WO2021187485A1 - Method for producing metal-containing thin film, and metal-containing thin film - Google Patents

Method for producing metal-containing thin film, and metal-containing thin film Download PDF

Info

Publication number
WO2021187485A1
WO2021187485A1 PCT/JP2021/010618 JP2021010618W WO2021187485A1 WO 2021187485 A1 WO2021187485 A1 WO 2021187485A1 JP 2021010618 W JP2021010618 W JP 2021010618W WO 2021187485 A1 WO2021187485 A1 WO 2021187485A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
thin film
metal
reaction chamber
eta
Prior art date
Application number
PCT/JP2021/010618
Other languages
French (fr)
Japanese (ja)
Inventor
有紀 山本
哲平 早川
浩幸 尾池
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to JP2022508380A priority Critical patent/JPWO2021187485A1/ja
Publication of WO2021187485A1 publication Critical patent/WO2021187485A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • the present invention uses a metal complex useful for manufacturing a semiconductor element as a raw material, and after performing a pretreatment capable of inducing adsorption and nucleation of the complex on a substrate, a metal-containing thin film is subjected to a CVD method or an ALD method.
  • a method for producing a high-purity ruthenium-containing thin film by forming a film using an oxidizing gas and a reducing gas in combination by a method for producing the above, a CVD method or an ALD method, and a method for producing these.
  • the present invention relates to a metal-containing thin film having excellent surface smoothness and a high-purity ruthenium-containing thin film.
  • Ruthenium has features such as high conductivity, the ability to form a conductive oxide, a high work function, excellent etching characteristics, and excellent lattice consistency with copper. , DRAM and other memory electrodes, gate electrodes, copper wiring seed layers / adhesion layers, etc. are attracting attention.
  • Next-generation semiconductor devices employ highly detailed and highly three-dimensional designs for the purpose of further improving storage capacity and responsiveness. Therefore, in order to use ruthenium as a material for the next-generation semiconductor devices, it is necessary to establish a technology for uniformly forming a ruthenium-containing thin film having a thickness of several nanometers to several tens of nanometers on a three-dimensional substrate. is required.
  • a vapor deposition method based on a chemical reaction such as an atomic layer deposition method (ALD method) or a chemical vapor deposition method (CVD method), as a technique for producing a ruthenium-containing thin film on a three-dimensional substrate. Is regarded as promising.
  • a material having appropriate vaporization characteristics and thermal stability and capable of vaporizing with a stable supply amount is selected.
  • One of the necessary conditions is that a thin film can be formed on the surface of a more complicated three-dimensional structure with a uniform thickness.
  • the liquid is used at the time of supply.
  • ruthenium compounds Although a method of forming a ruthenium-containing thin film by a CVD method or an ALD method using some ruthenium compounds as raw materials has been reported (Patent Documents 1 to 3), ruthenium compounds generally have a slow initial nuclear growth rate. On the other hand, since the generated nuclei grow at a high rate, a small amount of generated nuclei easily grow into crystals to form a discontinuous film or a film having poor surface smoothness. In order to uniformly form an ultrathin film containing ruthenium of several nanometers to several tens of nanometers on a substrate, a manufacturing method for forming a ruthenium-containing thin film having higher surface smoothness and continuity, and surface smoothness and continuity.
  • a method for producing a metal-containing thin film having excellent properties (manufacturing method A), a method for producing a high-purity metal-containing thin film formed by a CVD method or an ALD method using a metal complex as a raw material and forming a film under special reaction conditions.
  • Manufacturing method B a method for producing a metal-containing thin film carried out by combining the production method A and the production method B, and a metal-containing thin film obtained by these production methods are provided.
  • a metal-containing thin film having excellent surface smoothness and a high-purity metal-containing thin film can be obtained.
  • the present invention will be described in more detail below.
  • the metal complex used as the raw material used in the production methods A and B will be described.
  • the metal complex include a ruthenium compound, (ethylcyclopentadienyl) (1,3-cyclohexadiene) iridium, (methylcyclopentadienyl) (1,3-cyclohexadiene) iridium, and (ethylcyclopentadienyl) (ethylcyclopentadienyl).
  • Iridium complexes such as 2,3-dimethyl-1,3-butadiene) iridium, ethene-1,2-diylbis (isopropylamide) bis (tert-pentyloxo) titanium, ethen-1,2-diylbis (tert-butylamide) Dietoxotitanium, etene-1,2-diylbis (tert-butylamide) diisopropoxotitanium, etene-1,2-diylbis (tert-butylamide) bis (tert-pentyloxo) titanium, etene-1,2-diylbis (tert) -Butylamide) bis (1,1-diethylpropyloxo) titanium, ethene-1,2-diylbis (tert-butylamide) bis (1,1-diethyl-2-methylpropyloxo) titanium, ethen-1,2-diylbis (Ter
  • Preferred ruthenium compounds as the metal complex include, for example, a ruthenium complex represented by the following general formula (1AB), bis ( ⁇ 5 -cyclopentadienyl) ruthenium, bis ( ⁇ 5 -methylcyclopentadienyl) ruthenium, and bis ( ⁇ ).
  • a ruthenium complex represented by the following general formula (1AB) bis ( ⁇ 5 -cyclopentadienyl) ruthenium, bis ( ⁇ 5 -methylcyclopentadienyl) ruthenium, and bis ( ⁇ ).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z represents an oxygen atom or CH.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 and R 2 may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group or a cyclo.
  • R 1 and R 2 are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, and R 1 is an ethyl group, in that the ruthenium compound has a vapor pressure and thermal stability suitable for a CVD material or an ALD material. It is more preferable that R 2 is a hydrogen atom.
  • the alkyl group having 1 to 6 carbon atoms represented by R 3 and R 4 may be linear, branched or cyclic, and specifically, methyl group, ethyl group, propyl group, isopropyl group or cyclo.
  • All of the illustrated ruthenium compounds can be used for the purpose of producing a ruthenium-containing thin film by a CVD method or an ALD method, and one kind or two or more kinds can be used.
  • the ruthenium compound has a suitable vapor pressure and thermal stability as CVD material or ALD material, (eta 5 - cyclopentadienyl) (eta 5-2,4-dimethyl-cyclopentadienyl) ruthenium, (eta 5 -2,4-dimethyl-cyclopentadienyl) (eta 5 - methylcyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-cyclopentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium, (eta 5 - cyclopentadienyl) (eta 5-2,4-dimethyl-1-oxa
  • a metal complex is used as a raw material, and the substrate is subjected to a pretreatment capable of inducing adsorption and nucleation of the metal complex, and then a film is formed by a CVD method or an ALD method to improve the surface smoothness. It produces an excellent metal-containing thin film.
  • a substrate having a surface of a metal film, a metal carbide film, a metal oxide film, a metal nitride film, a metal oxide carbide film, a metal oxide nitride film, glass, a resin, a silicon resin, or a composite material thereof is optional.
  • the metal include gold, silver, platinum, silicon, titanium, tungsten, hafnium, zirconium, chromium, germanium, copper, aluminum, indium, gallium, arsenic, palladium, iron, tantalum, iridium, molybdenum, or these. Alloys can be mentioned.
  • a substrate having a surface of a metal oxide film or a metal nitride film is particularly preferable, and a substrate having a surface of silicon oxide (SiO 2 ), a composite metal oxide film, tantalum nitride, or titanium nitride is particularly preferable.
  • the pretreatment method capable of inducing the adsorption and nucleation of the metal complex on the substrate any treatment can be used as long as it can improve the adsorption amount of the raw material and each density, and in particular, the following 1) to 4). Either method is preferable.
  • the following processing methods may be performed alone or in combination of a plurality of types.
  • reducing gas for example, ammonia, hydrogen, carbon monoxide, hydrazine. , Monomethylhydrazine and the like, and hydrocarbon gases such as methane, ethane, ethylene, acetylene, propane, butane, butane, pentane, isobutane and hexane can be used, and among them, ammonia or hydrogen is preferable.
  • the reducing gas is introduced into the reaction chamber to pretreat the substrate, it is preferable to heat the substrate to an arbitrary temperature, and the heating temperature is preferably 200 ° C. or higher, more preferably 300 ° C. or higher. Is.
  • the environment for generating plasma is arbitrary, it can be generated in the reduction gas introduction atmosphere, and it may be heated to an arbitrary temperature.
  • the RF power at the time of plasma generation can be arbitrarily set, and is preferably in the range of 1 to 10000 W, more preferably 1 to 1000 W, and particularly preferably 20 to 500 W.
  • the RF power refers to a high-frequency power value that excites plasma.
  • the heating temperature for heating the surface of the substrate before film formation can be any temperature as long as the surface treatment is possible, and the surface of the substrate can be treated. Since impurities such as adhered organic substances can be removed, it is preferable to carry out at a film formation temperature or higher.
  • the atmosphere in the reaction chamber at the time of heating may be a cut-off atmosphere or an atmosphere of an inert gas such as argon or nitrogen.
  • the method for introducing the metal complex into the reaction chamber may be any method, the vapor obtained by vaporizing the metal complex may be continuously supplied, or the metal complex may be alternately introduced by pulsing with an inert gas such as argon or nitrogen. good. Since the reaction chamber temperature can be set to any temperature and the nuclear density can be expected to improve, it is preferable to supply the metal complex at a temperature equal to or higher than the film formation temperature. Further, since it is expected that a metal-containing thin film having higher smoothness can be obtained, the reaction chamber temperature is particularly preferably a temperature equal to or higher than the thermal decomposition temperature of the metal complex to be used.
  • the film formation method by the CVD method or the ALD method is not particularly limited, and the substrate uses steam obtained by vaporizing the metal complex and a reactive gas, diluting gas, or purge gas used as necessary.
  • This is a film forming method in which the metal complex is simultaneously or alternately introduced into the installed reaction chamber, and the metal complex is decomposed and / or chemically reacted in the gas phase or on the substrate to grow and deposit a thin film on the surface of the substrate.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • MLD molecular layer deposition
  • PECVD plasma chemical vapor deposition
  • PEALD plasma atomic layer deposition
  • low pressure Chemical vapor deposition
  • LPCVD atmospheric CVD
  • pulse CVD pulse CVD
  • the CVD method is preferable in that the film forming speed is good, and the ALD method is particularly preferable in that the step coverage is good.
  • the metal complex is gasified and supplied onto the substrate.
  • a method of gasification for example, the metal complex is placed in a heated constant temperature bath and a carrier gas such as helium, neon, argon, krypton, xenone or nitrogen is blown into the gas to gasify the metal complex, or the metal complex is used as it is or a solvent is used.
  • a carrier gas such as helium, neon, argon, krypton, xenone or nitrogen is blown into the gas to gasify the metal complex, or the metal complex is used as it is or a solvent is used.
  • There is a method of using it to make a solution sending it to a vaporizer, heating it, and gasifying it in the vaporizer.
  • Examples of the solvent used as a solution include ethers such as 1,2-dimethoxyethane, diglime, triglime, dioxane, tetrahydrofuran, cyclopentyl methyl ether, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, octane, nonane, and the like.
  • Hydrocarbons such as decane, benzene, toluene, ethylbenzene, and xylene can be exemplified.
  • a metal-containing thin film can be produced by reacting the vapor of the metal complex supplied on the substrate as a gas with a reactive gas.
  • Decomposition can be performed only by heating, and plasma, light, or the like may be used in combination.
  • Any of the reactive gas can be used as needed, and examples thereof include an oxidizing gas, a hydrocarbon-based gas, and a reducing gas.
  • Specific examples of the oxidizing gas include oxygen, ozone, steam, hydrogen chloride, hydrogen chloride, nitric acid gas, acetic acid, anhydrous acetic acid, nitrogen dioxide, nitric oxide, laughing gas, hydrogen chloride, nitric acid, and the like. Can be done.
  • hydrocarbon-based gas examples include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, and organic amine compounds.
  • organic amine compound examples include monoalkylamine, dialkylamine, trialkylamine, and alkylenediamine.
  • reducing gas examples include borane-amine complexes such as ammonia, hydrogen, carbon monoxide, monosilane, hydrazine, monomethylhydrazine, borane-dimethylamine complex borane-trimethylamine complex, 1-butene, 2-butene, 2-.
  • Methylpropene 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-hexene, 2-hexene, 3-hexene, 2-methyl -1-Penten, 2-Methyl-2-Penten, 4-Methyl-2-Penten, 4-Methyl-1-Penten, 3-Methyl-1-Penten, 3-Methyl-2-Penten, 2-Ethyl-1 -Buten, 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene, 3,3-dimethyl-1-butene, pig-1,3-diene, penta-1,3-diene, penta -1,4-diene, 2-methylbuta-1,3-diene, hexa-1,3-diene, hexa-2,4-diene, 2-methylpenta-1,3-diene, 3-methylpenta-1,3 Chain
  • Saturated hydrocarbons cyclohexa-1,3-diene, cyclohexa-1,4-diene, 1-methylcyclohexa-1,3-diene, 2-methylcyclohexa-1,3-diene, 5-methylcyclohexa- Cyclic unsaturated hydrocarbons such as 1,3-diene, 3-methylcyclohexa-1,4-diene, ⁇ -ferrandrene, ⁇ -ferrandrene, ⁇ -terpinene, ⁇ -terpinene, ⁇ -terpinene, limonene, etc. It can be exemplified. Further, one kind or two or more kinds of these reactive gases can be used.
  • Reactive gases include oxygen, ozone, water vapor, ammonia, hydrogen, formic acid, cyclohexa-1,3-diene, and cyclohexa-1,4-diene, because there are few restrictions due to the specifications of the film-forming device and they are easy to handle. , ⁇ -terpinene, ⁇ -terpinene, ⁇ -terpinene, limonene are preferred.
  • the flow rate of the reaction gas is appropriately adjusted according to the reactivity of the material and the capacity of the reaction chamber.
  • the flow rate of the reaction gas is not particularly limited, and is preferably 1 to 10000 sccm, more preferably 1 to 1000 sccm, and particularly preferably 10 to 500 sccm for economic reasons.
  • sccm is a unit representing the flow rate of gas
  • 1 sccm means that the gas is moving at a rate of 2.68 mmol / h when converted to an ideal gas.
  • the inert gas used as the carrier gas, the diluting gas, and the purge gas in the film forming step by the CVD method and the ALD method and nitrogen, helium, neon, and argon are preferable for economic reasons.
  • the flow rate of the inert gas is appropriately adjusted according to the capacity of the reaction chamber and the like. For example, when the capacity of the reaction chamber is 1 to 10 L, the flow rate of the carrier gas is not particularly limited and is 1 for economic reasons. It is preferably from 10000 sccm, more preferably from 1 to 1000 sccm, and particularly preferably from 1 to 500 sccm.
  • the following shows a film forming method in the case of manufacturing a film by a CVD method after performing a pretreatment capable of inducing adsorption and nucleation of a metal complex on a substrate in the manufacturing method A.
  • the metal complex is gasified by the method described above and introduced into the reaction chamber, and a metal-containing thin film is produced on the substrate by a decomposition reaction.
  • the decomposition reaction at this time may be carried out only by heat, a reaction gas may be used, or plasma or light may be used in combination.
  • an inert gas can be introduced as a diluting gas.
  • the diluting gas as described above, it is preferable to use a rare gas or nitrogen, and among them, nitrogen, helium, neon, and argon are preferable for economic reasons.
  • the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process.
  • the temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
  • the following shows a film forming method in the case of producing a film by the ALD method after performing a pretreatment capable of inducing adsorption and nucleation of a metal complex on a substrate in the production method A.
  • a pretreatment capable of inducing adsorption and nucleation of a metal complex on a substrate in the production method A.
  • one cycle of thin film deposition by a series of operations consisting of a) raw material introduction step, b) exhaust and / or purge step, c) reaction gas introduction step, and d) exhaust and / or purge step.
  • This cycle may be repeated a plurality of times until a thin film having a required film thickness is obtained.
  • energy such as plasma, light, and voltage may be applied.
  • the timing of applying these energies is not particularly limited, and for example, a pretreatment step, a raw material introduction step, an exhaust and / or purge step, and a reaction gas introduction step that can induce adsorption / nucleation of a metal complex on a substrate. , And may be between the above steps.
  • the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process.
  • the temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
  • the reaction temperature (substrate temperature) in the film formation process by the CVD method and the ALD method is appropriately selected depending on the presence or absence of heat, plasma, light, etc., the type of reaction gas, and the like.
  • the substrate temperature is not particularly limited, and the temperature is such that the metal complex used in the present invention sufficiently reacts. Therefore, room temperature to 1000 ° C. is preferable. 100 ° C. to 800 ° C. is more preferable, and 150 ° C. to 400 ° C. is particularly preferable in terms of good film formation rate, composition of the obtained film, and surface smoothness.
  • a metal-containing thin film can be produced in a temperature range of 300 ° C. or lower by appropriately using light, plasma, ozone, hydrogen peroxide or the like.
  • the reaction in the film forming process by the CVD method and the ALD method is preferably carried out under reduced pressure conditions in terms of good film thickness uniformity, step coverage (coverability) and film quality.
  • the reaction pressure is more preferably 0 to 100 Torr, and particularly preferably 0 to 10 Torr.
  • a well-known chemical vapor deposition apparatus (CVD apparatus) or atomic layer deposition apparatus (ALD apparatus) is used. be able to.
  • CVD apparatus chemical vapor deposition apparatus
  • ALD apparatus atomic layer deposition apparatus
  • the device as shown in FIG. 1, in addition to the ALD device capable of performing the precursor by bubbling supply, a device having a vaporization chamber, a device capable of performing plasma treatment on a reactive gas, or the like is used. Can be mentioned. Further, the device is not limited to the single-wafer type device as shown in FIG. 1, and a device capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
  • the metal-containing thin film having excellent surface smoothness obtained by the production method A can be of a desired type such as metal, oxide ceramics, nitride ceramics, glass, etc. by appropriately selecting other precursors, reactive gases and production conditions. It can be a thin film.
  • the composition of the produced thin film include a metal thin film, a metal oxide thin film, a metal alloy, and a metal-containing composite oxide thin film.
  • the metal alloy include a Pt-Ru alloy.
  • Examples of the metal-containing composite oxide thin film include SrRuO 3 .
  • the production method B is a method for producing a metal-containing thin film by a CVD method or an ALD method using a metal complex as a raw material, and is characterized in that an oxidizing gas and a reducing gas are used in combination. Is.
  • the production method B it is preferable to perform a pretreatment capable of inducing adsorption and nucleation of the metal complex on the substrate in the production method A before forming a film by the CVD method or the ALD method. That is, a metal complex is used as a raw material, the substrate is subjected to a pretreatment capable of inducing adsorption and nucleation of the metal complex, and then an oxidizing gas and a reducing gas are used in combination, and the substrate is formed by a CVD method or an ALD method. It is preferable to form a film.
  • the same method as the production method A can be used for the film formation process and the gasification method by the CVD method or the ALD method.
  • the vapor of the metal complex supplied on the substrate as a gas is reacted with the oxidizing gas and the reducing gas to decompose the metal complex adsorbed on the substrate to produce a metal-containing thin film.
  • Decomposition can be performed only by heating with two types of oxidizing gas and reducing gas, and plasma, light, or the like may be used in combination.
  • plasma, light, or the like may be used in combination.
  • the oxidizing gas and the reducing gas used for film formation will be described in detail.
  • Specific examples of the oxidizing gas include oxygen, ozone, steam, hydrogen chloride, hydrogen chloride, nitric acid gas, acetic acid, anhydrous acetic acid, nitrogen dioxide, nitric oxide, laughing gas, hydrogen chloride and nitric acid. Yes, these can be used alone or in combination of two or more.
  • oxygen or ozone is preferably used because it has good reactivity with the metal complex of the raw material and is easy to handle because there are few restrictions due to the specifications of the film forming apparatus.
  • the reducing gas include borane-amine complexes such as ammonia, hydrogen, carbon monoxide, monosilane, hydrazine, monomethylhydrazine, borane-dimethylamine complex, and borane-trimethylamine complex, 1-butene, 2-butene, and 2, -Methylpropene, 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-hexene, 2-hexene, 3-hexene, 2- Methyl-1-pentene, 2-methyl-2-pentene, 4-methyl-2-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-methyl-2-pentene, 2-ethyl- 1-butene, 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene, 3,3-dimethyl-1-butene, pig-1,3-diene, penta-1,3-diene
  • ammonia, hydrogen, and formic acid are preferably used, and ammonia or hydrogen is more preferable, because there are few restrictions due to the specifications of the film forming apparatus and handling is easy.
  • the flow rates of the oxidizing gas and the reducing gas are appropriately adjusted according to the reactivity of the material and the capacity of the reaction chamber.
  • the flow rates of the oxidizing gas and the reducing gas are not particularly limited, and are preferably 1 to 10000 sccm, more preferably 1 to 1000 sccm, and particularly 10 to 500 sccm for economic reasons. preferable.
  • sccm is a unit representing the flow rate of gas
  • 1 sccm means that the gas is moving at a rate of 2.68 mmol / h when converted to an ideal gas.
  • the ratio of the oxidizing gas to the reducing gas is also not particularly limited, and the ratio of the oxidizing gas to the reducing gas is preferably 100: 1 to 1: 100 from the viewpoint of reactivity with the raw material gas. , 50: 1 to 1:50 is more preferable, and 10: 1 to 1:10 is particularly preferable.
  • Noble gas or nitrogen is preferable as the inert gas used as the carrier gas, the diluting gas, and the purge gas in the film forming step, and nitrogen, helium, neon, and argon are preferable for economic reasons.
  • the flow rate of the inert gas is appropriately adjusted according to the capacity of the reaction chamber and the like.
  • the flow rate of the carrier gas is not particularly limited and is 1 for economic reasons. It is preferably from 10000 sccm, more preferably from 1 to 1000 sccm, and particularly preferably from 1 to 500 sccm.
  • the film forming method for producing a film in the manufacturing method B is shown below.
  • the film can be formed by any method, and these oxidizing gass and reducing gases can be formed.
  • plasma or light can also be used in combination. Examples include (a) raw material introduction step, (b) exhaust and / or purge step, (c) oxidizing gas introduction step, (d) exhaust and / or purge step, (e) reducing gas introduction step, (f). )
  • a method in which a series of operations including an exhaust and / or a purge step is one cycle can be mentioned. By repeating this cycle a plurality of times, a thin film having a required film thickness can be obtained.
  • energy such as plasma, light, and voltage may be applied.
  • the timing of applying these energies is not particularly limited, and may be, for example, any of a raw material introduction step, an exhaust and / or purge step, an oxidizing gas introduction step, and a reducing gas, and even between the above steps. good.
  • the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process.
  • the temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
  • the reaction temperature (substrate temperature) in the film forming process is appropriately selected depending on the presence or absence of heat, plasma, light, etc., the type of oxidizing gas, reducing gas, and the like.
  • the substrate temperature is not particularly limited, and the temperature is such that the metal complex used in the present invention sufficiently reacts.
  • Room temperature to 1000 ° C. is preferable. 100 ° C. to 800 ° C. is preferable, and 150 ° C. to 400 ° C. is more preferable in terms of the film forming speed, the composition of the obtained film, and the surface smoothness.
  • a metal-containing thin film can be produced in a temperature range of 300 ° C. or lower by appropriately using light, plasma, ozone, hydrogen peroxide, or the like.
  • the reaction in the film forming step is preferably carried out under reduced pressure conditions in terms of film thickness uniformity, step coverage (coating property), and film quality, and the reaction pressure is more preferably 0 to 100 Torr, more preferably 0 to 10 Torr. Especially preferable.
  • a well-known chemical vapor deposition apparatus (CVD apparatus) or atomic layer deposition apparatus (ALD apparatus) can be used.
  • CVD apparatus chemical vapor deposition apparatus
  • ALD apparatus atomic layer deposition apparatus
  • the device as shown in FIG. 1, in addition to the ALD device capable of performing the precursor by bubbling supply, a device having a vaporization chamber, a device capable of performing plasma treatment on a reactive gas, or the like is used. Can be mentioned. Further, the device is not limited to the single-wafer type device as shown in FIG. 1, and a device capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
  • the high-purity metal-containing thin film produced by the production method B is desired to be metal, oxide ceramics, nitride ceramics, glass or the like by appropriately selecting other precursors, oxidizing gas, reducing gas and production conditions. It can be a kind of thin film.
  • the composition of the produced thin film include a metal thin film, a metal oxide thin film, a metal alloy, and a metal-containing composite oxide thin film.
  • the metal alloy include a Pt-Ru alloy.
  • Examples of the metal-containing composite oxide thin film include SrRuO 3 .
  • Example 1 (Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, and the substrate is pretreated for 5 minutes while maintaining the substrate temperature at 250 ° C. and the total pressure of the reaction chamber at 300 Pa. carried out.
  • the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • C The introduction of the raw material gas is stopped, and the unreacted material is removed by argon purging (150 sccm) for 5 seconds.
  • D In addition to (a), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
  • E The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
  • 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
  • Example 2 (Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, the substrate temperature is kept at 250 ° C., the total pressure of the reaction chamber is kept at 300 Pa, and plasma is generated with RF power of 30 W. The substrate was pretreated for 5 minutes.
  • ALD film formation process ALD film formation was carried out under the same conditions as in Example (1).
  • the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected.
  • the film thickness was 25 nm.
  • the root mean square roughness (RMS) was 1.63.
  • Example 3 (Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, and the substrate is pretreated for 10 minutes while maintaining the substrate temperature at 250 ° C. and the total pressure of the reaction chamber at 1000 Pa. carried out.
  • ALD film formation process ALD film formation was carried out under the same conditions as in Example (1).
  • the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected.
  • the film thickness was 20 nm.
  • the root mean square roughness (RMS) was 1.37.
  • Example 4 (Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment process Purge gas: argon, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa was used as the raw material gas.
  • (E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • (I) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • Example 5 (Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment process Purge gas: argon, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C.
  • Example 6 Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, a ruthenium-containing thin film was produced on a SiO 2 substrate by the ALD method.
  • the thin film production conditions are as follows. Purge gas: argon, oxygen as oxidizing gas, ammonia as reducing gas, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa are used.
  • (L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • characteristic X-rays based on ruthenium were detected.
  • the film thickness was 14 nm.
  • the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 98 atom%.
  • Example 7 Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, the pretreatment described in (1) is performed on a SiO 2 substrate, and then ruthenium is subjected to the ALD method described in (2). A thin film containing it was produced.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • Pretreatment process Purge gas: argon, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 500 ° C. and the reaction chamber total pressure: 1000 Pa are used.
  • steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle.
  • A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds.
  • B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
  • ALD film formation process Purge gas: argon, oxygen as an oxidizing gas, ammonia as a reducing gas, raw material gas, The raw material vapor vaporized under the same conditions as in the pretreatment step is used as the raw material gas, and is composed of the following (a) to (l) under the conditions of a substrate temperature of 250 ° C. and a reaction chamber total pressure of 300 Pa. The process was repeated 300 times for a total of 145 minutes, with the process as one cycle. (A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa. (B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • Example 8 (Eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium material, the SiO 2 substrate pretreatment according to (1) After that, a ruthenium-containing thin film was produced by the ALD method described in (2).
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • (1) Pretreatment process Purge gas: argon, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 35.7 Pa is used as the raw material gas, and under the conditions of substrate temperature: 400 ° C. and reaction chamber total pressure: 300 Pa. , Introduce into the reaction chamber for 30 minutes.
  • the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • C The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
  • D Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • E Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • Example 9 (Eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium material, pretreated as described in (1) on a Pt substrate After that, a ruthenium-containing thin film was produced by the ALD method described in (2).
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • Pretreatment step Purge gas: argon, raw material gas: carrier gas: argon 10 sccm, material container temperature: 90 ° C., material vapor pressure: 35.7 Pa, vaporized raw material vapor by bubbling, substrate temperature: 400 Introduce into the reaction chamber for 30 minutes under the conditions of ° C. and total reaction chamber pressure: 300 Pa.
  • the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • C The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
  • D 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
  • E Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • Comparative Example 1 (Eta 5-2,4-dimethyl-cyclopentadienyl) - a (eta 5-ethyl-cyclopentadienyl) ruthenium used as a raw material, to produce a ruthenium-containing thin film by ALD on a SiO 2 substrate.
  • the thin film production conditions are as follows. Purge gas: Argon, oxygen as reaction gas, raw material gas, Carrier gas: Argon 10 sccm, Raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 38.1 Pa. Used as the above raw material gas, under the conditions of substrate temperature: 250 ° C. and reaction chamber total pressure: 300 Pa.
  • Comparative Example 2 (Eta 5-2,4-dimethyl-cyclopentadienyl) - a (eta 5-ethyl-cyclopentadienyl) ruthenium used as a raw material, to produce a ruthenium-containing thin film by ALD on a SiO 2 substrate.
  • the thin film production conditions are as follows. Purge gas: Argon, oxygen and ammonia as reaction gas, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa are used. In, the following steps (a) to (l) were repeated 100 times for a total of 48 minutes as one cycle.
  • Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • B In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
  • D Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • E Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • F In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
  • Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
  • C The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
  • Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • F In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
  • G The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
  • H Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 21 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 92 atom%.
  • Reference example 1 Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, the pretreatment described in (1) is performed on a SiO 2 substrate, and then ruthenium is subjected to the ALD method described in (2). A thin film containing it was produced.
  • the thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
  • Pretreatment process Purge gas: argon, raw material gas, Carrier gas: Argon 10 sccm, The raw material vapor vaporized by bubbling at a material container temperature: 90 ° C. and a material vapor pressure: 38.1 Pa was used as the raw material gas, and under the conditions of a substrate temperature: 500 ° C. and a reaction chamber total pressure: 1000 Pa. The following steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle. (A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds. (B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
  • Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
  • F In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
  • H Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
  • the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 11 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 88 atom%.
  • the ruthenium-containing thin films obtained by the production methods of Examples 1 to 5 have a smaller root mean square roughness (RMS) and excellent surface smoothness than the ruthenium-containing thin films obtained by the production methods of Comparative Examples 1 and 2. be.
  • the ruthenium-containing thin films obtained by the production methods of Examples 6 to 7 have a higher ruthenium content than the ruthenium-containing thin films obtained by the production methods of Comparative Examples 3 and 1 that do not use a reducing gas, and are high-purity films. be.
  • the ruthenium-containing thin films obtained in Examples 8 and 9 are high-purity films having excellent surface smoothness and a high ruthenium content.

Abstract

A method for producing a metal-containing thin film having excellent surface smoothness by means of a CVD method or an ALD method; a metal-containing thin film having excellent surface smoothness produced by this method; a method for producing a highly pure metal-containing thin film; and a highly pure metal-containing thin film produced by this method. The present invention provides a method for producing a metal-containing thin film, said method being characterized by: using a metal complex as a starting material; and forming a film by means of a CVD method or an ALD method after subjecting a substrate to a pretreatment that is capable of inducing adsorption/nucleation of the metal complex. The present invention also provides a method for producing a metal-containing thin film by means of a CVD method or an ALD method using a metal complex as a starting material, said method being characterized by using an oxidizing gas and a reducing gas in combination.

Description

金属含有薄膜の製造方法Method for manufacturing metal-containing thin film
 本発明は、半導体素子の製造に有用な金属錯体を原料として使用し、本錯体の基板上への吸着・核発生を誘発させ得る前処理を施した後、CVD法又はALD法により金属含有薄膜を製造する方法、及びCVD法又はALD法によって、酸化性ガスと還元性ガスを併用して成膜することで、高純度なルテニウム含有薄膜を製造する方法、並びにこれらの製造方法によって得られた、表面平滑性に優れた金属含有薄膜、高純度なルテニウム含有薄膜に関するものである。 The present invention uses a metal complex useful for manufacturing a semiconductor element as a raw material, and after performing a pretreatment capable of inducing adsorption and nucleation of the complex on a substrate, a metal-containing thin film is subjected to a CVD method or an ALD method. A method for producing a high-purity ruthenium-containing thin film by forming a film using an oxidizing gas and a reducing gas in combination by a method for producing the above, a CVD method or an ALD method, and a method for producing these. The present invention relates to a metal-containing thin film having excellent surface smoothness and a high-purity ruthenium-containing thin film.
 ルテニウムは、高い導電性を示すこと、導電性酸化物が形成可能であること、仕事関数が高いこと、エッチング特性にも優れること、銅との格子整合性に優れることなどの特長を持つことから、DRAMなどのメモリー電極、ゲート電極、銅配線シード層/密着層などの材料として注目を集めている。次世代の半導体デバイスには、記憶容量や応答性をさらに向上させる目的のため、高度に細密化され、かつ高度に三次元化されたデザインが採用されている。したがって次世代の半導体装置を構成する材料としてルテニウムを使用するためには、三次元化された基板上に数ナノ~数十ナノメートル程度の厚みのルテニウム含有薄膜を均一に形成する技術の確立が必要とされている。三次元化された基板上にルテニウム含有薄膜を製造するための技術としては、原子層堆積法(ALD法)又は化学気相蒸着法(CVD法)など、化学反応に基づく気相蒸着法の活用が有力視されている。 Ruthenium has features such as high conductivity, the ability to form a conductive oxide, a high work function, excellent etching characteristics, and excellent lattice consistency with copper. , DRAM and other memory electrodes, gate electrodes, copper wiring seed layers / adhesion layers, etc. are attracting attention. Next-generation semiconductor devices employ highly detailed and highly three-dimensional designs for the purpose of further improving storage capacity and responsiveness. Therefore, in order to use ruthenium as a material for the next-generation semiconductor devices, it is necessary to establish a technology for uniformly forming a ruthenium-containing thin film having a thickness of several nanometers to several tens of nanometers on a three-dimensional substrate. is required. Utilization of a vapor deposition method based on a chemical reaction, such as an atomic layer deposition method (ALD method) or a chemical vapor deposition method (CVD method), as a technique for producing a ruthenium-containing thin film on a three-dimensional substrate. Is regarded as promising.
 半導体素子製造において、CVD法又はALD法により薄膜を形成するためには、適度な気化特性と熱安定性を持つ、安定した供給量で気化させることの出来る材料が選択される。さらに複雑な三次元構造の表面に均一な厚みで薄膜を形成出来ることも必要な条件のひとつである。さらに安定した供給量で気化させるためには、供給時には液体である方が好ましい。 In the manufacture of semiconductor devices, in order to form a thin film by the CVD method or the ALD method, a material having appropriate vaporization characteristics and thermal stability and capable of vaporizing with a stable supply amount is selected. One of the necessary conditions is that a thin film can be formed on the surface of a more complicated three-dimensional structure with a uniform thickness. In order to vaporize with a more stable supply amount, it is preferable that the liquid is used at the time of supply.
 CVD法又はALD法によりルテニウム含有薄膜を形成するための原料として、(η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウム及びビス(エチルシクロペンタジエニル)ルテニウムなどの二価のルテニウム化合物の使用が検討されている。 As a raw material for forming a ruthenium-containing thin film by CVD method or ALD method, (eta 5-2,4-dimethyl-cyclopentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium and bis (ethyl cyclopentadienyl) The use of divalent ruthenium compounds such as ruthenium is being considered.
日本国特開平6-283438号公報Japanese Patent Application Laid-Open No. 6-283438 日本国特開2000-212744号公報Japanese Patent Application Laid-Open No. 2000-21274 日本国特開平11-35589号公報Japanese Patent Application Laid-Open No. 11-35589
 いくつかのルテニウム化合物を原料に用いてCVD法又はALD法によりルテニウム含有薄膜を形成する手法が報告されているが(特許文献1~3)、ルテニウム化合物は一般的に初期の核発生速度が遅く、一方発生した核が成長する速度が早いため、発生した少量の核が結晶成長して、不連続な膜や表面平滑性に劣る膜を形成しやすい。基板上に数ナノ~数十ナノメートル程度の極薄膜のルテニウム含有薄膜を均一に形成するために、より表面平滑性、連続性の高いルテニウム含有薄膜を形成する製造方法及び表面平滑性、連続性の高いルテニウム含有の膜が求められている。
 特許文献1~3で得られた膜について、高純度のルテニウム含有薄膜が得られる報告は見られない。すなわち、CVD法又はALD法に使用可能な液体のルテニウム化合物を用い、高純度なルテニウム含有薄膜を形成する製造技術、及び高純度なルテニウム含有薄膜が求められている。
Although a method of forming a ruthenium-containing thin film by a CVD method or an ALD method using some ruthenium compounds as raw materials has been reported (Patent Documents 1 to 3), ruthenium compounds generally have a slow initial nuclear growth rate. On the other hand, since the generated nuclei grow at a high rate, a small amount of generated nuclei easily grow into crystals to form a discontinuous film or a film having poor surface smoothness. In order to uniformly form an ultrathin film containing ruthenium of several nanometers to several tens of nanometers on a substrate, a manufacturing method for forming a ruthenium-containing thin film having higher surface smoothness and continuity, and surface smoothness and continuity. There is a demand for a film containing a high amount of ruthenium.
Regarding the films obtained in Patent Documents 1 to 3, there are no reports that a high-purity ruthenium-containing thin film can be obtained. That is, there is a demand for a manufacturing technique for forming a high-purity ruthenium-containing thin film using a liquid ruthenium compound that can be used in a CVD method or an ALD method, and a high-purity ruthenium-containing thin film.
 本発明者らは上述の現状に鑑み、鋭意検討を重ねた結果、金属錯体を原料として使用し、基板に特定の前処理を施した後、CVD法又はALD法で成膜することで表面平滑性に優れた金属含有薄膜の製造方法(製造方法A)、金属錯体を原料として使用し、特別な反応条件で成膜するCVD法又はALD法で成膜する高純度の金属含有薄膜の製造方法(製造方法B)、及び製造方法Aと製造方法Bとを組み合わせて実施する金属含有薄膜を製造方法、並びにこれらの製造方法で得られた金属含有薄膜を提供するものである。 As a result of diligent studies in view of the above-mentioned current situation, the present inventors have used a metal complex as a raw material, applied a specific pretreatment to the substrate, and then formed a thin film by a CVD method or an ALD method to smooth the surface. A method for producing a metal-containing thin film having excellent properties (manufacturing method A), a method for producing a high-purity metal-containing thin film formed by a CVD method or an ALD method using a metal complex as a raw material and forming a film under special reaction conditions. (Manufacturing method B), and a method for producing a metal-containing thin film carried out by combining the production method A and the production method B, and a metal-containing thin film obtained by these production methods are provided.
 本発明の製造方法により表面平滑性に優れた金属含有薄膜、高純度な金属含有薄膜を得ることができる。 By the production method of the present invention, a metal-containing thin film having excellent surface smoothness and a high-purity metal-containing thin film can be obtained.
実施例1~9、比較例1~3及び参考例1で用いたALD装置を示す図である。It is a figure which shows the ALD apparatus used in Examples 1-9, Comparative Examples 1-3, and Reference Example 1.
 以下に本発明を更に詳細に説明する。
 まず、製造方法A、Bに用いる原料に用いる金属錯体について説明する。
 金属錯体としては、ルテニウム化合物、(エチルシクロペンタジエニル)(1,3-シクロヘキサジエン)イリジウム、(メチルシクロペンタジエニル)(1,3-シクロヘキサジエン)イリジウム、(エチルシクロペンタジエニル)(2,3-ジメチル-1,3-ブタジエン)イリジウム等のイリジウム錯体、エテン-1,2-ジイルビス(イソプロピルアミド)ビス(tert-ペンチルオキソ)チタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ジエトキソチタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ジイソプロポキソチタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ビス(tert-ペンチルオキソ)チタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ビス(1,1-ジエチルプロピルオキソ)チタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ビス(1,1-ジエチル-2-メチルプロピルオキソ)チタン、エテン-1,2-ジイルビス(tert-ブチルアミド)ビス(2,2,2-トリフルオロエトキソ)チタン、エテン-1,2-ジイルビス(tert-ペンチルアミド)ジメトキソチタン、エテン-1,2-ジイルビス(tert-ペンチルアミド)ジエトキソチタン、エテン-1,2-ジイルビス(tert-ペンチルアミド)ジイソプロポキソチタン、エテン-1,2-ジイルビス(tert-ペンチルアミド)ジ(tert-ブトキソ)チタン、エテン-1,2-ジイルビス(1,1,3,3-テトラメチルブチルアミド)ジイソプロポキソチタン等のチタン錯体、(tert-ブチルイミド)トリ(tert-ブトキソ)ニオブ、(プロピルイミド)トリ(tert-ブトキソ)ニオブ、(イソプロピルイミド)トリ(tert-ブトキソ)ニオブ、(メチルイミド)トリ(tert-ブトキソ)ニオブ、(エチルイミド)トリ(tert-ブトキソ)ニオブ、(エチルイミド)トリ(tert-ペンチルオキソ)ニオブ、(エチルイミド)トリ(1-エチル-1-メチルプロピルオキソ)ニオブ、(tert-ブチルイミド)トリ(tert-ペンチルオキソ)ニオブ、(tert-ペンチルイミド)トリ(tert-ブトキソ)ニオブ、(1,1,3,3-テトラメチルブチルイミド)トリ(tert-ブトキソ)ニオブ、(メチルイミド)トリス(1―エチル―1-メチルプロピルオキソ)ニオブ、(エチルイミド)トリス(1,1―ジエチルプロピルオキソ)ニオブ、(イソプロピルイミド)トリス(1―エチル―1-メチルプロピルオキソ)ニオブ、(tert-ブチルイミド)トリス(1,1―ジエチルプロピルオキソ)ニオブ、(1,3-ジメチルブチルイミド)トリス(tert-ブトキソ)ニオブ、(tert-ブチルイミド)トリス(1―メチル―1-プロピルブチルオキソ)ニオブ、(sec-ブチルイミド)トリ(tert-ブトキソ)ニオブ、1,1,3,3-テトラメチルブチルイミド)(トリイソプロポキソ)ニオブ、(tert-ブチルイミド)(トリイソプロポキソ)ニオブ、(tert-ブチルイミド)(トリエトキソ)ニオブ、(tert-ペンチルイミド)(トリイソプロポキソ)ニオブ、(tert-ペンチルイミド)(トリエトキソ)ニオブ等のニオブ錯体、(エチルイミド)トリ(tert-ペンチルオキソ)タンタル、(エチルイミド)トリ(1-エチル-1-メチルプロピルオキソ)タンタル、(イソプロピルイミド)トリ(tert-ブトキソ)タンタル、(プロピルイミド)トリ(tert-ブトキソ)タンタル、(tert-ブチルイミド)トリ(tert-ブトキソ)タンタル、(tert-ブチルイミド)トリ(tert-ペンチルオキソ)タンタル、(tert-ブチルイミド)トリス(1,1-ジエチルプロピルオキソ)タンタル、(tert-ペンチルイミド)トリ(tert-ブトキソ)タンタル、(1,1,3,3-テトラメチルブチルイミド)トリ(tert-ブトキソ)タンタル、(メチルイミド)トリス(1,1―ジエチルプロピルオキソ)タンタル、(エチルイミド)トリス(1,1―ジエチルプロピルオキソ)タンタル、(イソプロピルイミド)トリス(1,1―ジエチルプロピルオキソ)タンタル、(tert-ブチルイミド)トリス(1―エチル―1-メチルプロピルオキソ)タンタル、(tert-ブチルイミド)トリス(1―メチル―1-プロピルブチルオキソ)タンタル、(sec-ブチルイミド)トリ(tert-ブトキソ)タンタル等のタンタル錯体、
(η-アセチルシクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-アセチルシクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-アセチルシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-アセチルシクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-ブタ-1,3-ジエン)(η-プロピオニルシクロペンタジエニル)コバルト、[(1-4-η)-ペンタ-1,3-ジエン](η-プロピオニルシクロペンタジエニル)コバルト、(η-2-メチルブタ-1,3-ジエン)(η-プロピオニルシクロペンタジエニル)コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)(η-プロピオニルシクロペンタジエニル)コバルト、(η-ブタ-1,3-ジエン)(η-ブチリルシクロペンタジエニル)コバルト、(η-ブチリルシクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-ブチリルシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-ブチリルシクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-ブタ-1,3-ジエン)(η-イソブチリルシクロペンタジエニル)コバルト、(η-イソブチリルシクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-イソブチリルシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)(η-イソブチリルシクロペンタジエニル)コバルト、(η-ブタ-1,3-ジエン)(η-バレリルシクロペンタジエニル)コバルト、[(1-4-η)-ペンタ-1,3-ジエン](η-バレリルシクロペンタジエニル)コバルト、(η-2-メチルブタ-1,3-ジエン)(η-バレリルシクロペンタジエニル)コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)(η-バレリルシクロペンタジエニル)コバルト、(η-ブタ-1,3-ジエン)(η-イソバレリルシクロペンタジエニル)コバルト、(η-イソバレリルシクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-2-メチルブタ-1,3-ジエン)(η-イソバレリルシクロペンタジエニル)コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)(η-イソバレリルシクロペンタジエニル)コバルト、(η-ブタ-1,3-ジエン)[η-(3-メチルブタノイル)シクロペンタジエニル]コバルト、[η-(3-メチルブタノイル)シクロペンタジエニル][(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-2-メチルブタ-1,3-ジエン)[η-(3-メチルブタノイル)シクロペンタジエニル]コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)[η-(3-メチルブタノイル)シクロペンタジエニル]コバルト、(η-ブタ-1,3-ジエン)(η-ピバロイルシクロペンタジエニル)コバルト、[(1-4-η)-ペンタ-1,3-ジエン](η-ピバロイルシクロペンタジエニル)コバルト、(η-2-メチルブタ-1,3-ジエン)(η-ピバロイルシクロペンタジエニル)コバルト、(η-2,3-ジメチルブタ-1,3-ジエン)(η-ピバロイルシクロペンタジエニル)コバルト、(η-ホルミルシクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-ホルミルシクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-ホルミルシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-ホルミルシクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-(フルオロアセチル)シクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-(フルオロアセチル)シクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-(フルオロアセチル)シクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-(フルオロアセチル)シクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-(ジフルオロアセチル)シクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-(ジフルオロアセチル)シクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-(ジフルオロアセチル)シクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-(ジフルオロアセチル)シクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-(トリフルオロアセチル)シクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-(トリフルオロアセチル)シクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-(トリフルオロアセチル)シクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-(トリフルオロアセチル)シクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-(ペンタフルオロプロピオニル)シクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-(ペンタフルオロプロピオニル)シクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-(ペンタフルオロプロピオニル)シクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-(ペンタフルオロプロピオニル)シクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-(ヘプタフルオロブチリル)シクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-(ヘプタフルオロブチリル)シクロペンタジエニル)[(1-4-η)-ペンタ-1,3-ジエン]コバルト、(η-(ヘプタフルオロブチリル)シクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-(ヘプタフルオロブチリル)シクロペンタジエニル)(η-2,3-ジメチルブタ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-ブタ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-ブタ-1,3-ジエン)コバルト、
(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-2-メチルブタ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルペンタ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルペンタ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-2-メチルペンタ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-2-メチルペンタ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-2、3-ジメチルブタ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-2、3-ジメチルブタ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-2、3-ジメチルブタ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-2、3-ジメチルブタ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-ペンタ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-ペンタ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-ペンタ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-ペンタ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-シクロヘキサ-1,3-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-シクロヘキサ-1,3-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-シクロヘキサ-1,3-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-シクロヘキサ-1,3-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-シクロオクタ-1,5-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-シクロオクタ-1,5-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-シクロオクタ-1,5-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-シクロオクタ-1,5-ジエン)コバルト、(η-1-トリメチルシリルオキシシクロペンタジエニル)(η-ノルボルナ-2,5-ジエン)コバルト、(η-3-メチル-1-トリメチルシリルオキシシクロペンタジエニル)(η-ノルボルナ-2,5-ジエン)コバルト、(η-1,3,4,5-テトラメチル-2-トリメチルシリルオキシシクロペンタジエニル)(η-ノルボルナ-2,5-ジエン)コバルト、(η-1-メチル-3,4-ビス(トリメチルシリルオキシ)シクロペンタジニル)(η-ノルボルナ-2,5-ジエン)コバルト等のコバルト錯体等を挙げることができ、その中でもルテニウム化合物が好ましい。これらの金属錯体は、1種類又は2種類以上を使用することもできる。
The present invention will be described in more detail below.
First, the metal complex used as the raw material used in the production methods A and B will be described.
Examples of the metal complex include a ruthenium compound, (ethylcyclopentadienyl) (1,3-cyclohexadiene) iridium, (methylcyclopentadienyl) (1,3-cyclohexadiene) iridium, and (ethylcyclopentadienyl) (ethylcyclopentadienyl). Iridium complexes such as 2,3-dimethyl-1,3-butadiene) iridium, ethene-1,2-diylbis (isopropylamide) bis (tert-pentyloxo) titanium, ethen-1,2-diylbis (tert-butylamide) Dietoxotitanium, etene-1,2-diylbis (tert-butylamide) diisopropoxotitanium, etene-1,2-diylbis (tert-butylamide) bis (tert-pentyloxo) titanium, etene-1,2-diylbis (tert) -Butylamide) bis (1,1-diethylpropyloxo) titanium, ethene-1,2-diylbis (tert-butylamide) bis (1,1-diethyl-2-methylpropyloxo) titanium, ethen-1,2-diylbis (Tert-butylamide) bis (2,2,2-trifluoroethoxo) titanium, ethene-1,2-diylbis (tert-pentylamide) dimethoxotitanium, ethen-1,2-diylbis (tert-pentylamide) dietoxotitanium, ethen -1,2-Diylbis (tert-pentylamide) diisopropoxotitanium, etene-1,2-diylbis (tert-pentylamide) di (tert-butoxo) titanium, etene-1,2-diylbis (1,1) , 3,3-Tetramethylbutylamide) Titanium complexes such as diisopropoxotitanium, (tert-butylimide) tri (tert-butoxo) niobium, (propylimide) tri (tert-butoxo) niobium, (isopropylimide) tri (Tert-butoxo) niobium, (methylimide) tri (tert-butoxo) niobium, (ethylimide) tri (tert-butoxo) niobium, (ethylimide) tri (tert-pentyloxo) niobium, (ethylimide) tri (1-ethyl-) 1-Methylpropyloxo) niobium, (tert-butylimide) tri (tert-pentyloxo) niobium, (tert-pentylimide) tri (tert-butoxo) niobium, (1,1,3,3-tetramethylbutylimide) Tri (tert-butoxo) niobium, (methylimide) tris (1-ethyl-1-methylpropyloxo) niobium, ( Ethylimide) tris (1,1-diethylpropyloxo) niobium, (isopropylimide) tris (1-ethyl-1-methylpropyloxo) niobium, (tert-butylimide) tris (1,1-diethylpropyloxo) niobium, ( 1,3-dimethylbutylimide) tris (tert-butoxo) niobium, (tert-butylimide) tris (1-methyl-1-propylbutyloxo) niobium, (sec-butylimide) tri (tert-butoxo) niobium, 1, 1,3,3-Tetramethylbutylimide) (triisopropoxo) niobium, (tert-butylimide) (triisopropoxo) niobium, (tert-butylimide) (trietoxo) niobium, (tert-pentylimide) (tri) Niobplexes such as isopropoxo) niobium, (tert-pentylimide) (trietoxo) niobium, (ethylimide) tri (tert-pentyloxo) tantalum, (ethylimide) tri (1-ethyl-1-methylpropyloxo) tantalum, (Isopropylimide) tri (tert-butoxo) tantalum, (propylimide) tri (tert-butoxo) tantalum, (tert-butylimide) tri (tert-butoxo) tantalum, (tert-butylimide) tri (tert-pentyloxo) tantalum , (Tert-butylimide) tris (1,1-diethylpropyloxo) tantalum, (tert-pentylimide) tri (tert-butoxo) tantalum, (1,1,3,3-tetramethylbutylimide) tri (tert- Butoxo) tantalum, (methylimide) tris (1,1-diethylpropyloxo) tantalum, (ethylimide) tris (1,1-diethylpropyloxo) tantalum, (isopropylimide) tris (1,1-diethylpropyloxo) tantalum, (Tart-butylimide) tris (1-ethyl-1-methylpropyloxo) tantalum, (tert-butylimide) tris (1-methyl-1-propylbutyloxo) tantalum, (sec-butylimide) tri (tert-butoxo) tantalum Tantal complex, etc.
5 -acetylcyclopentadiene) (η 4 -buta-1,3-diene) cobalt, (η 5 -acetylcyclopentadiene) [(1-4-η) -penta-1,3-diene ] cobalt, (eta 5 - acetyl cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5 - acetyl cyclopentadienyl) (eta 4-2,3-dimethyl pigs - 1,3-diene) cobalt, (η 4 -buta-1,3-diene) (η 5 -propionylcyclopentadiene) cobalt, [(1-4-η) -penta-1,3-diene] ( eta 5 - propionylamino cyclopentadienyl) cobalt, (eta 4-2-methylbut-1,3-diene) (eta 5 - propionylamino cyclopentadienyl) cobalt, (eta 4-2,3-dimethyl pigs -1, 3-Diene) (η 5 -propionylcyclopentadiene) cobalt, (η 4 -buta-1,3-diene) (η 5 -butyrylcyclopentadiene) cobalt, (η 5 -butyrylcyclopentadiene) enyl) [(1-4-η) - penta-1,3-diene] cobalt, (η 5 - butyryl cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5 - butyryl cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (eta 4 - buta-1,3-diene) (eta 5 - isobutyryl cyclopentadienyl Enyl) cobalt, (η 5 -isobutyrylcyclopentadiene) [(1-4-η) -penta-1,3-diene] cobalt, (η 5 -isobutyrylcyclopentadiene) (η 4) 2-methylbut-1,3-diene) cobalt, (η 4 -2,3- dimethyl-1,3-diene) (eta 5 - isobutyryl cyclopentadienyl) cobalt, (eta 4 - pig - 1,3-Diene) (η 5- valerylcyclopentadiene) cobalt, [(1-4-η) -penta-1,3-diene] (η 5- valerylcyclopentadiene) cobalt, ( eta 4-2-methylbut-1,3-diene) (eta 5 - valeryl cyclopentadienyl) cobalt, (η 4 -2,3- dimethyl-1,3-diene) (eta 5 - Barerirushikuro Pentazienyl) cobalt, (η 4 -buta-1,3-diene) (η 5 -isovalerylcyclopentadiene) ) Cobalt, (η 5 - isovaleryloxy cyclopentadienyl) [(1-4-η) - penta-1,3-diene] cobalt, (η 4 -2- methylbut-1,3-diene) (eta 5 - isovaleryloxy cyclopentadienyl) cobalt, (η 4 -2,3- dimethyl-1,3-diene) (eta 5 - isovaleryloxy cyclopentadienyl) cobalt, (eta 4 - pig -1 , 3-Diene) [η 5- (3-methylbutanoyl) cyclopentadiene] cobalt, [η 5- (3-methylbutanoyl) cyclopentadiene] [(1-4-η) -penta- 1,3-diene] cobalt, (η 4 -2- methylbut-1,3-diene) [η 5 - (3- methylbutanoyl) cyclopentadienyl] cobalt, (η 4 -2,3- dimethyl pigs -1,3-diene) [η 5- (3-methylbutanoyl) cyclopentadiene] cobalt, (η 4 -buta-1,3-diene) (η 5 --pivaloylcyclopentadiene) cobalt , [(1-4-η) - penta-1,3-diene] (eta 5 - pivaloyl cyclopentadienyl) cobalt, (η 4 -2- methylbut-1,3-diene) (eta 5 - pivaloyl cyclopentadienyl) cobalt, (η 4 -2,3- dimethyl-1,3-diene) (eta 5 - pivaloyl cyclopentadienyl) cobalt, (η 5 - formyl cyclopentadienyl ) (Η 4 -buta-1,3-diene) cobalt, (η 5 -formylcyclopentadienyl) [(1-4-η) -penta-1,3-diene] cobalt, (η 5 -formylcyclo pentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5 - formyl cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, ( η 5- (fluoroacetyl) cyclopentadiene) (η 4 -buta-1,3-diene) cobalt, (η 5- (fluoroacetyl) cyclopentadiene) [(1-4-η) -penta- 1,3-diene] cobalt, (η 5 - (trifluoroacetyl) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (η 5 - (trifluoroacetyl) cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (η 5 - (difluoroacetyl) cyclopentadienylide Lu) (η 4 -buta-1,3-diene) cobalt, (η 5- (difluoroacetyl) cyclopentadiene) [(1-4-η) -penta-1,3-diene] cobalt, (η 5 - (difluoroacetyl) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5 - (difluoroacetyl) cyclopentadienyl) (eta 4-2,3-dimethyl-pigs -1,3-diene) cobalt, (η 5- (trifluoroacetyl) cyclopentadienyl) (η 4 -buta-1,3-diene) cobalt, (η 5- (trifluoroacetyl) cyclopentadienyl) ) [(1-4-η) - penta-1,3-diene] cobalt (eta 5 - (trifluoroacetyl) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (η 5 - (trifluoroacetyl) cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (η 5 - (pentafluoropropionyl) cyclopentadienyl) (eta 4 -Buta-1,3-diene) cobalt, (η 5- (pentafluoropropionyl) cyclopentadienyl) [(1-4-η) -penta-1,3-diene] cobalt, (η 5- (penta-5-) fluoro propionyl) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (η 5 - (pentafluoropropionyl) cyclopentadienyl) (eta 4-2,3-dimethyl-pig -1 , 3-Diene) Cobalt, (η 5- (Heptafluorobutyryl) Cyclopentadienyl) (η 4 -buta-1,3-diene) Cobalt, (η 5- (Heptafluorobutyryl) Cyclopentadienyl) ) [(1-4-η) - penta-1,3-diene] cobalt, (η 5 - (heptafluorobutyryl) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt , (η 5 - (heptafluorobutyryl) cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (η 5 -1- trimethylsilyloxy cyclopentadienyl) (eta 4 - buta-1,3-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - buta-1,3-diene) cobalt, (η 5 -1,3 , 4,5-Tetramethyl 2-trimethylsilyloxy-cyclopentadienyl) (eta 4 - buta-1,3-diene) cobalt, (eta 5-1-methyl-3,4-bis (trimethylsilyloxy) cyclopentadienyl) (eta 4 - Pig-1,3-diene) cobalt,
(Eta 5-1-trimethylsilyloxy-cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - 2-methylbut-1,3-diene) cobalt, (η 5 -1,3,4,5- tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5-1-methyl-3,4-bis (trimethylsilyloxy) cyclopentadienyl) (eta 4-2-methylbut-1,3-diene) cobalt, (eta 5-1-trimethylsilyloxy cyclopentanone dienyl) (eta 4-2-methylpent-1,3-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4-2-methylpent-1,3-diene) cobalt, (eta 5 -1,3,4,5-tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4-2-methylpent-1,3-diene) cobalt, (η 5 -1- methyl - 3,4-bis (trimethylsilyloxy) cyclopentadienyl) (eta 4-2-methylpent-1,3-diene) cobalt, (eta 5-1-trimethylsilyloxy-cyclopentadienyl) (eta 4-2,3 - dimethyl-1,3-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (eta 5-1,3,4,5-tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (eta 5-1-methyl-3 4- bis (trimethylsilyloxy) cyclopentadienyl) (eta 4-2,3-dimethyl-1,3-diene) cobalt, (eta 5-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - penta 1,3-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - penta-1,3-diene) cobalt, (η 5 -1,3,4, 5-tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4 - penta-1,3-diene) cobalt, (eta 5-1-methyl-3,4-bis (trimethyl Silyloxy) cyclopentadienyl) (eta 4 - penta-1,3-diene) cobalt, (η 5 -1- trimethylsilyloxy cyclopentadienyl) (eta 4 - cyclohexa-1,3-diene) cobalt, (eta 5-3-methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - cyclohexa-1,3-diene) cobalt, (eta 5 -1,3,4,5-tetramethyl-2-trimethylsilyloxy cyclopentanone dienyl) (eta 4 - cyclohexa-1,3-diene) cobalt, (eta 5-1-methyl-3,4-bis (trimethylsilyloxy) cyclopentadienyl) (eta 4 - cyclohexa-1,3-diene ) cobalt, (eta 5-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - cycloocta-1,5-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - cycloocta-1,5-diene) cobalt, (eta 5 -1,3,4,5-tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4 - cycloocta-1,5-diene) cobalt, ( eta 5-1-methyl-3,4-bis (trimethylsilyloxy) cyclopentadienyl) (eta 4 - cycloocta-1,5-diene) cobalt, (eta 5-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - Noruboruna 2,5-diene) cobalt, (η 5 -3- methyl-1-trimethylsilyloxy-cyclopentadienyl) (eta 4 - Noruboruna 2,5-diene) cobalt, (η 5 -1,3 , 4,5-tetramethyl-2-trimethylsilyloxy-cyclopentadienyl) (eta 4 - Noruboruna 2,5-diene) cobalt, (eta 5-1-methyl-3,4-bis (trimethylsilyloxy) cyclopent Examples thereof include cobalt complexes such as dinyl) (η 4 -norborna-2,5-diene) cobalt, and among them, ruthenium compounds are preferable. These metal complexes may be used alone or in combination of two or more.
 金属錯体として好ましいルテニウム化合物としては、例えば下記一般式(1AB)で示されるルテニウム錯体、ビス(η-シクロペンタジエニル)ルテニウム、ビス(η-メチルシクロペンタジエニル)ルテニウム、ビス(η-エチルシクロペンタジエニル)ルテニウム、ビス(η-プロピルシクロペンタジエニル)ルテニウム、ビス(η-イソプロピルシクロペンタジエニル)ルテニウム、ビス(η-ブチルシクロペンタジエニル)ルテニウム、ビス(η-(sec-ブチル)シクロペンタジエニル)ルテニウム、ビス(η-イソブチルシクロペンタジエニル)ルテニウム、ビス(η-(tert-ブチル)シクロペンタジエニル)ルテニウム、ビス(η-ペンチルシクロペンタジエニル)ルテニウム、ビス(η-(シクロペンチル)シクロペンタジエニル)ルテニウム、ビス(η-ヘキシルシクロペンタジエニル)ルテニウム、ビス(η-ペンタジエニル)ルテニウム、ビス(η-2,4-ジメチルペンタジエニル)ルテニウム、ビス(η-2,4-ジエチルペンタジエニル)ルテニウム、ビス(η-2,4-ジプロピルペンタジエニル)ルテニウム、ビス(η-2,4-ジ(イソプロピル)ペンタジエニル)ルテニウム、ビス(η-2,4-ジブチルペンタジエニル)ルテニウム、ビス(η-2,4-ジ(イソブチル)ペンタジエニル)ルテニウム、ビス(η-2,4-ジ(sec-ブチル)ペンタジエニル)ルテニウム、ビス(η-2,4-ジ(tert-ブチル)ペンタジエニル)ルテニウム、ビス(η-2,4-ジペンチルペンタジエニル)ルテニウム、ビス(η-2,4-ジヘキシルペンタジエニル)ルテニウムなどを例示することができ、その中でもルテニウム化合物がCVD材料やALD材料として好適な蒸気圧及び熱安定性を持つ点で、一般式(1AB)で示されるルテニウム錯体が好ましい。これらルテニウム化合物は、1種類又は2種類以上を使用することもできる。 Preferred ruthenium compounds as the metal complex include, for example, a ruthenium complex represented by the following general formula (1AB), bis (η 5 -cyclopentadienyl) ruthenium, bis (η 5 -methylcyclopentadienyl) ruthenium, and bis (η). 5 - ethyl cyclopentadienyl) ruthenium, bis (eta 5 - propyl cyclopentadienyl) ruthenium, bis (eta 5 - isopropyl cyclopentadienyl) ruthenium, bis (eta 5 - butylcyclopentadienyl) ruthenium, bis (Η 5- (sec-butyl) cyclopentadienyl) ruthenium, bis (η 5 -isobutylcyclopentadienyl) ruthenium, bis (η 5- (tert-butyl) cyclopentadienyl) ruthenium, bis (η 5) - pentyl cyclopentadienyl) ruthenium, bis (eta 5 - (cyclopentyl) cyclopentadienyl) ruthenium, bis (eta 5 - hexyl cyclopentadienyl) ruthenium, bis (eta 5 - pentadienyl) ruthenium, bis (eta 5 -2,4-dimethyl-cyclopentadienyl) ruthenium, bis (eta 5-2,4-diethyl-cyclopentadienyl) ruthenium, bis (eta 5-2,4 dipropyl-pentadienyl) ruthenium, bis (eta 5 - 2,4-di (isopropyl) pentadienyl) ruthenium, bis (eta 5-2,4-dibutyl point pen Taj) ruthenium, bis (eta 5-2,4-di (isobutyl) pentadienyl) ruthenium, bis (eta 5 - 2,4-di (sec-butyl) pentadienyl) ruthenium, bis (eta 5-2,4-di (tert- butyl) pentadienyl) ruthenium, bis (eta 5-2,4-dipentyl-pentadienyl) ruthenium, bis (eta 5-2,4-dihexyl-pentadienyl) can be exemplified by ruthenium, in that the ruthenium compound among them has a suitable vapor pressure and thermal stability as CVD material or ALD material, the general formula (1AB ) Is preferred. These ruthenium compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは各々独立に、水素原子又は炭素数1~6のアルキル基を表し、R及びRは各々独立に、水素原子又は炭素数1~6のアルキル基を表す。Zは酸素原子又はCHを表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Represents. Z represents an oxygen atom or CH.)
 一般式(1AB)中のR及びRの定義について説明する。R及びRで表される炭素数1~6のアルキル基としては、直鎖状、分岐状又は環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、ペンチル基、1-エチルプロピル基、1-メチルブチル基、2-メチルブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1-シクロブチルエチル基、2-シクロブチルエチル基などを例示することが出来る。ルテニウム化合物がCVD材料やALD材料として好適な蒸気圧及び熱安定性を持つ点で、R及びRは水素原子又は炭素数1~4のアルキル基が好ましく、Rがエチル基であり、Rが水素原子であることが更に好ましい。 The definitions of R 1 and R 2 in the general formula (1AB) will be described. The alkyl group having 1 to 6 carbon atoms represented by R 1 and R 2 may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group or a cyclo. Propyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl group, neopentyl group, tert-pentyl Group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethyl Butyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, cyclopentylmethyl group, 1-cyclobutylethyl group, 2 -Cyclobutylethyl group and the like can be exemplified. R 1 and R 2 are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, and R 1 is an ethyl group, in that the ruthenium compound has a vapor pressure and thermal stability suitable for a CVD material or an ALD material. It is more preferable that R 2 is a hydrogen atom.
 R及びRで表される炭素数1~6のアルキル基としては、直鎖状、分岐状又は環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、ペンチル基、1-エチルプロピル基、1-メチルブチル基、2-メチルブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1-シクロブチルエチル基、2-シクロブチルエチル基などを例示することが出来る。ルテニウム化合物がCVD材料やALD材料として好適な蒸気圧及び熱安定性を持つ点で、R及びRは炭素数1~4のアルキル基が好ましく、メチル基が更に好ましい。 The alkyl group having 1 to 6 carbon atoms represented by R 3 and R 4 may be linear, branched or cyclic, and specifically, methyl group, ethyl group, propyl group, isopropyl group or cyclo. Propyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl group, neopentyl group, tert-pentyl Group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethyl Butyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, cyclopentylmethyl group, 1-cyclobutylethyl group, 2 -Cyclobutylethyl group and the like can be exemplified. R 3 and R 4 are preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group, in that the ruthenium compound has a vapor pressure and thermal stability suitable for a CVD material or an ALD material.
 具体的な一般式(1AB)で示されるルテニウム化合物としては、例えば(η-シクロペンタジエニル)(η-2,4-ジメチルペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-メチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-プロピルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-イソプロピルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-ブチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-イソブチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-sec-ブチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-tert-ブチルシクロペンタジエニル)ルテニウム、(η-シクロペンタジエニル)(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-メチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-プロピルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-イソプロピルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-ブチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-イソブチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-(sec-ブチル)シクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-(tert-ブチル)シクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-ペンチルシクロペンタジエニル)ルテニウム、(η-(シクロペンチル)シクロペンタジエニル)(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)ルテニウム及び(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-ヘキシルシクロペンタジエニル)ルテニウムなどを例示することができる。例示したルテニウム化合物はいずれも、CVD法やALD法でルテニウム含有薄膜を製造する目的で使用することができ、1種類又は2種類以上を使用することもできる。中でも、ルテニウム化合物がCVD材料やALD材料として好適な蒸気圧及び熱安定性を持つ点で、(η-シクロペンタジエニル)(η-2,4-ジメチルペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-メチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウム、(η-シクロペンタジエニル)(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-メチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムが好ましく、成膜遅延時間が短い点、また得られた膜の平滑性が良好である点から、(η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウム、(η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムが更に好ましい。 The ruthenium compound represented by a specific general formula (1AB), for example, (eta 5 - cyclopentadienyl) (eta 5-2,4-dimethyl-cyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl pentadienyl) (eta 5 - methylcyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl cyclopentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl pentadienyl) (eta 5 - propyl cyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl cyclopentadienyl) (eta 5 - isopropyl cyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl pentadienyl) (eta 5 - butylcyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl cyclopentadienyl) (eta 5 - isobutyl cyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl pentadienyl) (eta 5-sec-butylcyclopentadienyl) ruthenium, (η 5 -2,4- dimethyl cyclopentadienyl) (eta 5-tert-butyl-cyclopentadienyl) ruthenium, (η 5 - cyclo pentadienyl) (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 - methylcyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl - 1-oxa-2,4-pentadienyl) (eta 5 - propyl cyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 - isopropylcyclopentadienyl ) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 - butylcyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa - 2,4-pentadienyl) (eta 5 - isobutyl cyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl)5 - (sec- butyl) Shikuropentaji ) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl)5 - (te rt- butyl) cyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 - pentyl cyclopentadienyl) ruthenium, (η 5 - (cyclopentyl) cyclopentadienyl) (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) ruthenium and (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 -Hexylcyclopentadienyl) Ruthenium and the like can be exemplified. All of the illustrated ruthenium compounds can be used for the purpose of producing a ruthenium-containing thin film by a CVD method or an ALD method, and one kind or two or more kinds can be used. Among them, in that the ruthenium compound has a suitable vapor pressure and thermal stability as CVD material or ALD material, (eta 5 - cyclopentadienyl) (eta 5-2,4-dimethyl-cyclopentadienyl) ruthenium, (eta 5 -2,4-dimethyl-cyclopentadienyl) (eta 5 - methylcyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-cyclopentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium, (eta 5 - cyclopentadienyl) (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) ( eta 5 - ethyl cyclopentadienyl) ruthenium are preferred, deposition delay time - methylcyclopentadienyl) ruthenium, (eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) (eta 5 short point, and from the smoothness of the resulting film is that it is good, (eta 5-2,4-dimethyl-cyclopentadienyl) (eta 5 - ethyl cyclopentadienyl) ruthenium, (eta 5-2,4 -Dimethyl-1-oxa-2,4-pentadienyl) (η 5 -ethylcyclopentadienyl) ruthenium is more preferred.
 最初に製造方法Aについて説明する。
 製造方法Aは、金属錯体を原料として使用し、基板に、金属錯体の吸着・核発生を誘発させ得る前処理を施した後、CVD法又はALD法で成膜することによって、表面平滑性に優れた金属含有薄膜を製造するものである。
First, the manufacturing method A will be described.
In the production method A, a metal complex is used as a raw material, and the substrate is subjected to a pretreatment capable of inducing adsorption and nucleation of the metal complex, and then a film is formed by a CVD method or an ALD method to improve the surface smoothness. It produces an excellent metal-containing thin film.
 以下に、前処理工程について詳細に説明する。
 用いる基板としては、表面が金属膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜、又は金属酸化窒化膜、ガラス、樹脂、シリコン樹脂、又はこれらの複合材等の基板を任意で用いることができる。前記金属の具体例としては、金、銀、白金、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、モリブデン、又はこれらの合金が挙げられる。これらの基板の中でも、特に表面が金属酸化膜又は金属窒化膜である基板が好ましく、表面が酸化シリコン(SiO)や複合金属酸化膜、窒化タンタル、窒化チタンである基板が特に好ましい。
 基板に金属錯体の吸着・核発生を誘発させ得る前処理方法については、原料の吸着量、各密度を向上させ得るものであればいかなる処理を用いることもでき、特に以下の1)~4)いずれかの方法が好ましい。なお、下記の処理方法は、単独で行っても良く、複数の種類の方法を組み合わせて用いても良い。
The pretreatment process will be described in detail below.
As the substrate to be used, a substrate having a surface of a metal film, a metal carbide film, a metal oxide film, a metal nitride film, a metal oxide carbide film, a metal oxide nitride film, glass, a resin, a silicon resin, or a composite material thereof is optional. Can be used in. Specific examples of the metal include gold, silver, platinum, silicon, titanium, tungsten, hafnium, zirconium, chromium, germanium, copper, aluminum, indium, gallium, arsenic, palladium, iron, tantalum, iridium, molybdenum, or these. Alloys can be mentioned. Among these substrates, a substrate having a surface of a metal oxide film or a metal nitride film is particularly preferable, and a substrate having a surface of silicon oxide (SiO 2 ), a composite metal oxide film, tantalum nitride, or titanium nitride is particularly preferable.
As for the pretreatment method capable of inducing the adsorption and nucleation of the metal complex on the substrate, any treatment can be used as long as it can improve the adsorption amount of the raw material and each density, and in particular, the following 1) to 4). Either method is preferable. The following processing methods may be performed alone or in combination of a plurality of types.
 1)成膜前に還元性ガスを反応チャンバー内に導入して基板の表面処理を行う方法
 前記還元性ガスとしてはいかなるものを使用してもよく、例えば、アンモニア、水素、一酸化炭素、ヒドラジン、モノメチルヒドラジン等に加え、炭化水素系ガスであるメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン又はヘキサン等を用いることができ、その中でもアンモニア又は水素が好ましい。
 また還元性ガスを反応チャンバー内に導入して基板の前処理を行う際は、基板を任意の温度に加熱することが好ましく、加熱する温度としては好ましくは200℃以上、更に好ましくは300℃以上である。
1) Method of introducing a reducing gas into the reaction chamber to treat the surface of the substrate before film formation Any kind of reducing gas may be used, for example, ammonia, hydrogen, carbon monoxide, hydrazine. , Monomethylhydrazine and the like, and hydrocarbon gases such as methane, ethane, ethylene, acetylene, propane, butane, butane, pentane, isobutane and hexane can be used, and among them, ammonia or hydrogen is preferable.
When the reducing gas is introduced into the reaction chamber to pretreat the substrate, it is preferable to heat the substrate to an arbitrary temperature, and the heating temperature is preferably 200 ° C. or higher, more preferably 300 ° C. or higher. Is.
 2)成膜前にプラズマを発生させて基板の表面処理を行う方法
 プラズマを発生させる環境は任意であり、前記還元ガス導入雰囲気で発生させることもでき、任意の温度に加熱してもよい。プラズマ発生時のRFパワーは任意に設定でき、好ましくは1~10000W、更に好ましくは1~1000Wの範囲、特に好ましくは20~500Wである。なお、RFパワーとは、プラズマを励起する高周波の電力値のことをいう。
2) Method of generating plasma to perform surface treatment of the substrate before film formation The environment for generating plasma is arbitrary, it can be generated in the reduction gas introduction atmosphere, and it may be heated to an arbitrary temperature. The RF power at the time of plasma generation can be arbitrarily set, and is preferably in the range of 1 to 10000 W, more preferably 1 to 1000 W, and particularly preferably 20 to 500 W. The RF power refers to a high-frequency power value that excites plasma.
 3)成膜前に基板表面を加熱して表面処理を行う方法
 成膜前に基板表面を加熱する際の加熱温度は、表面処理が可能な温度であれば如何なる温度でも実施でき、基板表面に付着した有機物等の不純物を除去できることから、成膜温度以上で行うことが好ましい。加熱時の反応チャンバー内の雰囲気は、引き切りでもよいし、アルゴンや窒素等の不活性ガス雰囲気でもよい。
3) Method of heating the surface of the substrate before film formation The heating temperature for heating the surface of the substrate before film formation can be any temperature as long as the surface treatment is possible, and the surface of the substrate can be treated. Since impurities such as adhered organic substances can be removed, it is preferable to carry out at a film formation temperature or higher. The atmosphere in the reaction chamber at the time of heating may be a cut-off atmosphere or an atmosphere of an inert gas such as argon or nitrogen.
 4)成膜前に金属錯体を反応チャンバー内に導入して基板表面に金属錯体を吸着させる方法、及び該金属錯体の分解物によって基板表面に前駆体薄層を形成させる方法のいずれか一方又は両方を行う方法 4) Either a method of introducing a metal complex into a reaction chamber before film formation to adsorb the metal complex on the substrate surface, or a method of forming a precursor thin layer on the substrate surface by a decomposition product of the metal complex. How to do both
 金属錯体を反応チャンバー内に導入する方法はいかなる方法でもよく、金属錯体を気化させた蒸気を連続で供給してもよいし、アルゴンや窒素等の不活性ガスと交互にパルシングで導入してもよい。反応チャンバー温度はいかなる温度にも設定でき、核密度の向上することが期待できることから、成膜温度以上で金属錯体の供給を行うことが好ましい。さらに、より平滑性の高い金属含有薄膜が得られることが期待されることから、反応チャンバー温度は、用いる金属錯体の熱分解温度以上の温度であることが特に好ましい。 The method for introducing the metal complex into the reaction chamber may be any method, the vapor obtained by vaporizing the metal complex may be continuously supplied, or the metal complex may be alternately introduced by pulsing with an inert gas such as argon or nitrogen. good. Since the reaction chamber temperature can be set to any temperature and the nuclear density can be expected to improve, it is preferable to supply the metal complex at a temperature equal to or higher than the film formation temperature. Further, since it is expected that a metal-containing thin film having higher smoothness can be obtained, the reaction chamber temperature is particularly preferably a temperature equal to or higher than the thermal decomposition temperature of the metal complex to be used.
 次に、CVD法又はALD法で膜を製造する工程について、以下に説明する。
 CVD法又はALD法による成膜プロセスに関しては、その成膜手法は特に限定はなく、該金属錯体を気化させた蒸気と、必要に応じて用いられる反応性ガス、希釈ガス、パージガスを、基板が設置された反応チャンバー内に同時若しくは交互に導入し、該金属錯体を気相中若しくは基板上で分解及び/又は化学反応させて薄膜を基板表面に成長、堆積させる成膜法である。CVD法又はALD法としては、例えば、化学気相成長(CVD)、原子層堆積(ALD)、分子層堆積(MLD)、プラズマ化学気相成長(PECVD)、プラズマ原子層堆積(PEALD)、低圧化学気相成長(LPCVD)、常圧CVD、パルスCVD等を用いることができる。CVD法は成膜速度が良好な点で好ましく、またALD法は段差被覆性が良好な点で特に好ましい。
Next, the step of manufacturing the film by the CVD method or the ALD method will be described below.
The film formation method by the CVD method or the ALD method is not particularly limited, and the substrate uses steam obtained by vaporizing the metal complex and a reactive gas, diluting gas, or purge gas used as necessary. This is a film forming method in which the metal complex is simultaneously or alternately introduced into the installed reaction chamber, and the metal complex is decomposed and / or chemically reacted in the gas phase or on the substrate to grow and deposit a thin film on the surface of the substrate. Examples of the CVD method or ALD method include chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular layer deposition (MLD), plasma chemical vapor deposition (PECVD), plasma atomic layer deposition (PEALD), and low pressure. Chemical vapor deposition (LPCVD), atmospheric CVD, pulse CVD and the like can be used. The CVD method is preferable in that the film forming speed is good, and the ALD method is particularly preferable in that the step coverage is good.
 CVD法又はALDにより金属錯体を原料として基板上に金属含有薄膜を製造する際、該金属錯体をガス化して基板上に供給する。ガス化する方法としては、例えば加熱した恒温槽に該金属錯体を入れ、ヘリウム、ネオン、アルゴン、クリプトン、キセノンもしくは窒素などのキャリアガスを吹き込みガス化する方法、又は該金属錯体をそのまま又は溶媒を用いて溶液とし、これらを気化器に送って加熱して気化器内でガス化する方法などがある。溶液とする場合に用いる溶媒としては、例えば1,2-ジメトキシエタン、ジグライム、トリグライム、ジオキサン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル類、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ベンゼン、トルエン、エチルベンゼン、キシレン等の炭化水素類を例示することが出来る。 When a metal-containing thin film is produced on a substrate using a metal complex as a raw material by a CVD method or ALD, the metal complex is gasified and supplied onto the substrate. As a method of gasification, for example, the metal complex is placed in a heated constant temperature bath and a carrier gas such as helium, neon, argon, krypton, xenone or nitrogen is blown into the gas to gasify the metal complex, or the metal complex is used as it is or a solvent is used. There is a method of using it to make a solution, sending it to a vaporizer, heating it, and gasifying it in the vaporizer. Examples of the solvent used as a solution include ethers such as 1,2-dimethoxyethane, diglime, triglime, dioxane, tetrahydrofuran, cyclopentyl methyl ether, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, octane, nonane, and the like. Hydrocarbons such as decane, benzene, toluene, ethylbenzene, and xylene can be exemplified.
 CVD法、ALD法では、ガスとして基板上に供給した該金属錯体の蒸気と、反応性ガスを反応させることによって、金属含有薄膜を製造することが出来る。分解は加熱のみでも可能であり、プラズマや光などを併用しても良い。前記反応性ガスは必要に応じて如何なるものを用いることもでき、例えば酸化性ガス、炭化水素系ガス又は還元性ガスが挙げられる。
 酸化性ガスの具体例としては、酸素、オゾン、水蒸気、過酸化水素、塩化水素、硝酸ガス、酢酸、無水酢酸、二酸化窒素、一酸化窒素、笑気ガス、塩化水素、硝酸、などを挙げることができる。
 炭化水素系ガスの具体例としては、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、有機アミン化合物を挙げることができる。また有機アミン化合物の具体例としては、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミンを挙げることができる。
 還元性ガスの具体例としては、アンモニア、水素、一酸化炭素、モノシラン、ヒドラジン、モノメチルヒドラジン、ボラン-ジメチルアミン錯ボラン-トリメチルアミン錯体などのボラン-アミン錯体、1-ブテン、2-ブテン、2-メチルプロペン、1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-ヘキセン、3-ヘキセン、2-メチル-1-ペンテン、2-メチル-2-ペンテン、4-メチル-2-ペンテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-2-ペンテン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2,3-ジメチル-2-ブテン、3,3-ジメチル-1-ブテン、ブタ-1,3-ジエン、ペンタ-1,3-ジエン、ペンタ-1,4-ジエン、2-メチルブタ-1,3-ジエン、ヘキサ-1,3-ジエン、ヘキサ-2,4-ジエン、2-メチルペンタ-1,3-ジエン、3-メチルペンタ-1,3-ジエン、4-メチルペンタ-1,3-ジエン、2-エチルブタ-1,3-ジエン、3-メチルペンタ-1,4-ジエン、2,3-ジメチルブタ-1,3-ジエンなどの鎖状不飽和炭化水素、シクロヘキサ-1,3-ジエン、シクロヘキサ-1,4-ジエン、1-メチルシクロヘキサ-1,3-ジエン、2-メチルシクロヘキサ-1,3-ジエン、5-メチルシクロヘキサ-1,3-ジエン、3-メチルシクロヘキサ-1,4-ジエン、α-フェランドレン、β-フェランドレン、α-テルピネン、β-テルピネン、γ-テルピネン、リモネンなどの環状不飽和炭化水素などを例示することができる。
 また、これらの反応性ガスは1種類又は2種類以上を使用することができる。成膜装置の仕様による制約が少なく取扱いが容易である点で、反応性ガスとしては、酸素、オゾン、水蒸気、アンモニア、水素、ギ酸、シクロヘキサ-1,3-ジエン、シクロヘキサ-1,4-ジエン、α-テルピネン、β-テルピネン、γ-テルピネン、リモネンが好ましい。
In the CVD method and the ALD method, a metal-containing thin film can be produced by reacting the vapor of the metal complex supplied on the substrate as a gas with a reactive gas. Decomposition can be performed only by heating, and plasma, light, or the like may be used in combination. Any of the reactive gas can be used as needed, and examples thereof include an oxidizing gas, a hydrocarbon-based gas, and a reducing gas.
Specific examples of the oxidizing gas include oxygen, ozone, steam, hydrogen chloride, hydrogen chloride, nitric acid gas, acetic acid, anhydrous acetic acid, nitrogen dioxide, nitric oxide, laughing gas, hydrogen chloride, nitric acid, and the like. Can be done.
Specific examples of the hydrocarbon-based gas include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, and organic amine compounds. Specific examples of the organic amine compound include monoalkylamine, dialkylamine, trialkylamine, and alkylenediamine.
Specific examples of the reducing gas include borane-amine complexes such as ammonia, hydrogen, carbon monoxide, monosilane, hydrazine, monomethylhydrazine, borane-dimethylamine complex borane-trimethylamine complex, 1-butene, 2-butene, 2-. Methylpropene, 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-hexene, 2-hexene, 3-hexene, 2-methyl -1-Penten, 2-Methyl-2-Penten, 4-Methyl-2-Penten, 4-Methyl-1-Penten, 3-Methyl-1-Penten, 3-Methyl-2-Penten, 2-Ethyl-1 -Buten, 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene, 3,3-dimethyl-1-butene, pig-1,3-diene, penta-1,3-diene, penta -1,4-diene, 2-methylbuta-1,3-diene, hexa-1,3-diene, hexa-2,4-diene, 2-methylpenta-1,3-diene, 3-methylpenta-1,3 Chain-like non-diene, 4-methylpenta-1,3-diene, 2-ethylbuta-1,3-diene, 3-methylpenta-1,4-diene, 2,3-dimethylbuta-1,3-diene, etc. Saturated hydrocarbons, cyclohexa-1,3-diene, cyclohexa-1,4-diene, 1-methylcyclohexa-1,3-diene, 2-methylcyclohexa-1,3-diene, 5-methylcyclohexa- Cyclic unsaturated hydrocarbons such as 1,3-diene, 3-methylcyclohexa-1,4-diene, α-ferrandrene, β-ferrandrene, α-terpinene, β-terpinene, γ-terpinene, limonene, etc. It can be exemplified.
Further, one kind or two or more kinds of these reactive gases can be used. Reactive gases include oxygen, ozone, water vapor, ammonia, hydrogen, formic acid, cyclohexa-1,3-diene, and cyclohexa-1,4-diene, because there are few restrictions due to the specifications of the film-forming device and they are easy to handle. , Α-terpinene, β-terpinene, γ-terpinene, limonene are preferred.
 反応ガスの流量は材料の反応性と反応チャンバーの容量に応じて適宜調節される。例えば反応チャンバーの容量が1~10Lの場合、反応ガスの流量は特に制限は無く、経済的な理由から1~10000sccmが好ましく、1~1000sccmが更に好ましく、10~500sccmが特に好ましい。なお、本明細書中においてsccmとは気体の流量を表す単位であり、1sccmは理想気体に換算すると2.68mmol/hの速度で気体が移動していることを表す。 The flow rate of the reaction gas is appropriately adjusted according to the reactivity of the material and the capacity of the reaction chamber. For example, when the capacity of the reaction chamber is 1 to 10 L, the flow rate of the reaction gas is not particularly limited, and is preferably 1 to 10000 sccm, more preferably 1 to 1000 sccm, and particularly preferably 10 to 500 sccm for economic reasons. In the present specification, sccm is a unit representing the flow rate of gas, and 1 sccm means that the gas is moving at a rate of 2.68 mmol / h when converted to an ideal gas.
 CVD法、ALD法での成膜工程において、キャリアガス、希釈ガス、パージガスとして用いる不活性ガスとしては希ガス又は窒素が好ましく、経済的な理由から窒素、ヘリウム、ネオン、アルゴンが好ましい。該不活性ガスの流量は、反応チャンバーの容量などに応じて適宜調節されるが、例えば反応チャンバーの容量が1~10Lの場合、キャリアガスの流量は特に制限は無く、経済的な理由から1~10000sccmが好ましく、1~1000sccmであることが更に好ましく、1~500sccmであることが特に好ましい。 Noble gas or nitrogen is preferable as the inert gas used as the carrier gas, the diluting gas, and the purge gas in the film forming step by the CVD method and the ALD method, and nitrogen, helium, neon, and argon are preferable for economic reasons. The flow rate of the inert gas is appropriately adjusted according to the capacity of the reaction chamber and the like. For example, when the capacity of the reaction chamber is 1 to 10 L, the flow rate of the carrier gas is not particularly limited and is 1 for economic reasons. It is preferably from 10000 sccm, more preferably from 1 to 1000 sccm, and particularly preferably from 1 to 500 sccm.
 製造方法Aにおいて、金属錯体の基板上への吸着・核発生を誘発させ得る前処理を施した後、CVD法で膜を製造する場合の成膜法について、以下に示す。
 前記前処理を実施した後、CVD装置において、該金属錯体を上述した手法でガス化させて反応チャンバー内に導入し、分解反応によって、基板上に金属含有薄膜を製造する。この際の分解反応は熱のみによるものでもよいし、反応ガスを用いても、プラズマ又は光などを併用しても良い。この際、金属錯体の蒸気と反応ガスの他に、希釈ガスとして不活性ガスを導入することもできる。希釈ガスは、上述の通り希ガス又は窒素を用いることが好ましく、中でも経済的な理由から窒素、ヘリウム、ネオン、アルゴンが好ましい。
The following shows a film forming method in the case of manufacturing a film by a CVD method after performing a pretreatment capable of inducing adsorption and nucleation of a metal complex on a substrate in the manufacturing method A.
After performing the pretreatment, in the CVD apparatus, the metal complex is gasified by the method described above and introduced into the reaction chamber, and a metal-containing thin film is produced on the substrate by a decomposition reaction. The decomposition reaction at this time may be carried out only by heat, a reaction gas may be used, or plasma or light may be used in combination. At this time, in addition to the vapor of the metal complex and the reaction gas, an inert gas can be introduced as a diluting gas. As the diluting gas, as described above, it is preferable to use a rare gas or nitrogen, and among them, nitrogen, helium, neon, and argon are preferable for economic reasons.
 またCVD法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。上記アニール処理及び上記リフロー工程における温度は、通常100~1000℃であり、200~500℃が好ましい。 Further, in the CVD method, after the thin film deposition, the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process. The temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
 製造方法Aにおいて、金属錯体の基板上への吸着・核発生を誘発させ得る前処理を施した後、ALD法で膜を製造する場合の成膜法について、以下に示す。
 前記前処理を実施した後、a)原料導入工程、b)排気及び/又はパージ工程、c)反応ガス導入工程、d)排気及び/又はパージ工程、からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返してもよい。また、金属含有薄膜のALD法による形成においては、プラズマ、光、電圧等のエネルギーを印加してもよい。これらのエネルギーを印加する時期は、特に限定はなく、例えば、金属錯体の基板上への吸着・核発生を誘発させ得る前処理工程、原料導入工程、排気及び/又はパージ工程、反応ガス導入工程、のいずれの際でもよく、上記の各工程の間でもよい。
The following shows a film forming method in the case of producing a film by the ALD method after performing a pretreatment capable of inducing adsorption and nucleation of a metal complex on a substrate in the production method A.
After performing the pretreatment, one cycle of thin film deposition by a series of operations consisting of a) raw material introduction step, b) exhaust and / or purge step, c) reaction gas introduction step, and d) exhaust and / or purge step. This cycle may be repeated a plurality of times until a thin film having a required film thickness is obtained. Further, in the formation of the metal-containing thin film by the ALD method, energy such as plasma, light, and voltage may be applied. The timing of applying these energies is not particularly limited, and for example, a pretreatment step, a raw material introduction step, an exhaust and / or purge step, and a reaction gas introduction step that can induce adsorption / nucleation of a metal complex on a substrate. , And may be between the above steps.
 また、ALD法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。上記アニール処理及び上記リフロー工程における温度は、通常100~1000℃であり、200~500℃が好ましい。 Further, in the ALD method, after the thin film deposition, the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process. The temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
 CVD法、ALD法による成膜工程における反応温度(基板温度)は、熱、プラズマ、光などの使用の有無、反応ガスの種類などにより適宜選択される。例えば光やプラズマを併用することなく反応ガスとして酸素を用いる場合には、基板温度に特に制限はなく、本発明で用いる金属錯体が充分に反応する温度であることから、室温~1000℃が好ましく、成膜速度及び得られる膜の組成、表面平滑性が良好な点で100℃~800℃が更に好ましく、150℃~400℃が特に好ましい。また、光やプラズマ、オゾン、過酸化水素などを適宜使用することにより300℃以下の温度域で金属含有薄膜を製造することが出来る。 The reaction temperature (substrate temperature) in the film formation process by the CVD method and the ALD method is appropriately selected depending on the presence or absence of heat, plasma, light, etc., the type of reaction gas, and the like. For example, when oxygen is used as the reaction gas without using light or plasma in combination, the substrate temperature is not particularly limited, and the temperature is such that the metal complex used in the present invention sufficiently reacts. Therefore, room temperature to 1000 ° C. is preferable. 100 ° C. to 800 ° C. is more preferable, and 150 ° C. to 400 ° C. is particularly preferable in terms of good film formation rate, composition of the obtained film, and surface smoothness. Further, a metal-containing thin film can be produced in a temperature range of 300 ° C. or lower by appropriately using light, plasma, ozone, hydrogen peroxide or the like.
 CVD法、ALD法による成膜工程における反応は、熱CVD法、ALD法の場合、膜厚の均一性やステップ・カバレッジ(被覆性)、膜質が良好な点で、減圧条件で行うことが好ましく、反応圧力は0~100Torrが更に好ましく、0~10Torrが特に好ましい。 In the case of the thermal CVD method and the ALD method, the reaction in the film forming process by the CVD method and the ALD method is preferably carried out under reduced pressure conditions in terms of good film thickness uniformity, step coverage (coverability) and film quality. The reaction pressure is more preferably 0 to 100 Torr, and particularly preferably 0 to 10 Torr.
 金属錯体を用いて前処理を行った後、CVD法又はALD法で膜を製造する装置としては、周知な化学気相成長法用装置(CVD装置)や原子層堆積装置(ALD装置)を用いることができる。具体的な装置の例としては図1のように、プレカーサをバブリング供給で行うことのできるALD装置の他に気化室を有する装置又は反応性ガスに対してプラズマ処理を行うことのできる装置等が挙げられる。また、図1のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。 As an apparatus for producing a film by a CVD method or an ALD method after pretreatment using a metal complex, a well-known chemical vapor deposition apparatus (CVD apparatus) or atomic layer deposition apparatus (ALD apparatus) is used. be able to. As a specific example of the device, as shown in FIG. 1, in addition to the ALD device capable of performing the precursor by bubbling supply, a device having a vaporization chamber, a device capable of performing plasma treatment on a reactive gas, or the like is used. Can be mentioned. Further, the device is not limited to the single-wafer type device as shown in FIG. 1, and a device capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
 製造方法Aにより得られる表面平滑性に優れる金属含有薄膜は、他のプレカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。製造される薄膜の組成としては、例えば、金属薄膜、金属酸化物薄膜、金属合金及び金属含有複合酸化物薄膜等が挙げられる。金属合金としては、Pt-Ru合金が挙げられる。金属含有複合酸化物薄膜としては、例えば、SrRuOが挙げられる。これらの薄膜は、例えばMRAM素子やDRAM素子に代表されるメモリー素子の電極材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いられている。 The metal-containing thin film having excellent surface smoothness obtained by the production method A can be of a desired type such as metal, oxide ceramics, nitride ceramics, glass, etc. by appropriately selecting other precursors, reactive gases and production conditions. It can be a thin film. Examples of the composition of the produced thin film include a metal thin film, a metal oxide thin film, a metal alloy, and a metal-containing composite oxide thin film. Examples of the metal alloy include a Pt-Ru alloy. Examples of the metal-containing composite oxide thin film include SrRuO 3 . These thin films are widely used in the production of electrode materials for memory elements such as MRAM elements and DRAM elements, resistance films, antimagnetic films used for recording layers of hard disks, and catalyst materials for polymer electrolyte fuel cells. It is used.
 次に、製造方法Bについて説明する。
 製造方法Bは、金属錯体を原料として使用した、CVD法又はALD法による金属含有薄膜の製造方法であって、酸化性ガスと還元性ガスを併用することを特徴とする金属含有薄膜の製造方法である。
Next, the manufacturing method B will be described.
The production method B is a method for producing a metal-containing thin film by a CVD method or an ALD method using a metal complex as a raw material, and is characterized in that an oxidizing gas and a reducing gas are used in combination. Is.
 製造方法Bでは、CVD法又はALD法によって成膜する前に製造方法Aにおける基板に、金属錯体の吸着・核発生を誘発させ得る前処理を施すことが好ましい。
 すなわち、金属錯体を原料として使用し、基板に、金属錯体の吸着・核発生を誘発させ得る前処理を施した後、酸化性ガスと還元性ガスとを併用し、CVD法又はALD法で成膜することが好ましい。
 製造方法Bでは、CVD法又はALD法による成膜プロセス及びガス化する方法については、製造方法Aと同様の方法を用いることができる。
In the production method B, it is preferable to perform a pretreatment capable of inducing adsorption and nucleation of the metal complex on the substrate in the production method A before forming a film by the CVD method or the ALD method.
That is, a metal complex is used as a raw material, the substrate is subjected to a pretreatment capable of inducing adsorption and nucleation of the metal complex, and then an oxidizing gas and a reducing gas are used in combination, and the substrate is formed by a CVD method or an ALD method. It is preferable to form a film.
In the production method B, the same method as the production method A can be used for the film formation process and the gasification method by the CVD method or the ALD method.
 製造方法Bでは、ガスとして基板上に供給した該金属錯体の蒸気と、酸化性ガスと、還元性ガスとを反応させることによって、基板上に吸着した金属錯体を分解させ、金属含有薄膜を製造することが出来る。分解は酸化性ガス、還元性ガス2種と加熱のみでも可能であり、プラズマや光などを併用しても良い。
 製造方法Bにて酸化性ガスと還元性ガスの両方を使用することで、高純度な金属含有薄膜を製造することを可能とするものである。一般的なCVD法又はALD法による成膜では、酸化性ガスと還元性ガスのいずれかが用いられるが、これらを併用することで、膜中の不純物濃度を低減することが可能である。
In the production method B, the vapor of the metal complex supplied on the substrate as a gas is reacted with the oxidizing gas and the reducing gas to decompose the metal complex adsorbed on the substrate to produce a metal-containing thin film. Can be done. Decomposition can be performed only by heating with two types of oxidizing gas and reducing gas, and plasma, light, or the like may be used in combination.
By using both the oxidizing gas and the reducing gas in the production method B, it is possible to produce a high-purity metal-containing thin film. In the film formation by a general CVD method or ALD method, either an oxidizing gas or a reducing gas is used, and by using these in combination, it is possible to reduce the impurity concentration in the film.
 以下、成膜に用いる酸化性ガス、還元性ガスについて詳細に説明する。
 酸化性ガスの具体例としては、酸素、オゾン、水蒸気、過酸化水素、塩化水素、硝酸ガス、酢酸、無水酢酸、二酸化窒素、一酸化窒素、笑気ガス、塩化水素、硝酸、を挙げることができ、これらは1種類又は2種類以上使用することができる。中でも原料の金属錯体との反応性が良好であること、また成膜装置の仕様による制約が少なく取扱いが容易であることから、酸素若しくはオゾンを用いることが好ましい。
Hereinafter, the oxidizing gas and the reducing gas used for film formation will be described in detail.
Specific examples of the oxidizing gas include oxygen, ozone, steam, hydrogen chloride, hydrogen chloride, nitric acid gas, acetic acid, anhydrous acetic acid, nitrogen dioxide, nitric oxide, laughing gas, hydrogen chloride and nitric acid. Yes, these can be used alone or in combination of two or more. Of these, oxygen or ozone is preferably used because it has good reactivity with the metal complex of the raw material and is easy to handle because there are few restrictions due to the specifications of the film forming apparatus.
 還元性ガスの具体例としては、アンモニア、水素、一酸化炭素、モノシラン、ヒドラジン、モノメチルヒドラジン、ボラン-ジメチルアミン錯体、ボラン-トリメチルアミン錯体などのボラン-アミン錯体、1-ブテン、2-ブテン、2-メチルプロペン、1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-ヘキセン、3-ヘキセン、2-メチル-1-ペンテン、2-メチル-2-ペンテン、4-メチル-2-ペンテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-2-ペンテン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2,3-ジメチル-2-ブテン、3,3-ジメチル-1-ブテン、ブタ-1,3-ジエン、ペンタ-1,3-ジエン、ペンタ-1,4-ジエン、2-メチルブタ-1,3-ジエン、ヘキサ-1,3-ジエン、ヘキサ-2,4-ジエン、2-メチルペンタ-1,3-ジエン、3-メチルペンタ-1,3-ジエン、4-メチルペンタ-1,3-ジエン、2-エチルブタ-1,3-ジエン、3-メチルペンタ-1,4-ジエン、2,3-ジメチルブタ-1,3-ジエンなどの鎖状不飽和炭化水素、シクロヘキサ-1,3-ジエン、シクロヘキサ-1,4-ジエン、1-メチルシクロヘキサ-1,3-ジエン、2-メチルシクロヘキサ-1,3-ジエン、5-メチルシクロヘキサ-1,3-ジエン、3-メチルシクロヘキサ-1,4-ジエン、α-フェランドレン、β-フェランドレン、α-テルピネン、β-テルピネン、γ-テルピネン、リモネンなどの環状不飽和炭化水素を挙げることができ、これらは1種類又は2種類以上使用することができる。中でも成膜装置の仕様による制約が少なく取扱いが容易である点で、アンモニア、水素、ギ酸を用いることが好ましく、アンモニア又は水素を用いることがより好ましい。 Specific examples of the reducing gas include borane-amine complexes such as ammonia, hydrogen, carbon monoxide, monosilane, hydrazine, monomethylhydrazine, borane-dimethylamine complex, and borane-trimethylamine complex, 1-butene, 2-butene, and 2, -Methylpropene, 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-hexene, 2-hexene, 3-hexene, 2- Methyl-1-pentene, 2-methyl-2-pentene, 4-methyl-2-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-methyl-2-pentene, 2-ethyl- 1-butene, 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene, 3,3-dimethyl-1-butene, pig-1,3-diene, penta-1,3-diene, Penta-1,4-diene, 2-methylbuta-1,3-diene, hexa-1,3-diene, hexa-2,4-diene, 2-methylpenta-1,3-diene, 3-methylpenta-1, Chains such as 3-diene, 4-methylpenta-1,3-diene, 2-ethylbuta-1,3-diene, 3-methylpenta-1,4-diene, 2,3-dimethylbuta-1,3-diene Unsaturated hydrocarbons, cyclohexa-1,3-diene, cyclohexa-1,4-diene, 1-methylcyclohexa-1,3-diene, 2-methylcyclohexa-1,3-diene, 5-methylcyclohexa Cyclic unsaturated hydrocarbons such as -1,3-diene, 3-methylcyclohexa-1,4-diene, α-ferrandrene, β-ferrandrene, α-terpinene, β-terpinene, γ-terpinene, and limonene. These can be mentioned, and these can be used alone or in combination of two or more. Of these, ammonia, hydrogen, and formic acid are preferably used, and ammonia or hydrogen is more preferable, because there are few restrictions due to the specifications of the film forming apparatus and handling is easy.
 酸化性ガス、還元性ガスの流量は材料の反応性と反応チャンバーの容量に応じて適宜調節される。例えば反応チャンバーの容量が1~10Lの場合、酸化性ガス、還元性ガスの流量は特に制限は無く、経済的な理由から1~10000sccmが好ましく、1~1000sccmが更に好ましく、10~500sccmが特に好ましい。なお、本明細書中においてsccmとは気体の流量を表す単位であり、1sccmは理想気体に換算すると2.68mmol/hの速度で気体が移動していることを表す。 The flow rates of the oxidizing gas and the reducing gas are appropriately adjusted according to the reactivity of the material and the capacity of the reaction chamber. For example, when the capacity of the reaction chamber is 1 to 10 L, the flow rates of the oxidizing gas and the reducing gas are not particularly limited, and are preferably 1 to 10000 sccm, more preferably 1 to 1000 sccm, and particularly 10 to 500 sccm for economic reasons. preferable. In the present specification, sccm is a unit representing the flow rate of gas, and 1 sccm means that the gas is moving at a rate of 2.68 mmol / h when converted to an ideal gas.
 酸化性ガスと還元性ガスとの比率についても特に制限はなく、原料ガスとの反応性の観点から、酸化性ガスと還元性ガスとの比率が100:1~1:100であることが好ましく、50:1~1:50が更に好ましく、10:1~1:10であることが特に好ましい。
 成膜工程において、キャリアガス、希釈ガス、パージガスとして用いる不活性ガスとしては希ガスまたは窒素が好ましく、経済的な理由から窒素、ヘリウム、ネオン、アルゴンが好ましい。該不活性ガスの流量は、反応チャンバーの容量などに応じて適宜調節されるが、例えば反応チャンバーの容量が1~10Lの場合、キャリアガスの流量は特に制限は無く、経済的な理由から1~10000sccmが好ましく、1~1000sccmであることが更に好ましく、1~500sccmであることが特に好ましい。
The ratio of the oxidizing gas to the reducing gas is also not particularly limited, and the ratio of the oxidizing gas to the reducing gas is preferably 100: 1 to 1: 100 from the viewpoint of reactivity with the raw material gas. , 50: 1 to 1:50 is more preferable, and 10: 1 to 1:10 is particularly preferable.
Noble gas or nitrogen is preferable as the inert gas used as the carrier gas, the diluting gas, and the purge gas in the film forming step, and nitrogen, helium, neon, and argon are preferable for economic reasons. The flow rate of the inert gas is appropriately adjusted according to the capacity of the reaction chamber and the like. For example, when the capacity of the reaction chamber is 1 to 10 L, the flow rate of the carrier gas is not particularly limited and is 1 for economic reasons. It is preferably from 10000 sccm, more preferably from 1 to 1000 sccm, and particularly preferably from 1 to 500 sccm.
 製造方法Bにおいて、膜を製造する場合の成膜法について、以下に示す。ガスとして基板上に供給した該金属錯体の蒸気と、酸化性ガスと、還元性ガスとを使用するものであればいかなる方法で成膜を行うこともでき、これらの酸化性ガス、還元性ガスに加えてプラズマ又は光などを併用することもできる。一例としては(a)原料導入工程、(b)排気及び/又はパージ工程、(c)酸化性ガス導入工程、(d)排気及び/又はパージ工程、(e)還元性ガス導入工程、(f)排気及び/又はパージ工程からなる一連の操作を1サイクルとする手法が挙げられる。このサイクルを複数回繰り返すことで、必要な膜厚の薄膜を得ることができる。 The film forming method for producing a film in the manufacturing method B is shown below. As long as the vapor of the metal complex supplied on the substrate as a gas, the oxidizing gas, and the reducing gas are used, the film can be formed by any method, and these oxidizing gass and reducing gases can be formed. In addition to this, plasma or light can also be used in combination. Examples include (a) raw material introduction step, (b) exhaust and / or purge step, (c) oxidizing gas introduction step, (d) exhaust and / or purge step, (e) reducing gas introduction step, (f). ) A method in which a series of operations including an exhaust and / or a purge step is one cycle can be mentioned. By repeating this cycle a plurality of times, a thin film having a required film thickness can be obtained.
 また、金属含有薄膜の形成においては、プラズマ、光、電圧等のエネルギーを印加してもよい。これらのエネルギーを印加する時期は、特に限定はなく、例えば、原料導入工程、排気及び/又はパージ工程、酸化性ガス導入工程、還元性ガスのいずれの際でもよく、上記の各工程の間でもよい。 Further, in forming the metal-containing thin film, energy such as plasma, light, and voltage may be applied. The timing of applying these energies is not particularly limited, and may be, for example, any of a raw material introduction step, an exhaust and / or purge step, an oxidizing gas introduction step, and a reducing gas, and even between the above steps. good.
 また、製造においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。上記アニール処理及び上記リフロー工程における温度は、通常100~1000℃であり、200~500℃が好ましい。 Further, in the production, after the thin film is deposited, the annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics, and when step embedding is required. May be provided with a reflow process. The temperature in the annealing treatment and the reflow process is usually 100 to 1000 ° C, preferably 200 to 500 ° C.
 成膜工程における反応温度(基板温度)は、熱、プラズマ、光などの使用の有無、酸化性ガス、還元性ガスの種類などにより適宜選択される。例えば光又はプラズマを併用することなく酸化性ガスとして酸素、還元性ガスとしてアンモニアを用いる場合には、基板温度に特に制限はなく、本発明で用いる金属錯体が充分に反応する温度であることから、室温~1000℃が好ましい。成膜速度及び得られる膜の組成、表面平滑性が良好な点で100℃~800℃が好ましく、150℃~400℃が更に好ましい。また、光又はプラズマ、オゾン、過酸化水素などを適宜使用することにより300℃以下の温度域で金属含有薄膜を製造することが出来る。
 成膜工程における反応は、膜厚の均一性やステップ・カバレッジ(被覆性)、膜質が良好な点で、減圧条件で行うことが好ましく、反応圧力は0~100Torrが更に好ましく、0~10Torrが特に好ましい。
The reaction temperature (substrate temperature) in the film forming process is appropriately selected depending on the presence or absence of heat, plasma, light, etc., the type of oxidizing gas, reducing gas, and the like. For example, when oxygen is used as the oxidizing gas and ammonia is used as the reducing gas without using light or plasma in combination, the substrate temperature is not particularly limited, and the temperature is such that the metal complex used in the present invention sufficiently reacts. , Room temperature to 1000 ° C. is preferable. 100 ° C. to 800 ° C. is preferable, and 150 ° C. to 400 ° C. is more preferable in terms of the film forming speed, the composition of the obtained film, and the surface smoothness. Further, a metal-containing thin film can be produced in a temperature range of 300 ° C. or lower by appropriately using light, plasma, ozone, hydrogen peroxide, or the like.
The reaction in the film forming step is preferably carried out under reduced pressure conditions in terms of film thickness uniformity, step coverage (coating property), and film quality, and the reaction pressure is more preferably 0 to 100 Torr, more preferably 0 to 10 Torr. Especially preferable.
 膜を製造する装置としては、周知な化学気相成長法用装置(CVD装置)又は原子層堆積装置(ALD装置)を用いることができる。具体的な装置の例としては図1のように、プレカーサをバブリング供給で行うことのできるALD装置の他に気化室を有する装置又は反応性ガスに対してプラズマ処理を行うことのできる装置等が挙げられる。また、図1のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。 As an apparatus for producing the film, a well-known chemical vapor deposition apparatus (CVD apparatus) or atomic layer deposition apparatus (ALD apparatus) can be used. As a specific example of the device, as shown in FIG. 1, in addition to the ALD device capable of performing the precursor by bubbling supply, a device having a vaporization chamber, a device capable of performing plasma treatment on a reactive gas, or the like is used. Can be mentioned. Further, the device is not limited to the single-wafer type device as shown in FIG. 1, and a device capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
 製造方法Bで製造した高純度な金属含有薄膜は、他のプレカーサ、酸化性ガス、還元性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。製造される薄膜の組成としては、例えば、金属薄膜、金属酸化物薄膜、金属合金及び金属含有複合酸化物薄膜等が挙げられる。金属合金としては、Pt-Ru合金が挙げられる。金属含有複合酸化物薄膜としては、例えば、SrRuOが挙げられる。これらの薄膜は、例えばMRAM素子やDRAM素子に代表されるメモリー素子の電極材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いられている。 The high-purity metal-containing thin film produced by the production method B is desired to be metal, oxide ceramics, nitride ceramics, glass or the like by appropriately selecting other precursors, oxidizing gas, reducing gas and production conditions. It can be a kind of thin film. Examples of the composition of the produced thin film include a metal thin film, a metal oxide thin film, a metal alloy, and a metal-containing composite oxide thin film. Examples of the metal alloy include a Pt-Ru alloy. Examples of the metal-containing composite oxide thin film include SrRuO 3 . These thin films are widely used in the production of electrode materials for memory elements such as MRAM elements and DRAM elements, resistance films, antimagnetic films used for recording layers of hard disks, and catalyst materials for polymer electrolyte fuel cells. It is used.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。実施例1~9、比較例1~3及び参考例1に記載のルテニウム化合物の製造は特開2003-342286号公報に記載の方法に準じて合成した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The ruthenium compounds described in Examples 1 to 9, Comparative Examples 1 to 3 and Reference Example 1 were synthesized according to the method described in JP-A-2003-342286.
 実施例1
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 成膜に使用する基板を設置した反応チャンバー内に、アンモニアガス50sccmを導入し、基板温度250℃、反応チャンバー全圧を300Paに保ったまま5分間、基板の前処理を実施した。
 (2)ALD成膜工程
 パージガス:アルゴン、反応ガスとして酸素、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器の温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(f)からなる工程を1サイクルとして、200回、計63分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、5秒間のアルゴンパージ(150sccm)によって未反応材料を除去する。
(d)(a)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(e)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(f)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところ、ルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は22nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は2.61であった。
Example 1
(Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, and the substrate is pretreated for 5 minutes while maintaining the substrate temperature at 250 ° C. and the total pressure of the reaction chamber at 300 Pa. carried out.
(2) ALD film formation process Purge gas: argon, oxygen as reaction gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa was used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa. Under the conditions, the following steps (a) to (f) were repeated 200 times for a total of 63 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the unreacted material is removed by argon purging (150 sccm) for 5 seconds.
(D) In addition to (a), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(E) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(F) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. The film thickness was 22 nm as calculated from the detected X-ray intensity. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 2.61.
 実施例2
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 成膜に使用する基板を設置した反応チャンバー内に、アンモニアガス50sccmを導入し、基板温度250℃、反応チャンバー全圧を300Paに保ち、RFパワー30Wでプラズマを発生させ、5分間、基板の前処理を実施した。
 (2)ALD成膜工程
 実施例(1)と同様の条件でALD成膜を実施した。
 製造した薄膜を蛍光X線分析で確認したところ、ルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は25nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は1.63であった。
Example 2
(Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, the substrate temperature is kept at 250 ° C., the total pressure of the reaction chamber is kept at 300 Pa, and plasma is generated with RF power of 30 W. The substrate was pretreated for 5 minutes.
(2) ALD film formation process ALD film formation was carried out under the same conditions as in Example (1).
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 25 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 1.63.
 実施例3
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 成膜に使用する基板を設置した反応チャンバー内に、アンモニアガス50sccmを導入し、基板温度250℃、反応チャンバー全圧を1000Paに保ったまま10分間、基板の前処理を実施した。
 (2)ALD成膜工程
 実施例(1)と同様の条件でALD成膜を実施した。
 製造した薄膜を蛍光X線分析で確認したところ、ルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は20nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は1.37であった。
Example 3
(Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment step Ammonia gas 50 sccm is introduced into the reaction chamber in which the substrate used for film formation is installed, and the substrate is pretreated for 10 minutes while maintaining the substrate temperature at 250 ° C. and the total pressure of the reaction chamber at 1000 Pa. carried out.
(2) ALD film formation process ALD film formation was carried out under the same conditions as in Example (1).
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 20 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 1.37.
 実施例4
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 パージガス:アルゴン、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用した。
 基板温度:500℃、反応チャンバー全圧:1000Paの条件において、以下の(a)、(b)からなる工程を1サイクルとして、100回、計13分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入する。
(b)(a)に加え、原料ガスを反応チャンバー内に5秒導入する。
 (2)ALD成膜工程
 パージガス:アルゴン、反応ガスとして酸素及びアンモニア、原料ガス
 上記前処理工程と同様の条件で気化させた原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、100回、計48分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は7nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は0.72であった。
Example 4
(Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment process Purge gas: argon, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa was used as the raw material gas.
Under the conditions of the substrate temperature: 500 ° C. and the total pressure of the reaction chamber: 1000 Pa, the following steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle.
(A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
(2) ALD film forming process Purge gas: argon, oxygen and ammonia as reaction gas, raw material gas The raw material vapor vaporized under the same conditions as the above pretreatment step is used as the raw material gas, and the substrate temperature: 250 ° C., reaction. Under the condition of total chamber pressure: 300 Pa, the following steps (a) to (l) were repeated 100 times for a total of 48 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(I) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 7 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 0.72.
 実施例5
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 パージガス:アルゴン、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:1000Paの条件において、以下の(a)、(b)からなる工程を1サイクルとして、100回、計13分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入する。
(b)(a)に加え、原料ガスを反応チャンバー内に5秒導入する。
 (2)ALD成膜工程
 実施例(4)と同様の条件でALD成膜を実施した。
 製造した薄膜を蛍光X線分析で確認したところ、ルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は3nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は2.04であった。
Example 5
(Eta 5-2,4-dimethyl-cyclopentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium as a raw material after pretreatment according to (1) the SiO 2 substrate, (2) A ruthenium-containing thin film was produced by the ALD method described in 1. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment process Purge gas: argon, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 1000 Pa are used. In, the following steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle.
(A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
(2) ALD film formation process ALD film formation was carried out under the same conditions as in Example (4).
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 3 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 2.04.
 実施例6
 (2,4-ジメチル-ペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上にALD法でルテニウム含有薄膜を製造した。薄膜製造条件は以下の通りである。
 パージガス:アルゴン、酸化性ガスとして酸素、還元性ガスとしてアンモニア、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、250回、計121分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
Example 6
Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, a ruthenium-containing thin film was produced on a SiO 2 substrate by the ALD method. The thin film production conditions are as follows.
Purge gas: argon, oxygen as oxidizing gas, ammonia as reducing gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa are used. In, the following steps (a) to (l) were repeated 250 times for a total of 121 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
(E) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は14nmであった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は98atom%であった。
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(I) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 14 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 98 atom%.
 実施例7
 (2,4-ジメチル-ペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
Example 7
Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, the pretreatment described in (1) is performed on a SiO 2 substrate, and then ruthenium is subjected to the ALD method described in (2). A thin film containing it was produced. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
 (1)前処理工程
 パージガス:アルゴン、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:500℃、反応チャンバー全圧:1000Paの条件において、以下の(a)、(b)からなる工程を1サイクルとして、100回、計13分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入する。
(b)(a)に加え、原料ガスを反応チャンバー内に5秒導入する。
 (2)ALD成膜工程
 パージガス:アルゴン、酸化性ガスとして酸素、還元性ガスとしてアンモニア、原料ガス、
 上記前処理工程と同様の条件で気化させた原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、300回、計145分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(1) Pretreatment process Purge gas: argon, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 500 ° C. and the reaction chamber total pressure: 1000 Pa are used. In, the following steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle.
(A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
(2) ALD film formation process Purge gas: argon, oxygen as an oxidizing gas, ammonia as a reducing gas, raw material gas,
The raw material vapor vaporized under the same conditions as in the pretreatment step is used as the raw material gas, and is composed of the following (a) to (l) under the conditions of a substrate temperature of 250 ° C. and a reaction chamber total pressure of 300 Pa. The process was repeated 300 times for a total of 145 minutes, with the process as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
(E) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は23nmであった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は97atom%であった。
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
(I) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 23 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 97 atom%.
 実施例8
 (η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
 (1)前処理工程
 パージガス:アルゴン、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:35.7Paの条件でバブリングにすることより気化した原料蒸気を上記原料ガスとして使用し、基板温度:400℃、反応チャンバー全圧:300Paの条件において、反応チャンバー内に30分間導入する。
Example 8
(Eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium material, the SiO 2 substrate pretreatment according to (1) After that, a ruthenium-containing thin film was produced by the ALD method described in (2). The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
(1) Pretreatment process Purge gas: argon, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 35.7 Pa is used as the raw material gas, and under the conditions of substrate temperature: 400 ° C. and reaction chamber total pressure: 300 Pa. , Introduce into the reaction chamber for 30 minutes.
 (2)ALD成膜工程
 パージガス:アルゴン、酸化性ガスとして酸素、還元性ガスとしてアンモニア、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:35.7Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、150回、計72.5分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(2) ALD film formation process Purge gas: argon, oxygen as an oxidizing gas, ammonia as a reducing gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 35.7 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa are used. In, the following steps (a) to (l) were repeated 150 times for a total of 72.5 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は7nmであった。またこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は1.02であった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は94atom%であった。
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(I) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 7 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 1.02. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 94 atom%.
 実施例9
 (η-2,4-ジメチル-1-オキサ-2,4-ペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、Pt基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
Example 9
(Eta 5-2,4-dimethyl-1-oxa-2,4-pentadienyl) - with (eta 5-ethyl-cyclopentadienyl) ruthenium material, pretreated as described in (1) on a Pt substrate After that, a ruthenium-containing thin film was produced by the ALD method described in (2). The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
 (1)前処理工程
 パージガス:アルゴン、原料ガス:キャリアガス:アルゴン10sccm、材料容器温度:90℃、材料の蒸気圧:35.7Paでバブリングにすることより気化した原料蒸気を、基板温度:400℃、反応チャンバー全圧:300Paの条件において、反応チャンバー内に30分間導入する。
(1) Pretreatment step Purge gas: argon, raw material gas: carrier gas: argon 10 sccm, material container temperature: 90 ° C., material vapor pressure: 35.7 Pa, vaporized raw material vapor by bubbling, substrate temperature: 400 Introduce into the reaction chamber for 30 minutes under the conditions of ° C. and total reaction chamber pressure: 300 Pa.
 (2)ALD成膜工程
 パージガス:アルゴン、酸化性ガスとして酸素、還元性ガスとしてアンモニア、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:35.7Paの条件でバブリングにすることより気化した原料蒸気を上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、150回、計72.5分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(2) ALD film formation process Purge gas: argon, oxygen as an oxidizing gas, ammonia as a reducing gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 35.7 Pa is used as the raw material gas, and under the conditions of substrate temperature: 250 ° C. and reaction chamber total pressure: 300 Pa. The following steps (a) to (l) were repeated 150 times for a total of 72.5 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
(E) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージガスとしてのアルゴン400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は7nmであった。またこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は1.28であった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は98atom%であった。
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
(I) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) 400 sccm of argon as a purge gas is introduced into the reaction chamber for 1 second to boost the pressure in the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 7 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 1.28. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 98 atom%.
 比較例1
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上にALD法でルテニウム含有薄膜を製造した。薄膜製造条件は以下の通りである。
 パージガス:アルゴン、反応ガスとして酸素、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(f)からなる工程を1サイクルとして、200回、計63分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、5秒間のアルゴンパージ(150sccm)によって未反応材料を除去する。
Comparative Example 1
(Eta 5-2,4-dimethyl-cyclopentadienyl) - a (eta 5-ethyl-cyclopentadienyl) ruthenium used as a raw material, to produce a ruthenium-containing thin film by ALD on a SiO 2 substrate. The thin film production conditions are as follows.
Purge gas: Argon, oxygen as reaction gas, raw material gas,
Carrier gas: Argon 10 sccm,
Raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 38.1 Pa. Used as the above raw material gas, under the conditions of substrate temperature: 250 ° C. and reaction chamber total pressure: 300 Pa. The following steps (a) to (f) were repeated 200 times for a total of 63 minutes as one cycle.
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the unreacted material is removed by argon purging (150 sccm) for 5 seconds.
(d)(a)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(e)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(f)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は29nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は3.34であった。
(D) In addition to (a), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(E) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(F) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. The film thickness was 29 nm as calculated from the detected X-ray intensity. Further, when AFM observation of this ruthenium-containing thin film was carried out, the root mean square roughness (RMS) was 3.34.
 比較例2
 (η-2,4-ジメチルペンタジエニル)(η-エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上にALD法でルテニウム含有薄膜を製造した。薄膜製造条件は以下の通りである。
 パージガス:アルゴン、反応ガスとして酸素及びアンモニア、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(l)からなる工程を1サイクルとして、100回、計48分繰り返した。
Comparative Example 2
(Eta 5-2,4-dimethyl-cyclopentadienyl) - a (eta 5-ethyl-cyclopentadienyl) ruthenium used as a raw material, to produce a ruthenium-containing thin film by ALD on a SiO 2 substrate. The thin film production conditions are as follows.
Purge gas: Argon, oxygen and ammonia as reaction gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of the material container temperature: 90 ° C. and the material vapor pressure: 38.1 Pa is used as the raw material gas, and the substrate temperature: 250 ° C. and the reaction chamber total pressure: 300 Pa are used. In, the following steps (a) to (l) were repeated 100 times for a total of 48 minutes as one cycle.
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(e)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(i)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(j)(g)に加え、アンモニアガス50sccmを反応チャンバー内に3秒間導入する。
(k)アンモニアガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(l)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は4nmであった。さらにこのルテニウム含有薄膜のAFM観察を実施したところ、自乗平均面粗さ(RMS)は2.11であった。
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(I) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(J) In addition to (g), 50 sccm of ammonia gas is introduced into the reaction chamber for 3 seconds.
(K) The introduction of ammonia gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(L) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 4 nm. Further, when AFM observation of this ruthenium-containing thin film was carried out, the squared average surface roughness (RMS) was 2.11.
 比較例3
 (2,4-ジメチル-ペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上にALD法でルテニウム含有薄膜を製造した。薄膜製造条件は以下の通りである。
 パージガス:アルゴン、酸化性ガスとして酸素、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paの条件でバブリングにすることより気化した原料蒸気を上記原料ガスとして使用し、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(h)からなる工程を1サイクルとして、200回、計67分繰り返した。
Comparative Example 3
Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, a ruthenium-containing thin film was produced on a SiO 2 substrate by the ALD method. The thin film production conditions are as follows.
Purge gas: Argon, oxygen as oxidizing gas, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling under the conditions of material container temperature: 90 ° C. and material vapor pressure: 38.1 Pa is used as the raw material gas, and under the conditions of substrate temperature: 250 ° C. and reaction chamber total pressure: 300 Pa. The following steps (a) to (h) were repeated 200 times for a total of 67 minutes as one cycle.
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(A) Argon 150 sccm as a purge gas is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(e)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は21nmであった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は92atom%であった。
(E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 21 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 92 atom%.
 参考例1
 (2,4-ジメチル-ペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料に用い、SiO基板上に(1)に記載の前処理を行った後、(2)に記載のALD法でルテニウム含有薄膜を製造した。(1)前処理工程、(2)ALD成膜工程、からなる薄膜製造条件は以下の通りである。
Reference example 1
Using (2,4-dimethyl-pentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material, the pretreatment described in (1) is performed on a SiO 2 substrate, and then ruthenium is subjected to the ALD method described in (2). A thin film containing it was produced. The thin film production conditions including (1) pretreatment step and (2) ALD film formation step are as follows.
 (1)前処理工程
 パージガス:アルゴン、原料ガス、
 キャリアガス:アルゴン10sccm、
 材料容器温度:90℃、材料の蒸気圧:38.1Paでバブリングにすることより気化した原料蒸気を、上記原料ガスとして使用し、基板温度:500℃、反応チャンバー全圧:1000Paの条件において、以下の(a)、(b)からなる工程を1サイクルとして、100回、計13分繰り返した。
(a)パージガスとしてのアルゴン150sccmを反応チャンバー内に3秒間導入する。
(b)(a)に加え、原料ガスを反応チャンバー内に5秒導入する。
(1) Pretreatment process Purge gas: argon, raw material gas,
Carrier gas: Argon 10 sccm,
The raw material vapor vaporized by bubbling at a material container temperature: 90 ° C. and a material vapor pressure: 38.1 Pa was used as the raw material gas, and under the conditions of a substrate temperature: 500 ° C. and a reaction chamber total pressure: 1000 Pa. The following steps (a) and (b) were repeated 100 times for a total of 13 minutes as one cycle.
(A) 150 sccm of argon as a purge gas is introduced into the reaction chamber for 3 seconds.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber for 5 seconds.
 (2)ALD成膜工程
 パージガス:アルゴン、酸化性ガスとして酸素、原料ガス:上記前処理工程と同様の条件で気化させた原料蒸気、基板温度:250℃、反応チャンバー全圧:300Paの条件において、以下の(a)~(h)からなる工程を1サイクルとして、100回、計33分繰り返した。
(a)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(b)(a)に加え、原料ガスを反応チャンバー内に導入し、5秒間基板表面に吸着させる。
(c)原料ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(d)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
(2) ALD film forming process Purge gas: argon, oxygen as oxidizing gas, raw material gas: raw material vapor vaporized under the same conditions as in the above pretreatment step, substrate temperature: 250 ° C., reaction chamber total pressure: 300 Pa. The following steps (a) to (h) were repeated 100 times for a total of 33 minutes as one cycle.
(A) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(B) In addition to (a), the raw material gas is introduced into the reaction chamber and adsorbed on the substrate surface for 5 seconds.
(C) The introduction of the raw material gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove the unreacted gas and by-products.
(D) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
(e)パージアルゴンガス150sccmを反応チャンバー内に3秒間導入し、反応チャンバー圧力を300Paとする。
(f)(e)に加え、酸素ガス100sccmを反応チャンバー内に3秒間導入する。
(g)酸素ガスの導入を停止し、2秒間反応チャンバー内を排気して、未反応ガス及び副生成物を除去する。
(h)パージアルゴンガス400sccmを反応チャンバー内に1秒間導入し、反応チャンバーを昇圧する。
 製造した薄膜を蛍光X線分析で確認したところルテニウムに基づく特性X線が検出された。検出されたX線の強度から算出したところ、膜厚は11nmであった。さらにこのルテニウム含有薄膜の組成をX線光電子分光法により分析したところ、ルテニウム含量は88atom%であった。
(E) Purge Argon gas 150 sccm is introduced into the reaction chamber for 3 seconds to set the reaction chamber pressure to 300 Pa.
(F) In addition to (e), 100 sccm of oxygen gas is introduced into the reaction chamber for 3 seconds.
(G) The introduction of oxygen gas is stopped, and the inside of the reaction chamber is exhausted for 2 seconds to remove unreacted gas and by-products.
(H) Purge Argon gas 400 sccm is introduced into the reaction chamber for 1 second to boost the reaction chamber.
When the produced thin film was confirmed by fluorescent X-ray analysis, characteristic X-rays based on ruthenium were detected. When calculated from the detected X-ray intensity, the film thickness was 11 nm. Further, when the composition of this ruthenium-containing thin film was analyzed by X-ray photoelectron spectroscopy, the ruthenium content was 88 atom%.
 実施例1~5の製造方法で得られるルテニウム含有薄膜は、比較例1、2の製造方法で得られるルテニウム含有薄膜よりも自乗平均面粗さ(RMS)が小さく、表面平滑性に優れるものである。
 実施例6~7の製造方法で得られるルテニウム含有薄膜は、還元性ガスを用いない比較例3、参考例1の製造方法で得られるルテニウム含有薄膜よりもルテニウム含量が高く、高純度な膜である。
 さらに、実施例8,9で得られるルテニウム含有薄膜は、表面平滑性に優れ、かつテニウム含量が高く高純度な膜である。
The ruthenium-containing thin films obtained by the production methods of Examples 1 to 5 have a smaller root mean square roughness (RMS) and excellent surface smoothness than the ruthenium-containing thin films obtained by the production methods of Comparative Examples 1 and 2. be.
The ruthenium-containing thin films obtained by the production methods of Examples 6 to 7 have a higher ruthenium content than the ruthenium-containing thin films obtained by the production methods of Comparative Examples 3 and 1 that do not use a reducing gas, and are high-purity films. be.
Further, the ruthenium-containing thin films obtained in Examples 8 and 9 are high-purity films having excellent surface smoothness and a high ruthenium content.
 なお、2020年3月18日に出願された日本特許出願2020-047690号及び2020年3月26日に出願された日本特許出願2020-055849号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specification, claims, drawings and abstracts of Japanese Patent Application No. 2020-047690 filed on March 18, 2020 and Japanese Patent Application No. 2020-055849 filed on March 26, 2020. The entire contents of the above are cited here and incorporated as disclosure of the specification of the present invention.
 1 材料容器
 2 恒温槽
 3 反応チャンバー
 4 基板
 5 反応ガス導入口
 6 希釈ガス導入口
 7 キャリアガス導入口
 8 マスフローコントローラー
 9 マスフローコントローラー
 10 マスフローコントローラー
 11 油回転式ポンプ
 12 排気
1 Material container 2 Constant temperature bath 3 Reaction chamber 4 Substrate 5 Reaction gas inlet 6 Diluted gas inlet 7 Carrier gas inlet 8 Mass flow controller 9 Mass flow controller 10 Mass flow controller 11 Oil rotary pump 12 Exhaust

Claims (15)

  1.  金属錯体を原料として使用し、基板に、金属錯体の吸着・核発生を誘発させ得る前処理を施した後、CVD法又はALD法で成膜することを特徴とする金属含有薄膜の製造方法。 A method for producing a metal-containing thin film, which comprises using a metal complex as a raw material, subjecting a substrate to a pretreatment capable of inducing adsorption and nucleation of the metal complex, and then forming a film by a CVD method or an ALD method.
  2.  金属錯体を原料として使用した、CVD法又はALD法による金属含有薄膜の製造方法であって、酸化性ガスと還元性ガスとを併用することを特徴とする金属含有薄膜の製造方法。 A method for producing a metal-containing thin film by a CVD method or an ALD method using a metal complex as a raw material, which comprises using an oxidizing gas and a reducing gas in combination.
  3.  金属錯体がルテニウム化合物である請求項1又は2に記載の金属含有薄膜の製造方法。 The method for producing a metal-containing thin film according to claim 1 or 2, wherein the metal complex is a ruthenium compound.
  4.  ルテニウム化合物が、一般式(1AB)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは各々独立に、水素原子又は炭素数1~6のアルキル基を表し、R及びRは各々独立に、水素原子又は炭素数1~6のアルキル基を表す。Zは酸素原子又はCHを表す。)で示されるルテニウム錯体である請求項3に記載の金属含有薄膜の製造方法。
    The ruthenium compound has the general formula (1AB).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. The method for producing a metal-containing thin film according to claim 3, wherein Z represents an oxygen atom or CH), which is a ruthenium complex.
  5.  一般式(1AB)において、R及びRが各々独立に炭素数1~4のアルキル基であり、R及びRがメチル基であり、Zが酸素原子又はCHである請求項4に記載の金属含有薄膜の製造方法。 In claim 4, in the general formula (1AB), R 1 and R 2 are independently alkyl groups having 1 to 4 carbon atoms, R 3 and R 4 are methyl groups, and Z is an oxygen atom or CH. The method for producing a metal-containing thin film according to the above.
  6.  一般式(1AB)において、Rがエチル基であり、Rが水素原子であり、R及びRがメチル基であり、Zが酸素原子又はCHである請求項4又は5に記載の金属含有薄膜の製造方法。 The invention according to claim 4 or 5, wherein in the general formula (1AB), R 1 is an ethyl group, R 2 is a hydrogen atom, R 3 and R 4 are methyl groups, and Z is an oxygen atom or CH. A method for producing a metal-containing thin film.
  7.  吸着・核発生を誘発させ得る前処理として、成膜前に還元性ガスを反応チャンバー内に導入して基板の表面処理を行う請求項1、3~6のいずれかに記載の金属含有薄膜の製造方法。 The metal-containing thin film according to any one of claims 1, 3 to 6, wherein a reducing gas is introduced into the reaction chamber to perform surface treatment of the substrate as a pretreatment capable of inducing adsorption / nucleation. Production method.
  8.  還元性ガスとして、アンモニアガス又は水素ガスを用いる請求項7に記載の金属含有薄膜の製造方法。 The method for producing a metal-containing thin film according to claim 7, wherein ammonia gas or hydrogen gas is used as the reducing gas.
  9.  吸着・核発生を誘発させ得る前処理として、成膜前にプラズマを発生させて基板の表面処理を行う請求項1、3~8のいずれかに記載の金属含有薄膜の製造方法。 The method for producing a metal-containing thin film according to any one of claims 1 to 3 to 8, wherein plasma is generated before film formation to perform surface treatment of the substrate as a pretreatment capable of inducing adsorption / nucleation.
  10.  吸着・核発生を誘発させ得る前処理として、成膜前に基板表面を成膜時の温度以上に加熱して基板の表面処理を行う請求項1、3~9のいずれかに記載の金属含有薄膜の製造方法。 3. A method for manufacturing a thin film.
  11.  吸着・核発生を誘発させ得る前処理として、成膜前に前記金属錯体を反応チャンバー内に導入して基板表面に金属錯体を吸着させる前処理、及び該金属錯体の分解物によって基板表面に前駆体薄膜層を形成させる前処理のいずれか一方又は両方を行う請求項1、3~10のいずれかに記載の金属含有薄膜の製造方法。 As pretreatments that can induce adsorption and nucleation, a pretreatment of introducing the metal complex into the reaction chamber to adsorb the metal complex on the substrate surface before film formation, and a precursor on the substrate surface by a decomposition product of the metal complex. The method for producing a metal-containing thin film according to any one of claims 1, 3 to 10, wherein either one or both of the pretreatments for forming the body thin film layer are performed.
  12.  酸化性ガスとして、酸素ガス又はオゾンガスを用いる、請求項2、3~6のいずれかに記載の金属含有薄膜の製造方法。 The method for producing a metal-containing thin film according to any one of claims 2, 3 to 6, wherein oxygen gas or ozone gas is used as the oxidizing gas.
  13.  還元性ガスとして、アンモニアガス又は水素ガスを用いる、請求項2、3~6、12のいずれかに記載の金属含有薄膜の製造方法。 The method for producing a metal-containing thin film according to any one of claims 2, 3 to 6, and 12, which uses ammonia gas or hydrogen gas as the reducing gas.
  14.  金属錯体を原料として使用し、基板に、金属錯体の吸着・核発生を誘発させ得る前処理を施した後、酸化性ガスと還元性ガスとを併用し、CVD法又はALD法で成膜することを特徴とする金属含有薄膜の製造方法。 A metal complex is used as a raw material, and the substrate is subjected to a pretreatment that can induce adsorption and nucleation of the metal complex, and then an oxidizing gas and a reducing gas are used in combination to form a film by a CVD method or an ALD method. A method for producing a metal-containing thin film.
  15.  請求項1~14のいずれかに記載の方法により製造される金属含有薄膜。 A metal-containing thin film produced by the method according to any one of claims 1 to 14.
PCT/JP2021/010618 2020-03-18 2021-03-16 Method for producing metal-containing thin film, and metal-containing thin film WO2021187485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508380A JPWO2021187485A1 (en) 2020-03-18 2021-03-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020047690 2020-03-18
JP2020-047690 2020-03-18
JP2020055849 2020-03-26
JP2020-055849 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021187485A1 true WO2021187485A1 (en) 2021-09-23

Family

ID=77771598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010618 WO2021187485A1 (en) 2020-03-18 2021-03-16 Method for producing metal-containing thin film, and metal-containing thin film

Country Status (3)

Country Link
JP (1) JPWO2021187485A1 (en)
TW (1) TW202136556A (en)
WO (1) WO2021187485A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060231A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Method for producing noble metal electrode and process for fabricating semiconductor capacitor
JP2013079447A (en) * 2011-10-04 2013-05-02 Imec Method for selectively depositing noble metal on metal/metal nitride substrate
JP2015177119A (en) * 2014-03-17 2015-10-05 東京エレクトロン株式会社 METHOD OF PRODUCING Cu INTERCONNECTION
WO2018226754A1 (en) * 2017-06-06 2018-12-13 Lam Research Corporation Depositing ruthenium layers in interconnect metallization
JP2019065377A (en) * 2017-09-29 2019-04-25 東ソー株式会社 Storage method of ruthenium precursor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060231A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Method for producing noble metal electrode and process for fabricating semiconductor capacitor
JP2013079447A (en) * 2011-10-04 2013-05-02 Imec Method for selectively depositing noble metal on metal/metal nitride substrate
JP2015177119A (en) * 2014-03-17 2015-10-05 東京エレクトロン株式会社 METHOD OF PRODUCING Cu INTERCONNECTION
WO2018226754A1 (en) * 2017-06-06 2018-12-13 Lam Research Corporation Depositing ruthenium layers in interconnect metallization
JP2019065377A (en) * 2017-09-29 2019-04-25 東ソー株式会社 Storage method of ruthenium precursor

Also Published As

Publication number Publication date
JPWO2021187485A1 (en) 2021-09-23
TW202136556A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7124098B2 (en) Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
JP6337116B2 (en) Group 5 transition metal-containing compound for depositing a Group 5 transition metal-containing film
TW201915213A (en) Method for depositing a metal chalcogenide on a substrate by cyclical deposition
JP2011522124A (en) Method for forming ruthenium-containing films by atomic layer deposition
KR20150013082A (en) Volatile dihydropyrazinyl and dihydropyrazine metal complexes
Yeo et al. Atomic layer deposition of ruthenium (Ru) thin films using ethylbenzen-cyclohexadiene Ru (0) as a seed layer for copper metallization
JP7345546B2 (en) PEALD process using ruthenium precursor
EP2451989A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
TW202142547A (en) Raw material for chemical vapor deposition including organoruthenium compound and chemical deposition method using the raw material for chemical vapor deposition
CN113661269A (en) Pulsed thin film deposition method
WO2010067778A1 (en) Tantalum nitride film formation method and film formation device therefore
WO2021187485A1 (en) Method for producing metal-containing thin film, and metal-containing thin film
JP2006128611A (en) Film forming material and method, and element
JP6041464B2 (en) Metal thin film forming method and metal thin film forming apparatus
Mao et al. Ultra-low temperature deposition of copper seed layers by PEALD
TWI709658B (en) Source for depositing graphene oxide and method of forming graphene oxide thin film using the same
JP2024002081A (en) Manufacturing method of ruthenium-containing thin film
JP2008187186A (en) Device for depositing film of low dielectric constant
JP2020158861A (en) Manufacturing method of metal containing thin film
TW202031923A (en) A process for producing a thin film of metallic ruthenium by an atomic layer deposition method
WO2023199853A1 (en) Ruthenium complex, method for producing same, and method for producing ruthenium-containing thin film
TW202214667A (en) Thermally stable ruthenium precursor compositions and method of forming ruthenium-containing films
US20230063199A1 (en) Vapor Deposition Processes
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
US11205573B2 (en) Ge-containing Co-film forming material, Ge-containing Co film and film forming method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772614

Country of ref document: EP

Kind code of ref document: A1