WO2021187342A1 - Torque sensor and robot joint structure - Google Patents

Torque sensor and robot joint structure Download PDF

Info

Publication number
WO2021187342A1
WO2021187342A1 PCT/JP2021/009960 JP2021009960W WO2021187342A1 WO 2021187342 A1 WO2021187342 A1 WO 2021187342A1 JP 2021009960 W JP2021009960 W JP 2021009960W WO 2021187342 A1 WO2021187342 A1 WO 2021187342A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance element
sensor
strain
torque
inner ring
Prior art date
Application number
PCT/JP2021/009960
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 亮二
Original Assignee
株式会社グローセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グローセル filed Critical 株式会社グローセル
Priority to JP2022508303A priority Critical patent/JP7360542B2/en
Priority to CN202180021441.8A priority patent/CN115280122A/en
Publication of WO2021187342A1 publication Critical patent/WO2021187342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft

Definitions

  • the present invention relates to a torque sensor and a robot joint structure, and relates to, for example, a technique that is effective when applied to a torque sensor that is a component of the robot joint structure.
  • Patent Document 1 describes a technique for correcting a sensor detection error caused by interference of other axes at a joint of a robot arm.
  • an articulated robot for collaborating with a human acts, in particular, around the drive shaft among the forces (including torque) acting on the robot arm. It is equipped with a torque sensor that detects torque.
  • This torque sensor is required to detect the torque acting around the drive shaft with high sensitivity in order to detect a slight contact reaction force with a human, but with the current technology, other than the drive shaft
  • a torque sensor that detects the torque acting around the drive shaft with high sensitivity is desired. That is, in the torque sensor that detects the torque acting around the drive shaft, it is desired to reduce the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction.
  • An object of the present invention is to provide a torque sensor capable of detecting torque acting around a drive shaft with high sensitivity.
  • the torque sensor in one embodiment includes an inner ring portion, an outer ring portion, a plurality of connection portions connecting the inner ring portion and the outer ring portion, and a plurality of strain sensors that capture distortion as a change in resistance value.
  • the plurality of connecting portions are arranged on the first virtual line passing through the center of the inner ring of the inner ring portion, and the first connecting portion and the third connecting portion arranged on opposite sides to the center of the inner ring, respectively.
  • the plurality of strain sensors include a first strain sensor arranged on the first connection portion, a second strain sensor arranged on the second connection portion, and a third strain arranged on the third connection portion. It has a sensor and a fourth strain sensor disposed on the fourth connection.
  • each of the plurality of strain sensors has a semiconductor substrate that overlaps with the third virtual line in a plan view and a plurality of resistance elements formed on the semiconductor substrate, and the plurality of resistance elements are the first resistance element. , Includes a second resistance element.
  • the first angle formed by the first resistance element and the second resistance element is a right angle, and the third virtual line extends in a direction that bisects the first angle.
  • the first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line
  • the second strain sensor among the plurality of strain sensors is arranged. Is arranged on the second connection portion so that the third virtual line coincides with the second virtual line.
  • the third virtual line coincides with the first virtual line, and the first resistance element of the third strain sensor with respect to the center of the inner ring is the first strain sensor.
  • the second resistance element of the third strain sensor is point-symmetric with the first resistance element and the second resistance element of the third strain sensor is point-symmetric with respect to the center of the inner ring.
  • the fourth strain sensor among the plurality of strain sensors the third virtual line coincides with the second virtual line, and the first resistance element of the fourth strain sensor with respect to the center of the inner ring is the second strain sensor.
  • Arranged on the fourth connection portion so as to be point-symmetric with the first resistance element and point-symmetric with the second resistance element of the second strain sensor with respect to the center of the inner ring. Has been done.
  • the torque sensor in the modified example includes an inner ring portion, an outer ring portion, a plurality of connection portions connecting the inner ring portion and the outer ring portion, and a plurality of strain sensors that capture distortion as a change in resistance value.
  • the plurality of connecting portions are arranged on the first virtual line passing through the center of the inner ring of the inner ring portion, and the first connecting portion and the fourth connecting portion arranged on opposite sides to the center of the inner ring, respectively.
  • a second connection that is a second A virtual line that passes through the center of the inner ring of the inner ring portion and is arranged on the second A virtual line that intersects the center of the inner ring with the first virtual line, and is arranged on opposite sides to the center of the inner ring.
  • the plurality of strain sensors include a first strain sensor arranged on the first connection portion, a second distortion sensor arranged on the second connection portion, and a third strain arranged on the third connection portion. It has a sensor, a fourth distortion sensor arranged on the fourth connection portion, a fifth distortion sensor arranged on the fifth connection portion, and a sixth distortion sensor arranged on the sixth connection portion.
  • each of the plurality of strain sensors has a semiconductor substrate that overlaps with the third virtual line in a plan view and a plurality of resistance elements formed on the semiconductor substrate, and the plurality of resistance elements are the first resistance element. , Includes a second resistance element.
  • the first angle formed by the first resistance element and the second resistance element is a right angle, and the third virtual line extends in a direction that bisects the first angle.
  • the first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line
  • the second strain sensor among the plurality of strain sensors is arranged. Is arranged on the second connection so that the third virtual line coincides with the second A virtual line, and in the third distortion sensor among the plurality of distortion sensors, the third virtual line coincides with the second B virtual line. It is arranged on the second connection portion as described above.
  • the third virtual line coincides with the first virtual line
  • the first resistance element of the fourth strain sensor with respect to the center of the inner ring is the first strain sensor.
  • the second resistance element of the fourth strain sensor is point-symmetric with the first resistance element and the second resistance element of the fourth strain sensor is point-symmetric with respect to the center of the inner ring.
  • the third virtual line coincides with the second A virtual line
  • the first resistance element of the fifth strain sensor with respect to the center of the inner ring is the second strain sensor.
  • the second resistance element of the fifth strain sensor is point-symmetric with the first resistance element and the second resistance element of the second strain sensor is point-symmetric with respect to the center of the inner ring.
  • the third virtual line coincides with the second B virtual line
  • the first resistance element of the sixth distortion sensor with respect to the center of the inner ring is the third distortion sensor.
  • the second resistance element of the sixth strain sensor is point-symmetric with the first resistance element and the second resistance element of the sixth strain sensor is point-symmetric with respect to the center of the inner ring. Has been done.
  • the torque acting around the drive shaft can be detected with high sensitivity.
  • FIG. 23 It is a figure which shows typically the robot joint structure which applied the torque sensor in embodiment. It is an enlarged view of the connection part of a torque sensor and a link. It is a schematic view seen from the arrow direction of FIG. It is a schematic view seen from the AA plane of FIG. 23. It is a schematic view seen from the BB plane of FIG. 23. It is a graph which qualitatively shows the relationship between a surface pressure and a coefficient of static friction. (A) is a diagram showing how the bolt is deformed by applying torque or force to the torque sensor, and (b) is a diagram showing how the "bolt / outer ring portion surface" is slipped. .. FIGS.
  • FIGS. 1 and (B) are diagrams for explaining a mechanism in which the accuracy of detecting torque around the drive shaft by the torque sensor becomes unstable when the "bolt / outer ring portion surface" slips. It is a figure for demonstrating the device for improving the stability of the torque detection accuracy in a torque sensor. It is a top view which shows the structure of the torque sensor in the modification. It is a table explaining the application example of the basic idea to the modification example.
  • FIG. 1 is a schematic diagram showing an example of a robot system.
  • the robot system 1 includes, for example, a robot arm 10 configured as an articulated robot arm and a robot control unit 11 that controls the operation of the robot arm 10.
  • the robot arm 10 has a plurality of rotatable joint structures, and these plurality of joint structures are configured to be controlled by the robot control unit 11.
  • An end effector composed of, for example, an electric hand is connected to the tip of the robot arm 10.
  • the robot control unit 11 controls the operation of the joint structure of the robot arm 10 and the operation of the end effector. As a result, the work can be operated by the robot arm 10.
  • FIG. 2 is a diagram schematically showing a robot joint structure.
  • the robot joint structure 20 is a structure that connects the link 21A of the robot arm 10 and the link 21B of the robot arm 10.
  • a motor 22 is arranged inside the link 21A, and a speed reducer 23 is connected to the motor 22.
  • the motor 22 and the speed reducer 23 form a drive unit 24 of the robot joint structure 20.
  • a torque sensor 30 is connected to the speed reducer 23, and a link 21B is connected to the torque sensor 30.
  • a lubricating member 25 is provided between the speed reducer 23 and the torque sensor 30.
  • the torque sensor 30 connected to the speed reducer 23 constituting the drive unit 24 and the link 21B are integrated by rotating the motor 22 constituting the drive unit 24. Rotate around the drive shaft.
  • the torque sensor 30 has a function of detecting the torque around the drive shaft when the link 21B is rotated around the drive shaft. Specifically, the torque sensor 30 is configured to be deformed when the link 21B is rotated around the drive shaft, and the distortion based on this deformation is detected by a change in the electric resistance value (change in voltage). It is configured to calculate the torque around the drive shaft based on the detected change in the electric resistance value.
  • the deformation of the torque sensor 30 is caused not only by the torque around the drive shaft but also by the torque around other shafts other than the drive shaft and the force applied in each shaft direction.
  • changes in the electrical resistance value detected by the torque sensor 30 include not only changes due to distortion based on torque around the drive shaft, but also torque around other shafts other than the drive shaft and forces applied in each axial direction. It means that the change due to the distortion based on is also included. That is, the change in the electric resistance value due to the torque around the other shafts other than the drive shaft and the strain based on the force applied in each shaft direction becomes noise when calculating the torque around the drive shaft.
  • the torque sensor 30 in order for the torque sensor 30 to detect the torque around the drive shaft with high sensitivity, it is necessary to sufficiently reduce the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction. .. That is, it is desired that the torque sensor 30 for detecting the torque acting around the drive shaft with high accuracy reduces the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction. ing.
  • the "related technology” referred to in the present specification is a technology having a problem newly found by the inventor, and is not a known conventional technology, but is intended as a prerequisite technology (unknown technology) of a new technical idea. It is a technique described in.
  • FIG. 3 is a schematic diagram showing a robot joint structure in a related technology.
  • a bearing member 26 is provided between the speed reducer 23 constituting the drive unit 24 and the torque sensor 30.
  • the bearing member 26 is configured to rotate around the drive shaft together with the torque sensor 30, while fixing and supporting the torque sensor 30. That is, in the related technology, the torque sensor 30 is fixedly supported by the bearing member 26, so that the torque sensor 30 is not easily deformed except around the drive shaft. As a result, in the related technology, the torque sensor 30 is less likely to be deformed due to the torque around other shafts other than the drive shaft and the force applied in each shaft direction.
  • the torque sensor 30 detects the torque around the drive shaft, it is possible to reduce the noise caused by the torque around the other shafts other than the drive shaft and the force applied in each shaft direction. Means. That is, according to the related technology, it is considered that the torque around the drive shaft can be detected with high accuracy.
  • the mass of the robot joint structure 20A becomes large. That is, it is desirable that the mass of the robot joint structure 20A is small, but in the related technology, the mass of the robot joint structure 20A becomes large, and the operation of the robot joint structure 20A may become dull. Further, since it is necessary to newly provide the bearing member 26, the component cost of the robot joint structure 20A will increase. Therefore, it can be seen that the related technology can detect the torque around the drive shaft with high accuracy, but there is room for improvement from the viewpoint of improving the motion agility of the robot joint structure 20A and reducing the component cost. ..
  • a device is devised to realize a torque sensor 30 that can detect the torque around the drive shaft with high accuracy without using the bearing member 26.
  • a torque sensor 30 that can detect the torque around the drive shaft with high accuracy without using the bearing member 26.
  • FIG. 4 is a schematic diagram showing an example of setting coordinate axes. As shown in FIG. 4, the x-axis, y-axis, and z-axis that are orthogonal to each other are set as three-dimensional coordinates.
  • the force acting in the x-axis direction is represented by "Fx”
  • the force acting in the y-axis direction is represented by "Fy”
  • the force acting in the z-axis direction is represented by "Fz”.
  • the x-axis torque caused by the rotation around the x-axis is represented by "Tx”
  • the y-axis torque caused by the rotation around the y-axis is represented by “Ty”
  • the z-axis torque caused by the rotation around the z-axis is represented by "Ty”. It is represented by "Tz”.
  • the drive shaft is the z-axis. Therefore, the torque around the drive shaft is the z-axis torque around the z-axis, and the torque sensor 30 in the present embodiment aims to detect the z-axis torque around the z-axis with high accuracy.
  • the torque around the other axes other than the drive axis is the x-axis torque "Tx” or the y-axis torque "Ty”, and the force applied in each axis direction is the force in the x-axis direction.
  • They are "Fx”, a force in the y-axis direction “Fy”, and a force in the z-axis direction "Fz”.
  • FIG. 5 is a plan view showing the configuration of the torque sensor according to the present embodiment.
  • the torque sensor 100 includes an inner ring portion 110 composed of a circular ring, an outer ring portion 120 composed of a circular ring having a diameter larger than that of the inner ring portion 110, and an inner ring portion 110 and an outer ring portion 120. It is provided with a plurality of spokes (connection portions) 130 for connecting the above.
  • the plurality of spokes 130 are the spokes 130A and the spokes 130C arranged on the first virtual line VL1 passing through the inner ring center CP of the inner ring portion 110 and arranged on opposite sides to the inner ring center CP.
  • the torque sensor 100 configured in this way is equipped with a plurality of strain sensors 200 that capture distortion as a change in electrical resistance value.
  • the torque sensor 100 is equipped with four strain sensors 200. More specifically, the four strain sensors 200 include a first strain sensor 200A arranged on the spokes 130A, a second strain sensor 200B arranged on the spokes 130B, and a second strain sensor 200B arranged on the spokes 130C. A third strain sensor 200C and a fourth strain sensor 200D arranged on the spokes 130D are included.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG.
  • the inner ring portion 110 and the outer ring portion 120 are connected by the spokes 130B and the spokes 130D
  • the second strain sensor 200B is arranged on the spokes 130B
  • the fourth strain is placed on the spokes 130D. It can be seen that the sensor 200D is arranged.
  • the torque sensor 100 is configured.
  • the torque sensor 100 is deformed when a torque around each axis or a force in each axial direction is applied.
  • the spokes 130 of the torque sensor 100 are deformed when a torque around each axis or a force in each axial direction is applied, and the strain sensor 200 arranged on the spokes 130 is distorted due to the deformation of the spokes 130.
  • the strain sensor 200 captures the generated strain as a change in the electrical resistance of the resistance element.
  • the basic idea in the present embodiment is to devise the arrangement of a plurality of resistance elements formed in the strain sensor 200, and to devise the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, and the fourth strain sensor.
  • the arrangement of the four strain sensors 200 made of 200D only the strain caused by the torque around the drive shaft is extracted, while the strain caused by the torque around other shafts other than the drive shaft and the distortion in each axial direction It is an idea that offsets the distortion caused by the applied force.
  • the basic idea in the present embodiment is caused not only by the torque around the drive shaft but also by the torque around the drive shaft even when the torque around the other shafts other than the drive shaft and the force in each shaft direction are applied.
  • the idea is to devise the arrangement of a plurality of resistance elements formed in the distortion sensor 200 and to devise the arrangement of the four distortion sensors 200 so as to extract only the distortion and cancel the other distortions.
  • the concept of the basic idea will be explained below.
  • FIG. 7 is a table for explaining the basic idea in this embodiment in an easy-to-understand manner.
  • the first strain sensor 200A by devising the arrangement of the resistance element formed in the first strain sensor 200A and devising the arrangement of the first strain sensor 200A, it is caused by the x-axis torque around the x-axis.
  • the strain to be generated is "zero"
  • the strain caused by the y-axis torque around the y-axis is " ⁇ Ty "
  • the strain caused by the z-axis torque around the z-axis is " ⁇ Tz "
  • the strain caused by the force in the x-axis direction Is " ⁇ Fx "
  • the strain caused by the force in the y-axis direction is "zero”
  • the strain caused by the force in the z-axis direction is "zero".
  • the distortion caused by the x-axis torque around the x-axis is devised. Is " ⁇ Tx ", the strain caused by the y-axis torque around the y-axis is "zero”, the strain caused by the z-axis torque around the z-axis is " ⁇ Tz ", and the strain caused by the force in the x-axis direction is "”. "Zero”, the strain caused by the force in the y-axis direction is " ⁇ Fy ", and the strain caused by the force in the z-axis direction is "zero".
  • the distortion caused by the x-axis torque around the x-axis is devised. Is "zero", the strain caused by the y-axis torque around the y-axis is "- ⁇ Ty ", the strain caused by the z-axis torque around the z-axis is " ⁇ Tz ", and the strain caused by the force in the x-axis direction is "- ⁇ Ty". "- ⁇ Fx ", the strain caused by the force in the y-axis direction is "zero”, and the strain caused by the force in the z-axis direction is "zero".
  • the fourth strain sensor 200D by devising the arrangement of the resistance elements formed in the fourth strain sensor 200D and devising the arrangement of the fourth strain sensor 200D, it is caused by the x-axis torque around the x-axis.
  • the strain is "- ⁇ Tx "
  • the strain caused by the y-axis torque around the y-axis is "zero”
  • the strain caused by the z-axis torque around the z-axis is " ⁇ Tz "
  • the strain caused by the force in the x-axis direction Is "zero”
  • the strain caused by the force in the y-axis direction is "- ⁇ Fy "
  • the strain caused by the force in the z-axis direction is "zero".
  • the strains generated by the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, and the fourth strain sensor 200D are added. Then, for example, the total strain caused by the x-axis torque around the x-axis is "zero", the total strain caused by the y-axis torque around the y-axis is "zero”, and the total strain caused by the z-axis torque around the z-axis is "zero".
  • the total strain other than the total strain caused by the z-axis torque around the z-axis is "zero".
  • the basic idea of the present embodiment is adopted, only the strain caused by the torque around the drive shaft is extracted, while the strain caused by the torque around the other shaft other than the drive shaft and the force applied in each axial direction are extracted. It means that the distortion caused by can be offset. Therefore, according to the basic idea in the present embodiment, not only the torque around the drive shaft but also the torque around the drive shaft and the torque around the drive shaft even when the torque around the other shafts other than the drive shaft and the force in each shaft direction are applied. As a result of being able to extract only the resulting strain and offset the other strains, it can be seen that the torque around the drive shaft can be calculated with high accuracy.
  • this device includes a device for arranging a plurality of resistance elements formed in the strain sensor 200 and four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, and third strain sensor 200C). And the fourth strain sensor 200D) there is a device for the arrangement.
  • FIG. 8 is a plan view showing a strain sensor according to the present embodiment.
  • the strain sensor 200 has a rectangular semiconductor substrate 210.
  • the semiconductor substrate 210 is made of, for example, silicon (Si).
  • a plurality of resistance elements 300 are formed on the semiconductor substrate 210.
  • the semiconductor substrate 210 is formed with four resistance elements 300 including a resistance element 300A, a resistance element 300B, a resistance element 300C, and a resistance element 300D.
  • Each of these plurality of resistance elements 300 is, for example, a diffusion resistance element formed by introducing conductive impurities into the semiconductor substrate 210.
  • the first angle formed by the resistance element 300A and the resistance element 300D is a right angle
  • the third virtual line VL3 that overlaps with the semiconductor substrate 210 extends in a direction that bisects the first angle.
  • the angle formed by the resistance element 300A and the resistance element 300B is also a right angle
  • the angle formed by the resistance element 300B and the resistance element 300C is also a right angle
  • the angle formed by the resistance element 300C and the resistance element 300D is also a right angle. That is, the four resistance elements 300 are arranged so that the angles formed by each other are at right angles.
  • right angle means a case where the idea of intentionally making a right angle is included, and even if the actual value deviates from 90 degrees by an error. If the idea of making a right angle to the root is included, it shall be included in the "right angle” as used herein. To give a specific example of numerical values, for example, if the angle is 88 degrees to 92 degrees, it can be considered that there is an idea of making a right angle to the base, so that it is included in the "right angle” referred to in the present specification. can.
  • the number of resistance elements is not limited to four.
  • these plurality of sets of synthesis circuits are finally equivalent to the form shown in FIG.
  • FIG. 9 is a plan view showing the arrangement of the four strain sensors 200.
  • the first strain sensor 200A out of the four strain sensors 200 is arranged so that the third virtual line VL3 (see FIG. 8) coincides with the first virtual line VL1.
  • the second strain sensor 200B out of the four strain sensors 200 is arranged so that the third virtual line VL3 (see FIG. 8) coincides with the second virtual line VL2.
  • the third virtual line VL3 coincides with the first virtual line VL1 and the third distortion sensor with respect to the inner ring center CP.
  • the resistance element 300A of 200C is point-symmetric with the resistance element 300A of the first strain sensor 200A, and the resistance element 300B of the third strain sensor is point-symmetric with the resistance element 300B of the first distortion sensor 200A with respect to the inner ring center CP.
  • the resistance element 300C of the third strain sensor 200C is point-symmetrical to the resistance element 300C of the first strain sensor 200A with respect to the inner ring center CP, and the resistance element of the third strain sensor is point-symmetrical with respect to the inner ring center CP.
  • the 300D is arranged so as to be point-symmetrical with the resistance element 300D of the first strain sensor 200A. Further, in the fourth distortion sensor 200D out of the four strain sensors 200, the third virtual line VL3 (see FIG.
  • the resistance element 300A of the 200D is point-symmetrical to the resistance element 300A of the second strain sensor 200B, and the resistance element 300B of the fourth strain sensor 200D is pointed to the resistance element 300B of the second strain sensor 200B with respect to the inner ring center CP.
  • the resistance element 300C of the fourth strain sensor 200D is point-symmetric with respect to the resistance element 300C of the second strain sensor 200B with respect to the inner ring center CP, and the fourth strain sensor 200D is symmetrical with respect to the inner ring center CP.
  • the resistance element 300D is arranged so as to be point-symmetrical with the resistance element 300D of the second distortion sensor 200B.
  • the basic idea in the present embodiment is embodied by devising the arrangement of the four resistance elements 300 formed in the strain sensor 200 and devising the arrangement of the four strain sensors 200. Specifically, in the four strain sensors 200 in which the four resistance elements 300 shown in FIG. 8 are formed, these four strain sensors 200 are arranged as shown in FIG. It will be explained that the basic idea (see FIG. 7) in the above is embodied.
  • FIG. 10 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when the y-axis torque (“Ty”) around the y-axis is applied to the torque sensor 100. ..
  • the tensile strain is “+”
  • the compression strain is “ ⁇ ”
  • the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
  • the output distortion output from the first distortion sensor 200A is set to "+ ⁇ Ty ".
  • the same tensile strain occurs in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D.
  • the output distortion output from the second distortion sensor 200B becomes "0".
  • the same tensile strain is generated in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D.
  • the output distortion output from the fourth distortion sensor 200D becomes "0".
  • the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 10 are used to rotate the y-axis as shown in FIG. It can be seen that the distortion caused by the y-axis torque is realized.
  • FIG. 11 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when a force (“Fy”) in the y-axis direction is applied to the torque sensor 100.
  • the tensile strain is “+”
  • the compression strain is “ ⁇ ”
  • the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
  • the same tensile strain is generated in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D.
  • the output distortion output from the first distortion sensor 200A becomes "0".
  • the output distortion output from the second distortion sensor 200B is set to "+ ⁇ Fy ".
  • the same tensile strain occurs in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D.
  • the output distortion output from the third distortion sensor 200C becomes "0".
  • the fourth strain sensor 200D tensile strain is generated in the resistance element 300A and the resistance element 300C, while compression strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the fourth distortion sensor 200D becomes "- ⁇ Fy ".
  • the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 11 are used in the y-axis direction shown in FIG. It can be seen that the distortion caused by the applied force is realized.
  • FIG. 12 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when the z-axis torque (“Tz”) around the z-axis is applied to the torque sensor 100. ..
  • the tensile strain is “+”
  • the compression strain is “ ⁇ ”
  • the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
  • the output distortion output from the first distortion sensor 200A is set to "+ ⁇ Tz ".
  • the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 12 are used to rotate the z-axis as shown in FIG. It can be seen that the distortion caused by the z-axis torque is realized.
  • the torque sensor 100 has a calculation unit that calculates the torque around the normal axis that passes through the inner ring center CP and is perpendicular to the inner ring portion 110 based on the outputs from the four strain sensors 200 described above. That is, the torque sensor 100 is driven around the drive axis (z-axis) based on the output of the first strain sensor 200A, the output of the second strain sensor 200B, the output of the third strain sensor 200C, and the output of the fourth strain sensor 200D. ) Z-axis torque is calculated.
  • FIG. 13 is a functional block diagram of the calculation unit 500.
  • the calculation unit 500 includes a first voltage value input unit 501, a second voltage value input unit 502, a third voltage value input unit 503, a fourth voltage value input unit 504, and a voltage value addition unit 505. It has a drive shaft torque calculation unit 506, an output unit 507, and a data storage unit 508.
  • the first voltage value input unit 501 is configured to input the output voltage from the first distortion sensor 200A.
  • the first strain sensor 200A is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output.
  • the first voltage value input unit 501 is configured to be able to input the output voltage from the first distortion sensor 200A. Then, the first voltage value, which is the output voltage from the first distortion sensor 200A, is stored in the data storage unit 508.
  • the first voltage value input to the first voltage value input unit 501 is the difference between the resistance value of the resistance element 300A in the first distortion sensor 200A and the resistance value of the resistance element 300B and the first distortion sensor 200A. It corresponds to the first total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
  • the second voltage value input unit 502 is configured to input the output voltage from the second distortion sensor 200B.
  • the second strain sensor 200B is also configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output.
  • the second voltage value input unit 502 is configured to be able to input the output voltage from the second distortion sensor 200B. Then, the second voltage value, which is the output voltage from the second distortion sensor 200B, is stored in the data storage unit 508.
  • the second voltage value input to the second voltage value input unit 502 is the difference between the resistance value of the resistance element 300A in the second distortion sensor 200B and the resistance value of the resistance element 300B and the second distortion sensor 200B. It corresponds to the second total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
  • the third voltage value input unit 503 is configured to input the output voltage from the third distortion sensor 200C.
  • the third strain sensor 200C is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output.
  • the third voltage value input unit 503 is configured to be able to input the output voltage from the third distortion sensor 200C. Then, the third voltage value, which is the output voltage from the third distortion sensor 200C, is stored in the data storage unit 508.
  • the third voltage value input to the third voltage value input unit 503 is the difference between the resistance value of the resistance element 300A in the third distortion sensor 200C and the resistance value of the resistance element 300B and the third distortion sensor 200C. It corresponds to the third total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
  • the fourth voltage value input unit 504 is configured to input the output voltage from the fourth distortion sensor 200D.
  • the fourth strain sensor 200D is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output.
  • the fourth voltage value input unit 504 is configured to be able to input the output voltage from the fourth distortion sensor 200D. Then, the fourth voltage value, which is the output voltage from the fourth distortion sensor 200D, is stored in the data storage unit 508.
  • the third voltage value input to the fourth voltage value input unit 504 is the difference between the resistance value of the resistance element 300A in the fourth distortion sensor 200D and the resistance value of the resistance element 300B and the fourth distortion sensor 200D. It corresponds to the fourth total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
  • the voltage value adding unit 505 uses the first voltage value input to the first voltage value input unit 501, the second voltage value input to the second voltage value input unit 502, and the third voltage value input unit. It is configured to calculate the total voltage value by adding the third voltage value input to the 503 and the fourth voltage value input to the fourth voltage value input unit 504.
  • the calculation of the total voltage value by the voltage value adding unit 505 corresponds to, for example, calculating the total shown in FIG. 7. That is, the total voltage value calculated by the voltage value addition unit 505 cancels out the distortion caused by the torque around the other shaft and the force applied in each shaft direction, and becomes the distortion caused only by the drive shaft torque around the drive shaft. It becomes the corresponding voltage value.
  • the drive shaft torque calculation unit 506 is configured to calculate the drive shaft torque around the drive shaft based on the total voltage value calculated by the voltage value addition unit 505.
  • the total voltage value calculated by the voltage value adding unit 505 cancels out the distortion caused by the torque around the other shaft and the force applied in each axial direction, and the drive shaft around the drive shaft. Since the voltage value corresponds to the distortion caused only by the torque, the drive shaft torque calculated based on the total voltage value is highly accurate. For example, there is a correlation between strain and an electrical resistance value, and there is also a correlation between a voltage value based on this electrical resistance value and strain. Since there is also a correlation between strain and torque, the voltage value and torque are also correlated.
  • the drive shaft torque calculation unit 506 can calculate the drive shaft torque from the total voltage value calculated by the voltage value addition unit 505 based on the formula or table stored in the data storage unit 508.
  • the output unit 507 is configured to output the value of the drive shaft torque calculated by the drive shaft torque calculation unit 506 to the outside.
  • the value of the drive shaft torque output from the output unit 507 is input to the robot control unit 11 shown in FIG. 1 and can be used for the operation control of the robot arm 10 by the robot control unit 11.
  • calculation unit 500 in the present embodiment is configured as described above, and the operation of the calculation unit 500 will be described below with reference to the drawings.
  • FIG. 14 is a flowchart illustrating the operation of the calculation unit.
  • the first voltage value input unit 501 inputs the first voltage value which is the output voltage from the first distortion sensor 200A
  • the second voltage value input unit 502 outputs from the second distortion sensor 200B.
  • the third voltage value input unit 503 inputs the third voltage value which is the output voltage from the third distortion sensor 200C
  • the fourth voltage value input unit 504 inputs the output voltage from the fourth distortion sensor 200D.
  • the fourth voltage value is input (S101).
  • the voltage value adding unit 505 adds the first voltage value, the second voltage value, the third voltage value, and the fourth voltage value to calculate the total voltage value.
  • the drive shaft torque calculation unit 506 calculates the drive shaft torque based on the total voltage value calculated by the voltage value addition unit 505.
  • the value of the drive shaft torque calculated by the drive shaft torque calculation unit 506 is output from the output unit 507.
  • FIG. 15 is a graph showing the outputs from each of the four strain sensors when the y-axis torque (“Ty”) around the y-axis is applied.
  • the horizontal axis represents the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis represents the output “strain amount ( ⁇ )” of each strain sensor.
  • the output (absolute value) from the first strain sensor increases as the y-axis torque increases.
  • the output from the first strain sensor is “15 ⁇ ”
  • the output from the first strain sensor is “200 Nm”
  • the output from the first strain sensor is "35 ⁇ ”.
  • the y-axis torque is "400 Nm”
  • the output from the first strain sensor is "60 ⁇ ”
  • the output from the first strain sensor is "90 ⁇ ".
  • the output (absolute value) from the third strain sensor increases as the y-axis torque increases.
  • the output from the first strain sensor is "-15 ⁇ ”
  • the output from the first strain sensor is "-15 ⁇ ”.
  • the output from the first strain sensor is "-15 ⁇ ". -35 ⁇ ”.
  • the output from the first strain sensor is "-60 ⁇ ”
  • the output from the first strain sensor is "600 Nm”
  • the output from the first strain sensor is "-60 ⁇ ". -90 ⁇ ”.
  • FIG. 16 is a graph showing the total output from the four strain sensors when the y-axis torque (“Ty”) around the y-axis is applied.
  • the horizontal axis shows the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis shows the total output “strain amount ( ⁇ )” from the four strain sensors. ing.
  • the total output from the four strain sensors is almost "0" regardless of the magnitude of the y-axis torque. That is, from FIG. 16, for example, even if the y-axis torque around the y-axis, which is an example of the torque around the other shaft other than the drive shaft torque (z-axis torque) around the drive shaft, is added, the first one based on the y-axis torque. It can be seen that when the output from the strain sensor, the output from the second strain sensor, the output from the third strain sensor, and the output from the fourth strain sensor are added, the total output becomes almost "0". That is, it can be seen from the results shown in FIGS. 15 and 16 that the total output from the four strain sensors is not affected by the strain caused by the y-axis torque.
  • FIG. 17 is a graph showing changes in the average values of the outputs from the four strain sensors when a certain amount of z-axis torque is applied around the z-axis and further y-axis torque around the y-axis is applied. be.
  • the horizontal axis represents the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis represents the average value of the output “strain amount ( ⁇ )” from the four strain sensors. Is shown. Further, each point indicates the magnitude of the z-axis torque (“Tz”). For example, “*” means that the z-axis torque is clockwise and is 600 (Nm). The “dotted line” has a z-axis torque ("Tz”) counterclockwise and is -600 (Nm).
  • the output from the first strain sensor 200A is the strain amount obtained by adding the strain amount “ ⁇ Ty ” due to the y-axis torque and the strain amount “ ⁇ Tz ” due to the z-axis torque. It becomes the corresponding output.
  • the output from the second strain sensor 200B is an output corresponding to the sum of the strain amount “ ⁇ Ty ” caused by the y-axis torque and the strain amount “ ⁇ Tz ” caused by the z-axis torque.
  • the output from the third strain sensor 200C is an output corresponding to the amount of strain obtained by adding the amount of strain "- ⁇ Ty " caused by the y-axis torque and the amount of strain " ⁇ Tz " caused by the z-axis torque. ..
  • the output from the fourth strain sensor 200D is an output corresponding to the strain amount obtained by adding the strain amount “ ⁇ Ty ” due to the y-axis torque and the strain amount “ ⁇ Tz ” due to the z-axis torque. ..
  • FIG. 18 is a diagram schematically showing a robot joint structure 20 to which the torque sensor 100 according to the present embodiment is applied.
  • the torque sensor 100 according to the present embodiment is connected to a drive unit 24 including a motor 22 and a speed reducer 23, and is also connected to a link 21B forming a part of a robot arm.
  • the drive shaft torque around the drive shaft can be detected with high accuracy by the torque sensor 100.
  • a bearing member 26 is provided between the drive unit 24 and the torque sensor 30.
  • the torque sensor 30 is fixedly supported by the bearing member 26 so that it is less likely to be deformed except around the drive shaft. That is, in the torque sensor 30 in the related technology, when the torque sensor 30 is deformed due to the torque around the other shafts other than the drive shaft and the force applied in each axial direction, the strain caused by this deformation is also detected by the torque sensor 30. As a result, the torque sensor 30 is easily affected by the torque around the other shafts other than the drive shaft and the noise caused by the force applied in each shaft direction.
  • the torque sensor 30 is fixedly supported by the bearing member 26 so that the torque sensor 30 is less likely to be deformed except around the drive shaft.
  • the torque sensor 30 is less likely to be deformed due to the torque around the other shafts other than the drive shaft and the force applied in each shaft direction. Therefore, the torque sensor 30 detects the torque around the drive shaft.
  • the torque sensor 30 is fixedly supported by the bearing member 26 to make the torque sensor 30 less likely to be deformed other than around the drive shaft, so that the torque around the drive shaft can be detected with high accuracy. ing.
  • the mass of the robot joint structure 20A becomes large. That is, it is desirable that the mass of the robot joint structure 20A is small, but in the related technology, the mass of the robot joint structure 20A becomes large, and the operation of the robot joint structure 20A may become dull. Further, since it is necessary to newly provide the bearing member 26, the component cost of the robot joint structure 20A will increase. Therefore, it can be seen that the related technology can detect the torque around the drive shaft with high accuracy, but there is room for improvement from the viewpoint of improving the motion agility of the robot joint structure 20A and reducing the component cost. ..
  • the torque sensor 100 can be used as a torque sensor 100 even if the torque sensor 100 is deformed due to torque around other shafts other than the drive shaft or a force applied in each axial direction.
  • the four strain sensors 200 provided cancel out the distortion caused by the torque around the other shafts other than the drive shaft and the force applied in each axial direction. That is, according to the torque sensor 100 in the present embodiment, even if the torque sensor 100 is deformed due to the torque around the other shaft other than the drive shaft and the force applied in each shaft direction, the other shaft other than the drive shaft Noise caused by the surrounding torque and the force applied in each axial direction is less likely to occur.
  • the torque sensor 100 in the present embodiment has torque around the drive shaft without suppressing deformation of the torque sensor 100 due to torque around other shafts other than around the drive shaft and forces applied in each axial direction. Can be detected with high accuracy.
  • the torque sensor 100 in the present embodiment it is not necessary to fix and support the bearing member 26 as in the torque sensor 30 of the related technique shown in FIG.
  • the torque sensor 100 in the present embodiment cancels out the distortion caused by the torque around the other shafts other than the drive shaft and the force applied in each shaft direction without being fixedly supported by the bearing member 26.
  • the torque around the drive shaft can be detected with high accuracy.
  • the bearing member 26 since the bearing member 26 is not required, it is possible to suppress an increase in the mass of the robot joint structure 20 itself. Therefore, according to the present embodiment, the motion agility of the robot joint structure can be improved by adopting the torque sensor 100. Furthermore, since it is not necessary to add a new component called the bearing member 26, it is possible to reduce the number of parts of the robot joint structure 20, which has the advantage of reducing the cost of parts.
  • the torque sensor 100 has high rigidity and is not excessively deformed by the moments of the x-axis, y-axis, and z-axis.
  • the thickness and width of the spokes 130 shown in FIG. 5 must be increased. Then, the strain generated by the z-axis torque becomes small, and the resolution of the z-axis torque to be measured is reduced. That is, the z-axis torque at the limit that can be detected becomes large.
  • the strain sensor 200 shown in FIG. 8 has a significantly higher sensitivity to a strain gauge that measures based on a general metal resistance change.
  • the strain sensor 200 is made of silicon, the gauge ratio indicating the sensitivity for detecting strain is about 25 times that of a general metallic strain gauge. Therefore, by using the strain sensor 200, the rigidity of the torque sensor 100 can be increased, and as a result, the bearing member 26 can be omitted.
  • the torque sensor 100 in the present embodiment has high accuracy in torque around the drive shaft without suppressing deformation of the torque sensor 100 due to torque around other shafts other than the drive shaft and forces applied in each axial direction. It is useful in that it can be detected in, and is effective, for example, by applying it to the robot joint structure 20. However, as a result of the study by the present inventor, it has been found that it is important to devise a connection structure between the torque sensor 100 and the link 21B when applying the torque sensor 100 to the robot joint structure 20. Explain the findings.
  • FIG. 21 is a diagram schematically showing a robot joint structure 20 to which the torque sensor 100 according to the present embodiment is applied.
  • the region RA shows the connection portion between the torque sensor 100 and the link 21B.
  • FIG. 22 is an enlarged view of the connection portion between the torque sensor 100 and the link 21B shown in the region RA.
  • the torque sensor 100 is formed with a through portion TH
  • the link 21B is formed with an opening OP having a thread.
  • the penetrating portion TH formed in the torque sensor 100 and the opening OP formed in the link 21B communicate with each other, and a bolt 600A is inserted into the penetrating portion TH and the opening OP.
  • the torque sensor 100 and the link 21B are connected.
  • an axial force "P" is applied to the bolt 600A.
  • FIG. 23 is a schematic view seen from the direction of the arrow in FIG. 22.
  • the torque sensor 100 and the link 21B are connected by a bolt 600A and a nut 600B.
  • FIG. 24 shows a schematic view seen from the AA plane of FIG. 23
  • FIG. 25 shows a schematic view seen from the BB plane of FIG. 23.
  • the AA surface is referred to as a "bolt / outer ring portion surface”
  • the BB surface is referred to as an "outer ring portion / link surface”.
  • the bolt 600A is fixed to the outer ring portion 120 of the torque sensor 100, and the contact surface between the bolt 600A and the outer ring portion 120 is indicated by “S1”.
  • P indicates the axial force applied to the bolt 600A
  • S1 indicates the contact area between the bolt 600A and the outer ring portion 120.
  • the outer ring portion 120 of the torque sensor 100 and the link 21B are fixed by bolts 600A, and the contact surface between the outer ring portion 120 and the link 21B is indicated by “S2”.
  • This "S2” corresponds to the entire surface of the outer ring portion 120.
  • P indicates the axial force applied to the bolt 600A
  • S2 indicates the contact area between the outer ring portion 120 and the link 21B.
  • the contact area “S2” between the outer ring portion 120 and the link 21B becomes small.
  • FIG. 26 is a graph qualitatively showing the relationship between the surface pressure and the coefficient of static friction.
  • the horizontal axis represents the surface pressure “ ⁇ ”, while the vertical axis represents the static friction coefficient “ ⁇ ”.
  • the static friction coefficient “ ⁇ ” becomes It can be seen that it tends to be smaller. That is, it can be seen that the larger the surface pressure “ ⁇ ”, the more slippery it becomes.
  • FIG. 27 is a schematic view showing how slippage occurs on the “bolt / outer ring portion surface”.
  • FIG. 27A shows, for example, how the bolt 600A is deformed by applying torque or force to the torque sensor 100.
  • the deformation of the bolt 600A is largely drawn for the sake of clarity.
  • slippage occurs on the "bolt / outer ring portion surface" as shown in FIG. 27 (b).
  • the present inventor has newly found that when the "bolt / outer ring portion surface" slips, the detection accuracy of the torque around the drive shaft by the torque sensor 100 becomes unstable.
  • FIG. 28A and 28 (b) are for explaining a mechanism in which the torque detection accuracy around the drive shaft of the torque sensor 100 becomes unstable when the “bolt / outer ring surface” slips. It is a figure.
  • FIG. 28A a force line in which a torque is applied to the torque sensor 100 and the torque is transmitted from the inner ring portion 110 to the outer ring portion 120 as a shearing force is indicated by an arrow.
  • the force line of the shearing force is transmitted from the inner ring portion 110 through the spokes 130 to the inside of the bolt 600A via the “bolt / outer ring portion surface” (first path).
  • the force line of the shearing force is transmitted to the link 21B via the "outer ring portion / link surface" (second path).
  • the force line of the shearing force flows through both the first path and the second path, and there is a "bolt / outer ring portion surface" in which slip is likely to occur in the first path. Therefore, if slippage occurs on the "bolt / outer ring portion surface", the force line of the shearing force flowing through the spokes 130 is disturbed.
  • a strain sensor 200 is arranged on the spokes 130, and since the strain sensor 200 measures the flow of the shearing force on the spokes 130, the force line of the shearing force flowing through the spokes 130 is disturbed. Then, the output from the distortion sensor 200 arranged on the spoke 130 is also disturbed. As a result, the torque detection accuracy of the torque sensor 100 becomes unstable. This finding is a finding newly found by the present inventor.
  • the present inventor has further devised a method for improving the stability of the torque detection accuracy of the torque sensor 100. In the following, this device will be described.
  • FIG. 29 is a diagram for explaining a device for improving the stability of the torque detection accuracy of the torque sensor.
  • the ingenuity is that a thread is formed in the penetrating portion TH provided in the outer ring portion 120 of the torque sensor 100, and the torque sensor 100 and the link 21B are fastened with a screw 700 instead of a bolt.
  • a screw hole is formed in the outer ring portion 120 of the torque sensor 100, and the outer ring portion 120 is a member (which can rotate integrally with the outer ring portion 120 by screwing a screw 700 into the screw hole). It is configured so that it can be fastened to the link 21B).
  • the stability of the torque detection accuracy of the torque sensor 100 can be improved. The reason for this will be described below.
  • the basic idea is to devise the arrangement of multiple strain sensors provided in the torque sensor and the arrangement of multiple resistance elements formed in each of the multiple strain sensors to eliminate only the distortion caused by the torque around the drive shaft.
  • the idea is to offset the distortion caused by the torque around the other shafts other than the drive shaft and the strain caused by the force applied in each axis direction.
  • a configuration of a torque sensor 100 including four strain sensors 200 as shown in FIG. 5 is adopted, and a plurality of strain sensors 200 formed in the strain sensor 200 as shown in FIG. 8 are formed. This is realized by adopting the layout arrangement of the resistance element 300.
  • the basic idea is not only the configuration described in the embodiment, but also the configuration of the torque sensor 100A including the six strain sensors 200 as shown in FIG. 30 and the distortion as shown in FIG. This can also be realized by the configuration of this modification in which the layout arrangement of the plurality of resistance elements 300 formed on the sensor 200 is adopted.
  • FIG. 30 is a plan view showing the configuration of the torque sensor 100A in this modified example.
  • the torque sensor 100A connects an inner ring portion 110 composed of a circular ring, an outer ring portion 120 composed of a circular ring having a diameter larger than that of the inner ring portion 110, and the inner ring portion 110 and the outer ring portion 120. It is provided with a plurality of spokes (connection portions) 130.
  • the plurality of spokes 130 are composed of six spokes 130, spokes 130A, spokes 130B, spokes 130C, spokes 130D, spokes 130E, and spokes 130F.
  • the spokes 130A and 130D are arranged on the first virtual line VL1 and on opposite sides of the inner ring center CP.
  • the spokes 130B and 130E are arranged on the virtual line VL2A, respectively, and are arranged on opposite sides to the inner ring center CP.
  • the spokes 130C and 130F are arranged on the virtual line VL2B, respectively, and are arranged on opposite sides to the inner ring center CP.
  • the first virtual line VL1, the virtual line VL2A, and the virtual line VL2B intersect at the inner ring center CP of the inner ring portion 110, and form an intersection angle of about 60 degrees. That is, in this modification, the first virtual line VL1, the virtual line VL2A, and the virtual line VL2B are not orthogonal to each other. Then, in FIG. 30, assuming that the virtual line orthogonal to the first virtual line VL1 is the second virtual line VL2, the second virtual line VL2 is a bisector of the virtual line VL2A and the virtual line VL2B. ..
  • strain sensors 200 are mounted on each of the six spokes 130.
  • the first strain sensor 200A is mounted on the spokes 130A
  • the second strain sensor 200B is mounted on the spokes 130B.
  • a third strain sensor 200C is mounted on the spokes 130C
  • a fourth strain sensor 200D is mounted on the spokes 130D.
  • a fifth distortion sensor 200E is mounted on the spokes 130E
  • a sixth distortion sensor 200F is mounted on the spokes 130F.
  • a plurality of resistance elements 300 are formed in the strain sensor 200 mounted on each of the six spokes 130.
  • the present modification is the same as that of the embodiment.
  • the first strain sensor 200A and the fourth strain sensor 200D are point-symmetric with respect to the inner ring center CP.
  • the second strain sensor 200B and the fifth strain sensor 200E are point-symmetric with respect to the inner ring center CP.
  • the third strain sensor 200C and the sixth strain sensor 200F are point-symmetrical with respect to the inner ring center CP.
  • the torque sensor 100A is configured.
  • FIG. 31 is a table for explaining an example of applying the basic idea to a modified example.
  • the distortion distortion resulting from x-axis torque about the x-axis is due to the "Ipushiron' Tx", y-axis torque around the y-axis is " ⁇ '' Ty ”, the strain caused by the z-axis torque around the z-axis is“ ⁇ Tz ”, the strain caused by the force in the x-axis direction is“ ⁇ ⁇ Fx ”, and the strain caused by the force in the y-axis direction is“ ⁇ Tz ”.
  • '' Fy the distortion caused by the force in the z-axis direction is“ zero ”.
  • the distortion caused by the x-axis torque around the x-axis is the strain caused by the "-Ipushiron' Tx"
  • y-axis torque about the y-axis is "-Ipushiron'' Ty "
  • distortion resulting from force in x-axis direction is "Ipushiron' Fx "
  • distortion resulting from forces in the y-axis direction Is "- ⁇ ” Fy " distortion caused by the force in the z-axis direction is” zero ".
  • the strain caused by the x-axis torque around the x-axis is "zero"
  • the strain caused by the y-axis torque around the y-axis is "- ⁇ Ty”.
  • the strain caused by the z-axis torque around the z-axis is " ⁇ Tz "
  • the strain caused by the force in the x-axis direction is "- ⁇ Fx”
  • the strain caused by the force in the y-axis direction is "zero”
  • z The distortion caused by the axial force is "zero".
  • the distortion caused by the x-axis torque around the x-axis is the strain caused by the "-Ipushiron' Tx"
  • y-axis torque about the y-axis is "-Ipushiron'' Ty "
  • distortion resulting from force in x-axis direction is "Ipushiron' Fx "
  • distortion resulting from forces in the y-axis direction Is "- ⁇ ” Fy " distortion caused by the force in the z-axis direction is” zero ".
  • the distortion distortion resulting from x-axis torque about the x-axis is due to the "Ipushiron' Tx", y-axis torque around the y-axis is " ⁇ '' Ty ”, the strain caused by the z-axis torque around the z-axis is“ ⁇ Tz ”, the strain caused by the force in the x-axis direction is“ ⁇ ⁇ Fx ”, and the strain caused by the force in the y-axis direction is“ ⁇ Tz ”.
  • '' Fy the distortion caused by the force in the z-axis direction is“ zero ”.
  • the strains generated by the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, the fourth strain sensor 200D, the fifth strain sensor 200E, and the sixth strain sensor 200F are added. do. Then, for example, the total strain caused by the x-axis torque around the x-axis is "zero", the total strain caused by the y-axis torque around the y-axis is "zero”, and the total strain caused by the z-axis torque around the z-axis is "zero".
  • the total strain other than the total strain caused by the z-axis torque around the z-axis is "zero".
  • the advantage of adopting the torque sensor 100 in the embodiment is that the cost can be reduced in that the basic idea can be realized with four strain sensors 200, which is less than the six strain sensors 200 as in this modification. Can be mentioned.
  • the advantage of adopting the torque sensor 100A in this modification is that the total strain due to the torque around the drive shaft (around the z-axis) is "4 ⁇ Tz " in the embodiment (see FIG. 7).
  • the total strain caused by the torque around the drive shaft (around the z-axis) can be set to "6 ⁇ Tz ", and as a result, the magnitude of the detection signal can be increased.
  • the strain sensor 200 in the present embodiment is composed of four resistance elements 300 (resistance element 300A, resistance element 300B, resistance element 300C, and resistance element 300D) arranged orthogonally to each other.
  • the technical idea in the present embodiment is not limited to this, and for example, in FIG. 8, two resistance elements 300 (resistance element 300A and resistance element 300D) arranged at right angles to each other. It can be widely applied to the case of configuring the strain sensor 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided is a torque sensor with which it is possible to highly precisely detect torque acting around a drive axis. By contriving the positioning of a plurality of resistor elements formed in a strain sensor and also contriving the positioning of four strain sensors including a first strain sensor, a second strain sensor, a third strain sensor, and a fourth strain sensor, only strain originating from torque around a drive axis is extracted, and strain originating from torque around axes other than the drive axis and strain originating from force applied in each axial direction are cancelled out.

Description

トルクセンサおよびロボット関節構造Torque sensor and robot joint structure
 本発明は、トルクセンサおよびロボット関節構造に関し、例えば、ロボット関節構造の構成部品となるトルクセンサに適用して有効な技術に関する。 The present invention relates to a torque sensor and a robot joint structure, and relates to, for example, a technique that is effective when applied to a torque sensor that is a component of the robot joint structure.
 特開2017-80841号公報(特許文献1)には、ロボットアームの関節で他軸干渉により生じたセンサの検出誤差を補正する技術が記載されている。 Japanese Unexamined Patent Publication No. 2017-80841 (Patent Document 1) describes a technique for correcting a sensor detection error caused by interference of other axes at a joint of a robot arm.
特開2017-80841号公報Japanese Unexamined Patent Publication No. 2017-80841
 近年の労働人口の減少を受けて、様々な分野で多関節ロボットを活用することが見込まれている。ところが、多関節ロボットを人間の労働力に置き換えるためには、克服すべき様々な課題が存在するのが現状である。 In response to the recent decline in the working population, it is expected that articulated robots will be used in various fields. However, in order to replace articulated robots with human labor, there are various problems to be overcome at present.
 例えば、人間の傍で人間と共同作業させるための多関節ロボット、すなわち、協働ロボットと呼ばれるロボットを活用しようとする場合、人間と多関節ロボットとの接触を高感度に検知する必要がある。なぜなら、多関節ロボットが誤って人間と接触することによって人間を傷つけることを防止するために、人間とのわずかな接触反力を検知して、多関節ロボットの動作を急停止させる必要があるからである。 For example, when trying to utilize an articulated robot for collaborating with a human beside a human, that is, a robot called a collaborative robot, it is necessary to detect the contact between the human and the articulated robot with high sensitivity. This is because it is necessary to detect a slight contact reaction force with a human and suddenly stop the operation of the articulated robot in order to prevent the articulated robot from accidentally contacting the human and injuring the human. Is.
 したがって、人間と共同作業させるための多関節ロボットには、人間とのわずかな接触反力を検知するために、特に、ロボットアームに作用する力(トルクも含む)のうち駆動軸回りに作用するトルクを検出するトルクセンサが搭載されている。 Therefore, in order to detect a slight contact reaction force with a human, an articulated robot for collaborating with a human acts, in particular, around the drive shaft among the forces (including torque) acting on the robot arm. It is equipped with a torque sensor that detects torque.
 このトルクセンサには、人間とのわずかな接触反力を検知するために、駆動軸回りに作用するトルクを高感度に検出することが要求されるが、現状の技術では、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を充分に低減することが困難である結果、駆動軸回りに作用するトルクを高感度に検出するトルクセンサが望まれている。つまり、駆動軸回りに作用するトルクを検出するトルクセンサにおいて、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を小さくする工夫が望まれている。 This torque sensor is required to detect the torque acting around the drive shaft with high sensitivity in order to detect a slight contact reaction force with a human, but with the current technology, other than the drive shaft As a result of the difficulty in sufficiently reducing the torque around the shaft and the noise caused by the force applied in each axial direction, a torque sensor that detects the torque acting around the drive shaft with high sensitivity is desired. That is, in the torque sensor that detects the torque acting around the drive shaft, it is desired to reduce the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction.
 本発明の目的は、駆動軸回りに作用するトルクを高感度に検出することができるトルクセンサを提供することにある。 An object of the present invention is to provide a torque sensor capable of detecting torque acting around a drive shaft with high sensitivity.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and new features will become apparent from the description and accompanying drawings herein.
 一実施の形態におけるトルクセンサは、内輪部と、外輪部と、内輪部と外輪部とを接続する複数の接続部と、歪を抵抗値の変化として捉える複数の歪センサとを備える。 The torque sensor in one embodiment includes an inner ring portion, an outer ring portion, a plurality of connection portions connecting the inner ring portion and the outer ring portion, and a plurality of strain sensors that capture distortion as a change in resistance value.
 ここで、複数の接続部は、内輪部の内輪中心を通る第1仮想線上にそれぞれ配置され、かつ、内輪中心に対して互いに反対側に配置された第1接続部および第3接続部と、内輪部の内輪中心を通る第2仮想線であって第1仮想線と直交する第2仮想線上にそれぞれ配置され、かつ、内輪中心に対して互いに反対側に配置された第2接続部および第4接続部とを有する。 Here, the plurality of connecting portions are arranged on the first virtual line passing through the center of the inner ring of the inner ring portion, and the first connecting portion and the third connecting portion arranged on opposite sides to the center of the inner ring, respectively. A second connection portion and a second virtual line that pass through the center of the inner ring of the inner ring portion and are arranged on the second virtual line that is orthogonal to the first virtual line and are arranged on opposite sides to the center of the inner ring. It has 4 connections.
 そして、複数の歪センサは、第1接続部上に配置された第1歪センサと、第2接続部上に配置された第2歪センサと、第3接続部上に配置された第3歪センサと、第4接続部上に配置された第4歪センサとを有する。 The plurality of strain sensors include a first strain sensor arranged on the first connection portion, a second strain sensor arranged on the second connection portion, and a third strain arranged on the third connection portion. It has a sensor and a fourth strain sensor disposed on the fourth connection.
 このとき、複数の歪センサのそれぞれは、平面視において第3仮想線と重なる半導体基板と、半導体基板に形成された複数の抵抗素子とを有し、複数の抵抗素子は、第1抵抗素子と、第2抵抗素子とを含む。第1抵抗素子と第2抵抗素子とのなす第1角度は、直角であり、第3仮想線は、第1角度を二等分する方向に延在する。 At this time, each of the plurality of strain sensors has a semiconductor substrate that overlaps with the third virtual line in a plan view and a plurality of resistance elements formed on the semiconductor substrate, and the plurality of resistance elements are the first resistance element. , Includes a second resistance element. The first angle formed by the first resistance element and the second resistance element is a right angle, and the third virtual line extends in a direction that bisects the first angle.
 ここで、複数の歪センサのうちの第1歪センサは、第3仮想線が第1仮想線と一致するように第1接続部上に配置され、複数の歪センサのうちの第2歪センサは、第3仮想線が第2仮想線と一致するように第2接続部上に配置されている。 Here, the first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line, and the second strain sensor among the plurality of strain sensors is arranged. Is arranged on the second connection portion so that the third virtual line coincides with the second virtual line.
 一方、複数の歪センサのうちの第3歪センサは、第3仮想線が第1仮想線と一致し、かつ、内輪中心に対して第3歪センサの第1抵抗素子が第1歪センサの第1抵抗素子と点対称になり、かつ、内輪中心に対して第3歪センサの第2抵抗素子が第1歪センサの第2抵抗素子と点対称となるように第3接続部上に配置され、複数の歪センサのうちの第4歪センサは、第3仮想線が第2仮想線と一致し、かつ、内輪中心に対して第4歪センサの第1抵抗素子が第2歪センサの第1抵抗素子と点対称になり、かつ、内輪中心に対して第4歪センサの第2抵抗素子が第2歪センサの第2抵抗素子と点対称となるように第4接続部上に配置されている。 On the other hand, in the third strain sensor among the plurality of strain sensors, the third virtual line coincides with the first virtual line, and the first resistance element of the third strain sensor with respect to the center of the inner ring is the first strain sensor. Arranged on the third connection portion so that the second resistance element of the third strain sensor is point-symmetric with the first resistance element and the second resistance element of the third strain sensor is point-symmetric with respect to the center of the inner ring. In the fourth strain sensor among the plurality of strain sensors, the third virtual line coincides with the second virtual line, and the first resistance element of the fourth strain sensor with respect to the center of the inner ring is the second strain sensor. Arranged on the fourth connection portion so as to be point-symmetric with the first resistance element and point-symmetric with the second resistance element of the second strain sensor with respect to the center of the inner ring. Has been done.
 また、変形例におけるトルクセンサは、内輪部と、外輪部と、内輪部と外輪部とを接続する複数の接続部と、歪を抵抗値の変化として捉える複数の歪センサとを備える。 Further, the torque sensor in the modified example includes an inner ring portion, an outer ring portion, a plurality of connection portions connecting the inner ring portion and the outer ring portion, and a plurality of strain sensors that capture distortion as a change in resistance value.
 ここで、複数の接続部は、内輪部の内輪中心を通る第1仮想線上にそれぞれ配置され、かつ、内輪中心に対して互いに反対側に配置された第1接続部および第4接続部と、内輪部の内輪中心を通る第2A仮想線であって第1仮想線と内輪中心で交差する第2A仮想線上にそれぞれ配置され、かつ、内輪中心に対して互いに反対側に配置された第2接続部および第5接続部と、内輪部の内輪中心を通る第2B仮想線であって第1仮想線と内輪中心で交差する第2B仮想線上にそれぞれ配置され、かつ、内輪中心に対して互いに反対側に配置された第3接続部および第6接続部を有する。 Here, the plurality of connecting portions are arranged on the first virtual line passing through the center of the inner ring of the inner ring portion, and the first connecting portion and the fourth connecting portion arranged on opposite sides to the center of the inner ring, respectively. A second connection that is a second A virtual line that passes through the center of the inner ring of the inner ring portion and is arranged on the second A virtual line that intersects the center of the inner ring with the first virtual line, and is arranged on opposite sides to the center of the inner ring. The second B virtual line passing through the inner ring center of the inner ring portion and the fifth connecting portion and the second virtual line, which are arranged on the second B virtual line intersecting the first virtual line and the inner ring center, and opposite to each other with respect to the inner ring center. It has a third connection and a sixth connection arranged on the side.
 そして、複数の歪センサは、第1接続部上に配置された第1歪センサと、第2接続部上に配置された第2歪センサと、第3接続部上に配置された第3歪センサと、第4接続部上に配置された第4歪センサと、第5接続部上に配置された第5歪センサと、第6接続部上に配置された第6歪センサを有する。 The plurality of strain sensors include a first strain sensor arranged on the first connection portion, a second distortion sensor arranged on the second connection portion, and a third strain arranged on the third connection portion. It has a sensor, a fourth distortion sensor arranged on the fourth connection portion, a fifth distortion sensor arranged on the fifth connection portion, and a sixth distortion sensor arranged on the sixth connection portion.
 このとき、複数の歪センサのそれぞれは、平面視において第3仮想線と重なる半導体基板と、半導体基板に形成された複数の抵抗素子とを有し、複数の抵抗素子は、第1抵抗素子と、第2抵抗素子とを含む。第1抵抗素子と第2抵抗素子とのなす第1角度は、直角であり、第3仮想線は、第1角度を二等分する方向に延在する。 At this time, each of the plurality of strain sensors has a semiconductor substrate that overlaps with the third virtual line in a plan view and a plurality of resistance elements formed on the semiconductor substrate, and the plurality of resistance elements are the first resistance element. , Includes a second resistance element. The first angle formed by the first resistance element and the second resistance element is a right angle, and the third virtual line extends in a direction that bisects the first angle.
 ここで、複数の歪センサのうちの第1歪センサは、第3仮想線が第1仮想線と一致するように第1接続部上に配置され、複数の歪センサのうちの第2歪センサは、第3仮想線が第2A仮想線と一致するように第2接続部上に配置され、複数の歪センサのうちの第3歪センサは、第3仮想線が第2B仮想線と一致するように第2接続部上に配置されている。 Here, the first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line, and the second strain sensor among the plurality of strain sensors is arranged. Is arranged on the second connection so that the third virtual line coincides with the second A virtual line, and in the third distortion sensor among the plurality of distortion sensors, the third virtual line coincides with the second B virtual line. It is arranged on the second connection portion as described above.
 一方、複数の歪センサのうちの第4歪センサは、第3仮想線が第1仮想線と一致し、かつ、内輪中心に対して第4歪センサの第1抵抗素子が第1歪センサの第1抵抗素子と点対称になり、かつ、内輪中心に対して第4歪センサの第2抵抗素子が第1歪センサの第2抵抗素子と点対称となるように第4接続部上に配置され、複数の歪センサのうちの第5歪センサは、第3仮想線が第2A仮想線と一致し、かつ、内輪中心に対して第5歪センサの第1抵抗素子が第2歪センサの第1抵抗素子と点対称になり、かつ、内輪中心に対して第5歪センサの第2抵抗素子が第2歪センサの第2抵抗素子と点対称となるように第5接続部上に配置され、複数の歪センサのうちの第6歪センサは、第3仮想線が第2B仮想線と一致し、かつ、内輪中心に対して第6歪センサの第1抵抗素子が第3歪センサの第1抵抗素子と点対称になり、かつ、内輪中心に対して第6歪センサの第2抵抗素子が第3歪センサの第2抵抗素子と点対称となるように第6接続部上に配置されている。 On the other hand, in the fourth strain sensor among the plurality of strain sensors, the third virtual line coincides with the first virtual line, and the first resistance element of the fourth strain sensor with respect to the center of the inner ring is the first strain sensor. Arranged on the fourth connection portion so that the second resistance element of the fourth strain sensor is point-symmetric with the first resistance element and the second resistance element of the fourth strain sensor is point-symmetric with respect to the center of the inner ring. In the fifth strain sensor among the plurality of strain sensors, the third virtual line coincides with the second A virtual line, and the first resistance element of the fifth strain sensor with respect to the center of the inner ring is the second strain sensor. Arranged on the fifth connection so that the second resistance element of the fifth strain sensor is point-symmetric with the first resistance element and the second resistance element of the second strain sensor is point-symmetric with respect to the center of the inner ring. In the sixth distortion sensor among the plurality of distortion sensors, the third virtual line coincides with the second B virtual line, and the first resistance element of the sixth distortion sensor with respect to the center of the inner ring is the third distortion sensor. Arranged on the sixth connection so that the second resistance element of the sixth strain sensor is point-symmetric with the first resistance element and the second resistance element of the sixth strain sensor is point-symmetric with respect to the center of the inner ring. Has been done.
 一実施の形態におけるトルクセンサによれば、駆動軸回りに作用するトルクを高感度に検出することができる。 According to the torque sensor in one embodiment, the torque acting around the drive shaft can be detected with high sensitivity.
ロボットシステムの一例を示す模式図である。It is a schematic diagram which shows an example of a robot system. ロボット関節構造を模式的に示す図である。It is a figure which shows the robot joint structure schematically. 関連技術におけるロボット関節構造を示す模式図である。It is a schematic diagram which shows the robot joint structure in a related technique. 座標軸の設定例を示す模式図である。It is a schematic diagram which shows the setting example of a coordinate axis. 実施の形態におけるトルクセンサの構成を示す平面図である。It is a top view which shows the structure of the torque sensor in embodiment. 図5のA-A線で切断した断面図である。It is sectional drawing cut along the line AA of FIG. 実施の形態における基本思想をわかりやすく説明する表である。It is a table which explains the basic idea in an embodiment in an easy-to-understand manner. 実施の形態における歪センサを示す平面図である。It is a top view which shows the distortion sensor in embodiment. 4個の歪センサの配置を示す平面図である。It is a top view which shows the arrangement of four distortion sensors. トルクセンサにy軸回りのy軸トルクが加わった場合の4個の歪センサのそれぞれに形成されている抵抗素子に加わる歪を示す模式図である。It is a schematic diagram which shows the distortion applied to the resistance element formed in each of four distortion sensors when the y-axis torque around the y-axis is applied to a torque sensor. トルクセンサにy軸方向の力が加わった場合の4個の歪センサのそれぞれに形成されている抵抗素子に加わる歪を示す模式図である。It is a schematic diagram which shows the strain applied to the resistance element formed in each of four strain sensors when a force in a y-axis direction is applied to a torque sensor. トルクセンサにz軸回りのz軸トルクが加わった場合の4個の歪センサのそれぞれに形成されている抵抗素子に加わる歪を示す模式図である。It is a schematic diagram which shows the distortion applied to the resistance element formed in each of four distortion sensors when the z-axis torque around the z-axis is applied to a torque sensor. 算出部の機能ブロック図である。It is a functional block diagram of a calculation part. 算出部の動作を説明するフローチャートである。It is a flowchart explaining operation of a calculation part. y軸回りのy軸トルクを加えた際における4個の歪センサのそれぞれからの出力を示すグラフである。It is a graph which shows the output from each of four distortion sensors when the y-axis torque around the y-axis is applied. y軸回りのy軸トルクを加えた際における4個の歪センサからの合計出力を示すグラフである。It is a graph which shows the total output from four distortion sensors when the y-axis torque around the y-axis is applied. z軸回りにz軸トルクを加えた状態で、さらにy軸回りのy軸トルクを加えた際における4個の歪センサからの出力の平均値の変化を示すグラフである。It is a graph which shows the change of the average value of the output from four distortion sensors when the y-axis torque around the y-axis is further applied in the state where the z-axis torque is applied around the z-axis. 実施の形態におけるトルクセンサを適用したロボット関節構造を模式的に示す図である。It is a figure which shows typically the robot joint structure which applied the torque sensor in embodiment. 実施の形態におけるトルクセンサを適用したロボット関節構造の変形例を模式的に示す図である。It is a figure which shows typically the modification of the robot joint structure which applied the torque sensor in embodiment. 実施の形態におけるトルクセンサを適用したロボット関節構造の変形例を模式的に示す図である。It is a figure which shows typically the modification of the robot joint structure which applied the torque sensor in embodiment. 実施の形態におけるトルクセンサを適用したロボット関節構造を模式的に示す図である。It is a figure which shows typically the robot joint structure which applied the torque sensor in embodiment. トルクセンサとリンクとの接続部位の拡大図である。It is an enlarged view of the connection part of a torque sensor and a link. 図22の矢印方向から見た模式図である。It is a schematic view seen from the arrow direction of FIG. 図23のA-A面から見た模式図である。It is a schematic view seen from the AA plane of FIG. 23. 図23のB-B面から見た模式図である。It is a schematic view seen from the BB plane of FIG. 23. 面圧と静止摩擦係数との関係を定性的に示すグラフである。It is a graph which qualitatively shows the relationship between a surface pressure and a coefficient of static friction. (a)は、トルクセンサにトルクや力が加わることにより、ボルトが変形する様子を示す図であり、(b)は、「ボルト・外輪部面」に滑りが発生する様子を示す図である。(A) is a diagram showing how the bolt is deformed by applying torque or force to the torque sensor, and (b) is a diagram showing how the "bolt / outer ring portion surface" is slipped. .. (a)および(b)は、「ボルト・外輪部面」に滑りが発生すると、トルクセンサでの駆動軸回りのトルクの検出精度が不安定となるメカニズムを説明するための図である。FIGS. (A) and (B) are diagrams for explaining a mechanism in which the accuracy of detecting torque around the drive shaft by the torque sensor becomes unstable when the "bolt / outer ring portion surface" slips. トルクセンサでのトルク検出精度の安定性を向上させるための工夫点を説明するための図である。It is a figure for demonstrating the device for improving the stability of the torque detection accuracy in a torque sensor. 変形例におけるトルクセンサの構成を示す平面図である。It is a top view which shows the structure of the torque sensor in the modification. 変形例への基本思想の適用例を説明する表である。It is a table explaining the application example of the basic idea to the modification example.
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiment, the same members are, in principle, given the same reference numerals, and the repeated description thereof will be omitted. In addition, in order to make the drawing easy to understand, hatching may be added even if it is a plan view.
 <ロボットシステム>
 図1は、ロボットシステムの一例を示す模式図である。
<Robot system>
FIG. 1 is a schematic diagram showing an example of a robot system.
 図1に示すように、ロボットシステム1は、例えば、多関節ロボットアームとして構成されたロボットアーム10と、ロボットアーム10の動作を制御するロボット制御部11とを備えている。ロボットアーム10は、回転可能な複数の関節構造を有しており、これらの複数の関節構造は、ロボット制御部11で制御されるように構成されている。そして、ロボットアーム10の先端部には、例えば、電動ハンドなどから構成されるエンドエフェクタが接続されている。このように構成されているロボットシステム1においては、ロボット制御部11によって、ロボットアーム10の関節構造の動作とエンドエフェクタとの動作が制御される。これにより、ロボットアーム10でワークを操作することができる。 As shown in FIG. 1, the robot system 1 includes, for example, a robot arm 10 configured as an articulated robot arm and a robot control unit 11 that controls the operation of the robot arm 10. The robot arm 10 has a plurality of rotatable joint structures, and these plurality of joint structures are configured to be controlled by the robot control unit 11. An end effector composed of, for example, an electric hand is connected to the tip of the robot arm 10. In the robot system 1 configured in this way, the robot control unit 11 controls the operation of the joint structure of the robot arm 10 and the operation of the end effector. As a result, the work can be operated by the robot arm 10.
 <ロボット関節構造>
 次に、ロボットアーム10に含まれるロボット関節構造について説明する。
<Robot joint structure>
Next, the robot joint structure included in the robot arm 10 will be described.
 図2は、ロボット関節構造を模式的に示す図である。 FIG. 2 is a diagram schematically showing a robot joint structure.
 図2において、ロボット関節構造20は、ロボットアーム10のリンク21Aとロボットアーム10のリンク21Bとを連結する構造である。具体的に、リンク21Aの内部には、モータ22が配置されており、モータ22には、減速機23が接続されている。このモータ22と減速機23とがロボット関節構造20の駆動部24を構成している。そして、減速機23には、トルクセンサ30が接続されており、このトルクセンサ30には、リンク21Bが接続されている。また、減速機23とトルクセンサ30との間には、潤滑部材25が設けられている。このように構成されているロボット関節構造20では、駆動部24を構成するモータ22を回転させることにより、駆動部24を構成する減速機23と接続されたトルクセンサ30とリンク21Bとが一体的に駆動軸回りを回転する。 In FIG. 2, the robot joint structure 20 is a structure that connects the link 21A of the robot arm 10 and the link 21B of the robot arm 10. Specifically, a motor 22 is arranged inside the link 21A, and a speed reducer 23 is connected to the motor 22. The motor 22 and the speed reducer 23 form a drive unit 24 of the robot joint structure 20. A torque sensor 30 is connected to the speed reducer 23, and a link 21B is connected to the torque sensor 30. Further, a lubricating member 25 is provided between the speed reducer 23 and the torque sensor 30. In the robot joint structure 20 configured in this way, the torque sensor 30 connected to the speed reducer 23 constituting the drive unit 24 and the link 21B are integrated by rotating the motor 22 constituting the drive unit 24. Rotate around the drive shaft.
 <改善の検討>
 ここで、トルクセンサ30は、駆動軸回りにリンク21Bを回転させたときの駆動軸回りのトルクを検出する機能を有している。具体的に、トルクセンサ30は、駆動軸回りにリンク21Bを回転させたときに変形するように構成されており、この変形に基づく歪を電気抵抗値の変化(電圧の変化)によって検出し、検出した電気抵抗値の変化に基づいて駆動軸回りのトルクを算出するように構成されている。
<Examination of improvement>
Here, the torque sensor 30 has a function of detecting the torque around the drive shaft when the link 21B is rotated around the drive shaft. Specifically, the torque sensor 30 is configured to be deformed when the link 21B is rotated around the drive shaft, and the distortion based on this deformation is detected by a change in the electric resistance value (change in voltage). It is configured to calculate the torque around the drive shaft based on the detected change in the electric resistance value.
 しかしながら、トルクセンサ30の変形は、駆動軸回りのトルクだけでなく、駆動軸以外の他軸回りのトルクや各軸方向に加わる力によっても生じる。このことは、トルクセンサ30で検出した電気抵抗値の変化には、駆動軸回りのトルクに基づく歪に由来する変化だけでなく、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に基づく歪に由来する変化も含まれていることを意味する。つまり、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に基づく歪に由来する電気抵抗値の変化は、駆動軸回りのトルクを算出する際の雑音となる。したがって、トルクセンサ30において、駆動軸回りのトルクを高感度に検出するためには、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を充分に低減する必要がある。すなわち、駆動軸回りに作用するトルクを高精度に検出するためのトルクセンサ30には、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を小さくすることが望まれている。 However, the deformation of the torque sensor 30 is caused not only by the torque around the drive shaft but also by the torque around other shafts other than the drive shaft and the force applied in each shaft direction. This means that changes in the electrical resistance value detected by the torque sensor 30 include not only changes due to distortion based on torque around the drive shaft, but also torque around other shafts other than the drive shaft and forces applied in each axial direction. It means that the change due to the distortion based on is also included. That is, the change in the electric resistance value due to the torque around the other shafts other than the drive shaft and the strain based on the force applied in each shaft direction becomes noise when calculating the torque around the drive shaft. Therefore, in order for the torque sensor 30 to detect the torque around the drive shaft with high sensitivity, it is necessary to sufficiently reduce the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction. .. That is, it is desired that the torque sensor 30 for detecting the torque acting around the drive shaft with high accuracy reduces the noise caused by the torque around the shaft other than the drive shaft and the force applied in each shaft direction. ing.
 この点に関し、例えば、以下に示す関連技術がある。本明細書でいう「関連技術」は、新規に発明者が見出した課題を有する技術であって、公知である従来技術ではないが、新規な技術的思想の前提技術(未公知技術)を意図して記載された技術である。 Regarding this point, for example, there are related technologies shown below. The "related technology" referred to in the present specification is a technology having a problem newly found by the inventor, and is not a known conventional technology, but is intended as a prerequisite technology (unknown technology) of a new technical idea. It is a technique described in.
 図3は、関連技術におけるロボット関節構造を示す模式図である。 FIG. 3 is a schematic diagram showing a robot joint structure in a related technology.
 図3に示すように、関連技術におけるロボット関節構造20Aでは、駆動部24を構成する減速機23とトルクセンサ30との間にベアリング部材26が設けられている。このベアリング部材26は、トルクセンサ30とともに駆動軸回りに回転可能である一方、トルクセンサ30を固定支持するように構成されている。すなわち、関連技術において、トルクセンサ30は、ベアリング部材26によって固定支持されていることによって、駆動軸回り以外に変形しにくくなるように構成されている。この結果、関連技術では、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因するトルクセンサ30の変形が起こりにくくなることになる。このことは、関連技術によれば、トルクセンサ30で駆動軸回りのトルクを検出する際、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を低減することができることを意味する。すなわち、関連技術によれば、駆動軸回りのトルクを高精度に検出することができると考えられる。 As shown in FIG. 3, in the robot joint structure 20A in the related technology, a bearing member 26 is provided between the speed reducer 23 constituting the drive unit 24 and the torque sensor 30. The bearing member 26 is configured to rotate around the drive shaft together with the torque sensor 30, while fixing and supporting the torque sensor 30. That is, in the related technology, the torque sensor 30 is fixedly supported by the bearing member 26, so that the torque sensor 30 is not easily deformed except around the drive shaft. As a result, in the related technology, the torque sensor 30 is less likely to be deformed due to the torque around other shafts other than the drive shaft and the force applied in each shaft direction. According to the related technology, when the torque sensor 30 detects the torque around the drive shaft, it is possible to reduce the noise caused by the torque around the other shafts other than the drive shaft and the force applied in each shaft direction. Means. That is, according to the related technology, it is considered that the torque around the drive shaft can be detected with high accuracy.
 ただし、関連技術では、トルクセンサ30を固定支持するベアリング部材26を新たに設ける必要があることから、ロボット関節構造20Aの質量が大きくなる。つまり、ロボット関節構造20Aの質量は小さいことが望ましいが、関連技術では、ロボット関節構造20Aの質量が大きくなってしまい、ロボット関節構造20Aの動作が鈍くなるおそれがある。さらには、ベアリング部材26を新たに設ける必要があるため、ロボット関節構造20Aの部品コストが上昇することになる。したがって、関連技術では、駆動軸回りのトルクを高精度に検出することができる一方で、ロボット関節構造20Aの動作機敏性の向上と部品コストの低減の観点から改善の余地が存在することがわかる。 However, in the related technology, since it is necessary to newly provide a bearing member 26 for fixing and supporting the torque sensor 30, the mass of the robot joint structure 20A becomes large. That is, it is desirable that the mass of the robot joint structure 20A is small, but in the related technology, the mass of the robot joint structure 20A becomes large, and the operation of the robot joint structure 20A may become dull. Further, since it is necessary to newly provide the bearing member 26, the component cost of the robot joint structure 20A will increase. Therefore, it can be seen that the related technology can detect the torque around the drive shaft with high accuracy, but there is room for improvement from the viewpoint of improving the motion agility of the robot joint structure 20A and reducing the component cost. ..
 そこで、本実施の形態では、ベアリング部材26を用いることなく、駆動軸回りのトルクを高精度に検出することができるトルクセンサ30を実現するための工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について説明する。 Therefore, in the present embodiment, a device is devised to realize a torque sensor 30 that can detect the torque around the drive shaft with high accuracy without using the bearing member 26. Hereinafter, the technical idea in the present embodiment to which this device has been devised will be described.
 <座標軸の設定>
 まず、座標軸の設定例について説明する。
<Setting of coordinate axes>
First, an example of setting the coordinate axes will be described.
 図4は、座標軸の設定例を示す模式図である。図4に示すように、3次元座標として互いに直交するx軸とy軸とz軸とを設定する。そして、x軸方向に働く力を「Fx」で表し、y軸方向に働く力を「Fy」で表し、z軸方向に働く力を「Fz」で表す。さらに、x軸回りの回転に起因するx軸トルクを「Tx」で表し、y軸回りの回転に起因するy軸トルクを「Ty」で表し、z軸回りの回転に起因するz軸トルクを「Tz」で表す。 FIG. 4 is a schematic diagram showing an example of setting coordinate axes. As shown in FIG. 4, the x-axis, y-axis, and z-axis that are orthogonal to each other are set as three-dimensional coordinates. The force acting in the x-axis direction is represented by "Fx", the force acting in the y-axis direction is represented by "Fy", and the force acting in the z-axis direction is represented by "Fz". Further, the x-axis torque caused by the rotation around the x-axis is represented by "Tx", the y-axis torque caused by the rotation around the y-axis is represented by "Ty", and the z-axis torque caused by the rotation around the z-axis is represented by "Ty". It is represented by "Tz".
 ここで、本明細書では、駆動軸をz軸とする。したがって、駆動軸回りのトルクは、z軸回りのz軸トルクであり、本実施の形態におけるトルクセンサ30では、z軸回りのz軸トルクを高精度に検出することが目的となる。 Here, in this specification, the drive shaft is the z-axis. Therefore, the torque around the drive shaft is the z-axis torque around the z-axis, and the torque sensor 30 in the present embodiment aims to detect the z-axis torque around the z-axis with high accuracy.
 一方、このように座標軸を設定すると、駆動軸以外の他軸回りのトルクは、x軸トルク「Tx」やy軸トルク「Ty」であり、各軸方向に加わる力は、x軸方向の力「Fx」やy軸方向の力「Fy」やz軸方向の力「Fz」である。 On the other hand, when the coordinate axes are set in this way, the torque around the other axes other than the drive axis is the x-axis torque "Tx" or the y-axis torque "Ty", and the force applied in each axis direction is the force in the x-axis direction. They are "Fx", a force in the y-axis direction "Fy", and a force in the z-axis direction "Fz".
 <トルクセンサの構成>
 続いて、本実施の形態におけるトルクセンサの模式的な構成について説明する。
<Torque sensor configuration>
Subsequently, a schematic configuration of the torque sensor according to the present embodiment will be described.
 図5は、本実施の形態におけるトルクセンサの構成を示す平面図である。図5に示すように、トルクセンサ100は、円形リングから構成される内輪部110と、内輪部110よりも径の大きな円形リングから構成される外輪部120と、内輪部110と外輪部120とを接続する複数のスポーク(接続部)130とを備えている。ここで、複数のスポーク130には、内輪部110の内輪中心CPを通る第1仮想線VL1上にそれぞれ配置され、かつ、内輪中心CPに対して互いに反対側に配置されたスポーク130Aおよびスポーク130Cと、内輪部110の内輪中心CPを通る第2仮想線VL2であって第1仮想線VL1と直交する第2仮想線VL2上にそれぞれ配置され、かつ、内輪中心CPに対して互いに反対側に配置されたスポーク130Bおよびスポーク130Dとが含まれる。 FIG. 5 is a plan view showing the configuration of the torque sensor according to the present embodiment. As shown in FIG. 5, the torque sensor 100 includes an inner ring portion 110 composed of a circular ring, an outer ring portion 120 composed of a circular ring having a diameter larger than that of the inner ring portion 110, and an inner ring portion 110 and an outer ring portion 120. It is provided with a plurality of spokes (connection portions) 130 for connecting the above. Here, the plurality of spokes 130 are the spokes 130A and the spokes 130C arranged on the first virtual line VL1 passing through the inner ring center CP of the inner ring portion 110 and arranged on opposite sides to the inner ring center CP. And the second virtual line VL2 passing through the inner ring center CP of the inner ring portion 110 and arranged on the second virtual line VL2 orthogonal to the first virtual line VL1 and opposite to each other with respect to the inner ring center CP. The spokes 130B and 130D that are arranged are included.
 このように構成されているトルクセンサ100には、歪を電気抵抗値の変化として捉える複数の歪センサ200が搭載されている。具体的に、トルクセンサ100には、4個の歪センサ200が搭載されている。詳細に説明すると、4個の歪センサ200には、スポーク130A上に配置された第1歪センサ200Aと、スポーク130B上に配置された第2歪センサ200Bと、スポーク130C上に配置された第3歪センサ200Cと、スポーク130D上に配置された第4歪センサ200Dとが含まれている。 The torque sensor 100 configured in this way is equipped with a plurality of strain sensors 200 that capture distortion as a change in electrical resistance value. Specifically, the torque sensor 100 is equipped with four strain sensors 200. More specifically, the four strain sensors 200 include a first strain sensor 200A arranged on the spokes 130A, a second strain sensor 200B arranged on the spokes 130B, and a second strain sensor 200B arranged on the spokes 130C. A third strain sensor 200C and a fourth strain sensor 200D arranged on the spokes 130D are included.
 図6は、図5のA-A線で切断した断面図である。図6に示すように、内輪部110と外輪部120とは、スポーク130Bとスポーク130Dで接続されており、スポーク130B上に第2歪センサ200Bが配置され、かつ、スポーク130D上に第4歪センサ200Dが配置されていることがわかる。 FIG. 6 is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 6, the inner ring portion 110 and the outer ring portion 120 are connected by the spokes 130B and the spokes 130D, the second strain sensor 200B is arranged on the spokes 130B, and the fourth strain is placed on the spokes 130D. It can be seen that the sensor 200D is arranged.
 以上のようにして、本実施の形態におけるトルクセンサ100が構成されていることになる。このトルクセンサ100は、各軸回りのトルクや各軸方向の力が加わると変形する。特に、トルクセンサ100のスポーク130は、各軸回りのトルクや各軸方向の力が加わると変形し、スポーク130上に配置されている歪センサ200には、スポーク130の変形によって歪が発生し、歪センサ200は、発生した歪を抵抗素子の電気抵抗の変化として捉えるようになっている。 As described above, the torque sensor 100 according to the present embodiment is configured. The torque sensor 100 is deformed when a torque around each axis or a force in each axial direction is applied. In particular, the spokes 130 of the torque sensor 100 are deformed when a torque around each axis or a force in each axial direction is applied, and the strain sensor 200 arranged on the spokes 130 is distorted due to the deformation of the spokes 130. The strain sensor 200 captures the generated strain as a change in the electrical resistance of the resistance element.
 <実施の形態における基本思想>
 次に、本実施の形態における基本思想について説明する。
<Basic idea in the embodiment>
Next, the basic idea in this embodiment will be described.
 本実施の形態における基本思想は、歪センサ200に形成されている複数の抵抗素子の配置を工夫するとともに、第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200Dからなる4個の歪センサ200の配置を工夫することにより、駆動軸回りのトルクに起因する歪だけを抽出する一方、駆動軸以外の他軸回りのトルクに起因する歪や各軸方向に加わる力に起因する歪を相殺する思想である。 The basic idea in the present embodiment is to devise the arrangement of a plurality of resistance elements formed in the strain sensor 200, and to devise the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, and the fourth strain sensor. By devising the arrangement of the four strain sensors 200 made of 200D, only the strain caused by the torque around the drive shaft is extracted, while the strain caused by the torque around other shafts other than the drive shaft and the distortion in each axial direction It is an idea that offsets the distortion caused by the applied force.
 すなわち、本実施の形態における基本思想は、駆動軸回りのトルクだけでなく、駆動軸以外の他軸回りのトルクや各軸方向の力が加わっている場合でも、駆動軸回りのトルクに起因する歪だけを抽出し、それ以外の歪を相殺するように、歪センサ200に形成されている複数の抵抗素子の配置を工夫するとともに、4個の歪センサ200の配置を工夫する思想である。例えば、以下に基本思想のコンセプトを説明する。 That is, the basic idea in the present embodiment is caused not only by the torque around the drive shaft but also by the torque around the drive shaft even when the torque around the other shafts other than the drive shaft and the force in each shaft direction are applied. The idea is to devise the arrangement of a plurality of resistance elements formed in the distortion sensor 200 and to devise the arrangement of the four distortion sensors 200 so as to extract only the distortion and cancel the other distortions. For example, the concept of the basic idea will be explained below.
 図7は、本実施の形態における基本思想をわかりやすく説明する表である。 FIG. 7 is a table for explaining the basic idea in this embodiment in an easy-to-understand manner.
 図7において、第1歪センサ200Aでは、第1歪センサ200Aに形成される抵抗素子の配置を工夫するとともに第1歪センサ200Aの配置を工夫することにより、x軸回りのx軸トルクに起因する歪は「ゼロ」、y軸回りのy軸トルクに起因する歪は「εTy」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「εFx」、y軸方向の力に起因する歪は「ゼロ」、z軸方向の力に起因する歪は「ゼロ」となる。 In FIG. 7, in the first strain sensor 200A, by devising the arrangement of the resistance element formed in the first strain sensor 200A and devising the arrangement of the first strain sensor 200A, it is caused by the x-axis torque around the x-axis. The strain to be generated is "zero", the strain caused by the y-axis torque around the y-axis is "ε Ty ", the strain caused by the z-axis torque around the z-axis is "ε Tz ", and the strain caused by the force in the x-axis direction. Is "ε Fx ", the strain caused by the force in the y-axis direction is "zero", and the strain caused by the force in the z-axis direction is "zero".
 また、第2歪センサ200Bでは、第2歪センサ200Bに形成される抵抗素子の配置を工夫するとともに第2歪センサ200Bの配置を工夫することにより、x軸回りのx軸トルクに起因する歪は「εTx」、y軸回りのy軸トルクに起因する歪は「ゼロ」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「ゼロ」、y軸方向の力に起因する歪は「εFy」、z軸方向の力に起因する歪は「ゼロ」となる。 Further, in the second strain sensor 200B, by devising the arrangement of the resistance element formed in the second strain sensor 200B and devising the arrangement of the second strain sensor 200B, the distortion caused by the x-axis torque around the x-axis is devised. Is "ε Tx ", the strain caused by the y-axis torque around the y-axis is "zero", the strain caused by the z-axis torque around the z-axis is "ε Tz ", and the strain caused by the force in the x-axis direction is "". "Zero", the strain caused by the force in the y-axis direction is "ε Fy ", and the strain caused by the force in the z-axis direction is "zero".
 さらに、第3歪センサ200Cでは、第3歪センサ200Cに形成される抵抗素子の配置を工夫するとともに第3歪センサ200Cの配置を工夫することにより、x軸回りのx軸トルクに起因する歪は「ゼロ」、y軸回りのy軸トルクに起因する歪は「-εTy」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「-εFx」、y軸方向の力に起因する歪は「ゼロ」、z軸方向の力に起因する歪は「ゼロ」となる。 Further, in the third strain sensor 200C, by devising the arrangement of the resistance element formed in the third strain sensor 200C and devising the arrangement of the third strain sensor 200C, the distortion caused by the x-axis torque around the x-axis is devised. Is "zero", the strain caused by the y-axis torque around the y-axis is "-ε Ty ", the strain caused by the z-axis torque around the z-axis is "ε Tz ", and the strain caused by the force in the x-axis direction is "-ε Ty". "-Ε Fx ", the strain caused by the force in the y-axis direction is "zero", and the strain caused by the force in the z-axis direction is "zero".
 同様に、第4歪センサ200Dでは、第4歪センサ200Dに形成される抵抗素子の配置を工夫するとともに第4歪センサ200Dの配置を工夫することにより、x軸回りのx軸トルクに起因する歪は「-εTx」、y軸回りのy軸トルクに起因する歪は「ゼロ」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「ゼロ」、y軸方向の力に起因する歪は「-εFy」、z軸方向の力に起因する歪は「ゼロ」となる。 Similarly, in the fourth strain sensor 200D, by devising the arrangement of the resistance elements formed in the fourth strain sensor 200D and devising the arrangement of the fourth strain sensor 200D, it is caused by the x-axis torque around the x-axis. The strain is "-ε Tx ", the strain caused by the y-axis torque around the y-axis is "zero", the strain caused by the z-axis torque around the z-axis is "ε Tz ", and the strain caused by the force in the x-axis direction. Is "zero", the strain caused by the force in the y-axis direction is "-ε Fy ", and the strain caused by the force in the z-axis direction is "zero".
 そして、本実施の形態における基本思想では、第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200Dのそれぞれで発生した歪を加算する。すると、例えば、x軸回りのx軸トルクに起因する合計歪は「ゼロ」、y軸回りのy軸トルクに起因する合計歪は「ゼロ」、z軸回りのz軸トルクに起因する合計歪は「4εTz」、x軸方向の力に起因する合計歪は「ゼロ」、y軸方向の力に起因する合計歪は「ゼロ」、z軸方向の力に起因する合計歪は「ゼロ」となる。 Then, in the basic idea of the present embodiment, the strains generated by the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, and the fourth strain sensor 200D are added. Then, for example, the total strain caused by the x-axis torque around the x-axis is "zero", the total strain caused by the y-axis torque around the y-axis is "zero", and the total strain caused by the z-axis torque around the z-axis is "zero". Is "4ε Tz ", the total strain due to the force in the x-axis direction is "zero", the total strain due to the force in the y-axis direction is "zero", and the total strain due to the force in the z-axis direction is "zero". It becomes.
 つまり、図7に示すように、z軸回りのz軸トルクに起因する合計歪以外の合計歪は「ゼロ」となる。このことは、本実施の形態における基本思想を採用すると、駆動軸回りのトルクに起因する歪だけを抽出する一方、駆動軸以外の他軸回りのトルクに起因する歪や各軸方向に加わる力に起因する歪を相殺することができることを意味している。したがって、本実施の形態における基本思想によれば、駆動軸回りのトルクだけでなく、駆動軸以外の他軸回りのトルクや各軸方向の力が加わっている場合でも、駆動軸回りのトルクに起因する歪だけを抽出し、それ以外の歪を相殺することができる結果、駆動軸回りのトルクを高精度に算出することができることがわかる。 That is, as shown in FIG. 7, the total strain other than the total strain caused by the z-axis torque around the z-axis is "zero". This means that if the basic idea of the present embodiment is adopted, only the strain caused by the torque around the drive shaft is extracted, while the strain caused by the torque around the other shaft other than the drive shaft and the force applied in each axial direction are extracted. It means that the distortion caused by can be offset. Therefore, according to the basic idea in the present embodiment, not only the torque around the drive shaft but also the torque around the drive shaft and the torque around the drive shaft even when the torque around the other shafts other than the drive shaft and the force in each shaft direction are applied. As a result of being able to extract only the resulting strain and offset the other strains, it can be seen that the torque around the drive shaft can be calculated with high accuracy.
 <基本思想の具現化>
 そこで、以下では、本実施の形態における基本思想を具現化する工夫について説明する。具体的に、この工夫には、歪センサ200に形成される複数の抵抗素子の配置に対する工夫と、4個の歪センサ200(第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200D)の配置に対する工夫が存在する。
<Realization of basic ideas>
Therefore, in the following, a device for embodying the basic idea in the present embodiment will be described. Specifically, this device includes a device for arranging a plurality of resistance elements formed in the strain sensor 200 and four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, and third strain sensor 200C). And the fourth strain sensor 200D) there is a device for the arrangement.
 <<複数の抵抗素子の配置に対する工夫>>
 図8は、本実施の形態における歪センサを示す平面図である。
<< Ingenuity for arrangement of multiple resistance elements >>
FIG. 8 is a plan view showing a strain sensor according to the present embodiment.
 図8において、本実施の形態における歪センサ200は、矩形形状の半導体基板210を有している。この半導体基板210は、例えば、シリコン(Si)から形成されている。そして、半導体基板210には、複数の抵抗素子300が形成されている。具体的に、半導体基板210には、抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300Dからなる4個の抵抗素子300が形成されている。これらの複数の抵抗素子300のそれぞれは、例えば、半導体基板210に導電型不純物を導入することにより形成された拡散抵抗素子である。ここで、例えば、抵抗素子300Aと抵抗素子300Dのなす第1角度は直角であり、半導体基板210と重なる第3仮想線VL3は、第1角度を二等分する方向に延在している。同様に、抵抗素子300Aと抵抗素子300Bとのなす角度も直角であり、抵抗素子300Bと抵抗素子300Cとのなす角度も直角であり、抵抗素子300Cと抵抗素子300Dのなす角度も直角である。すなわち、4個の抵抗素子300は、互いになす角度が直角となるように配置されていることになる。なお、本明細書でいう「直角」とは、意図的に直角にする思想が含まれている場合を意味しており、実際の値が90度から誤差でずれている場合であっても、根底に直角にする思想が含まれていれば、本明細書でいう「直角」に含まれるものとする。数値の具体例を挙げれば、例えば、角度が88度から92度であれば、根底に直角にする思想が存在すると考えることができることから、本明細書でいう「直角」に含まれるということができる。 In FIG. 8, the strain sensor 200 according to the present embodiment has a rectangular semiconductor substrate 210. The semiconductor substrate 210 is made of, for example, silicon (Si). A plurality of resistance elements 300 are formed on the semiconductor substrate 210. Specifically, the semiconductor substrate 210 is formed with four resistance elements 300 including a resistance element 300A, a resistance element 300B, a resistance element 300C, and a resistance element 300D. Each of these plurality of resistance elements 300 is, for example, a diffusion resistance element formed by introducing conductive impurities into the semiconductor substrate 210. Here, for example, the first angle formed by the resistance element 300A and the resistance element 300D is a right angle, and the third virtual line VL3 that overlaps with the semiconductor substrate 210 extends in a direction that bisects the first angle. Similarly, the angle formed by the resistance element 300A and the resistance element 300B is also a right angle, the angle formed by the resistance element 300B and the resistance element 300C is also a right angle, and the angle formed by the resistance element 300C and the resistance element 300D is also a right angle. That is, the four resistance elements 300 are arranged so that the angles formed by each other are at right angles. The term "right angle" as used herein means a case where the idea of intentionally making a right angle is included, and even if the actual value deviates from 90 degrees by an error. If the idea of making a right angle to the root is included, it shall be included in the "right angle" as used herein. To give a specific example of numerical values, for example, if the angle is 88 degrees to 92 degrees, it can be considered that there is an idea of making a right angle to the base, so that it is included in the "right angle" referred to in the present specification. can.
 また、抵抗素子は4個だけに限定されるものではない。例えば、第3仮想線VL3に対して、第1角度を二等分する方向に延在しており、且つ、構成する抵抗素子同士のなす角度が直角である抵抗素子の組が複数組あっても、これらの複数組の合成回路が、最終的に図8に示す形態と等価であればよい。 Also, the number of resistance elements is not limited to four. For example, there are a plurality of sets of resistance elements extending in a direction that bisects the first angle with respect to the third virtual line VL3, and the angles formed by the constituent resistance elements are at right angles. However, it is sufficient that these plurality of sets of synthesis circuits are finally equivalent to the form shown in FIG.
 <<4個の歪センサの配置に対する工夫>>
 図9は、4個の歪センサ200の配置を示す平面図である。
<< Ingenuity for arrangement of 4 distortion sensors >>
FIG. 9 is a plan view showing the arrangement of the four strain sensors 200.
 図9に示すように、4個の歪センサ200のうちの第1歪センサ200Aは、第3仮想線VL3(図8参照)が第1仮想線VL1と一致するように配置されている。一方、4個の歪センサ200のうちの第2歪センサ200Bは、第3仮想線VL3(図8参照)が第2仮想線VL2と一致するように配置されている。また、4個の歪センサ200のうちの第3歪センサ200Cは、第3仮想線VL3(図8参照)が第1仮想線VL1と一致し、かつ、内輪中心CPに対して第3歪センサ200Cの抵抗素子300Aが第1歪センサ200Aの抵抗素子300Aと点対称になり、かつ、内輪中心CPに対して第3歪センサの抵抗素子300Bが第1歪センサ200Aの抵抗素子300Bと点対称となり、かつ、内輪中心CPに対して第3歪センサ200Cの抵抗素子300Cが第1歪センサ200Aの抵抗素子300Cと点対称になり、かつ、内輪中心CPに対して第3歪センサの抵抗素子300Dが第1歪センサ200Aの抵抗素子300Dと点対称となるように配置されている。さらに、4個の歪センサ200のうちの第4歪センサ200Dは、第3仮想線VL3(図8参照)が第2仮想線VL2と一致し、かつ、内輪中心CPに対して第4歪センサ200Dの抵抗素子300Aが第2歪センサ200Bの抵抗素子300Aと点対称になり、かつ、内輪中心CPに対して第4歪センサ200Dの抵抗素子300Bが第2歪センサ200Bの抵抗素子300Bと点対称となり、かつ、内輪中心CPに対して第4歪センサ200Dの抵抗素子300Cが第2歪センサ200Bの抵抗素子300Cと点対称になり、かつ、内輪中心CPに対して第4歪センサ200Dの抵抗素子300Dが第2歪センサ200Bの抵抗素子300Dと点対称となるように配置されている。 As shown in FIG. 9, the first strain sensor 200A out of the four strain sensors 200 is arranged so that the third virtual line VL3 (see FIG. 8) coincides with the first virtual line VL1. On the other hand, the second strain sensor 200B out of the four strain sensors 200 is arranged so that the third virtual line VL3 (see FIG. 8) coincides with the second virtual line VL2. Further, in the third strain sensor 200C out of the four strain sensors 200, the third virtual line VL3 (see FIG. 8) coincides with the first virtual line VL1 and the third distortion sensor with respect to the inner ring center CP. The resistance element 300A of 200C is point-symmetric with the resistance element 300A of the first strain sensor 200A, and the resistance element 300B of the third strain sensor is point-symmetric with the resistance element 300B of the first distortion sensor 200A with respect to the inner ring center CP. The resistance element 300C of the third strain sensor 200C is point-symmetrical to the resistance element 300C of the first strain sensor 200A with respect to the inner ring center CP, and the resistance element of the third strain sensor is point-symmetrical with respect to the inner ring center CP. The 300D is arranged so as to be point-symmetrical with the resistance element 300D of the first strain sensor 200A. Further, in the fourth distortion sensor 200D out of the four strain sensors 200, the third virtual line VL3 (see FIG. 8) coincides with the second virtual line VL2, and the fourth distortion sensor with respect to the inner ring center CP. The resistance element 300A of the 200D is point-symmetrical to the resistance element 300A of the second strain sensor 200B, and the resistance element 300B of the fourth strain sensor 200D is pointed to the resistance element 300B of the second strain sensor 200B with respect to the inner ring center CP. The resistance element 300C of the fourth strain sensor 200D is point-symmetric with respect to the resistance element 300C of the second strain sensor 200B with respect to the inner ring center CP, and the fourth strain sensor 200D is symmetrical with respect to the inner ring center CP. The resistance element 300D is arranged so as to be point-symmetrical with the resistance element 300D of the second distortion sensor 200B.
 以下では、歪センサ200に形成される4個の抵抗素子300の配置に対する工夫および4個の歪センサ200の配置に対する工夫によって、本実施の形態における基本思想が具現化される。具体的に、図8に示す4個の抵抗素子300が形成された4個の歪センサ200において、これらの4個の歪センサ200を図9に示すように配置することにより、本実施の形態における基本思想(図7参照)が具現化されることについて説明する。 In the following, the basic idea in the present embodiment is embodied by devising the arrangement of the four resistance elements 300 formed in the strain sensor 200 and devising the arrangement of the four strain sensors 200. Specifically, in the four strain sensors 200 in which the four resistance elements 300 shown in FIG. 8 are formed, these four strain sensors 200 are arranged as shown in FIG. It will be explained that the basic idea (see FIG. 7) in the above is embodied.
 <<歪を相殺する具体的説明>>
 図10は、トルクセンサ100にy軸回りのy軸トルク(「Ty」)が加わった場合の4個の歪センサ200のそれぞれに形成されている抵抗素子300に加わる歪を示す模式図である。図10において、引張歪を「+」、圧縮歪を「-」とし、それぞれの歪センサ200に形成されている4個の抵抗素子300に加わる歪に基づく歪センサ200からの出力歪を「(抵抗素子300Aの歪+抵抗素子300Cの歪)-(抵抗素子300Bの歪+抵抗素子300Dの歪)」とする。
<< Specific explanation to offset distortion >>
FIG. 10 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when the y-axis torque (“Ty”) around the y-axis is applied to the torque sensor 100. .. In FIG. 10, the tensile strain is “+”, the compression strain is “−”, and the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
 図10において、第1歪センサ200Aに着目すると、抵抗素子300Aと抵抗素子300Cに引張歪が発生する一方、抵抗素子300Bと抵抗素子300Dに圧縮歪が発生する。この結果、第1歪センサ200Aから出力される出力歪を「+εTy」とする。 Focusing on the first strain sensor 200A in FIG. 10, tensile strain is generated in the resistance element 300A and the resistance element 300C, while compression strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A is set to "+ ε Ty ".
 続いて、第2歪センサ200Bに着目すると、抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300Dに同じ引張歪が発生する。この結果、第2歪センサ200Bから出力される出力歪は「0」となる。 Subsequently, focusing on the second strain sensor 200B, the same tensile strain occurs in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D. As a result, the output distortion output from the second distortion sensor 200B becomes "0".
 次に、第3歪センサ200Cに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第3歪センサ200Cから出力される出力歪は「-εTy」となる。 Next, focusing on the third strain sensor 200C, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the third distortion sensor 200C becomes "-ε Ty ".
 さらに、第4歪センサ200Dに着目すると、抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300Dに同じ引張歪が発生する。この結果、第4歪センサ200Dから出力される出力歪は「0」となる。 Further, focusing on the fourth strain sensor 200D, the same tensile strain is generated in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D. As a result, the output distortion output from the fourth distortion sensor 200D becomes "0".
 以上のことから、図10に示す4個の歪センサ200(第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200D)によって、図7に示すy軸回りのy軸トルクに起因する歪が実現されていることがわかる。 From the above, the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 10 are used to rotate the y-axis as shown in FIG. It can be seen that the distortion caused by the y-axis torque is realized.
 図11は、トルクセンサ100にy軸方向の力(「Fy」)が加わった場合の4個の歪センサ200のそれぞれに形成されている抵抗素子300に加わる歪を示す模式図である。図11において、引張歪を「+」、圧縮歪を「-」とし、それぞれの歪センサ200に形成されている4個の抵抗素子300に加わる歪に基づく歪センサ200からの出力歪を「(抵抗素子300Aの歪+抵抗素子300Cの歪)-(抵抗素子300Bの歪+抵抗素子300Dの歪)」とする。 FIG. 11 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when a force (“Fy”) in the y-axis direction is applied to the torque sensor 100. In FIG. 11, the tensile strain is “+”, the compression strain is “−”, and the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
 図11において、第1歪センサ200Aに着目すると、抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300Dに同じ引張歪が発生する。この結果、第1歪センサ200Aから出力される出力歪は「0」となる。 Focusing on the first strain sensor 200A in FIG. 11, the same tensile strain is generated in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A becomes "0".
 続いて、第2歪センサ200Bに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第2歪センサ200Bから出力される出力歪を「+εFy」とする。 Subsequently, focusing on the second strain sensor 200B, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the second distortion sensor 200B is set to "+ ε Fy ".
 次に、第3歪センサ200Cに着目すると、抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300Dに同じ引張歪が発生する。この結果、第3歪センサ200Cから出力される出力歪は「0」となる。 Next, focusing on the third strain sensor 200C, the same tensile strain occurs in the resistance element 300A, the resistance element 300B, the resistance element 300C, and the resistance element 300D. As a result, the output distortion output from the third distortion sensor 200C becomes "0".
 さらに、第4歪センサ200Dに着目すると、抵抗素子300Aと抵抗素子300Cに引張歪が発生する一方、抵抗素子300Bと抵抗素子300Dに圧縮歪が発生する。この結果、第4歪センサ200Dから出力される出力歪は「-εFy」となる。 Further, focusing on the fourth strain sensor 200D, tensile strain is generated in the resistance element 300A and the resistance element 300C, while compression strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the fourth distortion sensor 200D becomes "-ε Fy ".
 以上のことから、図11に示す4個の歪センサ200(第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200D)によって、図7に示すy軸方向に加わる力に起因する歪が実現されていることがわかる。 From the above, the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 11 are used in the y-axis direction shown in FIG. It can be seen that the distortion caused by the applied force is realized.
 図12は、トルクセンサ100にz軸回りのz軸トルク(「Tz」)が加わった場合の4個の歪センサ200のそれぞれに形成されている抵抗素子300に加わる歪を示す模式図である。図12において、引張歪を「+」、圧縮歪を「-」とし、それぞれの歪センサ200に形成されている4個の抵抗素子300に加わる歪に基づく歪センサ200からの出力歪を「(抵抗素子300Aの歪+抵抗素子300Cの歪)-(抵抗素子300Bの歪+抵抗素子300Dの歪)」とする。 FIG. 12 is a schematic view showing the strain applied to the resistance element 300 formed in each of the four strain sensors 200 when the z-axis torque (“Tz”) around the z-axis is applied to the torque sensor 100. .. In FIG. 12, the tensile strain is “+”, the compression strain is “−”, and the output strain from the strain sensor 200 based on the strain applied to the four resistance elements 300 formed in each strain sensor 200 is “((. Distortion of the resistance element 300A + distortion of the resistance element 300C)-(distortion of the resistance element 300B + distortion of the resistance element 300D) ”.
 図12において、第1歪センサ200Aに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第1歪センサ200Aから出力される出力歪を「+εTz」とする。 Focusing on the first strain sensor 200A in FIG. 12, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A is set to "+ ε Tz ".
 続いて、第2歪センサ200Bに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第1歪センサ200Aから出力される出力歪は「+εTz」となる。 Subsequently, focusing on the second strain sensor 200B, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A becomes "+ ε Tz ".
 次に、第3歪センサ200Cに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第1歪センサ200Aから出力される出力歪は「+εTz」となる。 Next, focusing on the third strain sensor 200C, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A becomes "+ ε Tz ".
 さらに、第4歪センサ200Dに着目すると、抵抗素子300Aと抵抗素子300Cに圧縮歪が発生する一方、抵抗素子300Bと抵抗素子300Dに引張歪が発生する。この結果、第1歪センサ200Aから出力される出力歪は「+εTz」となる。 Further, focusing on the fourth strain sensor 200D, compression strain is generated in the resistance element 300A and the resistance element 300C, while tensile strain is generated in the resistance element 300B and the resistance element 300D. As a result, the output distortion output from the first distortion sensor 200A becomes "+ ε Tz ".
 以上のことから、図12に示す4個の歪センサ200(第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200D)によって、図7に示すz軸回りのz軸トルクに起因する歪が実現されていることがわかる。 From the above, the four strain sensors 200 (first strain sensor 200A, second strain sensor 200B, third strain sensor 200C, and fourth strain sensor 200D) shown in FIG. 12 are used to rotate the z-axis as shown in FIG. It can be seen that the distortion caused by the z-axis torque is realized.
 図10~図12に基づくと、図8に示す4個の抵抗素子300が形成された4個の歪センサ200において、これらの4個の歪センサ200を図9に示すように配置することにより、本実施の形態における基本思想(図7参照)が具現化されることがわかる。 Based on FIGS. 10 to 12, in the four strain sensors 200 in which the four resistance elements 300 shown in FIG. 8 are formed, these four strain sensors 200 are arranged as shown in FIG. , It can be seen that the basic idea (see FIG. 7) in this embodiment is embodied.
 <算出部の構成>
 トルクセンサ100は、上述した4個の歪センサ200からの出力に基づいて、内輪中心CPを通り、かつ、内輪部110に垂直な法線軸回りのトルクを算出する算出部を有している。すなわち、トルクセンサ100は、第1歪センサ200Aの出力と第2歪センサ200Bの出力と第3歪センサ200Cの出力と第4歪センサ200Dの出力とに基づいて、駆動軸回り(z軸回り)のz軸トルクを算出する。
<Structure of calculation unit>
The torque sensor 100 has a calculation unit that calculates the torque around the normal axis that passes through the inner ring center CP and is perpendicular to the inner ring portion 110 based on the outputs from the four strain sensors 200 described above. That is, the torque sensor 100 is driven around the drive axis (z-axis) based on the output of the first strain sensor 200A, the output of the second strain sensor 200B, the output of the third strain sensor 200C, and the output of the fourth strain sensor 200D. ) Z-axis torque is calculated.
 以下では、z軸回りのz軸トルクを算出する算出部の構成を説明する。 The configuration of the calculation unit that calculates the z-axis torque around the z-axis will be described below.
 図13は、算出部500の機能ブロック図である。図13において、算出部500は、第1電圧値入力部501と、第2電圧値入力部502と、第3電圧値入力部503と、第4電圧値入力部504と、電圧値加算部505と、駆動軸トルク算出部506と、出力部507と、データ記憶部508とを有している。 FIG. 13 is a functional block diagram of the calculation unit 500. In FIG. 13, the calculation unit 500 includes a first voltage value input unit 501, a second voltage value input unit 502, a third voltage value input unit 503, a fourth voltage value input unit 504, and a voltage value addition unit 505. It has a drive shaft torque calculation unit 506, an output unit 507, and a data storage unit 508.
 第1電圧値入力部501は、第1歪センサ200Aからの出力電圧を入力するように構成されている。具体的に、第1歪センサ200Aは、トルクや力に基づくトルクセンサ100の変形に起因して歪むように構成されており、この歪を内部に設けられている4個の抵抗素子300の抵抗値変化として捉え、抵抗値変化を電圧値に変換して出力するように構成されている。第1電圧値入力部501は、この第1歪センサ200Aからの出力電圧を入力することができるように構成されている。そして、第1歪センサ200Aからの出力電圧である第1電圧値は、データ記憶部508に記憶される。 The first voltage value input unit 501 is configured to input the output voltage from the first distortion sensor 200A. Specifically, the first strain sensor 200A is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output. The first voltage value input unit 501 is configured to be able to input the output voltage from the first distortion sensor 200A. Then, the first voltage value, which is the output voltage from the first distortion sensor 200A, is stored in the data storage unit 508.
 なお、例えば、第1電圧値入力部501に入力される第1電圧値は、第1歪センサ200Aにおける抵抗素子300Aの抵抗値と抵抗素子300Bの抵抗値との差分と第1歪センサ200Aにおける抵抗素子300Cの抵抗値と抵抗素子300Dの抵抗値との差分とを加算した第1合計値に対応する。 For example, the first voltage value input to the first voltage value input unit 501 is the difference between the resistance value of the resistance element 300A in the first distortion sensor 200A and the resistance value of the resistance element 300B and the first distortion sensor 200A. It corresponds to the first total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
 第2電圧値入力部502は、第2歪センサ200Bからの出力電圧を入力するように構成されている。具体的に、第2歪センサ200Bも、トルクや力に基づくトルクセンサ100の変形に起因して歪むように構成されており、この歪を内部に設けられている4個の抵抗素子300の抵抗値変化として捉え、抵抗値変化を電圧値に変換して出力するように構成されている。第2電圧値入力部502は、この第2歪センサ200Bからの出力電圧を入力することができるように構成されている。そして、第2歪センサ200Bからの出力電圧である第2電圧値は、データ記憶部508に記憶される。 The second voltage value input unit 502 is configured to input the output voltage from the second distortion sensor 200B. Specifically, the second strain sensor 200B is also configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output. The second voltage value input unit 502 is configured to be able to input the output voltage from the second distortion sensor 200B. Then, the second voltage value, which is the output voltage from the second distortion sensor 200B, is stored in the data storage unit 508.
 なお、例えば、第2電圧値入力部502に入力される第2電圧値は、第2歪センサ200Bにおける抵抗素子300Aの抵抗値と抵抗素子300Bの抵抗値との差分と第2歪センサ200Bにおける抵抗素子300Cの抵抗値と抵抗素子300Dの抵抗値との差分とを加算した第2合計値に対応する。 For example, the second voltage value input to the second voltage value input unit 502 is the difference between the resistance value of the resistance element 300A in the second distortion sensor 200B and the resistance value of the resistance element 300B and the second distortion sensor 200B. It corresponds to the second total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
 第3電圧値入力部503は、第3歪センサ200Cからの出力電圧を入力するように構成されている。具体的に、第3歪センサ200Cは、トルクや力に基づくトルクセンサ100の変形に起因して歪むように構成されており、この歪を内部に設けられている4個の抵抗素子300の抵抗値変化として捉え、抵抗値変化を電圧値に変換して出力するように構成されている。第3電圧値入力部503は、この第3歪センサ200Cからの出力電圧を入力することができるように構成されている。そして、第3歪センサ200Cからの出力電圧である第3電圧値は、データ記憶部508に記憶される。 The third voltage value input unit 503 is configured to input the output voltage from the third distortion sensor 200C. Specifically, the third strain sensor 200C is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output. The third voltage value input unit 503 is configured to be able to input the output voltage from the third distortion sensor 200C. Then, the third voltage value, which is the output voltage from the third distortion sensor 200C, is stored in the data storage unit 508.
 なお、例えば、第3電圧値入力部503に入力される第3電圧値は、第3歪センサ200Cにおける抵抗素子300Aの抵抗値と抵抗素子300Bの抵抗値との差分と第3歪センサ200Cにおける抵抗素子300Cの抵抗値と抵抗素子300Dの抵抗値との差分とを加算した第3合計値に対応する。 For example, the third voltage value input to the third voltage value input unit 503 is the difference between the resistance value of the resistance element 300A in the third distortion sensor 200C and the resistance value of the resistance element 300B and the third distortion sensor 200C. It corresponds to the third total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
 第4電圧値入力部504は、第4歪センサ200Dからの出力電圧を入力するように構成されている。具体的に、第4歪センサ200Dは、トルクや力に基づくトルクセンサ100の変形に起因して歪むように構成されており、この歪を内部に設けられている4個の抵抗素子300の抵抗値変化として捉え、抵抗値変化を電圧値に変換して出力するように構成されている。第4電圧値入力部504は、この第4歪センサ200Dからの出力電圧を入力することができるように構成されている。そして、第4歪センサ200Dからの出力電圧である第4電圧値は、データ記憶部508に記憶される。 The fourth voltage value input unit 504 is configured to input the output voltage from the fourth distortion sensor 200D. Specifically, the fourth strain sensor 200D is configured to be distorted due to deformation of the torque sensor 100 based on torque or force, and the resistance value of the four resistance elements 300 provided inside this distortion. It is configured to be regarded as a change, and the resistance value change is converted into a voltage value and output. The fourth voltage value input unit 504 is configured to be able to input the output voltage from the fourth distortion sensor 200D. Then, the fourth voltage value, which is the output voltage from the fourth distortion sensor 200D, is stored in the data storage unit 508.
 なお、例えば、第4電圧値入力部504に入力される第3電圧値は、第4歪センサ200Dにおける抵抗素子300Aの抵抗値と抵抗素子300Bの抵抗値との差分と第4歪センサ200Dにおける抵抗素子300Cの抵抗値と抵抗素子300Dの抵抗値との差分とを加算した第4合計値に対応する。 For example, the third voltage value input to the fourth voltage value input unit 504 is the difference between the resistance value of the resistance element 300A in the fourth distortion sensor 200D and the resistance value of the resistance element 300B and the fourth distortion sensor 200D. It corresponds to the fourth total value obtained by adding the difference between the resistance value of the resistance element 300C and the resistance value of the resistance element 300D.
 次に、電圧値加算部505は、第1電圧値入力部501に入力された第1電圧値と、第2電圧値入力部502に入力された第2電圧値と、第3電圧値入力部503に入力された第3電圧値と、第4電圧値入力部504に入力された第4電圧値とを加算した合計電圧値を算出するように構成されている。この電圧値加算部505による合計電圧値の算出は、例えば、図7に示す合計を算出することに対応する。つまり、電圧値加算部505によって算出された合計電圧値は、他軸回りのトルクや各軸方向に加わる力に起因する歪が相殺されて、駆動軸回りの駆動軸トルクにのみ起因する歪に対応する電圧値となる。 Next, the voltage value adding unit 505 uses the first voltage value input to the first voltage value input unit 501, the second voltage value input to the second voltage value input unit 502, and the third voltage value input unit. It is configured to calculate the total voltage value by adding the third voltage value input to the 503 and the fourth voltage value input to the fourth voltage value input unit 504. The calculation of the total voltage value by the voltage value adding unit 505 corresponds to, for example, calculating the total shown in FIG. 7. That is, the total voltage value calculated by the voltage value addition unit 505 cancels out the distortion caused by the torque around the other shaft and the force applied in each shaft direction, and becomes the distortion caused only by the drive shaft torque around the drive shaft. It becomes the corresponding voltage value.
 続いて、駆動軸トルク算出部506は、電圧値加算部505で算出された合計電圧値に基づいて、駆動軸回りの駆動軸トルクを算出するように構成されている。このとき、本実施の形態では、電圧値加算部505によって算出された合計電圧値は、他軸回りのトルクや各軸方向に加わる力に起因する歪が相殺されて、駆動軸回りの駆動軸トルクにのみ起因する歪に対応する電圧値であることから、合計電圧値に基づいて算出された駆動軸トルクは高精度である。例えば、歪と電気抵抗値には相関関係があり、この電気抵抗値に基づく電圧値と歪も相関関係がある。そして、歪とトルクとも相関関係があることから、電圧値とトルクも相関関係があることになる。この電圧値とトルクとの間の相関関係を示す式やテーブルをデータ記憶部508に記憶されている。この結果、駆動軸トルク算出部506は、データ記憶部508に記憶されている式やテーブルに基づいて、電圧値加算部505で算出された合計電圧値から駆動軸トルクを算出することができる。 Subsequently, the drive shaft torque calculation unit 506 is configured to calculate the drive shaft torque around the drive shaft based on the total voltage value calculated by the voltage value addition unit 505. At this time, in the present embodiment, the total voltage value calculated by the voltage value adding unit 505 cancels out the distortion caused by the torque around the other shaft and the force applied in each axial direction, and the drive shaft around the drive shaft. Since the voltage value corresponds to the distortion caused only by the torque, the drive shaft torque calculated based on the total voltage value is highly accurate. For example, there is a correlation between strain and an electrical resistance value, and there is also a correlation between a voltage value based on this electrical resistance value and strain. Since there is also a correlation between strain and torque, the voltage value and torque are also correlated. An equation or table showing the correlation between the voltage value and the torque is stored in the data storage unit 508. As a result, the drive shaft torque calculation unit 506 can calculate the drive shaft torque from the total voltage value calculated by the voltage value addition unit 505 based on the formula or table stored in the data storage unit 508.
 出力部507は、駆動軸トルク算出部506で算出された駆動軸トルクの値を外部に出力するように構成されている。例えば、出力部507から出力された駆動軸トルクの値は、図1に示すロボット制御部11に入力されて、ロボット制御部11によるロボットアーム10の動作制御に利用することができる。 The output unit 507 is configured to output the value of the drive shaft torque calculated by the drive shaft torque calculation unit 506 to the outside. For example, the value of the drive shaft torque output from the output unit 507 is input to the robot control unit 11 shown in FIG. 1 and can be used for the operation control of the robot arm 10 by the robot control unit 11.
 <算出部の動作>
 本実施の形態における算出部500は、上記のように構成されており、以下に算出部500の動作について図面を参照しながら説明する。
<Operation of calculation unit>
The calculation unit 500 in the present embodiment is configured as described above, and the operation of the calculation unit 500 will be described below with reference to the drawings.
 図14は、算出部の動作を説明するフローチャートである。 FIG. 14 is a flowchart illustrating the operation of the calculation unit.
 図14において、第1電圧値入力部501は、第1歪センサ200Aからの出力電圧である第1電圧値を入力するとともに、第2電圧値入力部502は、第2歪センサ200Bからの出力電圧である第2電圧値を入力する。同様に、第3電圧値入力部503は、第3歪センサ200Cからの出力電圧である第3電圧値を入力するとともに、第4電圧値入力部504は、第4歪センサ200Dからの出力電圧である第4電圧値を入力する(S101)。次に、電圧値加算部505は、第1電圧値と第2電圧値と第3電圧値と第4電圧値とを加算して合計電圧値を算出する。その後、駆動軸トルク算出部506は、電圧値加算部505で算出した合計電圧値に基づいて、駆動軸トルクを算出する。そして、駆動軸トルク算出部506で算出された駆動軸トルクの値は、出力部507から出力される。 In FIG. 14, the first voltage value input unit 501 inputs the first voltage value which is the output voltage from the first distortion sensor 200A, and the second voltage value input unit 502 outputs from the second distortion sensor 200B. Enter the second voltage value, which is the voltage. Similarly, the third voltage value input unit 503 inputs the third voltage value which is the output voltage from the third distortion sensor 200C, and the fourth voltage value input unit 504 inputs the output voltage from the fourth distortion sensor 200D. The fourth voltage value is input (S101). Next, the voltage value adding unit 505 adds the first voltage value, the second voltage value, the third voltage value, and the fourth voltage value to calculate the total voltage value. After that, the drive shaft torque calculation unit 506 calculates the drive shaft torque based on the total voltage value calculated by the voltage value addition unit 505. Then, the value of the drive shaft torque calculated by the drive shaft torque calculation unit 506 is output from the output unit 507.
 以上のようにして、算出部500の動作が実現される。 As described above, the operation of the calculation unit 500 is realized.
 <効果の検証>
 次に、本実施の形態における効果の検証結果について説明する。
<Verification of effect>
Next, the verification result of the effect in the present embodiment will be described.
 図15は、y軸回りのy軸トルク(「Ty」)を加えた際における4個の歪センサのそれぞれからの出力を示すグラフである。 FIG. 15 is a graph showing the outputs from each of the four strain sensors when the y-axis torque (“Ty”) around the y-axis is applied.
 図15において、横軸はy軸トルク(「Ty(N・m)」)の大きさを示している一方、縦軸は各歪センサの出力「歪量(με)」を示している。 In FIG. 15, the horizontal axis represents the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis represents the output “strain amount (με)” of each strain sensor.
 図15において、第1歪センサの出力に着目すると、y軸トルクを大きくするにしたがって第1歪センサからの出力(絶対値)が大きくなっていることがわかる。例えば、y軸トルクが「100N・m」のとき、第1歪センサからの出力は「15με」であり、y軸トルクが「200N・m」のとき、第1歪センサからの出力は「35με」である。また、y軸トルクが「400N・m」のとき、第1歪センサからの出力は「60με」であり、y軸トルクが「600N・m」のとき、第1歪センサからの出力は「90με」である。 Focusing on the output of the first strain sensor in FIG. 15, it can be seen that the output (absolute value) from the first strain sensor increases as the y-axis torque increases. For example, when the y-axis torque is "100 Nm", the output from the first strain sensor is "15 με", and when the y-axis torque is "200 Nm", the output from the first strain sensor is "35 με". ". When the y-axis torque is "400 Nm", the output from the first strain sensor is "60 με", and when the y-axis torque is "600 Nm", the output from the first strain sensor is "90 με". ".
 一方、第3歪センサの出力に着目すると、y軸トルクを大きくするにしたがって第3歪センサからの出力(絶対値)も大きくなっていることがわかる。例えば、y軸トルクが「100N・m」のとき、第1歪センサからの出力は「-15με」であり、y軸トルクが「200N・m」のとき、第1歪センサからの出力は「-35με」である。また、y軸トルクが「400N・m」のとき、第1歪センサからの出力は「-60με」であり、y軸トルクが「600N・m」のとき、第1歪センサからの出力は「-90με」である。 On the other hand, focusing on the output of the third strain sensor, it can be seen that the output (absolute value) from the third strain sensor increases as the y-axis torque increases. For example, when the y-axis torque is "100 Nm", the output from the first strain sensor is "-15 με", and when the y-axis torque is "200 Nm", the output from the first strain sensor is "-15 με". -35 με ”. When the y-axis torque is "400 Nm", the output from the first strain sensor is "-60 με", and when the y-axis torque is "600 Nm", the output from the first strain sensor is "-60 με". -90 με ”.
 したがって、第1歪センサからの出力と第2歪センサからの出力を加算すると、第1歪センサの出力と第3歪センサからの出力の合計出力は「0」となることがわかる。つまり、第1歪センサからの出力と第3歪センサからの出力は相殺することがわかる。 Therefore, when the output from the first distortion sensor and the output from the second distortion sensor are added, it can be seen that the total output of the output of the first distortion sensor and the output of the third distortion sensor becomes "0". That is, it can be seen that the output from the first strain sensor and the output from the third strain sensor cancel each other out.
 また、第2歪センサからの出力と第4歪センサからの出力に着目すると、y軸トルクの大きさに依らず、いずれの歪センサからの出力もほぼ「0」であることがわかる。 Focusing on the output from the second strain sensor and the output from the fourth strain sensor, it can be seen that the output from any strain sensor is almost "0" regardless of the magnitude of the y-axis torque.
 図16は、y軸回りのy軸トルク(「Ty」)を加えた際における4個の歪センサからの合計出力を示すグラフである。 FIG. 16 is a graph showing the total output from the four strain sensors when the y-axis torque (“Ty”) around the y-axis is applied.
 図16において、横軸はy軸トルク(「Ty(N・m)」)の大きさを示している一方、縦軸は4個の歪センサからの合計出力「歪量(με)」を示している。 In FIG. 16, the horizontal axis shows the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis shows the total output “strain amount (με)” from the four strain sensors. ing.
 図16に示すように、y軸トルクの大きさに依らず、4個の歪センサからの合計出力がほぼ「0」であることがわかる。すなわち、図16から、例えば、駆動軸回りの駆動軸トルク(z軸トルク)以外の他軸回りのトルクの一例であるy軸回りのy軸トルクが加わっても、y軸トルクに基づく第1歪センサからの出力と第2歪センサからの出力と第3歪センサからの出力と第4歪センサからの出力を加算すると、出力の合計がほぼ「0」になることがわかる。つまり、図15および図16に示す結果から、4個の歪センサからの合計出力がy軸トルクに起因する歪の影響を受けないことが裏付けられていることがわかる。 As shown in FIG. 16, it can be seen that the total output from the four strain sensors is almost "0" regardless of the magnitude of the y-axis torque. That is, from FIG. 16, for example, even if the y-axis torque around the y-axis, which is an example of the torque around the other shaft other than the drive shaft torque (z-axis torque) around the drive shaft, is added, the first one based on the y-axis torque. It can be seen that when the output from the strain sensor, the output from the second strain sensor, the output from the third strain sensor, and the output from the fourth strain sensor are added, the total output becomes almost "0". That is, it can be seen from the results shown in FIGS. 15 and 16 that the total output from the four strain sensors is not affected by the strain caused by the y-axis torque.
 図17は、z軸回りに一定量のz軸トルクを加えた状態で、さらにy軸回りのy軸トルクを加えた際における4個の歪センサからの出力の平均値の変化を示すグラフである。 FIG. 17 is a graph showing changes in the average values of the outputs from the four strain sensors when a certain amount of z-axis torque is applied around the z-axis and further y-axis torque around the y-axis is applied. be.
 図17において、横軸はy軸トルク(「Ty(N・m)」)の大きさを示している一方、縦軸は4個の歪センサからの出力「歪量(με)」の平均値を示している。さらに、各ポイントは、z軸トルク(「Tz」)の大きさを示す。たとえば「*」はz軸トルクが時計回りであり、600(N・m)である。「点線」は、z軸トルク(「Tz」)が反時計回りであり、-600(N・m)である。 In FIG. 17, the horizontal axis represents the magnitude of the y-axis torque (“Ty (Nm)”), while the vertical axis represents the average value of the output “strain amount (με)” from the four strain sensors. Is shown. Further, each point indicates the magnitude of the z-axis torque (“Tz”). For example, "*" means that the z-axis torque is clockwise and is 600 (Nm). The "dotted line" has a z-axis torque ("Tz") counterclockwise and is -600 (Nm).
 例えば、図7を参照すると、第1歪センサ200Aからの出力は、y軸トルクに起因する歪量「εTy」とz軸トルクに起因する歪量「εTz」とを加えた歪量に対応する出力となる。一方、第2歪センサ200Bからの出力は、y軸トルクに起因する歪量「εTy」とz軸トルクに起因する歪量「εTz」とを加えた歪量に対応する出力となる。ただし、第2歪センサ200Bでは、「εTy」はゼロとなる。また、第3歪センサ200Cからの出力は、y軸トルクに起因する歪量「-εTy」とz軸トルクに起因する歪量「εTz」とを加えた歪量に対応する出力となる。さらに、第4歪センサ200Dからの出力は、y軸トルクに起因する歪量「-εTy」とz軸トルクに起因する歪量「εTz」とを加えた歪量に対応する出力となる。ただし、第2歪センサ200Dでは、「-εTy」はゼロとなる。したがって、4個の歪センサ200のそれぞれの出力は異なることになるが、4個の歪センサ200の出力の平均値は、z軸トルクに起因する歪量以外は相殺される結果、歪量「εTz」となる。このことが図17に示されている。すなわち、4個の歪センサ200の出力の平均値は歪量「εTz」となることから、y軸トルクの大きさに依らず、z軸トルクの大きさにだけ依存し、一定値になる。図17からz軸トルクの大きさを大きくすると、4個の歪センサ200の出力の平均値は大きくなり、y軸トルクが増加しても変化しないことがわかる。これは、4個の歪センサ200の出力の平均値が歪量「εTz」となることから理解できる。 For example, referring to FIG. 7, the output from the first strain sensor 200A is the strain amount obtained by adding the strain amount “ε Ty ” due to the y-axis torque and the strain amount “ε Tz ” due to the z-axis torque. It becomes the corresponding output. On the other hand, the output from the second strain sensor 200B is an output corresponding to the sum of the strain amount “ε Ty ” caused by the y-axis torque and the strain amount “ε Tz ” caused by the z-axis torque. However, in the second strain sensor 200B, "ε Ty " becomes zero. Further, the output from the third strain sensor 200C is an output corresponding to the amount of strain obtained by adding the amount of strain "-ε Ty " caused by the y-axis torque and the amount of strain "ε Tz " caused by the z-axis torque. .. Further, the output from the fourth strain sensor 200D is an output corresponding to the strain amount obtained by adding the strain amount “−ε Ty ” due to the y-axis torque and the strain amount “ε Tz ” due to the z-axis torque. .. However, in the second distortion sensor 200D, "-ε Ty " becomes zero. Therefore, the outputs of the four strain sensors 200 are different, but the average value of the outputs of the four strain sensors 200 is offset except for the strain amount due to the z-axis torque. ε Tz ”. This is shown in FIG. That is, since the average value of the outputs of the four strain sensors 200 is the strain amount "ε Tz ", it depends only on the magnitude of the z-axis torque and becomes a constant value regardless of the magnitude of the y-axis torque. .. From FIG. 17, it can be seen that when the magnitude of the z-axis torque is increased, the average value of the outputs of the four strain sensors 200 becomes large, and does not change even if the y-axis torque increases. This can be understood from the fact that the average value of the outputs of the four strain sensors 200 is the strain amount “ε Tz”.
 <ロボット関節構造への適用>
 本実施の形態におけるトルクセンサ100は、例えば、ロボットアームのロボット関節構造に適用することができる。例えば、図18は、本実施の形態におけるトルクセンサ100を適用したロボット関節構造20を模式的に示す図である。図18において、本実施の形態におけるトルクセンサ100は、モータ22と減速機23とを含む駆動部24と接続されているとともにロボットアームの一部を構成するリンク21Bと接続されている。このように構成されているロボット関節構造20によれば、トルクセンサ100によって駆動軸回りの駆動軸トルクを高精度に検出することができる。
<Application to robot joint structure>
The torque sensor 100 in this embodiment can be applied to, for example, a robot joint structure of a robot arm. For example, FIG. 18 is a diagram schematically showing a robot joint structure 20 to which the torque sensor 100 according to the present embodiment is applied. In FIG. 18, the torque sensor 100 according to the present embodiment is connected to a drive unit 24 including a motor 22 and a speed reducer 23, and is also connected to a link 21B forming a part of a robot arm. According to the robot joint structure 20 configured in this way, the drive shaft torque around the drive shaft can be detected with high accuracy by the torque sensor 100.
 さらに、トルクセンサ100を適用したロボット関節構造20によれば、以下に示す利点も得ることができる。例えば、図3に示す関連技術では、駆動部24とトルクセンサ30との間にベアリング部材26を設けている。これは、トルクセンサ30をベアリング部材26によって固定支持することによって、駆動軸回り以外に変形しにくくなるようにするためである。すなわち、関連技術におけるトルクセンサ30では、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因してトルクセンサ30が変形すると、この変形に起因する歪もトルクセンサ30で検出する結果、トルクセンサ30では、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音の影響を受けやすくなる。このことから、関連技術では、トルクセンサ30が駆動軸回り以外に変形しにくくなるようにベアリング部材26でトルクセンサ30を固定支持している。これにより、関連技術によれば、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因するトルクセンサ30の変形が起こりにくくなるため、トルクセンサ30で駆動軸回りのトルクを検出する際、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音を低減することができる。すなわち、関連技術によれば、ベアリング部材26でトルクセンサ30を固定支持することによって、トルクセンサ30を駆動軸回り以外に変形しにくくすることで駆動軸回りのトルクを高精度に検出するようにしている。 Furthermore, according to the robot joint structure 20 to which the torque sensor 100 is applied, the following advantages can also be obtained. For example, in the related technique shown in FIG. 3, a bearing member 26 is provided between the drive unit 24 and the torque sensor 30. This is because the torque sensor 30 is fixedly supported by the bearing member 26 so that it is less likely to be deformed except around the drive shaft. That is, in the torque sensor 30 in the related technology, when the torque sensor 30 is deformed due to the torque around the other shafts other than the drive shaft and the force applied in each axial direction, the strain caused by this deformation is also detected by the torque sensor 30. As a result, the torque sensor 30 is easily affected by the torque around the other shafts other than the drive shaft and the noise caused by the force applied in each shaft direction. For this reason, in the related technology, the torque sensor 30 is fixedly supported by the bearing member 26 so that the torque sensor 30 is less likely to be deformed except around the drive shaft. As a result, according to the related technology, the torque sensor 30 is less likely to be deformed due to the torque around the other shafts other than the drive shaft and the force applied in each shaft direction. Therefore, the torque sensor 30 detects the torque around the drive shaft. When doing so, it is possible to reduce noise caused by torque around other shafts other than the drive shaft and forces applied in each shaft direction. That is, according to the related technology, the torque sensor 30 is fixedly supported by the bearing member 26 to make the torque sensor 30 less likely to be deformed other than around the drive shaft, so that the torque around the drive shaft can be detected with high accuracy. ing.
 ただし、関連技術では、トルクセンサ30を固定支持するベアリング部材26を新たに設ける必要があることから、ロボット関節構造20Aの質量が大きくなる。つまり、ロボット関節構造20Aの質量は小さいことが望ましいが、関連技術では、ロボット関節構造20Aの質量が大きくなってしまい、ロボット関節構造20Aの動作が鈍くなるおそれがある。さらには、ベアリング部材26を新たに設ける必要があるため、ロボット関節構造20Aの部品コストが上昇することになる。したがって、関連技術では、駆動軸回りのトルクを高精度に検出することができる一方で、ロボット関節構造20Aの動作機敏性の向上と部品コストの低減の観点から改善の余地が存在することがわかる。 However, in the related technology, since it is necessary to newly provide a bearing member 26 for fixing and supporting the torque sensor 30, the mass of the robot joint structure 20A becomes large. That is, it is desirable that the mass of the robot joint structure 20A is small, but in the related technology, the mass of the robot joint structure 20A becomes large, and the operation of the robot joint structure 20A may become dull. Further, since it is necessary to newly provide the bearing member 26, the component cost of the robot joint structure 20A will increase. Therefore, it can be seen that the related technology can detect the torque around the drive shaft with high accuracy, but there is room for improvement from the viewpoint of improving the motion agility of the robot joint structure 20A and reducing the component cost. ..
 この点に関し、本実施の形態におけるトルクセンサ100は、たとえ、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因してトルクセンサ100が変形したとしても、トルクセンサ100に設けられた4個の歪センサ200によって、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因する歪が相殺される。すなわち、本実施の形態におけるトルクセンサ100によれば、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因してトルクセンサ100が変形したとしても、駆動軸以外の他軸回りのトルクや各軸方向に加わる力に起因する雑音は発生しにくくなる。このため、本実施の形態におけるトルクセンサ100は、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因するトルクセンサ100の変形を抑制しなくても、駆動軸回りのトルクを高精度に検出することができる。このことは、本実施の形態におけるトルクセンサ100によれば、図3に示す関連技術のトルクセンサ30のようにベアリング部材26で固定支持する必要がなくなることを意味する。言い換えれば、本実施の形態におけるトルクセンサ100は、ベアリング部材26で固定支持しなくても、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因する歪が相殺される結果、駆動軸回りのトルクを高精度に検出することができるのである。したがって、本実施の形態によれば、ベアリング部材26が不要となることから、ロボット関節構造20自体の質量の増大を抑制できる。このことから、本実施の形態によれば、トルクセンサ100を採用することにより、ロボット関節構造の動作機敏性を向上できる。さらには、ベアリング部材26という新たな部品の追加が不要となることにより、ロボット関節構造20の部品削減を実現することができ、これによって部品コストを削減できるという利点も得ることができる。 In this regard, the torque sensor 100 according to the present embodiment can be used as a torque sensor 100 even if the torque sensor 100 is deformed due to torque around other shafts other than the drive shaft or a force applied in each axial direction. The four strain sensors 200 provided cancel out the distortion caused by the torque around the other shafts other than the drive shaft and the force applied in each axial direction. That is, according to the torque sensor 100 in the present embodiment, even if the torque sensor 100 is deformed due to the torque around the other shaft other than the drive shaft and the force applied in each shaft direction, the other shaft other than the drive shaft Noise caused by the surrounding torque and the force applied in each axial direction is less likely to occur. Therefore, the torque sensor 100 in the present embodiment has torque around the drive shaft without suppressing deformation of the torque sensor 100 due to torque around other shafts other than around the drive shaft and forces applied in each axial direction. Can be detected with high accuracy. This means that according to the torque sensor 100 in the present embodiment, it is not necessary to fix and support the bearing member 26 as in the torque sensor 30 of the related technique shown in FIG. In other words, the torque sensor 100 in the present embodiment cancels out the distortion caused by the torque around the other shafts other than the drive shaft and the force applied in each shaft direction without being fixedly supported by the bearing member 26. , The torque around the drive shaft can be detected with high accuracy. Therefore, according to the present embodiment, since the bearing member 26 is not required, it is possible to suppress an increase in the mass of the robot joint structure 20 itself. Therefore, according to the present embodiment, the motion agility of the robot joint structure can be improved by adopting the torque sensor 100. Furthermore, since it is not necessary to add a new component called the bearing member 26, it is possible to reduce the number of parts of the robot joint structure 20, which has the advantage of reducing the cost of parts.
 なお、本実施の形態におけるトルクセンサ100を採用すると、図18に示すロボット関節構造20だけでなく、例えば、図19に示すロボット関節構造20Bや図20に示すロボット関節構造20Cも実現することができる。この場合も、ロボット関節構造の動作機敏性および部品コストを犠牲にすることなく、駆動軸回りの駆動軸トルクの検出精度を向上することができるという顕著な効果が得られる。 When the torque sensor 100 in the present embodiment is adopted, not only the robot joint structure 20 shown in FIG. 18 but also the robot joint structure 20B shown in FIG. 19 and the robot joint structure 20C shown in FIG. 20 can be realized, for example. can. In this case as well, the remarkable effect that the detection accuracy of the drive shaft torque around the drive shaft can be improved without sacrificing the motion agility of the robot joint structure and the cost of parts can be obtained.
 なお、これらの効果は、トルクセンサ100の剛性が高く、x軸、y軸、z軸のモーメントによって、過大な変形をしないことが必要である。トルクセンサ100の剛性を高くするには、図5に示すスポーク130の厚み、幅を大きくしなければならない。そうすると、z軸トルクによって発生するひずみが小さくなり、計測すべきz軸トルクの分解能が低減する。すなわち、検出できる限界のz軸トルクが大きくなってしまう。しかし、図8に示す歪センサ200は、一般的な金属の抵抗変化に基づいて計測する歪ゲージに対して、格段に大きい感度を有する。歪センサ200をシリコンで作成した場合、歪を検出する感度を示すゲージ率が、一般の金属性の歪ゲージに比較して、約25倍となることが知られている。したがって、歪センサ200を用いることで、トルクセンサ100の剛性を高くすることができ、その結果、ベアリング部材26を省くことができる。 For these effects, it is necessary that the torque sensor 100 has high rigidity and is not excessively deformed by the moments of the x-axis, y-axis, and z-axis. In order to increase the rigidity of the torque sensor 100, the thickness and width of the spokes 130 shown in FIG. 5 must be increased. Then, the strain generated by the z-axis torque becomes small, and the resolution of the z-axis torque to be measured is reduced. That is, the z-axis torque at the limit that can be detected becomes large. However, the strain sensor 200 shown in FIG. 8 has a significantly higher sensitivity to a strain gauge that measures based on a general metal resistance change. It is known that when the strain sensor 200 is made of silicon, the gauge ratio indicating the sensitivity for detecting strain is about 25 times that of a general metallic strain gauge. Therefore, by using the strain sensor 200, the rigidity of the torque sensor 100 can be increased, and as a result, the bearing member 26 can be omitted.
 <さらなる検討>
 本実施の形態におけるトルクセンサ100は、駆動軸回り以外の他軸回りのトルクや各軸方向に加わる力に起因するトルクセンサ100の変形を抑制しなくても、駆動軸回りのトルクを高精度に検出することができる点で有用であり、例えば、ロボット関節構造20に適用して有効である。ただし、本発明者が検討したところ、トルクセンサ100をロボット関節構造20に適用するにあたっては、トルクセンサ100とリンク21Bとの接続構造を工夫することが重要であるという知見を得たので、この知見を説明する。
<Further study>
The torque sensor 100 in the present embodiment has high accuracy in torque around the drive shaft without suppressing deformation of the torque sensor 100 due to torque around other shafts other than the drive shaft and forces applied in each axial direction. It is useful in that it can be detected in, and is effective, for example, by applying it to the robot joint structure 20. However, as a result of the study by the present inventor, it has been found that it is important to devise a connection structure between the torque sensor 100 and the link 21B when applying the torque sensor 100 to the robot joint structure 20. Explain the findings.
 <本発明者が見出した新規な知見>
 図21は、本実施の形態におけるトルクセンサ100を適用したロボット関節構造20を模式的に示す図である。図21において、領域RAは、トルクセンサ100とリンク21Bとの接続部位を示している。そして、図22は、領域RAで示されるトルクセンサ100とリンク21Bとの接続部位の拡大図である。図22に示すように、トルクセンサ100には貫通部THが形成されているとともに、リンク21Bには、ネジ山が形成された開口部OPが形成されている。そして、トルクセンサ100に形成された貫通部THとリンク21Bに形成された開口部OPとは連通しており、貫通部THと開口部OPには、ボルト600Aが挿入されている。そして、このボルト600Aとナット600Bを使用することにより、トルクセンサ100とリンク21Bとは接続されている。このとき、ボルト600Aには、軸力「P」が加わることになる。
<New findings found by the present inventor>
FIG. 21 is a diagram schematically showing a robot joint structure 20 to which the torque sensor 100 according to the present embodiment is applied. In FIG. 21, the region RA shows the connection portion between the torque sensor 100 and the link 21B. FIG. 22 is an enlarged view of the connection portion between the torque sensor 100 and the link 21B shown in the region RA. As shown in FIG. 22, the torque sensor 100 is formed with a through portion TH, and the link 21B is formed with an opening OP having a thread. The penetrating portion TH formed in the torque sensor 100 and the opening OP formed in the link 21B communicate with each other, and a bolt 600A is inserted into the penetrating portion TH and the opening OP. Then, by using the bolt 600A and the nut 600B, the torque sensor 100 and the link 21B are connected. At this time, an axial force "P" is applied to the bolt 600A.
 次に、図23は、図22の矢印方向から見た模式図である。図23に示すように、トルクセンサ100とリンク21Bは、ボルト600Aとナット600Bで接続されている。そして、図24は、図23のA-A面から見た模式図を示しており、図25は、図23のB-B面から見た模式図を示している。ここで、A-A面を「ボルト・外輪部面」と呼び、B-B面を「外輪部・リンク面」と呼ぶことにする。 Next, FIG. 23 is a schematic view seen from the direction of the arrow in FIG. 22. As shown in FIG. 23, the torque sensor 100 and the link 21B are connected by a bolt 600A and a nut 600B. Then, FIG. 24 shows a schematic view seen from the AA plane of FIG. 23, and FIG. 25 shows a schematic view seen from the BB plane of FIG. 23. Here, the AA surface is referred to as a "bolt / outer ring portion surface", and the BB surface is referred to as an "outer ring portion / link surface".
 図24において、トルクセンサ100の外輪部120にボルト600Aが固定されており、ボルト600Aと外輪部120との接触面が「S1」で示されている。このとき、ボルト600Aと外輪部120との間の面圧「σ1」は、「σ1=P/S1」で与えられる。ここで、「P」は、ボルト600Aに加わる軸力を示しており、「S1」は、ボルト600Aと外輪部120との接触面積を示している。図24に示すように、ボルト600Aと外輪部120との接触面積「S1」は小さいことから、ボルト600Aと外輪部120との間の面圧「σ1」は大きくなる。 In FIG. 24, the bolt 600A is fixed to the outer ring portion 120 of the torque sensor 100, and the contact surface between the bolt 600A and the outer ring portion 120 is indicated by “S1”. At this time, the surface pressure “σ1” between the bolt 600A and the outer ring portion 120 is given by “σ1 = P / S1”. Here, "P" indicates the axial force applied to the bolt 600A, and "S1" indicates the contact area between the bolt 600A and the outer ring portion 120. As shown in FIG. 24, since the contact area “S1” between the bolt 600A and the outer ring portion 120 is small, the surface pressure “σ1” between the bolt 600A and the outer ring portion 120 becomes large.
 図25において、トルクセンサ100の外輪部120とリンク21Bとがボルト600Aで固定されており、外輪部120とリンク21Bとの接触面が「S2」で示されている。この「S2」は、外輪部120の全面に相当する。このとき、外輪部120とリンク21Bとの間の面圧「σ2」は、「σ2=P/S2」で与えられる。ここで、「P」は、ボルト600Aに加わる軸力を示しており、「S2」は、外輪部120とリンク21Bとの接触面積を示している。図25に示すように、外輪部120とリンク21Bとの接触面積「S2」は大きいことから、外輪部120とリンク21Bとの間の面圧「σ2」は小さくなる。 In FIG. 25, the outer ring portion 120 of the torque sensor 100 and the link 21B are fixed by bolts 600A, and the contact surface between the outer ring portion 120 and the link 21B is indicated by “S2”. This "S2" corresponds to the entire surface of the outer ring portion 120. At this time, the surface pressure “σ2” between the outer ring portion 120 and the link 21B is given by “σ2 = P / S2”. Here, "P" indicates the axial force applied to the bolt 600A, and "S2" indicates the contact area between the outer ring portion 120 and the link 21B. As shown in FIG. 25, since the contact area “S2” between the outer ring portion 120 and the link 21B is large, the surface pressure “σ2” between the outer ring portion 120 and the link 21B becomes small.
 続いて、図26は、面圧と静止摩擦係数との関係を定性的に示すグラフである。図26において、横軸は面圧「σ」を示している一方、縦軸は静止摩擦係数「μ」を示している。図26に示すように、図24に示す軸力(「P」)と図25に示す軸力(「P」)が等しい場合、面圧「σ」が大きくなると、静止摩擦係数「μ」は小さくなる傾向があることがわかる。すなわち、面圧「σ」が大きくなると滑りやすくなることがわかる。 Subsequently, FIG. 26 is a graph qualitatively showing the relationship between the surface pressure and the coefficient of static friction. In FIG. 26, the horizontal axis represents the surface pressure “σ”, while the vertical axis represents the static friction coefficient “μ”. As shown in FIG. 26, when the axial force (“P”) shown in FIG. 24 and the axial force (“P”) shown in FIG. 25 are equal, when the surface pressure “σ” becomes large, the static friction coefficient “μ” becomes It can be seen that it tends to be smaller. That is, it can be seen that the larger the surface pressure “σ”, the more slippery it becomes.
 ここで、ボルト600Aと外輪部120との接触面積「S1」は、外輪部120とリンク21Bとの接触面「S2」に比べて非常に小さいことから、ボルト600Aと外輪部120との間の面圧「σ1」は、外輪部120とリンク21Bとの間の面圧「σ2」に比べて非常に大きくなる。このことは、ボルト600Aと外輪部120との界面である「ボルト・外輪部面」は、外輪部120とリンク21Bとの界面である「外輪部・リンク面」よりも滑りやすくなることを意味している。 Here, since the contact area "S1" between the bolt 600A and the outer ring portion 120 is much smaller than the contact surface "S2" between the outer ring portion 120 and the link 21B, the contact area between the bolt 600A and the outer ring portion 120 The surface pressure "σ1" is much larger than the surface pressure "σ2" between the outer ring portion 120 and the link 21B. This means that the "bolt / outer ring surface", which is the interface between the bolt 600A and the outer ring 120, is more slippery than the "outer ring / link surface", which is the interface between the outer ring 120 and the link 21B. doing.
 図27は、「ボルト・外輪部面」に滑りが発生する様子を示す模式図である。図27(a)には、例えば、トルクセンサ100にトルクや力が加わることにより、ボルト600Aが変形する様子が示されている。なお、図27(a)では、わかりやすくするために、ボルト600Aの変形を大きく描いている。ここで、ボルト600Aの変形が大きくなり過ぎて静止摩擦力の限界を超えると、図27(b)に示すように、「ボルト・外輪部面」に滑りが発生する。そして、「ボルト・外輪部面」に滑りが発生すると、トルクセンサ100での駆動軸回りのトルクの検出精度が不安定となることを本発明者は新規に見出した。 FIG. 27 is a schematic view showing how slippage occurs on the “bolt / outer ring portion surface”. FIG. 27A shows, for example, how the bolt 600A is deformed by applying torque or force to the torque sensor 100. In FIG. 27A, the deformation of the bolt 600A is largely drawn for the sake of clarity. Here, if the deformation of the bolt 600A becomes too large and exceeds the limit of the static friction force, slippage occurs on the "bolt / outer ring portion surface" as shown in FIG. 27 (b). Then, the present inventor has newly found that when the "bolt / outer ring portion surface" slips, the detection accuracy of the torque around the drive shaft by the torque sensor 100 becomes unstable.
 以下では、「ボルト・外輪部面」に滑りが発生すると、トルクセンサ100での駆動軸回りのトルクの検出精度が不安定となるメカニズムについて説明する。 In the following, a mechanism will be described in which the torque detection accuracy around the drive shaft of the torque sensor 100 becomes unstable when slippage occurs on the "bolt / outer ring surface".
 図28(a)および図28(b)は、「ボルト・外輪部面」に滑りが発生すると、トルクセンサ100での駆動軸回りのトルクの検出精度が不安定となるメカニズムを説明するための図である。まず、図28(a)において、トルクセンサ100にトルクが加わって、このトルクが内輪部110から外輪部120にせん断力として伝わる力線が矢印で示されている。図28(a)に示すように、せん断力の力線は、内輪部110からスポーク130を通って「ボルト・外輪部面」を介してボルト600Aの内部を伝わる(第1経路)。さらには、第1経路以外に、せん断力の力線は、「外輪部・リンク面」を介してリンク21Bに伝わる(第2経路)。このように、せん断力の力線は、第1経路と第2経路の両方を流れ、第1経路に滑りが発生しやすい「ボルト・外輪部面」が存在する。したがって、「ボルト・外輪部面」に滑りが発生すると、スポーク130を流れるせん断力の力線が乱れることになる。ここで、スポーク130上には、歪センサ200が配置されており、この歪センサ200は、スポーク130上でのせん断力の流れを計測することから、スポーク130を流れるせん断力の力線が乱れると、スポーク130上に配置されている歪センサ200からの出力も乱れることになる。これにより、トルクセンサ100でのトルク検出精度が不安定となる。この知見は、本発明者が新規に見出した知見である。 28 (a) and 28 (b) are for explaining a mechanism in which the torque detection accuracy around the drive shaft of the torque sensor 100 becomes unstable when the “bolt / outer ring surface” slips. It is a figure. First, in FIG. 28A, a force line in which a torque is applied to the torque sensor 100 and the torque is transmitted from the inner ring portion 110 to the outer ring portion 120 as a shearing force is indicated by an arrow. As shown in FIG. 28 (a), the force line of the shearing force is transmitted from the inner ring portion 110 through the spokes 130 to the inside of the bolt 600A via the “bolt / outer ring portion surface” (first path). Further, in addition to the first path, the force line of the shearing force is transmitted to the link 21B via the "outer ring portion / link surface" (second path). As described above, the force line of the shearing force flows through both the first path and the second path, and there is a "bolt / outer ring portion surface" in which slip is likely to occur in the first path. Therefore, if slippage occurs on the "bolt / outer ring portion surface", the force line of the shearing force flowing through the spokes 130 is disturbed. Here, a strain sensor 200 is arranged on the spokes 130, and since the strain sensor 200 measures the flow of the shearing force on the spokes 130, the force line of the shearing force flowing through the spokes 130 is disturbed. Then, the output from the distortion sensor 200 arranged on the spoke 130 is also disturbed. As a result, the torque detection accuracy of the torque sensor 100 becomes unstable. This finding is a finding newly found by the present inventor.
 そこで、本発明者は、この知見に基づいて、トルクセンサ100でのトルク検出精度の安定性を向上させるための工夫をさらに施している。以下では、この工夫点を説明する。 Therefore, based on this finding, the present inventor has further devised a method for improving the stability of the torque detection accuracy of the torque sensor 100. In the following, this device will be described.
 <工夫点の説明>
 図29は、トルクセンサでのトルク検出精度の安定性を向上させるための工夫点を説明するための図である。図29において、工夫点は、トルクセンサ100の外輪部120に設けられている貫通部THにねじ山を形成して、トルクセンサ100とリンク21Bをボルトではなくネジ700で締結している点にある。すなわち、トルクセンサ100の外輪部120には、ネジ穴が形成されており、この外輪部120は、ネジ穴にネジ700を螺合することにより、外輪部120と一体的に回転可能な部材(リンク21B)と締結可能に構成されている。これにより、トルクセンサ100でのトルク検出精度の安定性を向上することができる。以下に、この理由について説明する。
<Explanation of ingenuity>
FIG. 29 is a diagram for explaining a device for improving the stability of the torque detection accuracy of the torque sensor. In FIG. 29, the ingenuity is that a thread is formed in the penetrating portion TH provided in the outer ring portion 120 of the torque sensor 100, and the torque sensor 100 and the link 21B are fastened with a screw 700 instead of a bolt. be. That is, a screw hole is formed in the outer ring portion 120 of the torque sensor 100, and the outer ring portion 120 is a member (which can rotate integrally with the outer ring portion 120 by screwing a screw 700 into the screw hole). It is configured so that it can be fastened to the link 21B). As a result, the stability of the torque detection accuracy of the torque sensor 100 can be improved. The reason for this will be described below.
 図29に示すように、トルクセンサ100とリンク21Bとをネジ締結する場合、トルクセンサ100の外輪部120に設けられたなネジ穴とネジ700とは、ネジ山とネジ谷の全面において摩擦力によって固定されることから、力学的にトルクセンサ100とリンク21Bとは一体品とみなすことができる。したがって、図29において、せん断力の力線は、内輪部110からスポーク130を通って、ネジ700を含む外輪部120に伝わった後、「外輪部・リンク面」を介してリンク21Bに流れる。このとき、「外輪部・リンク面」は、外輪部120全体で接触するため、面圧「σ」が小さくなり、これによって、静止摩擦係数「μ」は大きくなる。このことは、この工夫点によれば、外輪部120とリンク21Bとの間で滑りが発生しにくいことを意味する(第1利点)。さらに、この工夫点では、滑りが発生しやすい「ボルト・外輪部面」が存在しない(第2利点)。このように、本実施の形態における工夫点によれば、上述した第1利点と第2利点との相乗要因によって、スポーク130を通るせん断力の力線の流れは安定する結果、トルクセンサ100でのトルク検出精度の安定性を向上することができる。 As shown in FIG. 29, when the torque sensor 100 and the link 21B are screwed together, the screw holes and the screws 700 provided in the outer ring portion 120 of the torque sensor 100 have frictional forces on the entire surface of the threads and screw valleys. Since it is fixed by, the torque sensor 100 and the link 21B can be mechanically regarded as an integrated product. Therefore, in FIG. 29, the force line of the shearing force is transmitted from the inner ring portion 110 through the spokes 130 to the outer ring portion 120 including the screw 700, and then flows to the link 21B via the “outer ring portion / link surface”. At this time, since the "outer ring portion / link surface" is in contact with the entire outer ring portion 120, the surface pressure "σ" becomes small, and thus the static friction coefficient "μ" becomes large. This means that, according to this device, slippage is less likely to occur between the outer ring portion 120 and the link 21B (first advantage). Further, in this device, there is no "bolt / outer ring surface" where slippage is likely to occur (second advantage). As described above, according to the ingenuity in the present embodiment, the flow of the force line of the shearing force passing through the spoke 130 is stabilized by the synergistic factor of the first advantage and the second advantage described above, and as a result, the torque sensor 100 The stability of torque detection accuracy can be improved.
 <変形例>
 基本思想は、トルクセンサに備わる複数の歪センサの配置に対する工夫と、複数の歪センサのそれぞれに形成されている複数の抵抗素子の配置に対する工夫によって、駆動軸回りのトルクに起因する歪だけを抽出する一方、駆動軸以外の他軸回りのトルクに起因する歪や各軸方向に加わる力に起因する歪を相殺する思想である。この基本思想は、実施の形態では、図5に示すような4つの歪センサ200を備えるトルクセンサ100の構成を採用し、かつ、図8に示すような歪センサ200に形成されている複数の抵抗素子300のレイアウト配置を採用することにより実現されている。
<Modification example>
The basic idea is to devise the arrangement of multiple strain sensors provided in the torque sensor and the arrangement of multiple resistance elements formed in each of the multiple strain sensors to eliminate only the distortion caused by the torque around the drive shaft. On the other hand, the idea is to offset the distortion caused by the torque around the other shafts other than the drive shaft and the strain caused by the force applied in each axis direction. In this basic idea, in the embodiment, a configuration of a torque sensor 100 including four strain sensors 200 as shown in FIG. 5 is adopted, and a plurality of strain sensors 200 formed in the strain sensor 200 as shown in FIG. 8 are formed. This is realized by adopting the layout arrangement of the resistance element 300.
 ただし、基本思想は、実施の形態で説明した構成だけでなく、さらに、図30に示すような6つの歪センサ200を備えるトルクセンサ100Aの構成を採用し、かつ、図8に示すような歪センサ200に形成されている複数の抵抗素子300のレイアウト配置を採用するという本変形例の構成によっても実現することができる。 However, the basic idea is not only the configuration described in the embodiment, but also the configuration of the torque sensor 100A including the six strain sensors 200 as shown in FIG. 30 and the distortion as shown in FIG. This can also be realized by the configuration of this modification in which the layout arrangement of the plurality of resistance elements 300 formed on the sensor 200 is adopted.
 以下では、まず、本変形例にトルクセンサ100Aの構成を説明する。 In the following, first, the configuration of the torque sensor 100A will be described in this modified example.
 図30は、本変形例におけるトルクセンサ100Aの構成を示す平面図である。図30において、トルクセンサ100Aは、円形リングから構成される内輪部110と、内輪部110よりも径の大きな円形リングから構成される外輪部120と、内輪部110と外輪部120とを接続する複数のスポーク(接続部)130とを備えている。 FIG. 30 is a plan view showing the configuration of the torque sensor 100A in this modified example. In FIG. 30, the torque sensor 100A connects an inner ring portion 110 composed of a circular ring, an outer ring portion 120 composed of a circular ring having a diameter larger than that of the inner ring portion 110, and the inner ring portion 110 and the outer ring portion 120. It is provided with a plurality of spokes (connection portions) 130.
 本変形例では、複数のスポーク130は、6つのスポーク130であるスポーク130A、スポーク130B、スポーク130C、スポーク130D、スポーク130Eおよびスポーク130Fから構成されている。 In this modification, the plurality of spokes 130 are composed of six spokes 130, spokes 130A, spokes 130B, spokes 130C, spokes 130D, spokes 130E, and spokes 130F.
 具体的に、スポーク130Aおよびスポーク130Dは、第1仮想線VL1上にそれぞれ配置され、かつ、内輪中心CPに対して互いに反対側に配置されている。スポーク130Bおよびスポーク130Eは、仮想線VL2A上にそれぞれ配置され、かつ、内輪中心CPに対して互いに反対側に配置されている。スポーク130Cおよびスポーク130Fは、仮想線VL2B上にそれぞれ配置され、かつ、内輪中心CPに対して互いに反対側に配置されている。 Specifically, the spokes 130A and 130D are arranged on the first virtual line VL1 and on opposite sides of the inner ring center CP. The spokes 130B and 130E are arranged on the virtual line VL2A, respectively, and are arranged on opposite sides to the inner ring center CP. The spokes 130C and 130F are arranged on the virtual line VL2B, respectively, and are arranged on opposite sides to the inner ring center CP.
 第1仮想線VL1、仮想線VL2Aおよび仮想線VL2Bは、内輪部110の内輪中心CPで交差し、およそ60度の交差角度をなしている。つまり、本変形例では、第1仮想線VL1、仮想線VL2Aおよび仮想線VL2Bが互いに直交していない。そして、図30において、第1仮想線VL1と直交する仮想線を第2仮想線VL2とすると、この第2仮想線VL2は、仮想線VL2Aと仮想線VL2Bとの二等分線となっている。 The first virtual line VL1, the virtual line VL2A, and the virtual line VL2B intersect at the inner ring center CP of the inner ring portion 110, and form an intersection angle of about 60 degrees. That is, in this modification, the first virtual line VL1, the virtual line VL2A, and the virtual line VL2B are not orthogonal to each other. Then, in FIG. 30, assuming that the virtual line orthogonal to the first virtual line VL1 is the second virtual line VL2, the second virtual line VL2 is a bisector of the virtual line VL2A and the virtual line VL2B. ..
 次に、図30に示すように、6つのスポーク130上には、それぞれ歪センサ200が搭載されている。具体的に、スポーク130A上には、第1歪センサ200Aが搭載されており、スポーク130B上には、第2歪センサ200Bが搭載されている。また、スポーク130C上には、第3歪センサ200Cが搭載されており、スポーク130D上には、第4歪センサ200Dが搭載されている。さらに、スポーク130E上には、第5歪センサ200Eが搭載されており、スポーク130F上には、第6歪センサ200Fが搭載されている。 Next, as shown in FIG. 30, strain sensors 200 are mounted on each of the six spokes 130. Specifically, the first strain sensor 200A is mounted on the spokes 130A, and the second strain sensor 200B is mounted on the spokes 130B. A third strain sensor 200C is mounted on the spokes 130C, and a fourth strain sensor 200D is mounted on the spokes 130D. Further, a fifth distortion sensor 200E is mounted on the spokes 130E, and a sixth distortion sensor 200F is mounted on the spokes 130F.
 6つのスポーク130のそれぞれに搭載されている歪センサ200は、図8に示すように、複数の抵抗素子300が形成されている。この点において、本変形例は、実施の形態と同様である。 As shown in FIG. 8, a plurality of resistance elements 300 are formed in the strain sensor 200 mounted on each of the six spokes 130. In this respect, the present modification is the same as that of the embodiment.
 図30において、第1歪センサ200Aと第4歪センサ200Dは、内輪中心CPに対して点対称である。同様に、第2歪センサ200Bと第5歪センサ200Eは、内輪中心CPに対して点対称である。また、第3歪センサ200Cと第6歪センサ200Fは、内輪中心CPに対して点対称である。 In FIG. 30, the first strain sensor 200A and the fourth strain sensor 200D are point-symmetric with respect to the inner ring center CP. Similarly, the second strain sensor 200B and the fifth strain sensor 200E are point-symmetric with respect to the inner ring center CP. Further, the third strain sensor 200C and the sixth strain sensor 200F are point-symmetrical with respect to the inner ring center CP.
 このようにして、トルクセンサ100Aが構成されている。 In this way, the torque sensor 100A is configured.
 図31は、変形例への基本思想の適用例を説明する表である。 FIG. 31 is a table for explaining an example of applying the basic idea to a modified example.
 図31において、第1歪センサ200Aでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「ゼロ」、y軸回りのy軸トルクに起因する歪は「εTy」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「εFx」、y軸方向の力に起因する歪は「ゼロ」、z軸方向の力に起因する歪は「ゼロ」となる。 In FIG. 31, in the first strain sensor 200A, by adopting the configuration shown in FIG. 30, the strain caused by the x-axis torque around the x-axis is “zero”, and the strain caused by the y-axis torque around the y-axis is set to “zero”. "Ε Ty ", strain due to z-axis torque around the z-axis is "ε Tz ", strain due to force in the x-axis direction is "ε Fx ", strain due to force in the y-axis direction is "zero" , The distortion caused by the force in the z-axis direction becomes "zero".
 第2歪センサ200Bでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「ε´Tx」、y軸回りのy軸トルクに起因する歪は「ε´´Ty」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「ε´Fx」、y軸方向の力に起因する歪は「ε´´Fy」、z軸方向の力に起因する歪は「ゼロ」となる。 In the second strain sensor 200B, by employing the configuration shown in FIG. 30, the distortion distortion resulting from x-axis torque about the x-axis is due to the "Ipushiron'Tx", y-axis torque around the y-axis is "ε '' Ty ”, the strain caused by the z-axis torque around the z-axis is“ ε Tz ”, the strain caused by the force in the x-axis direction is“ ε ´ Fx ”, and the strain caused by the force in the y-axis direction is“ ε Tz ”. '' Fy ”, the distortion caused by the force in the z-axis direction is“ zero ”.
 第3歪センサ200Cでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「-ε´Tx」、y軸回りのy軸トルクに起因する歪は「-ε´´Ty」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「-ε´Fx」、y軸方向の力に起因する歪は「-ε´´Fy」、z軸方向の力に起因する歪は「ゼロ」となる。 In the third strain sensor 200C, by adopting the configuration shown in FIG. 30, the distortion caused by the x-axis torque around the x-axis is the strain caused by the "-Ipushiron'Tx", y-axis torque about the y-axis is "-Ipushiron'' Ty ", z-axis about the z-axis distortion resulting from torque" epsilon Tz ", distortion resulting from force in x-axis direction"-Ipushiron' Fx ", distortion resulting from forces in the y-axis direction Is "-ε" Fy ", and the distortion caused by the force in the z-axis direction is" zero ".
 第4歪センサ200Dでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「ゼロ」、y軸回りのy軸トルクに起因する歪は「-εTy」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「-εFx」、y軸方向の力に起因する歪は「ゼロ」、z軸方向の力に起因する歪は「ゼロ」となる。 In the fourth strain sensor 200D, by adopting the configuration shown in FIG. 30, the strain caused by the x-axis torque around the x-axis is "zero", and the strain caused by the y-axis torque around the y-axis is "-ε Ty". , The strain caused by the z-axis torque around the z-axis is "ε Tz ", the strain caused by the force in the x-axis direction is "-ε Fx ", the strain caused by the force in the y-axis direction is "zero", z The distortion caused by the axial force is "zero".
 第5歪センサ200Eでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「-ε´Tx」、y軸回りのy軸トルクに起因する歪は「-ε´´Ty」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「-ε´Fx」、y軸方向の力に起因する歪は「-ε´´Fy」、z軸方向の力に起因する歪は「ゼロ」となる。 In the fifth strain sensor 200E, by adopting the configuration shown in FIG. 30, the distortion caused by the x-axis torque around the x-axis is the strain caused by the "-Ipushiron'Tx", y-axis torque about the y-axis is "-Ipushiron'' Ty ", z-axis about the z-axis distortion resulting from torque" epsilon Tz ", distortion resulting from force in x-axis direction"-Ipushiron' Fx ", distortion resulting from forces in the y-axis direction Is "-ε" Fy ", and the distortion caused by the force in the z-axis direction is" zero ".
 第6歪センサ200Fでは、図30に示す構成を採用することにより、x軸回りのx軸トルクに起因する歪は「ε´Tx」、y軸回りのy軸トルクに起因する歪は「ε´´Ty」、z軸回りのz軸トルクに起因する歪は「εTz」、x軸方向の力に起因する歪は「ε´Fx」、y軸方向の力に起因する歪は「ε´´Fy」、z軸方向の力に起因する歪は「ゼロ」となる。 In the sixth strain sensor 200F, by adopting the configuration shown in FIG. 30, the distortion distortion resulting from x-axis torque about the x-axis is due to the "Ipushiron'Tx", y-axis torque around the y-axis is "ε '' Ty ”, the strain caused by the z-axis torque around the z-axis is“ ε Tz ”, the strain caused by the force in the x-axis direction is“ ε ´ Fx ”, and the strain caused by the force in the y-axis direction is“ ε Tz ”. '' Fy ”, the distortion caused by the force in the z-axis direction is“ zero ”.
 そして、本変形例でも、第1歪センサ200Aと第2歪センサ200Bと第3歪センサ200Cと第4歪センサ200Dと第5歪センサ200Eと第6歪センサ200Fのそれぞれで発生した歪を加算する。すると、例えば、x軸回りのx軸トルクに起因する合計歪は「ゼロ」、y軸回りのy軸トルクに起因する合計歪は「ゼロ」、z軸回りのz軸トルクに起因する合計歪は「6εTz」、x軸方向の力に起因する合計歪は「ゼロ」、y軸方向の力に起因する合計歪は「ゼロ」、z軸方向の力に起因する合計歪は「ゼロ」となる。 Then, also in this modified example, the strains generated by the first strain sensor 200A, the second strain sensor 200B, the third strain sensor 200C, the fourth strain sensor 200D, the fifth strain sensor 200E, and the sixth strain sensor 200F are added. do. Then, for example, the total strain caused by the x-axis torque around the x-axis is "zero", the total strain caused by the y-axis torque around the y-axis is "zero", and the total strain caused by the z-axis torque around the z-axis is "zero". Is "6ε Tz ", the total strain caused by the force in the x-axis direction is "zero", the total strain caused by the force in the y-axis direction is "zero", and the total strain caused by the force in the z-axis direction is "zero". It becomes.
 つまり、図31に示すように、z軸回りのz軸トルクに起因する合計歪以外の合計歪は「ゼロ」となる。このことは、本変形例でも、駆動軸回りのトルクに起因する歪だけを抽出する一方、駆動軸以外の他軸回りのトルクに起因する歪や各軸方向に加わる力に起因する歪を相殺することができることを意味していることになる。したがって、本変形例においても、駆動軸回りのトルクだけでなく、駆動軸以外の他軸回りのトルクや各軸方向の力が加わっている場合でも、駆動軸回りのトルクに起因する歪だけを抽出し、それ以外の歪を相殺することができる結果、駆動軸回りのトルクを高精度に算出することができることがわかる。 That is, as shown in FIG. 31, the total strain other than the total strain caused by the z-axis torque around the z-axis is "zero". This means that even in this modification, only the strain caused by the torque around the drive shaft is extracted, while the strain caused by the torque around the other shafts other than the drive shaft and the strain caused by the force applied in each axial direction are offset. It means that you can do it. Therefore, even in this modified example, not only the torque around the drive shaft but also the torque around other shafts other than the drive shaft and the distortion caused by the torque around the drive shaft are applied even when a force in each shaft direction is applied. As a result of being able to extract and offset the other strains, it can be seen that the torque around the drive shaft can be calculated with high accuracy.
 以上のように、基本思想は、例えば、図5に示す実施の形態におけるトルクセンサ100の構成によって実現できるだけでなく、図30に示す本変形例におけるトルクセンサ100Aの構成によっても実現できることがわかる。 As described above, it can be seen that the basic idea can be realized not only by the configuration of the torque sensor 100 in the embodiment shown in FIG. 5, but also by the configuration of the torque sensor 100A in the present modification shown in FIG.
 特に、実施の形態におけるトルクセンサ100を採用する利点は、本変形例のように6つの歪センサ200よりも少ない4つの歪センサ200で基本思想を実現できる点でコスト削減を図ることができる点が挙げられる。 In particular, the advantage of adopting the torque sensor 100 in the embodiment is that the cost can be reduced in that the basic idea can be realized with four strain sensors 200, which is less than the six strain sensors 200 as in this modification. Can be mentioned.
 一方、本変形例におけるトルクセンサ100Aを採用する利点は、実施の形態では駆動軸回り(z軸周り)のトルクに起因する歪の合計が「4εTz」であるのに対し(図7参照)、本変形例では、駆動軸回り(z軸周り)のトルクに起因する歪の合計を「6εTz」にすることができる結果、検出信号の大きさを大きくできる点を挙げることができる。 On the other hand, the advantage of adopting the torque sensor 100A in this modification is that the total strain due to the torque around the drive shaft (around the z-axis) is "4ε Tz " in the embodiment (see FIG. 7). In this modification, the total strain caused by the torque around the drive shaft (around the z-axis) can be set to "6 ε Tz ", and as a result, the magnitude of the detection signal can be increased.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventor has been specifically described above based on the embodiment thereof, the present invention is not limited to the embodiment and can be variously modified without departing from the gist thereof. Needless to say.
 例えば、図8に示すように、本実施の形態における歪センサ200には、互いに直交配置される4個の抵抗素子300(抵抗素子300Aと抵抗素子300Bと抵抗素子300Cと抵抗素子300D)から構成する例について説明しているが、本実施の形態における技術的思想は、これに限らず、例えば、図8において、互いに直交配置される2個の抵抗素子300(抵抗素子300Aと抵抗素子300D)から歪センサ200を構成する場合にも幅広く適用することができる。 For example, as shown in FIG. 8, the strain sensor 200 in the present embodiment is composed of four resistance elements 300 (resistance element 300A, resistance element 300B, resistance element 300C, and resistance element 300D) arranged orthogonally to each other. However, the technical idea in the present embodiment is not limited to this, and for example, in FIG. 8, two resistance elements 300 (resistance element 300A and resistance element 300D) arranged at right angles to each other. It can be widely applied to the case of configuring the strain sensor 200.
 1 ロボットシステム
 10 ロボットアーム
 11 ロボット制御部
 20 ロボット関節構造
 20A ロボット関節構造
 20B ロボット関節構造
 20C ロボット関節構造
 21A リンク
 21B リンク
 22 モータ
 23 減速機
 24 駆動部
 25 潤滑部材
 26 ベアリング部材
 30 トルクセンサ
 100 トルクセンサ
 110 内輪部
 120 外輪部
 130 スポーク
 130A スポーク
 130B スポーク
 130C スポーク
 130D スポーク
 200 歪センサ
 200A 第1歪センサ
 200B 第2歪センサ
 200C 第3歪センサ
 200D 第4歪センサ
 300 抵抗素子
 300A 抵抗素子
 300B 抵抗素子
 300C 抵抗素子
 300D 抵抗素子
 500 算出部
 501 第1電圧値入力部
 502 第2電圧値入力部
 503 第3電圧値入力部
 504 第4電圧値入力部
 505 電圧値加算部
 506 駆動軸トルク算出部
 507 出力部
 508 データ記憶部
 600A ボルト
 600B ナット
 700 ネジ
 CP 内輪中心
 OP 開口部
 TH 貫通部
1 Robot system 10 Robot arm 11 Robot control unit 20 Robot joint structure 20A Robot joint structure 20B Robot joint structure 20C Robot joint structure 21A Link 21B Link 22 Motor 23 Reducer 24 Drive unit 25 Lubricating member 26 Bearing member 30 Torque sensor 100 Torque sensor 110 Inner ring 120 Outer ring 130 Spoke 130A Spoke 130B Spoke 130C Spoke 130D Spoke 200 Strain sensor 200A 1st strain sensor 200B 2nd strain sensor 200C 3rd strain sensor 200D 4th strain sensor 300 Resistance element 300A Resistance element 300B Resistance element 300C Element 300D Resistance element 500 Calculation unit 501 1st voltage value input unit 502 2nd voltage value input unit 503 3rd voltage value input unit 504 4th voltage value input unit 505 Voltage value addition unit 506 Drive shaft torque calculation unit 507 Output unit 508 Data storage 600A Bolt 600B Nut 700 Screw CP Inner ring center OP Opening TH Penetration

Claims (15)

  1.  内輪部と、
     外輪部と、
     前記内輪部と前記外輪部とを接続する複数の接続部と、
     歪を抵抗値の変化として捉える複数の歪センサと、
     を備え、
     前記複数の接続部は、
     前記内輪部の内輪中心を通る第1仮想線上にそれぞれ配置され、かつ、前記内輪中心に対して互いに反対側に配置された第1接続部および第3接続部と、
     前記内輪部の前記内輪中心を通る第2仮想線であって前記第1仮想線と直交する前記第2仮想線上にそれぞれ配置され、かつ、前記内輪中心に対して互いに反対側に配置された第2接続部および第4接続部と、
     を有し、
     前記複数の歪センサは、
     前記第1接続部上に配置された第1歪センサと、
     前記第2接続部上に配置された第2歪センサと、
     前記第3接続部上に配置された第3歪センサと、
     前記第4接続部上に配置された第4歪センサと、
     を有し、
     前記複数の歪センサのそれぞれは、
     平面視において第3仮想線と重なる半導体基板と、
     前記半導体基板に形成された複数の抵抗素子と、
     を有し、
     前記複数の抵抗素子は、
     第1抵抗素子と、
     第2抵抗素子と、
     を含み、
     前記第1抵抗素子と前記第2抵抗素子とのなす第1角度は、直角であり、
     前記第3仮想線は、前記第1角度を二等分する方向に延在し、
     前記複数の歪センサのうちの前記第1歪センサは、前記第3仮想線が前記第1仮想線と一致するように前記第1接続部上に配置され、
     前記複数の歪センサのうちの前記第2歪センサは、前記第3仮想線が前記第2仮想線と一致するように前記第2接続部上に配置され、
     前記複数の歪センサのうちの前記第3歪センサは、前記第3仮想線が前記第1仮想線と一致し、かつ、前記内輪中心に対して前記第3歪センサの前記第1抵抗素子が前記第1歪センサの前記第1抵抗素子と点対称になり、かつ、前記内輪中心に対して前記第3歪センサの前記第2抵抗素子が前記第1歪センサの前記第2抵抗素子と点対称となるように前記第3接続部上に配置され、
     前記複数の歪センサのうちの前記第4歪センサは、前記第3仮想線が前記第2仮想線と一致し、かつ、前記内輪中心に対して前記第4歪センサの前記第1抵抗素子が前記第2歪センサの前記第1抵抗素子と点対称になり、かつ、前記内輪中心に対して前記第4歪センサの前記第2抵抗素子が前記第2歪センサの前記第2抵抗素子と点対称となるように前記第4接続部上に配置されている、トルクセンサ。
    Inner ring part and
    With the outer ring
    A plurality of connecting portions connecting the inner ring portion and the outer ring portion, and
    Multiple distortion sensors that capture distortion as a change in resistance value,
    With
    The plurality of connections are
    The first connection portion and the third connection portion arranged on the first virtual line passing through the inner ring center of the inner ring portion and arranged on opposite sides to the inner ring center, respectively.
    A second virtual line passing through the center of the inner ring of the inner ring portion, which is arranged on each of the second virtual lines orthogonal to the first virtual line and arranged on opposite sides to the center of the inner ring. 2 connection part and 4th connection part,
    Have,
    The plurality of strain sensors
    The first distortion sensor arranged on the first connection portion and
    The second distortion sensor arranged on the second connection portion and
    With the third distortion sensor arranged on the third connection part,
    The fourth distortion sensor arranged on the fourth connection portion and
    Have,
    Each of the plurality of strain sensors
    A semiconductor substrate that overlaps the third virtual line in a plan view,
    A plurality of resistance elements formed on the semiconductor substrate and
    Have,
    The plurality of resistance elements
    With the first resistance element
    With the second resistance element
    Including
    The first angle formed by the first resistance element and the second resistance element is a right angle.
    The third virtual line extends in a direction that bisects the first angle.
    The first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line.
    The second strain sensor among the plurality of strain sensors is arranged on the second connection portion so that the third virtual line coincides with the second virtual line.
    In the third strain sensor among the plurality of strain sensors, the third virtual line coincides with the first virtual line, and the first resistance element of the third strain sensor is attached to the center of the inner ring. The point symmetry with the first resistance element of the first strain sensor, and the second resistance element of the third strain sensor points with respect to the center of the inner ring with the second resistance element of the first strain sensor. Arranged on the third connection so as to be symmetrical,
    In the fourth strain sensor among the plurality of strain sensors, the third virtual line coincides with the second virtual line, and the first resistance element of the fourth strain sensor is attached to the center of the inner ring. The point symmetry with the first resistance element of the second strain sensor, and the second resistance element of the fourth strain sensor points with respect to the center of the inner ring with the second resistance element of the second strain sensor. A torque sensor arranged on the fourth connection portion so as to be symmetrical.
  2.  請求項1に記載のトルクセンサにおいて、
     前記トルクセンサは、前記複数の歪センサからの出力に基づいて、前記内輪中心を通り、かつ、前記内輪部に垂直な法線軸回りのトルクを算出する算出部を有する、トルクセンサ。
    In the torque sensor according to claim 1,
    The torque sensor is a torque sensor having a calculation unit that calculates torque around a normal axis that passes through the center of the inner ring and is perpendicular to the inner ring portion based on outputs from the plurality of strain sensors.
  3.  請求項2に記載のトルクセンサにおいて、
     前記算出部は、
     前記第1歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との第1差分と、前記第2歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値の第2差分と、前記第3歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との第3差分と、前記第4歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値の第4差分と、を加算した合計出力に基づいて、前記内輪部に垂直な法線軸回りのトルクを算出する、トルクセンサ。
    In the torque sensor according to claim 2.
    The calculation unit
    The first difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the first strain sensor, the resistance value of the first resistance element in the second strain sensor, and the second resistance element. The second difference of the resistance value of, the third difference between the resistance value of the first resistance element in the third strain sensor and the resistance value of the second resistance element, and the first resistance element in the fourth strain sensor. A torque sensor that calculates the torque around the normal axis perpendicular to the inner ring portion based on the total output obtained by adding the resistance value of the above and the fourth difference of the resistance value of the second resistance element.
  4.  請求項1に記載のトルクセンサにおいて、
     前記複数の抵抗素子のそれぞれは、前記半導体基板に導電型不純物を導入することにより形成された拡散抵抗素子である、トルクセンサ。
    In the torque sensor according to claim 1,
    Each of the plurality of resistance elements is a torque sensor which is a diffusion resistance element formed by introducing conductive impurities into the semiconductor substrate.
  5.  請求項1に記載のトルクセンサにおいて、
     前記複数の抵抗素子は、
     第3抵抗素子と、
     第4抵抗素子と、
     を含み、
     前記第3抵抗素子と前記第4抵抗素子とのなす第2角度は、直角であり、
     前記第3仮想線は、前記第2角度を二等分する方向に延在する、トルクセンサ。
    In the torque sensor according to claim 1,
    The plurality of resistance elements
    With the third resistance element
    With the 4th resistance element
    Including
    The second angle formed by the third resistance element and the fourth resistance element is a right angle.
    The third virtual line is a torque sensor extending in a direction that bisects the second angle.
  6.  請求項5に記載のトルクセンサにおいて、
     前記トルクセンサは、前記複数の歪センサからの出力に基づいて、前記半導体基板の主面に対する法線軸回りのトルクを算出する算出部を有し、
     前記算出部は、
     前記第1歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との差分と前記第1歪センサにおける前記第3抵抗素子の抵抗値と前記第4抵抗素子の抵抗値との差分とを加算した第1合計と、
     前記第2歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との差分と前記第2歪センサにおける前記第3抵抗素子の抵抗値と前記第4抵抗素子の抵抗値との差分とを加算した第2合計と、
     前記第3歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との差分と前記第3歪センサにおける前記第3抵抗素子の抵抗値と前記第4抵抗素子の抵抗値との差分とを加算した第3合計と、
     前記第4歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との差分と前記第4歪センサにおける前記第3抵抗素子の抵抗値と前記第4抵抗素子の抵抗値との差分とを加算した第4合計と、
     を加算した合計出力に基づいて、前記内輪部に垂直な法線軸回りのトルクを算出する、トルクセンサ。
    In the torque sensor according to claim 5.
    The torque sensor has a calculation unit that calculates torque around the normal axis with respect to the main surface of the semiconductor substrate based on outputs from the plurality of strain sensors.
    The calculation unit
    The difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the first strain sensor, the resistance value of the third resistance element in the first strain sensor, and the resistance value of the fourth resistance element. The first total, which is the sum of the difference between
    The difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the second strain sensor, the resistance value of the third resistance element in the second strain sensor, and the resistance value of the fourth resistance element. The second total, which is the sum of the difference between
    The difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the third strain sensor, the resistance value of the third resistance element in the third strain sensor, and the resistance value of the fourth resistance element. The third total, which is the sum of the difference between
    The difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the fourth strain sensor, the resistance value of the third resistance element in the fourth strain sensor, and the resistance value of the fourth resistance element. The fourth total, which is the sum of the difference between
    A torque sensor that calculates the torque around the normal axis perpendicular to the inner ring portion based on the total output obtained by adding.
  7.  請求項1に記載のトルクセンサにおいて、
     前記外輪部には、ネジ穴が形成されている、トルクセンサ。
    In the torque sensor according to claim 1,
    A torque sensor in which a screw hole is formed in the outer ring portion.
  8.  請求項7に記載のトルクセンサにおいて、
     前記外輪部は、前記ネジ穴にネジを螺合することにより、前記外輪部と一体的に回転可能な部材と締結可能に構成されている、トルクセンサ。
    In the torque sensor according to claim 7.
    The torque sensor is configured such that the outer ring portion can be fastened to a member that can be integrally rotated with the outer ring portion by screwing a screw into the screw hole.
  9.  請求項8に記載のトルクセンサにおいて、
     前記部材は、リンクである、トルクセンサ。
    In the torque sensor according to claim 8.
    The member is a torque sensor which is a link.
  10.  請求項1に記載のトルクセンサにおいて、
     前記トルクセンサは、ロボット関節構造を構成する部品である、トルクセンサ。
    In the torque sensor according to claim 1,
    The torque sensor is a torque sensor which is a component constituting a robot joint structure.
  11.  請求項1に記載されたトルクセンサと、
     前記トルクセンサの前記内輪部と接続された駆動部と、
     を有する、ロボット関節構造であって、
     前記駆動部と前記外輪部の間には、ベアリング部材が介在しない、ロボット関節構造。
    The torque sensor according to claim 1 and
    A drive unit connected to the inner ring portion of the torque sensor and
    It is a robot joint structure with
    A robot joint structure in which a bearing member does not intervene between the drive portion and the outer ring portion.
  12.  内輪部と、
     外輪部と、
     前記内輪部と前記外輪部とを接続する複数の接続部と、
     歪を抵抗値の変化として捉える複数の歪センサと、
     を備え、
     前記複数の接続部は、
     前記内輪部の内輪中心を通る第1仮想線上にそれぞれ配置され、かつ、前記内輪中心に対して互いに反対側に配置された第1接続部および第4接続部と、
     前記内輪部の前記内輪中心を通る第2A仮想線であって前記第1仮想線と内輪中心で交差する前記第2A仮想線上にそれぞれ配置され、かつ、前記内輪中心に対して互いに反対側に配置された第2接続部および第5接続部と、
     前記内輪部の前記内輪中心を通る第2B仮想線であって前記第1仮想線と内輪中心で交差する前記第2B仮想線上にそれぞれ配置され、かつ、前記内輪中心に対して互いに反対側に配置された第3接続部および第6接続部と、
     を有し、
     前記複数の歪センサは、
     前記第1接続部上に配置された第1歪センサと、
     前記第2接続部上に配置された第2歪センサと、
     前記第3接続部上に配置された第3歪センサと、
     前記第4接続部上に配置された第4歪センサと、
     前記第5接続部上に配置された第5歪センサと、
     前記第6接続部上に配置された第6歪センサと、
     を有し、
     前記複数の歪センサのそれぞれは、
     平面視において第3仮想線と重なる半導体基板と、
     前記半導体基板に形成された複数の抵抗素子と、
     を有し、
     前記複数の抵抗素子は、
     第1抵抗素子と、
     第2抵抗素子と、
     を含み、
     前記第1抵抗素子と前記第2抵抗素子とのなす第1角度は、直角であり、
     前記第3仮想線は、前記第1角度を二等分する方向に延在し、
     前記複数の歪センサのうちの前記第1歪センサは、前記第3仮想線が前記第1仮想線と一致するように前記第1接続部上に配置され、
     前記複数の歪センサのうちの前記第2歪センサは、前記第3仮想線が前記第2A仮想線と一致するように前記第2接続部上に配置され、
     前記複数の歪センサのうちの前記第3歪センサは、前記第3仮想線が前記第2B仮想線と一致するように前記第2接続部上に配置され、
     前記複数の歪センサのうちの前記第4歪センサは、前記第3仮想線が前記第1仮想線と一致し、かつ、前記内輪中心に対して前記第4歪センサの前記第1抵抗素子が前記第1歪センサの前記第1抵抗素子と点対称になり、かつ、前記内輪中心に対して前記第4歪センサの前記第2抵抗素子が前記第1歪センサの前記第2抵抗素子と点対称となるように前記第4接続部上に配置され、
     前記複数の歪センサのうちの前記第5歪センサは、前記第3仮想線が前記第2A仮想線と一致し、かつ、前記内輪中心に対して前記第5歪センサの前記第1抵抗素子が前記第2歪センサの前記第1抵抗素子と点対称になり、かつ、前記内輪中心に対して前記第5歪センサの前記第2抵抗素子が前記第2歪センサの前記第2抵抗素子と点対称となるように前記第5接続部上に配置され、
     前記複数の歪センサのうちの前記第6歪センサは、前記第3仮想線が前記第2B仮想線と一致し、かつ、前記内輪中心に対して前記第6歪センサの前記第1抵抗素子が前記第3歪センサの前記第1抵抗素子と点対称になり、かつ、前記内輪中心に対して前記第6歪センサの前記第2抵抗素子が前記第3歪センサの前記第2抵抗素子と点対称となるように前記第6接続部上に配置されている、トルクセンサ。
    Inner ring part and
    With the outer ring
    A plurality of connecting portions connecting the inner ring portion and the outer ring portion, and
    Multiple distortion sensors that capture distortion as a change in resistance value,
    With
    The plurality of connections are
    The first connection portion and the fourth connection portion arranged on the first virtual line passing through the inner ring center of the inner ring portion and arranged on opposite sides to the inner ring center, respectively.
    A second A virtual line passing through the center of the inner ring of the inner ring portion, which is arranged on the second A virtual line intersecting the first virtual line at the center of the inner ring, and arranged on opposite sides to the center of the inner ring. With the 2nd and 5th connections made
    A second B virtual line passing through the center of the inner ring of the inner ring portion, which is arranged on the second B virtual line intersecting the first virtual line at the center of the inner ring, and arranged on opposite sides to the center of the inner ring. With the 3rd and 6th connections made
    Have,
    The plurality of strain sensors
    The first distortion sensor arranged on the first connection portion and
    The second distortion sensor arranged on the second connection portion and
    With the third distortion sensor arranged on the third connection part,
    The fourth distortion sensor arranged on the fourth connection portion and
    With the fifth distortion sensor arranged on the fifth connection part,
    With the sixth distortion sensor arranged on the sixth connection part,
    Have,
    Each of the plurality of strain sensors
    A semiconductor substrate that overlaps the third virtual line in a plan view,
    A plurality of resistance elements formed on the semiconductor substrate and
    Have,
    The plurality of resistance elements
    With the first resistance element
    With the second resistance element
    Including
    The first angle formed by the first resistance element and the second resistance element is a right angle.
    The third virtual line extends in a direction that bisects the first angle.
    The first strain sensor among the plurality of strain sensors is arranged on the first connection portion so that the third virtual line coincides with the first virtual line.
    The second strain sensor among the plurality of strain sensors is arranged on the second connection portion so that the third virtual line coincides with the second A virtual line.
    The third strain sensor among the plurality of strain sensors is arranged on the second connection portion so that the third virtual line coincides with the second B virtual line.
    In the fourth strain sensor among the plurality of strain sensors, the third virtual line coincides with the first virtual line, and the first resistance element of the fourth strain sensor is attached to the center of the inner ring. The point symmetry with the first resistance element of the first strain sensor, and the second resistance element of the fourth strain sensor points with respect to the center of the inner ring with the second resistance element of the first strain sensor. Arranged on the fourth connection so as to be symmetrical,
    In the fifth strain sensor among the plurality of strain sensors, the third virtual line coincides with the second A virtual line, and the first resistance element of the fifth strain sensor is attached to the center of the inner ring. The point symmetry with the first resistance element of the second strain sensor, and the second resistance element of the fifth strain sensor points with respect to the center of the inner ring with the second resistance element of the second strain sensor. Arranged on the fifth connection so as to be symmetrical,
    In the sixth strain sensor among the plurality of strain sensors, the third virtual line coincides with the second B virtual line, and the first resistance element of the sixth strain sensor is attached to the center of the inner ring. The point symmetry with the first resistance element of the third strain sensor, and the second resistance element of the sixth strain sensor points with respect to the center of the inner ring with the second resistance element of the third strain sensor. A torque sensor arranged on the sixth connection portion so as to be symmetrical.
  13.  請求項12に記載のトルクセンサにおいて、
     前記内輪中心を通る仮想線であって前記第1仮想線と直交する前記仮想線を第2仮想線と定義すると、前記第2仮想線は、前記第2A仮想線と前記第2B仮想線との二等分線である、トルクセンサ。
    In the torque sensor according to claim 12,
    When the virtual line passing through the center of the inner ring and orthogonal to the first virtual line is defined as the second virtual line, the second virtual line is a combination of the second A virtual line and the second B virtual line. A torque sensor that is a bisector.
  14.  請求項12に記載のトルクセンサにおいて、
     前記トルクセンサは、前記複数の歪センサからの出力に基づいて、前記内輪中心を通り、かつ、前記内輪部に垂直な法線軸回りのトルクを算出する算出部を有する、トルクセンサ。
    In the torque sensor according to claim 12,
    The torque sensor is a torque sensor having a calculation unit that calculates torque around a normal axis that passes through the center of the inner ring and is perpendicular to the inner ring portion based on outputs from the plurality of strain sensors.
  15.  請求項14に記載のトルクセンサにおいて、
     前記算出部は、
     前記第1歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との第1差分と、前記第2歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値の第2差分と、前記第3歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との第3差分と、前記第4歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値の第4差分と、前記第5歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値との第5差分と、前記第6歪センサにおける前記第1抵抗素子の抵抗値と前記第2抵抗素子の抵抗値の第6差分と、を加算した合計出力に基づいて、前記内輪部に垂直な法線軸回りのトルクを算出する、トルクセンサ。
    In the torque sensor according to claim 14,
    The calculation unit
    The first difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the first strain sensor, the resistance value of the first resistance element in the second strain sensor, and the second resistance element. The second difference of the resistance value of, the third difference between the resistance value of the first resistance element in the third strain sensor and the resistance value of the second resistance element, and the first resistance element in the fourth strain sensor. The fourth difference between the resistance value of the second resistance element and the resistance value of the second resistance element, the fifth difference between the resistance value of the first resistance element and the resistance value of the second resistance element in the fifth strain sensor, and the second. 6 The torque around the normal axis perpendicular to the inner ring portion is calculated based on the total output obtained by adding the resistance value of the first resistance element and the sixth difference of the resistance value of the second resistance element in the distortion sensor. , Torque sensor.
PCT/JP2021/009960 2020-03-19 2021-03-12 Torque sensor and robot joint structure WO2021187342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022508303A JP7360542B2 (en) 2020-03-19 2021-03-12 torque sensor
CN202180021441.8A CN115280122A (en) 2020-03-19 2021-03-12 Torque sensor and robot joint structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020049389 2020-03-19
JP2020-049389 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187342A1 true WO2021187342A1 (en) 2021-09-23

Family

ID=77772054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009960 WO2021187342A1 (en) 2020-03-19 2021-03-12 Torque sensor and robot joint structure

Country Status (3)

Country Link
JP (1) JP7360542B2 (en)
CN (1) CN115280122A (en)
WO (1) WO2021187342A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208522A1 (en) * 1992-03-18 1993-09-23 Hottinger Messtechnik Baldwin Torque sensor for rotating shaft or calibration device - has two connecting bodies, transfer elements and transducers forming shear force detectors
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor
JP2017203645A (en) * 2016-05-09 2017-11-16 ソニー株式会社 Torque sensor and force control type actuator
JP2019066373A (en) * 2017-10-03 2019-04-25 アズビル株式会社 Torque detector
JP2019184466A (en) * 2018-04-12 2019-10-24 株式会社小野測器 Torque measuring device
JP2020012657A (en) * 2018-07-13 2020-01-23 日本電産コパル電子株式会社 Torque sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220574A (en) 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208522A1 (en) * 1992-03-18 1993-09-23 Hottinger Messtechnik Baldwin Torque sensor for rotating shaft or calibration device - has two connecting bodies, transfer elements and transducers forming shear force detectors
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor
JP2017203645A (en) * 2016-05-09 2017-11-16 ソニー株式会社 Torque sensor and force control type actuator
JP2019066373A (en) * 2017-10-03 2019-04-25 アズビル株式会社 Torque detector
JP2019184466A (en) * 2018-04-12 2019-10-24 株式会社小野測器 Torque measuring device
JP2020012657A (en) * 2018-07-13 2020-01-23 日本電産コパル電子株式会社 Torque sensor

Also Published As

Publication number Publication date
CN115280122A (en) 2022-11-01
JP7360542B2 (en) 2023-10-12
JPWO2021187342A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US10422707B2 (en) Compact robotic force/torque sensor including strain gages
CN102785253B (en) Robot system having error detection function of robot and control method thereof
US20200240854A1 (en) Force sensor
US11788906B2 (en) Force sensor
US20210086350A1 (en) Link actuating device
JP5640905B2 (en) Straining body and apparatus including the same
JP2018132313A (en) Torque sensor
JP6664742B2 (en) Force sensor
JP6585694B2 (en) Strain sensor, multi-axis force sensor and robot
JP2006308577A (en) Bearing for automobile wheel, and load measurement method
WO2021187342A1 (en) Torque sensor and robot joint structure
JP4249735B2 (en) Force sensor
US10989614B2 (en) Torque sensor and robot
JPH05149811A (en) Axial force sensor for six components
US20210060793A1 (en) Robotic arm and robot
KR20230128978A (en) Torque sensor
JP6549812B2 (en) Torque sensor and robot
US11768118B2 (en) Force sensor
US20230266186A1 (en) Torque sensor element and torque sensor
US20200256750A1 (en) Force sensor
TW201939005A (en) Torque sensor
CN115614452A (en) External gear, wave speed reducer and robot
JP7305364B2 (en) Multi-axis sensor
US11872700B2 (en) Robot with a torque sensor and a force sensor
JP7421255B1 (en) force sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770457

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022508303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770457

Country of ref document: EP

Kind code of ref document: A1