WO2021186818A1 - Sensor magnet, rotor, and motor - Google Patents

Sensor magnet, rotor, and motor Download PDF

Info

Publication number
WO2021186818A1
WO2021186818A1 PCT/JP2020/046787 JP2020046787W WO2021186818A1 WO 2021186818 A1 WO2021186818 A1 WO 2021186818A1 JP 2020046787 W JP2020046787 W JP 2020046787W WO 2021186818 A1 WO2021186818 A1 WO 2021186818A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
magnetic field
pole pair
magnetic
Prior art date
Application number
PCT/JP2020/046787
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 淳
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2022508062A priority Critical patent/JPWO2021186818A1/ja
Priority to CN202080098433.9A priority patent/CN115280664A/en
Publication of WO2021186818A1 publication Critical patent/WO2021186818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a sensor magnet, a rotor, and a motor.
  • Patent Document 1 discloses a method of estimating the rotational position of the rotor of a motor without using an absolute angle position sensor.
  • the rotation position of the rotor may not be estimated in the range where the rotor angle is less than one rotation. Therefore, it has been difficult to apply it to applications where the preliminary operation of rotating the rotor for position estimation is not allowed, for example, a drive motor such as a robot or a transport vehicle.
  • the sensor magnet is rotatable around the central axis and has a plurality of polar pairs arranged in the circumferential direction, and the plurality of polar pairs have different axial magnetic field strengths from each other.
  • Sensor magnets are provided.
  • a rotor that can rotate around a central axis, and has a rotor core and a rotor magnet fixed to the rotor core, and the rotor magnets are arranged in a plurality of circumferential directions.
  • a rotor having a pair of pole pairs of the above, wherein the plurality of pole pairs have different axial magnetic field strengths from each other.
  • a sensor magnet and a rotor that can eliminate the need for preliminary rotational operation for position estimation.
  • FIG. 1 is a schematic cross-sectional view of the motor of the first embodiment.
  • FIG. 2 is a perspective view of the sensor magnet of the first embodiment.
  • FIG. 3 is a functional block diagram of the motor of the first embodiment.
  • FIG. 4 is an explanatory diagram showing the relationship between the pole pair number, the section, and the segment.
  • FIG. 5 is an explanatory diagram showing the relationship between the waveform of the magnetic sensor and the section.
  • FIG. 6 is an explanatory diagram showing the feature points of the waveform of the magnetic sensor.
  • FIG. 7 is an explanatory diagram of the position estimation method.
  • FIG. 8 is a flowchart of the position estimation method of the first embodiment.
  • FIG. 9 is a perspective view of the sensor magnet of the modified example.
  • FIG. 10 is an explanatory diagram of a position estimation method using a modified example sensor magnet.
  • FIG. 11 is a schematic cross-sectional view of the motor of the second embodiment.
  • FIG. 12 is a perspective view of the rotor of the second embodiment.
  • FIG. 13 is a functional block diagram of the motor of the second embodiment.
  • the direction parallel to the central axis J is defined as the Z-axis direction, and is simply referred to as the "axial direction”.
  • the radial direction centered on the central axis J is simply called the "diameter direction”.
  • the circumferential direction centered on the central axis J that is, the axial direction of the central axis J is simply referred to as the "circumferential direction”.
  • the positive side (+ Z side) in the Z-axis direction is called the "upper side”
  • the negative side (-Z side) in the Z-axis direction is called the "lower side”.
  • the negative side in the Z-axis direction corresponds to "one side in the axial direction”
  • the positive side in the Z-axis direction corresponds to "the other side in the axial direction”.
  • the upper side and the lower side are names used only for explanation, and do not limit the actual positional relationship or direction.
  • FIG. 1 is a cross-sectional view showing a motor of the first embodiment.
  • the motor 1 of the present embodiment includes a rotor 20 centered on a central axis J, a stator 30 arranged radially outside the rotor 20, a control board 50, a housing 11, and a plurality of bearings 15 and 16. To be equipped.
  • the motor 1 is an inner rotor type motor.
  • the rotor 20 rotates about the central axis J with respect to the stator 30.
  • the housing 11 houses the rotor 20, the stator 30, and the control board 50.
  • the housing 11 has a cylindrical shape extending in the axial direction.
  • the housing 11 has a peripheral wall portion 11a, a top wall portion 11b, a bottom wall portion 11c, and a bearing holding portion 11d.
  • the peripheral wall portion 11a has a cylindrical shape extending in the axial direction.
  • the top wall portion 11b closes the opening on the upper side of the peripheral wall portion 11a.
  • the bottom wall portion 11c closes the opening on the lower side of the peripheral wall portion 11a.
  • the bottom wall portion 11c holds the bearing 16.
  • the bearing holding portion 11d is fixed to the inner peripheral surface of the peripheral wall portion 11a.
  • the bearing holding portion 11d holds the bearing 15.
  • the rotor 20 includes a shaft 21, a rotor core 22, a rotor magnet 23, and a sensor magnet 24.
  • the shaft 21 is a columnar shape extending in the axial direction.
  • the shaft 21 may have a cylindrical shape extending in the axial direction.
  • the shaft 21 is rotatably supported around the central axis J by a plurality of bearings 15 and 16.
  • the plurality of bearings 15 and 16 are arranged at intervals in the axial direction and are supported by the housing 11. That is, the shaft 21 is supported by the housing 11 via a plurality of bearings 15 and 16.
  • the rotor core 22 has a cylindrical shape extending in the axial direction.
  • the rotor core 22 has an outer diameter larger than that of the shaft 21.
  • the rotor core 22 is shorter than the shaft 21 in the axial direction.
  • the inner peripheral surface of the rotor core 22 is fixed to the outer peripheral surface of the shaft 21.
  • the rotor core 22 is located between the pair of bearings 15 and 16 in the axial direction.
  • the rotor magnet 23 is fixed to the outer peripheral portion of the rotor core 22.
  • the sensor magnet 24 is fixed to the upper end of the shaft 21. As shown in FIG. 2, the sensor magnet 24 has an annular magnet 25 extending in the circumferential direction around the central axis J, and a yoke 26A located on a lower surface (one side in the axial direction) of the annular magnet 25. ..
  • the annular magnet 25 has a plurality of magnetic poles arranged in the circumferential direction on the upper surface of the annular magnet 25. In the case of the present embodiment, the north pole and the south pole are alternately arranged in the circumferential direction on the upper surface of the annular magnet 25.
  • the annular magnet 25 has four pole pairs.
  • the yoke 26A is an annular magnetic plate.
  • the yoke 26A has a structure in which a magnetic force adjusting layer 27A and a weight adjusting layer 28A are laminated in the axial direction.
  • the magnetic force adjusting layer 27A is located on the upper surface side (annular magnet 25 side), and the weight adjusting layer 28A is located on the lower surface side.
  • the upper surface of the magnetic force adjusting layer 27A supports the lower surface of the annular magnet 25 from below.
  • the magnetic force adjusting layer 27A has a function of amplifying the magnetic force of the annular magnet 25.
  • a magnetic material that can be generally used as a yoke is used as a constituent material of the magnetic force adjusting layer 27A.
  • the magnetic force adjusting layer 27A is, for example, a layer made of SUS400-based magnetic stainless steel.
  • the magnetic force adjusting layer 27A has a configuration in which the thickness in the axial direction continuously changes along the circumferential direction.
  • the magnetic force adjusting layer 27A is a layer whose thickness continuously changes over one circumference around the central axis J.
  • the weight adjusting layer 28A is made of a material or a non-magnetic material having a magnetic material weaker than the magnetic force adjusting layer 27A.
  • the weight adjusting layer 28A is, for example, a layer made of SUS300-based non-magnetic stainless steel and having a specific gravity equivalent to that of the magnetic force adjusting layer 27A. Since the thickness of the magnetic force adjusting layer 27A changes along the circumferential direction, the weight also changes along the circumferential direction.
  • the yoke 26A composed of only the magnetic force adjusting layer 27A is rotated, the position of the center of gravity deviates from the central axis J, so that the vibration becomes large. Therefore, by adjusting the weight balance of the yoke 26A by the weight adjusting layer 28A, vibration during rotation can be suppressed.
  • the weight adjusting layer 28A has a thin shape when the magnetic force adjusting layer 27A is thick and a thick shape when the magnetic force adjusting layer 27A is thin.
  • the yoke 26A can be made to have a uniform thickness in the circumferential direction. If the weight distribution of the yoke 26A in the circumferential direction can be made uniform, the thickness of the yoke 26A may be slightly non-uniform in the circumferential direction.
  • Magnetic sensors 220 are arranged at positions facing the upper surface of the sensor magnet 24.
  • the magnetic sensors 220-U, 220-V, 220-W detect the axial magnetic field of the sensor magnet 24.
  • the sensor magnet 24 includes the magnetic force adjusting layer 27A, the degree of magnetization of the magnetic force adjusting layer 27A acting on the pole pairs arranged in the circumferential direction is different for each pole pair. As a result, the plurality of pole pairs of the sensor magnet 24 are configured to have different axial magnetic field strengths from each other. In the case of the present embodiment, since the magnetic force adjusting layer 27A has a thickness that continuously changes in the circumferential direction, the axial magnetic field strength of the sensor magnet 24 has a maximum amplitude continuously along the circumferential direction. Change.
  • the magnetic force adjusting layer 27A is arranged on the upper surface side (the side facing the annular magnet 25) of the yoke 26A, and the weight adjusting layer 28A is arranged on the lower surface side of the yoke 26A.
  • the axial positions of 27A and the weight adjusting layer 28A may be exchanged. That is, the yoke 26A may be used in a state where the upper and lower surfaces are turned upside down.
  • the stator 30 faces the rotor 20 with a radial gap.
  • the stator 30 surrounds the rotor 20 from the outside in the radial direction to the entire circumference in the circumferential direction.
  • the stator 30 includes a stator core 31, an insulator 32, and a coil 33.
  • the stator core 31 is an annular shape centered on the central axis J.
  • the stator core 31 has a cylindrical shape extending in the axial direction.
  • the stator core 31 surrounds the rotor 20 from the outside in the radial direction.
  • the stator core 31 is composed of, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
  • the stator core 31 is fixed to the inner peripheral surface of the housing 11.
  • the stator core 31 has a core back 31a and a plurality of teeth 31b.
  • the core back 31a has a cylindrical shape centered on the central axis J.
  • the radial outer surface of the core back 31a is fixed to the inner peripheral surface of the peripheral wall portion 11a of the housing 11.
  • the teeth 31b project radially inward from the inner peripheral surface of the core back 31a.
  • the plurality of teeth 31b are arranged at intervals in the circumferential direction.
  • the end surface of each tooth 31b facing inward in the radial direction faces the outer surface in the radial direction of the rotor 20 with a gap.
  • the insulator 32 is attached to the stator core 31.
  • the insulator 32 is made of an insulating material.
  • the insulator 32 is made of, for example, resin.
  • the insulator 32 is an annular shape centered on the central axis J.
  • the insulator 32 has an upper portion 32a facing the plurality of teeth 31b from at least the upper side, and a lower portion 32b facing the plurality of teeth 31b from at least the lower side.
  • the upper portion 32a is an annular shape centered on the central axis J. Specifically, the upper portion 32a has a portion facing each tooth 31b from above and a portion facing each tooth 31b from the circumferential direction.
  • the lower portion 32b is an annular shape centered on the central axis J. Specifically, the lower portion 32b has a portion facing each tooth 31b from the lower side and a portion facing each tooth 31b from the circumferential direction.
  • control board 50 is located above the bearing holding portion 11d.
  • a control IC chip 51 or the like that drives and controls the motor 1 is mounted on the control board 50.
  • the magnetic sensor 220 is mounted in the central portion when viewed from the axial direction. That is, the control board 50 has a configuration in which the control IC chip 51 and the magnetic sensor 220 are mounted on a common circuit board 52. Therefore, the control board 50 includes a detection device 2 having a magnetic sensor 220.
  • the motor 1 includes a detection device 2, an amplification device 3, a position estimation device 4, a control device 5, and a drive device 6.
  • the detection device 2, the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 are mounted on the control board 50 as software or hardware.
  • a device other than the detection device 2 or the detection device 2 and the amplification device 3 may be provided as an external control device.
  • FIG. 3 only the detection device 2 of the control board 50 is shown inside the stator 30.
  • FIG. 3 only the housing 11, the stator 30, and the sensor magnet 24 are shown for the mechanical components of the motor 1.
  • the stator 30 includes windings of a plurality of slots of U phase, V phase and W phase.
  • the stator 30 includes a 12-slot winding consisting of a 4-slot U-phase winding, a 4-slot V-phase winding, and a 4-slot W-phase winding.
  • a three-phase current which is out of phase by 120 degrees, is input to the stator 30 from the drive device 6.
  • the stator 30 generates a magnetic field acting on the rotor 20 by a three-phase current input to each of the U-phase, V-phase, and W-phase windings.
  • the rotor 20 rotates around the central axis by receiving the magnetic force of the stator 30.
  • the rotor 20 has a plurality of magnetic poles arranged in the circumferential direction.
  • the 12-slot stator 30 of the present embodiment is combined with, for example, a rotor 20 having 8 poles, 10 poles, 16 poles, and the like.
  • the sensor magnet 24 includes two or more pole pairs (N pole and S pole). As shown in FIGS. 2 and 3, the sensor magnet 24 includes four pole pairs as an example.
  • the sensor magnet 24 rotates about the central axis J together with the rotor 20.
  • the pole pair of the sensor magnet 24 is assigned a pole pair number for position estimation. Sections and segments are associated with pole pair numbers.
  • FIG. 4 is a diagram showing an example of the correspondence between the pole pair number, the section, and the segment.
  • a section number group consisting of a plurality of section numbers is associated with the pole pair number.
  • the number of section numbers is equal to the number of 12 different logics including the magnitude relation of the output signals of the three magnetic sensors 220 of the detection device 2 and the positive / negative (zero cross) of the intermediate signal.
  • 12 section numbers from “0” to “11” are associated with the pole pair number “0”.
  • the segment number is a unique number representing the absolute value of the mechanical angle of the rotor 20.
  • the section numbers "0" to "11" of the pole pair number "0" are associated with the segment numbers "0" to "11".
  • the data table showing the correspondence shown in FIG. 4 is stored in advance in, for example, a storage device 42 described later in the position estimation device 4.
  • the detection device 2 is a device that detects the magnetic field strength.
  • the detection device 2 detects magnetic field strengths at three or more locations in the vicinity of the sensor magnet 24.
  • the detection device 2 includes three or more magnetic sensors 220.
  • the detection device 2 includes a magnetic sensor 220-U, a magnetic sensor 220-V, and a magnetic sensor 220-W.
  • magnetic sensor 220 is, for example, a Hall element, a linear Hall IC (integrated circuit), or a magnetoresistive sensor. In the present embodiment, the magnetic sensor will be described as a Hall element.
  • the magnetic sensor 220-U is a sensor that detects the magnetic field strength of the U phase.
  • the magnetic sensor 220-U outputs a U-phase differential signal, which is a differential signal representing the U-phase magnetic field strength, to the amplification device 3.
  • the magnetic sensor 220-V is a sensor that detects the magnetic field strength of the V phase.
  • the magnetic sensor 220-V outputs a V-phase differential signal, which is a differential signal representing the magnetic field strength of the V-phase, to the amplification device 3.
  • the magnetic sensor 220-W is a sensor that detects the magnetic field strength of the W phase.
  • the magnetic sensor 220-W outputs a W-phase differential signal, which is a differential signal representing the magnetic field strength of the W-phase, to the amplification device 3.
  • the amplification device 3 is a device that amplifies the amplitude of the waveform of the differential signal.
  • the amplification device 3 includes a differential amplifier 300-U, a differential amplifier 300-V, and a differential amplifier 300-W.
  • the differential amplifier 300-U generates an analog U-phase signal Hu by executing an amplification process on the U-phase differential signal.
  • the differential amplifier 300-V generates an analog V-phase signal Hv by executing an amplification process on the V-phase differential signal.
  • the differential amplifier 300-W generates an analog W-phase signal Hw by executing an amplification process on the W-phase differential signal.
  • the position estimation device 4 is an information processing device that estimates the rotational position of the rotor of the motor.
  • the position estimation device 4 acquires an analog U-phase signal Hu, an analog V-phase signal Hv, and an analog W-phase signal Hw from the amplification device 3.
  • the position estimation device 4 rotates the rotor 20 by selecting the section number and the pole pair number of the sensor magnet 24 based on the detected values of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw. Estimate the position.
  • the position estimation device 4 outputs the estimation result of the rotation position to the control device 5.
  • the control device 5 is an information processing device that generates a control signal.
  • the control device 5 generates a control signal based on the instruction signal.
  • the control signal is, for example, a signal representing a register value corresponding to a designated rotation direction (CW: clockwise, CCW: counterclockwise), and a signal representing a current value of a current output from the drive device 6 to the stator 30.
  • the drive device 6 is a device that drives the coil 33 of the stator 30.
  • a control signal is input to the drive device 6 from the control device 5.
  • the drive device 6 inputs a three-phase current of the current value represented by the control signal to each coil 33 of the stator 30.
  • the drive device 6 rotates the rotor 20 by inputting a three-phase current to each coil 33 of the stator 30.
  • the position estimation device 4 estimates the rotational position of the rotor 20 that is stopped.
  • the position estimation device 4 can also estimate the rotation position of the rotating rotor 20.
  • the external device 7 is an information processing device that generates instruction signals such as the rotation direction, rotational force (torque), rotation angle, and rotation speed of the rotor.
  • the external device 7 outputs an instruction signal to the control device 5.
  • the position estimation device 4 includes a conversion device 40, an arithmetic unit 41, and a storage device 42.
  • the conversion device 40 is a device that converts an analog signal into a digital signal.
  • the conversion device 40 includes a conversion unit 400-U, a conversion unit 400-V, and a conversion unit 400-W.
  • the three conversion units 400-U, 400-V, and 400-W are devices that convert analog signals into digital signals.
  • the conversion unit 400-U converts the analog U-phase signal acquired from the differential amplifier 300-U into a digital U-phase signal.
  • the conversion unit 400-V converts the analog U-phase signal acquired from the differential amplifier 300-V into a digital V-phase signal.
  • the conversion unit 400-W converts the analog W-phase signal acquired from the differential amplifier 300-W into a digital V-phase signal.
  • the arithmetic unit 41 is an apparatus that executes arithmetic processing.
  • a part or all of the arithmetic unit 41 is realized by a processor such as a CPU (Central Processing Unit) executing a program expanded in a memory.
  • a part or all of the arithmetic unit 41 may be realized by using hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
  • the arithmetic unit 41 includes a section selection unit 412 and an estimation unit 413.
  • the section selection unit 412 is connected to the conversion device 40.
  • the estimation unit 413 is connected to the section selection unit 412.
  • the estimation unit 413 is connected to the control device 5.
  • the section selection unit 412 acquires the detected values of the magnetic field strengths of the rotor 20 at three or more locations.
  • the section selection unit 412 acquires the digitally converted U-phase signal Hu, V-phase signal Hv, and W-phase signal Hw from the conversion device 40.
  • the estimation unit 413 acquires the detected value of the magnetic field strength and the section number corresponding to the current position of the sensor magnet 24 from the section selection unit 412.
  • the estimation unit 413 calculates the length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength as the pole-to-feature amount, and calculates the calculated pole-to-feature amount of the rotor 20 that has been learned in advance. Check the relationship between the pole pair number and the pole pair feature quantity.
  • the estimation unit 413 outputs the estimation result of the rotation position of the rotor 20 to the control device 5.
  • the storage device 42 is preferably a non-volatile recording medium (non-temporary recording medium) such as a flash memory or an HDD (Hard Disk Drive).
  • the storage device 42 may include a volatile recording medium such as a RAM (Random Access Memory).
  • the storage device 42 stores data tables such as programs and learning values.
  • FIG. 5 is a diagram showing an example of a waveform of magnetic field strength.
  • the length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength for each segment is calculated as the pole pair feature amount.
  • the calculated pole pair feature amount is used as a learning value in association with each segment of the sensor magnet 24.
  • the learning value of the pole pair feature amount is generated in advance.
  • the pre-generation processing of the learning value of the pole pair feature amount is performed, for example, before the shipment of the motor 1.
  • the rotor 20 is rotated at a constant speed with the external position sensor connected to the rotor 20, and the waveform output from the detection device 2 is amplified by the amplification device 3. After that, it is performed by calculating the pole pair feature amount in the position estimation device 4.
  • the waveform shown in FIG. 5 is a waveform of the magnetic field strength according to the rotor angle of the rotor 20 when the rotor 20 is rotating in the pre-generation processing of the learning value of the pole pair feature amount.
  • the correspondence between the learning value of the waveform of the U-phase signal Hu, the learning value of the waveform of the V-phase signal Hv, the learning value of the waveform of the W-phase signal Hw, and the section is the waveform of each magnetic field strength. It is shown as an example of the correspondence between the learning value of and the section.
  • the digital value of the amplitude, which is a positive value represents, for example, the digital value of the magnetic field strength of the N pole.
  • the digital value of the amplitude, which is a negative value represents, for example, the digital value of the magnetic field strength of the S pole.
  • a section between two points arranged adjacent to each other among a plurality of zero cross points of three waveforms and a plurality of intersections of waveforms is set as a section.
  • the section from the zero crossing point of the U-phase signal Hu to the intersection of the U-phase signal Hu and the W-phase signal Hw is section “0”, and from the intersection of the U-phase signal Hu and the W-phase signal Hw.
  • the section up to the zero crossing point of the W phase signal Hw is set in section "1".
  • a section is set for each section until the intersection of the waveforms or the zero crossing point is passed.
  • the waveform of the magnetic field strength of the sensor magnet 24 is shown in the upper part of FIG.
  • the sensor magnet 24 includes the magnetic field adjusting layer 27A whose thickness continuously changes along the circumferential direction, so that the maximum amplitude continuously changes along the circumferential direction.
  • the position estimation device 4 converts the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw input from the amplification device 3 into digital values by the conversion device 40, and then uses the matrix formula shown in the middle of FIG. Perform a phase-two-phase conversion.
  • the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw are converted into ⁇ -axis and ⁇ -axis signals of the two-phase coordinate system.
  • the converted signals H ⁇ and H ⁇ can be expressed as composite vectors (H ⁇ and H ⁇ ) of the Cartesian coordinate system as shown in the lower part of FIG.
  • the tip positions of the composite vectors (H ⁇ , H ⁇ ) move in a spiral shape centered on the origin as the rotor 20 rotates. That is, the magnitude of the composite vector (H ⁇ , H ⁇ ) changes continuously with the rotation of the rotor 20.
  • the magnitude of the composite vector (H ⁇ , H ⁇ ) corresponds to the axial magnetic field strength of the sensor magnet 24.
  • the position estimation device 4 calculates the magnitude of the composite vector (H ⁇ , H ⁇ ) as the pole pair feature quantity.
  • a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (H ⁇ , H ⁇ ), and the segment number of the sensor magnet 24 is created.
  • a data table in which the pole pair features are associated with each of the 48 segments shown in FIG. 4 is created.
  • the created data table is stored in advance in, for example, the storage device 42.
  • FIG. 7 is a diagram showing an example of detecting a waveform of magnetic field strength.
  • the reference numeral “kT” shown in FIG. 7 represents the rotor angle (rotational position) of the rotor 20 at the time when the detected value in the waveform of the magnetic field strength is sampled by the section selection unit 412.
  • the position estimation device 4 estimates the current position of the rotor 20 by executing steps S101 to S106 shown in FIG. 8, and outputs the current position to the control device 5.
  • the section selection unit 412 receives the detection value of the sample point 100 of the correction waveform of the V-phase signal Hv, the detection value of the sample point 110 of the correction waveform of the W-phase signal Hw, and the correction waveform of the U-phase signal Hu. The detected value of the sample point 120 of the above is input.
  • step S102 the section selection unit 412 sets the magnetic field strengths of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw from among the plurality of sections predetermined with the pole pair numbers shown in FIG. Select a section based on the detection value.
  • the section selection unit 412 determines the mutual magnitude relationship between the detected values of the three sample points 100, 110, and 120 shown in FIG. 7, and the positive and negative values of the sample points 110, which are the detected values having an intermediate size. Select a section based on. As shown in FIG. 5, there is a certain relationship between the section and the waveform of the magnetic intensity. Can be selected. In the case of the waveform shown in FIG. 7, the section selection unit 412 selects the section number “8”. The section selection unit 412 outputs the selected section number to the estimation unit 413 together with the detected value of the magnetic field strength.
  • step S103 the estimation unit 413 executes a three-phase two-phase conversion with respect to the detected value of the magnetic field strength input from the section selection unit 412 by the determinant shown in the middle of FIG.
  • the estimation unit 413 calculates the length of the composite vector (H ⁇ , H ⁇ ) obtained by the three-phase two-phase transformation as the pole pair feature quantity.
  • step S104 the estimation unit 413 reads out the learning value of the pole pair feature amount from the storage device 42.
  • the estimation unit 413 acquires the pole pair feature amount corresponding to the section number input from the section selection unit 412.
  • the estimation unit 413 acquires four learning values as the pole pair features of the section number "8" belonging to each of the four pole pair numbers "0", “1", "2", and "3". do.
  • step S105 the estimation unit 413 compares the calculated value of the pole pair feature amount calculated in step S103 with the four learning values of the pole pair feature amount acquired in step S104.
  • step S106 the estimation unit 413 specifies the learning value of the value closest to the calculated value among the four learning values of the pole pair feature amount.
  • the estimation unit 413 selects the pole pair number corresponding to the specified learning value. In the case of the present embodiment, the estimation unit 413 selects any of the four pole pair numbers "0", “1", "2", and "3" as the pole pair numbers of the rotation positions.
  • the position estimation device 4 can select the section number and the pole pair number of the sensor magnet 24 at the current rotation position of the rotor 20. As a result, the position estimation device 4 can specify the segment number shown in FIG. The position estimation device 4 outputs the specified segment number to the control device 5 as the rotation position of the rotor 20.
  • the information output from the position estimation device 4 to the control device 5 is not limited to the segment number.
  • the position estimation device 4 may output the section number and the pole pair number to the control device 5.
  • the position estimation device 4 can execute the position estimation process described in the republished WO2016 / 104378 (Japanese Patent Application No. 2016-566319)
  • the selected segment number and the detected value of the magnetic field strength are used. Based on this, the mechanical angle of the rotor 20 can be calculated with even higher resolution.
  • the position estimation device 4 may output the calculated high-resolution mechanical angle to the control device 5.
  • the position estimation device 4 of the first embodiment includes a section selection unit 412 and an estimation unit 413.
  • the section selection unit 412 acquires the detected values of the magnetic field strengths at three or more points of the rotor 20 regardless of the rotational state of the rotor 20.
  • the section selection unit 412 selects a section from a plurality of sections predetermined by the pole pair number of the rotor 20 based on the detected value of the magnetic field strength.
  • the estimation unit 413 calculates the pole pair feature amount by three-phase and two-phase conversion of the detected value of the magnetic field strength, and associates with the selected section whether or not it matches the pole pair feature amount learned in advance. Judgment is made for each pair of poles.
  • the estimation unit 413 selects the pole pair number corresponding to the pole pair feature amount having the value closest to the calculated value, and estimates it as the rotation position of the rotor 20.
  • the position estimation device 4 of the first embodiment can estimate the rotation position of the rotor 20 without rotating the rotor 20.
  • the motor 1 provided with the position estimation device 4 does not have to adjust the origin of the rotation position of the rotor 20 when the power is turned on. Since the motor 1 does not require a preliminary operation for adjusting the origin, it can be suitably used for a drive motor application such as a robot or a transport vehicle in which the preliminary operation is not allowed. Since the motor 1 does not require a preliminary operation for adjusting the origin, the drive time and power consumption required for the preliminary operation can be reduced.
  • FIG. 9 is a diagram showing a modified example of the sensor magnet 24.
  • the sensor magnet 24 shown in FIG. 9 includes a yoke 26B having a structure different from that of the first embodiment.
  • the yoke 26B is an annular magnetic plate.
  • the yoke 26B has a structure in which the magnetic force adjusting layer 27B and the weight adjusting layer 28B are laminated in the axial direction.
  • the magnetic force adjusting layer 27B is located on the upper surface side (annular magnet 25 side), and the weight adjusting layer 28B is located on the lower surface side.
  • the upper surface of the magnetic force adjusting layer 27B supports the lower surface of the annular magnet 25 from below.
  • the magnetic force adjusting layer 27B has a function of amplifying the magnetic force of the annular magnet 25.
  • the constituent material of the magnetic force adjusting layer 27B the same material as the magnetic force adjusting layer 27A of the first embodiment can be used.
  • the magnetic force adjusting layer 27B has a configuration in which the thickness in the axial direction changes stepwise along the circumferential direction. In the case of the present embodiment, the magnetic force adjusting layer 27A has a different thickness for each of the two magnetic poles of the annular magnet 25.
  • the weight adjusting layer 28B is a layer made of a material or a non-magnetic material having a magnetic material weaker than the magnetic force adjusting layer 27B and having a specific gravity equivalent to that of the magnetic force adjusting layer 27B.
  • the constituent material of the weight adjusting layer 28B is the same as that of the weight adjusting layer 28A of the first embodiment.
  • the weight adjusting layer 28B is thin at a position where the magnetic force adjusting layer 27B is thick, and is thick at a position where the magnetic force adjusting layer 27B is thin.
  • the thickness of the yoke 26B can be made uniform in the circumferential direction.
  • the weight balance of the yoke 26B by the weight adjusting layer 28B By adjusting the weight balance of the yoke 26B by the weight adjusting layer 28B, vibration during rotation can be suppressed. If the weight distribution of the yoke 26B in the circumferential direction can be made uniform, the thickness of the yoke 26B may be slightly non-uniform
  • the sensor magnet 24 of the modified example includes the magnetic force adjusting layer 27B, the degree of magnetization of the magnetic force adjusting layer 27B acting on the pole pairs arranged in the circumferential direction is different for each pole pair.
  • the plurality of pole pairs of the sensor magnet 24 are configured to have different axial magnetic field strengths from each other.
  • the magnetic field adjusting layer 27B has a thickness that changes stepwise along the circumferential direction, the axial magnetic field strength of the sensor magnet 24 changes stepwise along the circumferential direction. do.
  • the magnetic force adjusting layer 27B is arranged on the upper surface side (the side facing the annular magnet 25) of the yoke 26B, and the weight adjusting layer 28B is arranged on the lower surface side of the yoke 26B.
  • the axial positions of 27B and the weight adjusting layer 28B may be exchanged. That is, the yoke 26B may be used in a state where the upper and lower surfaces are turned upside down.
  • FIG. 10 shows the waveform of the magnetic field strength of the sensor magnet 24 of the modified example.
  • the sensor magnet 24 of the modified example has an axial magnetic field strength in which the maximum amplitude changes stepwise along the circumferential direction. Therefore, as shown in FIG. 10, the axial magnetic field strength of the sensor magnet 24 detected by the magnetic sensor 220 has a waveform in which the maximum amplitude changes stepwise in the rotation direction.
  • the position estimation device 4 converts the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw input from the amplification device 3 into digital values by the conversion device 40, and then uses the matrix formula shown in the middle of FIG. Perform a phase-two-phase conversion.
  • the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw are converted into the signals H ⁇ and H ⁇ of the two-phase coordinate system.
  • the signals H ⁇ and H ⁇ can be expressed as composite vectors (H ⁇ and H ⁇ ) in the Cartesian coordinate system as shown in the lower part of FIG.
  • the magnitude of the composite vector (H ⁇ , H ⁇ ) corresponds to the axial magnetic field strength of the sensor magnet 24, the magnitude of the composite vector (H ⁇ , H ⁇ ) changes stepwise as the rotor 20 rotates.
  • the tip positions of the composite vectors (H ⁇ , H ⁇ ) move concentrically around the origin as the rotor 20 rotates.
  • the locus of the tip position of the composite vector (H ⁇ , H ⁇ ) is represented by three concentric circles, but in the case of the sensor magnet 24 having four pole pairs, the locus of the tip position of the composite vector (H ⁇ , H ⁇ ) The locus is represented by four concentric circles.
  • the size of the composite vector (H ⁇ , H ⁇ ) also changes according to the position of the pole pair.
  • the magnitude of the composite vector (H ⁇ , H ⁇ ) is a substantially constant value except at the position where the thickness of the magnetic force adjusting layer 27B changes.
  • the magnitude of the composite vector (H ⁇ , H ⁇ ) is any of the four values at most rotation positions.
  • the position estimation device 4 calculates the magnitude of the composite vector (H ⁇ , H ⁇ ) as the pole pair feature quantity.
  • a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (H ⁇ , H ⁇ ), and the pole pair number of the sensor magnet 24 is created.
  • a data table in which the pole pair features are associated with each of the four pole pairs shown in FIG. 4 is created.
  • the created data table is stored in advance in, for example, the storage device 42.
  • step S104 the estimation unit 413 reads out four learning values of the pole pair features corresponding to the pole pair numbers “0”, “1”, “2”, and “3” from the storage device 42.
  • step S105 the estimation unit 413 compares the calculated value of the pole pair feature amount with the four learned values read out.
  • step S106 the estimation unit 413 selects the pole pair number corresponding to the learning value of the value closest to the calculated value.
  • the section number and the pole pair number of the sensor magnet 24 can be selected without rotating the rotor 20.
  • the segment number of the sensor magnet 24 can be selected, so that the rotation position of the rotor 20 can be estimated without rotating the rotor 20.
  • the data table can be made smaller.
  • FIG. 11 is a cross-sectional view showing the motor of the second embodiment.
  • the basic configuration of the motor 1A of the second embodiment is the same as that of the motor 1 of the first embodiment.
  • the motor 1A of the second embodiment is different from the first embodiment in the configuration of the rotor 20, the detection device 2A, and the control board 50A.
  • FIG. 12 is a perspective view showing the rotor 20 of the second embodiment.
  • FIG. 13 is a functional block diagram of the motor 1A of the second embodiment.
  • the rotor 20 includes a shaft 21, a rotor core 22, and a rotor magnet 23.
  • the sensor magnet is not installed on the shaft 21.
  • the rotor magnet 23 is fixed to the outer peripheral portion of the rotor core 22.
  • the rotor magnet 23 is composed of four magnet pieces 23a, 23b, 23c, and 23d arranged in the circumferential direction.
  • the rotor core 22 is not shown.
  • Each of the magnet pieces 23a to 23d has a fan shape with a central angle of approximately 90 °.
  • Each of the magnet pieces 23a to 23d is magnetized in the circumferential direction. Therefore, on the upper surface of the rotor magnet 23, the north pole and the south pole are alternately arranged in the circumferential direction.
  • the rotor magnet 23 has four pole pairs.
  • the magnet pieces 23a to 23d are arranged at different axial positions from each other.
  • the magnet pieces 23a, 23b, 23c, and 23d are arranged clockwise.
  • the magnet piece 23a is located on the uppermost side.
  • the axial position is gradually positioned downward in the order of the magnet pieces 23b, 23c, and 23d. Therefore, the upper surface of the rotor magnet 23 has stepped steps at a plurality of points in the circumferential direction.
  • Magnetic sensors 220 are arranged at positions facing the upper surface of the rotor magnet 23.
  • the magnetic sensors 220-U, 220-V, 220-W detect the axial magnetic field of the rotor magnet 23.
  • the positions of the magnet pieces 23a to 23d in the axial direction are different from each other, so that the distance between the magnet pieces 23a to 23d and the magnetic sensor 220 is different for each magnet piece.
  • the plurality of pole pairs of the rotor magnet 23 have different axial magnetic field strengths with respect to the magnetic sensor 220.
  • the maximum amplitude of the axial magnetic field strength detected by the magnetic sensor 220 changes stepwise along the circumferential direction. ..
  • the magnetic sensor 220 detects the axial magnetic field of the rotor magnet 23. Therefore, as shown in FIG. 11, the detection device 2A including the magnetic sensor 220 includes the rotor 20 and the bearing holding portion 11d. Located between and. In the case of this embodiment, the detection device 2A is located inside the stator 30 in the radial direction.
  • the control board 50A is located above the bearing holding portion 11d.
  • the control board 50A and the detection device 2A are connected via a cable (not shown).
  • a control IC chip 51 or the like that drives and controls the motor 1A is mounted on the control board 50A.
  • the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 shown in FIG. 13 are mounted on the control board 50A.
  • the amplification device 3 may be mounted on a common substrate with the detection device 2A.
  • a part or all of the control board 50A may be configured as an external control device.
  • the magnetic sensors 220-U, 220-V, 220-W of the detection device 2A detect the magnetic flux of the rotor magnet 23.
  • the configurations of the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 are the same as those in the first embodiment.
  • the position estimation operation in the motor 1A of the second embodiment is the same as that of the motor 1 provided with the sensor magnet 24 of the modified example shown in FIG.
  • the waveform of the magnetic field strength detected by the magnetic sensor 220 is a waveform in which the maximum amplitude changes stepwise along the circumferential direction, as shown in the upper part of FIG.
  • the pole pair number, the section number, and the segment number shown in FIG. 4 are set for the rotor magnet 23.
  • a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (H ⁇ , H ⁇ ), and the pole pair number of the rotor magnet 23 is created.
  • the pole pair feature amount which is the magnitude of the composite vector (H ⁇ , H ⁇ )
  • the pole pair number of the rotor magnet 23 is created.
  • step S104 the estimation unit 413 reads out four learning values of the pole pair features corresponding to the pole pair numbers “0”, “1”, “2”, and “3” from the storage device 42.
  • step S105 the estimation unit 413 compares the calculated value of the pole pair feature amount with the four learned values read out.
  • step S106 the estimation unit 413 selects the pole pair number corresponding to the learning value of the value closest to the calculated value.
  • the section number and the pole pair number of the rotor magnet 23 can be selected without rotating the rotor 20.
  • the segment number of the rotor magnet 23 can be specified, so that the rotation position of the rotor 20 can be estimated without rotating the rotor 20.
  • the rotation position of the rotor 20 can be estimated without providing the rotor 20 with a sensor magnet.
  • the same effects as those of the motor 1 of the first embodiment and the modified example can be obtained, and further, the number of parts can be reduced and the size and weight can be reduced.
  • the axial magnetic field strength of the rotor 20 is adjusted by making the axial positions of the magnet pieces 23a to 23d different from each other.
  • the magnetic field adjusting member in the rotor 20, the rotor is rotated.
  • the axial magnetic field strength of 20 may be adjusted.
  • the magnetic force adjusting layer 27A of the first embodiment or the magnetic force adjusting member having the same configuration as the magnetic force adjusting layer 27B of the modified example may be installed on the upper surface or the lower surface of the rotor magnet 23.
  • the magnetic force adjusting member may be a member that partially shields the axial magnetic field of the rotor magnet 23.
  • a program for realizing the function of the position estimation device in the present invention on a computer-readable recording medium (not shown), and causing the computer system to read and execute the program recorded on the recording medium.
  • the procedure of each process may be performed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices. Further, the “computer system” shall also include a WWW system provided with a homepage providing environment (or display environment). Further, the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • RAM volatile memory
  • the above program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the above-mentioned functions. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned function in combination with a program already recorded in the computer system.
  • Control IC chip 52 ... Circuit board 220, 220-U, 220-V, 220-W ... Magnetic sensor 300-U, 300-V, 300-W ... Differential amplifier 400-U, 400-V, 400-W ... Conversion unit 412 ... Section selection unit 413 ... Estimating unit Hu ... U phase signal Hv ... V phase Signal Hw ... W phase signal H ⁇ , H ⁇ ... Signal J ... Central axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

There have been cases in which a conventional position estimation method cannot estimate the rotational position of a rotor in the range in which a rotor angle is less than one turn. Therefore, it has been difficult for the method to be applied to drive motors of applications such as, for example, robots and carrier vehicles in which a preparatory operation of rotating a rotor for a position estimation is not allowed. This sensor magnet is rotatable about the central axis. The sensor magnet has a plurality of pole pairs arranged in the circumferential direction, wherein the plurality of pole pairs have axial magnetic field intensities different from each other. According to the present invention, provided are a sensor magnet and a rotor that eliminate the need of a preparatory rotation operation for a position estimation.

Description

センサマグネット、ロータ、モータSensor magnet, rotor, motor
 本発明は、センサマグネット、ロータ、モータに関する。 The present invention relates to a sensor magnet, a rotor, and a motor.
 従来、ロータ位置を正確に制御可能なモータとして、光学エンコーダ、レゾルバ等の絶対角位置センサを備える構成が知られる。しかし、絶対角位置センサは、大型、高コストである。そこで、特許文献1には、絶対角位置センサを用いることなくモータのロータの回転位置を推定する方法が開示される。 Conventionally, as a motor capable of accurately controlling the rotor position, a configuration including an absolute angle position sensor such as an optical encoder or a resolver is known. However, the absolute angle position sensor is large and expensive. Therefore, Patent Document 1 discloses a method of estimating the rotational position of the rotor of a motor without using an absolute angle position sensor.
特許第6233532号公報Japanese Patent No. 6233532
 特許文献1記載の位置推定方法では、ロータ角が1回転未満の範囲ではロータの回転位置を推定できない場合があった。そのため、位置推定のためにロータを回転させる予備動作が許容されない用途、例えばロボット、搬送車などの駆動用モータには適用が難しかった。 In the position estimation method described in Patent Document 1, the rotation position of the rotor may not be estimated in the range where the rotor angle is less than one rotation. Therefore, it has been difficult to apply it to applications where the preliminary operation of rotating the rotor for position estimation is not allowed, for example, a drive motor such as a robot or a transport vehicle.
 本発明の1つの態様によれば、中心軸回りに回転可能なセンサマグネットであって、周方向に並ぶ複数の極対を有し、前記複数の極対は、互いに異なる軸方向磁界強度を有する、センサマグネットが提供される。 According to one aspect of the present invention, the sensor magnet is rotatable around the central axis and has a plurality of polar pairs arranged in the circumferential direction, and the plurality of polar pairs have different axial magnetic field strengths from each other. , Sensor magnets are provided.
 本発明の他の1つの態様によれば、中心軸回りに回転可能なロータであって、ロータコアと、前記ロータコアに固定されるロータマグネットとを有し、前記ロータマグネットは、周方向に並ぶ複数の極対を有し、前記複数の極対は、互いに異なる軸方向磁界強度を有する、ロータが提供される。 According to another aspect of the present invention, there is a rotor that can rotate around a central axis, and has a rotor core and a rotor magnet fixed to the rotor core, and the rotor magnets are arranged in a plurality of circumferential directions. Provided is a rotor having a pair of pole pairs of the above, wherein the plurality of pole pairs have different axial magnetic field strengths from each other.
 本発明の一態様によれば、位置推定のための予備的な回転動作を不要にできるセンサマグネットおよびロータが提供される。 According to one aspect of the present invention, there is provided a sensor magnet and a rotor that can eliminate the need for preliminary rotational operation for position estimation.
図1は、第1実施形態のモータの概略断面図である。FIG. 1 is a schematic cross-sectional view of the motor of the first embodiment. 図2は、第1実施形態のセンサマグネットの斜視図である。FIG. 2 is a perspective view of the sensor magnet of the first embodiment. 図3は、第1実施形態のモータの機能ブロック図である。FIG. 3 is a functional block diagram of the motor of the first embodiment. 図4は、極対番号とセクションとセグメントとの関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the pole pair number, the section, and the segment. 図5は、磁気センサの波形とセクションの関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between the waveform of the magnetic sensor and the section. 図6は、磁気センサの波形の特徴点を示す説明図である。FIG. 6 is an explanatory diagram showing the feature points of the waveform of the magnetic sensor. 図7は、位置推定方法の説明図である。FIG. 7 is an explanatory diagram of the position estimation method. 図8は、第1実施形態の位置推定方法のフローチャートである。FIG. 8 is a flowchart of the position estimation method of the first embodiment. 図9は、変形例のセンサマグネットの斜視図である。FIG. 9 is a perspective view of the sensor magnet of the modified example. 図10は、変形例のセンサマグネットを用いる位置推定方法の説明図である。FIG. 10 is an explanatory diagram of a position estimation method using a modified example sensor magnet. 図11は、第2実施形態のモータの概略断面図である。FIG. 11 is a schematic cross-sectional view of the motor of the second embodiment. 図12は、第2実施形態のロータの斜視図である。FIG. 12 is a perspective view of the rotor of the second embodiment. 図13は、第2実施形態のモータの機能ブロック図である。FIG. 13 is a functional block diagram of the motor of the second embodiment.
 以下、図面を参照しながら、本発明の実施形態について説明する。
 以下の説明において、中心軸Jに平行な方向をZ軸方向とし、単に「軸方向」と呼ぶ。中心軸Jを中心とする径方向を単に「径方向」と呼ぶ。中心軸Jを中心とする周方向、すなわち、中心軸Jの軸回り方向を単に「周方向」と呼ぶ。Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。本実施形態において、Z軸方向の負の側が「軸方向一方側」、Z軸方向の正の側が「軸方向他方側」に相当する。
 なお、上側および下側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, the direction parallel to the central axis J is defined as the Z-axis direction, and is simply referred to as the "axial direction". The radial direction centered on the central axis J is simply called the "diameter direction". The circumferential direction centered on the central axis J, that is, the axial direction of the central axis J is simply referred to as the "circumferential direction". The positive side (+ Z side) in the Z-axis direction is called the "upper side", and the negative side (-Z side) in the Z-axis direction is called the "lower side". In the present embodiment, the negative side in the Z-axis direction corresponds to "one side in the axial direction", and the positive side in the Z-axis direction corresponds to "the other side in the axial direction".
The upper side and the lower side are names used only for explanation, and do not limit the actual positional relationship or direction.
 (第1実施形態)
 図1は、第1実施形態のモータを示す断面図である。
 本実施形態のモータ1は、中心軸Jを中心とするロータ20と、ロータ20の径方向外側に配置されるステータ30と、制御基板50と、ハウジング11と、複数のベアリング15,16と、を備える。モータ1は、インナーロータ型のモータである。ロータ20は、ステータ30に対して中心軸Jを中心として回転する。
(First Embodiment)
FIG. 1 is a cross-sectional view showing a motor of the first embodiment.
The motor 1 of the present embodiment includes a rotor 20 centered on a central axis J, a stator 30 arranged radially outside the rotor 20, a control board 50, a housing 11, and a plurality of bearings 15 and 16. To be equipped. The motor 1 is an inner rotor type motor. The rotor 20 rotates about the central axis J with respect to the stator 30.
 ハウジング11は、ロータ20、ステータ30および制御基板50を収容する。ハウジング11は、軸方向に延びる筒状である。ハウジング11は、周壁部11aと、頂壁部11bと、底壁部11cと、ベアリング保持部11dと、を有する。周壁部11aは、軸方向に延びる円筒状である。頂壁部11bは、周壁部11aの上側の開口を塞ぐ。底壁部11cは、周壁部11aの下側の開口を塞ぐ。底壁部11cは、ベアリング16を保持する。ベアリング保持部11dは、周壁部11aの内周面に固定される。ベアリング保持部11dは、ベアリング15を保持する。 The housing 11 houses the rotor 20, the stator 30, and the control board 50. The housing 11 has a cylindrical shape extending in the axial direction. The housing 11 has a peripheral wall portion 11a, a top wall portion 11b, a bottom wall portion 11c, and a bearing holding portion 11d. The peripheral wall portion 11a has a cylindrical shape extending in the axial direction. The top wall portion 11b closes the opening on the upper side of the peripheral wall portion 11a. The bottom wall portion 11c closes the opening on the lower side of the peripheral wall portion 11a. The bottom wall portion 11c holds the bearing 16. The bearing holding portion 11d is fixed to the inner peripheral surface of the peripheral wall portion 11a. The bearing holding portion 11d holds the bearing 15.
 ロータ20は、シャフト21と、ロータコア22と、ロータマグネット23と、センサマグネット24と、を有する。シャフト21は、軸方向に延びる円柱状である。シャフト21は、軸方向に延びる円筒状でもよい。シャフト21は、複数のベアリング15,16により、中心軸J回りに回転可能に支持される。複数のベアリング15,16は、軸方向に互いに間隔をあけて配置され、ハウジング11に支持される。すなわち、シャフト21は、複数のベアリング15,16を介してハウジング11に支持される。 The rotor 20 includes a shaft 21, a rotor core 22, a rotor magnet 23, and a sensor magnet 24. The shaft 21 is a columnar shape extending in the axial direction. The shaft 21 may have a cylindrical shape extending in the axial direction. The shaft 21 is rotatably supported around the central axis J by a plurality of bearings 15 and 16. The plurality of bearings 15 and 16 are arranged at intervals in the axial direction and are supported by the housing 11. That is, the shaft 21 is supported by the housing 11 via a plurality of bearings 15 and 16.
 ロータコア22は、軸方向に延びる筒状である。ロータコア22は、シャフト21よりも大きい外径を有する。ロータコア22は、軸方向においてシャフト21よりも短い。ロータコア22の内周面は、シャフト21の外周面に固定される。ロータコア22は、軸方向において、一対のベアリング15,16の間に位置する。ロータマグネット23は、ロータコア22の外周部に固定される。 The rotor core 22 has a cylindrical shape extending in the axial direction. The rotor core 22 has an outer diameter larger than that of the shaft 21. The rotor core 22 is shorter than the shaft 21 in the axial direction. The inner peripheral surface of the rotor core 22 is fixed to the outer peripheral surface of the shaft 21. The rotor core 22 is located between the pair of bearings 15 and 16 in the axial direction. The rotor magnet 23 is fixed to the outer peripheral portion of the rotor core 22.
 センサマグネット24は、シャフト21の上端に固定される。センサマグネット24は、図2に示すように、中心軸J回りの周方向に延びる円環状磁石25と、円環状磁石25の下側(軸方向一方側)の面に位置するヨーク26Aとを有する。円環状磁石25は、円環状磁石25の上面において周方向に並ぶ複数の磁極を有する。本実施形態の場合、円環状磁石25の上面において、N極とS極が周方向に交互に並ぶ。円環状磁石25は、4つの極対を有する。 The sensor magnet 24 is fixed to the upper end of the shaft 21. As shown in FIG. 2, the sensor magnet 24 has an annular magnet 25 extending in the circumferential direction around the central axis J, and a yoke 26A located on a lower surface (one side in the axial direction) of the annular magnet 25. .. The annular magnet 25 has a plurality of magnetic poles arranged in the circumferential direction on the upper surface of the annular magnet 25. In the case of the present embodiment, the north pole and the south pole are alternately arranged in the circumferential direction on the upper surface of the annular magnet 25. The annular magnet 25 has four pole pairs.
 ヨーク26Aは、円環状の磁性板である。ヨーク26Aは、磁力調整層27Aと、重量調整層28Aとが軸方向に積層された構成を有する。ヨーク26Aにおいて、磁力調整層27Aは上面側(円環状磁石25側)に位置し、重量調整層28Aは下面側に位置する。磁力調整層27Aの上面は、円環状磁石25の下面を下側から支持する。 The yoke 26A is an annular magnetic plate. The yoke 26A has a structure in which a magnetic force adjusting layer 27A and a weight adjusting layer 28A are laminated in the axial direction. In the yoke 26A, the magnetic force adjusting layer 27A is located on the upper surface side (annular magnet 25 side), and the weight adjusting layer 28A is located on the lower surface side. The upper surface of the magnetic force adjusting layer 27A supports the lower surface of the annular magnet 25 from below.
 磁力調整層27Aは、円環状磁石25の磁力を増幅する機能を有する。磁力調整層27Aの構成材料としては、一般にヨークとして利用可能な磁性材料が用いられる。磁力調整層27Aは、例えば、SUS400系の磁性を有するステンレス鋼からなる層である。 The magnetic force adjusting layer 27A has a function of amplifying the magnetic force of the annular magnet 25. As a constituent material of the magnetic force adjusting layer 27A, a magnetic material that can be generally used as a yoke is used. The magnetic force adjusting layer 27A is, for example, a layer made of SUS400-based magnetic stainless steel.
 磁力調整層27Aは、周方向に沿って軸方向の厚さが連続的に変化する構成を有する。本実施形態の場合、磁力調整層27Aは、中心軸J回りの一周にわたって連続的に厚さが変化する層である。 The magnetic force adjusting layer 27A has a configuration in which the thickness in the axial direction continuously changes along the circumferential direction. In the case of the present embodiment, the magnetic force adjusting layer 27A is a layer whose thickness continuously changes over one circumference around the central axis J.
 重量調整層28Aは、磁力調整層27Aよりも弱い磁性体を有する材料または非磁性体からなる。重量調整層28Aは、例えば、SUS300系の非磁性のステンレス鋼からなる、磁力調整層27Aと同等の比重を有する層である。磁力調整層27Aは、周方向に沿って厚さが変化するため、周方向に沿って重量も変化する。磁力調整層27Aのみからなるヨーク26Aを回転させると、重心位置が中心軸Jからずれているため、振動が大きくなる。そこで、重量調整層28Aによって、ヨーク26Aの重量バランスを調整することで、回転時の振動を抑制できる。 The weight adjusting layer 28A is made of a material or a non-magnetic material having a magnetic material weaker than the magnetic force adjusting layer 27A. The weight adjusting layer 28A is, for example, a layer made of SUS300-based non-magnetic stainless steel and having a specific gravity equivalent to that of the magnetic force adjusting layer 27A. Since the thickness of the magnetic force adjusting layer 27A changes along the circumferential direction, the weight also changes along the circumferential direction. When the yoke 26A composed of only the magnetic force adjusting layer 27A is rotated, the position of the center of gravity deviates from the central axis J, so that the vibration becomes large. Therefore, by adjusting the weight balance of the yoke 26A by the weight adjusting layer 28A, vibration during rotation can be suppressed.
 重量調整層28Aは、磁力調整層27Aが厚い位置で薄く、磁力調整層27Aが薄い位置で厚い形状を有する。これにより、ヨーク26Aを周方向において一様な厚さにできる。ヨーク26Aの周方向の重量分布が均一化可能であれば、ヨーク26Aの厚さは周方向において多少不均一であってもよい。 The weight adjusting layer 28A has a thin shape when the magnetic force adjusting layer 27A is thick and a thick shape when the magnetic force adjusting layer 27A is thin. As a result, the yoke 26A can be made to have a uniform thickness in the circumferential direction. If the weight distribution of the yoke 26A in the circumferential direction can be made uniform, the thickness of the yoke 26A may be slightly non-uniform in the circumferential direction.
 センサマグネット24の上面と対向する位置に、磁気センサ220(磁気センサ220-U、220-V、220-W)が配置される。磁気センサ220-U、220-V、220-Wは、センサマグネット24の軸方向磁界を検出する。 Magnetic sensors 220 (magnetic sensors 220-U, 220-V, 220-W) are arranged at positions facing the upper surface of the sensor magnet 24. The magnetic sensors 220-U, 220-V, 220-W detect the axial magnetic field of the sensor magnet 24.
 センサマグネット24は、磁力調整層27Aを備えているため、周方向に並ぶ極対に対して作用する磁力調整層27Aの増磁の程度が、極対毎に異なる大きさとなる。その結果、センサマグネット24の複数の極対は、互いに異なる軸方向磁界強度を有する構成となる。本実施形態の場合、磁力調整層27Aが、周方向に連続的に変化する厚さを有しているため、センサマグネット24の軸方向磁界強度は、周方向に沿って最大振幅が連続的に変化する。 Since the sensor magnet 24 includes the magnetic force adjusting layer 27A, the degree of magnetization of the magnetic force adjusting layer 27A acting on the pole pairs arranged in the circumferential direction is different for each pole pair. As a result, the plurality of pole pairs of the sensor magnet 24 are configured to have different axial magnetic field strengths from each other. In the case of the present embodiment, since the magnetic force adjusting layer 27A has a thickness that continuously changes in the circumferential direction, the axial magnetic field strength of the sensor magnet 24 has a maximum amplitude continuously along the circumferential direction. Change.
 本実施形態では、ヨーク26Aの上面側(円環状磁石25に向く側)に磁力調整層27Aが配置され、ヨーク26Aの下面側に重量調整層28Aが配置される構成であるが、磁力調整層27Aと重量調整層28Aの軸方向位置を入れ換えてもよい。すなわち、ヨーク26Aは、上下面をひっくり返した状態で使用してもよい。 In the present embodiment, the magnetic force adjusting layer 27A is arranged on the upper surface side (the side facing the annular magnet 25) of the yoke 26A, and the weight adjusting layer 28A is arranged on the lower surface side of the yoke 26A. The axial positions of 27A and the weight adjusting layer 28A may be exchanged. That is, the yoke 26A may be used in a state where the upper and lower surfaces are turned upside down.
 図1に示すように、ステータ30は、ロータ20と径方向に隙間をあけて対向する。ステータ30は、ロータ20を径方向外側から周方向の全周にわたって囲む。ステータ30は、ステータコア31と、インシュレータ32と、コイル33とを備える。 As shown in FIG. 1, the stator 30 faces the rotor 20 with a radial gap. The stator 30 surrounds the rotor 20 from the outside in the radial direction to the entire circumference in the circumferential direction. The stator 30 includes a stator core 31, an insulator 32, and a coil 33.
 ステータコア31は、中心軸Jを中心とする環状である。ステータコア31は、軸方向に延びる筒状である。ステータコア31は、ロータ20を径方向外側から囲む。ステータコア31は、例えば、軸方向に積層する複数の電磁鋼板により構成される。ステータコア31は、ハウジング11の内周面に固定される。 The stator core 31 is an annular shape centered on the central axis J. The stator core 31 has a cylindrical shape extending in the axial direction. The stator core 31 surrounds the rotor 20 from the outside in the radial direction. The stator core 31 is composed of, for example, a plurality of electromagnetic steel sheets laminated in the axial direction. The stator core 31 is fixed to the inner peripheral surface of the housing 11.
 ステータコア31は、コアバック31aと、複数のティース31bと、を有する。コアバック31aは、中心軸Jを中心とする円筒状である。コアバック31aの径方向外側面は、ハウジング11の周壁部11aの内周面に固定される。ティース31bは、コアバック31aの内周面から径方向内側に突出する。複数のティース31bは、周方向に互いに間隔をあけて配置される。各ティース31bの径方向内側を向く端面は、ロータ20の径方向外側面と隙間をあけて対向する。 The stator core 31 has a core back 31a and a plurality of teeth 31b. The core back 31a has a cylindrical shape centered on the central axis J. The radial outer surface of the core back 31a is fixed to the inner peripheral surface of the peripheral wall portion 11a of the housing 11. The teeth 31b project radially inward from the inner peripheral surface of the core back 31a. The plurality of teeth 31b are arranged at intervals in the circumferential direction. The end surface of each tooth 31b facing inward in the radial direction faces the outer surface in the radial direction of the rotor 20 with a gap.
 インシュレータ32は、ステータコア31に取り付けられる。インシュレータ32は、絶縁性の材料により構成される。インシュレータ32は、例えば樹脂製である。インシュレータ32は、中心軸Jを中心とする環状である。インシュレータ32は、複数のティース31bに少なくとも上側から対向する上側部分32aと、複数のティース31bに少なくとも下側から対向する下側部分32bと、を有する。上側部分32aは、中心軸Jを中心とする環状である。具体的に、上側部分32aは、各ティース31bに対して上側から対向する部分と、各ティース31bに対して周方向から対向する部分と、を有する。下側部分32bは、中心軸Jを中心とする環状である。具体的に、下側部分32bは、各ティース31bに対して下側から対向する部分と、各ティース31bに対して周方向から対向する部分と、を有する。 The insulator 32 is attached to the stator core 31. The insulator 32 is made of an insulating material. The insulator 32 is made of, for example, resin. The insulator 32 is an annular shape centered on the central axis J. The insulator 32 has an upper portion 32a facing the plurality of teeth 31b from at least the upper side, and a lower portion 32b facing the plurality of teeth 31b from at least the lower side. The upper portion 32a is an annular shape centered on the central axis J. Specifically, the upper portion 32a has a portion facing each tooth 31b from above and a portion facing each tooth 31b from the circumferential direction. The lower portion 32b is an annular shape centered on the central axis J. Specifically, the lower portion 32b has a portion facing each tooth 31b from the lower side and a portion facing each tooth 31b from the circumferential direction.
 制御基板50は、図1に示すように、ベアリング保持部11dの上側に位置する。制御基板50には、モータ1を駆動制御する制御ICチップ51等が実装される。本実施形態場合、軸方向から見た中央部に、磁気センサ220が実装される。すなわち、制御基板50は、共通の回路基板52に、制御ICチップ51と磁気センサ220とが実装された構成を有する。したがって、制御基板50は、磁気センサ220を有する検出装置2を含む。 As shown in FIG. 1, the control board 50 is located above the bearing holding portion 11d. A control IC chip 51 or the like that drives and controls the motor 1 is mounted on the control board 50. In the case of the present embodiment, the magnetic sensor 220 is mounted in the central portion when viewed from the axial direction. That is, the control board 50 has a configuration in which the control IC chip 51 and the magnetic sensor 220 are mounted on a common circuit board 52. Therefore, the control board 50 includes a detection device 2 having a magnetic sensor 220.
 図3に示すように、モータ1は、検出装置2と、増幅装置3と、位置推定装置4と、制御装置5と、駆動装置6とを備える。
 本実施形態では、検出装置2、増幅装置3、位置推定装置4、制御装置5、および駆動装置6は、制御基板50にソフトウェアまたはハードウェアとして実装される。検出装置2、あるいは検出装置2および増幅装置3以外の装置を、外部制御装置として備える構成としてもよい。
 図3では、ステータ30の内側に、制御基板50のうちの検出装置2のみを図示する。図3では、モータ1の機械的構成要素について、ハウジング11、ステータ30、およびセンサマグネット24のみを図示する。
As shown in FIG. 3, the motor 1 includes a detection device 2, an amplification device 3, a position estimation device 4, a control device 5, and a drive device 6.
In this embodiment, the detection device 2, the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 are mounted on the control board 50 as software or hardware. A device other than the detection device 2 or the detection device 2 and the amplification device 3 may be provided as an external control device.
In FIG. 3, only the detection device 2 of the control board 50 is shown inside the stator 30. In FIG. 3, only the housing 11, the stator 30, and the sensor magnet 24 are shown for the mechanical components of the motor 1.
 ステータ30は、U相、V相及びW相の複数スロットの巻線を備える。ステータ30は、4スロットのU相の巻線と、4スロットのV相の巻線と、4スロットのW相の巻線とからなる12スロットの巻線を備える。ステータ30には、120度ずつ位相がずれている三相電流が、駆動装置6から入力される。ステータ30は、U相、V相及びW相の各巻線に入力される三相電流によって、ロータ20に作用する磁界を発生させる。 The stator 30 includes windings of a plurality of slots of U phase, V phase and W phase. The stator 30 includes a 12-slot winding consisting of a 4-slot U-phase winding, a 4-slot V-phase winding, and a 4-slot W-phase winding. A three-phase current, which is out of phase by 120 degrees, is input to the stator 30 from the drive device 6. The stator 30 generates a magnetic field acting on the rotor 20 by a three-phase current input to each of the U-phase, V-phase, and W-phase windings.
 ロータ20は、ステータ30の磁力を受けることによって中心軸回りに回転する。ロータ20は、周方向に並ぶ複数の磁極を有する。本実施形態の12スロットのステータ30には、例えば、8極、10極、16極などのロータ20が組み合わされる。 The rotor 20 rotates around the central axis by receiving the magnetic force of the stator 30. The rotor 20 has a plurality of magnetic poles arranged in the circumferential direction. The 12-slot stator 30 of the present embodiment is combined with, for example, a rotor 20 having 8 poles, 10 poles, 16 poles, and the like.
 センサマグネット24は、2つ以上の極対(N極及びS極)を備える。図2および図3に示すように、センサマグネット24は、一例として、4個の極対を備える。センサマグネット24は、ロータ20とともに中心軸Jを中心として回転する。本実施形態において、センサマグネット24の極対には、位置推定のための極対番号が割り当てられる。極対番号には、セクションとセグメントとが対応付けられる。 The sensor magnet 24 includes two or more pole pairs (N pole and S pole). As shown in FIGS. 2 and 3, the sensor magnet 24 includes four pole pairs as an example. The sensor magnet 24 rotates about the central axis J together with the rotor 20. In the present embodiment, the pole pair of the sensor magnet 24 is assigned a pole pair number for position estimation. Sections and segments are associated with pole pair numbers.
 図4は、極対番号とセクションとセグメントとの対応関係の例を示す図である。極対番号には、複数のセクション番号からなるセクション番号群が対応付けられる。セクション番号の個数は、検出装置2の3個の磁気センサ220の出力信号の大小関係と中間信号の正負(ゼロクロス)とを含めた12通りの論理の数に等しい。図4では、極対番号「0」には、「0」から「11」までの12個のセクション番号が対応付けられている。セグメント番号は、ロータ20の機械角の絶対値を表す固有番号である。例えば、極対番号「0」のセクション番号「0」から「11」までには、セグメント番号「0」から「11」までが対応付けられている。例えば、極対番号「1」のセクション番号「0」から「11」までには、セグメント番号「12」から「23」までが対応付けられている。図4に示された対応関係を表すデータテーブルは、例えば、位置推定装置4の後述する記憶装置42に予め記憶される。 FIG. 4 is a diagram showing an example of the correspondence between the pole pair number, the section, and the segment. A section number group consisting of a plurality of section numbers is associated with the pole pair number. The number of section numbers is equal to the number of 12 different logics including the magnitude relation of the output signals of the three magnetic sensors 220 of the detection device 2 and the positive / negative (zero cross) of the intermediate signal. In FIG. 4, 12 section numbers from “0” to “11” are associated with the pole pair number “0”. The segment number is a unique number representing the absolute value of the mechanical angle of the rotor 20. For example, the section numbers "0" to "11" of the pole pair number "0" are associated with the segment numbers "0" to "11". For example, the section numbers "0" to "11" of the pole pair number "1" are associated with the segment numbers "12" to "23". The data table showing the correspondence shown in FIG. 4 is stored in advance in, for example, a storage device 42 described later in the position estimation device 4.
 検出装置2は、磁界強度を検出する装置である。検出装置2は、センサマグネット24の近傍の3箇所以上の磁界強度を検出する。検出装置2は、3個以上の磁気センサ220を備える。検出装置2は、図3に示すように、磁気センサ220-Uと、磁気センサ220-Vと、磁気センサ220-Wとを備える。本明細書では、個々の磁気センサを区別しない場合には、総称して「磁気センサ220」と記載する。磁気センサ220は、例えば、ホール素子、リニアホールIC(integrated circuit)、磁気抵抗センサである。本実施形態では、磁気センサがホール素子であるとして説明する。 The detection device 2 is a device that detects the magnetic field strength. The detection device 2 detects magnetic field strengths at three or more locations in the vicinity of the sensor magnet 24. The detection device 2 includes three or more magnetic sensors 220. As shown in FIG. 3, the detection device 2 includes a magnetic sensor 220-U, a magnetic sensor 220-V, and a magnetic sensor 220-W. In the present specification, when the individual magnetic sensors are not distinguished, they are collectively referred to as "magnetic sensor 220". The magnetic sensor 220 is, for example, a Hall element, a linear Hall IC (integrated circuit), or a magnetoresistive sensor. In the present embodiment, the magnetic sensor will be described as a Hall element.
 磁気センサ220-Uは、U相の磁界強度を検出するセンサである。磁気センサ220-Uは、U相の磁界強度を表す差動信号であるU相差動信号を、増幅装置3に出力する。磁気センサ220-Vは、V相の磁界強度を検出するセンサである。磁気センサ220-Vは、V相の磁界強度を表す差動信号であるV相差動信号を、増幅装置3に出力する。磁気センサ220-Wは、W相の磁界強度を検出するセンサである。磁気センサ220-Wは、W相の磁界強度を表す差動信号であるW相差動信号を、増幅装置3に出力する。 The magnetic sensor 220-U is a sensor that detects the magnetic field strength of the U phase. The magnetic sensor 220-U outputs a U-phase differential signal, which is a differential signal representing the U-phase magnetic field strength, to the amplification device 3. The magnetic sensor 220-V is a sensor that detects the magnetic field strength of the V phase. The magnetic sensor 220-V outputs a V-phase differential signal, which is a differential signal representing the magnetic field strength of the V-phase, to the amplification device 3. The magnetic sensor 220-W is a sensor that detects the magnetic field strength of the W phase. The magnetic sensor 220-W outputs a W-phase differential signal, which is a differential signal representing the magnetic field strength of the W-phase, to the amplification device 3.
 増幅装置3は、差動信号の波形の振幅を増幅する装置である。増幅装置3は、差動増幅器300-Uと、差動増幅器300-Vと、差動増幅器300-Wとを備える。差動増幅器300-Uは、U相差動信号に対して増幅処理を実行することによって、アナログのU相信号Huを生成する。差動増幅器300-Vは、V相差動信号に対して増幅処理を実行することによって、アナログのV相信号Hvを生成する。差動増幅器300-Wは、W相差動信号に対して増幅処理を実行することによって、アナログのW相信号Hwを生成する。 The amplification device 3 is a device that amplifies the amplitude of the waveform of the differential signal. The amplification device 3 includes a differential amplifier 300-U, a differential amplifier 300-V, and a differential amplifier 300-W. The differential amplifier 300-U generates an analog U-phase signal Hu by executing an amplification process on the U-phase differential signal. The differential amplifier 300-V generates an analog V-phase signal Hv by executing an amplification process on the V-phase differential signal. The differential amplifier 300-W generates an analog W-phase signal Hw by executing an amplification process on the W-phase differential signal.
 位置推定装置4は、モータのロータの回転位置を推定する情報処理装置である。位置推定装置4は、アナログのU相信号HuとアナログのV相信号HvとアナログのW相信号Hwとを、増幅装置3から取得する。位置推定装置4は、U相信号HuとV相信号HvとW相信号Hwの各波形の検出値に基づいて、センサマグネット24のセクション番号と極対番号を選択することで、ロータ20の回転位置を推定する。位置推定装置4は、回転位置の推定結果を、制御装置5に出力する。 The position estimation device 4 is an information processing device that estimates the rotational position of the rotor of the motor. The position estimation device 4 acquires an analog U-phase signal Hu, an analog V-phase signal Hv, and an analog W-phase signal Hw from the amplification device 3. The position estimation device 4 rotates the rotor 20 by selecting the section number and the pole pair number of the sensor magnet 24 based on the detected values of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw. Estimate the position. The position estimation device 4 outputs the estimation result of the rotation position to the control device 5.
 制御装置5は、制御信号を生成する情報処理装置である。制御装置5は、指示信号に基づいて制御信号を生成する。制御信号は、例えば、指示された回転方向(CW: clockwise、CCW: counterclockwise)に応じたレジスタ値を表す信号、駆動装置6からステータ30に出力される電流の電流値を表す信号である。 The control device 5 is an information processing device that generates a control signal. The control device 5 generates a control signal based on the instruction signal. The control signal is, for example, a signal representing a register value corresponding to a designated rotation direction (CW: clockwise, CCW: counterclockwise), and a signal representing a current value of a current output from the drive device 6 to the stator 30.
 駆動装置6は、ステータ30のコイル33を駆動する装置である。駆動装置6には、制御装置5から制御信号が入力される。駆動装置6は、制御信号によって表される電流値の三相電流を、ステータ30の各コイル33に入力する。駆動装置6は、ステータ30の各コイル33に三相電流を入力することによって、ロータ20を回転させる。詳細は後述するが、モータ1では、ステータ30の各コイル33に対して駆動装置6から三相電流が入力されない状態でロータ20の位置推定が行われる。すなわち、位置推定装置4は、停止中のロータ20の回転位置を推定する。位置推定装置4は、回転中のロータ20の回転位置も推定可能である。 The drive device 6 is a device that drives the coil 33 of the stator 30. A control signal is input to the drive device 6 from the control device 5. The drive device 6 inputs a three-phase current of the current value represented by the control signal to each coil 33 of the stator 30. The drive device 6 rotates the rotor 20 by inputting a three-phase current to each coil 33 of the stator 30. Although the details will be described later, in the motor 1, the position of the rotor 20 is estimated in a state where the three-phase current is not input from the drive device 6 to each coil 33 of the stator 30. That is, the position estimation device 4 estimates the rotational position of the rotor 20 that is stopped. The position estimation device 4 can also estimate the rotation position of the rotating rotor 20.
 外部装置7は、ロータの回転方向、回転力(トルク)、回転角度、回転速度等の指示信号を生成する情報処理装置である。外部装置7は、指示信号を制御装置5に出力する。 The external device 7 is an information processing device that generates instruction signals such as the rotation direction, rotational force (torque), rotation angle, and rotation speed of the rotor. The external device 7 outputs an instruction signal to the control device 5.
 次に、位置推定装置4の構成例の詳細を説明する。
 位置推定装置4は、図3に示すように、変換装置40と、演算装置41と、記憶装置42とを備える。変換装置40は、アナログ信号をデジタル信号に変換する装置である。変換装置40は、変換部400-Uと、変換部400-Vと、変換部400-Wとを備える。
Next, the details of the configuration example of the position estimation device 4 will be described.
As shown in FIG. 3, the position estimation device 4 includes a conversion device 40, an arithmetic unit 41, and a storage device 42. The conversion device 40 is a device that converts an analog signal into a digital signal. The conversion device 40 includes a conversion unit 400-U, a conversion unit 400-V, and a conversion unit 400-W.
 3つの変換部400-U、400-V、400-Wは、アナログ信号をデジタル信号に変換するデバイスである。変換部400-Uは、差動増幅器300-Uから取得されたアナログのU相信号を、デジタルのU相信号に変換する。変換部400-Vは、差動増幅器300-Vから取得されたアナログのU相信号を、デジタルのV相信号に変換する。変換部400-Wは、差動増幅器300-Wから取得されたアナログのW相信号を、デジタルのV相信号に変換する。 The three conversion units 400-U, 400-V, and 400-W are devices that convert analog signals into digital signals. The conversion unit 400-U converts the analog U-phase signal acquired from the differential amplifier 300-U into a digital U-phase signal. The conversion unit 400-V converts the analog U-phase signal acquired from the differential amplifier 300-V into a digital V-phase signal. The conversion unit 400-W converts the analog W-phase signal acquired from the differential amplifier 300-W into a digital V-phase signal.
 演算装置41は、演算処理を実行する装置である。演算装置41の一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、メモリに展開されたプログラムを実行することにより実現される。演算装置41の一部又は全部は、例えば、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。 The arithmetic unit 41 is an apparatus that executes arithmetic processing. A part or all of the arithmetic unit 41 is realized by a processor such as a CPU (Central Processing Unit) executing a program expanded in a memory. A part or all of the arithmetic unit 41 may be realized by using hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
 演算装置41は、セクション選択部412と、推定部413とを備える。
 セクション選択部412は、変換装置40に接続される。推定部413は、セクション選択部412に接続される。推定部413は、制御装置5に接続される。
The arithmetic unit 41 includes a section selection unit 412 and an estimation unit 413.
The section selection unit 412 is connected to the conversion device 40. The estimation unit 413 is connected to the section selection unit 412. The estimation unit 413 is connected to the control device 5.
 セクション選択部412は、ロータ20の3箇所以上の磁界強度の検出値を取得する。セクション選択部412は、変換装置40からデジタル変換されたU相信号Hu、V相信号Hv及びW相信号Hwを取得する。 The section selection unit 412 acquires the detected values of the magnetic field strengths of the rotor 20 at three or more locations. The section selection unit 412 acquires the digitally converted U-phase signal Hu, V-phase signal Hv, and W-phase signal Hw from the conversion device 40.
 推定部413は、セクション選択部412から、磁界強度の検出値と、センサマグネット24の現在位置に対応するセクション番号とを取得する。推定部413は、磁界強度の検出値を三相二相変換して得られる合成ベクトルの長さを極対特徴量として算出し、算出された極対特徴量を、予め学習されたロータ20の極対番号と極対特徴量との関係に照合する。推定部413は、制御装置5に対してロータ20の回転位置の推定結果を出力する。 The estimation unit 413 acquires the detected value of the magnetic field strength and the section number corresponding to the current position of the sensor magnet 24 from the section selection unit 412. The estimation unit 413 calculates the length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength as the pole-to-feature amount, and calculates the calculated pole-to-feature amount of the rotor 20 that has been learned in advance. Check the relationship between the pole pair number and the pole pair feature quantity. The estimation unit 413 outputs the estimation result of the rotation position of the rotor 20 to the control device 5.
 記憶装置42は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記録媒体(非一時的な記録媒体)が好ましい。記憶装置42は、RAM(Random Access Memory)などの揮発性の記録媒体を備えてもよい。記憶装置42は、プログラム、学習値等のデータテーブルを記憶する。 The storage device 42 is preferably a non-volatile recording medium (non-temporary recording medium) such as a flash memory or an HDD (Hard Disk Drive). The storage device 42 may include a volatile recording medium such as a RAM (Random Access Memory). The storage device 42 stores data tables such as programs and learning values.
 次に、学習動作について説明する。
 図5は、磁界強度の波形の一例を示す図である。本実施形態の場合、セグメントごとに磁界強度の検出値を三相二相変換して得られる合成ベクトルの長さを極対特徴量として算出する。第1実施形態の場合、算出された極対特徴量を、センサマグネット24の各セグメントに対応づけて学習値とする。
Next, the learning operation will be described.
FIG. 5 is a diagram showing an example of a waveform of magnetic field strength. In the case of this embodiment, the length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength for each segment is calculated as the pole pair feature amount. In the case of the first embodiment, the calculated pole pair feature amount is used as a learning value in association with each segment of the sensor magnet 24.
 極対特徴量の学習値は、事前に生成される。極対特徴量の学習値の事前生成処理は、例えば、モータ1の出荷前に実施される。極対特徴量の学習値の事前生成処理は、例えば、ロータ20に外部位置センサを接続した状態でロータ20を一定速度で回転させ、検出装置2から出力される波形を増幅装置3で増幅した後、位置推定装置4において極対特徴量を算出することにより行われる。 The learning value of the pole pair feature amount is generated in advance. The pre-generation processing of the learning value of the pole pair feature amount is performed, for example, before the shipment of the motor 1. In the pre-generation processing of the learning value of the pole pair feature amount, for example, the rotor 20 is rotated at a constant speed with the external position sensor connected to the rotor 20, and the waveform output from the detection device 2 is amplified by the amplification device 3. After that, it is performed by calculating the pole pair feature amount in the position estimation device 4.
 図5に示された波形は、極対特徴量の学習値の事前生成処理においてロータ20が回転している場合における、ロータ20のロータ角に応じた磁界強度の波形である。図5には、U相信号Huの波形の学習値と、V相信号Hvの波形の学習値と、W相信号Hwの波形の学習値と、セクションとの対応関係が、各磁界強度の波形の学習値とセクションとの対応関係の例として示されている。正値である振幅のデジタル値は、一例として、N極の磁界強度のデジタル値を表す。負値である振幅のデジタル値は、一例として、S極の磁界強度のデジタル値を表す。 The waveform shown in FIG. 5 is a waveform of the magnetic field strength according to the rotor angle of the rotor 20 when the rotor 20 is rotating in the pre-generation processing of the learning value of the pole pair feature amount. In FIG. 5, the correspondence between the learning value of the waveform of the U-phase signal Hu, the learning value of the waveform of the V-phase signal Hv, the learning value of the waveform of the W-phase signal Hw, and the section is the waveform of each magnetic field strength. It is shown as an example of the correspondence between the learning value of and the section. The digital value of the amplitude, which is a positive value, represents, for example, the digital value of the magnetic field strength of the N pole. The digital value of the amplitude, which is a negative value, represents, for example, the digital value of the magnetic field strength of the S pole.
 図5に示すように、3つの波形の複数のゼロクロス点および波形同士の複数の交点のうち、隣り合って配置される2点の間の区間が、セクションとして設定される。図5に示す例では、U相信号Huのゼロクロス点から、U相信号HuとW相信号Hwとの交点までの区間がセクション「0」、U相信号HuとW相信号Hwとの交点からW相信号Hwのゼロクロス点までの区間がセクション「1」に設定される。以下、波形同士の交点またはゼロクロス点を通過するまでの区間毎にセクションが設定される。 As shown in FIG. 5, a section between two points arranged adjacent to each other among a plurality of zero cross points of three waveforms and a plurality of intersections of waveforms is set as a section. In the example shown in FIG. 5, the section from the zero crossing point of the U-phase signal Hu to the intersection of the U-phase signal Hu and the W-phase signal Hw is section “0”, and from the intersection of the U-phase signal Hu and the W-phase signal Hw. The section up to the zero crossing point of the W phase signal Hw is set in section "1". Hereinafter, a section is set for each section until the intersection of the waveforms or the zero crossing point is passed.
 ここで、磁界強度の検出値の三相二相変換について説明する。
 図6の上段に、センサマグネット24の磁界強度の波形を示す。センサマグネット24は、図2に示したように、周方向に沿って連続的に厚さが変化する磁力調整層27Aを備えていることで、周方向に沿って最大振幅が連続的に変化する軸方向磁界強度を有する。したがって、磁気センサ220により検出されるセンサマグネット24の軸方向磁界強度は、図6に示すように、回転方向において最大振幅が連続的に変化する波形となる。
Here, the three-phase two-phase conversion of the detected value of the magnetic field strength will be described.
The waveform of the magnetic field strength of the sensor magnet 24 is shown in the upper part of FIG. As shown in FIG. 2, the sensor magnet 24 includes the magnetic field adjusting layer 27A whose thickness continuously changes along the circumferential direction, so that the maximum amplitude continuously changes along the circumferential direction. Has axial magnetic field strength. Therefore, the axial magnetic field strength of the sensor magnet 24 detected by the magnetic sensor 220 has a waveform in which the maximum amplitude continuously changes in the rotation direction, as shown in FIG.
 位置推定装置4は、増幅装置3から入力されるU相信号Hu、V相信号Hv、およびW相信号Hwを変換装置40でデジタル値に変換した後、図6中段に示す行列式により、三相二相変換を実行する。三相二相変換により、U相信号Hu、V相信号Hv、およびW相信号Hwは、二相座標系のα軸、β軸の信号に変換される。変換された信号Hα、Hβは、図6下段に示すように、直交座標系の合成ベクトル(Hα,Hβ)として表現できる。 The position estimation device 4 converts the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw input from the amplification device 3 into digital values by the conversion device 40, and then uses the matrix formula shown in the middle of FIG. Perform a phase-two-phase conversion. By the three-phase two-phase conversion, the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw are converted into α-axis and β-axis signals of the two-phase coordinate system. The converted signals Hα and Hβ can be expressed as composite vectors (Hα and Hβ) of the Cartesian coordinate system as shown in the lower part of FIG.
 図6下段に示すように、合成ベクトル(Hα,Hβ)の先端位置は、ロータ20の回転に伴って、原点を中心とするらせん状に移動する。すなわち、合成ベクトル(Hα,Hβ)の大きさは、ロータ20の回転に伴って連続的に変化する。合成ベクトル(Hα,Hβ)の大きさは、センサマグネット24の軸方向磁界強度に対応する。位置推定装置4は、合成ベクトル(Hα,Hβ)の大きさを極対特徴量として算出する。 As shown in the lower part of FIG. 6, the tip positions of the composite vectors (Hα, Hβ) move in a spiral shape centered on the origin as the rotor 20 rotates. That is, the magnitude of the composite vector (Hα, Hβ) changes continuously with the rotation of the rotor 20. The magnitude of the composite vector (Hα, Hβ) corresponds to the axial magnetic field strength of the sensor magnet 24. The position estimation device 4 calculates the magnitude of the composite vector (Hα, Hβ) as the pole pair feature quantity.
 学習動作では、合成ベクトル(Hα,Hβ)の大きさである極対特徴量と、センサマグネット24のセグメント番号との対応関係を表すデータテーブルを作成する。これにより、例えば、図4に示した48個のセグメントのそれぞれに極対特徴量が対応づけられたデータテーブルが作成される。作成されたデータテーブルは、例えば記憶装置42に予め記憶される。 In the learning operation, a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (Hα, Hβ), and the segment number of the sensor magnet 24 is created. As a result, for example, a data table in which the pole pair features are associated with each of the 48 segments shown in FIG. 4 is created. The created data table is stored in advance in, for example, the storage device 42.
 次に、位置推定装置4の動作例について、図7および図8を参照しつつ説明する。
 図7は、磁界強度の波形の検出例を示す図である。図7に示す検出時において、ロータ20の回転は停止している状態であり、検出装置2は通電されている。図7に示された符号「kT」は、磁界強度の波形における検出値がセクション選択部412によってサンプリングされた時刻における、ロータ20のロータ角(回転位置)を表す。
Next, an operation example of the position estimation device 4 will be described with reference to FIGS. 7 and 8.
FIG. 7 is a diagram showing an example of detecting a waveform of magnetic field strength. At the time of detection shown in FIG. 7, the rotation of the rotor 20 is stopped, and the detection device 2 is energized. The reference numeral “kT” shown in FIG. 7 represents the rotor angle (rotational position) of the rotor 20 at the time when the detected value in the waveform of the magnetic field strength is sampled by the section selection unit 412.
 位置推定装置4は、図8に示すステップS101~S106を実行することにより、ロータ20の現在位置を推定し、制御装置5に出力する。
 ステップS101において、セクション選択部412には、V相信号Hvの補正波形のサンプル点100の検出値と、W相信号Hwの補正波形のサンプル点110の検出値と、U相信号Huの補正波形のサンプル点120の検出値と、が入力される。
The position estimation device 4 estimates the current position of the rotor 20 by executing steps S101 to S106 shown in FIG. 8, and outputs the current position to the control device 5.
In step S101, the section selection unit 412 receives the detection value of the sample point 100 of the correction waveform of the V-phase signal Hv, the detection value of the sample point 110 of the correction waveform of the W-phase signal Hw, and the correction waveform of the U-phase signal Hu. The detected value of the sample point 120 of the above is input.
 ステップS102において、セクション選択部412は、図5に示された極対番号に予め定められた複数のセクションのうちから、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の検出値に基づいてセクションを選択する。 In step S102, the section selection unit 412 sets the magnetic field strengths of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw from among the plurality of sections predetermined with the pole pair numbers shown in FIG. Select a section based on the detection value.
 具体的に、セクション選択部412は、図7に示す3つのサンプル点100、110、120の検出値の相互の大小関係と、中間の大きさの検出値であるサンプル点110の正負と、に基づいて、セクションを選択する。図5に示したように、セクションと磁気強度の波形との間には一定の関係があり、3つのサンプル点の検出値の大小関係と、中間位置のサンプル点の正負から、回転位置のセクションを選択できる。図7に示す波形の場合、セクション選択部412は、セクション番号「8」を選択する。セクション選択部412は、選択されたセクション番号を、磁界強度の検出値とともに推定部413に出力する。 Specifically, the section selection unit 412 determines the mutual magnitude relationship between the detected values of the three sample points 100, 110, and 120 shown in FIG. 7, and the positive and negative values of the sample points 110, which are the detected values having an intermediate size. Select a section based on. As shown in FIG. 5, there is a certain relationship between the section and the waveform of the magnetic intensity. Can be selected. In the case of the waveform shown in FIG. 7, the section selection unit 412 selects the section number “8”. The section selection unit 412 outputs the selected section number to the estimation unit 413 together with the detected value of the magnetic field strength.
 ステップS103において、推定部413は、セクション選択部412から入力される磁界強度の検出値に対して、図6中段に示す行列式により三相二相変換を実行する。推定部413は、三相二相変換により得られる合成ベクトル(Hα,Hβ)の長さを極対特徴量として算出する。 In step S103, the estimation unit 413 executes a three-phase two-phase conversion with respect to the detected value of the magnetic field strength input from the section selection unit 412 by the determinant shown in the middle of FIG. The estimation unit 413 calculates the length of the composite vector (Hα, Hβ) obtained by the three-phase two-phase transformation as the pole pair feature quantity.
 ステップS104において、推定部413は、記憶装置42から極対特徴量の学習値を読み出す。推定部413は、セクション選択部412から入力されるセクション番号に対応する極対特徴量を取得する。本実施形態の場合、推定部413は、4つの極対番号「0」「1」「2」「3」のそれぞれに属するセクション番号「8」の極対特徴量として、4つの学習値を取得する。 In step S104, the estimation unit 413 reads out the learning value of the pole pair feature amount from the storage device 42. The estimation unit 413 acquires the pole pair feature amount corresponding to the section number input from the section selection unit 412. In the case of the present embodiment, the estimation unit 413 acquires four learning values as the pole pair features of the section number "8" belonging to each of the four pole pair numbers "0", "1", "2", and "3". do.
 ステップS105において、推定部413は、ステップS103で算出した極対特徴量の算出値と、ステップS104で取得した極対特徴量の4つの学習値とを比較する。
 ステップS106において、推定部413は、極対特徴量の4つの学習値のうち、算出値に最も近い値の学習値を特定する。推定部413は、特定された学習値に対応する極対番号を選択する。本実施形態の場合、推定部413は、4つの極対番号「0」「1」「2」「3」のいずれかを、回転位置の極対番号として選択する。
In step S105, the estimation unit 413 compares the calculated value of the pole pair feature amount calculated in step S103 with the four learning values of the pole pair feature amount acquired in step S104.
In step S106, the estimation unit 413 specifies the learning value of the value closest to the calculated value among the four learning values of the pole pair feature amount. The estimation unit 413 selects the pole pair number corresponding to the specified learning value. In the case of the present embodiment, the estimation unit 413 selects any of the four pole pair numbers "0", "1", "2", and "3" as the pole pair numbers of the rotation positions.
 以上の動作により、位置推定装置4は、ロータ20の現在の回転位置におけるセンサマグネット24のセクション番号と極対番号とを選択できる。これにより、位置推定装置4は、図4に示したセグメント番号を特定できる。位置推定装置4は、特定したセグメント番号を、ロータ20の回転位置として制御装置5に出力する。 By the above operation, the position estimation device 4 can select the section number and the pole pair number of the sensor magnet 24 at the current rotation position of the rotor 20. As a result, the position estimation device 4 can specify the segment number shown in FIG. The position estimation device 4 outputs the specified segment number to the control device 5 as the rotation position of the rotor 20.
 位置推定装置4から制御装置5に出力される情報は、セグメント番号に限られない。例えば、位置推定装置4から制御装置5に対して、セクション番号と極対番号を出力してもよい。さらに、位置推定装置4が、再公表WO2016/104378号公報(特願2016-566319号)に記載の位置推定処理を実行可能である場合には、選択されたセグメント番号と磁界強度の検出値とに基づいて、さらに高い分解能でロータ20の機械角を算出できる。位置推定装置4は、算出された高分解能の機械角を制御装置5に出力してもよい。 The information output from the position estimation device 4 to the control device 5 is not limited to the segment number. For example, the position estimation device 4 may output the section number and the pole pair number to the control device 5. Further, when the position estimation device 4 can execute the position estimation process described in the republished WO2016 / 104378 (Japanese Patent Application No. 2016-566319), the selected segment number and the detected value of the magnetic field strength are used. Based on this, the mechanical angle of the rotor 20 can be calculated with even higher resolution. The position estimation device 4 may output the calculated high-resolution mechanical angle to the control device 5.
 以上のように、第1実施形態の位置推定装置4は、セクション選択部412と、推定部413とを備える。セクション選択部412は、ロータ20の回転状態によらず、ロータ20の3箇所以上の磁界強度の検出値を取得する。セクション選択部412は、ロータ20の極対番号に予め定められた複数のセクションのうちから、磁界強度の検出値に基づいてセクションを選択する。推定部413は、磁界強度の検出値を三相二相変換することで極対特徴量を算出し、予め学習された極対特徴量と一致するか否かを、選択されたセクションに対応付けられた極対ごとに判定する。推定部413は、算出値に最も近い値の極対特徴量に対応する極対番号を選択し、ロータ20の回転位置と推定する。 As described above, the position estimation device 4 of the first embodiment includes a section selection unit 412 and an estimation unit 413. The section selection unit 412 acquires the detected values of the magnetic field strengths at three or more points of the rotor 20 regardless of the rotational state of the rotor 20. The section selection unit 412 selects a section from a plurality of sections predetermined by the pole pair number of the rotor 20 based on the detected value of the magnetic field strength. The estimation unit 413 calculates the pole pair feature amount by three-phase and two-phase conversion of the detected value of the magnetic field strength, and associates with the selected section whether or not it matches the pole pair feature amount learned in advance. Judgment is made for each pair of poles. The estimation unit 413 selects the pole pair number corresponding to the pole pair feature amount having the value closest to the calculated value, and estimates it as the rotation position of the rotor 20.
 これによって、第1実施形態の位置推定装置4は、ロータ20を回転させることなくロータ20の回転位置を推定することが可能である。位置推定装置4を備えるモータ1は、電源投入時にロータ20の回転位置の原点を調整しなくてもよい。モータ1は、原点調整のための予備動作が不要であるため、予備動作が許容されないロボット、搬送車などの駆動用モータ用途にも好適に用いることができる。モータ1は原点調整のための予備動作が不要であるため、予備動作に要する駆動時間、消費電力を削減できる。 Thereby, the position estimation device 4 of the first embodiment can estimate the rotation position of the rotor 20 without rotating the rotor 20. The motor 1 provided with the position estimation device 4 does not have to adjust the origin of the rotation position of the rotor 20 when the power is turned on. Since the motor 1 does not require a preliminary operation for adjusting the origin, it can be suitably used for a drive motor application such as a robot or a transport vehicle in which the preliminary operation is not allowed. Since the motor 1 does not require a preliminary operation for adjusting the origin, the drive time and power consumption required for the preliminary operation can be reduced.
 (変形例)
 図9は、センサマグネット24の変形例を示す図である。図9に示すセンサマグネット24は、第1実施形態と異なる構造のヨーク26Bを備える。
 ヨーク26Bは、円環状の磁性板である。ヨーク26Bは、磁力調整層27Bと、重量調整層28Bとが軸方向に積層された構成を有する。ヨーク26Bにおいて、磁力調整層27Bは上面側(円環状磁石25側)に位置し、重量調整層28Bは下面側に位置する。磁力調整層27Bの上面は、円環状磁石25の下面を下側から支持する。
(Modification example)
FIG. 9 is a diagram showing a modified example of the sensor magnet 24. The sensor magnet 24 shown in FIG. 9 includes a yoke 26B having a structure different from that of the first embodiment.
The yoke 26B is an annular magnetic plate. The yoke 26B has a structure in which the magnetic force adjusting layer 27B and the weight adjusting layer 28B are laminated in the axial direction. In the yoke 26B, the magnetic force adjusting layer 27B is located on the upper surface side (annular magnet 25 side), and the weight adjusting layer 28B is located on the lower surface side. The upper surface of the magnetic force adjusting layer 27B supports the lower surface of the annular magnet 25 from below.
 磁力調整層27Bは、円環状磁石25の磁力を増幅する機能を有する。磁力調整層27Bの構成材料としては、第1実施形態の磁力調整層27Aと同様の材料を使用可能である。磁力調整層27Bは、周方向に沿って軸方向の厚さが階段状に変化する構成を有する。本実施形態の場合、磁力調整層27Aは、円環状磁石25の磁極2つ毎に異なる厚さを有する。 The magnetic force adjusting layer 27B has a function of amplifying the magnetic force of the annular magnet 25. As the constituent material of the magnetic force adjusting layer 27B, the same material as the magnetic force adjusting layer 27A of the first embodiment can be used. The magnetic force adjusting layer 27B has a configuration in which the thickness in the axial direction changes stepwise along the circumferential direction. In the case of the present embodiment, the magnetic force adjusting layer 27A has a different thickness for each of the two magnetic poles of the annular magnet 25.
 重量調整層28Bは、磁力調整層27Bよりも弱い磁性体を有する材料または非磁性体からなり、磁力調整層27Bと同等の比重を有する層である。重量調整層28Bの構成材料は、第1実施形態の重量調整層28Aと同様である。
 重量調整層28Bは、磁力調整層27Bが厚い位置で薄く、磁力調整層27Bが薄い位置で厚い。これにより、ヨーク26Bの厚さを、周方向において均一化できる。重量調整層28Bによって、ヨーク26Bの重量バランスを調整することで、回転時の振動を抑制できる。ヨーク26Bの周方向の重量分布が均一化可能であれば、ヨーク26Bの厚さは周方向において多少不均一であってもよい。
The weight adjusting layer 28B is a layer made of a material or a non-magnetic material having a magnetic material weaker than the magnetic force adjusting layer 27B and having a specific gravity equivalent to that of the magnetic force adjusting layer 27B. The constituent material of the weight adjusting layer 28B is the same as that of the weight adjusting layer 28A of the first embodiment.
The weight adjusting layer 28B is thin at a position where the magnetic force adjusting layer 27B is thick, and is thick at a position where the magnetic force adjusting layer 27B is thin. As a result, the thickness of the yoke 26B can be made uniform in the circumferential direction. By adjusting the weight balance of the yoke 26B by the weight adjusting layer 28B, vibration during rotation can be suppressed. If the weight distribution of the yoke 26B in the circumferential direction can be made uniform, the thickness of the yoke 26B may be slightly non-uniform in the circumferential direction.
 変形例のセンサマグネット24は、磁力調整層27Bを備えているため、周方向に並ぶ極対に対して作用する磁力調整層27Bの増磁の程度が、極対毎に異なる大きさとなる。その結果、センサマグネット24の複数の極対は、互いに異なる軸方向磁界強度を有する構成となる。本実施形態の場合、磁力調整層27Bが、周方向に沿って階段状に変化する厚さを有しているため、センサマグネット24の軸方向磁界強度は、周方向に沿って階段状に変化する。 Since the sensor magnet 24 of the modified example includes the magnetic force adjusting layer 27B, the degree of magnetization of the magnetic force adjusting layer 27B acting on the pole pairs arranged in the circumferential direction is different for each pole pair. As a result, the plurality of pole pairs of the sensor magnet 24 are configured to have different axial magnetic field strengths from each other. In the case of the present embodiment, since the magnetic field adjusting layer 27B has a thickness that changes stepwise along the circumferential direction, the axial magnetic field strength of the sensor magnet 24 changes stepwise along the circumferential direction. do.
 上記変形例では、ヨーク26Bの上面側(円環状磁石25に向く側)に磁力調整層27Bが配置され、ヨーク26Bの下面側に重量調整層28Bが配置される構成であるが、磁力調整層27Bと重量調整層28Bの軸方向位置を入れ換えてもよい。すなわち、ヨーク26Bは、上下面をひっくり返した状態で使用してもよい。 In the above modification, the magnetic force adjusting layer 27B is arranged on the upper surface side (the side facing the annular magnet 25) of the yoke 26B, and the weight adjusting layer 28B is arranged on the lower surface side of the yoke 26B. The axial positions of 27B and the weight adjusting layer 28B may be exchanged. That is, the yoke 26B may be used in a state where the upper and lower surfaces are turned upside down.
 変形例のセンサマグネット24を備えるモータ1における極対特徴量の算出について、図10を参照して説明する。
 図10の上段に、変形例のセンサマグネット24の磁界強度の波形を示す。変形例のセンサマグネット24は、図9に示したように、周方向に沿って階段状に最大振幅が変化する軸方向磁界強度を有する。したがって、磁気センサ220により検出されるセンサマグネット24の軸方向磁界強度は、図10に示すように、回転方向において最大振幅が階段状に変化する波形となる。
The calculation of the pole pair feature amount in the motor 1 provided with the sensor magnet 24 of the modified example will be described with reference to FIG.
The upper part of FIG. 10 shows the waveform of the magnetic field strength of the sensor magnet 24 of the modified example. As shown in FIG. 9, the sensor magnet 24 of the modified example has an axial magnetic field strength in which the maximum amplitude changes stepwise along the circumferential direction. Therefore, as shown in FIG. 10, the axial magnetic field strength of the sensor magnet 24 detected by the magnetic sensor 220 has a waveform in which the maximum amplitude changes stepwise in the rotation direction.
 位置推定装置4は、増幅装置3から入力されるU相信号Hu、V相信号Hv、およびW相信号Hwを変換装置40でデジタル値に変換した後、図10中段に示す行列式により、三相二相変換を実行する。三相二相変換により、U相信号Hu、V相信号Hv、およびW相信号Hwは、二相座標系の信号Hα、Hβに変換される。信号Hα、Hβは、図10下段に示すように、直交座標系に合成ベクトル(Hα,Hβ)として表現できる。 The position estimation device 4 converts the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw input from the amplification device 3 into digital values by the conversion device 40, and then uses the matrix formula shown in the middle of FIG. Perform a phase-two-phase conversion. By the three-phase two-phase conversion, the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw are converted into the signals Hα and Hβ of the two-phase coordinate system. The signals Hα and Hβ can be expressed as composite vectors (Hα and Hβ) in the Cartesian coordinate system as shown in the lower part of FIG.
 合成ベクトル(Hα,Hβ)の大きさは、センサマグネット24の軸方向磁界強度に対応するので、合成ベクトル(Hα,Hβ)の大きさは、ロータ20の回転に伴って階段状に変化する。図10下段に示すように、合成ベクトル(Hα,Hβ)の先端位置は、ロータ20の回転に伴って、原点を中心とする同心円状に移動する。図10では、合成ベクトル(Hα,Hβ)の先端位置の軌跡は3つの同心円で表されているが、4つの極対を有するセンサマグネット24の場合、合成ベクトル(Hα,Hβ)の先端位置の軌跡は4つの同心円で表される。 Since the magnitude of the composite vector (Hα, Hβ) corresponds to the axial magnetic field strength of the sensor magnet 24, the magnitude of the composite vector (Hα, Hβ) changes stepwise as the rotor 20 rotates. As shown in the lower part of FIG. 10, the tip positions of the composite vectors (Hα, Hβ) move concentrically around the origin as the rotor 20 rotates. In FIG. 10, the locus of the tip position of the composite vector (Hα, Hβ) is represented by three concentric circles, but in the case of the sensor magnet 24 having four pole pairs, the locus of the tip position of the composite vector (Hα, Hβ) The locus is represented by four concentric circles.
 変形例のセンサマグネット24では、磁力調整層27Bの厚さが、極対ごとに異ならされているため、合成ベクトル(Hα,Hβ)の大きさも、極対の位置に対応して変化する。合成ベクトル(Hα,Hβ)の大きさは、磁力調整層27Bの厚さが変化する位置以外では、ほぼ一定の値となる。4つの極対を有するセンサマグネット24を用いた場合、合成ベクトル(Hα,Hβ)の大きさは、ほとんどの回転位置で、4つの値のいずれかとなる。 In the modified example sensor magnet 24, since the thickness of the magnetic force adjusting layer 27B is different for each pole pair, the size of the composite vector (Hα, Hβ) also changes according to the position of the pole pair. The magnitude of the composite vector (Hα, Hβ) is a substantially constant value except at the position where the thickness of the magnetic force adjusting layer 27B changes. When the sensor magnet 24 having four pole pairs is used, the magnitude of the composite vector (Hα, Hβ) is any of the four values at most rotation positions.
 位置推定装置4は、合成ベクトル(Hα,Hβ)の大きさを極対特徴量として算出する。学習動作では、合成ベクトル(Hα,Hβ)の大きさである極対特徴量と、センサマグネット24の極対番号との対応関係を表すデータテーブルを作成する。これにより、例えば、図4に示した4つの極対のそれぞれに極対特徴量が対応づけられたデータテーブルが作成される。作成されたデータテーブルは、例えば記憶装置42に予め記憶される。 The position estimation device 4 calculates the magnitude of the composite vector (Hα, Hβ) as the pole pair feature quantity. In the learning operation, a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (Hα, Hβ), and the pole pair number of the sensor magnet 24 is created. As a result, for example, a data table in which the pole pair features are associated with each of the four pole pairs shown in FIG. 4 is created. The created data table is stored in advance in, for example, the storage device 42.
 位置推定装置4による位置推定動作においては、上記の極対特徴量と極対番号とが対応づけられたデータテーブルが用いられる。
 図8に示したフローチャートにおいて、ステップS101~ステップS103は、第1実施形態と共通である。
In the position estimation operation by the position estimation device 4, a data table in which the above-mentioned pole pair features and pole pair numbers are associated with each other is used.
In the flowchart shown in FIG. 8, steps S101 to S103 are common to the first embodiment.
 ステップS104において、推定部413は、極対番号「0」「1」「2」「3」に対応する極対特徴量の4つの学習値を記憶装置42から読み出す。
 ステップS105において、推定部413は、極対特徴量の算出値と、読み出された4つの学習値とを比較する。
 ステップS106において、推定部413は、算出値に最も近い値の学習値に対応する
極対番号を選択する。
In step S104, the estimation unit 413 reads out four learning values of the pole pair features corresponding to the pole pair numbers “0”, “1”, “2”, and “3” from the storage device 42.
In step S105, the estimation unit 413 compares the calculated value of the pole pair feature amount with the four learned values read out.
In step S106, the estimation unit 413 selects the pole pair number corresponding to the learning value of the value closest to the calculated value.
 以上のように、変形例のセンサマグネット24を備えるモータ1においても、ロータ20を回転させることなく、センサマグネット24のセクション番号と極対番号を選択できる。これにより、センサマグネット24のセグメント番号を選択できるので、ロータ20を回転させることなく、ロータ20の回転位置を推定することができる。
 変形例の構成によれば、データテーブルに極対番号に対応する学習値のみを保持すればよいため、データテーブルを小さくできる利点がある。
As described above, even in the motor 1 provided with the sensor magnet 24 of the modified example, the section number and the pole pair number of the sensor magnet 24 can be selected without rotating the rotor 20. As a result, the segment number of the sensor magnet 24 can be selected, so that the rotation position of the rotor 20 can be estimated without rotating the rotor 20.
According to the configuration of the modified example, since it is only necessary to hold the learning value corresponding to the pole pair number in the data table, there is an advantage that the data table can be made smaller.
 (第2実施形態)
 図11は、第2実施形態のモータを示す断面図である。
 第2実施形態のモータ1Aの基本構成は、第1実施形態のモータ1と同様である。第2実施形態のモータ1Aは、ロータ20と、検出装置2Aと、制御基板50Aの構成において第1実施形態と異なる。図12は、第2実施形態のロータ20を示す斜視図である。図13は、第2実施形態のモータ1Aの機能ブロック図である。
(Second Embodiment)
FIG. 11 is a cross-sectional view showing the motor of the second embodiment.
The basic configuration of the motor 1A of the second embodiment is the same as that of the motor 1 of the first embodiment. The motor 1A of the second embodiment is different from the first embodiment in the configuration of the rotor 20, the detection device 2A, and the control board 50A. FIG. 12 is a perspective view showing the rotor 20 of the second embodiment. FIG. 13 is a functional block diagram of the motor 1A of the second embodiment.
 ロータ20は、図11に示すように、シャフト21と、ロータコア22と、ロータマグネット23と、を有する。本実施形態の場合、シャフト21にセンサマグネットは設置されない。ロータマグネット23は、ロータコア22の外周部に固定される。 As shown in FIG. 11, the rotor 20 includes a shaft 21, a rotor core 22, and a rotor magnet 23. In the case of this embodiment, the sensor magnet is not installed on the shaft 21. The rotor magnet 23 is fixed to the outer peripheral portion of the rotor core 22.
 ロータマグネット23は、図12に示すように、周方向に並ぶ4個の磁石ピース23a、23b、23c、23dからなる。図12では、ロータコア22の図示は省略されている。各々の磁石ピース23a~23dは、中心角が概ね90°の扇状である。各々の磁石ピース23a~23dは、周方向に着磁される。したがって、ロータマグネット23の上面において、N極とS極が周方向に交互に並ぶ。ロータマグネット23は、4つの極対を有する。 As shown in FIG. 12, the rotor magnet 23 is composed of four magnet pieces 23a, 23b, 23c, and 23d arranged in the circumferential direction. In FIG. 12, the rotor core 22 is not shown. Each of the magnet pieces 23a to 23d has a fan shape with a central angle of approximately 90 °. Each of the magnet pieces 23a to 23d is magnetized in the circumferential direction. Therefore, on the upper surface of the rotor magnet 23, the north pole and the south pole are alternately arranged in the circumferential direction. The rotor magnet 23 has four pole pairs.
 磁石ピース23a~23dは、図12に示すように、互いに異なる軸方向位置に配置される。上側から見て、時計回りに磁石ピース23a、23b、23c、23dが配置される。磁石ピース23a~23dのうち、磁石ピース23aが最も上側に位置する。磁石ピース23b、23c、23dの順に、軸方向位置が徐々に下側に位置する。したがって、ロータマグネット23の上面は、周方向の複数箇所に階段状の段差を有する。 As shown in FIG. 12, the magnet pieces 23a to 23d are arranged at different axial positions from each other. When viewed from above, the magnet pieces 23a, 23b, 23c, and 23d are arranged clockwise. Of the magnet pieces 23a to 23d, the magnet piece 23a is located on the uppermost side. The axial position is gradually positioned downward in the order of the magnet pieces 23b, 23c, and 23d. Therefore, the upper surface of the rotor magnet 23 has stepped steps at a plurality of points in the circumferential direction.
 ロータマグネット23の上面と対向する位置に、磁気センサ220(磁気センサ220-U、220-V、220-W)が配置される。磁気センサ220-U、220-V、220-Wは、ロータマグネット23の軸方向磁界を検出する。 Magnetic sensors 220 (magnetic sensors 220-U, 220-V, 220-W) are arranged at positions facing the upper surface of the rotor magnet 23. The magnetic sensors 220-U, 220-V, 220-W detect the axial magnetic field of the rotor magnet 23.
上記構成のロータ20は、磁石ピース23a~23dの軸方向位置が互いに異なることで、磁石ピース23a~23dと磁気センサ220との間隔が、磁石ピース毎に異なる。これにより、ロータマグネット23の複数の極対は、磁気センサ220に対して、互いに異なる軸方向磁界強度を有する構成となる。本実施形態の場合、ロータマグネット23の上面位置が、周方向において階段状に変化するので、磁気センサ220に検出される軸方向磁界強度は、周方向に沿って最大振幅が階段状に変化する。 In the rotor 20 having the above configuration, the positions of the magnet pieces 23a to 23d in the axial direction are different from each other, so that the distance between the magnet pieces 23a to 23d and the magnetic sensor 220 is different for each magnet piece. As a result, the plurality of pole pairs of the rotor magnet 23 have different axial magnetic field strengths with respect to the magnetic sensor 220. In the case of the present embodiment, since the upper surface position of the rotor magnet 23 changes stepwise in the circumferential direction, the maximum amplitude of the axial magnetic field strength detected by the magnetic sensor 220 changes stepwise along the circumferential direction. ..
 第2実施形態のモータ1Aでは、磁気センサ220がロータマグネット23の軸方向磁界を検出するので、図11に示すように、磁気センサ220を備える検出装置2Aが、ロータ20と、ベアリング保持部11dとの間に位置する。本実施形態の場合、検出装置2Aは、ステータ30の径方向内側に位置する。 In the motor 1A of the second embodiment, the magnetic sensor 220 detects the axial magnetic field of the rotor magnet 23. Therefore, as shown in FIG. 11, the detection device 2A including the magnetic sensor 220 includes the rotor 20 and the bearing holding portion 11d. Located between and. In the case of this embodiment, the detection device 2A is located inside the stator 30 in the radial direction.
 制御基板50Aは、ベアリング保持部11dの上側に位置する。制御基板50Aと検出装置2Aとは、図示しないケーブルを介して接続される。制御基板50Aには、モータ1Aを駆動制御する制御ICチップ51等が実装される。制御基板50Aには、例えば、図13に示す増幅装置3、位置推定装置4、制御装置5、および駆動装置6が実装される。増幅装置3は、検出装置2Aと共通の基板に実装されていてもよい。制御基板50Aの一部または全部が、外部制御装置として構成されていてもよい。 The control board 50A is located above the bearing holding portion 11d. The control board 50A and the detection device 2A are connected via a cable (not shown). A control IC chip 51 or the like that drives and controls the motor 1A is mounted on the control board 50A. For example, the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 shown in FIG. 13 are mounted on the control board 50A. The amplification device 3 may be mounted on a common substrate with the detection device 2A. A part or all of the control board 50A may be configured as an external control device.
 図13に示すように、検出装置2Aの磁気センサ220-U、220-V、220-Wは、ロータマグネット23の磁束を検出する。増幅装置3、位置推定装置4、制御装置5、および駆動装置6の構成は、第1実施形態と共通である。 As shown in FIG. 13, the magnetic sensors 220-U, 220-V, 220-W of the detection device 2A detect the magnetic flux of the rotor magnet 23. The configurations of the amplification device 3, the position estimation device 4, the control device 5, and the drive device 6 are the same as those in the first embodiment.
 第2実施形態のモータ1Aにおける位置推定動作は、図9に示した変形例のセンサマグネット24を備えるモータ1と同様である。第2実施形態のモータ1Aにおいて、磁気センサ220により検出される磁界強度の波形は、図10上段に示した波形のように、周方向に沿って階段状に最大振幅が変化する波形となる。位置推定動作においては、ロータマグネット23に対して、図4に示した極対番号、セクション番号、およびセグメント番号が設定される。 The position estimation operation in the motor 1A of the second embodiment is the same as that of the motor 1 provided with the sensor magnet 24 of the modified example shown in FIG. In the motor 1A of the second embodiment, the waveform of the magnetic field strength detected by the magnetic sensor 220 is a waveform in which the maximum amplitude changes stepwise along the circumferential direction, as shown in the upper part of FIG. In the position estimation operation, the pole pair number, the section number, and the segment number shown in FIG. 4 are set for the rotor magnet 23.
 学習動作では、変形例と同様に、合成ベクトル(Hα,Hβ)の大きさである極対特徴量と、ロータマグネット23の極対番号との対応関係を表すデータテーブルを作成する。これにより、例えば、図4に示した4つの極対のそれぞれに極対特徴量が対応づけられたデータテーブルが作成される。作成されたデータテーブルは、例えば記憶装置42に予め記憶される。 In the learning operation, as in the modified example, a data table showing the correspondence between the pole pair feature amount, which is the magnitude of the composite vector (Hα, Hβ), and the pole pair number of the rotor magnet 23 is created. As a result, for example, a data table in which the pole pair features are associated with each of the four pole pairs shown in FIG. 4 is created. The created data table is stored in advance in, for example, the storage device 42.
 位置推定装置4による位置推定動作においては、上記の極対特徴量と極対番号とが対応づけられたデータテーブルが用いられる。
 図8に示したフローチャートにおいて、ステップS101~ステップS103は、第1実施形態と共通である。
In the position estimation operation by the position estimation device 4, a data table in which the above-mentioned pole pair features and pole pair numbers are associated with each other is used.
In the flowchart shown in FIG. 8, steps S101 to S103 are common to the first embodiment.
 ステップS104において、推定部413は、極対番号「0」「1」「2」「3」に対応する極対特徴量の4つの学習値を記憶装置42から読み出す。
 ステップS105において、推定部413は、極対特徴量の算出値と、読み出された4つの学習値とを比較する。
 ステップS106において、推定部413は、算出値に最も近い値の学習値に対応する極対番号を選択する。
In step S104, the estimation unit 413 reads out four learning values of the pole pair features corresponding to the pole pair numbers “0”, “1”, “2”, and “3” from the storage device 42.
In step S105, the estimation unit 413 compares the calculated value of the pole pair feature amount with the four learned values read out.
In step S106, the estimation unit 413 selects the pole pair number corresponding to the learning value of the value closest to the calculated value.
 以上のように、第2実施形態のモータ1Aにおいても、ロータ20を回転させることなく、ロータマグネット23のセクション番号と極対番号を選択できる。これにより、ロータマグネット23のセグメント番号を特定できるので、ロータ20を回転させることなく、ロータ20の回転位置を推定することができる。 As described above, also in the motor 1A of the second embodiment, the section number and the pole pair number of the rotor magnet 23 can be selected without rotating the rotor 20. As a result, the segment number of the rotor magnet 23 can be specified, so that the rotation position of the rotor 20 can be estimated without rotating the rotor 20.
 第2実施形態のモータ1Aによれば、ロータ20にセンサマグネットを設けることなく、ロータ20の回転位置を推定することができる。第2実施形態のモータ1Aによれば、第1実施形態および変形例のモータ1と同様の作用効果を得ることができ、さらに、部品点数の削減および小型軽量化も実現可能である。 According to the motor 1A of the second embodiment, the rotation position of the rotor 20 can be estimated without providing the rotor 20 with a sensor magnet. According to the motor 1A of the second embodiment, the same effects as those of the motor 1 of the first embodiment and the modified example can be obtained, and further, the number of parts can be reduced and the size and weight can be reduced.
 第2実施形態では、磁石ピース23a~23dの軸方向位置を互いに異ならせることで、ロータ20の軸方向磁界強度を調整する構成としたが、ロータ20に磁力調整部材を設置することで、ロータ20の軸方向磁界強度を調整してもよい。例えば、第1実施形態の磁力調整層27A、または変形例の磁力調整層27Bと共通の構成を有する磁力調整部材を、ロータマグネット23の上面または下面に設置してもよい。磁力調整部材としては、ロータマグネット23の軸方向磁界を部分的に遮蔽する部材であってもよい。 In the second embodiment, the axial magnetic field strength of the rotor 20 is adjusted by making the axial positions of the magnet pieces 23a to 23d different from each other. However, by installing the magnetic field adjusting member in the rotor 20, the rotor is rotated. The axial magnetic field strength of 20 may be adjusted. For example, the magnetic force adjusting layer 27A of the first embodiment or the magnetic force adjusting member having the same configuration as the magnetic force adjusting layer 27B of the modified example may be installed on the upper surface or the lower surface of the rotor magnet 23. The magnetic force adjusting member may be a member that partially shields the axial magnetic field of the rotor magnet 23.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。また、各実施形態の構成は、互いに矛盾しない範囲で組み合わせることができる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention. Further, the configurations of the respective embodiments can be combined within a range that does not contradict each other.
 なお、本発明における位置推定装置の機能を実現するためのプログラムを不図示のコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各処理の手順を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
By recording a program for realizing the function of the position estimation device in the present invention on a computer-readable recording medium (not shown), and causing the computer system to read and execute the program recorded on the recording medium. The procedure of each process may be performed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer system" shall also include a WWW system provided with a homepage providing environment (or display environment). Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
Furthermore, a "computer-readable recording medium" is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, it shall include those that hold the program for a certain period of time.
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the above program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the "transmission medium" for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. Further, the above program may be for realizing a part of the above-mentioned functions. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned function in combination with a program already recorded in the computer system.
 1,1A…モータ
 2,2A…検出装置
 3…増幅装置
 4…位置推定装置
 5…制御装置
 6…駆動装置
 7…外部装置
 11…ハウジング
 15,16…ベアリング
 20…ロータ
 21…シャフト
 22…ロータコア
 23…ロータマグネット
 23a,23b,23c,23d…磁石ピース
 24…センサマグネット
 25…円環状磁石
 26A,26B…ヨーク
 27A,27B…磁力調整層
 28A,28B…重量調整層
 30…ステータ
 31…ステータコア
 31a…コアバック
 31b…ティース
 32…インシュレータ
 33…コイル
 40…変換装置
 41…演算装置
 42…記憶装置
 50,50A…制御基板
 51…制御ICチップ
 52…回路基板
 220,220-U,220-V,220-W…磁気センサ
 300-U,300-V,300-W…差動増幅器
 400-U,400-V,400-W…変換部
 412…セクション選択部
 413…推定部
 Hu…U相信号
 Hv…V相信号
 Hw…W相信号
 Hα,Hβ…信号
 J…中心軸
1,1A ... Motor 2,2A ... Detection device 3 ... Amplification device 4 ... Position estimation device 5 ... Control device 6 ... Drive device 7 ... External device 11 ... Housing 15, 16 ... Bearing 20 ... Rotor 21 ... Shaft 22 ... Rotor core 23 ... Rotor magnet 23a, 23b, 23c, 23d ... Magnet piece 24 ... Sensor magnet 25 ... Circular magnet 26A, 26B ... Yoke 27A, 27B ... Magnetic force adjustment layer 28A, 28B ... Weight adjustment layer 30 ... Stator 31 ... Stator core 31a ... Core Back 31b ... Teeth 32 ... Insulator 33 ... Coil 40 ... Conversion device 41 ... Computing device 42 ... Storage device 50, 50A ... Control board 51 ... Control IC chip 52 ... Circuit board 220, 220-U, 220-V, 220-W ... Magnetic sensor 300-U, 300-V, 300-W ... Differential amplifier 400-U, 400-V, 400-W ... Conversion unit 412 ... Section selection unit 413 ... Estimating unit Hu ... U phase signal Hv ... V phase Signal Hw ... W phase signal Hα, Hβ ... Signal J ... Central axis

Claims (14)

  1.  中心軸回りに回転可能なセンサマグネットであって、
     周方向に並ぶ複数の極対を有し、
     前記複数の極対は、互いに異なる軸方向磁界強度を有する、
     センサマグネット。
    A sensor magnet that can rotate around the central axis
    It has multiple pole pairs arranged in the circumferential direction,
    The plurality of pole pairs have different axial magnetic field intensities from each other.
    Sensor magnet.
  2.  周方向において連続的に変化する軸方向磁界強度を有する、
     請求項1に記載のセンサマグネット。
    It has an axial magnetic field strength that changes continuously in the circumferential direction.
    The sensor magnet according to claim 1.
  3.  周方向において階段状に変化する軸方向磁界強度を有する、
     請求項1に記載のセンサマグネット。
    It has an axial magnetic field strength that changes stepwise in the circumferential direction.
    The sensor magnet according to claim 1.
  4.  周方向に延びる円環状磁石と、
     前記円環状磁石の軸方向一方側の面に位置するヨークとを有し、
     前記ヨークは、周方向位置に応じて厚さが変化する磁力調整層を有する、
     請求項1から3のいずれか1項に記載のセンサマグネット。
    An annular magnet extending in the circumferential direction and
    It has a yoke located on one side of the annular magnet in the axial direction, and has a yoke.
    The yoke has a magnetic force adjusting layer whose thickness changes according to the circumferential position.
    The sensor magnet according to any one of claims 1 to 3.
  5.  前記ヨークは、前記磁力調整層と、前記磁力調整層よりも弱い磁性体または非磁性体からなる重量調整層とを有し、
     前記磁力調整層は、前記重量調整層の前記円環状磁石側の面に積層される、
     請求項4に記載のセンサマグネット。
    The yoke has the magnetic force adjusting layer and a weight adjusting layer made of a magnetic material or a non-magnetic material weaker than the magnetic force adjusting layer.
    The magnetic force adjusting layer is laminated on the surface of the weight adjusting layer on the annular magnet side.
    The sensor magnet according to claim 4.
  6.  前記ヨークは、前記磁力調整層と、前記磁力調整層よりも弱い磁性体または非磁性体からなる重量調整層とを有し、
     前記重量調整層は、前記磁力調整層の前記円環状磁石側の面に積層される、
     請求項4に記載のセンサマグネット。
    The yoke has the magnetic force adjusting layer and a weight adjusting layer made of a magnetic material or a non-magnetic material weaker than the magnetic force adjusting layer.
    The weight adjusting layer is laminated on the surface of the magnetic force adjusting layer on the annular magnet side.
    The sensor magnet according to claim 4.
  7.  前記ヨークは、周方向において一様な厚さを有する、
     請求項5または6に記載のセンサマグネット。
    The yoke has a uniform thickness in the circumferential direction.
    The sensor magnet according to claim 5 or 6.
  8.  中心軸回りに回転可能なロータであって、
     ロータコアと、前記ロータコアに固定されるロータマグネットとを有し、
     前記ロータマグネットは、周方向に並ぶ複数の極対を有し、
     前記複数の極対は、互いに異なる軸方向磁界強度を有する、
     ロータ。
    A rotor that can rotate around the central axis
    It has a rotor core and a rotor magnet fixed to the rotor core.
    The rotor magnet has a plurality of pole pairs arranged in the circumferential direction.
    The plurality of pole pairs have different axial magnetic field intensities from each other.
    Rotor.
  9.  前記ロータマグネットは、周方向に並ぶ複数の磁石ピースを有し、
     前記複数の磁石ピースは、互いに異なる軸方向位置に配置される、
     請求項8に記載のロータ。
    The rotor magnet has a plurality of magnet pieces arranged in the circumferential direction, and has a plurality of magnet pieces.
    The plurality of magnet pieces are arranged at different axial positions from each other.
    The rotor according to claim 8.
  10.  前記ロータマグネットの軸方向磁界を部分的に増幅または遮蔽する磁力調整部材を有する、
     請求項8に記載のロータ。
    A magnetic force adjusting member that partially amplifies or shields the axial magnetic field of the rotor magnet.
    The rotor according to claim 8.
  11.  中心軸回りに回転可能なロータと、
     前記ロータと径方向に対向するステータと、
     前記ロータのシャフトに装着される請求項1から7のいずれか1項に記載のセンサマグネットと、
     前記センサマグネットの磁界を検出する3つ以上の磁気センサと、
     を備える、モータ。
    A rotor that can rotate around the central axis and
    A stator facing the rotor in the radial direction and
    The sensor magnet according to any one of claims 1 to 7, which is mounted on the shaft of the rotor.
    Three or more magnetic sensors that detect the magnetic field of the sensor magnet,
    Equipped with a motor.
  12.  前記ロータの回転位置を推定する位置推定装置を備え、
     前記位置推定装置は、
     前記磁気センサを介して前記センサマグネットの3箇所以上の磁界強度の検出値を取得し、前記センサマグネットの極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択するセクション選択部と、
     前記磁界強度の検出値を三相二相変換して得られる合成ベクトルの長さを極対特徴量として算出し、算出された前記極対特徴量を、予め学習された前記センサマグネットの極対番号と極対特徴量との関係に照合することにより、前記ロータの回転位置の極対番号を推定する推定部と、
     を有する、
     請求項11に記載のモータ。
    A position estimation device for estimating the rotation position of the rotor is provided.
    The position estimation device is
    The detected values of the magnetic field strengths of three or more places of the sensor magnet are acquired through the magnetic sensor, and the detected values of the magnetic field strengths are obtained from a plurality of sections predetermined for the pole pair numbers of the sensor magnets. And the section selection section that selects the section
    The length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength is calculated as the pole pair feature amount, and the calculated pole pair feature amount is the pole pair of the sensor magnet learned in advance. An estimation unit that estimates the pole pair number of the rotation position of the rotor by collating the relationship between the number and the pole pair feature amount, and
    Have,
    The motor according to claim 11.
  13.  請求項8から10のいずれか1項に記載のロータと、
     前記ロータと径方向に対向するステータと、
     前記ロータマグネットの磁界を検出する3つ以上の磁気センサと、
     を備える、モータ。
    The rotor according to any one of claims 8 to 10, and the rotor.
    A stator facing the rotor in the radial direction and
    Three or more magnetic sensors that detect the magnetic field of the rotor magnet,
    Equipped with a motor.
  14.  前記ロータの回転位置を推定する位置推定装置を備え、
     前記位置推定装置は、
     前記磁気センサを介して前記ロータマグネットの3箇所以上の磁界強度の検出値を取得し、前記ロータマグネットの極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択するセクション選択部と、
     前記磁界強度の検出値を三相二相変換して得られる合成ベクトルの長さを極対特徴量として算出し、算出された前記極対特徴量を、予め学習された前記ロータマグネットの極対番号と極対特徴量との関係に照合することにより、前記ロータの回転位置の極対番号を推定する推定部と、
     を有する、
     請求項13に記載のモータ。
    A position estimation device for estimating the rotation position of the rotor is provided.
    The position estimation device is
    The detected values of the magnetic field strengths at three or more places of the rotor magnet are acquired through the magnetic sensor, and the detected values of the magnetic field strengths are obtained from a plurality of sections predetermined for the pole pair numbers of the rotor magnets. And the section selection section that selects the section
    The length of the composite vector obtained by three-phase and two-phase conversion of the detected value of the magnetic field strength is calculated as the pole pair feature amount, and the calculated pole pair feature amount is the pole pair of the rotor magnet learned in advance. An estimation unit that estimates the pole pair number of the rotation position of the rotor by collating with the relationship between the number and the pole pair feature amount.
    Have,
    The motor according to claim 13.
PCT/JP2020/046787 2020-03-18 2020-12-15 Sensor magnet, rotor, and motor WO2021186818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022508062A JPWO2021186818A1 (en) 2020-03-18 2020-12-15
CN202080098433.9A CN115280664A (en) 2020-03-18 2020-12-15 Sensor magnet, rotor, motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048341 2020-03-18
JP2020-048341 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021186818A1 true WO2021186818A1 (en) 2021-09-23

Family

ID=77771911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046787 WO2021186818A1 (en) 2020-03-18 2020-12-15 Sensor magnet, rotor, and motor

Country Status (3)

Country Link
JP (1) JPWO2021186818A1 (en)
CN (1) CN115280664A (en)
WO (1) WO2021186818A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252097A (en) * 2006-03-16 2007-09-27 Mitsuba Corp Brushless motor
JP2014183696A (en) * 2013-03-21 2014-09-29 Asmo Co Ltd Rotor and brushless motor
WO2019003372A1 (en) * 2017-06-29 2019-01-03 三菱電機株式会社 Sensor magnet, motor, and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252097A (en) * 2006-03-16 2007-09-27 Mitsuba Corp Brushless motor
JP2014183696A (en) * 2013-03-21 2014-09-29 Asmo Co Ltd Rotor and brushless motor
WO2019003372A1 (en) * 2017-06-29 2019-01-03 三菱電機株式会社 Sensor magnet, motor, and air conditioner

Also Published As

Publication number Publication date
JPWO2021186818A1 (en) 2021-09-23
CN115280664A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP2020018168A (en) Motor module and motor authentication method
US9716421B2 (en) Resolver device, motor, and actuator
JP2013501486A (en) Electric drive device with commutator and control method of electric motor with commutator
EP3407024A1 (en) Halbach array for rotor position sensing
JP2005037389A (en) Torque measurement device for electric motor
JP2017159425A (en) robot
JP2005513979A (en) Rotation drive mechanism with balanced reaction
JP5676558B2 (en) Motor for linear and rotary motion
WO2022004002A1 (en) Motor and location estimation method
WO2021186818A1 (en) Sensor magnet, rotor, and motor
JPWO2016194919A1 (en) Control method for three-phase brushless DC motor and motor control apparatus using the control method
JP3402597B2 (en) Actuator device
JP2012194086A (en) Three-phase brushless motor
US6020663A (en) Motor having rotational-speed detector
JP4899485B2 (en) Motor drive control device
JPWO2017195435A1 (en) Motor module, motor step operation control system, and motor control device
JP6791013B2 (en) Two-axis integrated motor
JP2018064340A (en) Motor controller
JPH1141897A (en) Motor with rotation speed detection means
WO2020170642A1 (en) Position estimation device
JP2023122948A (en) Rotation angle detection device, rotation angle detection method and rotation angle detection system
JP2003161643A (en) Combined detector on angle and angular velocity
WO2024142429A1 (en) Signal generation device and signal generation method
JP4005775B2 (en) Magnetic pole recognition method for synchronous motor
TWM597009U (en) Rotor positioning motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925176

Country of ref document: EP

Kind code of ref document: A1