WO2021185058A1 - 一种中继通信方法及相关设备 - Google Patents

一种中继通信方法及相关设备 Download PDF

Info

Publication number
WO2021185058A1
WO2021185058A1 PCT/CN2021/078308 CN2021078308W WO2021185058A1 WO 2021185058 A1 WO2021185058 A1 WO 2021185058A1 CN 2021078308 W CN2021078308 W CN 2021078308W WO 2021185058 A1 WO2021185058 A1 WO 2021185058A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
data
user equipment
relay device
bearer
Prior art date
Application number
PCT/CN2021/078308
Other languages
English (en)
French (fr)
Inventor
李翔宇
戴明增
张鹏
王君
曾清海
许华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21771509.3A priority Critical patent/EP4102892A4/en
Publication of WO2021185058A1 publication Critical patent/WO2021185058A1/zh
Priority to US17/932,738 priority patent/US20230019346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communication technology, and more specifically, to a relay communication method and related equipment.
  • a relay device In a relay communication scenario, a relay device is required for communication between network equipment and user equipment (UE).
  • the relay device has a complete communication protocol stack, such as a complete LTE protocol stack or NR protocol stack, which will cause the problem of excessively long relay delay.
  • the problem of longer delays in relay communications needs to be resolved urgently.
  • the present application provides a communication method and related equipment, which can reduce the delay of relay communication, thereby improving the performance of the entire network.
  • the present application provides a communication method, which may include: a relay device receives a data packet from a network device through a first link, and sends the data packet to a user equipment through a second link, where ,
  • the protocol stack of the relay device is composed of the physical layer, the media access control layer, and the segmentation function or re-segmentation function of the radio link control layer; or, the protocol stack of the relay device is composed of the physical layer and the media interface Into the control layer, the segmentation function or re-segmentation function of the radio link control layer, and the adaptation layer; or, the protocol stack of the relay device consists of the hybrid automatic repeat request function of the physical layer and the media access control layer Or, the protocol stack of the relay device is composed of the physical layer, the hybrid automatic repeat request function of the media access control layer, and the adaptation layer; the first link is between the network device and the relay device
  • the second link is a wireless direct communication link between the relay device and the user equipment.
  • the relay device receives a data packet from the network device through the first link, and sends the data packet to the user equipment through the second link, which may include: the relay device first Receive data from the network device through the first link according to the first multicast wireless network temporary identification. Then, according to the first multicast wireless network temporary identifier, a first target layer two identifier is obtained, where the first multicast wireless network temporary identifier and the first target layer two identifier have a corresponding relationship. Finally, the relay device sends the data to the user equipment through the second link according to the first destination layer two identifier.
  • the third feasible design of the first aspect may include: the first target layer two identifier is included in the data In the media access control layer header, the first destination layer two identifier is used to identify the user equipment.
  • the data from the network device includes the first bearer identifier, and/or, the second bearer Logo.
  • exemplary beneficial effects include: on the basis of mapping between G-RNTI and destination identifier, a bearer mapping function can be further added, which can further ensure the realization of multi-bearer relay communication on the side of the relay device.
  • the data sent by the relay device to the user equipment may include the first bearer identifier, and /Or, the second bearer identifier.
  • exemplary beneficial effects include: by including the bearer identifier in the second link data, the realization of multi-bearer relay communication on the user equipment side can be further ensured.
  • the bearers include signaling radio bearers, data radio bearers, and wireless One or more of link control bearers or medium access control bearers.
  • the relay device receives data from the network device through the first bearer; then, the relay device According to the first bearer identity, a second bearer identity is determined, where the first bearer identity and the second bearer identity have a corresponding relationship; the relay device sends the data to the user equipment according to the second bearer identity.
  • the eighth feasible design of the first aspect includes: the data adaptation layer header, the radio link control layer header, or the media access
  • the control layer header includes the first bearer identifier, and/or, the second bearer identifier.
  • the present application provides a communication method.
  • the method may include: the relay device receives data from the network device through the first link according to the first wireless network temporary identifier, and the data includes routing information and/or bearer The relay device obtains the routing information and/or the bearer identifier from the data, and the relay device sends the data to the user equipment through the second link according to the routing information and/or the bearer identifier; the first link The path is a wireless communication link between the network device and the relay device, and the second link is a wireless direct communication link between the relay device and the user equipment.
  • exemplary beneficial effects include: realizing simpler data forwarding by including routing information and/or bearer identifiers in the data packet. Compared with the method in the first aspect, this method does not require network device configuration corresponding relationships, The air interface overhead is reduced, and the temporary identification resources of the wireless network are saved.
  • the routing information and/or the bearer identifier may be included in the radio link control layer header or the adaptation layer header of the data packet.
  • exemplary beneficial effects include: enabling the relay device to implement data forwarding through the routing information and/or bearer identifier in the radio link control layer header or the adaptation layer header.
  • the present application provides a communication method.
  • the method may include: a network device sends a data packet of a user equipment to a relay device through a first link; wherein the protocol stack of the relay device consists of a physical layer and a media
  • the access control layer is composed of the segmentation function or re-segmentation function of the radio link control layer; or, the protocol stack of the relay device is composed of the physical layer, the media access control layer, and the segmentation function of the radio link control layer Or the re-segmentation function and the adaptation layer are composed; or, the protocol stack of the relay device is composed of the hybrid automatic repeat request function of the physical layer and the media access control layer; or, the protocol stack of the relay device is composed of the physical layer and the media access control layer.
  • the relay device and the user equipment have a second link; the first link is between the network device and the relay device The second link is a wireless direct communication link between the relay device and the user equipment.
  • the network device sending data of the user equipment to the relay device through the first link includes: sending data of the user equipment through the first link according to the first multicast wireless network temporary identification.
  • the subsequent device sends the data of the user device.
  • the first multicast wireless network temporary identifier and the first purpose are sent to the relay device A layer two identifier, where the first multicast wireless network temporary identifier and the first destination layer two identifier have a corresponding relationship.
  • the present application provides a communication method, which may include: user equipment receives data from a network device from a relay device through a second link; wherein, the protocol stack of the relay device consists of a physical layer and a media interface.
  • the access control layer is composed of the segmentation function or re-segmentation function of the radio link control layer; or, the protocol stack of the relay device is composed of the physical layer, the media access control layer, the segmentation function of the radio link control layer, or
  • the re-segmentation function is composed of the adaptation layer; or, the protocol stack of the relay device is composed of a hybrid automatic repeat request function of the physical layer and the media access control layer; or, the protocol stack of the relay device is composed of the physical layer ,
  • the hybrid automatic repeat request function of the media access control layer, and the adaptation layer; the relay device and the user equipment have a second link; the first link is between the network device and the relay device The second link is a wireless direct communication link between the relay device and the user equipment.
  • the present application provides a communication device, which is used to implement the method for implementing the first aspect to the fourth aspect and any design thereof.
  • the present application provides a device, which may include: at least one processor and an interface circuit, and related program instructions are executed in the at least one processor, so that the communication device implements the first aspect-fourth aspect. Aspect methods and any design.
  • the device may be the method of the first to fourth aspects and the terminal device or network device in any design thereof, or a chip therein.
  • the communication device may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a computer-readable storage medium that can be used in a communication device.
  • the computer-readable storage medium stores related program instructions. When the related program instructions run, This allows the communication device to implement the methods of the first aspect to the fourth aspect and any design thereof.
  • the present application provides a computer program product that contains related program instructions, and when the related program instructions are executed, the methods of the first to fourth aspects and any design thereof are realized.
  • Fig. 1 is a schematic diagram of a possible relay communication system of the present application
  • FIG. 2 is a schematic diagram of a user plane communication protocol stack of a relay communication system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a control plane communication protocol stack of a relay communication system provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a user plane communication protocol stack of a relay communication system provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a control plane communication protocol stack of a relay communication system provided by an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a relay communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a data relay communication provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a data relay communication provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a relay communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a relay communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a relay device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a user equipment according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a device provided by an embodiment of the present application.
  • transmission can include the following three situations: data transmission, data reception, or data transmission and data reception.
  • data may include service data and/or signaling data.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • a communication system to which this embodiment of the present application is applicable may include a network device 100, a relay device 110, and a user equipment 120, and optionally includes a user equipment 130 or a relay device 140.
  • the network device 100 can communicate with the user equipment 120 through the relay device 110, and the network device 100 and the relay device 110 can communicate through a wireless communication interface, such as an LTE Uu port or an NR Uu port.
  • the LTE Uu port or NR Uu port may refer to a wireless communication interface between a radio access network (RAN) device and a terminal device in a cellular communication system.
  • RAN radio access network
  • the wireless communication link for uplink communication between terminal equipment and network equipment can be called uplink (Uplink, UL), wireless communication for downlink communication between terminal equipment and network equipment
  • the link can be referred to as a downlink (DL).
  • the relay device 110 and the user equipment 120 may communicate with each other through a wireless direct communication interface, such as a D2D port or a PC5 port.
  • the D2D port or PC5 port may refer to a wireless communication interface for direct communication between terminal devices.
  • the terminal devices may not need to forward data through the cellular communication network, thereby realizing direct data exchange.
  • the communication link for direct communication between terminal devices can be called a sidelink (SL).
  • SL sidelink
  • the relay device 110 and the user equipment 120 may communicate with each other via microwave, WiFi, Bluetooth, or the like.
  • the network device 100 may also communicate with the user equipment 120 and the user equipment 130 through the relay device 110. Wherein, the network device 100 may also communicate through the relay device 110, the relay device 140, and the user equipment 120.
  • the network architecture shown in Figure 1 is only an exemplary architecture diagram.
  • the communication system shown in Figure 1 may also include other functional entities, such as core network elements, more The user equipment or relay equipment, etc., are not restricted by this application.
  • the user equipment 120 and the user equipment 130 are at the edge or outside of the coverage of the network device as an example.
  • the user equipment 120 or 130 may also be at or within the coverage edge of the network device, such as the user equipment and the network. There may be no suitable communication resources between the devices, or the communication resources between the user equipment and the network device are not as good as the communication resources between the relay device and the network device.
  • the user equipment in Figure 1 can be an access terminal device, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a user terminal device, a wireless terminal device, a user agent, or a user device, etc. .
  • It can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function Handheld devices, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices (such as smart watches, smart bracelets, etc.), can also be smart furniture or home appliances, terminal devices in 5G networks, and future evolution
  • PLMN public land mobile network
  • V2X vehicle equipment in the vehicle to everything
  • CPE customer premises equipment
  • the network equipment in Figure 1 can be used to implement functions such as wireless physical entities, resource scheduling and radio resource management, or wireless access control and mobility management; for example, the network equipment can be a radio access network (radio access network).
  • RAN radio access network
  • RAN radio access network
  • BTS base transceiver station
  • nodeB node B
  • evolutional nodeB evolutional nodeB
  • eNB evolved node B
  • Cloud radio access network cloud radio access network, CRAN
  • 5G network such as NR nodeB or next-generation base station (generation nodeB, gNB), centralized unit (CU), distributed unit (DU) Or network equipment in the future evolved PLMN network, etc.
  • the application does not limit the specific implementation form of the network
  • the relay device in FIG. 1 may be a communication device with a relay function.
  • the communication device may also have a normal communication function.
  • the relay function is dedicated to the relay communication between the network device and the user equipment, and serves the user equipment; the normal communication function is dedicated to the direct communication between the network device and the relay device, and serves the relay Of the device itself.
  • the relay device may be a coordinated user equipment (CUE) in a network assisted UE cooperation (NAUC) communication scenario.
  • the relay device may be an IAB node in an integrated access and backhaul (IAB) communication scenario.
  • the relay device may be a relay user equipment (relay user equipment, relay UE) in a vehicle to everything (V2X) communication scenario.
  • V2X vehicle to everything
  • Fig. 2 is a schematic diagram of a user plane protocol stack communication of a relay communication system provided by the present application.
  • the network equipment system may include a base station (such as gNB) and a user plane network element (user plane function, UPF), where the protocol stack of UPF can include a complete protocol stack, such as layer 1 (layer 1, L1), layer 2 (layer 2, L2), Internet protocol (IP) layer, user datagram protocol ( user datagram protocol, UDP) layer and general packet radio service tunneling protocol user plane (GTP-U) layer, where L1 and L2 can refer to wired transmission (for example, through optical fiber) networks
  • L1 can be the physical layer
  • L2 can be the data link layer.
  • the protocol stack corresponding to UPF in the gNB may include L1, L2, IP layer, UDP layer, and GTP-U layer.
  • the protocol stack corresponding to the relay device or user equipment in the gNB may include a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, and media access control ( Medium access control, MAC) layer, physical (physical, PHY) layer.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • MAC Medium access control
  • PHY physical (physical, PHY) layer
  • adaptation layer adaptation layer
  • the protocol stack corresponding to the relay device and the gNB or user equipment may include a MAC layer and a PHY layer.
  • it may also include an Adapt layer.
  • it may also include a segmentation or resegmentation function of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB includes a function of reading RLC layer header information of the RLC layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of a PHY layer and a MAC layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of a PHY layer, a MAC layer, and an adaptation layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of the PHY layer, the MAC layer, and the segmentation function or re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the functions of the PHY layer, the MAC layer, and the RLC layer to read RLC layer header information.
  • the protocol stack corresponding to the gNB or the user equipment of the relay device is composed of the PHY layer, the MAC layer, the adaptation layer, and the segmentation function or re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the gNB or the user equipment of the relay device is composed of the PHY layer, the MAC layer, the adaptation layer, and the function of reading the RLC layer header information of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the PHY layer, the MAC layer, the segmentation function or re-segmentation function of the RLC layer, and the function of reading the RLC layer header information of the RLC layer .
  • the protocol stack corresponding to the relay device and the user equipment or gNB consists of the PHY layer, the MAC layer, the adaptation layer, the segmentation function or re-segmentation function of the RLC layer, and the read RLC layer header of the RLC layer The functional composition of information.
  • the protocol stack corresponding to the gNB or user equipment of the relay device does not include the IP layer, the SDAP layer, and the PDCP layer. Optionally, it does not include functions other than the segmentation function or the re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB does not include the function of reading the RLC layer header information of the RLC layer.
  • the user equipment may include a complete protocol stack, such as a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer.
  • a complete protocol stack such as a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer.
  • it may also include an Adapt layer.
  • the bearer may include one or more of radio bearer (RB), RLC bearer, and MAC bearer.
  • the RB may include a signaling radio bearer (SRB) and a data radio bearer (DRB).
  • SRB may include a PDCP layer, and/or a channel between the PDCP layer and the RLC layer.
  • the DRB may include the RRC layer, and/or the channel between the RRC layer and the RLC layer.
  • the RLC bearer may include an RLC layer, and/or a logical channel between the RLC layer and the MAC layer.
  • the MAC bearer may include a MAC layer, and/or transport channels between the MAC layer and the PHY layer.
  • the bearer can be identified by the bearer identifier.
  • the bearer identifier may include the signaling radio bearer identity (SRB ID), the data radio bearer identity (DRB ID), the logical channel identity (logical channel identity, LCID), and the quality of service flow (quality of service).
  • SRB ID signaling radio bearer identity
  • DRB ID data radio bearer identity
  • LCID logical channel identity
  • quality of service flow quality of service.
  • the bearer can be identified by the bearer index.
  • the bearer index may include one or more of a signaling radio bearer index (signal radio bearer index), a data radio bearer index (data radio bearer index), and a logical channel identity (logical channel identity, LCID) index.
  • the bearer identifier carried by the PDCP may be DRB ID or SRB ID.
  • the bearer identifier carried by the RLC may be an LCID.
  • a bearer identifier is used as an example, and the "bearer identifier" in this application can also be replaced with a "bearer index”.
  • the bearer identifier in this application is generally used for bearer mapping.
  • the protocol layers listed above may exist in the same protocol layer, or may exist in different protocol layers.
  • the Adapt layer in this application can be a sublayer located in the RLC layer, or a function name located in the RLC layer, or it can be a sublayer located in the MAC layer, or it can be a function name located in the MAC layer, or it can be a function name located in the MAC layer.
  • Fig. 3 is a schematic diagram of the control plane protocol stack communication of a relay communication system provided by the present application.
  • the communication system may include a base station (such as gNB) and access and mobility management functions. management function, AMF) network element.
  • AMF management function
  • the AMF protocol stack can include the L1 layer, the L2 layer, the IP layer, the Stream Control Transmission Protocol (SCTP) layer, the next generation application protocol (NG-AP) layer, and the non-connected layer. Access (non-access stratum, NAS) layer.
  • the protocol stack corresponding to the gNB and AMF may include the L1 layer, the L2 layer, the IP layer, the SCTP layer and the NG-AP layer.
  • the protocol stack of the gNB corresponding to the relay device or the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and an RRC layer.
  • the protocol stack corresponding to the gNB and the relay device or the user equipment may include an Adapt layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment may include a PHY layer, a MAC layer, and optionally an Adapt layer. Optionally, it may also include a segmentation or re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB includes a function of reading RLC layer header information of the RLC layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of a PHY layer and a MAC layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of a PHY layer, a MAC layer, and an adaptation layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment is composed of the PHY layer, the MAC layer, and the segmentation function or re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the functions of the PHY layer, the MAC layer, and the RLC layer to read RLC layer header information.
  • the protocol stack corresponding to the gNB or the user equipment of the relay device is composed of the PHY layer, the MAC layer, the adaptation layer, and the segmentation function or re-segmentation function of the RLC layer.
  • the protocol stack corresponding to the gNB or the user equipment of the relay device is composed of the PHY layer, the MAC layer, the adaptation layer, and the function of reading the RLC layer header information of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the PHY layer, the MAC layer, the segmentation function or re-segmentation function of the RLC layer, and the function of reading the RLC layer header information of the RLC layer .
  • the protocol stack corresponding to the relay device and the user equipment or gNB consists of the PHY layer, the MAC layer, the adaptation layer, the segmentation function or re-segmentation function of the RLC layer, and the read RLC layer header of the RLC layer The functional composition of information.
  • the protocol stack corresponding to the gNB or user equipment of the relay device does not include the RRC layer and the PDCP layer.
  • it does not include functions other than the segmentation function or re-segmentation of the RLC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB does not include the function of reading the RLC layer header information of the RLC layer.
  • the protocol stack of the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a NAS layer.
  • a PHY layer may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a NAS layer.
  • it may also include an Adapt layer.
  • the protocol stack corresponding to the relay device and gNB may include the Adapt layer, but does not include the segmentation or re-segmentation function of the RLC layer.
  • the relay device and The protocol stack corresponding to the user equipment may include the segmentation or re-segmentation function of the RLC layer, but does not include the Adapt layer.
  • the protocol stack corresponding to the relay device and gNB may include the segmentation or re-segmentation function of the RLC layer, excluding the Adapt layer, and the protocol stack corresponding to the relay device and the user equipment
  • the stack may include the Adapt layer, but does not include the segmentation or re-segmentation function of the RLC layer.
  • Fig. 4 is a schematic diagram of a user plane protocol stack communication of a relay communication system provided by the present application.
  • the communication system may include a base station (such as a gNB) and access and UPF network elements.
  • the UPF protocol stack may include the L1 layer, the L2 layer, the IP layer, the UDP layer, and the GTP-U layer.
  • the protocol stack corresponding to the gNB and UPF may include the L1 layer, the L2 layer, the IP layer, the UDP layer, and the GTP-U layer.
  • the protocol stack of the gNB corresponding to the relay device or the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer. Optionally, it may also include an Adapt layer.
  • the protocol stack corresponding to the relay device and the gNB or user equipment may include a PHY layer and a hybrid automatic repeat request (HARQ) function, and optionally an adaptation layer. Optionally, it also includes the function of reading MAC layer header information of the MAC layer.
  • HARQ hybrid automatic repeat request
  • the protocol stack corresponding to the gNB or user equipment of the relay device is composed of HARQ functions of the PHY layer and the MAC layer.
  • the protocol stack corresponding to the gNB or user equipment of the relay device is composed of the PHY layer, the HARQ function of the MAC layer, and the adaptation layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the PHY layer, the HARQ function of the MAC layer, and the function of reading the MAC layer header information of the MAC layer.
  • the protocol stack corresponding to the gNB or the user equipment of the relay device is composed of the PHY layer, the HARQ function of the MAC layer, the adaptation layer, and the function of reading the MAC layer header information of the MAC layer.
  • the protocol stack corresponding to the gNB of the relay device does not include functions other than HARQ of the IP layer, SDAP layer, PDCP layer, RLC layer, and MAC layer.
  • the protocol stack corresponding to the relay device and the user equipment does not include functions other than the HARQ function of the IP layer, SDAP layer, PDCP layer, RLC layer, and MAC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB does not include the function of reading the MAC layer header information of the MAC layer.
  • the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer.
  • a PHY layer may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer.
  • it may also include an Adapt layer.
  • Fig. 5 is a schematic diagram of control plane protocol stack communication of a communication system provided by the present application.
  • the communication system may include a base station (such as a gNB) and access and AMF network elements.
  • the AMF protocol stack may include the L1 layer, the L2 layer, the IP layer, the SCTP layer, the NG-AP layer, and the NAS layer.
  • the protocol stack corresponding to the gNB and the UPF may include the L1 layer, the L2 layer, the IP layer, the SCTP layer, and the NG-AP layer.
  • the protocol stack of the gNB corresponding to the relay device or the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and an RRC layer. Optionally, it may also include an Adapt layer.
  • the protocol stack corresponding to the gNB or user equipment of the relay device may include HARQ functions of the PHY layer and the MAC layer. Optionally, it also includes an adaptation layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB includes a function of reading MAC layer header information of the MAC layer.
  • the protocol stack corresponding to the gNB or user equipment of the relay device is composed of HARQ functions of the PHY layer and the MAC layer.
  • the protocol stack corresponding to the gNB or user equipment of the relay device is composed of the PHY layer, the HARQ function of the MAC layer, and the adaptation layer.
  • the protocol stack corresponding to the relay device and the user equipment or gNB is composed of the PHY layer, the HARQ function of the MAC layer, and the function of reading the MAC layer header information of the MAC layer.
  • the protocol stack corresponding to the gNB or user equipment of the relay device is composed of the PHY layer, the HARQ function of the MAC layer, the adaptation layer, and the function of reading the MAC layer header information of the MAC layer.
  • the protocol stack corresponding to the relay device and the gNB does not include functions other than the HARQ function of the RRC layer, the PDCP layer, the RLC layer, and the MAC layer.
  • the protocol stack corresponding to the relay device and the user equipment does not include functions other than the HARQ function of the RRC layer, PDCP layer, RLC layer, and MAC layer.
  • the protocol stack corresponding to the relay device and the user equipment or the gNB does not include the function of reading the MAC layer header information of the MAC layer.
  • the user equipment may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a NAS layer.
  • a PHY layer may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a NAS layer.
  • it may also include an Adapt layer.
  • the protocol stack corresponding to the relay device and the gNB may include an Adapt layer, and the protocol stack corresponding to the relay device and the user equipment may not include the Adapt layer.
  • the protocol stack corresponding to the relay device and the gNB may not include the Adapt layer, and the protocol stack corresponding to the relay device and the user equipment may include the Adapt layer.
  • Fig. 6 shows a communication method according to an embodiment of the application. Taking the following line user plane data transmission as an example, the communication method 600 includes:
  • Operation 601 the network device sends data of the user equipment to the relay device.
  • the network device sends data to the relay device through the first link.
  • the first link is a wireless communication link between the network device and the relay device.
  • the wireless communication link may be a downlink.
  • the data may include routing information bearer identification.
  • the routing information bearer identifier may be included in the MAC layer header, the RLC layer header, the adaptation layer header, or the PDCP layer header, or the data payload (payload) of the data.
  • the routing information in this application is the information used to determine the user equipment, or the information of the next relay device, or the information of the network device.
  • the routing information may include at least one of a user equipment identifier, a relay device identifier, a transmission path identifier, and a network device identifier.
  • Operation 602 the relay device obtains routing information from the data of the user equipment.
  • the relay device receives the data of the user equipment.
  • the relay device obtains the routing information bearer identifier from the data of the user equipment.
  • the relay device processes the data of the user equipment according to the routing information bearer identifier in the data of the user equipment.
  • the relay device may determine to which user equipment the data of the user equipment needs to be sent according to the routing information.
  • the relay device sends the user equipment data to the user equipment.
  • Operation 603 the user equipment receives data of the user equipment.
  • the user equipment After the user equipment receives the data from the user equipment of the relay device, if it detects that it has previously received the same user equipment data from other relay devices, it can discard the user equipment data or perform merging processing.
  • the specific method can be Refer to method 800.
  • the transmission of the uplink data packet on the user plane and the transmission of the downlink data packet on the user plane are mutually inverse processes. You can refer to the communication method of the downlink data packet on the user plane, which may specifically include:
  • the user equipment sends the data of the network device to the relay device.
  • the data includes routing information.
  • the relay device obtains routing information from the data of the user equipment.
  • the relay device can determine to which network device the data of the user equipment needs to be sent according to the routing information.
  • the relay device sends the data of the network device to the network device. After the network device receives the data, if it detects that it has previously received the same user equipment data from other relay devices, it may discard the user equipment data or perform merging processing. For a specific method, refer to method 800.
  • the communication method of the control plane data can refer to the communication method of the user plane data, which will not be repeated here.
  • the data sent by the network device to the user equipment may include the bearer identifier, or the data sent by the user equipment to the network device may include the bearer identifier.
  • the specific method please refer to method 800. Go into details again.
  • the embodiment of the application provides a relay communication method.
  • the relay device can respond to the data from the user equipment of the network device or the network device of the user equipment according to the routing information.
  • the data is forwarded.
  • the relay device by carrying the route in the data from the user equipment of the network device, or the MAC layer header, the RLC layer header, the adaptation layer header, or the PDCP layer header, or the data payload (payload) of the data from the user equipment network device.
  • Information can achieve layer two relay.
  • the IP layer for relaying, for example, it is not necessary to route and identify the data of the user equipment through the IP address, so that the simplification of the relay equipment protocol stack can be realized and the transmission delay of the data packet can be saved.
  • the bearer identifier is carried in the data, so that the relay communication of the bearer granularity can be realized.
  • Fig. 7 is a schematic flowchart of a relay communication method provided by the present application. The technical solution of the embodiment of the present application will be described in detail below in conjunction with Fig. 8. Taking the transmission of user plane downlink data packets as an example, the communication method 800 corresponding to FIG. 8 may include:
  • Operation 701 The network device sends data to the relay device according to the first radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the first RNTI may be an identifier dedicated to the network device to communicate with the user equipment through the relay device.
  • the first RNTI may be a group radio network temporary identifier (G-RNTI) or a cell radio network temporary identifier (C-RNTI).
  • G-RNTI group radio network temporary identifier
  • C-RNTI cell radio network temporary identifier
  • the first RNTI may be a G-RNTI. In this way, the network device can multicast the data of the user equipment to the multiple relay devices. Therefore, the beneficial effect of saving RNTI resources or energy saving of the base station can be achieved.
  • the first RNTI may be a C-RNTI. In this way, the network device can unicast the data of the user equipment to the multiple relay devices respectively. Therefore, the network device can flexibly select the number of relay devices that serve the user equipment.
  • the network device may allocate the first RNTI to the relay device through dedicated signaling or system information. For example, through RRC messages. Or, through a message in the process of establishing an RRC connection between the network device and the relay device.
  • the network device may send the data scrambled or modulated by the first RNTI to the relay device through the first link.
  • the first link is a wireless communication link between the network device and the relay device.
  • the wireless communication link may be a downlink.
  • Operation 702 The relay device receives data from the network device according to the first RNTI, and obtains the first destination identifier.
  • the relay device descrambles the data according to the first RNTI, or demodulates the data.
  • the relay device receives data from the network device, it can try to demodulate or descramble the data with a different RNTI.
  • the relay device determines the RNTI that can successfully demodulate or descramble the data as the first RNTI.
  • the relay device obtains the first destination identifier according to the first RNTI.
  • the first destination identifier may be a destination identifier (destination identifier) of the user equipment.
  • the first destination identifier may be a destination layer 1 identifier or a destination layer 2 identifier.
  • the destination L2 ID can be carried in the MAC header, RLC header, Adapt header, or PDCP header of the side link data.
  • the destination L2 ID can be used to identify the user equipment as the receiving end. .
  • the destination L1 ID can be carried in sidelink control information (SCI).
  • the destination level two identifier in this application can also be a destination level two identifier corresponding to multicast, that is, a destination level two identifier can be used to identify multiple user equipment or a user equipment group, indicating that the communication on the SL is multicast communication , A relay device serves multiple user equipment or a user equipment group.
  • the target layer two identifier or the target layer one identifier in this application can also refer to the definition of the target layer two identifier or the target layer one identifier in the V2X related standard text in the 3GPP standard text.
  • the relay device may determine the first destination identifier according to the correspondence between the first RNTI and the first destination identifier.
  • the corresponding relationship between the RNTI and the destination identifier can be obtained by the following method: the relay device receives a message from the network device, the message includes the RNTI and the destination identifier, and the RNTI and the destination identifier have a corresponding relationship.
  • the correspondence between the RNTI and the destination identifier can be obtained by the following method: the relay device receives a first message from the network device, and the first message includes the RNTI.
  • the relay device receives a second message from the network device, and the second message includes a destination identifier.
  • the relay device obtains the correspondence between the RNTI and the destination identifier according to the first message and the second message.
  • the message may be an RRC message, a system information broadcast (system information broadcast, SIB) message, or a system information block (system information block, SIB).
  • the message may be an RRC connection reconfiguration message; or, the message may be a message in the process of establishing an RRC connection between the network device and the relay device.
  • the correspondence can be one-to-one, one-to-many, or many-to-one.
  • the relay device can receive a correspondence table, as shown in Table 1:
  • RNTI Purpose identification RNTI1 Purpose ID 1 RNTI2 Purpose ID 2 ... ... RNTI3 Purpose ID 3
  • Table 1 is only an exemplary correspondence table, in which the column RNTI may use the value of RNTI, or may be the index value of RNTI.
  • the purpose identifier column can use the value of the purpose identifier, or it can be the index value of the purpose identifier.
  • the two columns of the RNTI and the destination identifier can be two information elements existing in one message, or two information elements existing in one message respectively. This application does not limit the implementation of the correspondence table 1.
  • the network device may pre-configure the correspondence between the RNTI and the destination identifier to the relay device.
  • the equipment manufacturer may store the corresponding relationship between the RNTI and the destination identifier in the relay device before the relay device leaves the factory. In this way, there is no need to exchange the correspondence between the RNTI and the destination identifier between the network device and the relay device, thereby saving signaling overhead.
  • the relay device sends the user equipment data to the user equipment according to the first destination identifier.
  • the relay device sends the data to the user equipment through the second link.
  • the second link may be a wireless direct communication link between the relay device and the user equipment.
  • the wireless direct communication link may be a side link.
  • the relay device may put the first destination identifier in sidelink control information (SCI), and then send the first destination identifier to the user equipment SCI and user equipment data.
  • SCI sidelink control information
  • the relay device can add the first destination identifier to the MAC header, RLC header, Adapt header, or PDCP header of the user equipment data, and then forward The user equipment sends the data of the user equipment.
  • Operation 703 the user equipment receives data of the user equipment.
  • the user equipment After the user equipment receives data from the user equipment of the relay device, if it detects that it has previously received the same user equipment data from other relay devices, it may discard the user equipment data. For a specific method, refer to method 800.
  • the transmission of the uplink data packet on the user plane and the transmission of the downlink data packet on the user plane are mutually inverse processes. You can refer to the communication method of the downlink data packet on the user plane, which may specifically include:
  • the user equipment sends data to the relay device according to the first destination identifier.
  • the relay device receives data from the user equipment according to the first destination identifier.
  • the relay device may obtain the first RNTI according to the correspondence between the first destination identifier and the RNTI.
  • the relay device uses the first RNTI to send the data to the network device. After the network device receives the data, if it detects that it has previously received the same user equipment data from other relay devices, it may discard the user equipment data or perform merging processing. For a specific method, refer to method 800.
  • the communication method of the control plane data can refer to the communication method of the user plane data, which will not be repeated here.
  • the protocol stack of the relay device in this embodiment may be the protocol stack of the relay device as shown in FIGS. 2 to 5, which will not be repeated here.
  • the communication method provided in this embodiment can be combined with the method 600 to form a new embodiment.
  • the relay communication involves bearer granularity
  • the data sent by the network device to the user equipment may include the bearer identifier, or the data sent by the user equipment to the network device may include the bearer identifier.
  • the specific method please refer to method 800. Go into details again.
  • the embodiment of the present application provides a relay communication method, and the relay device can implement data forwarding through the correspondence between the identifiers configured by the network device.
  • the use of the multicast identifier G-RNTI can save RNTI resources and base station energy saving when multiple relay devices serve one user equipment.
  • carrying the bearer identifier in the data can realize the relay communication of the bearer granularity.
  • FIG. 8 is a schematic flowchart of a relay communication method provided by the present application, which is suitable for a relay communication scenario with a bearer granularity.
  • the technical solution of an embodiment of the present application will be described in detail below with reference to FIG. 8.
  • the communication method 800 corresponding to FIG. 8 may include:
  • Operation 801 the network device sends data of the user equipment to the relay device according to the first bearer.
  • the network device maps the data of the user equipment to the first bearer and sends it to the relay device.
  • the network device carries the first bearer identifier in the data.
  • the network device may carry the second bearer identifier in the data.
  • the first bearer identifier and/or the second bearer identifier may be included in a data packet header of the data (for example, a MAC layer header, an RLC layer header, an adaptation layer header, or a PDCP layer header) or a data payload (payload).
  • the first bearer may be a Uu port bearer.
  • the second bearer may be a PC5 port bearer or a side link bearer.
  • the user equipment data sent by the network device to the multiple relay devices may carry the same first bearer identifier and/or the second bearer identifier. For example, carry the same LCID.
  • Operation 802 the relay device determines a second bearer, and sends the data to the user equipment through the second bearer.
  • the relay device receives data from the user equipment of the network device.
  • the relay device maps the data to the second bearer and sends the data to the user equipment.
  • the relay device carries the second bearer identifier in the data.
  • the relay device may carry the first bearer identifier in the data.
  • the first bearer identifier and/or the second bearer identifier may be included in a data packet header of the data (for example, a MAC layer header, an RLC layer header, an adaptation layer header, or a PDCP layer header) or a data payload (payload).
  • the data of the user equipment received by the relay device from the network device includes the second bearer identifier, and the relay device obtains the second bearer from the data.
  • the data of the user equipment received by the relay device from the network device includes the first bearer identifier, and the relay device may obtain the second bearer according to the correspondence between the first bearer and the second bearer.
  • the correspondence between the Uu port bearer identifier and the PC5 port bearer identifier can be obtained by the following method: the relay device receives a message from the network device, and the message includes the Uu port bearer identifier and the PC5 port bearer identifier, where the There is a corresponding relationship between the bearer identifier of the Uu port and the bearer identifier of the PC5 port.
  • the correspondence between the Uu port bearer identifier and the PC5 port bearer identifier can be obtained by the following method: the relay device receives a first message from the network device, and the first message includes the Uu port bearer identifier.
  • the relay device receives a second message from the network device, and the second message includes the PC5 port bearer identifier.
  • the relay device obtains the correspondence between the Uu port bearer identifier and the PC5 port bearer identifier according to the first message and the second message.
  • the message may be an RRC message, a system information broadcast (system information broadcast, SIB) message, or a system information block (system information block, SIB).
  • the message may be an RRC connection reconfiguration message; or, the message may be a message in the process of establishing an RRC connection between the network device and the relay device.
  • the correspondence can be one-to-one, one-to-many, or many-to-one.
  • the relay device can receive a correspondence table, as shown in Table 2:
  • Table 2 is only an exemplary correspondence table, in which the column of the Uu port bearer identifier may use the value of the Uu port bearer identifier, or may be the index value of the Uu port bearer identifier.
  • the PC5 port bearer identifier column can use the value of the PC5 port bearer identifier or the index value of the PC5 port bearer identifier.
  • the two columns of the Uu port bearer identifier and the PC5 port bearer identifier may be two cells in a message, or two cells in a message. This application does not limit the implementation of the correspondence table 2.
  • first bearer identifiers may correspond to the same second bearer identifier.
  • the values in the column of the PC5 port bearer identifier shown in Table 2 may be the same.
  • the network device may pre-configure the correspondence between the Uu port bearer identifier and the PC5 port bearer identifier to the relay device.
  • the equipment manufacturer may store the corresponding relationship between the Uu port bearer identifier and the PC5 port bearer identifier in the relay device before the relay device leaves the factory. In this way, there is no need for the network device to exchange the correspondence between the Uu port bearer identifier and the PC5 port bearer identifier with the relay device, thereby saving signaling overhead.
  • Operation 803 the user equipment receives data of the user equipment.
  • the user equipment uses the second bearer to receive the data of the user equipment according to the second bearer identifier included in the data.
  • the data is processed according to the first bearer identifier included in the data.
  • the user equipment may submit the data received by the RLC layer to the upper layer of the RLC (such as the PDCP layer) according to the first bearer identifier (such as DRB ID) in the RLC subheader of the data of the user equipment.
  • the user equipment can receive the MAC layer according to the second bearer identifier (such as LCID) in the MAC header of the user equipment data
  • the data of the arriving user equipment is delivered to the upper layer of the MAC (such as the RLC layer).
  • the RLC layer delivers the received data to the pre-configured PDCP layer.
  • the user equipment may receive the adaptation layer according to the first bearer identifier (such as DRB ID) in the adaptation layer header of the user equipment data
  • the data is submitted to the upper layer of the adaptation layer (such as the PDCP layer).
  • the user equipment may use the second bearer identifier in the RLC header of the user equipment data to identify the user equipment received by the RLC layer.
  • the data is submitted to the Adapt layer.
  • the Adapt layer delivers the received data to the pre-configured PDCP layer.
  • the user equipment can change the second bearer identifier (such as LCID) in the MAC header of the user equipment data
  • the data of the user equipment received by the MAC layer is delivered to the RLC layer.
  • the RLC layer delivers the received data to the pre-configured Adapt layer.
  • the Adapt layer delivers the received data to the pre-configured PDCP layer.
  • the user equipment may submit data received through different second bearers to the same upper layer according to the pre-configured correspondence between the second bearer identifier and the second bearer upper layer.
  • the user equipment may receive data through different relay devices, and the user equipment may receive data through multiple second bearers.
  • the second bearer is an RLC bearer
  • the second bearer identifier may be an LCID.
  • the data received by the user equipment through the RLC bearer may be an RLC service data unit (SDU) or a PDCP protocol data unit (protocol data unit, PDU).
  • the user equipment can deliver the data received through different RLC bearers to the same PDCP layer according to the pre-configured correspondence between the LCID and the PDCP layer.
  • the PDCP layer of the user equipment may perform repeated detection according to the PDCP SN number carried in the data. If the PDCP serial number (SN) carried in the data from different relay devices is the same, the PDCP layer of the user equipment may choose to retain only one copy of the data. The PDCP layer of the user equipment can discard other duplicate data. Or, the PDCP layer of the user equipment combines multiple copies of the data.
  • the PDCP layer of the user equipment can deliver the data to the upper layer in the order of the PDCP SN numbers.
  • the transmission of the uplink data packet on the user plane and the transmission of the downlink data packet on the user plane are mutually inverse processes. You can refer to the communication method of the downlink data packet on the user plane, which may specifically include:
  • the user equipment sends data to the relay device according to the second bearer.
  • the user equipment carries the second bearer identifier in the data.
  • the user equipment may carry the second bearer identifier in the data.
  • the data received by the relay device from the user equipment includes the first bearer identifier, and the relay device obtains the first bearer from the data.
  • the data received by the relay device from the user equipment includes the second bearer identifier, and the relay device may obtain the first bearer according to the correspondence between the second bearer and the first bearer.
  • the relay device sends the data to the network device through the first bearer. After the network device receives the data, if it detects that it has previously received the data of the same user equipment from other relay devices, it can discard the data of the user equipment or perform merging processing.
  • the communication method of the control plane data can refer to the communication method of the user plane data, which will not be repeated here.
  • the embodiment of the present application provides a relay communication method.
  • the data of the user equipment received by the relay device from the network device includes a second bearer identifier, and the relay device obtains the second bearer from the data. In this way, there is no need to configure the corresponding relationship between the first bearer and the second bearer identifier, which saves control signaling overhead.
  • the data of the user equipment received by the relay device from the network device includes the first bearer identifier, and the relay device may obtain the second bearer according to the correspondence between the first bearer and the second bearer. In this way, there is no need to carry the second bearer identifier, saving data information overhead.
  • the user equipment may submit data received through different second bearers to the same upper layer according to the pre-configured correspondence between the second bearer identifier and the second bearer upper layer.
  • the second bearers selected by multiple relay devices serving the same user equipment need not be the same. This makes multiple relay devices serving the same user equipment more flexible in the selection of the second bearer.
  • the user equipment can repeatedly detect multiple pieces of data from different relay devices through the serial number of the protocol stack entity. This saves the storage space of the user equipment.
  • the network device receives the data of the user equipment from the core network element.
  • the network equipment processes the data of the user equipment at the SDAP layer. This processing may include adding QoS flow ID, and performing mapping from QoS flow to Uu port DRB. Further, the network equipment processes the data of the user equipment at the PDCP layer. This processing may include adding packet sequence numbers, performing header compression, or performing security-related protection.
  • the network equipment processes the user equipment data at the RLC layer. This processing may include packet segmentation and sequence number addition.
  • the network equipment processes the user equipment data at the adaptation layer.
  • This processing may include adding routing information and/or bearer identification to the head of the adaptation layer of the user equipment's data.
  • the bearer identifier includes a Uu port DRB ID.
  • the network equipment processes the data of the user equipment at the MAC layer. This processing may include scheduling, multiplexing, or HARQ.
  • the processing of the user equipment data at the MAC layer by the network device may be included in the MAC layer header of the data Add routing information and/or bearer identification in the.
  • the network device processes the data of the user equipment at the PHY layer. Finally, the network device sends the data of the user equipment to the relay device.
  • the adaptation layer of the relay device processes the data of the user equipment, and the processing may include reading the routing information and/or the bearer identifier included in the data adaptation layer header of the user equipment.
  • the relay device may further remove the adaptation layer header of the data of the user equipment.
  • the relay device processes the data of the user equipment according to the obtained routing information and/or the bearer identifier.
  • the relay device may determine to which user equipment the data of the user equipment needs to be sent according to the routing information.
  • the relay device can determine which PC5 port bears the data of the user equipment to which the data of the user equipment is mapped according to the bearer identifier.
  • the relay device may segment or re-segment the user equipment data at the RLC layer on the sending side, and modify or add the corresponding RLC header.
  • the relay device may determine a strategy for segmenting or re-segmenting the data of the user equipment. For example, the relay device may determine a strategy for segmenting or re-segmenting the data of the user equipment according to the transport block size (TBS) and the size of the data of the user equipment. Further, the relay device processes the data of the user equipment at the MAC layer. This processing may include scheduling, multiplexing, or HARQ. Further, the relay device processes the data of the user equipment at the PHY layer. Finally, the relay device sends the user equipment data to the user equipment through the side link. Optionally, the relay device may obtain the first destination identifier according to the first RNTI, and send the user equipment data to the user equipment according to the first destination identifier.
  • TBS transport block size
  • the relay device processes the data of the user equipment at the MAC layer. This processing may include scheduling, multiplexing, or HARQ.
  • the relay device processes the data of the user equipment at the PHY layer.
  • the relay device sends
  • the relay device may send data of the user equipment to the user equipment through the PC5 port bearer.
  • the user equipment receives the data through the PC5 port bearer.
  • the data includes the Uu port DRB ID.
  • the user equipment submits the data to the PDCP layer corresponding to the DRB ID.
  • the user equipment may perform repeated detection and merging processing on the data from multiple relay devices according to the PDCP SN number or the RLC SN number carried in the data.
  • the processing of the data on the MAC layer by the user equipment may include adding routing information and routing information to the MAC layer header of the data. / Or bearer identification.
  • the bearer identifier includes a Uu port DRB ID.
  • the user equipment processes the data at the PHY layer.
  • the user equipment sends data to the relay device through the side link.
  • the user equipment may send data of the user equipment to the relay device through the first destination identifier.
  • the relay device receives the data of the user equipment, and the PHY layer of the relay device processes the data of the user equipment.
  • the relay device may use the first destination identifier to receive the data of the user equipment.
  • the MAC layer of the relay device processes the data of the user equipment. This processing may include HARQ or demultiplexing.
  • the processing performed by the relay device on the data at the MAC layer may include reading the routing information and/or the bearer identifier in the data MAC header of the user equipment.
  • the adaptation layer of the relay device processes the data of the user equipment, and the processing may include reading the routing information and/or the bearer identifier included in the data adaptation layer header of the user equipment.
  • the relay device may further remove the adaptation layer header of the data of the user equipment.
  • the relay device processes the data of the user equipment according to the obtained routing information and/or the bearer identifier.
  • the relay device can determine to which network device the data of the user equipment needs to be sent according to the routing information.
  • the relay device can determine the Uu port to which the data of the user equipment is mapped according to the bearer identifier.
  • the relay device may segment or re-segment the user equipment data at the RLC layer on the sending side, and modify or add the corresponding RLC header.
  • the relay device may determine a strategy for segmenting or re-segmenting the data of the user equipment.
  • the relay device may determine a strategy for segmenting or re-segmenting the data of the user equipment according to the transport block size (TBS) and the size of the data of the user equipment.
  • TBS transport block size
  • the relay device processes the data of the user equipment at the MAC layer. This processing may include scheduling, multiplexing, or HARQ.
  • the relay device processes the data of the user equipment at the PHY layer. Finally, the relay device sends the data of the user equipment to the network device through the Uu port.
  • the relay device may obtain the first RNTI according to the first destination identifier, and send the data of the user equipment to the network device according to the first RNTI.
  • the relay device may send data of the user equipment to the network device through the Uu port bearer.
  • the data includes the Uu port DRB ID.
  • the network device submits the data to the PDCP layer corresponding to the DRB ID.
  • the network device may perform repeated detection and merging processing on the data from multiple relay devices according to the PDCP SN number or RLC SN number carried in the data.
  • the network device receives the data of the user device from the core network element.
  • the network equipment processes the user equipment data at the SDAP layer. This processing may include adding QoS flow ID, and performing mapping from QoS flow to Uu port DRB. Further, the network device processes the data of the user equipment at the PDCP layer. This processing may include adding packet sequence numbers, performing header compression, or performing security-related protection.
  • the network equipment processes the user equipment data at the RLC layer. This processing may include packet segmentation and sequence number addition.
  • the network equipment processes the user equipment data at the adaptation layer. The processing may include adding routing information and/or bearer identification to the adaptation layer header of the user equipment data.
  • the bearer identifier includes a Uu port DRB ID.
  • the network device processes the data of the user equipment at the MAC layer, and the processing may include scheduling and multiplexing processing.
  • the processing of the user equipment data at the MAC layer by the network device may include the MAC address of the user equipment data Add routing information and/or bearer identification to the layer header.
  • the network device processes the data of the user equipment at the PHY layer.
  • the network device sends the data of the user equipment to the relay device.
  • the network device may send data of the user equipment to the relay device through the first RNTI.
  • the relay device receives the data of the user equipment, and the PHY layer of the relay device processes the data of the user equipment.
  • the relay device may use the first RNTI to receive the data of the user equipment.
  • the MAC layer of the relay device processes the data of the user equipment. This processing may include HARQ feedback.
  • the processing performed by the relay device on the data at the MAC layer may include reading the routing information and/or the bearer identifier in the data MAC header of the user equipment.
  • the adaptation layer of the relay device processes the data of the user equipment, and the processing may include reading the routing information and/or the bearer identifier included in the data adaptation layer header of the user equipment.
  • the relay device may further remove the adaptation layer header of the data of the user equipment.
  • the relay device may obtain the first destination identifier according to the first RNTI, and send the user equipment data to the user equipment according to the first destination identifier.
  • the relay device may send data of the user equipment to the user equipment through the PC5 port bearer.
  • the data includes the Uu port DRB ID.
  • the user equipment submits the data to the PDCP layer corresponding to the DRB ID.
  • the user equipment may perform repeated detection and merging processing on the data from multiple relay devices according to the PDCP SN number or RLC SN number or MAC SN number carried in the data.
  • the user equipment receives data packets at the IP layer.
  • the user equipment processes the data at the SDAP layer. This processing may include adding QoS flow ID, and performing mapping from QoS flow to PC5 port DRB.
  • the user equipment processes the data at the PDCP layer. This processing may include adding packet sequence numbers, performing header compression, or performing security-related protection.
  • the user equipment processes the data at the RLC layer. This processing may include packet segmentation and sequence number addition.
  • the user equipment processes the data at the adaptation layer. This processing may include adding routing information and/or bearer identification in the adaptation layer header of the data.
  • the bearer identifier includes a Uu port DRB ID.
  • the user equipment processes the data at the MAC layer, and the processing may include scheduling and multiplexing processing.
  • the processing of the data on the MAC layer by the user equipment may include adding routing information and/or in the MAC layer header of the data. Bearer identity.
  • the user equipment processes the data at the PHY layer.
  • the user equipment sends data to the relay device through the side link.
  • the user equipment may send data of the user equipment to the relay device through the first destination identifier.
  • the relay device receives the data of the user equipment, and the PHY layer of the relay device processes the data of the user equipment.
  • the relay device may use the first destination identifier to receive the data of the user equipment.
  • the MAC layer of the relay device processes the data of the user equipment. This processing may include HARQ feedback.
  • the processing performed by the relay device on the data at the MAC layer may include reading the routing information and/or the bearer identifier in the data MAC header of the user equipment.
  • the adaptation layer of the relay device processes the data of the user equipment, and the processing may include reading the routing information and/or the bearer identifier included in the data adaptation layer header of the user equipment.
  • the relay device may further remove the adaptation layer header of the data of the user equipment.
  • the relay device processes the data of the user equipment according to the obtained routing information and/or the bearer identifier.
  • the relay device can determine to which network device the data of the user equipment needs to be sent according to the routing information.
  • the relay device can determine the Uu port to which the data of the user equipment is mapped according to the bearer identifier.
  • the relay device processes the data of the user equipment at the MAC layer on the transmitting side of the relay device. This processing may include performing HARQ feedback. Further, the relay device processes the data of the user equipment at the PHY layer.
  • the relay device may obtain the first RNTI according to the first destination identifier, and send the data of the user equipment to the network device according to the first RNTI.
  • the relay device may send data of the user equipment to the network device through the Uu port bearer.
  • the data includes the Uu port DRB ID.
  • the network device submits the data to the PDCP layer corresponding to the DRB ID.
  • the network device may perform repeated detection and merging processing on the data from multiple relay devices according to the PDCP SN number or RLC SN number or MAC SN number carried in the data.
  • embodiments of the present application provide a communication device, which may be the communication method provided by any of the foregoing embodiments and the relay device or network device in any possible design or User equipment, the relay device, network device, or user equipment may be included in the communication method provided in any of the foregoing embodiments for executing method steps or operations or behaviors performed by the relay device, network device, or user equipment
  • the corresponding at least one unit may have a one-to-one correspondence with method steps or operations or behaviors performed by the relay device, network device, or user equipment.
  • FIG. 11 is a schematic block diagram of a relay device 1100 provided by an embodiment of the present application.
  • the structure and functions of the relay device 1100 will be described in detail below with reference to FIG. 11.
  • the present application provides a relay device 1100, which may include: an acquisition module 1101, configured to receive data packets from a network device through a first link; and a sending module 1103, configured to transmit data packets through a second link
  • the user equipment sends the data packet; wherein the protocol stack of the relay device 1100 is composed of the physical layer, the media access control layer, and the segmentation function or re-segmentation function of the radio link control layer; or, the relay device
  • the protocol stack of the relay device consists of the physical layer, the media access control layer, the segmentation function or re-segmentation function of the radio link control layer, and the adaptation layer; or, the protocol stack of the relay device consists of the physical layer and the media access
  • the control layer consists of the hybrid automatic repeat request function; or, the protocol
  • the acquiring module 1101 is specifically configured to receive data from the network device through the first link according to the temporary identifier of the first multicast wireless network.
  • the relay device 1100 further includes a processing module 1102, configured to obtain a first destination layer two identifier according to the first multicast wireless network temporary identifier, where the first multicast wireless network temporary identifier and the first destination layer two identifier Have a corresponding relationship.
  • the sending module 1103 is specifically configured to send the data to the user equipment through the second link according to the first destination layer two identifier.
  • the acquiring module 1101 receives the first multicast wireless network temporary identifier and the first destination layer two identifier from the network device, where the first multicast wireless network temporary identifier and the first destination layer two identifier The identification has a corresponding relationship.
  • the first target layer two identifier is included in the media access control layer header of the data, and the first target layer two identifier is used to identify the user equipment. .
  • the data sent by the sending module 1103 to the user equipment includes the first bearer identifier.
  • the first bearer identifier is used by the user equipment to map data of the user equipment to the first bearer.
  • the bearer includes one or more of a signaling radio bearer, a data radio bearer, a radio link control bearer, or a medium access control bearer.
  • the adaptation layer header, the radio link control layer header, or the medium access control layer header of the data includes the first bearer identifier and/or the second bearer identifier.
  • the acquiring module 1101 is further configured to receive data from a network device through a first bearer; the processing module 1102 is further configured to determine a second bearer identifier according to the first bearer identifier, where the first bearer The bearer identifier and the second bearer identifier have a corresponding relationship; the sending module 1103 is further configured to send the data to the user equipment according to the second bearer identifier.
  • the acquisition module 1101 may receive the first multicast wireless network temporary identifier and the first destination layer two identifier from the network device through a radio resource control message or a system information broadcast message, where the first multicast wireless network temporary The identifier has a corresponding relationship with the first destination layer two identifier.
  • FIG. 12 is a schematic block diagram of a network device 1200 provided by an embodiment of the present application.
  • the structure and functions of the network device 1200 will be described in detail below with reference to FIG. 12.
  • the present application also provides a network device 1200, which may include: a sending module 1201, configured to send a first multicast wireless network temporary identifier and a first destination layer two identifier to the relay device, where the first The multicast wireless network temporary identifier and the first destination layer two identifier have a corresponding relationship; the sending module 1201 is also used to send data to the relay device.
  • the data sent by the sending module 1201 to the relay device includes the first bearer identifier.
  • the first bearer identifier is used by the user equipment to map data of the user equipment to the first bearer.
  • the bearer includes one or more of a signaling radio bearer, a data radio bearer, a radio link control bearer, or a medium access control bearer.
  • the sending module 1201 may send the first multicast wireless network temporary identifier and the first destination layer two identifier to the relay device through a radio resource control message or a system information broadcast message, where the first multicast wireless network
  • the temporary identification has a corresponding relationship with the first destination layer two identification.
  • FIG. 13 is a schematic block diagram of a user equipment 1300 according to an embodiment of the present application.
  • the structure and functions of the user equipment 1300 will be described in detail below with reference to FIG. 13.
  • the present application also provides a user equipment 1300, which may include: an acquisition module 1301, configured to receive data from a relay device through a second link; the second link is the relay device and The wireless direct communication link between the user equipment.
  • the obtaining module 1301 is configured to receive the data from the relay device through a second bearer
  • the data includes a first bearer identifier; the user equipment 1300 further includes a processing module 1302.
  • the processing module 1302 is configured to map the data to the first bearer according to the first bearer identifier.
  • an embodiment of the present application further provides an apparatus 1400.
  • the structure and functions of the apparatus 1400 will be described in detail below in conjunction with a schematic block diagram of the apparatus 1400 as shown in FIG. 14.
  • the device may include at least one processor 1401 and an interface circuit 1402.
  • the device 1400 can be made to implement the communication method provided by any of the foregoing embodiments and any of them. Possible design.
  • the interface circuit 1402 can be used to receive program instructions and transmit them to the processor, or the interface circuit 1402 can be used in the apparatus 1400 to communicate with other communication devices, such as interactive control signaling and/or service data.
  • the interface circuit 1402 may be a code and/or data read/write interface circuit, or the interface circuit 1402 may be a signal transmission interface circuit between a communication processor and a transceiver.
  • the communication device 1400 may further include at least one memory 1403, and the memory 1403 may be used to store required related program instructions and/or data.
  • the device 1400 may further include a power supply circuit 1404, and the power supply circuit 1404 may be used to supply power to the processor 1401.
  • the power supply circuit 1404 may be located in the same chip as the processor 1401, or located where the processor 1401 is located. In another chip outside of the chip.
  • the device 1400 may further include a bus 1405, and various parts of the device 1400 may be interconnected through the bus 1405.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits. (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, or discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM), or direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the power supply circuit described in the embodiment of the present application includes but is not limited to at least one of the following: a power supply line, a power supply subsystem, a power management chip, a power management processor, or a power management control circuit.
  • the transceiver device, the interface circuit, or the transceiver described in the embodiments of the present application may include a separate transmitter, and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • the transceiver, the interface circuit, or the transceiver can work under the instruction of the corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • “implemented by software” may mean that the processor reads and executes the program instructions stored in the memory to implement the functions corresponding to the above-mentioned modules or units, where the processor refers to a processing circuit that has the function of executing program instructions, Including but not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processing (digital signal processing, DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence processing Various types of processing circuits capable of running program instructions.
  • the processor may also include circuits for other processing functions (such as hardware circuits for hardware acceleration, buses, and interface circuits, etc.).
  • the processor may be presented in the form of an integrated chip, for example, in the form of an integrated chip whose processing function only includes the function of executing software instructions, or it may also be presented in the form of SoC (system on a chip, system on chip), that is, on a chip
  • SoC system on a chip, system on chip
  • the processing circuit usually called “core”
  • the processing function may also include various hardware acceleration functions (such as AI calculation, encoding and decoding, compression and decompression, etc.).
  • the hardware processing circuit may be composed of discrete hardware components or integrated circuits. In order to reduce power consumption and size, it is usually implemented in the form of integrated circuits.
  • the hardware processing circuit may include ASIC, or PLD (programmable logic device, programmable logic device); among them, PLD may include FPGA, CPLD (complex programmable logic device, complex programmable logic device) and so on.
  • PLD programmable logic device, programmable logic device
  • FPGA field-programmable logic device
  • CPLD complex programmable logic device, complex programmable logic device
  • These hardware processing circuits can be a separately packaged semiconductor chip (e.g. packaged into an ASIC); it can also be integrated with other circuits (e.g.
  • CPU central processing unit
  • DSP digital signal processor
  • packaged into a semiconductor chip for example, can be formed on a silicon base
  • a variety of hardware circuits and CPUs are individually packaged into a chip.
  • This chip is also called SoC, or a circuit and CPU used to implement FPGA functions can also be formed on a silicon base and sealed separately into a chip.
  • SoPC system on a programmable chip
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple On the network unit. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the foregoing storage media may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk, or optical disk, etc., which can store program codes.
  • U disk mobile hard disk
  • read-only memory read-only memory, ROM
  • random access memory random access memory
  • magnetic disk magnetic disk
  • optical disk etc.
  • Media or computer-readable storage media may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk, or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及相关设备。该方法包括:中继设备首先通过第一链路接收来自于网络设备的数据包,再通过第二链路向用户设备发送所述数据包;其中,所述中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,所述中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,所述中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和该用户设备之间的无线直连通信链路。

Description

一种中继通信方法及相关设备 技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种中继通信方法及相关设备。
背景技术
在中继通信场景下,网络设备与用户设备(user equipment,UE)之间进行通信时会需要中继设备。然而,在现有的机制中,中继设备具有完整的通信协议栈,例如完整的LTE协议栈或者NR协议栈,这会带来中继时延过长的问题。在日益强调低时延通信的背景下,中继通信时延较长的问题亟需解决。
发明内容
有鉴于此,本申请提供了一种通信方法及相关设备,可以降低中继通信时延,从而可以改善整个网络的性能。
第一方面,本申请提供了一种通信方法,该方法可以包括:中继设备通过第一链路接收来自于网络设备的数据包,并通过第二链路向用户设备发送该数据包,其中,该中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,该中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成;该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和用户设备之间的无线直连通信链路。通过本方法,示例性的有益效果包括:减少了中继设备的协议栈,简化了中继设备对数据包的处理,节省数据包的传输时延。
第一方面的第一种可行的设计中,中继设备通过第一链路接收来自于网络设备的数据包,并通过第二链路向用户设备发送该数据包,可以包括:中继设备首先根据第一组播无线网络临时标识通过第一链路接收来自网络设备的数据。再根据该该第一组播无线网络临时标识,获得第一目的层二标识,其中该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。最后该中继设备根据该第一目的层二标识通过第二链路向用户设备发送该数据。通过本方法,示例性的有益效果包括:组播标识的使用可以使得多个中继设备为用户设备服务,提高中继通信的稳定性和效率;用户设备可以根据该第一组播无线网络临时标识,获得第一目的层二标识标识,从而实现数据转发。
基于第一方面的第一种可行的设计,在第一方面的第二种可行的设计中,可以包括:中继设备接收来自该网络设备的该第一组播无线网络临时标识和该第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。通过本设计,示例性的有益效果包括:网络设备可以根据需要配置第一组播无线网络临时标识和第一目的层二标识之间的对应关系,从而实现更加灵活的数据转发。
基于第一方面的第一种可行的设计或第一方面的第二种可行的设计,在第一方面的第三种可行的设计中,可以包括:该第一目的层二标识包括在数据的媒体接入控制层头中,该第一目的层二标识用于标识该用户设备。
基于第一方面或者第一方面的上述任一种可行的设计,在第一方面的第四种可行的设计中,该来自网络设备的数据中包括第一承载标识,和/或,第二承载标识。通过本设计,示例性的有益效果包括:可以在G-RNTI与目的标识映射的基础上,进一步增加承载映射功能,这样可以进一步保证多承载中继通信在中继设备侧的实现。
基于第一方面或者第一方面的上述任一种可行的设计,在第一方面的第五种可行的设计中,该中继设备向该用户设备发送的数据中可以包括第一承载标识,和/或,第二承载标识。通过本方法,示例性的有益效果包括:通过在第二链路数据中包含承载标识,可以进一步保证多承载中继通信在用户设备侧的实现。
基于第一方面的第四种可行的设计或者第一方面的第五种可行的设计,在第一方面的第六种可行的设计中,所述承载包括信令无线承载,数据无线承载,无线链路控制承载,或者媒体接入控制承载中的一种或多种。
基于第一方面的第四种至第六种可行的设计,在第一方面的第七种可行的设计中,该中继设备通过第一承载接收来自网络设备的数据;然后,该中继设备根据该第一承载标识,确定第二承载标识,其中该第一承载标识和该第二承载标识具有对应关系;该中继设备根据该第二承载标识向该用户设备发送该数据。
基于第一方面的第四种至第七种可行的设计,在第一方面的第八种可行的设计中,包括:该数据的适配层头,无线链路控制层头,或者媒体接入控制层头中包括该第一承载标识,和/或,第二承载标识。通过本设计,示例性的有益效果包括:保证多承载中继通信的实现。
第二方面,本申请提供了一种通信方法,该方法可以包括:中继设备根据第一无线网络临时标识通过第一链路接收来自网络设备的数据,该数据中包括路由信息和/或承载标识,该中继设备从该数据中获得该路由信息和/或承载标识,该中继设备根据该路由信息和/或承载标识通过第二链路向该用户设备发送该数据;该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和用户设备之间的无线直连通信链路。通过本方法,示例性的有益效果包括:通过数据包中包括路由信息和/或承载标识,实现更加简单的数据转发,相比较于第一方面的方法,本方法不需要网络设备配置对应关系,减少了空口开销,节约了无线网络临时标识资源。
在第二方面的第一种可行的设计中,该路由信息和/或承载标识可以包含在该数据包的无线链路控制层头或者适配层头中。通过本设计,示例性的有益效果包括:使得中继设备可以通过无线链路控制层头或者适配层头中的路由信息和/或承载标识,实现数据转发。
第三方面,本申请提供了一种通信方法,该方法可以包括:网络设备通过第一链路向中继设备发送用户设备的数据包;其中,该中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,该中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成;该中继设备和该用户设备具有第二链路;该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和用户设备之间的无线直连通信链路。
在第三方面的第一种可行的设计中,网络设备通过第一链路向中继设备发送该用户设备的数据,包括:根据第一组播无线网络临时标识通过该第一链路向中继设备发送该用户设备的数据。
基于第一方面或者第一方面的第一种可行的设计,在第三方面的第二种可行的设计中, 向所述中继设备发送该第一组播无线网络临时标识和该第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。
基于第一方面或者第三方面的第一至第三种可行的设计中,网络设备通过第一承载向所述中继设备发送该用户设备的数据;
第四方面,本申请提供了一种通信方法,该方法可以包括:用户设备通过第二链路从中继设备接收来自网络设备的数据;其中,该中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,该中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成;该中继设备和该用户设备具有第二链路;该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和用户设备之间的无线直连通信链路。
第五方面,本申请提供了一种通信装置,该装置用于执行实现第一方面-第四方面的方法及其任一设计。
第六方面,本申请提供了一种装置,该装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现第一方面-第四方面的方法及其任一设计。该装置可以是第一方面至第四方面的方法及其任一设计中的终端设备或网络设备或者是其中的芯片。可选的,该通信装置还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第七方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质可以应用在通信装置中,该计算机可读存储介质中存储有涉及的程序指令,涉及的程序指令运行时,以使得该通信装置实现第一方面至第四方面的方法及其任一设计。
第八方面,本申请提供了一种计算机程序产品,该计算机程序产品包含涉及的程序指令,涉及的程序指令被执行时,以实现第一方面至第四方面的方法及其任一设计。
附图说明
可以包括在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例,或特征和方面,并且用于解释本申请的原理,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以包括根据这些附图获得其他的附图。
图1是本申请一种可能的中继通信系统的示意图;
图2是本申请实施例提供的一种中继通信系统的用户面通信协议栈的示意图;
图3是本申请实施例提供的一种中继通信系统的控制面通信协议栈的示意图;
图4是本申请实施例提供的一种中继通信系统的用户面通信协议栈的示意图;
图5是本申请实施例提供的一种中继通信系统的控制面通信协议栈的示意图;
图6是本申请实施例提供的一种中继通信方法的流程示意图;
图7是本申请实施例提供的一种数据的中继通信示意图;
图8是本申请实施例提供的一种数据的中继通信示意图;
图9是本申请实施例提供的一种中继通信方法的流程示意图;
图10是本申请实施例提供的一种中继通信方法的流程示意图;
图11是本申请实施例提供的一种中继设备的示意性框图;
图12是本申请实施例提供的一种网络设备的示意性框图;
图13是本申请实施例提供的一种用户设备的示意性框图;
图14是本申请实施例提供的一种装置的示意性框图。
具体实施方式
在本申请的描述中,“第一”,“第二”,“操作201”,或“操作202”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
本申请实施例提供的方案可适用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统、或者新无线(new radio,NR)系统,以及其他可用于提供移动通信服务的网络系统等,本申请不做限定。
下面将结合附图,对本申请实施例进行描述,附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
如图1所示,本申请实施例适用的一种通信系统可以包括网络设备100,中继设备110和用户设备120,可选的包括用户设备130或中继设备140。其中,网络设备100可以通过中继设备110,实现与用户设备120进行通信,该网络设备100与中继设备110之间可以通过无线通信接口,如LTE Uu口或者NR Uu口,进行通信。LTE Uu口或者NR Uu口可以指蜂窝通信系统中无线接入网(radio access network,RAN)设备和终端设备之间的无线通信接口。基于LTE Uu口或者NR Uu口,终端设备和网络设备之间进行上行通信的无线通信链路可以称之为上行链路(Uplink,UL),终端设备和网络设备之间进行下行通信的无线通信链路可以称之为下行链路(downlink,DL)。中继设备110与用户设备120之间可以通过无线直连通信接口,如D2D口或者PC5口,进行通信。D2D口或者PC5口可以指终端设备之间进行直接通信的无线通信接口,通过D2D口或者PC5口,终端设备之间可以不需要经过蜂窝通信网络转发数据,从而实现直接交互数据。基于PC5口,终端设备之间进行直连通信的通信链路可以称之为侧行链路(sidelink,SL)。或者,中继设备110与用户设备120之间可以通过微波,WiFi或者蓝牙等进行通信。其中,网络设备100还可以通过中继设备110和用户设备 120、用户设备130进行通信。其中,网络设备100还可以通过中继设备110、中继设备140和用户设备120进行通信。需要说明的是,图1所示网络架构仅为示例性架构图,除图1所示网络功能实体外,图1所示通信系统还可以包括其他功能实体,如:核心网网元、更多的用户设备或者中继设备等,本申请不予限制。另外,图1中是以用户设备120、用户设备130在网络设备的覆盖范围边缘或者之外为例,用户设备120或者130也可以是在网络设备覆盖范围边缘或者之内,例如用户设备和网络设备之间可能是没有合适的通信资源,或者用户设备和网络设备之间的通信资源没有中继设备和网络设备之间的通信资源好。
图1中的用户设备可以是接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、无线终端设备、用户代理、或者用户装置等。还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(如智能手表、智能手环等)、还可以为智能家具或家电、5G网络中的终端设备、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等,本申请对用户设备的具体实现形式并不做限定。
图1中的网络设备可以用于实现无线物理实体、资源调度和无线资源管理、或者无线接入控制以及移动性管理等功能;示例性的,该网络设备可以为无线接入网(radio access network,RAN)设备,比如可以是GSM系统或者CDMA系统中的基站(base transceiver station,BTS)、WCDMA系统中的节点B(nodeB,NB)、LTE系统中的演进型节点B(evolutional nodeB,eNB)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继节点站、传输接收点(transmission reception point,TRP)、接入点、车载设备、路边单元(road side unit,RSU)、可穿戴设备、或者5G网络中的网络设备,如NR nodeB或者下一代基站(generation nodeB,gNB),集中式单元(centralized unit,CU),分布式单元(distribute unit,DU)或者未来演进的PLMN网络中的网络设备等,本申请对网络设备的具体实现形式并不限定。
图1中的中继设备可以是具备中继功能的通信设备,该通信设备除了具备中继功能,还可以具备正常通信功能。示例性的,该中继功能专门用于网络设备与用户设备进行中继通信,是服务于用户设备的;该正常通信功能专门用于网络设备与中继设备进行直接通信,是服务于中继设备自身的。例如,中继设备可以是网络辅助的UE间协作(network assisted UE cooperation,NAUC)通信场景中的协作用户设备(cooperated user equipment,CUE)。再如,中继设备可以是接入回传一体化(integrated access and backhaul,IAB)通信场景中的IAB节点。又例如,中继设备可以是车联网(vehicle to everthing,V2X)通信场景中的中继用户设备(relay user equipment,relay UE)。
图2是本申请提供的一种中继通信系统的用户面协议栈通信的示意图,如图2所示,该网络设备系统可以包括基站(如gNB)和用户面层网元(user plane function,UPF),其中,UPF的协议栈可以包括完整的协议栈,如层1(layer 1,L1)、层2(layer 2,L2)、因特网协议(Internet protocol,IP)层、用户数据报协议(user datagram protocol,UDP)层和通用分组无线业务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层,其中,L1和L2可以指的是有线传输(例如通过光纤)网络中的协议栈层,例如L1可以是物理层,L2可以是数据链路层。
如图2所示,该gNB中与UPF对应的协议栈可以包括L1、L2、IP层、UDP层和GTP-U层。该gNB中与中继设备或用户设备相对应的协议栈可以包括业务数据适配协议(service data adaptation protocol,SDAP)层,分组数据汇聚(packet data convergence protocol,PDCP)层,媒体接入控制(medium access control,MAC)层,物理(physical,PHY)层。可选的还包括适配层(adaptation layer,Adapt)。
如图2所示,该中继设备与gNB或者用户设备相对应的协议栈可以包括MAC层、PHY层。可选的,还可以包括Adapt层。可选的,还可以包括RLC层的分段(segmentation)或者重分段(resegmentation)功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈包括RLC层的读取RLC层头信息的功能。
或者,如图2所示,该中继设备与gNB或者用户设备相对应的协议栈由PHY层和MAC层组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,和适配层组成。该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,和RLC层的分段功能或者重分段功能组成。该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,适配层,和RLC层的分段功能或者重分段功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,适配层,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,RLC层的分段功能或者重分段功能,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,适配层,RLC层的分段功能或者重分段功能,和RLC层的读取RLC层头信息的功能组成。
或者,如图2所示,该中继设备与gNB或用户设备相对应的协议栈不包括IP层,SDAP层,PDCP层。可选的,还不包括RLC层的除了分段功能或重分段功能之外的功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈还不包括RLC层的读取RLC层头信息的功能。
如图2所示,该用户设备可以包括完整的协议栈,如PHY层、MAC层、RLC层、PDCP层、SDAP层和IP层。可选的,还可以包括Adapt层。
本申请中,在用户设备,中继设备,或者网络设备Uu口的协议栈中,一般层一指的是PHY层,层二指的是MAC层,RLC层,Adapt层或者PDCP层,层三一般指的是RRC层,NAS层,或者IP层。本申请中,承载可以包括无线承载(radio bearer,RB)、RLC承载、MAC承载中的一种或多种。RB可以包括信令无线承载(signal radio bearer,SRB)、数据无线承载(data radio bearer,DRB)。SRB可以包括PDCP层,和/或,PDCP层和RLC层之间的信道。DRB可以包括RRC层,和/或,RRC层和RLC层之间的信道。RLC承载可以包括RLC层,和/或,RLC层和MAC层之间的逻辑信道。MAC承载可以包括MAC层,和/或,MAC层和PHY层之间的传输信道(transport channels)。承载可以由承载标识来标识。承载标识可以包括信令无线承载标识(signal radio bearer identity,SRB ID)、数据无线承载标识(data radio bearer identity,DRB ID),逻辑信道标识(logical channel identity,LCID)、服务质量流(quality of service flow,QoS flow)标识中的一种或多种。承载可以由承载索引来标识。承载索引可以包括信令无线承载索引(signal radio bearer index)、数据无线承载索引(data radio bearer index)、逻辑信道标识(logical channel identity,LCID)索引中的一种或多种。PDCP承载的承载标识可以为DRB ID或者SRB ID。RLC承载的承载标识可以为LCID。
本申请中以承载标识来举例,本申请中的“承载标识”也可以替换为“承载索引”。本申请中的承载标识一般是用来进行承载映射。
本申请中,上述列举的各协议层可以是存在于同一协议层,也可以是存在于不同协议层。本申请中的Adapt层可以是位于RLC层的子层,或者是位于RLC层的一个功能名称,或者可以是位于MAC层的子层,或者可以是位于MAC层的一个功能名称,或者可以是位于MAC层和RLC层之间的单独的一层。应当理解,如果Adapt层是位于RLC层的子层,或者是位于RLC层的一个功能名称,则本申请的一些实施例中,Adapt层对数据的处理过程可以认为是RLC层对数据的处理过程。如果Adapt层是位于MAC层的子层,或者是位于MAC层的一个功能名称,则本申请的一些实施例中,Adapt层对数据的处理过程可以认为是MAC层对数据的处理过程。关于各协议栈层的功能介绍也可以参考相关的第三代合作伙伴计划(3rd generation partnership project,3GPP)的标准协议文本TS 36.300v15.8.0或者TS 38.300v15.8.0。
图3是本申请提供的一种中继通信系统的控制面协议栈通信的示意图,如图3所示,该通信系统可以包括基站(如gNB)和接入和移动性管理功能(access and mobility management function,AMF)网元。其中,该AMF的协议栈可以包括L1层,L2层,IP层,流控制传输协议(Stream Control Transmission Protocol,SCTP)层,下一代应用协议(next generation application protocol,NG-AP)层和非接入(non-access stratum,NAS)层。该gNB与AMF相对应的协议栈可以包括L1层,L2层,IP层,SCTP层和NG-AP层。
该gNB与中继设备或者用户设备相对应的协议栈可以包括PHY层,MAC层,RLC层,PDCP层和RRC层。可选的,该gNB与中继设备或者用户设备相对应的协议栈可以包括Adapt层。
如图3所示,该中继设备与gNB或用户设备相对应的协议栈可以包括PHY层、MAC层,可选的还包括Adapt层。可选的,还可以包括RLC层的分段或者重分段功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈包括RLC层的读取RLC层头信息的功能。
或者,如图3所示,该中继设备与gNB或者用户设备相对应的协议栈由PHY层和MAC层组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,和适配层组成。该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,和RLC层的分段功能或者重分段功能组成。该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,适配层,和RLC层的分段功能或者重分段功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层,适配层,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,RLC层的分段功能或者重分段功能,和RLC层的读取RLC层头信息的功能组成。或者,该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层,适配层,RLC层的分段功能或者重分段功能,和RLC层的读取RLC层头信息的功能组成。
或者,如图3所示,该中继设备与gNB或用户设备相对应的协议栈不包括RRC层,PDCP层。可选的,还不包括RLC层的除了分段功能或重分段之外的功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈还不包括RLC层的读取RLC层头信息的功能。
如图3所示,该用户设备的协议栈可以包括PHY层,MAC层,RLC层,PDCP层,RRC层和NAS层。可选的,还可以包括Adapt层。
在图2和图3中,以进行下行数据传输为例,该中继设备与gNB相对应的协议栈可以包 括Adapt层,不包括RLC层的分段或者重分段功能,该中继设备与用户设备相对应的协议栈可以包括RLC层的分段或者重分段功能,不包括Adapt层。例如,以进行上行数据传输为例,该中继设备与gNB相对应的协议栈可以包括RLC层的分段或者重分段功能,不包括Adapt层,该中继设备与用户设备相对应的协议栈可以包括Adapt层,不包括RLC层的分段或者重分段功能。
图4是本申请提供的一种中继通信系统的用户面协议栈通信的示意图,如图4所示,该通信系统可以包括基站(如gNB)和接入和UPF网元。其中,该UPF的协议栈可以包括L1层、L2层、IP层、UDP层和GTP-U层。该gNB与UPF相对应的协议栈可以包括L1层、L2层、IP层、UDP层和GTP-U层。
该gNB与中继设备或者用户设备相对应的协议栈可以包括PHY层、MAC层、RLC层、PDCP层和SDAP层。可选的,还可以包括Adapt层。
如图4所示,该中继设备与gNB或用户设备相对应的协议栈可以包括PHY层和混合自动重传请求(hybrid automatic repeat request,HARQ)功能,可选的还包括适配层。可选的,还包括MAC层的读取MAC层头信息的功能。
或者,如图4所示,该中继设备与gNB或者用户设备相对应的协议栈由PHY层和MAC层的HARQ功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层的HARQ功能,和适配层组成。该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层的HARQ功能,和MAC层的读取MAC层头信息的功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层的HARQ功能,适配层,和MAC层的读取MAC层头信息的功能组成。
或者,如图4所示,该中继设备与gNB相对应的协议栈不包括IP层,SDAP层,PDCP层,RLC层和MAC层的除了HARQ之外的功能。该中继设备与该用户设备相对应的协议栈不包括IP层,SDAP层,PDCP层,RLC层,和MAC层的除了HARQ功能之外的功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈还不包括MAC层的读取MAC层头信息的功能。
如图4所示,该用户设备可以包括PHY层、MAC层、RLC层、PDCP层、SDAP层和IP层。可选的,还可以包括Adapt层。
图5是本申请提供的一种通信系统的控制面协议栈通信的示意图,如图5所示,该通信系统可以包括基站(如gNB)和接入和AMF网元。其中,该AMF的协议栈可以包括L1层、L2层、IP层、SCTP层、NG-AP层和NAS层。该gNB与UPF相对应的协议栈可以包括L1层、L2层、IP层、SCTP层和NG-AP层。
该gNB与中继设备或者用户设备相对应的协议栈可以包括PHY层、MAC层、RLC层、PDCP层和RRC层。可选的,还可以包括Adapt层。
如图5所示,该中继设备与gNB或用户设备相对应的协议栈可以包括PHY层和MAC层的HARQ功能。可选的还包括适配层。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈包括MAC层的读取MAC层头信息的功能。
或者,如图5所示,该中继设备与gNB或者用户设备相对应的协议栈由PHY层和MAC层的HARQ功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层的HARQ功能,和适配层组成。该中继设备与该用户设备或者与gNB相对应的协议栈由PHY层,MAC层的HARQ功能,和MAC层的读取MAC层头信息的功能组成。或者,该中继设备与gNB或者用户设备相对应的协议栈由PHY层,MAC层的HARQ功能,适配 层,和MAC层的读取MAC层头信息的功能组成。
或者,如图5所示,该中继设备与gNB相对应的协议栈不包括RRC层,PDCP层,RLC层,和MAC层的除了HARQ功能之外的功能。该中继设备与该用户设备相对应的协议栈不包括RRC层,PDCP层,RLC层,和MAC层的除了HARQ功能之外的功能。可选的,该中继设备与该用户设备或者与gNB相对应的协议栈还不包括MAC层的读取MAC层头信息的功能。
如图5所示,该用户设备可以包括PHY层、MAC层、RLC层、PDCP层、RRC层和NAS层。可选的,还可以包括Adapt层。
在图4和图5中,以进行下行数据传输为例,该中继设备与gNB相对应的协议栈可以包括Adapt层,该中继设备与用户设备相对应的协议栈可以不包括Adapt层。以进行上行数据传输为例,该中继设备与gNB相对应的协议栈可以不包括Adapt层,该中继设备与用户设备相对应的协议栈可以包括Adapt层。图6所示为本申请的一种实施例的通信方法。以下行用户面数据传输为例,该通信方法600包括:
操作601:网络设备向中继设备发送用户设备的数据。
网络设备通过第一链路向中继设备发送数据。该第一链路为该网络设备和该中继设备之间的无线通信链路。该无线通信链路可以是下行链路。
该数据可以包括路由信息承载标识。该路由信息承载标识可以包含在该数据的MAC层头,RLC层头,适配层头,或者PDCP层头,或者数据载荷(payload)中。本申请中的路由信息是用于确定用户设备的信息,或者下一个中继设备的信息,或者网络设备的信息。该路由信息可以包括用户设备标识、中继设备的标识、传输路径标识、网络设备的标识中的至少一种。
操作602:中继设备从用户设备的数据中获得路由信息。
中继设备接收用户设备的数据。中继设备从用户设备的数据中获得路由信息承载标识。该中继设备根据用户设备的数据中的路由信息承载标识处理用户设备的数据。该中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个用户设备。中继设备向该用户设备发送用户设备的数据。
操作603:用户设备接收用户设备的数据。
用户设备接收来自中继设备的用户设备的数据后,如果检测到之前已经接收来自其他中继设备的相同的用户设备的数据后,则可以丢弃该用户设备的数据或者进行合并处理,具体方法可以参考方法800。
用户面上行数据包的传输和用户面下行数据包的传输互为逆过程,可以参考用户面下行数据包的通信方法,具体可以包括:
用户设备向中继设备发送网络设备的数据。该数据中包括路由信息。中继设备接收该用户设备的数据后,从该用户设备的数据中获取路由信息。中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个网络设备。中继设备向网络设备发送网络设备的数据。网络设备接收该数据后,如果检测到之前已经接收来自其他中继设备的相同的用户设备的数据后,则可以丢弃该用户设备的数据或者进行合并处理,具体方法可以参考方法800。
控制面数据的通信方法可以参考用户面数据的通信方法,在此不再赘述。
另外,在中继通信涉及承载粒度时,网络设备发送给用户设备的数据中可以包含承载标识,或者用户设备发送给网络设备的数据中可以包含承载标识,具体方法可以参考方法800,在此不再赘述。
本申请实施例提供了一种中继通信方法,通过本申请实施例中的中继通信方法,中继设备可以根据路由信息,对来自网络设备的用户设备的数据,或者来自用户设备的网络设备的数据进行转发。另外,通过在来自网络设备的用户设备的数据,或者来自用户设备的网络设备的数据的MAC层头,RLC层头,适配层头,或者PDCP层头,或者数据载荷(payload)中携带路由信息,可以实现层二中继。可以不用使用IP层进行中继,例如不需要通过IP地址来路由和识别用户设备的数据,从而可以实现中继设备协议栈的简化,节省数据包的传输时延。另外,通过结合方法800,在数据中携带承载标识,可以实现承载粒度的中继通信。
图7是本申请提供的一种中继通信方法的流程示意图,下面将结合图8,对本申请实施例的技术方案进行具体的描述。以用户面下行数据包的传输为例,图8所对应的通信方法800可以包括:
操作701:网络设备根据第一无线网络临时标识(radio network temporary identifier,RNTI)向中继设备发送数据。
该第一RNTI可以是网络设备专用于通过中继设备与用户设备进行通信的标识。该第一RNTI可以为组无线网络临时标识(group radio network temporary identifier,G-RNTI)或者小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)。示例性的,如果网络设备通过多个中继设备向用户设备发送数据,该第一RNTI可以为G-RNTI。这样网络设备可以向该多个中继设备组播用户设备的数据。从而可以实现节省RNTI资源或基站节能的有益效果。示例性的,如果网络设备通过多个中继设备向用户设备发送数据,该第一RNTI可以为C-RNTI。这样网络设备可以向该多个中继设备分别单播用户设备的数据。从而网络设备可以灵活地选择为用户设备服务的中继设备的个数。
网络设备可以通过专用信令或者系统信息为中继设备分配该第一RNTI。例如通过RRC消息。或者,通过在网络设备与中继设备建立RRC连接过程中的消息。
该网络设备可以通过第一链路向中继设备发送经过该第一RNTI加扰或者调制后的数据。该第一链路为该网络设备和该中继设备之间的无线通信链路。该无线通信链路可以是下行链路。
操作702:该中继设备根据第一RNTI接收来自网络设备的数据,并获得第一目的标识。
该中继设备根据第一RNTI解扰出该数据,或者解调出该数据。该中继设备接收来自网络设备的数据时,可以尝试用不同的RNTI解调或者解扰该数据。该中继设备将可以成功解调或者解扰出该数据的RNTI确定为第一RNTI。
该中继设备根据该第一RNTI,获得第一目的标识。该第一目的标识可以为用户设备的目的标识(destination identifier)。例如,该第一目的标识可以为目的层一标识(destination layer 1 identifier)或者目的层二标识(destination layer 2 identifier)。示例性的,目的层二标识(destination L2 ID)可以携带在侧行链路数据的MAC头,RLC头,Adapt头,或者PDCP头中,该目的层二标识可以用于标识作为接收端的用户设备。目的层一标识(destination L1 ID)可以携带在侧行链路控制信息(sidelink control information,SCI)中。本申请中的目的层二标识也可以是组播对应的一个目的层二标识,即一个目的层二标识可以用来标识多个用户设备或者一个用户设备组,表示SL上的通信为组播通信,一个中继设备为多个用户设备或者一个用户设备组服务。本申请中的目的层二标识或者目的层一标识也可以参考3GPP标准文本中V2X相关标准文本中的目的层二标识或者目的层一标识的定义。
示例性的,中继设备可以根据第一RNTI和第一目的标识之间的对应关系,确定第一目 的标识。
示例性的,RNTI和目的标识之间的对应关系可以通过以下方法获得:中继设备接收来自网络设备的消息,该消息中包括RNTI和目的标识,其中该RNTI和目的标识之间具有对应关系。可选的,RNTI和目的标识之间的对应关系可以通过以下方法获得:该中继设备接收来自网络设备的第一消息,该第一消息中包括RNTI。该中继设备接收来自网络设备的第二消息,该第二消息中包括目的标识。该中继设备根据该第一消息和该第二消息,获得RNTI和目的标识之间的对应关系。示例性的,该消息可以为RRC消息,系统信息广播(system information broadcast,SIB)消息,或者系统信息块(system information block,SIB)。例如该消息可以为RRC连接重配置消息;或者,该消息可以是网络设备与中继设备建立RRC连接过程中的消息。
该对应关系可以是一对一,也可以是一对多,或者是多对一。例如该中继设备可以接收一张对应表,例如表1所示:
表1:
RNTI 目的标识
RNTI1 目的标识1
RNTI2 目的标识2
…… ……
RNTI3 目的标识3
表1只是示例性的对应表,其中RNTI这一列可以使用的是RNTI的值,或者可以是RNTI的索引值。目的标识这一列可以使用的是目的标识的值,或者可以是目的标识的索引值。RNTI和目的标识的这两列可以是存在一条消息中的两个信元,也可以是分别存在于一条消息中的两个信元。本申请不限定该对应表1的实现方式。
可选的,网络设备在中继设备具有网络时就可以预先配置RNTI和目的标识之间的对应关系到该中继设备中。
可选的,设备厂商可以在该中继设备出厂前存储RNTI和目的标识之间的对应关系在该中继设备中。这样就不需要网络设备再和中继设备之间交互RNTI和目的标识之间的对应关系,从而节省信令开销。
中继设备根据该第一目的标识向用户设备发送用户设备的数据。
该中继设备通过第二链路向用户设备发送该数据。该第二链路可以为该中继设备和该用户设备之间的无线直连通信链路。该无线直连通信链路可以是侧行链路。
当该第一目的标识是用户设备的目的层一标识时,该中继设备可以将该第一目的标识放在侧行链路控制信息(sidelink control information,SCI)中,再向用户设备发送该SCI和用户设备的数据。当该第一目的标识是用户设备的目的层二标识时,该中继设备可以将该第一目的标识添加在用户设备的数据的MAC头,RLC头,Adapt头,或者PDCP头中,再向用户设备发送用户设备的数据。
操作703:用户设备接收用户设备的数据。
用户设备接收来自中继设备的用户设备的数据后,如果检测到之前已经接收来自其他中继设备的相同的用户设备的数据后,则可以丢弃该用户设备的数据,具体方法可以参考方法800。
用户面上行数据包的传输和用户面下行数据包的传输互为逆过程,可以参考用户面下行数据包的通信方法,具体可以包括:
用户设备根据第一目的标识向中继设备发送数据。该中继设备根据第一目的标识接收来自用户设备的数据。中继设备可以根据该第一目的标识和RNTI之间的对应关系,获得第一RNTI。中继设备使用第一RNTI向网络设备发送该数据。网络设备接收该数据后,如果检测到之前已经接收来自其他中继设备的相同的用户设备的数据后,则可以丢弃该用户设备的数据或者进行合并处理,具体方法可以参考方法800。
控制面数据的通信方法可以参考用户面数据的通信方法,在此不再赘述。本实施例中的中继设备的协议栈可以是如图2-图5中的中继设备协议栈,在此不再赘述。本实施例提供的通信方法可以和方法600结合,构成新的实施例。另外,在中继通信涉及承载粒度时,网络设备发送给用户设备的数据中可以包含承载标识,或者用户设备发送给网络设备的数据中可以包含承载标识,具体方法可以参考方法800,在此不再赘述。
本申请实施例提供了一种中继通信方法,中继设备可以通过网络设备配置的标识之间的对应关系,实现数据的转发。另外,组播标识G-RNTI的使用可以使得多个中继设备为一个用户设备服务时,节省RNTI资源和基站节能。另外,通过结合方法800,在数据中携带承载标识可以实现承载粒度的中继通信。
图8是本申请提供的一种中继通信方法的流程示意图,适用于承载粒度的中继通信场景,下面将结合图8,对本申请实施例的技术方案进行具体的描述。以用户面下行数据包的传输为例,图8所对应的通信方法800可以包括:
操作801:网络设备根据第一承载向中继设备发送用户设备的数据。
网络设备将用户设备的数据映射到第一承载上并向中继设备发送。网络设备在该数据中携带第一承载标识。可选的,网络设备可以在该数据中携带第二承载标识。该第一承载标识和/或第二承载标识可以包含在该数据的数据包头中(例如MAC层头,RLC层头,适配层头,或者PDCP层头)或者数据载荷(payload)中。该第一承载可以是Uu口承载。该第二承载可以是PC5口承载或者侧行链路承载。
在多个中继设备为同一个用户设备服务的场景下,网络设备向多个中继设备发送的用户设备的数据中可以携带相同的第一承载标识,和/或,第二承载标识。例如携带相同的LCID。
操作802:中继设备确定第二承载,并通过该第二承载向用户设备发送该数据。
中继设备接收来自网络设备的用户设备的数据。该中继设备将该数据映射到该第二承载上并向用户设备发送该数据。中继设备在该数据中携带第二承载标识。可选的,中继设备可以在该数据中携带第一承载标识。例如,如果用户设备侧RLC实体和PDCP实体之间的对应关系是事先配置好的,则可以不用携带第一承载标识。例如,该第一承载标识和/或第二承载标识可以包含在该数据的数据包头(例如MAC层头,RLC层头,适配层头,或者PDCP层头)或者数据载荷(payload)。
可选的,中继设备从网络设备接收到的用户设备的数据中包括第二承载标识,中继设备从该数据中获得第二承载。
可选的,中继设备从网络设备接收到的用户设备的数据中包括第一承载标识,中继设备可以根据该第一承载和第二承载之间的对应关系,获得第二承载。
示例性的,Uu口承载标识和PC5口承载标识之间的对应关系可以通过以下方法获得:中继设备接收来自网络设备的消息,该消息中包括Uu口承载标识和PC5口承载标识,其中该Uu口承载标识和PC5口承载标识之间具有对应关系。可选的,Uu口承载标识和PC5口承载标识之间的对应关系可以通过以下方法获得:该中继设备接收来自网络设备的第一消息,该第一消息中包括Uu口承载标识。该中继设备接收来自网络设备的第二消息,该第二消息 中包括PC5口承载标识。该中继设备根据该第一消息和该第二消息,获得Uu口承载标识和PC5口承载标识之间的对应关系。示例性的,该消息可以为RRC消息,系统信息广播(system information broadcast,SIB)消息,或者系统信息块(system information block,SIB)。例如该消息可以为RRC连接重配置消息;或者,该消息可以是网络设备与中继设备建立RRC连接过程中的消息。
该对应关系可以是一对一,也可以是一对多,或者是多对一。例如该中继设备可以接收一张对应表,例如表2所示:
表2:
Uu口承载标识 PC5口承载标识
Bear ID1 Bear ID1
Bear ID2 Bear ID2
…… ……
Bear ID3 Bear ID3
表2只是示例性的对应表,其中Uu口承载标识这一列可以使用的是Uu口承载标识的值,或者可以是Uu口承载标识的索引值。PC5口承载标识这一列可以使用的是PC5口承载标识的值,或者可以是PC5口承载标识的索引值。Uu口承载标识和PC5口承载标识这两列可以是存在一条消息中的两个信元,也可以是分别存在于一条消息中的两个信元。本申请不限定该对应表2的实现方式。
在多个中继设备为同一个用户设备服务的场景下,不同的第一承载标识可以对应到相同的第二承载标识。例如,表2所示的PC5口承载标识这一列的值可以是相同的。
可选的,网络设备在中继设备具有网络时就可以预先配置该Uu口承载标识和PC5口承载标识的对应关系到该中继设备中。
可选的,设备厂商可以在该中继设备出厂前存储该Uu口承载标识和PC5口承载标识的对应关系在该中继设备中。这样就不需要网络设备再和中继设备之间交互Uu口承载标识和PC5口承载标识之间的对应关系,从而节省信令开销。
操作803:用户设备接收用户设备的数据。
用户设备根据该数据中包括的第二承载标识,使用第二承载接收用户设备的数据。可选的,用户设备使用第二承载接收用户设备的数据后,再根据该数据中包括的第一承载标识处理该数据。
示例性的,该用户设备可以根据用户设备的数据的RLC子头中的第一承载标识(如DRB ID),将RLC层接收到的数据递交到该RLC的上层(如PDCP层)。或者,如果用户设备侧RLC实体和PDCP实体之间的对应关系是事先配置好的,那么该用户设备可以根据用户设备的数据的MAC头中的第二承载标识(如LCID),将MAC层接收到的用户设备的数据递交到该MAC的上层(如RLC层)。该RLC层将接收到的数据递交到事先配置好的PDCP层。
示例性的,当该第二链路协议栈层包括适配层,该用户设备可以根据用户设备的数据的适配层头中的第一承载标识(如DRB ID),将适配层接收到的该数据递交到该适配层的上层(如PDCP层)。或者,如果用户设备侧Adapt实体和PDCP实体之间的对应关系是事先配置好的,那么该用户设备可以根据用户设备的数据的RLC头中的第二承载标识,将RLC层接收到的用户设备的数据递交到Adapt层。该Adapt层将接收到的数据递交到事先配置好的PDCP层。或者,如果用户设备侧RLC实体,Adapt实体和PDCP层之间的对应关系是事先配置好的,那么该用户设备可以根据用户设备的数据的MAC头中的第二承载标识(如LCID), 将MAC层接收到的用户设备的数据递交到RLC层。该RLC层将接收到的数据递交到事先配置好的Adapt层。该Adapt层将接收到的数据递交到事先配置好的PDCP层。
用户设备可以根据事先配置好的第二承载标识和第二承载上层之间的对应关系,将通过不同的第二承载接收的数据均递交到同一个上层。例如,在多个中继设备为同一个用户设备服务的场景下,用户设备可以通过不同的中继设备接收数据,则用户设备可能通过多个第二承载接收数据。示例性的,如果第二承载是RLC承载,则第二承载标识可以为LCID。用户设备通过RLC承载接收到的数据可以为RLC业务数据单元(service data unit,SDU)或者PDCP协议数据单元(protocol data unit,PDU)。用户设备可以根据事先配置好的LCID和PDCP层之间的对应关系,将通过不同的RLC承载接收的数据均递交到同一个PDCP层。可选的,用户设备的PDCP层可以根据该数据携带的PDCP SN号来进行重复检测。如果来自不同中继设备的数据携带的PDCP序列号(serial number,SN)相同,用户设备的PDCP层可以选择只保留一份该数据。用户设备的PDCP层可以丢弃其他重复的数据。或者,用户设备的PDCP层对多份该数据进行合并处理。如果来自不同中继设备的数据携带的PDCP序列号(serial number,SN)不同,用户设备的PDCP层可以按照PDCP SN编号的顺序向上层递交该数据。用户面上行数据包的传输和用户面下行数据包的传输互为逆过程,可以参考用户面下行数据包的通信方法,具体可以包括:
用户设备根据第二承载向中继设备发送数据。用户设备在该数据中携带第二承载标识。可选的,用户设备可以在该数据中携带第二承载标识。可选的,中继设备从用户设备接收到的数据中包括第一承载标识,中继设备从该数据中获得第一承载。可选的,中继设备从用户设备接收到的数据中包括第二承载标识,中继设备可以根据该第二承载和第一承载之间的对应关系,获得第一承载。中继设备通过第一承载向网络设备发送该数据。网络设备接收该数据后,如果检测到之前已经接收来自其他中继设备的相同的用户设备的数据后,则可以丢弃该用户设备的数据或者进行合并处理。
控制面数据的通信方法可以参考用户面数据的通信方法,在此不再赘述。
本申请实施例提供了一种中继通信方法,可选的,中继设备从网络设备接收到的用户设备的数据中包括第二承载标识,中继设备从该数据中获得第二承载。这样就可以不需要配置第一承载和第二承载标识之间的对应关系,节省控制信令开销。可选的,中继设备从网络设备接收到的用户设备的数据中包括第一承载标识,中继设备可以根据该第一承载和第二承载之间的对应关系,获得第二承载。这样就可以不需要携带第二承载标识,节省数据信息开销。用户设备可以根据事先配置好的第二承载标识和第二承载上层之间的对应关系,将通过不同的第二承载接收的数据均递交到同一个上层。这样为同一个用户设备服务的多个中继设备选择的第二承载不需要是一样的。这样使得为同一个用户设备服务的多个中继设备在第二承载的选择上更加灵活。通过多个中继设备为同一个用户设备服务,可以提高中继通信的稳定性。用户设备可以通过协议栈实体的序列号,对来自不同中继设备的多份数据进行重复检测。这样可以节约用户设备的存储空间。
本申请实施例方法800可以和方法600,和/或,方法700结合,构成新的实施例。本申请实施例方法600-方法800中的中继通信系统的协议栈可以如图2-5所示,具体举例说明:
结合图2和图9,以用户面下行数据包的传输为例,网络设备从核心网网元接收用户设备的数据。网络设备在SDAP层对用户设备的数据进行处理。该处理可以包括添加QoS flow ID,执行从QoS flow到Uu口DRB的映射。进一步地,网络设备在PDCP层对用户设备的数据进行处理。该处理可以包括执行添加包序号,执行头压缩,或者执行安全性相关保护等。 网络设备在RLC层对用户设备的数据进行处理。该处理可以包括进行包分段和进行序号添加。可选的,网络设备在适配层对用户设备的数据进行处理。该处理可以包括在用户设备的数据的适配层中头添加路由信息和/或承载标识。可选的,该承载标识包括Uu口DRB ID。网络设备在MAC层对用户设备的数据进行处理。该处理可以包括进行调度,复用,或者HARQ。可选的,如果该网络设备没有适配层,或者在适配层没有对用户设备的数据进行处理,则网络设备在MAC层对用户设备的数据进行的处理可以包括在该数据的MAC层头中添加路由信息和/或承载标识。进一步地,网络设备再在PHY层对用户设备的数据进行处理。最后,网络设备向中继设备发送用户设备的数据。可选的,网络设备可以通过该第一RNTI向中继设备发送该用户设备的数据。该中继设备接收用户设备的数据,中继设备的PHY层对用户设备的数据进行处理。可选的,中继设备可以使用第一RNTI接收该用户设备的数据。该中继设备的MAC层对用户设备的数据进行处理。该处理可以包括HARQ或者解复用。可选的,该中继设备在MAC层对数据进行的处理可以包括读取用户设备的数据MAC头中的路由信息和/或承载标识。可选的,中继设备的适配层对用户设备的数据进行处理,该处理可以包括读取用户设备的数据适配层头中包括的路由信息和/或承载标识。该中继设备可以进一步移除用户设备的数据的适配层头。该中继设备根据获得的路由信息和/或承载标识处理用户设备的数据。该中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个用户设备。该中继设备可以根据该承载标识,确定用户设备的数据映射到哪一个PC5口承载。该中继设备可以在发送侧的RLC层对用户设备的数据进行分段或者重分段,并修改或添加相应的RLC头。示例性的,该中继设备可以确定对用户设备的数据进行分段或者重分段的策略。例如,该中继设备可以根据传输块大小(transport block size,TBS)和用户设备的数据的大小,来确定对用户设备的数据进行分段或者重分段的策略。进一步的,该中继设备在MAC层对用户设备的数据进行处理。该处理可以包括进行调度,复用,或者HARQ。进一步地,中继设备在PHY层对用户设备的数据进行处理。最后,中继设备通过侧行链路向用户设备发送用户设备的数据。可选的,该中继设备可以根据第一RNTI获得第一目的标识,并根据该第一目的标识向用户设备发送该用户设备的数据。可选的,该中继设备可以通过该PC5口承载向用户设备发送该用户设备的数据。该用户设备通过该PC5口承载接收该数据。该数据中包括Uu口DRB ID。该用户设备向该DRB ID对应的PDCP层递交该数据。可选的,该用户设备可以根据该数据中携带的PDCP SN号或者RLC SN号对来自多个中继设备的该数据进行重复检测和合并处理。
参考图2和图9,以用户面上行数据包的传输为例,该用户设备接收IP层的数据包。用户设备在SDAP层对数据进行处理。该处理可以包括添加QoS flow ID,执行从QoS flow到PC5口DRB的映射。进一步地,该用户设备在PDCP层对数据进行处理。该处理可以包括执行添加包序号,执行头压缩,或者执行安全性相关保护等。用户设备在RLC层对数据进行处理。该处理可以包括进行包分段和进行序号添加。可选的,用户设备在适配层对数据进行处理。该处理可以包括在数据的适配层中头添加路由信息和/或承载标识。用户设备在MAC层对数据进行处理。该处理可以包括进行调度,复用,或者HARQ。可选的,如果该用户设备没有适配层,或者在适配层没有对数据进行处理,则用户设备在MAC层对数据进行的处理,可以包括在该数据的MAC层头中添加路由信息和/或承载标识。可选的,该承载标识包括Uu口DRB ID。进一步地,用户设备再在PHY层对数据进行处理。最后,用户设备通过侧行链路向中继设备发送数据。可选的,用户设备可以通过该第一目的标识向中继设备发送该用户设备的数据。该中继设备接收用户设备的数据,中继设备的PHY层对用户设备的数据进行处 理。可选的,中继设备可以使用第一目的标识接收该用户设备的数据。该中继设备的MAC层对用户设备的数据进行处理。该处理可以包括HARQ或者解复用。可选的,该中继设备在MAC层对数据进行的处理可以包括读取用户设备的数据MAC头中的路由信息和/或承载标识。可选的,中继设备的适配层对用户设备的数据进行处理,该处理可以包括读取用户设备的数据适配层头中包括的路由信息和/或承载标识。该中继设备可以进一步移除用户设备的数据的适配层头。该中继设备根据获得的路由信息和/或承载标识处理用户设备的数据。该中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个网络设备。该中继设备可以根据该承载标识,确定用户设备的数据映射到哪一个Uu口承载。该中继设备可以在发送侧的RLC层对用户设备的数据进行分段或者重分段,并修改或添加相应的RLC头。示例性的,该中继设备可以确定对用户设备的数据进行分段或者重分段的策略。例如,该中继设备可以根据传输块大小(transport block size,TBS)和用户设备的数据的大小,来确定对用户设备的数据进行分段或者重分段的策略。进一步的,该中继设备在MAC层对用户设备的数据进行处理。该处理可以包括进行调度,复用,或者HARQ。进一步地,中继设备在PHY层对用户设备的数据进行处理。最后,中继设备通过Uu口向网络设备发送用户设备的数据。可选的,该中继设备可以根据第一目的标识获得第一RNTI,并根据该第一RNTI向网络设备发送该用户设备的数据。可选的,该中继设备可以通过该Uu口承载向网络设备发送该用户设备的数据。该数据中包括Uu口DRB ID。该网络设备向该DRB ID对应的PDCP层递交该数据。可选的,该网络设备可以根据该数据中携带的PDCP SN号或者RLC SN号对来自多个中继设备的该数据进行重复检测和合并处理。
结合图4和图10,以用户面下行数据包的传输为例,网络设备从核心网网元接收用户设备的数据。该网络设备在SDAP层对用户设备的数据进行处理。该处理可以包括添加QoS flow ID,执行从QoS flow到Uu口DRB的映射。进一步地,该网络设备在PDCP层对用户设备的数据进行处理。该处理可以包括执行添加包序号,执行头压缩,或者执行安全性相关保护等。网络设备在RLC层对用户设备的数据进行处理。该处理可以包括进行包分段和进行序号添加。可选的,网络设备在适配层对用户设备的数据进行处理。该处理可以包括在用户设备的数据的适配层头中添加路由信息和/或承载标识。可选的,该承载标识包括Uu口DRB ID。网络设备在MAC层对用户设备的数据进行处理,该处理可以包括进行调度和复用处理。可选的,如果该网络设备没有适配层,或者在适配层没有对用户设备的数据进行处理,则网络设备在MAC层对用户设备的数据进行的处理可以包括在用户设备的数据的MAC层头中添加路由信息和/或承载标识。进一步地,网络设备再在PHY层对用户设备的数据进行处理。最后,网络设备向中继设备发送用户设备的数据。可选的,网络设备可以通过该第一RNTI向中继设备发送该用户设备的数据。中继设备接收用户设备的数据,中继设备的PHY层对用户设备的数据进行处理。可选的,中继设备可以使用第一RNTI接收该用户设备的数据。中继设备的MAC层对用户设备的数据进行处理。该处理可以包括HARQ反馈。可选的,该中继设备在MAC层对数据进行的处理可以包括读取用户设备的数据MAC头中的路由信息和/或承载标识。可选的,中继设备的适配层对用户设备的数据进行处理,该处理可以包括读取用户设备的数据适配层头中包括的路由信息和/或承载标识。该中继设备可以进一步移除用户设备的数据的适配层头。该中继设备根据获得的路由信息和/或承载标识处理用户设备的数据。该中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个用户设备。该中继设备可以根据该承载标识,确定用户设备的数据映射到哪一个PC5口承载。该中继设备在中继设备发送侧的MAC层对用户设备的数据进行处理。该处理可以包括进行HARQ反馈。进一步 地,中继设备在PHY层对用户设备的数据进行处理。最后,中继设备通过侧行链路向用户设备发送用户设备的数据。可选的,该中继设备可以根据第一RNTI获得第一目的标识,并根据该第一目的标识向用户设备发送该用户设备的数据。可选的,该中继设备可以通过该PC5口承载向用户设备发送该用户设备的数据。该数据中包括Uu口DRB ID。该用户设备向该DRB ID对应的PDCP层递交该数据。可选的,该用户设备可以根据该数据中携带的PDCP SN号或者RLC SN号或者MAC SN号对来自多个中继设备的该数据进行重复检测和合并处理。
参考图4和图10,以用户面上行数据包的传输为例,该用户设备接收IP层的数据包。该用户设备在SDAP层对数据进行处理。该处理可以包括添加QoS flow ID,执行从QoS flow到PC5口DRB的映射。进一步地,该用户设备在PDCP层对数据进行处理。该处理可以包括执行添加包序号,执行头压缩,或者执行安全性相关保护等。用户设备在RLC层对数据进行处理。该处理可以包括进行包分段和进行序号添加。可选的,用户设备在适配层对数据进行处理。该处理可以包括在数据的适配层头中添加路由信息和/或承载标识。可选的,该承载标识包括Uu口DRB ID。用户设备在MAC层对数据进行处理,该处理可以包括进行调度和复用处理。可选的,如果该用户设备没有适配层,或者在适配层没有对数据进行处理,则用户设备在MAC层对数据进行的处理可以包括在数据的MAC层头中添加路由信息和/或承载标识。进一步地,用户设备再在PHY层对数据进行处理。最后,用户设备通过侧行链路向中继设备发送数据。可选的,用户设备可以通过该第一目的标识向中继设备发送该用户设备的数据。中继设备接收用户设备的数据,中继设备的PHY层对用户设备的数据进行处理。可选的,中继设备可以使用第一目的标识接收该用户设备的数据。中继设备的MAC层对用户设备的数据进行处理。该处理可以包括HARQ反馈。可选的,该中继设备在MAC层对数据进行的处理可以包括读取用户设备的数据MAC头中的路由信息和/或承载标识。可选的,中继设备的适配层对用户设备的数据进行处理,该处理可以包括读取用户设备的数据适配层头中包括的路由信息和/或承载标识。该中继设备可以进一步移除用户设备的数据的适配层头。该中继设备根据获得的路由信息和/或承载标识处理用户设备的数据。该中继设备可以根据该路由信息确定用户设备的数据需发送给哪一个网络设备。该中继设备可以根据该承载标识,确定用户设备的数据映射到哪一个Uu口承载。该中继设备在中继设备发送侧的MAC层对用户设备的数据进行处理。该处理可以包括进行HARQ反馈。进一步地,中继设备在PHY层对用户设备的数据进行处理。可选的,该中继设备可以根据第一目的标识获得第一RNTI,并根据该第一RNTI向网络设备发送该用户设备的数据。可选的,该中继设备可以通过该Uu口承载向网络设备发送该用户设备的数据。该数据中包括Uu口DRB ID。该网络设备向该DRB ID对应的PDCP层递交该数据。可选的,该网络设备可以根据该数据中携带的PDCP SN号或者RLC SN号或者MAC SN号对来自多个中继设备的该数据进行重复检测和合并处理。
基于上述相类似的技术构思,本申请实施例提供了一种通信设备,该通信设备可以是前述任一实施例所提供的通信方法及其任一可能的设计中的中继设备或者网络设备或者用户设备,该中继设备或者网络设备或者用户设备可以包括在前述任一实施例所提供的通信方法中,用于执行该中继设备或者网络设备或者用户设备所进行的方法步骤或操作或行为的相应的至少一个单元。其中,该至少一个单元的设置,可以与该中继设备或者网络设备或者用户设备进行的方法步骤或操作或行为具有一一对应的关系。
图11是本申请实施例提供的一种中继设备1100的示意性框图,下面将结合图11,对中继设备1100的结构和功能进行具体的描述。示例性的,本申请提供了一种中继设备1100,可以包括:获取模块1101,用于通过第一链路接收来自于网络设备的数据包;发送模块1103, 用于通过第二链路向用户设备发送该数据包;其中,该中继设备1100的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,该中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,该中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成。其中,该第一链路为该网络设备和该中继设备之间的无线通信链路,该第二链路为该中继设备和该用户设备之间的无线直连通信链路。
可选的,该获取模块1101,具体用于根据第一组播无线网络临时标识通过第一链路接收来自网络设备的数据。该中继设备1100还包括处理模块1102,用于根据该第一组播无线网络临时标识,获得第一目的层二标识,其中该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。该发送模块1103,具体用于根据该第一目的层二标识通过第二链路向用户设备发送该数据。
可选的,该获取模块1101接收来自该网络设备的该第一组播无线网络临时标识和该第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。
可选的,该第一目的层二标识包括在该数据的媒体接入控制层头中,该第一目的层二标识用于标识该用户设备。。
可选的,该获取模块1101获取的来自网络设备的数据中包括第一承载标识,和/或,第二承载标识。
可选的,该发送模块1103向该用户设备发送的数据中包括第一承载标识。所述第一承载标识用于所述用户设备将所述用户设备的数据映射到所述第一承载。
可选的,该承载包括信令无线承载,数据无线承载,无线链路控制承载,或者媒体接入控制承载中的一种或多种。
可选的,该数据的适配层头,无线链路控制层头,或者媒体接入控制层头中包括该第一承载标识,和/或,第二承载标识。
可选的,所述获取模块1101还用于通过第一承载接收来自网络设备的数据;所述处理模块1102还用于根据所述第一承载标识,确定第二承载标识,其中所述第一承载标识和所述第二承载标识具有对应关系;所述发送模块1103还用于根据所述第二承载标识向所述用户设备发送所述数据。
可选的,该获取模块1101可以通过无线资源控制消息或者系统信息广播消息接收来自网络设备的第一组播无线网络临时标识和第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。
图12是本申请实施例提供的一种网络设备1200的示意性框图,下面将结合图12,对网络设备1200的结构和功能进行具体的描述。示例性的,本申请还提供了一种网络设备1200,可以包括:发送模块1201,用于向中继设备发送第一组播无线网络临时标识和第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系;该发送模块1201还用于向该中继设备发送数据。
可选的,该发送模块1201发送给中继设备的数据中包括第一承载标识。所述第一承载标识用于所述用户设备将所述用户设备的数据映射到所述第一承载。
可选的,该承载包括信令无线承载,数据无线承载,无线链路控制承载,或者媒体接入控制承载中的一种或多种。
可选的,该发送模块1201可以通过无线资源控制消息或者系统信息广播消息向中继设备 发送该第一组播无线网络临时标识和第一目的层二标识,其中,该第一组播无线网络临时标识和该第一目的层二标识具有对应关系。
图13是本申请实施例提供的一种用户设备1300的示意性框图,下面将结合图13,对用户设备1300的结构和功能进行具体的描述。示例性的,本申请还提供了一种用户设备1300,可以包括:获取模块1301,用于通过第二链路接收来自中继设备的数据;所述第二链路为所述中继设备和所述用户设备之间的无线直连通信链路。
可选的,所述获取模块1301用于通过第二承载接收来自所述中继设备的所述数据;
可选的,所述数据中包括第一承载标识;所述用户设备1300还包括处理模块1302。所述处理模块1302用于根据所述第一承载标识,将所述数据映射到所述第一承载。
基于相同的技术构思,本申请实施例还提供了一种装置1400,下面将结合装置1400的示意性框图图14,对装置1400的结构和功能进行具体的描述。该装置可以包括至少一个处理器1401和接口电路1402,当涉及的程序指令在该至少一个处理器1401中执行时,可以使得该装置1400实现前述任一实施例所提供的通信方法及其中任一可能的设计。该接口电路1402,可以用于接收程序指令并传输至所述处理器,或者,该接口电路1402可以用于装置1400与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该接口电路1402可以为代码和/或数据读写接口电路,或者,该接口电路1402可以为通信处理器与收发机之间的信号传输接口电路。可选的,该通信装置1400还可以包括至少一个存储器1403,该存储器1403可以用于存储所需的涉及的程序指令和/或数据。可选的,该装置1400还可以包括供电电路1404,该供电电路1404可以用于为该处理器1401供电,该供电电路1404可以与处理器1401位于同一个芯片内,或者,位于处理器1401所在的芯片之外的另一个芯片内。可选的,该装置1400还可以包括总线1405,该装置1400中的各个部分可以通过总线1405互联。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
本申请实施例所述的收发装置、接口电路、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口电路、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元或者算法操作,能够通过硬件实现,或者,通过软件实现,或者,通过软件和硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请中,“通过软件实现”可以指处理器读取并执行存储在存储器中的程序指令来实现上述模块或单元所对应的功能,其中,处理器是指具有执行程序指令功能的处理电路,包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signal processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类能够运行程序指令的处理电路。在另一些实施例中,处理器还可以包括其他处理功能的电路(如用于硬件加速的硬件电路、总线和接口电路等)。处理器可以以集成芯片的形式呈现,例如,以处理功能仅包括执行软件指令功能的集成芯片的形式呈现,或者还可以以SoC(system on a chip,片上系统)的形式呈现,即在一个芯片上,除了包括能够运行程序指令的处理电路(通常被称为“核”)外,还包括其他用于实现特定功能的硬件电路(当然,这些硬件电路也可以是基于ASIC、FPGA单独实现),相应的,处理功能除了包括执行软件指令功能外,还可以包括各种硬件加速功能(如AI计算、编解码、压缩解压等)。
本申请中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC,或者PLD(programmable logic device,可编程逻辑器件);其中,PLD又可包括FPGA、CPLD(complex programmable logic device,复杂可编程逻辑器件)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为SoPC(system on a programmable chip,可编程片上系统)。
需要说明的是,本申请在通过软件、硬件或者软件硬件结合的方式实现时,可以使用不同的软件、硬件,并不限定只使用一种软件或者硬件。例如,其中,其中一个模块或者单元可以使用CPU来实现,另一个模块或者单元可以使用DSP来实现。同理,当使用硬件实现时,其中一个模块或者单元可以使用ASIC来实现,另一个模块或者单元可以使用FPGA实现。当然,也不限定部分或者所有的模块或者单元使用同一种软件(如都通过CPU)或者同一种硬件(如都通过ASIC)来实现。此外,对于本领域技术人员,可以知道,软件通常来说灵活性更好,但性能不如硬件,而硬件正好相反,因此,本领域技术人员可以结合实际需求来选择软件或者硬件或者两者结合的形式来实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。本申请实施例之间可以结合,实施例中的某些技术特征也可以从具体实施例中解耦出来,结合现有技术可以解决本申请实施例涉及的技术问题。
本申请实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟、或者光盘等各种可以存储程序代码的介质或计算机可读存储介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种通信方法,应用于中继设备,其特征在于,包括:
    通过第一链路接收来自于网络设备的数据包,并通过第二链路向用户设备发送所述数据包;
    其中,所述中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,所述中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,所述中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,所述中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成;
    所述第一链路为所述网络设备和所述中继设备之间的无线通信链路,所述第二链路为所述中继设备和用户设备之间的无线直连通信链路。
  2. 根据权利要求1所述的方法,其特征在于,通过第一链路接收来自于网络设备的数据包,并通过第二链路向用户设备发送所述数据包,包括:
    根据第一组播无线网络临时标识通过所述第一链路接收来自所述网络设备的数据;
    根据所述第一组播无线网络临时标识,获得第一目的层二标识,其中所述第一组播无线网络临时标识和所述第一目的层二标识具有对应关系;
    根据所述第一目的层二标识通过所述第二链路向所述用户设备发送所述数据。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第一组播无线网络临时标识和所述第一目的层二标识,其中,所述第一组播无线网络临时标识和所述第一目的层二标识具有对应关系。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一目的层二标识包括在数据的媒体接入控制层头中,所述第一目的层二标识用于标识所述用户设备。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一承载接收来自网络设备的数据;
    根据所述第一承载标识,确定第二承载标识,其中所述第一承载标识和所述第二承载标识具有对应关系;
    根据所述第二承载标识向所述用户设备发送所述数据。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,向所述用户设备发送的所述数据中包括第一承载标识,所述第一承载标识用于将所述用户设备的数据映射到所述第一承载。
  7. 根据权利要求5或6所述的方法,其特征在于,所述承载包括信令无线承载,数据无线承载,无线链路控制承载,或者媒体接入控制承载中的一种或多种。
  8. 一种中继设备,其特征在于,包括:
    获取模块,用于通过第一链路接收来自于网络设备的数据包;
    发送模块,用于通过第二链路向用户设备发送所述数据包;
    其中,所述中继设备的协议栈由物理层,媒体接入控制层,和无线链路控制层的分段功能或者重分段功能组成;或者,所述中继设备的协议栈由物理层,媒体接入控制层,无线链路控制层的分段功能或者重分段功能,和适配层组成;或者,所述中继设备的协议栈由物理层和媒体接入控制层的混合自动重传请求功能组成;或者,所述中继设备的协议栈由物理层,媒体接入控制层的混合自动重传请求功能,和适配层组成;
    所述第一链路为所述网络设备和所述中继设备之间的无线通信链路,所述第二链路为所述中继设备和用户设备之间的无线直连通信链路。
  9. 根据权利要求8所述的中继设备,其特征在于,包括:
    所述获取模块具体用于根据第一组播无线网络临时标识通过所述第一链路接收来自所述网络设备的数据;
    所述中继设备还包括处理模块,用于根据所述第一组播无线网络临时标识,获得第一目的层二标识,其中所述第一组播无线网络临时标识和所述第一目的层二标识具有对应关系;
    所述发送模块具体用于根据所述第一目的层二标识通过所述第二链路向所述用户设备发送所述数据。
  10. 根据权利要求9所述的中继设备,其特征在于,包括:
    所述获取模块还用于接收来自所述网络设备的所述第一组播无线网络临时标识和所述第一目的层二标识,其中,所述第一组播无线网络临时标识和所述第一目的层二标识具有对应关系。
  11. 根据权利要求9或10所述的中继设备,其特征在于,所述第一目的层二标识包括在数据的媒体接入控制层头中,所述第一目的层二标识用于标识所述用户设备。
  12. 根据权利要求9-11中任一项所述的中继设备,其特征在于,包括:
    所述获取模块还用于通过第一承载接收来自网络设备的数据;
    所述处理模块还用于根据所述第一承载标识,确定第二承载标识,其中所述第一承载标识和所述第二承载标识具有对应关系;
    所述发送模块还用于根据所述第二承载标识向所述用户设备发送所述数据。
  13. 根据权利要求9-12中任一项所述的中继设备,其特征在于,向所述用户设备发送的所述数据中包括第一承载标识,所述第一承载标识用于将所述用户设备的数据映射到所述第一承载。
  14. 根据权利要求12或13所述的中继设备,其特征在于,所述承载包括信令无线承载,数据无线承载,无线链路控制承载,或者媒体接入控制承载中的一种或多种。
  15. 一种装置,其特征在于,包括:至少一个处理器和接口电路,涉及的程序指令在所述至少一个处理器中执行,以使得所述装置实现根据权利要求1-7中任一项所述方法。
  16. 一种装置,其特征在于,所述装置用于执行权利要求1-7中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有涉及的程序指令,所述涉及的程序指令运行时,以实现根据权利要求1-7中任一项所述方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包含涉及的程序指令,所述涉及的程序指令被执行时,以实现根据权利要求1-7中任一项所述方法。
PCT/CN2021/078308 2020-03-18 2021-02-27 一种中继通信方法及相关设备 WO2021185058A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21771509.3A EP4102892A4 (en) 2020-03-18 2021-02-27 COMMUNICATION METHOD BY RELAY AND ASSOCIATED DEVICE
US17/932,738 US20230019346A1 (en) 2020-03-18 2022-09-16 Relay Communication Method and Related Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010190578.3A CN113498142A (zh) 2020-03-18 2020-03-18 一种中继通信方法及相关设备
CN202010190578.3 2020-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/932,738 Continuation US20230019346A1 (en) 2020-03-18 2022-09-16 Relay Communication Method and Related Device

Publications (1)

Publication Number Publication Date
WO2021185058A1 true WO2021185058A1 (zh) 2021-09-23

Family

ID=77771923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078308 WO2021185058A1 (zh) 2020-03-18 2021-02-27 一种中继通信方法及相关设备

Country Status (4)

Country Link
US (1) US20230019346A1 (zh)
EP (1) EP4102892A4 (zh)
CN (1) CN113498142A (zh)
WO (1) WO2021185058A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3994894B1 (en) * 2019-07-02 2024-11-13 Wärtsilä Finland Oy Determination of a configuration of a battery pack
CN118830296A (zh) * 2022-03-31 2024-10-22 Oppo广东移动通信有限公司 无线通信的方法、网络设备和终端设备
CN118215145A (zh) * 2022-12-16 2024-06-18 华为技术有限公司 一种数据传输的方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289845A1 (en) * 2016-03-30 2017-10-05 Industrial Technology Research Institute Communication system, communication device, base station and method thereof for d2d communications
CN108141729A (zh) * 2015-10-16 2018-06-08 高通股份有限公司 用演进型机器类型通信进行设备到设备通信的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125643B1 (en) * 2015-07-31 2019-04-03 Panasonic Intellectual Property Corporation of America Improved scheduling mechanism for prose relays serving remote ues
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141729A (zh) * 2015-10-16 2018-06-08 高通股份有限公司 用演进型机器类型通信进行设备到设备通信的系统和方法
US20170289845A1 (en) * 2016-03-30 2017-10-05 Industrial Technology Research Institute Communication system, communication device, base station and method thereof for d2d communications

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Adaptation layer based L2 relaying and light L2 relaying", 3GPP DRAFT; R3-180814 ADAPTATION LAYER BASED L2 RELAYING AND LIGHT L2 RELAYING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Athens, Greece; 20180226 - 20180302, 14 February 2018 (2018-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051401227 *
HUAWEI: "Overview on IAB", 3GPP DRAFT; R3-181998 OVERVIEW ON IAB, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Sanya, China; 20180416 - 20180420, 7 April 2018 (2018-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051417034 *
INTEL CORPORATION: "Adaptation layer and Routing for IAB in NR", 3GPP DRAFT; R2-1805685, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051416080 *
See also references of EP4102892A4 *

Also Published As

Publication number Publication date
EP4102892A1 (en) 2022-12-14
CN113498142A (zh) 2021-10-12
EP4102892A4 (en) 2023-08-02
US20230019346A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11968633B2 (en) Relay communication method and apparatus
US11438941B2 (en) Communication method and communications apparatus
US20210006967A1 (en) Method and device for relay transmission
US10412650B2 (en) Data transmission method, apparatus and system
WO2021185058A1 (zh) 一种中继通信方法及相关设备
US11405964B2 (en) Radio bearer configuration method, apparatus, and system
JP7516578B2 (ja) Iabネットワーク通信方法及び関連デバイス
CN105657838B (zh) 一种数据中转传输方法、系统和具备中继功能的ue
WO2020164615A1 (zh) 一种通信方法及相关设备
CN113691359B (zh) 用于复制数据传输的方法和设备
WO2020015733A1 (zh) D2d通信的方法和终端设备
WO2021169732A1 (zh) 一种切换方法及通信装置
EP3813399A1 (en) Wireless communication method, communication device, chip, and communication system
US20240008027A1 (en) Wireless communication method, terminal device and network device
WO2017193402A1 (zh) 一种数据传输方法、装置及系统
WO2021168632A1 (zh) 中继方法、路由表的生成方法、装置、设备及存储介质
WO2016155089A1 (zh) 一种数据传输方法、装置及系统
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2021168630A1 (zh) 中继方法、路由表生成方法、装置、终端及存储介质
WO2022262544A1 (zh) 一种通信的方法、装置及系统
WO2024207363A1 (zh) 信号的收发方法、装置和通信系统
WO2023123335A1 (zh) 通信方法和设备
WO2022233011A1 (zh) 建立连接的方法和终端设备
US20230171567A1 (en) Communication method, communication apparatus, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021771509

Country of ref document: EP

Effective date: 20220905

NENP Non-entry into the national phase

Ref country code: DE