of the C light source incident from the diffuser element layer side of the optical film laminate is reflected by the reflection polarizer of the optical film laminate, and the reflected light (reflected light) emitted through the optical film laminate to the diffuser layer side. The inventions (1) to (4), wherein R1) is measured in a 2 ° field according to the JIS Z8722: 2009 standard, and then the reflected Y value calculated by the C light source is 40 or more and 80 or less. It is one of the optical film laminates of.
The present invention (6)
The optical film laminate is characterized by having a whiteness WI value of 45 or more and 90 or less in a specular reflection light removal method (SCE) of a D65 light source in a spectrocolorimeter according to the ASTM E313-73 standard. The optical film laminate according to any one of the inventions (1) to (5).
The present invention (7)
A polarizing plate laminate containing the optical film laminate according to any one of the inventions (1) to (6) and the polarizing plate (A).
The polarizing plate (A) is laminated on the reflective polarizer layer of the optical film laminate on the side opposite to the diffuser element layer of the optical film laminate, either directly or via another layer (d).
The transmission axis of the polarizing plate (A) and the transmission axis of the reflective polarizer layer of the optical film laminate are arranged so as to be in a direction of 0 ± 30 ° or 180 ± 30 °. It is a polarizing plate laminate.
The present invention (8)
The polarizing plate laminate is
The transmitted light (T2) emitted from the light of the C light source incident from the polarizing plate side of the polarizing plate laminate through the polarizing plate laminate on the diffusion element layer side of the polarizing plate laminate is according to JIS Z8722: 2009 standard. The transmitted Y value calculated by the C light source after measuring in the 2 ° field according to the above is 15 or more and 40 or less.
The light of the C light source incident from the diffuser element layer side of the polarizing plate laminate is reflected by the reflective polarizer of the polarizing plate laminate, and the reflected light emitted through the polarizing plate laminate side to the diffuser layer side ( R2) is measured in a 2 ° field according to the JIS Z8722: 2009 standard, and then the reflected Y value calculated by the C light source is 40 or more and 80 or less. The body.
The present invention (9)
A display (D1) having a laminated structure including a display panel device, a polarizing plate (A) on the visual side of the display panel device, and an optical film laminate according to any one of claims 1 to 6. hand,
The polarizing plate (A) is laminated directly on the visible side of the display panel device or via another layer (b).
The optical film laminate is laminated directly or via another layer (a) on the viewing side of the polarizing plate (A) so that the diffusion element layer is on the viewing side of the reflective polarizer layer. ,
The optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer are oriented in a direction of 0 ± 30 ° or 180 ± 30 °.
The reflection polarizer layer is a display characterized by reflecting polarized light orthogonal to the transmission axis of the polarizing plate (A).
The present invention (10)
A display (D2) having a laminated structure, which includes a display panel device and does not include a polarizing plate on the visual side of the display panel device.
The display (D2) includes the polarizing plate laminate of the invention (7) or (8).
The polarizing plate laminate is laminated directly on the visible side of the display panel device or via another layer (c).
The polarizing plate laminate is a display characterized in that the reflective polarizing element layer of the polarizing plate laminate is arranged so as to be on the visual side of the polarizing plate (A) of the polarizing plate laminate. ..
 本発明によれば、液晶パネルや有機ELパネルを有し、液晶パネルや有機ELパネルの視認側に偏光板を有するディスプレイに対し、ディスプレイ点灯時の視認性の低下及び画面のボケ発生を抑制し、白色又は淡色系の色が用いられたディスプレイの周辺素材に対し、シームレス化することができる光学フィルム積層体を提供することができる。 According to the present invention, with respect to a display having a liquid crystal panel or an organic EL panel and having a polarizing plate on the visual side of the liquid crystal panel or the organic EL panel, deterioration of visibility when the display is lit and occurrence of screen blur are suppressed. It is possible to provide an optical film laminate that can be made seamless with respect to a peripheral material of a display in which a white or light color is used.
図1は、ディスプレイに偏光板(A)が含まれる場合の、本発明の光学フィルム積層体と、ディスプレイの積層構造の配置の一例を説明する模式図である。FIG. 1 is a schematic view illustrating an example of arrangement of the optical film laminate of the present invention and the laminated structure of the display when the display includes the polarizing plate (A). 図2はディスプレイに偏光板(A)が含まれない場合の、本発明の光学フィルム積層体を含む偏光板積層体と、ディスプレイの積層構造の配置の一例を説明する模式図である。FIG. 2 is a schematic view illustrating an example of an arrangement of a polarizing plate laminate including the optical film laminate of the present invention and a laminated structure of the display when the display does not include the polarizing plate (A). 図3は、本発明の光学フィルム積層体のY値の測定を説明する模式図である。FIG. 3 is a schematic view illustrating the measurement of the Y value of the optical film laminate of the present invention. 図4は、本発明の偏光板積層体のY値の測定を説明する模式図である。FIG. 4 is a schematic view illustrating the measurement of the Y value of the polarizing plate laminate of the present invention.
 本発明において、単に化合物名を示した場合には、そのすべての異性体を含むものとする。 In the present invention, when the compound name is simply indicated, all isomers thereof are included.
 本発明において、表示パネルデバイスとは、液晶ディスプレイパネル、有機ELパネル、マイクロLEDパネルなどの映像を表示するための、駆動パネルをいうものとする。
 また、本発明において、液晶ディスプレイパネルの駆動パネルとは、液晶セル、バックライト、カラーフィルタ等の表示に必要な素子を含むものを言い、かつ、本発明では、表示パネルデバイスは、視認側に偏光板のありなしを含むものとする。
 さらに駆動パネルとは、液晶セルのように、液晶の偏光を制御して、光の透過と遮断(シャッターの開閉)を行うものや、有機ELパネルやマイクロLEDパネルのように、発光素子の発光のON/OFFを行い、映像を形成するものとする。
In the present invention, the display panel device refers to a drive panel for displaying images such as a liquid crystal display panel, an organic EL panel, and a micro LED panel.
Further, in the present invention, the drive panel of the liquid crystal display panel means a device including elements necessary for display such as a liquid crystal cell, a backlight, and a color filter, and in the present invention, the display panel device is on the visual side. It shall include the presence or absence of the polarizing plate.
Furthermore, the drive panel is a panel such as a liquid crystal cell that controls the polarization of the liquid crystal to transmit and block light (opening and closing the shutter), and a light emitting element such as an organic EL panel and a micro LED panel. Is turned ON / OFF to form an image.
 液晶セルとは、透明電極が組み込まれた2枚のガラス基板の間に液晶分子が挟まれたもの、又は、さらにカラーフィルタを含んだものをいい、光源、偏光板などの光学フィルム等は含まないものとする。
 有機ELパネルとは、金属等の陰電極/電子注入層/電子輸送層/発光層/正孔輸送層/正孔注入層/ITO等の陽電極そしてガラス板や透明のプラスチック板などの基板よりなり、偏光板やカラーフィルタなどの光学フィルム等は含まないものとする。一般に、有機ELディスプレイには、偏光板は用いられないが、内部反射防止のため、有機ELパネルよりも視認側に偏光板が設けられているものもある。
 マイクロLEDパネルとは、マイクロLEDが構成された基板をいうものとし、内部反射防止等の目的で偏光板が用いられる場合が考えられる。
A liquid crystal cell is a cell in which liquid crystal molecules are sandwiched between two glass substrates incorporating a transparent electrode, or a cell in which a color filter is further included, and includes an optical film such as a light source and a polarizing plate. Make it not exist.
An organic EL panel is a negative electrode such as metal / electron injection layer / electron transport layer / light emitting layer / hole transport layer / hole injection layer / positive electrode such as ITO, and a substrate such as a glass plate or a transparent plastic plate. Therefore, optical films such as polarizing plates and color filters are not included. Generally, a polarizing plate is not used in the organic EL display, but some organic EL displays are provided with a polarizing plate on the visual side of the organic EL panel in order to prevent internal reflection.
The micro LED panel refers to a substrate on which a micro LED is configured, and a polarizing plate may be used for the purpose of preventing internal reflection or the like.
 本発明において、視認側とは、ディスプレイの視認者に近い側を示すものとする。従って、表示パネルデバイスの視認側等とした場合には、表示パネルデバイスの視認者側の方向を示す。 In the present invention, the viewing side means the side of the display close to the viewer. Therefore, when it is the viewing side of the display panel device, the direction of the viewing panel device is indicated.
<<<光学フィルム積層体>>>
 本発明の光学フィルム積層体は、反射偏光子層と、拡散素子層とを含む。反射偏光子層と、拡散素子層は、直接又は他の層(a)を介して積層されている。
<<< Optical film laminate >>>
The optical film laminate of the present invention includes a reflective polarizer layer and a diffusing element layer. The reflective polarizer layer and the diffusing element layer are laminated directly or via another layer (a).
 本発明の光学フィルム積層体は、ディスプレイに含まれる表示パネルデバイスの視認側に対面して配置された偏光板(A)と、直接又は間接的に積層されて用いられる(図1及び図2参照)。 The optical film laminate of the present invention is used by being directly or indirectly laminated with a polarizing plate (A) arranged to face the visual side of a display panel device included in a display (see FIGS. 1 and 2). ).
 本発明の光学フィルム積層体は、光学フィルム積層体の拡散素子層が、光学フィルム積層体の反射偏光素子よりも視認側に配置されるように用いられる(図1又は図2)。 The optical film laminate of the present invention is used so that the diffusion element layer of the optical film laminate is arranged on the visual side of the reflection polarization element of the optical film laminate (FIG. 1 or 2).
 本発明の光学フィルム積層体は、偏光板(A)よりも視認側に、偏光板(A)と直接又は他の層(b)を介して積層される(図1及び図2参照)。 The optical film laminate of the present invention is laminated on the viewing side of the polarizing plate (A) directly with the polarizing plate (A) or via another layer (b) (see FIGS. 1 and 2).
 本発明の光学フィルム積層体は、偏光板(A)の透過軸と光学フィルム積層体の反射偏光子層の透過軸とが0±30°又は180±30°の関係となるよう配置される。 The optical film laminate of the present invention is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer of the optical film laminate are in a relationship of 0 ± 30 ° or 180 ± 30 °.
 本発明の光学フィルム積層体の反射偏光子層は、偏光板(A)の透過軸に直交する偏光を反射する。 The reflective polarizer layer of the optical film laminate of the present invention reflects polarized light orthogonal to the transmission axis of the polarizing plate (A).
 光学フィルム積層体の厚みは、本発明の効果を阻害しない限りにおいて、特に限定されないが、例えば、10~200μmとすることができ、薄膜化の観点から、好ましくは10~150μm、より好ましくは15~100μmである。 The thickness of the optical film laminate is not particularly limited as long as the effect of the present invention is not impaired, but can be, for example, 10 to 200 μm, preferably 10 to 150 μm, more preferably 15 from the viewpoint of thinning. It is ~ 100 μm.
<<光学フィルム積層体の構成>>
<反射偏光子層>
 反射偏光子層は、液晶パネル又は有機ELパネルからの出射光を透過偏光と反射偏光に分離するような機能を有する。本発明にかかる反射偏光子層は、一方の振動方向の直線偏光を透過し、少なくとも1つの他の振動方向の直線偏光を反射する層である。
<< Structure of optical film laminate >>
<Reflective polarizer layer>
The reflection polarizer layer has a function of separating the emitted light from the liquid crystal panel or the organic EL panel into transmitted polarized light and reflected polarized light. The reflected polarizing element layer according to the present invention is a layer that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in at least one other vibration direction.
 本発明にかかる反射偏光子層は、後述する本発明の光学フィルム積層体をディスプレイに用いる際、反射偏光子層の透過軸と、偏光板(A)の透過軸とが、0±30°又は180±30°の方向となるように配置される。その際、反射偏光子層は、偏光板(A)の透過軸に直交する偏光を反射する。また、反射偏光子層の透過軸と、偏光板(A)の透過軸とが、0°又は180°となる場合により効果的であるが、反射偏光子層の透過軸と、偏光板(A)の透過軸とが、0°又は180°から±30°までの範囲内にあれば、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化を容易に調整できるものとすることができる。 In the reflective polarizer layer according to the present invention, when the optical film laminate of the present invention described later is used for a display, the transmission axis of the reflection polarizer layer and the transmission axis of the polarizing plate (A) are 0 ± 30 ° or It is arranged so as to be in the direction of 180 ± 30 °. At that time, the reflective polarizer layer reflects polarized light orthogonal to the transmission axis of the polarizing plate (A). Further, it is more effective when the transmission axis of the reflection polarizer layer and the transmission axis of the polarizing plate (A) are 0 ° or 180 °, but the transmission axis of the reflection polarizer layer and the polarizing plate (A) are more effective. ) Is within the range of 0 ° or 180 ° to ± 30 °, the seamlessness between the display and the white or light-colored display peripheral member can be easily adjusted. can.
 反射偏光子層は、公知のものを使用でき、本発明の効果を阻害しない限りにおいて、特に限定されない。この反射偏光子層としては、例えば、反射偏光子層(1)として、延伸した際に延伸方向の屈折率が異なる2種類の樹脂(例えば、第1のポリマー層としてポリエチレンナフタレート、第2のポリマー層としてポリエチレンナフタレート共重合体)を、押し出し成形の技術により複数層交互に積層し、これを延伸した構成のもの(具体的には3M社製のDBEFなどであり、特開平4-268505号公報等を参照);
 反射偏光子層(2)として、コレステリック液晶ポリマー層と1/4波長板とを積層したもので、コレステリック液晶ポリマー層側から入射した光を互いに逆向きの2つの円偏光に分離し、一方を透過、他方を反射し、透過する円偏光を1/4波長板により直線偏光に変換させるもの(具体的には、日東電工社製ニポックス、メルク社製トランマックスなどであり、特開平11-231130号公報等を参照);
 反射偏光子層(3)として、金属に微細加工を施して可視光領域でも反射偏光を出射するような金属格子反射偏光子(米国特許第6288840号明細書等を参照)、金属微粒子を高分子マトリックス中に添加して延伸したフィルム(特開平8-184701号公報等を参照)、金属ナノワイヤにより内部にワイヤーグリッドを形成した樹脂フィルム(具体的には、旭化成社製WGFであり、特開2017-173832号公報等を参照)等の反射グリッド偏光子;を挙げることができる。これらのうち、生産性、加工性が優れることから反射偏光子層(1)が好ましく用いられる。一方で、耐熱性が求められる場合は、反射偏光子層(3)が好ましく用いられる。
As the reflective polarizing element layer, known ones can be used and are not particularly limited as long as the effects of the present invention are not impaired. The reflective polarizer layer includes, for example, two types of resins (for example, polyethylene naphthalate as the first polymer layer and a second polymer layer) having different refractive indexes in the stretching direction when stretched as the reflective polarizer layer (1). Polyethylene naphthalate copolymer as a polymer layer) is alternately laminated by an extrusion molding technique, and the layers are stretched (specifically, DBEF manufactured by 3M Co., Ltd.). (Refer to the publication, etc.);
As the reflective polarizer layer (2), a cholesteric liquid crystal polymer layer and a 1/4 wave plate are laminated, and light incident from the cholesteric liquid crystal polymer layer side is separated into two circularly polarized lights in opposite directions, and one of them is separated. Those that transmit, reflect the other, and convert the transmitted circularly polarized light into linearly polarized light by a 1/4 wave plate (specifically, Nipox manufactured by Nitto Denko, Tranmax manufactured by Merck, etc. (Refer to the Gazette, etc.);
As the reflective polarizer layer (3), a metal lattice reflective polarized light (see US Pat. No. 6,288,840, etc.) in which the metal is finely processed to emit reflected polarized light even in the visible light region, and metal fine particles are polymerized. A film added and stretched in a matrix (see JP-A-8-184701, etc.), a resin film in which a wire grid is formed with metal nanowires (specifically, WGF manufactured by Asahi Kasei Co., Ltd., JP-A-2017). -173832 (see, etc.)) and the like; Of these, the reflective polarizer layer (1) is preferably used because of its excellent productivity and workability. On the other hand, when heat resistance is required, the reflective polarizer layer (3) is preferably used.
 ここで、反射偏光子層(1)としては、少なくとも第1のポリマー層と、第2のポリマー層を含む。 Here, the reflective polarizer layer (1) includes at least a first polymer layer and a second polymer layer.
 第1のポリマー層と、第2のポリマー層の材質は、本願の効果を阻害しない限りにおいて、特に限定されないが、ポリマーを延伸した際に分子配向しやすく生産性の観点で、第1のポリマー層又は第2のポリマー層のいずれかがナフタレート系ポリマーであることが望ましい。また、第1のポリマー層及び第2のポリマー層は、両方が、ナフタレート系ポリマーであってもよい。ここで、ナフタレート系ポリマーとは、分子構造内にナフタレート官能基を含むポリマーのことを示す。 The materials of the first polymer layer and the second polymer layer are not particularly limited as long as the effects of the present application are not impaired, but the first polymer is easily molecularly oriented when the polymer is stretched, and from the viewpoint of productivity. It is desirable that either the layer or the second polymer layer is a naphthalate polymer. Further, both the first polymer layer and the second polymer layer may be naphthalate-based polymers. Here, the naphthalate-based polymer means a polymer containing a naphthalate functional group in its molecular structure.
 ナフタレート系ポリマーは、このナフタレート系モノマーを重合させることによって得ることができる。ナフタレート系ポリマーを形成するために用いることのできるナフタレート系モノマーは、本発明の効果を阻害しない限りにおいて、特に限定されないが、例えば、2,6-、1,4-、1,5-、2,7-及び2,3-ナフタレン・ジカルボン酸のようなナフタレート及びそのエステルを挙げることができる。 The naphthalate polymer can be obtained by polymerizing this naphthalate monomer. The naphthalate-based monomer that can be used to form the naphthalate-based polymer is not particularly limited as long as the effect of the present invention is not impaired, and is, for example, 2,6-, 1,4-, 1,5-2. , 7- and 2,3-naphthalene dicarboxylic acids and other naphthalates and esters thereof.
 ナフタレート系モノマーは、モノマーをジオール、例えばアルカン・グリコール及びシクロアルカン・グリコールと重合させることによってポリエステルを形成することができ、2,6-、1,4-、1,5-、2,7-及び/又は2,3-ナフタレン・ジカルボン酸及びエチレングリコールのコポリマーであるポリエチレンナフタレートとすることができる。 Naphthalate-based monomers can form polyesters by polymerizing the monomers with diols such as alkane glycol and cycloalcan glycol, 2,6-, 1,4-, 1,5-, 2,7-. And / or polyethylene naphthalate, which is a copolymer of 2,3-naphthalene-dicarboxylic acid and ethylene glycol.
 また、2,6-、1,4-、1,5-、2,7-又は2,3-ナフタレン・ジカルボン酸、テレフタル酸、及びエチレングリコールの共重合体とすることもできる。この共重合体は、一般にcoPENと呼ばれる。 It can also be a copolymer of 2,6-, 1,4-, 1,5-, 2,7- or 2,3-naphthalene-dicarboxylic acid, terephthalic acid, and ethylene glycol. This copolymer is generally called coPEN.
 第1のポリマー層及び第2のポリマー層の厚みは、特に限定されない。第1のポリマー層と第2のポリマー層を積層したものを、さらに複数積層し、延伸し、所望の厚みの反射偏光子層とするため、反射偏光子層における第1のポリマー層及び第2のポリマーの厚みは測定することが困難である。第1のポリマー層と第2のポリマー層を積層したものは、一般に100層程度まで積層される。また、反射偏光子層の厚みとしては10~100μmとすることができ、薄膜化の観点から10~50μmが好ましく、10~30μmがより好ましい。 The thickness of the first polymer layer and the second polymer layer is not particularly limited. A plurality of laminated layers of the first polymer layer and the second polymer layer are further laminated and stretched to obtain a reflective polarizer layer having a desired thickness, so that the first polymer layer and the second polymer layer in the reflective polarizer layer are obtained. The thickness of the polymer in is difficult to measure. The laminated product of the first polymer layer and the second polymer layer is generally laminated up to about 100 layers. The thickness of the reflective polarizing element layer can be 10 to 100 μm, preferably 10 to 50 μm from the viewpoint of thinning, and more preferably 10 to 30 μm.
 反射偏光子層の全光線透過率は、本発明の効果を阻害しない限りにおいて特に限定されない。反射偏光子層の全光線透過率としては、例えば、30%以上70%以下とすることができ、40%以上60%以下が好ましく、全光線透過率がかかる範囲にある場合には、ディスプレイからの出射光を低下させることなく、高い白色度を得ることができる。即ち、視認性に優れ、白色又は淡色系の色が用いられたディスプレイの周辺素材に対し、シームレス化することができるディスプレイを得ることができる。 The total light transmittance of the reflected polarizing element layer is not particularly limited as long as the effect of the present invention is not impaired. The total light transmittance of the reflective polarizer layer can be, for example, 30% or more and 70% or less, preferably 40% or more and 60% or less, and when the total light transmittance is in the range, from the display. A high degree of whiteness can be obtained without reducing the emitted light of. That is, it is possible to obtain a display that has excellent visibility and can be made seamless with respect to the peripheral material of the display in which a white or light color is used.
 反射偏光子層の全光線透過率の測定は、JIS K7361-1:1997 「プラスチック-透明材料の全光線透過率の試験方法」に記載の方法で測定することができる。ただし、測定器の光源が少なからず偏光していることから、所定の配置で測定した数値と、その配置より測定器に対して90°回転させた配置で測定した数値の平均値で算出することで、光源の偏光性の影響を受けない測定値を得ることができるため、本発明においてはこれら2つの全光線透過率の平均値を全光線透過率として示す。 The total light transmittance of the reflective polarizer layer can be measured by the method described in JIS K7361-1: 1997 "Plastic-Transparent Material Total Light Transmittance Test Method". However, since the light source of the measuring instrument is not a little polarized, it should be calculated by averaging the values measured in the predetermined arrangement and the values measured in the arrangement rotated 90 ° with respect to the measuring instrument. Therefore, since it is possible to obtain a measured value that is not affected by the polarization of the light source, in the present invention, the average value of these two total light transmittances is shown as the total light transmittance.
<拡散素子層>
 拡散素子層は、透過する光を拡散させる機能を有する層である。拡散素子層は、本発明の効果を阻害しない限りにおいて特に限定されない。
<Diffusing element layer>
The diffusing element layer is a layer having a function of diffusing the transmitted light. The diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired.
 拡散素子層の厚みとしては、本発明の効果が阻害されない限りにおいて、特に限定されないが、1~100μmとすることができ、15~50μmが好ましい。 The thickness of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but can be 1 to 100 μm, preferably 15 to 50 μm.
 拡散素子層としては、
 拡散素子層(1)として、粘着剤、接着剤、樹脂、ガラス、不織布等の透光性(本発明では、透明又は半透明の性質とする)を有する材質に、微粒子を分散させたもの;
 拡散素子層(2)として、樹脂、ガラス等の透光性を有する材質の表面を加工するなどして、凹凸の構造を有するもの;
 拡散素子層(3)として、樹脂、ガラス、不織布等の透光性を有する材質の内部を多孔構造としたもの;
 拡散素子層(4)として、樹脂、ガラス、不織布等の透光性を有する材質の一方の表面から他方の表面に向かう、複数の貫通孔又は貫通しない孔を有するもの;
 拡散素子層(5)として、透光性を有する樹脂の内部に、屈折率の異なる複数の領域(例えば、円柱状の領域など)を形成したもの;
を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。なお、拡散素子層(1)の微粒子を分散させたものと、拡散素子層(3)及び拡散素子層(4)の不織布のように、ある層(例えば、不織布)が、複数の拡散素子層として該当してもよい。
As a diffusing element layer,
As the diffusing element layer (1), fine particles are dispersed in a material having translucency (transparent or translucent property in the present invention) such as an adhesive, an adhesive, a resin, glass, and a non-woven fabric;
As the diffusing element layer (2), one having an uneven structure by processing the surface of a translucent material such as resin or glass;
The diffusion element layer (3) has a porous structure inside a translucent material such as resin, glass, or non-woven fabric;
Diffusing element layer (4) having a plurality of through holes or non-penetrating holes extending from one surface of a translucent material such as resin, glass, or non-woven fabric to the other surface;
As the diffusing element layer (5), a plurality of regions having different refractive indexes (for example, a columnar region) are formed inside a translucent resin;
Can be mentioned. These can be used alone or in combination of two or more. It should be noted that a certain layer (for example, a non-woven fabric) is a plurality of diffusing element layers, such as a material in which fine particles of the diffusing element layer (1) are dispersed and a non-woven fabric of the diffusing element layer (3) and the diffusing element layer (4). May be applicable as.
 拡散素子層(1)は、粘着剤、接着剤、樹脂、ガラス、不織布等の母材に、母材とは屈折率の異なる微粒子を分散させたものである。これらは、必要とされる光の拡散性の性能を考慮し適宜組み合わせることができる。ここで、光の拡散性の性能とは、光透過率や、母材と微粒子の屈折率の差異に由来する光の拡散性を示す。 The diffusion element layer (1) is a base material such as an adhesive, an adhesive, a resin, glass, or a non-woven fabric in which fine particles having a refractive index different from that of the base material are dispersed. These can be appropriately combined in consideration of the required light diffusivity performance. Here, the light diffusivity performance indicates the light diffusivity derived from the difference in the light transmittance and the refractive index between the base material and the fine particles.
 微粒子の添加量は、必要とされる光の拡散性の性能を考慮し、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、拡散素子層全体を100質量%とした場合に、10.0~50.0質量%とすることができる。 Considering the required light diffusivity performance, the amount of fine particles added is 40% or more and 95% or less in haze when used as a diffusing element layer, and 30% or more and 88% or less in total light transmittance. If this is the case, it can be appropriately selected, but as an example, when the entire diffusion element layer is 100% by mass, it can be 10.0 to 50.0% by mass.
 拡散素子層(1)の母材の材質としては、例えば、アクリル粘着剤;シリコーン粘着剤;ウレタン粘着剤;ゴム系粘着剤;エポキシ接着剤;オレフィン接着剤;ポリカーボネート樹脂;(メタ)アクリル樹脂;ポリスチレン樹脂;ポリオレフィン樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、テレブチレンテレフタレートなどのポリエステル樹脂;各種ガラス;ガラス繊維製不織布、ポリプロピレン繊維などのポリオレフィン樹脂繊維製不織布;等を挙げることができる。 As the material of the base material of the diffusion element layer (1), for example, acrylic pressure-sensitive adhesive; silicone pressure-sensitive adhesive; urethane pressure-sensitive adhesive; rubber-based pressure-sensitive adhesive; epoxy adhesive; olefin adhesive; polycarbonate resin; (meth) acrylic resin; Polystyrene resin; polyolefin resin; polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, terebutylene terephthalate; various glasses; non-woven fabric made of glass fiber, non-woven fabric made of polyolefin resin fiber such as polypropylene fiber; and the like.
 拡散素子層(1)の微粒子の材質としては、本発明の効果を阻害しない限りにおいて側に限定されず、例えば、シリカ、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、二酸化チタン等の無機系白色顔料;粘着剤とは異なる屈折率を有するシリコーン樹脂、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合体樹脂、ポリエチレン樹脂、エポキシ樹脂等の樹脂微粒子などを挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。 The material of the fine particles of the diffusing element layer (1) is not limited to the side as long as the effect of the present invention is not impaired, and for example, silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, clay, talc, titanium dioxide and the like. Inorganic white pigments; silicone resin, acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin and other resin fine particles having a refractive index different from that of the pressure-sensitive adhesive can be mentioned. These can be used alone or in combination of two or more.
 微粒子の平均粒径は、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、0.1~50μmを挙げることができる。なお、微粒子の平均粒径は、パーティクルカウンターにより測定することができる。 The average particle size of the fine particles can be appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. As, 0.1 to 50 μm can be mentioned. The average particle size of the fine particles can be measured by a particle counter.
 拡散素子層(2)は、樹脂、ガラス等の透光性を有する材質の表面を加工するなどして、凹凸の構造を有するものである。 The diffusion element layer (2) has an uneven structure by processing the surface of a translucent material such as resin or glass.
 拡散素子層(2)の材質としては、本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、ポリカーボネート樹脂;アクリル樹脂;ポリスチレン樹脂;ポリオレフィン樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、テレブチレンテレフタレートなどのポリエステル樹脂;各種ガラス等を挙げることができる。 The material of the diffusing element layer (2) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and the like. Polyethylene resin such as terebutylene terephthalate; various types of glass and the like can be mentioned.
 ここで凹凸構造としては、表面に凹部及び/又は凸部を有していればよく、その形状、大きさ、数量、分布、分布の密度、分布の規則性、は特に限定されない。 Here, the uneven structure may have concave and / or convex portions on the surface, and its shape, size, quantity, distribution, distribution density, and regularity of distribution are not particularly limited.
 凹凸構造としては、例えば、断面が半円形状、多角形形状、波型などの溝構造;半球形状、円錐形状、円筒形状、多角錘形状、多角柱形状、レンズ形状等の凹状のドット構造又は凸状のドット構造を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。 The uneven structure includes, for example, a groove structure having a semicircular cross section, a polygonal shape, a corrugated shape, or the like; a concave dot structure having a hemispherical shape, a conical shape, a cylindrical shape, a polygonal weight shape, a polygonal column shape, a lens shape, or the like. A convex dot structure can be mentioned. These can be used alone or in combination of two or more.
 凹凸構造の大きさは、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、凹凸構造が溝構造の場合の溝の平均幅が0.1~50μm、凹凸構造がドット構造の場合は、拡散素子層表面におけるドット構造の断面内の最も長い長さの平均値(ドット構造の平均長とする)を0.1~50μmを挙げることができる。溝構造の平均幅、凹凸構造の平均長は、無作為に20個の溝構造又は凹凸構造を選び、走査型電子顕微鏡画像を撮影して、その長さを測定し、20個の平均を算出することで求めることができる。 The size of the uneven structure can be appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. When the uneven structure is a groove structure, the average width of the groove is 0.1 to 50 μm, and when the uneven structure is a dot structure, the average value of the longest length in the cross section of the dot structure on the surface of the diffusion element layer (dots). The average length of the structure) can be 0.1 to 50 μm. For the average width of the groove structure and the average length of the uneven structure, 20 groove structures or uneven structures are randomly selected, a scanning electron microscope image is taken, the length is measured, and the average of 20 is calculated. It can be obtained by doing.
 拡散素子層(3)は、樹脂、ガラス、不織布等の透光性を有する材質の内部を多孔構造としたものである。樹脂やガラスは、加熱溶融させたのち、ガスを流入しながら固化させるなどして、内部に気泡を形成することで多孔構造とすることができる。多孔構造は、独立した孔(独立孔)でもよく、独立した孔が連なった連通構造でもよく、これらが組み合わさったものでもよい。また、多孔構造が拡散素子層の表面に到達していてもよい。不織布は、繊維を編み込まずに集合させたものであり、繊維間の空隙を多孔構造とみなすことができるものとする。 The diffusion element layer (3) has a porous structure inside a translucent material such as resin, glass, or non-woven fabric. The resin or glass can be formed into a porous structure by forming bubbles inside by heating and melting the resin or glass and then solidifying the resin or glass while inflowing gas. The porous structure may be an independent hole (independent hole), a communication structure in which independent holes are connected, or a combination of these. Further, the porous structure may reach the surface of the diffusion element layer. The non-woven fabric is an aggregate of fibers without weaving them, and the voids between the fibers can be regarded as a porous structure.
 樹脂やガラスを用いる場合には、多孔構造を形成する独立孔又は連通構造を形成する個々の孔の平均径は、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、0.1~500μmを挙げることができる。独立孔又は連通構造を形成する個々の孔の平均径は、多孔構造を有する樹脂やガラスを切断し、その断面から無作為に20個の、独立孔又は連通構造を形成する個々の孔を選び、走査型顕微鏡で撮影して、その直径を測定し、20個の平均を算出することで求めることができる。 When resin or glass is used, the average diameter of the independent holes forming the porous structure or the individual holes forming the communicating structure is 40% or more and 95% or less in the haze when the diffusing element layer is used, and the total light beam. If the transmittance is 30% or more and 88% or less, it can be appropriately selected, and as an example, 0.1 to 500 μm can be mentioned. For the average diameter of the individual holes forming the independent holes or the communicating structure, 20 individual holes forming the independent holes or the communicating structure are randomly selected from the cross section of the resin or glass having the porous structure. , It can be obtained by taking an image with a scanning microscope, measuring the diameter thereof, and calculating the average of 20 pieces.
 不織布を用いる場合にも、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、繊維径が3~20μm、繊維長が0.1~2mmの繊維を湿式抄造により作製された目付量が5~30g/m以下である不織布を挙げることができる。 Even when a non-woven fabric is used, it can be appropriately selected as long as the haze when used as the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. As an example, a non-woven fabric having a fiber diameter of 3 to 20 μm and a fiber length of 0.1 to 2 mm produced by wet papermaking and having a grain size of 5 to 30 g / m 2 or less can be mentioned.
 拡散素子層(3)の材質としては、本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、ポリカーボネート樹脂;(メタ)アクリル樹脂;ポリスチレン樹脂;ポリオレフィン樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、テレブチレンテレフタレートなどのポリエステル樹脂;各種ガラス;ガラス繊維製不織布、ポリプロピレン繊維などのポリオレフィン樹脂繊維製不織布;等を挙げることができる。 The material of the diffusing element layer (3) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; (meth) acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, poly. Polybutylene terephthalate, terebutylene terephthalate and other polyester resins; various glasses; glass fiber non-woven fabrics, polyolefin resin fiber non-woven fabrics such as polypropylene fibers; and the like can be mentioned.
 拡散素子層(4)は、樹脂、ガラス、不織布等の透光性を有する材質の一方の表面から他方の表面に向かう、複数の貫通孔又は貫通しない孔を有するものである。また、不織布は、一方の表面から他方の表面に向かって、空隙が連通している。即ち、不織布の空隙は貫通孔として扱うこともできるが、拡散素子層(4)における貫通孔は、不織布に不織布の空隙とは異なる貫通孔を加工などによって作製したものを意味する。 The diffusion element layer (4) has a plurality of through holes or non-penetrating holes extending from one surface of a translucent material such as resin, glass, or non-woven fabric to the other surface. Further, in the non-woven fabric, voids communicate with each other from one surface to the other surface. That is, the voids of the non-woven fabric can be treated as through holes, but the through holes in the diffusion element layer (4) mean that the non-woven fabric is formed by processing through holes different from the voids of the non-woven fabric.
 貫通孔及び貫通していない孔の形状は、特に限定されず、拡散素子層表面における断面形状が、円形、楕円形、多角形などのいずれでもよい。貫通孔及び貫通していない孔の平均径は、拡散素子層としたときのヘーズが40%以上95%以下、かつ、全光線透過率が30%以上88%以下となるのであれば適宜選択することができるが、一例として、0.1~50μmを挙げることができる。なお、貫通孔及び貫通していない孔の平均径は、無作為に20個の貫通孔及び貫通していない孔を選び、走査型顕微鏡で撮影し、その直径を測定して20個の平均を算出することで求めることができる。なお、不織布については、上述した通り、空隙としての貫通孔の大きさではなく、加工などにより作製した貫通孔についてのみ測定するものとする。 The shape of the through hole and the hole that does not penetrate is not particularly limited, and the cross-sectional shape on the surface of the diffusion element layer may be any of a circular shape, an elliptical shape, a polygonal shape, and the like. The average diameter of the through hole and the non-penetrating hole is appropriately selected as long as the haze of the diffusing element layer is 40% or more and 95% or less and the total light transmittance is 30% or more and 88% or less. However, as an example, 0.1 to 50 μm can be mentioned. For the average diameter of the through hole and the non-penetrating hole, 20 through holes and the non-penetrating hole were randomly selected, photographed with a scanning microscope, and the diameter was measured to obtain the average of 20 holes. It can be obtained by calculating. As for the non-woven fabric, as described above, the size of the through hole as a void is not measured, but only the through hole produced by processing or the like is measured.
 拡散素子層(4)の材質としては、本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、ポリカーボネート樹脂;(メタ)アクリル樹脂;ポリスチレン樹脂;ポリオレフィン樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、テレブチレンテレフタレートなどのポリエステル樹脂;各種ガラス;ガラス繊維製不織布、ポリプロピレン繊維などのポリオレフィン樹脂繊維製不織布;等を挙げることができる。 The material of the diffusing element layer (4) is not particularly limited as long as the effect of the present invention is not impaired, and for example, polycarbonate resin; (meth) acrylic resin; polystyrene resin; polyolefin resin; polyethylene terephthalate, polyethylene naphthalate, poly. Polybutylene terephthalate, terebutylene terephthalate and other polyester resins; various glasses; glass fiber non-woven fabrics, polyolefin resin fiber non-woven fabrics such as polypropylene fibers; and the like can be mentioned.
 拡散素子層(4)の貫通孔及び貫通していない孔は、レーザー加工法などの公知の方法で形成することができる。 The through hole and the non-penetrating hole of the diffusion element layer (4) can be formed by a known method such as a laser processing method.
 拡散素子層(5)として、樹脂の内部に、屈折率の異なる複数の領域(例えば、円柱状の領域など)を形成したもの;を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。このような拡散素子層(5)としては、例えば、ピラー構造のものとして国際公開WO2015/111523に開示されているものが、ルーバー構造のものとして特開2015-127819号公報に開示されているものを用いることができる。 Examples of the diffusing element layer (5) include those in which a plurality of regions having different refractive indexes (for example, a columnar region) are formed inside the resin. These can be used alone or in combination of two or more. As such a diffusion element layer (5), for example, one disclosed in International Publication WO2015 / 111523 as having a pillar structure, and one disclosed in Japanese Patent Application Laid-Open No. 2015-12789 as having a louver structure. Can be used.
 これら拡散素子層(1)~(5)のうち、微粒子が分散された拡散フィルム、微粒子が分散された拡散粘着剤層、微粒子が分散された不織布、表面に凹凸を有する拡散フィルム、多孔質フィルム、が、生産性、コストの観点で好ましい。 Among these diffusion element layers (1) to (5), a diffusion film in which fine particles are dispersed, a diffusion adhesive layer in which fine particles are dispersed, a non-woven fabric in which fine particles are dispersed, a diffusion film having irregularities on the surface, and a porous film. , Is preferable from the viewpoint of productivity and cost.
 これら拡散素子層(1)~(5)は、白色又はその他の色の顔料又は染料を用いて、着色することができる。このようにすることで、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化を容易に調整できるものとすることができる。 These diffusing element layers (1) to (5) can be colored with a pigment or dye of white or other colors. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
 拡散素子層のヘーズは本発明の効果を阻害しない限りにおいて特に限定されないが、40%以上95%以下が好適であり、50%以上94%以下がより好適であり、80%以上92%以下がさらに好適である。ヘーズがかかる範囲にある場合には拡散性と反射性が高くなるため白色度が高くなり、またディスプレイの画像をより鮮明にすることができる。拡散素子層のヘーズは、JIS K7136:2000「プラスチック-透明材料のヘーズの求め方」に記載の方法で求める。 The haze of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but 40% or more and 95% or less is preferable, 50% or more and 94% or less is more preferable, and 80% or more and 92% or less. It is more suitable. When the haze is in the range, the diffusivity and the reflectivity are increased, so that the whiteness is increased and the image on the display can be made clearer. The haze of the diffusing element layer is obtained by the method described in JIS K7136: 2000 "Plastic-How to obtain haze of transparent material".
 拡散素子層の全光線透過率は、本発明の効果を阻害しない限りにおいて特に限定されないが、30%以上88%以下が好適であり、40%以上80%以下がより好適であり、50%以上70%以下がさらに好適である。全光線透過率がかかる範囲にある場合には、ディスプレイの画像の鮮明性が高く、また拡散性と反射性に優れるため白色度が高くなりシームレスを実現することが可能となる。 The total light transmittance of the diffusing element layer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 30% or more and 88% or less, more preferably 40% or more and 80% or less, and 50% or more. 70% or less is more preferable. When the total light transmittance is in the range, the sharpness of the image on the display is high, and the whiteness is high because of the excellent diffusivity and reflectivity, and seamlessness can be realized.
<他の層(a)>
 本発明の光学フィルム積層体は、他の層(a)を含むことができる。反射偏光子層と拡散素子層とは、他の層(a)を介して積層されてもよい。
<Other layer (a)>
The optical film laminate of the present invention can include another layer (a). The reflective polarizer layer and the diffusing element layer may be laminated via another layer (a).
 他の層(a)としては、特に限定されるものではないが、粘着剤層;接着剤層;空隙層、位相差フィルム、カラーフィルタ、柄や模様を印刷した層やそれら印刷を含むフィルム等を用いることができる。ここで空隙層とは、一定の間隔を空けた空隙を示す。また、他の層(a)は白色又はその他の色の顔料又は染料を用いて、着色することができる。このようにすることで、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化を容易に調整できるものとすることができる。また、柄や模様でディスプレイ周辺部材とのシームレス化を容易に調整できるものとすることができる。 The other layer (a) is not particularly limited, but is an adhesive layer; an adhesive layer; a void layer, a retardation film, a color filter, a layer on which a pattern or pattern is printed, a film containing the printing, or the like. Can be used. Here, the void layer indicates voids at regular intervals. In addition, the other layer (a) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member. In addition, it is possible to easily adjust the seamlessness with the display peripheral members by the pattern or pattern.
<視認側の最表面層>
 光学フィルム積層体をディスプレイに使用したとき、視認側の最表面、つまり光学フィルム積層体の拡散素子層表面上に、最表面層を使用しても良い。
<Outermost layer on the visual side>
When the optical film laminate is used for a display, the outermost surface layer may be used on the outermost surface on the visual side, that is, on the surface of the diffusion element layer of the optical film laminate.
 最表面層としては、特に限定されるものではないが、例えば、柄や模様を印刷した層やそれら印刷を含むフィルム等を用いることができる。光学フィルム積層体が使用されたディスプレイを自動車や住宅等の白や淡色系の色を使用した素材に埋め込んだ際、最表面層がディスプレイの周辺素材と同色や同模様であれば、シームレス化をより高めることができる。 The outermost surface layer is not particularly limited, but for example, a layer on which a pattern or pattern is printed, a film including the printing thereof, or the like can be used. When a display using an optical film laminate is embedded in a material using white or light colors such as automobiles and houses, if the outermost surface layer has the same color or pattern as the peripheral material of the display, seamlessness is achieved. Can be enhanced.
<<光学フィルム積層体の特性>>
 光学フィルム積層体の反射偏光子層側から入射したC光源の光が光学フィルム積層体の拡散素子層側に出射した透過光(T1)を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した透過Y値は、本発明の効果が阻害しない限りにおいて特に限定されず、20以上50以下とすることができ、20以上35以下が好ましい(図3(a)参照)。T1のY値がかかる範囲にある場合には、明るさ(視認性)に優れ、また、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。
<< Characteristics of optical film laminate >>
The transmitted light (T1) emitted from the light of the C light source incident from the reflection polarizer layer side of the optical film laminate to the diffuser layer side of the optical film laminate was measured according to the JIS Z8722: 2009 standard, and then used as the C light source. The transmission Y value calculated in the above is not particularly limited as long as the effect of the present invention is not impaired, and can be 20 or more and 50 or less, preferably 20 or more and 35 or less (see FIG. 3A). When the Y value of T1 is within the applicable range, the brightness (visibility) is excellent and sufficient whiteness can be obtained, so that the display can be seamlessly connected to the white or light-colored display peripheral members. Can be obtained.
 光学フィルム積層体の拡散素子層側から入射したC光源の光が前記光学フィルム積層体で反射して拡散素子層側に出射した反射光(R1)を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した反射Y値は、本発明の効果が阻害しない限りにおいて特に限定されず、40以上80以下とすることができ、50以上80以下が好ましく、55以上75以下がより好ましい(図3(b)参照)。R1のY値がかかる範囲にある場合には、適度な拡散性が得られるため画面の鮮明性に優れ、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。 After measuring the reflected light (R1) that the light of the C light source incident from the diffuser element layer side of the optical film laminate is reflected by the optical film laminate and emitted to the diffuser layer side according to the JIS Z8722: 2009 standard, The reflection Y value calculated by the C light source is not particularly limited as long as the effect of the present invention is not impaired, and can be 40 or more and 80 or less, preferably 50 or more and 80 or less, and more preferably 55 or more and 75 or less (). See FIG. 3 (b)). When the Y value of R1 is within such a range, appropriate diffusivity is obtained, so that the screen is excellent in sharpness, and sufficient whiteness is obtained, so that it is seamless with white or light-colored display peripheral members. Can be obtained.
 ここでY値は、視感反射率(又は視感透過率)を示し、JIS Z8722:2009「色の測定方法-反射及び透過物体色」に記載された方法で測定した後、C光源にて算出する。C光源とは、JIS Z8720:2012「測色用の標準イルミナント(標準の光)及び標準光源」に規定されている補助イルミナントCを示す。 Here, the Y value indicates the visual reflectance (or visual transmittance), and after measuring by the method described in JIS Z8722: 2009 "Color measurement method-reflection and transmission object color", the C light source is used. calculate. The C light source indicates an auxiliary illuminant C specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
 本発明の光学フィルム積層体は、分光測色計におけるD65光源の正反射光除去方式(SCE)での白色度WI値が45以上90以下とすることができ、55以上90以下が好ましく、70以上90以下がより好ましい。ここで、D65光源とは、JIS Z8720:2012「測色用の標準イルミナント(標準の光)及び標準光源」に規定されている標準イルミナントD65を示す。また、正反射光除去方式(SCE)とは、反射光に含まれる拡散光のみを計測する方法を示す。白色度WI値はASTM E313-73に規定された数値を示し、白さの度合を示す数値である。光学フィルム積層体の白色度WI値がかかる範囲にある場合には、適度な拡散性を有するため視認性に優れ、また、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。 The optical film laminate of the present invention can have a whiteness WI value of 45 or more and 90 or less in the specular reflection light removal method (SCE) of the D65 light source in the spectrophotometer, preferably 55 or more and 90 or less, and 70. More than 90 or less is more preferable. Here, the D65 light source refers to the standard illuminant D65 specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”. Further, the specular light removal method (SCE) indicates a method of measuring only the diffused light contained in the reflected light. The whiteness WI value indicates a numerical value specified in ASTM E313-73, and is a numerical value indicating the degree of whiteness. When the whiteness WI value of the optical film laminate is within such a range, it has appropriate diffusivity and therefore has excellent visibility, and since sufficient whiteness can be obtained, it can be used as a white or light-colored display peripheral member. It is possible to obtain a display that can realize seamlessness.
 本発明の光学フィルム積層体の白色度WIの測定は、ASTM E313-73に記載の方法で求めることができる。本発明においては、分光測色計(コニカミノルタ社製CM-700D)において、D65光源の正反射成分を含めないSCEによって測定した白色度WIを用いた。 The whiteness WI of the optical film laminate of the present invention can be measured by the method described in ASTM E313-73. In the present invention, the whiteness WI measured by SCE excluding the specular reflection component of the D65 light source was used in a spectrocolorimeter (CM-700D manufactured by Konica Minolta).
<<光学フィルム積層体の製造方法>>
 本発明の光学フィルム積層体は、反射偏光子層と拡散素子層を、直接又は他の層(a)を介して積層することで製造することができる。例えば、他の層(a)として、粘着剤層を用いる場合には、予め、粘着剤を剥離フィルム上に塗工して、粘着剤層を形成し、反射偏光子層に、粘着剤層を重ね、加熱ラミネートを行って積層する。得られた積層体の剥離フィルムを取り外したのち、その粘着剤層に拡散素子層を重ね、加熱ラミネートを行うことで光学フィルム積層体を得ることができる。加熱ラミネートは、公知のラミネータを用いて行うことができる。
<< Manufacturing method of optical film laminate >>
The optical film laminate of the present invention can be produced by laminating a reflective polarizer layer and a diffusing element layer directly or via another layer (a). For example, when the pressure-sensitive adhesive layer is used as the other layer (a), the pressure-sensitive adhesive is previously applied on the release film to form the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is applied to the reflective polarizing element layer. Laminate by laminating and heating laminating. An optical film laminate can be obtained by removing the release film of the obtained laminate, overlaying the diffusion element layer on the adhesive layer, and performing heat laminating. The heat laminating can be performed using a known laminator.
<<光学フィルム積層体の用途>>
 本発明の光学フィルム積層体は、ディスプレイ用の光学フィルム積層体であり、偏光板(A)と直接又は間接的に積層されて用いられる。本発明にかかるディスプレイは、特に、自動車の表示パネル類、家電製品の表示パネル類、家具や建築物の壁、床、天井などに埋め込まれる液晶ディスプレイ、有機ELディスプレイ、マイクロLEDディスプレイ等のディスプレイに用いられる。
<< Applications of optical film laminate >>
The optical film laminate of the present invention is an optical film laminate for a display, and is used by being directly or indirectly laminated with the polarizing plate (A). The display according to the present invention is particularly applicable to displays such as automobile display panels, home appliance display panels, liquid crystal displays embedded in walls, floors, and ceilings of furniture and buildings, organic EL displays, and micro LED displays. Used.
 本発明にかかるディスプレイは、偏光板(A)を含んでいてもよいし(ディスプレイ(D1))の場合、含まなくてもよい(ディスプレイ(D2)の場合)。 The display according to the present invention may or may not include a polarizing plate (A) (display (D1)) or not (display (D2)).
<偏光板(A)>
 偏光板(A)は、特定の方向に偏光、又は偏波した光だけに限って通過させる板である。偏光板(A)は、公知の偏光板を用いることができ、本発明の効果を阻害しない限りにおいて特に限定されない。一般にディスプレイに用いられているものが使用可能である。
<Polarizing plate (A)>
The polarizing plate (A) is a plate that allows only light that is polarized or polarized in a specific direction to pass through. A known polarizing plate can be used as the polarizing plate (A), and the polarizing plate (A) is not particularly limited as long as the effect of the present invention is not impaired. Those generally used for displays can be used.
 偏光板(A)は、ディスプレイの表示パネルデバイスの視認側に配置される。 The polarizing plate (A) is arranged on the visual side of the display panel device of the display.
 ここで偏光板(A)は、
(I)ディスプレイに含まれる表示パネルデバイスの視認側に対面して積層されて用いることができ(即ち、偏光板(A)がディスプレイに含まれる場合、即ち、ディスプレイ(D1)の場合)、
(II)偏光板(A)がディスプレイに含まれる表示パネルデバイスの視認側に含まれず(ディスプレイ(D2)の場合)、ディスプレイの視認側の表面に積層され用いることができ、
(III)偏光板(A)がディスプレイに含まれる表示パネルデバイスの視認側に含まれず(ディスプレイ(D2)の場合)、本発明の光学フィル積層体に積層され、偏光板積層体として用いることができ、
(IV)ディスプレイの表示パネルデバイスの視認側に偏光板(偏光板(A)とは異なる偏光板(B))が設けられており、さらにディスプレイの視認側の表面に積層され用いることができ、
(V)ディスプレイの表示パネルデバイスの視認側に偏光板(偏光板(A)とは異なる偏光板(B))が設けられており、本発明の光学フィル積層体に積層され、偏光板積層体として用いることができる。ここで、前記(I)~(III)の場合が、視認性に優れ、白色又は淡色系の色が用いられたディスプレイの周辺素材に対し、シームレス化することができるディスプレイを得ることができる点で好適である。なお偏光板(B)は、偏光板(A)と同一のものでもよく、異なるものでもよいが、お互いの透過軸は0±30°又は180±30°の方向となるよう配置されて用いられる。
Here, the polarizing plate (A) is
(I) The display panel device included in the display can be stacked and used facing the visible side (that is, when the polarizing plate (A) is included in the display, that is, in the case of the display (D1)).
(II) The polarizing plate (A) is not included in the visible side of the display panel device included in the display (in the case of the display (D2)), and can be used by being laminated on the surface of the display on the visible side.
(III) The polarizing plate (A) is not included in the visible side of the display panel device included in the display (in the case of the display (D2)), and can be laminated on the optical fill laminate of the present invention and used as the polarizing plate laminate. Can,
(IV) A polarizing plate (a polarizing plate (B) different from the polarizing plate (A)) is provided on the visible side of the display panel device of the display, and can be further laminated and used on the surface of the display on the visible side.
(V) A polarizing plate (a polarizing plate (B) different from the polarizing plate (A)) is provided on the visible side of the display panel device of the display, and is laminated on the optical fill laminate of the present invention. Can be used as. Here, in the cases (I) to (III) above, it is possible to obtain a display that has excellent visibility and can be made seamless with respect to the peripheral material of the display in which a white or light color is used. Is suitable. The polarizing plate (B) may be the same as or different from the polarizing plate (A), but the polarizing plates (B) may be arranged so that their transmission axes are in the direction of 0 ± 30 ° or 180 ± 30 °. ..
 上記(I)~(V)の場合には、偏光板(A)は、積層される際に、直接又は他の層(b)を介して積層されて用いられる。ここで、他の層(b)としては、特に限定されるものではないが、粘着剤層;接着剤層等を用いることができる。また、他の層(b)は、白色又はその他の色の顔料又は染料を用いて、着色することができる。このようにすることで、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化の調整を容易なものとすることができる。 In the cases of (I) to (V) above, the polarizing plate (A) is used by being laminated directly or via another layer (b) when laminated. Here, the other layer (b) is not particularly limited, but an adhesive layer; an adhesive layer or the like can be used. In addition, the other layer (b) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
<光学フィルム積層体の配置>
 本発明の光学フィルム積層体は、ディスプレイ内において、偏光板(A)の視認側に直接又は他の層(c)を介して配置される(図1及び図2参照)。その際、光学フィルム積層体の拡散素子層が、反射偏光子層よりも視認側となるように配置される(図1及び図2参照)。ここで、他の層(c)としては、特に限定されるものではないが、粘着剤層;接着剤層;位相差フィルム、カラーフィルタ等を用いることができる。また、他の層(c)は、白色又はその他の色の顔料又は染料を用いて、着色することができる。このようにすることで、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化の調整を容易なものとすることができる。
<Arrangement of optical film laminate>
The optical film laminate of the present invention is arranged in the display on the visible side of the polarizing plate (A) directly or via another layer (c) (see FIGS. 1 and 2). At that time, the diffusing element layer of the optical film laminate is arranged so as to be on the visual side of the reflective polarizer layer (see FIGS. 1 and 2). Here, the other layer (c) is not particularly limited, but an adhesive layer; an adhesive layer; a retardation film, a color filter, or the like can be used. In addition, the other layer (c) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member.
 本発明の光学フィルム積層体を配置する際、光学フィルム積層体の反射偏光子の透過軸と、偏光板(A)の透過軸とが、0±30°又は180±30°の方向になるように配置される。また、偏光板(A)の透過軸と直交する偏光は、反射偏光子層により反射される。 When arranging the optical film laminate of the present invention, the transmission axis of the reflection polarizer of the optical film laminate and the transmission axis of the polarizing plate (A) are oriented in the direction of 0 ± 30 ° or 180 ± 30 °. Is placed in. Further, the polarized light orthogonal to the transmission axis of the polarizing plate (A) is reflected by the reflective polarizer layer.
 光学フィルム積層体を上述したように配置することで、以下のような効果を得ることが可能となる。即ち、液晶パネル又は有機ELパネルからの出射光は、視認側に位置する偏光板(A)により透過偏光となる。本発明の光学フィルム積層体の反射偏光子層の透過軸と、ディスプレイ視認側に位置する偏光板(A)の透過軸とを0±30°又は180±30°の方向に合わせることで、反射偏光子層が、(1)偏光板(A)からの出射光の透過率低下を抑制し、さらに、(2)外光及び拡散素子層からの拡散光を反射偏光子層に反射させることが可能となる。この反射光と、この反射光が拡散素子層によって発生した拡散光との相互作用により、(3)視認性を良好に保った上で、ディスプレイの白色輝度を高めることができ、白色でのシームレス化を達成することができる。 By arranging the optical film laminate as described above, the following effects can be obtained. That is, the light emitted from the liquid crystal panel or the organic EL panel is transmitted polarized light by the polarizing plate (A) located on the viewing side. Reflection is achieved by aligning the transmission axis of the reflective polarizer layer of the optical film laminate of the present invention with the transmission axis of the polarizing plate (A) located on the viewing side of the display in the direction of 0 ± 30 ° or 180 ± 30 °. The polarizer layer can (1) suppress a decrease in the transmittance of the light emitted from the polarizing plate (A), and (2) reflect the external light and the diffused light from the diffusing element layer to the reflective polarizer layer. It will be possible. By the interaction between this reflected light and the diffused light generated by the diffused element layer, (3) the white brightness of the display can be enhanced while maintaining good visibility, and it is seamless in white. Can be achieved.
<上記(III)と(V)の場合における偏光板積層体>
 上述したように本発明の光学フィルム積層体は、偏光板(A)と積層することで、偏光板積層体として用いることが可能である(図2参照)。
<Polarizing plate laminate in the cases of (III) and (V) above>
As described above, the optical film laminate of the present invention can be used as a polarizing plate laminate by laminating it with the polarizing plate (A) (see FIG. 2).
 偏光板積層体は、光学フィルム積層体の反射偏光子層に対し、光学フィルム積層体の拡散素子層とは反対側に、直接又は他の層(b)を介して、積層される(図2参照)。 The polarizing plate laminate is laminated on the reflective polarizer layer of the optical film laminate on the side opposite to the diffuser element layer of the optical film laminate, either directly or via another layer (b) (FIG. 2). reference).
 偏光板積層体の偏光板(A)の透過軸と、反射偏光子層の透過軸は、0±30°又は180±30°の関係となるよう配置される。 The transmission axis of the polarizing plate (A) of the polarizing plate laminate and the transmission axis of the reflective polarizer layer are arranged so as to have a relationship of 0 ± 30 ° or 180 ± 30 °.
 前記偏光板積層体の偏光板側から入射したC光源の光が前記偏光板積層体の拡散素子層側に出射した透過光(T2)を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した透過Y値は、本発明の効果が阻害しない限りにおいて特に限定されず、15以上40以下とすることができ、20以上40以下が好ましく、25以上40以下がより好ましい(図4(a)参照)。T2のY値がかかる範囲にある場合には、明るさ(視認性)に優れ、また、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。 The transmitted light (T2) emitted from the light of the C light source incident from the polarizing plate side of the polarizing plate laminate to the diffusion element layer side of the polarizing plate laminate is measured according to the JIS Z8722: 2009 standard, and then the C light source is used. The transmission Y value calculated in the above is not particularly limited as long as the effect of the present invention is not impaired, and can be 15 or more and 40 or less, preferably 20 or more and 40 or less, and more preferably 25 or more and 40 or less (FIG. 4 (FIG. 4). a) See). When the Y value of T2 is within the applicable range, the brightness (visibility) is excellent and sufficient whiteness can be obtained, so that the display can be seamlessly connected to the white or light-colored display peripheral members. Can be obtained.
 偏光板積層体の拡散素子層側から入射したC光源の光が前記偏光板積層体で反射して拡散素子層側に出射した反射光(R2)を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した反射Y値は、本発明の効果が阻害しない限りにおいて特に限定されず、40以上80以下とすることができ、50以上80以下が好ましく、65以上80以下がより好ましい(図4(b)参照)。R1のY値がかかる範囲にある場合には、適度な拡散性が得られるため画面の鮮明性に優れ、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。 After measuring the reflected light (R2) that the light of the C light source incident from the diffuser element layer side of the polarizing plate laminate was reflected by the polarizing plate laminate and emitted to the diffuser layer side according to the JIS Z8722: 2009 standard, The reflection Y value calculated by the C light source is not particularly limited as long as the effect of the present invention is not impaired, and can be 40 or more and 80 or less, preferably 50 or more and 80 or less, and more preferably 65 or more and 80 or less ( See FIG. 4 (b)). When the Y value of R1 is within such a range, appropriate diffusivity is obtained, so that the screen is excellent in sharpness, and sufficient whiteness is obtained, so that it is seamless with white or light-colored display peripheral members. Can be obtained.
 ここでY値は、視感反射率(又は視感透過率)を示し、JIS Z8722:2009「色の測定方法-反射及び透過物体色」に記載された方法で測定した後、C光源にて算出する。C光源とは、JIS Z8720:2012「測色用の標準イルミナント(標準の光)及び標準光源」に規定されている補助イルミナントCを示す。 Here, the Y value indicates the visual reflectance (or visual transmittance), and after measuring by the method described in JIS Z8722: 2009 "Color measurement method-reflection and transmission object color", the C light source is used. calculate. The C light source indicates an auxiliary illuminant C specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”.
 本発明の偏光板積層体は、分光測色計におけるD65光源の正反射光除去方式(SCE)での白色度WI値が45以上90以下とすることができ、55以上90以下が好ましく、70以上90以下がより好ましい。ここで、D65光源とは、JIS Z8720:2012「測色用の標準イルミナント(標準の光)及び標準光源」に規定されている標準イルミナントD65を示す。また、正反射光除去方式(SCE)とは、反射光に含まれる拡散光のみを計測する方法を示す。白色度WI値はASTM E313-73に規定された数値を示し、白さの度合を示す数値である。光学フィルム積層体の白色度WI値がかかる範囲にある場合には、適度な拡散性を有するため視認性に優れ、また、十分な白色度が得られるため、白色又は淡色系のディスプレイ周辺部材との、シームレス化が実現できるディスプレイを得ることができる。 The polarizing plate laminate of the present invention can have a whiteness WI value of 45 or more and 90 or less in the specular reflection light removal method (SCE) of the D65 light source in the spectrophotometer, preferably 55 or more and 90 or less, and 70. More than 90 or less is more preferable. Here, the D65 light source refers to the standard illuminant D65 specified in JIS Z8720: 2012 “Standard illuminant (standard light) for color measurement and standard light source”. Further, the specular light removal method (SCE) indicates a method of measuring only the diffused light contained in the reflected light. The whiteness WI value indicates a numerical value specified in ASTM E313-73, and is a numerical value indicating the degree of whiteness. When the whiteness WI value of the optical film laminate is within such a range, it has appropriate diffusivity and therefore has excellent visibility, and since sufficient whiteness can be obtained, it can be used as a white or light-colored display peripheral member. It is possible to obtain a display that can realize seamlessness.
 本発明の偏光板積層体の白色度WIの測定は、ASTM E313-73に記載の方法で求めることができる。本発明においては、分光測色計(コニカミノルタ社製CM-700D)において、D65光源の正反射成分を含めないSCEによって測定した白色度WIを用いた。 The whiteness WI of the polarizing plate laminate of the present invention can be measured by the method described in ASTM E313-73. In the present invention, the whiteness WI measured by SCE excluding the specular reflection component of the D65 light source was used in a spectrocolorimeter (CM-700D manufactured by Konica Minolta).
 本発明の偏光板積層体は、光学フィルム積層体と、直接又は他の層(d)を介して積層することで製造することができる。ここで、他の層(d)としては、特に限定されるものではないが、粘着剤層;接着剤層;位相差フィルム、カラーフィルタ等を用いることができる。また、他の層(d)は、白色又はその他の色の顔料又は染料を用いて、着色することができる。このようにすることで、ディスプレイと、白色又は淡色系のディスプレイ周辺部材との、シームレス化の調整を容易なものとすることができる。例えば、他の層(d)として、粘着剤層を用いる場合には、予め、粘着剤を剥離フィルム上に塗工して、粘着剤層を形成し、光学フィルム積層体に、粘着剤層を重ね、加熱ラミネートを行って積層する。得られた積層体の剥離フィルムを取り外したのち、その粘着剤層に偏光板(A)を重ね、加熱ラミネートを行うことで偏光板積層体を得ることができる。加熱ラミネートは、公知のラミネータを用いて行うことができる。 The polarizing plate laminate of the present invention can be produced by laminating it directly with an optical film laminate or via another layer (d). Here, the other layer (d) is not particularly limited, but an adhesive layer; an adhesive layer; a retardation film, a color filter, or the like can be used. In addition, the other layer (d) can be colored with a white or other color pigment or dye. By doing so, it is possible to easily adjust the seamlessness between the display and the white or light-colored display peripheral member. For example, when the pressure-sensitive adhesive layer is used as the other layer (d), the pressure-sensitive adhesive is previously applied onto the release film to form the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is formed on the optical film laminate. Laminate by laminating and heat laminating. A polarizing plate laminate can be obtained by removing the release film of the obtained laminate, overlaying the polarizing plate (A) on the pressure-sensitive adhesive layer, and performing heat lamination. The heat laminating can be performed using a known laminator.
 次に、本発明を、実施例及び比較例により、さらに具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
<光学フィルム積層体の作製>
(実施例1~7)
 酸化チタン微粒子を分散したアクリル樹脂塗料を、厚さ100μmの透明PETフィルム(東洋紡社製、コスモシャイン A4301)処理面上に塗布、乾燥して、特定のヘーズと、特定の全光線透過率を有するPETフィルム付の各拡散素子層1~7を得た。
 なお、拡散素子層のヘーズと全光線透過率は、酸化チタン微粒子の配合量と拡散素子層の厚さを調整することにより行った。
 続いて、PETフィルム付の各拡散素子層1~7に対し、拡散素子層1~6は、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)を、拡散素子層7は、金属ナノワイヤーグリッドからなる反射偏光子(旭化成社製、WGF)を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせることにより、実施例1~7の光学フィルム積層体1~7を得た。
 拡散素子層の使用材料と、ヘーズ、全光線透過率、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
<Manufacturing of optical film laminate>
(Examples 1 to 7)
An acrylic resin paint in which titanium oxide fine particles are dispersed is applied onto a 100 μm-thick transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) and dried to have a specific haze and a specific total light transmittance. Each diffusion element layer 1 to 7 with a PET film was obtained.
The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the titanium oxide fine particles and the thickness of the diffusing element layer.
Subsequently, for each of the diffusing element layers 1 to 7 with the PET film, the diffusing element layers 1 to 6 are a reflective polarizing element (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film, and the diffusing element layer 7 is a diffusing element layer 7. , Optics of Examples 1 to 7 by laminating a reflective polarizing element (manufactured by Asahi Kasei Co., Ltd., WGF) made of a metal nanowire grid via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06A). Film laminates 1 to 7 were obtained.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(実施例8)
 酸化チタン微粒子を分散した厚さが25μm、ヘーズが92%、全光線透過率が40%のアクリル系粘着剤(巴川製紙所社製、TD06D92)を拡散素子層8とし、この拡散素子層を、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)と、厚さ100μmの透明PETフィルム(東洋紡社製、コスモシャイン A4301)の処理表面上との間に貼り合わせて、実施例8の光学フィルム積層体8を得た。
 なお、拡散素子層のヘーズと全光線透過率は、酸化チタン微粒子の配合量と拡散素子層の厚さを調整することにより行った。
 拡散素子層の使用材料と、ヘーズ、全光線透過率値、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Example 8)
An acrylic pressure-sensitive adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06D92) having a thickness of 25 μm in which titanium oxide fine particles are dispersed, a haze of 92%, and a total light transmittance of 40% is used as a diffusing element layer 8. Example: A reflective polarizer made of a multilayer polymer stretched film (APF-V3 manufactured by 3M Co., Ltd.) and a transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm are bonded to each other on the treated surface. An optical film laminate 8 of 8 was obtained.
The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the titanium oxide fine particles and the thickness of the diffusing element layer.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(実施例9)
 透明性を有する樹脂内部に屈折率の異なる複数の円柱状の領域が形成された、ヘーズが92%、全光線透過率が85%の拡散フィルム(巴川製紙所社製LCF、SO16)を拡散素子層9とし、この拡散素子層は、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせることにより、実施例9の光学フィルム積層体9を得た。
 拡散素子層の使用材料と、ヘーズ、全光線透過率値、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Example 9)
A diffusing film (LCF, SO16 manufactured by Tomagawa Paper Co., Ltd.) having a haze of 92% and a total light transmittance of 85%, in which a plurality of columnar regions having different refractive indices are formed inside a transparent resin, is used as a diffusing element. A layer 9 is formed, and a reflective polarizing element (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film is attached to the diffusion element layer via a 25 μm acrylic transparent adhesive (manufactured by Togawa Paper Co., Ltd., TD06A). By combining them, the optical film laminate 9 of Example 9 was obtained.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(実施例10)
 樹脂内部に多孔質を有する、ヘーズが92%、全光線透過率が51%の拡散フィルム(ユポ・コーポレーション社製、ユポ電飾用紙BCR)を拡散素子層10とし、この拡散素子層は、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせることにより、実施例10の光学フィルム積層体10を得た。
 拡散素子層の使用材料と、ヘーズ、全光線透過率値、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Example 10)
A diffusing film (Yupo Corporation, YUPO lighting paper BCR) having a porous resin with a haze of 92% and a total light transmittance of 51% is used as the diffusing element layer 10, and the diffusing element layer has multiple layers. Lamination of the optical film of Example 10 by laminating a reflective polarizer (manufactured by 3M, APF-V3) made of a polymer stretched film via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06A). I got a body 10.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(実施例11)
 樹脂内部に多孔質を有するフィルムと不織布が複合された、ヘーズが95%、全光線透過率が31%の拡散フィルム(ユポ・コーポレーション社製、ハイティアーユポWSF)を拡散素子層11とし、この拡散素子層は、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせることにより、実施例11の光学フィルム積層体11を得た。
 拡散素子層の使用材料と、ヘーズ、全光線透過率値、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Example 11)
A diffusion film (High Tier YUPO WSF manufactured by YUPO Corporation) having a haze of 95% and a total light transmittance of 31%, which is a composite of a film having porousness inside the resin and a non-woven fabric, is used as the diffusion element layer 11. The diffusing element layer is carried out by laminating a reflective polarizer (manufactured by 3M, APF-V3) made of a multilayer polymer stretched film via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd., TD06A). The optical film laminate 11 of Example 11 was obtained.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance value, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(実施例12)
 実施例4で用いた酸化チタン微粒子を分散したアクリル樹脂塗料を、多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)表面上に塗布、乾燥して、反射偏光子の表面に直接拡散素子層12を設けた本発明の光学フィルム積層体12を得た。
 この拡散素子層12の光学特性を確認するため、当該アクリル樹脂塗料を本実施例拡散素子12作製と同条件で、厚さ100μmの透明PETフィルム(東洋紡社製、コスモシャイン A4301)処理面上に塗布、乾燥して得たPETフィルム付の拡散素子層ヘーズは92%、全光線透過率は50%であった。
 拡散素子層の使用材料と、ヘーズ(上記PETフィルム付での値)、全光線透過率(上記PETフィルム付での値)、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Example 12)
The acrylic resin coating material in which the titanium oxide fine particles used in Example 4 are dispersed is applied onto the surface of a reflective polarizer (APF-V3 manufactured by 3M) made of a multilayer polymer stretched film, dried, and applied to the surface of the reflective polarizer. The optical film laminate 12 of the present invention provided with the direct diffusing element layer 12 was obtained.
In order to confirm the optical characteristics of the diffuser layer 12, the acrylic resin paint was applied on the treated surface of a transparent PET film (manufactured by Toyobo Co., Ltd., Cosmoshine A4301) having a thickness of 100 μm under the same conditions as in the production of the diffuser 12 of this example. The diffuser layer haze with the PET film obtained by coating and drying was 92%, and the total light transmittance was 50%.
The material used for the diffuser layer, the haze (value with the PET film), the total light transmittance (value with the PET film), and the material used for the reflective polarizer layer, and the total light beam of the optical film laminate. The transmittances are summarized and shown in Table 1.
<比較例の光学フィルム積層体、拡散素子層、反射偏光子層の作製>
(比較例1)
 シリコーン微粒子を分散したアクリル樹脂塗料を、厚さ100μmの透明PETフィルム(東洋紡社製、コスモシャイン A4301)処理面上に塗布、乾燥して、ヘーズが25%、全光線透過率が90%の比較例1の拡散素子層aを得た。
 なお、拡散素子層のヘーズと全光線透過率は、シリコーン微粒子の配合量と拡散素子層の厚さを調整することにより行った。 拡散素子層の使用材料と、ヘーズ、全光線透過率をまとめ、表1に示した。
<Manufacturing of Comparative Example Optical Film Laminate, Diffusing Element Layer, Reflective Polarizer Layer>
(Comparative Example 1)
Acrylic resin paint in which silicone fine particles are dispersed is applied on a transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) with a thickness of 100 μm and dried, and the haze is 25% and the total light transmittance is 90%. The diffusion element layer a of Example 1 was obtained.
The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the silicone fine particles and the thickness of the diffusing element layer. Table 1 summarizes the materials used for the diffusing element layer, haze, and total light transmittance.
(比較例2~4)
 酸化チタン微粒子を分散したアクリル樹脂塗料を、厚さ100μmの透明PETフィルム(東洋紡社製、コスモシャイン A4301)処理面上に塗布、乾燥して、特定のヘーズと、特定の全光線透過率を有するPETフィルム付の各拡散素子層b~dを得た。
 なお、拡散素子層のヘーズと全光線透過率は、酸化チタン微粒子の配合量と拡散素子層の厚さを調整することにより行った。
 続いて、PETフィルム付の拡散素子層dに対し、Al蒸着フィルム(全光線透過率50%)を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせることにより、比較例4の光学フィルム積層体dを得た。
 拡散素子層の使用材料と、ヘーズ、全光線透過率、そして反射偏光子層の使用材料と、光学フィルム積層体の全光線透過率をまとめ、表1に示した。
(Comparative Examples 2 to 4)
An acrylic resin paint in which titanium oxide fine particles are dispersed is applied onto a 100 μm-thick transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) and dried to have a specific haze and a specific total light transmittance. Each diffusion element layer b to d with a PET film was obtained.
The haze and total light transmittance of the diffusing element layer were determined by adjusting the blending amount of the titanium oxide fine particles and the thickness of the diffusing element layer.
Subsequently, an Al vapor-deposited film (total light transmittance of 50%) is attached to the diffusion element layer d with the PET film via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A). , An optical film laminate d of Comparative Example 4 was obtained.
Table 1 summarizes the materials used for the diffuser layer, the haze, the total light transmittance, the materials used for the reflective polarizer layer, and the total light transmittance of the optical film laminate.
(比較例5)
 多層ポリマー延伸フィルムからなる反射偏光子(3M社製、APF-V3)のみを、比較例5の反射偏光子V3とした。
 反射偏光子層の使用材料と、その全光線透過率をまとめ、表1に示した。
(Comparative Example 5)
Only the reflective polarizing element (manufactured by 3M, APF-V3) made of the multilayer polymer stretched film was used as the reflective polarizer V3 of Comparative Example 5.
The materials used for the reflective polarizer layer and their total light transmittance are summarized in Table 1.
 実施例1~12と比較例1~5を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
Examples 1 to 12 and Comparative Examples 1 to 5 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
<光学フィルム積層体による偏光板積層体の作製>
(実施例13)
 実施例4で作製した光学フィルム積層体4に対し、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して偏光板(偏光度99.9%、透過率42%)を、光学フィルム積層体の反射偏光子側表面に貼り合わせ、実施例13の偏光板積層体13を得た。偏光板との貼り合わせは、反射偏光子の透過軸に対し、偏光板の透過軸を15°ずらした構成とした。
<Manufacturing a polarizing plate laminate using an optical film laminate>
(Example 13)
A polarizing plate (polarization degree 99.9%, transmittance 42%) was applied to the optical film laminate 4 produced in Example 4 via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A). The polarizing film laminate 13 of Example 13 was obtained by laminating it on the surface of the optical film laminate on the reflection polarizer side. The bonding with the polarizing plate was configured such that the transmission axis of the polarizing plate was shifted by 15 ° with respect to the transmission axis of the reflective polarizer.
(実施例14)
 光学フィルム積層体の反射偏光子の透過軸に対し、偏光板の透過軸を30°ずらした構成とする他は、実施例13と同様に行い、実施例14の偏光板積層体14を得た。
(Example 14)
The same procedure as in Example 13 was carried out except that the transmission axis of the polarizing plate was shifted by 30 ° with respect to the transmission axis of the reflection polarizer of the optical film laminate to obtain the polarizing plate laminate 14 of Example 14. ..
(比較例6)
 光学フィルム積層体の反射偏光子の透過軸に対し、偏光板の透過軸を45°ずらした構成とする他は、実施例13と同様に行い、比較例6の偏光板積層体eを得た。
(Comparative Example 6)
The same procedure as in Example 13 was carried out except that the transmission axis of the polarizing plate was shifted by 45 ° with respect to the transmission axis of the reflection polarizer of the optical film laminate to obtain the polarizing plate laminate e of Comparative Example 6. ..
(比較例7)
 実施例4で作製した光学フィルム積層体4に対し、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して偏光板(偏光度99.9%、透過率42%)を、光学フィルム積層体の拡散素子層側表面に貼り合わせ、比較例7の偏光板積層体fを得た。偏光板との貼り合わせは、反射偏光子の透過軸と、偏光板の透過軸とが、0°の方向となる構成とした。
(Comparative Example 7)
A polarizing plate (polarization degree 99.9%, transmittance 42%) was applied to the optical film laminate 4 produced in Example 4 via a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A). It was bonded to the surface of the optical film laminate on the diffuser layer side to obtain the polarizing plate laminate f of Comparative Example 7. The bonding with the polarizing plate was such that the transmission axis of the reflective polarizer and the transmission axis of the polarizing plate were in the direction of 0 °.
 実施例13、14と比較例6、7を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
Examples 13 and 14 and Comparative Examples 6 and 7 are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
<測定>
(全光線透過率とヘーズの測定)
 拡散素子層と、光学フィルム積層体の全光線透過率とヘーズの測定は、共にヘーズメーター(日本電色社社製、NDH-2000)を使用して、全光線透過率は、JIS K7361-1:1997を、ヘーズはJIS K7136:2000に準拠して測定した。
 なお、拡散素子層のヘーズ測定では、拡散素子層の一方の面に、透明PETフィルム(東洋紡社製、コスモシャイン A4301)を有した状態のサンプルにて、測定した。
<Measurement>
(Measurement of total light transmittance and haze)
The total light transmittance and haze of the diffusing element layer and the optical film laminate were both measured using a haze meter (NDH-2000 manufactured by Nippon Denshoku Co., Ltd.), and the total light transmittance was JIS K7361-1. : 1997, Haze measured according to JIS K7136: 2000.
In the haze measurement of the diffusing element layer, a sample having a transparent PET film (Cosmo Shine A4301 manufactured by Toyobo Co., Ltd.) on one surface of the diffusing element layer was used for the measurement.
(透過Y値と反射Y値に関する測定)
 実施例1~12、比較例4の各光学フィルム積層体と、比較例1~3の各拡散素子層と、比較例5の反射偏光子層の透過Y値と反射Y値に関する測定を、分光光度計(島津製作所社製、UV-2500)で2°視野にて行った。
(Measurement regarding transmission Y value and reflection Y value)
Measurements relating to the transmission Y value and the reflection Y value of the optical film laminates of Examples 1 to 12 and Comparative Example 4, the diffusion element layers of Comparative Examples 1 to 3, and the reflection polarizer layer of Comparative Example 5 are spectroscopically measured. A photometer (UV-2500 manufactured by Shimadzu Corporation) was used for a 2 ° field view.
 透過Y値は、光学フィルム積層体の場合には、光学フィルム積層体の反射偏光子層側から入射したC光源の光が光学フィルム積層体の拡散素子層側に出射した透過光(T1)を、拡散素子層の場合には、拡散素子層に一方の面側から入射したC光源の光が拡散素子層内を透過して他方の面側から透過して出射した透過光を、反射偏光子層の場合には、反射偏光子層に一方の面側から入射したC光源の光が反射偏光子層内を透過して他方の面側から透過して出射した透過光を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した値を透過Y値とした。 In the case of the optical film laminate, the transmitted Y value is the transmitted light (T1) that the light of the C light source incident from the reflected polarizer layer side of the optical film laminate emits to the diffuser layer side of the optical film laminate. In the case of a diffuser layer, the light of the C light source incident on the diffuser layer from one surface side is transmitted through the diffuser layer and transmitted from the other surface side, and the transmitted light emitted is reflected by the reflection polarizer. In the case of a layer, the transmitted light emitted by the light of the C light source incident on the reflective polarizer layer from one surface side, transmitted through the reflective polarizer layer and transmitted from the other surface side is emitted from JIS Z8722: 2009. After the measurement according to the standard, the value calculated by the C light source was used as the transmitted Y value.
 反射Y値は、光学フィルム積層体の場合には、光学フィルム積層体の拡散素子層側から入射したC光源の光が光学フィルム積層体で反射して拡散素子層側に出射した反射光(R1)を、拡散素子層の場合には、拡散素子層に一方の面側から入射したC光源の光が拡散素子層内で反射して、拡散素子層の一方の面側に出射した反射光を、反射偏光子層の場合には、反射偏光子層に一方の面側から入射したC光源の光が反射偏光子層内で反射して、反射偏光子層の一方の面側に出射した反射光を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した値を反射Y値とした。 In the case of the optical film laminate, the reflected Y value is the reflected light (R1) in which the light of the C light source incident from the diffuser layer side of the optical film laminate is reflected by the optical film laminate and emitted to the diffuser layer side. ), In the case of the diffusing element layer, the light of the C light source incident on the diffusing element layer from one surface side is reflected in the diffusing element layer, and the reflected light emitted to the one surface side of the diffusing element layer is emitted. In the case of the reflected polarizer layer, the light of the C light source incident on the reflected polarizer layer from one surface side is reflected in the reflected polarizer layer and emitted to the one surface side of the reflected polarizer layer. After measuring the light according to the JIS Z8722: 2009 standard, the value calculated by the C light source was taken as the reflected Y value.
 ただし、光学フィルム積層体と反射偏光子層は、透過軸を有することから、その偏光性の影響を排除する必要がある。そこで、本測定では、全ての実施例と比較例に対し、光源が評価サンプルに入射するとき、光学フィルム積層体又は反射偏光子層を使用したサンプルの場合には、まず、それらが有する透過軸方向を基準としてその方位角0°とし、そのときの測定値と、それを基準に方位角を90°回転させた場合での測定値との平均値を算出して、評価サンプルの透過Y値と反射Y値とした。また、拡散素子層の場合には、透過軸を有しないため、任意の評価サンプル配置を方位角0°とし、それを基準に方位角を90°回転させた場合のそれぞれの測定値の平均値を算出して、評価サンプルの透過Y値と反射Y値とした。 However, since the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, for all the examples and comparative examples, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate or the reflective polarizer layer, first, the transmission axes possessed by them are present. The azimuth angle is set to 0 ° with reference to the direction, and the average value of the measured value at that time and the measured value when the azimuth is rotated by 90 ° with reference to it is calculated, and the transmission Y value of the evaluation sample is calculated. And the reflection Y value. Further, in the case of the diffusion element layer, since it does not have a transmission axis, an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. Was calculated and used as the transmission Y value and the reflection Y value of the evaluation sample.
(偏光板と組み合わせ時の透過Y値と反射Y値に関する測定)
 実施例1~12、比較例4の各光学フィルム積層体と、比較例1~3の各拡散素子層と、比較例5の反射偏光子層を、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して偏光板(偏光度99.9%、透過率42%)と貼り合わせた偏光板積層体、偏光板拡散素子層、偏光板反射偏光子層の透過Y値と反射Y値に関する測定を、分光光度計(島津製作所社製、UV-2500)で2°視野にて行った。偏光板との貼り合わせは、反射偏光子層が使用されたサンプルの場合、この反射偏光子の透過軸と、偏光板の透過軸とが同一(0°又は180°)となるように配置した。
(Measurement of transmitted Y value and reflected Y value when combined with a polarizing plate)
Each optical film laminate of Examples 1 to 12 and Comparative Example 4, each diffusion element layer of Comparative Examples 1 to 3, and a reflective polarizing element layer of Comparative Example 5 were coated with a 25 μm acrylic transparent adhesive (Tomokawa Paper Mill). The transmission Y value and reflection of the polarizing plate laminate, the polarizing plate diffuser layer, and the polarizing plate reflective polarizer layer bonded to the polarizing plate (polarization degree 99.9%, transmittance 42%) via TD06A manufactured by the same company. The Y value was measured with a spectrophotometer (UV-2500, manufactured by Shimadzu Corporation) in a 2 ° field. In the case of a sample in which a reflective polarizing element layer was used, the bonding with the polarizing plate was arranged so that the transmission axis of the reflection polarizer and the transmission axis of the polarizing plate were the same (0 ° or 180 °). ..
 透過Y値は、光学フィルム積層体を使用したサンプルの場合には、偏光板積層体の偏光板側から入射したC光源の光が偏光板積層体の拡散素子層側に出射した透過光(T2)を、拡散素子層を使用したサンプルの場合には、偏光板拡散素子層の偏光板側から入射したC光源の光が偏光板拡散素子層の拡散素子層側に偏光板拡散素子層を透過して出射した透過光を、反射偏光子層を使用したサンプルの場合には、偏光板反射偏光子層の偏光板側から入射したC光源の光が偏光板反射偏光子層の反射偏光子層側に反射偏光子層を透過して出射した透過光を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した値を透過Y値とした。 In the case of a sample using an optical film laminate, the transmitted Y value is the transmitted light (T2) in which the light of the C light source incident from the polarizing plate side of the polarizing plate laminate is emitted to the diffuser element layer side of the polarizing plate laminate. ), In the case of a sample using the polarizing element layer, the light of the C light source incident from the polarizing plate side of the polarizing plate diffusion element layer passes through the polarizing plate diffusion element layer to the spreading element layer side of the polarizing plate diffusion element layer. In the case of a sample using a reflective polarizer layer, the light of the C light source incident from the polarizing plate side of the polarizing plate reflective polarizer layer is the reflected light of the polarizing plate reflective polarizer layer. The transmitted light transmitted through the reflecting polarizing element layer to the side was measured according to the JIS Z8722: 2009 standard, and then the value calculated by the C light source was used as the transmitted Y value.
 反射Y値は、光学フィルム積層体を使用したサンプルの場合には、偏光板積層体の拡散素子層側から入射したC光源の光が偏光板積層体で反射して拡散素子層側に出射した反射光(R1)を、拡散素子層を使用したサンプルの場合には、偏光板拡散素子層の拡散素子層側から入射したC光源の光が偏光板拡散素子層の拡散偏光子内で反射して拡散素子層側に偏光板拡散素子層を透過して出射した反射光を、反射偏光子層を使用したサンプルの場合には、偏光板反射偏光子層の反射偏光子層側から入射したC光源の光が偏光板反射偏光子層の反射偏光子層内で反射して、反射偏光子層側に偏光板反射偏光子層を透過して出射した反射光を、JIS Z8722:2009規格に従い測定した後、C光源にて算出した値を反射Y値とした。 In the case of a sample using an optical film laminate, the reflection Y value is such that the light of the C light source incident from the diffuser layer side of the polarizing plate laminate is reflected by the polarizing plate laminate and emitted to the diffuser layer side. In the case of a sample using the diffuser element layer, the reflected light (R1) is reflected by the light of the C light source incident from the diffuser element layer side of the polarizing plate diffuser layer in the diffused polarizer of the polarizing plate diffuser layer. In the case of a sample using the reflective polarizer layer, the reflected light transmitted through the polarizing plate diffuser layer and emitted to the diffuser layer side is incident from the reflected polarizer layer side of the polarizing plate reflective polarizer layer. The reflected light emitted from the light of the light source is reflected in the reflected polarizer layer of the polarizing plate reflective polarizer layer and transmitted through the polarizing plate reflective polarizer layer to the reflected polarizer layer side, and the reflected light is measured according to the JIS Z8722: 2009 standard. After that, the value calculated by the C light source was used as the reflection Y value.
 ただし、光学フィルム積層体と反射偏光子層は、透過軸を有することから、その偏光性の影響を排除する必要がある。そこで、本測定では、偏光板を貼り合わせた全ての実施例と比較例に対し、光源が評価サンプルに入射するとき、光学フィルム積層体又は反射偏光子層を使用したサンプルの場合には、まず、それらが有する透過軸方向を基準としてその方位角0°とし、そのときの測定値と、それを基準に方位角を90°回転させた場合での測定値との平均値を算出して、評価サンプルの透過Y値と反射Y値とした。また、拡散素子層の場合には、透過軸を有しないため、任意の評価サンプル配置を方位角0°とし、それを基準に方位角を90°回転させた場合のそれぞれの測定値の平均値を算出して、評価サンプルの透過Y値と反射Y値とした。 However, since the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, in contrast to all the examples and comparative examples in which the polarizing plates are bonded, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate or the reflective polarizer layer, first , The azimuth angle is 0 ° with reference to the transmission axis direction of them, and the average value of the measured value at that time and the measured value when the azimuth angle is rotated by 90 ° with reference to it is calculated. The transmission Y value and the reflection Y value of the evaluation sample were used. Further, in the case of the diffusion element layer, since it does not have a transmission axis, an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. Was calculated and used as the transmission Y value and the reflection Y value of the evaluation sample.
(白色度の測定)
 実施例1~12、比較例4の各光学フィルム積層体と、比較例1~3の各拡散素子層と、比較例5の反射偏光子層に対し、光学フィルム積層体では反射偏光子表面、拡散素子層では拡散素子層の片側表面、反射偏光子層では反射偏光子層の片側表面に、透過率が0%の黒色PETフィルムを、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせ、光学フィルム積層体と拡散素子層では拡散素子側、反射偏光子層では反射偏光子層側より、白色度を測定した。測定は、分光測色計(コニカミノルタ社製、CM-700D)にて、SCEモード、D65光源で白色度:WI(ASTM E313-73規格に準拠する)を求めた。
(Measurement of whiteness)
In contrast to the optical film laminates of Examples 1 to 12 and Comparative Example 4, the diffuser layers of Comparative Examples 1 to 3, and the reflective polarizer layer of Comparative Example 5, the optical film laminate has a reflective polarizer surface. A black PET film with a transmittance of 0% is applied to one side of the diffuser layer on one side of the diffuser layer and on one side of the reflective polarizer layer in the reflective polarizer layer, and a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Co., Ltd.). The optical film laminate and the diffuser layer were bonded together via TD06A), and the whiteness was measured from the diffuser side of the optical film laminate and the diffuser layer, and from the reflection polarizer layer side of the reflective polarizer layer. For the measurement, a spectrocolorimeter (CM-700D, manufactured by Konica Minolta) was used to determine the whiteness: WI (based on ASTM E313-73 standard) in SCE mode and a D65 light source.
 ただし、光学フィルム積層体と反射偏光子層は、透過軸を有することから、その偏光性の影響を排除する必要がある。そこで、本測定では、黒色PETフィルムを貼り合わせた全実施例と比較例に対し、光源が評価サンプルに入射するとき、光学フィルム積層体と反射偏光子層を使用したサンプルの場合には、それらが有する透過軸が、地に対して垂直方向の場合(方位角0°と称す)の測定値と、それを基準に方位角を90°回転させた場合のそれぞれの測定値の平均値を算出して、評価サンプルの透過Y値と反射Y値とした。また、拡散素子層の場合には、透過軸を有しないため、任意の評価サンプル配置を方位角0°とし、それを基準に方位角を90°回転させた場合のそれぞれの測定値の平均値を算出して、評価サンプルの白色度WI値とした。 However, since the optical film laminate and the reflective polarizer layer have a transmission axis, it is necessary to eliminate the influence of their polarization properties. Therefore, in this measurement, when the light source is incident on the evaluation sample, in the case of the sample using the optical film laminate and the reflective polarizer layer, they are compared with all the examples and the comparative examples in which the black PET film is bonded. Calculates the average value of the measured values when the transmission axis of the is perpendicular to the ground (referred to as the azimuth angle 0 °) and the measured values when the azimuth angle is rotated by 90 ° with reference to it. Then, the transmission Y value and the reflection Y value of the evaluation sample were used. Further, in the case of the diffusion element layer, since it does not have a transmission axis, an arbitrary evaluation sample arrangement is set to an azimuth angle of 0 °, and the average value of each measured value when the azimuth angle is rotated by 90 ° based on the azimuth angle of 0 °. Was calculated and used as the whiteness WI value of the evaluation sample.
 各実施例に基づく構造体の透過Y値と反射Y値、白色度WI値を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
Table 3 summarizes the transmission Y value, the reflection Y value, and the whiteness WI value of the structure based on each example.
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、実施例1~12の光学フィルム積層体に偏光板を貼り合わせた偏光板積層体と、実施例13及び14の偏光板積層体は、透過Y値が15以上と高く、かつ、その反射Y値も、40以上と高い値を得ることができた。 From the results in Table 3, the polarizing plate laminates in which the polarizing plates were bonded to the optical film laminates of Examples 1 to 12 and the polarizing plate laminates of Examples 13 and 14 had a high transmission Y value of 15 or more. Moreover, the reflection Y value could be as high as 40 or more.
 また、ディスプレイの明るさの指標となる透過Y値は、実施例1~5、7~10、12において、20以上のより高い数値を得ており、特に実施例1~4、9、12は、25以上のさらに高い数値を得ており、表示が明るく鮮明であることを示していた。
 加えて、シームレスの指標となる反射Y値は、実施例3~14において、50以上のより高い数値を得ており、特に実施例4~6、10~12は、65以上のさらに高い数値を得ており、シームレスなディスプレイが得られることを示していた。
Further, the transmission Y value, which is an index of the brightness of the display, is higher than 20 in Examples 1 to 5, 7 to 10, and 12, and in particular, Examples 1 to 4, 9, and 12 have a higher value than 20. , An even higher value of 25 or more was obtained, indicating that the display was bright and clear.
In addition, the reflection Y value, which is a seamless index, has a higher value of 50 or more in Examples 3 to 14, and in particular, Examples 4 to 6, 10 to 12 have a higher value of 65 or more. It was obtained and showed that a seamless display could be obtained.
 白色度は、反射Y値が高いと白色度WI値も高くなっており、本実施例では45以上の白色度WI値を得ることができた。また、実施例3~14において、55以上のより高い数値を得ており、特に実施例4~6、11~14は、70以上のさらに高い数値を得ていた。 As for the whiteness, the higher the reflection Y value, the higher the whiteness WI value, and in this example, a whiteness WI value of 45 or more could be obtained. Further, in Examples 3 to 14, higher numerical values of 55 or more were obtained, and in particular, Examples 4 to 6 and 11 to 14 obtained higher numerical values of 70 or more.
 従って、本実施例の光学フィルム積層体は、ディスプレイで使用されることにより、透過Y値、反射Y値、白色度WI値全ての値が高くすることができた。中でも実施例3~5、7~10、12の光学フィルム積層体では、透過Y値、反射Y値、白色度WI値全ての値をより高くすることができ、特に実施例4、12の光学フィルム積層体は、透過Y値、反射Y値、白色度WI値全ての値をさらに高くすることができた。 Therefore, by using the optical film laminate of this example in a display, all the values of the transmission Y value, the reflection Y value, and the whiteness WI value can be increased. Among them, in the optical film laminates of Examples 3 to 5, 7 to 10 and 12, all the values of the transmission Y value, the reflection Y value and the whiteness WI value can be made higher, and in particular, the optics of Examples 4 and 12 In the film laminate, all the values of the transmission Y value, the reflection Y value, and the whiteness WI value could be further increased.
 ディスプレイに本発明の光学フィルム積層体が使用される場合、光学フィルム積層体を、偏光板と組み合わせた場合の透過Y値と反射Y値が、ディスプレイの表示特性やシームレス化の優劣を左右するものと考えられる。上記より、本発明実施例は、透過Y値が十分に高いため、ディスプレイの点灯時の視認性において、明るさや鮮明さを阻害することが少なく、また、反射Y値が十分に高いため、ディスプレイが消灯時に白色又は淡色のシームレスを実現することが可能となるため、ディスプレイの表示とシームレス化をバランス良くすることができると考えられる。 When the optical film laminate of the present invention is used for a display, the transmission Y value and the reflection Y value when the optical film laminate is combined with a polarizing plate determine the display characteristics of the display and the superiority or inferiority of seamlessness. it is conceivable that. From the above, in the embodiment of the present invention, since the transmission Y value is sufficiently high, the brightness and sharpness are less likely to be impaired in the visibility when the display is lit, and the reflection Y value is sufficiently high, so that the display is displayed. Since it is possible to realize a seamless white or light color when the light is turned off, it is considered that the display and the seamlessness can be well-balanced.
 上記を証明するため、実施例1、4、9、12の光学フィルム積層体を、視認側に偏光板を有するディスプレイに対し、ディスプレイの視認側偏光板の透過軸と、光学フィルム積層体の反射偏光子層の透過軸とを同一方向として、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせて視認性の確認を行った。 In order to prove the above, in order to prove the above, the optical film laminates of Examples 1, 4, 9 and 12 are used with respect to a display having a polarizing plate on the viewing side, and the transmission axis of the polarizing plate on the viewing side of the display and the reflection of the optical film laminate. The visibility was confirmed by laminating with a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A) in the same direction as the transmission axis of the polarizing element layer.
 結果、全ての光学フィルム積層体を有するディスプレイで、ディスプレイ消灯時には、シームレス化が良好で、ディスプレイ存在を十分隠すことができていた。また、ディスプレイ点灯時の視認性も、全ての光学フィルム積層体を有するディスプレイで、画像や文字が十分に視認できるほど明るく、かつボケが少なく鮮明であった。 As a result, in the display having all the optical film laminates, when the display was turned off, the seamlessness was good and the existence of the display could be sufficiently hidden. In addition, the visibility when the display was lit was also bright enough to allow the images and characters to be sufficiently visually recognized on the display having all the optical film laminates, and was clear with little blurring.
 一方、比較例1は、偏光板に貼り合わせたとき、透過Y値が43.1と高い値を示すものの、白色度WI値が19.6と、本実施例の半分未満の低い値となり、灰色を示した。 On the other hand, in Comparative Example 1, when attached to the polarizing plate, the transmission Y value was as high as 43.1, but the whiteness WI value was 19.6, which was less than half the value of this example. Shown gray.
 また、比較例2~4は、透過Y値がとても低いため、ディスプレイの表示を十分視認することができない。 Further, in Comparative Examples 2 to 4, since the transmission Y value is very low, the display cannot be sufficiently visually recognized.
 さらに比較例5は、白色度WI値が2.1と最も低く、金属光沢を有し、鏡のように反射してしまい、白色又は淡色のシームレス化を実現できるものではなかった。 Further, in Comparative Example 5, the whiteness WI value was the lowest at 2.1, it had a metallic luster, and it reflected like a mirror, and it was not possible to realize seamlessness of white or light color.
 そして、比較例6は、反射偏光子層と偏光板の透過軸が、45°と大きくずれているため、透過Y値が低く、ディスプレイの視認性が低くなるため、本発明には適さなかった。 Further, Comparative Example 6 is not suitable for the present invention because the transmission axes of the reflective polarizer layer and the polarizing plate are largely deviated from each other by 45 °, so that the transmission Y value is low and the visibility of the display is low. ..
 加えて比較例7は、偏光板との関係より、反射偏光子層が視認者側に配置されることとなるが、そのため、白色度WI値が2.3と、とても低く、金属光沢を有し、鏡のように反射してしまい、白色又は淡色のシームレス化を実現できるものではなかった。 In addition, in Comparative Example 7, the reflective polarizer layer is arranged on the viewer side due to the relationship with the polarizing plate. Therefore, the whiteness WI value is as low as 2.3 and has a metallic luster. However, it was reflected like a mirror, and it was not possible to realize seamless white or light color.
 さらに実施例1、4、9、12に対してと同様に、比較例4の光学フィルム積層体を、視認側に偏光板を有するディスプレイに対し、ディスプレイの視認側偏光板の透過軸と、光学フィルム積層体の反射偏光子層の透過軸とを同一方向として、25μmのアクリル系透明粘着剤(巴川製紙所社製、TD06A)を介して貼り合わせて視認性の確認を行った。
 結果、ディスプレイの消灯時には、シームレス化が良好で、ディスプレイ存在を隠すことができていたが、ディスプレイ点灯時の視認性は、画像が暗く、また、画像や文字が非常にボケており、視認しにくい状態であった。
Further, as in Examples 1, 4, 9, and 12, the optical film laminate of Comparative Example 4 is used with respect to a display having a polarizing plate on the viewing side, and the transmission axis of the polarizing plate on the viewing side of the display and optics. The visibility was confirmed by laminating them with a 25 μm acrylic transparent adhesive (manufactured by Tomagawa Paper Manufacturing Co., Ltd., TD06A) in the same direction as the transmission axis of the reflective polarizing element layer of the film laminate.
As a result, when the display was turned off, the seamlessness was good and the existence of the display could be hidden, but the visibility when the display was turned on was that the image was dark and the images and characters were very blurred. It was in a difficult state.
 なお、本発明においては、白色度WI値に着目しているが、あえて着色して周囲の色相に近づけたり、柄や模様を印刷して周囲の柄や模様に近づけることも可能である。その場合、白色度WI値にはなんら依存しない。 Although the whiteness WI value is focused on in the present invention, it is also possible to intentionally color it to bring it closer to the surrounding hue, or to print a pattern or pattern to bring it closer to the surrounding pattern or pattern. In that case, it does not depend on the whiteness WI value.
10   光学フィルム積層体
11   反射偏光子層
12   拡散素子層
20   偏光板積層体
30   C光源
100  ディスプレイ内部の構造(偏光板(A)あり)
110  表示パネルデバイス(偏光板(A)あり)
120  表示パネルデバイス(偏光板(A)なし)
130  偏光板(A)
200  ディスプレイ内部の構造(偏光板(A)なし)
10 Optical film laminate 11 Reflective polarizer layer 12 Diffusing element layer 20 Polarizing plate laminate 30 C Light source 100 Internal structure of display (with polarizing plate (A))
110 Display panel device (with polarizing plate (A))
120 Display panel device (without polarizing plate (A))
130 Polarizing plate (A)
200 Internal structure of display (without polarizing plate (A))

Claims (10)

  1.  偏光板(A)と直接又は間接的に積層されて用いられるディスプレイ用の光学フィルム積層体であって、
     前記ディスプレイは、表示パネルデバイスを含み、
     前記偏光板(A)は、前記表示パネルデバイスよりも視認側に、直接又は他の層(b)を介して積層され、
     前記光学フィルム積層体は、反射偏光子層と拡散素子層とが、直接又は他の層(a)を介して積層され、
     前記拡散素子層は、前記反射偏光子層よりも視認側に配置され、
     前記光学フィルム積層体は、前記偏光板(A)の視認側に、直接又は他の層(c)を介して積層され、
     前記光学フィルム積層体は、前記偏光板(A)の透過軸と前記反射偏光子層の透過軸とが0±30°又は180±30°の関係となるよう配置され、
     前記反射偏光子層は、前記偏光板(A)の透過軸に直交する偏光を反射することを特徴とする、光学フィルム積層体。
    An optical film laminate for a display used by being directly or indirectly laminated with a polarizing plate (A).
    The display includes a display panel device.
    The polarizing plate (A) is laminated on the visual side of the display panel device directly or via another layer (b).
    In the optical film laminate, the reflective polarizer layer and the diffusing element layer are laminated directly or via another layer (a).
    The diffuser layer is arranged on the visual side of the reflective polarizer layer.
    The optical film laminate is laminated directly on the visible side of the polarizing plate (A) or via another layer (c).
    The optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer have a relationship of 0 ± 30 ° or 180 ± 30 °.
    The reflective polarizer layer is an optical film laminate characterized by reflecting polarized light orthogonal to the transmission axis of the polarizing plate (A).
  2.  前記反射偏光子層は、第1のポリマー層と、第2のポリマー層と、を含み、
     前記第1のポリマー層又は前記第2のポリマー層のいずれかが、ナフタレート系ポリマーであることを特徴とする、請求項1に記載の光学フィルム積層体。
    The reflective polarizer layer includes a first polymer layer and a second polymer layer.
    The optical film laminate according to claim 1, wherein either the first polymer layer or the second polymer layer is a naphthalate-based polymer.
  3.  前記拡散素子層は、微粒子が分散された拡散フィルム、微粒子が分散された拡散粘着剤層、不織布、表面に凹凸を有する拡散フィルム、多孔質フィルム、のいずれかであることを特徴とする、請求項1又は2に記載の光学フィルム積層体。 The diffusion element layer is any one of a diffusion film in which fine particles are dispersed, a diffusion pressure-sensitive adhesive layer in which fine particles are dispersed, a non-woven fabric, a diffusion film having irregularities on the surface, and a porous film. Item 2. The optical film laminate according to Item 1 or 2.
  4.  前記拡散素子層のヘーズが40%以上95%以下であり、全光線透過率が30%以上88%以下であることを特徴とする、請求項1~3のいずれか一項に記載の光学フィルム積層体。 The optical film according to any one of claims 1 to 3, wherein the haze of the diffusing element layer is 40% or more and 95% or less, and the total light transmittance is 30% or more and 88% or less. Laminated body.
  5.  前記光学フィルム積層体は、
     前記光学フィルム積層体の反射偏光子層側から入射したC光源の光が前記光学フィルム積層体の拡散素子層側に光学フィルム積層体を透過して出射した透過光(T1)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した透過Y値が、20以上50以下であり、
     前記光学フィルム積層体の拡散素子層側から入射したC光源の光が前記光学フィルム積層体の反射偏光子で反射して拡散素子層側に前記光学フィルム積層体を透過して出射した反射光(R1)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した反射Y値が、40以上80以下であることを特徴とする、請求項1~4のいずれか一項に記載の光学フィルム積層体。
    The optical film laminate is
    The transmitted light (T1) emitted from the light of the C light source incident from the reflection polarizer layer side of the optical film laminate through the optical film laminate on the diffuser layer side of the optical film laminate is emitted from JIS Z8722: After measuring in a 2 ° field according to the 2009 standard, the transmitted Y value calculated by the C light source is 20 or more and 50 or less.
    The light of the C light source incident from the diffuser element layer side of the optical film laminate is reflected by the reflection polarizer of the optical film laminate, and the reflected light (reflected light) emitted through the optical film laminate to the diffuser layer side. Any one of claims 1 to 4, wherein R1) is measured in a 2 ° field according to the JIS Z8722: 2009 standard, and then the reflected Y value calculated by the C light source is 40 or more and 80 or less. The optical film laminate according to the section.
  6.  前記光学フィルム積層体は、ASTM E313-73規格に従った分光測色計におけるD65光源の正反射光除去方式(SCE)での白色度WI値が45以上90以下であることを特徴とする、請求項1~5のいずれか一項に記載の光学フィルム積層体。 The optical film laminate is characterized in that the whiteness WI value of the D65 light source in the specular colorimeter according to the ASTM E313-73 standard in the specular reflection light removal method (SCE) is 45 or more and 90 or less. The optical film laminate according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載の光学フィルム積層体と、前記偏光板(A)とを含む偏光板積層体であって、
     前記偏光板(A)は、前記光学フィルム積層体の反射偏光子層に対し、前記光学フィルム積層体の拡散素子層とは反対側に、直接又は他の層(d)を介して積層され、
     前記偏光板(A)の透過軸と、前記光学フィルム積層体の反射偏光子層の透過軸とが、0±30°又は180±30°の方向となるよう配置されることを特徴とする、偏光板積層体。
    A polarizing plate laminate containing the optical film laminate according to any one of claims 1 to 6 and the polarizing plate (A).
    The polarizing plate (A) is laminated on the reflective polarizer layer of the optical film laminate on the side opposite to the diffuser element layer of the optical film laminate, either directly or via another layer (d).
    The transmission axis of the polarizing plate (A) and the transmission axis of the reflective polarizer layer of the optical film laminate are arranged so as to be in a direction of 0 ± 30 ° or 180 ± 30 °. Polarizing plate laminate.
  8.  前記偏光板積層体は、
     前記偏光板積層体の偏光板側から入射したC光源の光が前記偏光板積層体の拡散素子層側に偏光板積層体を透過して出射した透過光(T2)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した透過Y値が、15以上40以下であり、
     前記偏光板積層体の拡散素子層側から入射したC光源の光が前記偏光板積層体の反射偏光子で反射して拡散素子層側に前記偏光板積層体を透過して出射した反射光(R2)を、JIS Z8722:2009規格に従い2°視野で測定した後、C光源にて算出した反射Y値が、40以上80以下であることを特徴とする、請求項7に記載の偏光板積層体。
    The polarizing plate laminate is
    The transmitted light (T2) emitted from the light of the C light source incident from the polarizing plate side of the polarizing plate laminate through the polarizing plate laminate on the diffusion element layer side of the polarizing plate laminate is according to JIS Z8722: 2009 standard. The transmitted Y value calculated by the C light source after measuring in the 2 ° field according to the above is 15 or more and 40 or less.
    The light of the C light source incident from the diffuser element layer side of the polarizing plate laminate is reflected by the reflective polarizer of the polarizing plate laminate, and the reflected light emitted through the polarizing plate laminate side to the diffuser layer side ( The polarizing plate laminate according to claim 7, wherein R2) is measured in a 2 ° field according to the JIS Z8722: 2009 standard, and then the reflected Y value calculated by the C light source is 40 or more and 80 or less. body.
  9.  表示パネルデバイスと、表示パネルデバイスの視認側に偏光板(A)と、請求項1~6のいずれか一項に記載の光学フィルム積層体と、を含む積層構造を有するディスプレイ(D1)であって、
     前記偏光板(A)は、表示パネルデバイスの視認側に直接又は他の層(b)を介して積層され、
     前記光学フィルム積層体は、前記偏光板(A)のさらに視認側に、前記拡散素子層が前記反射偏光子層よりも視認側になるよう、直接又は他の層(c)を介して積層され、
     前記光学フィルム積層体は、前記偏光板(A)の透過軸と、前記反射偏光子層の透過軸と、が、0±30°又は180±30°の方向となるよう配置され、
     前記反射偏光子層は、前記偏光板(A)の透過軸に直交する偏光を反射することを特徴とする、ディスプレイ。
    A display (D1) having a laminated structure including a display panel device, a polarizing plate (A) on the visual side of the display panel device, and an optical film laminate according to any one of claims 1 to 6. hand,
    The polarizing plate (A) is laminated directly on the visible side of the display panel device or via another layer (b).
    The optical film laminate is laminated directly or via another layer (c) on the viewing side of the polarizing plate (A) so that the diffusion element layer is on the viewing side of the reflective polarizer layer. ,
    The optical film laminate is arranged so that the transmission axis of the polarizing plate (A) and the transmission axis of the reflection polarizer layer are oriented in a direction of 0 ± 30 ° or 180 ± 30 °.
    The display characterized in that the reflection polarizer layer reflects polarized light orthogonal to the transmission axis of the polarizing plate (A).
  10.  表示パネルデバイスを含み、表示パネルデバイスの視認側に偏光板を含まない、積層構造を有するディスプレイ(D2)であって、
     前記ディスプレイ(D2)は、請求項7又は8に記載の偏光板積層体を含み、
     前記偏光板積層体は、表示パネルデバイスの視認側に直接又は他の層(c)を介して積層され、
     前記偏光板積層体は、前記偏光板積層体の反射偏光子層が、前記偏光板積層体の偏光板(A)よりも視認側となるように配置されることを特徴とする、ディスプレイ。
    A display (D2) having a laminated structure, which includes a display panel device and does not include a polarizing plate on the visual side of the display panel device.
    The display (D2) includes the polarizing plate laminate according to claim 7 or 8.
    The polarizing plate laminate is laminated directly on the visible side of the display panel device or via another layer (c).
    The display is characterized in that the polarizing plate laminate is arranged so that the reflective polarizer layer of the polarizing plate laminate is on the visual side of the polarizing plate (A) of the polarizing plate laminate.
PCT/JP2021/011057 2020-03-19 2021-03-18 Optical film laminate, and polarizing plate laminate and display that use same WO2021187556A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180021014.XA CN115335735A (en) 2020-03-19 2021-03-18 Optical film laminate, and polarizing plate laminate and display using same
JP2022508430A JPWO2021187556A1 (en) 2020-03-19 2021-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048748 2020-03-19
JP2020-048748 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187556A1 true WO2021187556A1 (en) 2021-09-23

Family

ID=77771011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011057 WO2021187556A1 (en) 2020-03-19 2021-03-18 Optical film laminate, and polarizing plate laminate and display that use same

Country Status (3)

Country Link
JP (1) JPWO2021187556A1 (en)
CN (1) CN115335735A (en)
WO (1) WO2021187556A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141350A1 (en) * 2014-03-19 2015-09-24 シャープ株式会社 Mirror display and electronic device
WO2018008498A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device, electronic apparatus, semi-transmissive reflection plate, and electrical apparatus
WO2018008497A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device and electronic apparatus
US20200049872A1 (en) * 2018-08-07 2020-02-13 Facebook Technologies, Llc Switchable reflective circular polarizer in head-mounted display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141350A1 (en) * 2014-03-19 2015-09-24 シャープ株式会社 Mirror display and electronic device
WO2018008498A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device, electronic apparatus, semi-transmissive reflection plate, and electrical apparatus
WO2018008497A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device and electronic apparatus
US20200049872A1 (en) * 2018-08-07 2020-02-13 Facebook Technologies, Llc Switchable reflective circular polarizer in head-mounted display

Also Published As

Publication number Publication date
JPWO2021187556A1 (en) 2021-09-23
CN115335735A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP5046456B2 (en) Optical film having at least one particle-containing layer
US20220228722A1 (en) Diffusion member, stacked body, diffusion member set, led backlight, and displaying apparatus
JP4928693B2 (en) Optical laminate with controlled scattering and transmission characteristics
KR20090024739A (en) Optical article including a beaded layer
KR20170086477A (en) Liquid crystal display device and polarizing plate
KR20080091781A (en) Reinforced reflective polarizer films
KR20150002354A (en) Polarizing plate for oled and oled display apparatus comprising the same
KR20110086733A (en) Brewster angle film for light management in luminaires and other lighting systems
KR19990087314A (en) Brightness enhancer film
CN103182819B (en) Comprise the diffuse reflector compound of nonwoven sheet
TWI790203B (en) Liquid crystal display device
KR20010078176A (en) Transflective polarizer
JP2005173546A (en) Light reflective film and surface light source using the same
KR20110002676A (en) High luminance multifunctional polarizing sheet, rear polarizing film of liquid crystal display with them and liquid crystal display having the same
US11204524B2 (en) Image display device
JP2010044270A (en) Light diffusion plate, optical sheet, back light unit and display device
US11635653B2 (en) Liquid crystal display device, polarizer and protective film
JP2022157898A (en) Optical film laminate, optical film laminate with polarizer plate and display device
WO2021187556A1 (en) Optical film laminate, and polarizing plate laminate and display that use same
JPH10206615A (en) Semi-transmission reflecting plate, polarizing plate and liquid crystal display device
JP2010044269A (en) Light diffusion plate, optical sheet, back light unit and display device
KR20200108750A (en) Diffusion film laminate and liquid crystal device including the same
TWI490605B (en) Direct type backlight device
KR100980068B1 (en) Multi-functional optic film
JP2023149034A (en) Optical film laminate, optical film laminate with polarizing plate and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772615

Country of ref document: EP

Kind code of ref document: A1