WO2021184775A1 - 一种路由计算的方法、设备和系统 - Google Patents

一种路由计算的方法、设备和系统 Download PDF

Info

Publication number
WO2021184775A1
WO2021184775A1 PCT/CN2020/127356 CN2020127356W WO2021184775A1 WO 2021184775 A1 WO2021184775 A1 WO 2021184775A1 CN 2020127356 W CN2020127356 W CN 2020127356W WO 2021184775 A1 WO2021184775 A1 WO 2021184775A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
transmission path
link
request message
actual
Prior art date
Application number
PCT/CN2020/127356
Other languages
English (en)
French (fr)
Inventor
郑好棉
毛磊
常泽山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20925818.5A priority Critical patent/EP4109920A4/en
Publication of WO2021184775A1 publication Critical patent/WO2021184775A1/zh
Priority to US17/944,422 priority patent/US20230007563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • This application relates to the field of communication technology, and in particular to a method, device and system for service configuration.
  • the parameter of spectrum width (slot width, SW) is usually used to express the network resource situation of the current device, and the actual physical meaning of the spectrum width is the nominal spectrum width of the device.
  • the actual spectrum width of the equipment in the network is often lower than the nominal spectrum width, for example, the nominal spectrum width of 50G, the actual available resources may only be 45G, or even 40G.
  • the physical layer service is less affected by physical attenuation during low-rate (100G and below) transmission, so it is not enough to affect service transmission.
  • the impact of physical attenuation on the actual spectrum width will increase, which may lead to an increase in the transmission rate difference of the actual services that can be carried.
  • the method of directly expressing the spectrum resources of the equipment by the spectrum width cannot distinguish the spectrum difference of each wavelength channel, so that the most suitable path cannot be selected for service bearing.
  • the embodiment of the present invention provides a service configuration method, device and system, which solves the problem of low service opening efficiency caused by mismatch between the nominal service capacity of the device and the actual service carrying capacity in a high-rate scenario.
  • an embodiment of the present invention provides a route calculation method, including: a first device receives a service request message, the service request message is used to request the first device to determine to carry the service established by the service request message The transmission path; the first device determines the transmission path of the service according to the service request message and the first bearer capability information, and the first bearer capability information is used to indicate the actual status of each link on the transmission path Carrying capacity.
  • the first device can learn the actual service carrying capacity of the transmission path according to the first carrying capacity information, and then determine the appropriate transmission path according to the service request, which improves the efficiency of service configuration.
  • the method before the first device receives the service request message, the method further includes: the first device receives second bearer capability information sent by other devices.
  • the first carrying capacity information identifies the actual carrying capacity of each link of the service transmission path requested by the service request message; the second carrying capacity information identifies the actual carrying capacity of at least one link on the transmission path.
  • the second bearer capability information is a subset of the first bearer capability information, and the first bearer capability information includes the second bearer capability information sent by other devices.
  • the first device at least stores the bearer capability information of the link where the first device is located. Therefore, the first device at least stores the third bearer capability information of the downstream link where it is located.
  • the third carrying capacity information identifies the actual carrying capacity of the downstream link where the first device is located. It should be understood that the third bearing capacity information is a subset of the first bearing capacity information. As an example, the first carrying capacity information is equal to the set of the second carrying capacity information and the third carrying capacity information.
  • the first carrying capacity information includes the actual spectrum width of at least one link on the transmission path.
  • the first bearer capability information includes a service rate that can actually be supported by at least one link on the transmission path.
  • the first carrying capacity information further includes at least one of channel attenuation, carrying wavelength, and nominal spectral width of at least one link on the transmission path. Therefore, through expansion at different latitudes, the first device can obtain the actual carrying capacity of some network devices at different attenuation levels and different wavelength channels.
  • the method for determining a service transmission path is applicable to a scenario where the service is transmitted at a high rate.
  • the high-rate transmission scenario refers to a service transmission rate higher than 100 Gbps; a low-rate transmission scenario refers to a service transmission rate lower than 100 Gbps.
  • the current service transmission rates in communication networks are discrete values, such as 50G, 100G, 200G, 400G, etc. Therefore, if a link supports services with a transmission rate of 400G and below, it means that the link can support 400G, 200G, 100G, 50G and other services with different speeds.
  • the service request message includes a route establishment request for a new service, and/or a route reestablishment request for an existing interrupted service. Therefore, the present invention can not only realize routing calculation through topology collection, but also perform rerouting when a service fails.
  • the first device is a source device of the transmission path.
  • the first device is a centralized controller of the network where the service is located. Therefore, the present invention can be applied to both centralized management scenarios and distributed management scenarios.
  • an embodiment of the present invention provides a routing computing device, including: a receiving module, configured to receive a service request message; a computing module, configured to determine the service request message according to the service request message and first bearer capability information For the transmission path of the service requested to be established, the first bearer capability information is used to indicate the actual service bearer capability of each device on the transmission path.
  • the receiving module is further configured to: receive second bearer capability information sent by other devices.
  • the device further includes a storage module configured to store at least the third carrying capacity information of the downstream link where the first device is located.
  • the first carrying capacity information includes the actual spectrum width of at least one link on the transmission path.
  • the first bearer capability information includes a service rate that can actually be supported by at least one link on the transmission path.
  • the first carrying capacity information further includes: at least one of channel attenuation, carrying wavelength, and nominal spectral width of at least one link on the transmission path .
  • the receiving module is further configured to receive an extended protocol, and the extended protocol is used to identify a field where the bearer capability information is located.
  • the receiving module is further configured to: receive a service request message, where the service request message includes a request to establish a new service, and/or restart an existing interrupted service. Road construction request. Therefore, the present invention can not only realize routing calculation through topology collection, but also perform rerouting when a service fails.
  • an embodiment of the present invention provides a routing calculation system, the system including at least one device as described in the second aspect and any one of its possible implementation manners.
  • the present invention provides a computer-readable storage medium that stores a computer program or instruction, and when the program or instruction is executed, it drives the device to execute.
  • a computer-readable storage medium that stores a computer program or instruction, and when the program or instruction is executed, it drives the device to execute.
  • an embodiment of the present invention provides a computer program product.
  • the computer program product includes a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed by a computer, the computer executes any of the things as in the first aspect and in combination with the first aspect. The method described in one possible implementation.
  • the carrying capacity information of the equipment is added in the process of topology collection and routing, which is used to indicate the actual carrying capacity of each link, so that the source device can match the service according to the actual carrying capacity of the path. It solves the problem of the mismatch between the nominal service capacity of the device and the actual service carrying capacity in the high-rate scenario, which causes the service to be unavailable or the activation efficiency is low.
  • FIG. 1 is an example diagram of attenuation-spectrum provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a network topology applicable to an embodiment of the present application
  • FIG. 3 is a schematic diagram of another network topology applicable to an embodiment of the present application.
  • FIG. 4 is a flowchart of a route calculation method applicable to embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • the technical solution provided by the embodiments of this application can be applied to a service transport network, for example, it can be applied to an optical transport network (English: Optical Transport Network, abbreviation: OTN), and can also be applied to a packet transport network (English: Packet Transport Network, abbreviation) : PTN), or wavelength division multiplexing (English: Wavelength Division Multiplexing, abbreviation: WDM) network.
  • OTN optical Transport Network
  • PTN Packet Transport Network
  • WDM Wavelength Division Multiplexing
  • the technical solutions provided by the embodiments of the present application can also be applied to wireless networks (such as base stations, microwaves) and access networks, such as FTTX.
  • the embodiment of the present invention takes the application scenario of the optical transport network as an example for specific introduction, but this does not constitute a limitation on the application scope of the technical solution of the present invention.
  • ultra-100G optical transmission system With the rapid development of communication network services, user traffic demand continues to grow.
  • the current 100G industry chain has matured and has been commercialized on a large scale; facing the future, the ultra-100G optical transmission system will further increase network capacity and reduce transmission costs on the basis of 100G. And power consumption, effectively solving the current pressure of continuous growth of business traffic and network capacity.
  • the key technology of ultra-100G optical transmission has been or is rapidly maturing, but the following problems often occur in the specific service configuration process: after determining the transmission path that meets its transmission rate requirements based on service request and network topology information, the service cannot Successfully opened. There may be many reasons that cause the service to be unavailable, such as device flashing, network shock, and wrong interface type. However, after eliminating the above reasons one by one, the service still cannot be successfully opened.
  • the real reason why the service cannot be successfully opened is that the determined transmission path rate cannot meet the service requirements. This is difficult to find in the actual network operation and maintenance process because of the carrying capacity of each link identified in the communication network. It is the nominal value. The nominal value is higher than the actual value in a transmission network exceeding 100G, and the difference between the two is large. This mismatch between the nominal value of the carrying capacity and the actual value may eventually lead to the failure of service activation .
  • modulation is a process in which the baseband signal is converted into a transmission signal through channel symbols at the transmitting end, specifically, the channel symbols carry bit information to be transmitted.
  • the modulation format is a way of carrying bit information through channel symbols, such as amplitude modulation, frequency modulation, or phase modulation. Different modulation formats allow different bits of information carried by channel symbols.
  • each channel symbol can carry 8bit information
  • hexadecimal quadrature amplitude modulation English: 16Quadrature Amplitude Modulation, abbreviation: 16QAM
  • each channel symbol can carry 4 bits of information
  • quadrature phase shift keying English: Quadrature Phase Shift Keying, abbreviation: QPSK
  • the baud rate represents the number of symbol symbols transmitted per second, which is an index to measure the data transmission rate, and is expressed by the number of times the carrier modulation state changes per unit time.
  • 1GHz spectrum corresponds to 1GBaud baud rate.
  • the service transmission rate is equal to the product of the baud rate and the number of bits that can be carried by each channel symbol under a certain modulation format. It should be noted that the embodiment of the present application only takes the case where the frequency spectrum corresponds to the baud rate as an example for description, and does not consider the case where the baud rate does not correspond to the frequency spectrum for the time being.
  • the baud rate is required under the corresponding modulation format.
  • the service of 400G rate is carried through the DP-16QAM modulation format. Since each channel symbol in this format can carry 8bit information, it needs a baud rate of 60G to be realized.
  • the baud rate of 60G refers to the 3dB attenuation level.
  • There are at least 60GHz spectrum for service bearing. Therefore, according to the relationship between the aforementioned service transmission rate and the baud rate, and the number of bits carried by each channel symbol, it can be seen that 60G symbols/s*8bit/symbol 480Gbps, and the bit resources occupied by overheads can support 400G rate. Business.
  • the terms channel, path, link, etc. appear multiple times, and the meanings and applications of the three are different, and they are explained and explained here: the channel in the embodiment of the present invention refers specifically to physical Channel refers to the channel that relies on physical media to transmit information.
  • Path also called transmission path, service path, etc., refers to the entire route from the start point to the end point. It includes not only the aforementioned physical channel that carries information, but also the network equipment for receiving, sending and processing information.
  • the path has a direction. The direction is the transmission direction of the service.
  • Link refers to a passive point-to-point physical connection.
  • link refers to the physical line between two devices, such as cables or optical fibers.
  • link refers to propagation between base stations and terminals.
  • a link is a physical line from a node to an adjacent node without any other switching nodes in the middle. In fact, the path can include multiple links.
  • the path calculation unit (English: Path Computation Element, abbreviation: PCE) is a centralized calculation unit, which is mainly used to perform complex path calculations based on its own network resource information, such as network topology, equipment, and current resource usage. Specifically, when a request from a path calculation client (English: Path Computation Client, abbreviation: PCC) is received, the path information is returned to the PCC by combining the current network available resource information and routing calculations.
  • PCC Path Computation Client
  • Link Management Protocol (English: Link Management Protocol, abbreviation: LMP), used for link setting and control, can realize the function of link management.
  • LMP Link Management Protocol
  • the calculation of network routing relies on the understanding of network topology and resources. This information can be obtained through a centralized central network management system or a distributed link state routing protocol.
  • LMP is a general protocol designed for this purpose, which can realize automatic discovery of all links of local equipment and neighboring equipment.
  • LMP can also be specifically extended to OTN LMP, WDM LMP, etc.
  • the present invention relates to the LMP in the WDM network.
  • Open Shortest Path First (English: Open Shortest Path First, abbreviation: OSPF) is a link state routing protocol. In the present invention, it is used by a network device to transfer its own bearer capacity messages to neighboring devices, and at the same time to receive messages sent by neighboring devices.
  • Carrying capacity information can specifically include information such as device type, switching capacity, and usage status.
  • Each device exchanges carrying capacity information, on the one hand, it sends its own path status data packet to its neighboring device, and on the other hand, it receives path status data packet sent by its neighboring device, and updates its own database according to it. , So as to obtain the carrying capacity information of the entire area network.
  • each nominal spectrum width there is an actual spectrum width with the attenuation of the channel, and this actual spectrum width usually changes according to the value of the channel attenuation.
  • Figure 1 is an example of the actual spectrum width.
  • the nominal spectrum width is 50 GHz.
  • the actual spectrum at different attenuation levels Different widths: Under 0.5dB attenuation, the actual spectrum width of the same nominal spectrum width of 50GHz is only 40GHz; under 6dB attenuation, the corresponding actual spectrum width is 45GHz.
  • the expression of service carrying capacity does not distinguish the realization of the physical layer, and the unified parameter "spectrum width” is used to express resources.
  • the actual physical meaning of "spectrum width” is the nominal spectrum width of the device.
  • Table 1 is the carrying capacity information of the link starting from device A in a certain network, and the spectrum width in the sending direction is 50G, which means that the nominal spectrum width of the outgoing port of the device is 50G.
  • the bandwidth of the transmission direction of the device A is 50G, which means that in the transmission direction, regardless of the signal attenuation, the bandwidth of all wavelengths is 50G.
  • the spectrum width in the actual network is lower than the nominal spectrum width.
  • the nominal spectrum width of 50G the actual usable value may be 45G or even 40G.
  • Table 1 above cannot reflect the actual spectrum width information. Since the actual spectrum width is less affected by physical attenuation when the service is transmitted at a low rate, it is not enough to affect the service transmission. However, when the network carries high-rate services, the impact of signal attenuation on the spectrum width will increase. This may cause the actual service rate that can be carried by different channels to differ from the nominal value, making it impossible to achieve the preset high-rate service transmission.
  • a current way to solve this problem is to define all wavelengths with the lowest rate carrying capacity in the channel, which will result in a waste of channel carrying capacity.
  • a method for determining a service transmission path is provided.
  • the device adds the collection of carrying capacity information.
  • the carrying capacity information includes the actual carrying capacity of a certain link. ability.
  • the device can apply the actual carrying capacity of the obtained link to scenarios such as assessing link quality, selecting appropriate service channels, and fast service recovery.
  • Table 2 is a schematic diagram of a spectrum width expression format provided by an embodiment of the present invention.
  • the embodiment of the present invention increases the attenuation dimension, which reflects the actual spectrum width difference of the same wavelength channel under different attenuation requirements: the actual spectrum width at 0.5dB, 3dB and 6dB attenuation.
  • the actual SW of the first wavelength on device A is 0.5dB
  • the actual spectrum widths at 3dB and 6dB attenuation are 61G, 63G, and 65G, respectively.
  • high-speed services have different requirements for the spectrum width of the channel at different attenuation levels.
  • 0.5dB, 3dB, and 6dB are all typical values for network applications and are not a unified standard. In actual use, there may be more detailed requirements for other levels of attenuation, and the present invention does not impose excessive restrictions on this.
  • the embodiment of the present invention shows the actual spectrum widths corresponding to different wavelength channels.
  • the first wavelength, the second wavelength, ..., the Nth wavelength have different actual SW at the same attenuation.
  • This expression allows the control unit or centralized controller of the device to select the most appropriate wavelength channel to carry services when performing routing selection.
  • the spectrum width expressions of the above two dimensions can be used in combination. Using this expression, the device can obtain the actual spectrum width corresponding to each wavelength channel, and then understand the ability of each wavelength to carry services. For example, the first wavelength can carry services at 400G and below, and the second wavelength can carry services at 100G and below.
  • the spectrum expression shown in Table 2 can be modified as shown in Table 3 below:
  • the x-th wavelength carrying capacity in Table 3 is the actual service carrying capacity of the device.
  • the actual service carrying capacity may be the actual SW when the device carries the service through a certain wavelength at a certain attenuation level, or the highest transmission that the equipment can achieve when the service is transmitted through a certain wavelength channel at a certain attenuation level. rate.
  • the embodiments of the present invention only take the foregoing two as examples for description. In fact, there are other format variations for the expression of actual service capacity.
  • the carrying capacity information of each device can be sent to its neighboring devices or network management devices by extending the OSPF protocol.
  • the message field between devices can be extended based on the Small Computer System Interface (SCSI) standard of the RFC7688 document, and the extended message field is used to increase the carrying capacity information.
  • the parameter field slot-width can be added to the YANG (Yet Another Next Generation) model to indicate the bearer capacity information of the link.
  • lambda-id represents the key value field of the YANG model, which is used to identify the information sent; uint32 represents the data type of the key value; "slot-width-0p5db?decimal60” represents the actual spectrum width at 0.5dB channel attenuation is 60G ; “Slot-width-3db?decimal62” means that the actual spectrum width is 62G at a channel attenuation of 3dB; “slot-width-6db?decimal64” means that the actual spectrum width is 64G at a channel attenuation of 6dB.
  • each device can obtain the service carrying capacity information of other devices. Based on this, when the device responds to a service request, it can select an appropriate service path (for example, a wavelength channel) to carry it.
  • an appropriate service path for example, a wavelength channel
  • Fig. 2 is a schematic diagram of a network topology according to an embodiment of the present invention.
  • the service carrying capabilities of network equipment A, equipment B, and equipment C are shown in their respective spectrum width matrices.
  • the spectrum width matrix of the device represents the carrying capacity information of the link starting from the device.
  • the carrying capacity of link AB and link AC is shown in the spectrum width matrix of device A: the actual spectrum width when the channel attenuation is 0.5dB is 61G; the actual spectrum width when 3dB is 63G; the actual spectrum width when 6dB is It is 65G.
  • the carrying capacity information of link B-Z is shown in the spectrum width matrix of device B: the actual spectrum width when the channel attenuation is 0.5dB is 58G; the actual spectrum width when 3dB is 59G; the actual spectrum width when 6dB is 63G.
  • the carrying capacity information of link C-Z is shown in the spectrum width matrix of device C: the actual spectrum width when the channel attenuation is 0.5dB is 60G; the actual spectrum width when 3dB is 62G; the actual spectrum width when 6dB is 66G.
  • Fig. 3 is a schematic diagram of another network topology provided by an embodiment of the present invention.
  • the service carrying capabilities of network equipment A, equipment B, and equipment C are shown in their respective spectrum width matrices, where the attributes of each segment of the AB, BZ, AC, and CZ network are the same as those of the corresponding network in Figure 2.
  • the attributes of the segments are the same, and none of them carry any services in this embodiment, and they are in an idle state.
  • the difference from the network topology shown in Figure 2 is that in this embodiment, there is a newly added link AZ, and there is at least one opened service between the links AZ.
  • the service is interrupted due to a line failure and needs to be reselected.
  • the appropriate path carries the interrupted service.
  • device A can obtain the actual carrying capacity of each link according to the acquired spectrum width matrix of each device, so as to select appropriate paths for transmission of interrupted services.
  • the "actual SW" in the spectrum width matrix of each device in FIG. 2 and FIG. 3 may be the actual spectrum width corresponding to one wavelength channel, or the actual spectrum width corresponding to multiple wavelength channels.
  • the spectrum widths corresponding to different wavelength channels can be the same or different.
  • Table 2 if there are actual spectrum widths corresponding to multiple wavelength channels, they can be represented in the spectrum width matrix of the device.
  • the device when the device receives a service request, it can select an appropriate path to carry the service through path calculation.
  • Table 3 is a possible variant format of Table 2, and there may also be multiple other variant formats.
  • the service carrying capacity of the device can be expressed through the expression format "bearer wavelength-service rate-whether it is supported", or the expression format "bearer wavelength-modulation format-baud rate (actual SW)”.
  • Fig. 4 is a flowchart of a route calculation method provided by an embodiment of the present invention. The flowchart includes the following steps:
  • S401 The first device receives a service request message.
  • the first device may be the source device of the service configuration, and the service request message may be delivered to the first device through the centralized controller of the network.
  • the service request message may include information such as the source device, sink device, transmission rate, and transmission delay of the service.
  • the service request message received by device A includes "open 400G service between device A and device Z". At this time, device A is the source device of the service, Z is the sink device of the service, and 400G is the transmission rate of the service.
  • the service request message is used to request the first device to determine the target transmission path of the service established by the service request message.
  • the first device determines a service transmission path according to the service request message and the first bearer capability information.
  • the first carrying capacity information is used to identify the actual carrying capacity of each link of the target transmission path of the service.
  • the first bearer capability information may also identify the actual bearer capability of each link of all candidate transmission paths of the service.
  • the first bearer capability information includes the actual spectrum width SW of each link on all candidate transmission paths; or, the first bearer capability information includes the service rate that each link on all candidate transmission paths can actually support.
  • the first carrying capacity information may further include at least one of channel attenuation, carrying wavelength, and nominal spectral width of each link on the candidate transmission path. Refer to Table 2 and Table 3 for specific information about the carrying capacity of each link.
  • the requirement of the 400G service on the bearer channel is: the actual SW is not less than 60G at a 3dB attenuation level.
  • the network control side sends a request to device A to enable 400G service between device A and device Z.
  • device A After receiving the request, device A starts to calculate whether the transmission path between device A and device Z is Suitable for carrying this business.
  • there are two alternative transmission paths from device A to device Z namely A-B-Z and A-C-Z.
  • the actual SW under the 3dB attenuation of the ABZ section of the alternative transmission path is 63G, which is higher than the service requirement of 60G, and the transmission path AB meets the service requirements; the actual SW under the 3dB attenuation of the BZ section is 59G, which is lower than the service requirement.
  • the required 60G cannot carry 400G services; in summary, the alternative transmission path ABZ cannot be used to carry the 400G services.
  • the actual SW under the 3dB attenuation of the AC section of the alternate transmission path ACZ is 63G, which is higher than the 60G required by the service and can carry 400G services; the actual SW under the 3dB attenuation of the CZ section is 62G, which is higher than the 60G required by the service , Can also carry 400G services; in summary, the alternative transmission path ACZ can be used to carry the 400G services.
  • device A will finally select A-C-Z as the target transmission path to carry 400G services.
  • the first device before receiving the service request message, the first device first receives the second bearer capability information sent by other devices.
  • the second carrying capacity information is a subset of the first carrying capacity information, and the first carrying capacity information identifies the actual carrying capacity of each link of the service transmission path requested by the service request message; the second carrying capacity information identifies transmission The actual carrying capacity of at least one link on the path.
  • device A can directly calculate the target transmission path based on the first carrying capacity information; if it calculates that there is more than one available transmission path, it can select the most suitable one based on information such as link quality, available resources, and transmission delay. .
  • the spectrum width matrix of a network device is expressed in the format shown in Table 3, the above calculation, analysis, and selection process will be simplified.
  • the device does not need to convert the spectrum width into a service transmission rate, and directly determines the 3dB attenuation level. Whether the following sections of the path can carry the requested 400G service is enough.
  • device A can carry services of 400G and below through wavelength ⁇ 1 under 3dB attenuation
  • device B can carry services of 100G and below through wavelength ⁇ 2 under 3dB attenuation
  • device C can carry services under 3dB attenuation
  • Wavelength ⁇ 3 can carry services of 400G and below; confirm that the AB, AC, and CZ sections can carry services of 400G and below, and the BZ section can only carry services of 100G and below; in summary, choose the path ACZ to carry 400G services.
  • ⁇ 1, ⁇ 2, ⁇ 3 can be the same wavelength.
  • the above calculation, analysis, and path selection process can be completed by the calculation module in the network device; or in part of the network can be performed by the path calculation unit in the centralized network controller.
  • the principle is the same as the calculation module described above. , This embodiment will not go into details.
  • the carrying capacity information of a device represents the service carrying capacity of the link starting from the device, for example, the carrying capacity information of device A represents the service carrying capacity of the AB and AC segments;
  • the carrying capacity information of device B indicates the service carrying capacity of the BZ segment, and the carrying capacity information of device C indicates the service carrying capacity of the CZ segment.
  • the expression format of the device carrying capacity information can have many variations based on the actual SW of the device, for example, it can be expressed by the highest rate of the device carrying services through a specific wavelength at a specific attenuation level.
  • the carrying capacity information of each device can be transmitted to the neighboring node through the OSPF protocol, and at the same time receiving the neighboring node and the neighboring node's carrying capacity information sent by the neighboring node.
  • device A can obtain the carrying capacity information of each device in a certain area, and confirm whether each alternative path with device A as the first device can carry the required configuration according to the carrying capacity information of each device Business.
  • the first device receives the second bearer capability information from other devices through an extended inter-device communication protocol, and the extended inter-device communication protocol adds a message field to identify the second bearer capability information.
  • the extended inter-device communication protocol adds a message field to identify the second bearer capability information.
  • the first device may send the service configuration information to the second device.
  • the second device is located on the determined transmission path and is an adjacent downstream device of the first device.
  • the service configuration information may include service type, source and sink device, resource reservation request, etc.
  • the resource reservation request is used to send The second device requests to reserve certain resources for service bearing.
  • the service configuration information may also include transmission path information, so that it can be sent hop-by-hop along the transmission path.
  • the service configuration information is transmitted in the form of signaling through a resource reservation protocol (English: Resource Reservation Protocol; abbreviation: RSVP) between the devices on the transmission path.
  • a resource reservation protocol English: Resource Reservation Protocol; abbreviation: RSVP
  • the first service device in this embodiment can be replaced by a network centralized controller for implementation.
  • the network centralized controller receives the service request message, and then determines the service transmission path according to the service request message and the carrying capacity information, and then delivers the service configuration information to each device.
  • the PCE is a path calculation unit in the network centralized controller, which has information such as network topology, equipment and its carrying capacity, current resource usage, etc., and can realize complex path calculations.
  • it receives a service request message from the PCC, it combines the current network topology, each device and its carrying capacity, current resource usage and other information, calculates and determines the available path through the routing algorithm, and returns the path information to the PCC.
  • the network centralized controller when the bearer path of the service is determined, the network centralized controller sends the service configuration information to the first device, and then the first device and its downstream devices send the service configuration information hop by hop; or, the network centralized controller sends the service configuration information to the All devices on the path issue service configuration information, and all devices reserve resources for service bearing.
  • the service configuration method in the foregoing embodiment can realize service recovery.
  • the service configuration method in the foregoing embodiment can realize service recovery.
  • the path AZ fails, both the 400G and 100G services mentioned above are interrupted, and the service source device A starts the service recovery mechanism, that is, rerouting to find other path bearers. Two businesses.
  • the AB, AC, and CZ segments can carry services of 400G and below, and the BZ segment can only carry services of 100G and below, so the two services will be They are respectively allocated to ABZ and ACZ for carrying, where ABZ carries 100G services, and ACZ carries 400G services.
  • the service first device A receives a service recovery request, and the service recovery request may include information such as service source, sink device, transmission rate, service type, etc., to request device A to seek other path bearers Two existing business interruptions.
  • the first device A can first determine the new transmission path for 400G services, and then determine the new transmission path for 100G services; or the first device A first calculates the carrying capacity of the two existing paths, and then allocates the two paths to the two services. .
  • the embodiment of the present application may divide the device or the control side into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 5 is a schematic structural diagram of a network device provided by this embodiment.
  • the network device 500 may be any device in the foregoing embodiment, or may be the network centralized controller in the foregoing embodiment. As an example, the network device 500 may be used to execute the steps performed by the source device in the method shown in FIG. 4.
  • the network device 500 at least includes a receiving module 510, a computing module 520, and a storage module 530.
  • the receiving module 510 is used to perform the following steps: receiving the service request message; the calculating module 520 is used to calculate and determine the service transmission path according to the service request message and the carrying capacity information; the storage module 530 is used to store the network device and other network devices The sent carrying capacity information.
  • the receiving module 510 is specifically configured to perform step S401; the calculation module 520 is specifically configured to perform step S402.
  • the receiving module 510 may also be used to receive bearer capability information sent by other network devices, and this step may be completed before the network device receives the service request message.
  • the receiving module 510 is further configured to receive a service recovery request; the service recovery request is used to request the source device to seek another path to carry the interrupted service when the service transmission path fails and the service is interrupted.
  • the network device 500 is a network centralized controller
  • the receiving module 510 is used to receive the service request message sent by the client-side network device; the calculation module 520 is used to calculate and determine the service transmission according to the service request message and the carrying capacity information Path; the storage module 530 is used to store the carrying capacity information sent by the lower-layer network device.
  • the receiving module 510 is further configured to receive bearer capacity information reported by multiple network devices at the physical layer.
  • Optical layer equipment refers to equipment capable of processing optical layer signals, such as reconfigurable optical add-drop multiplexer (ROADM).
  • Electrical-layer equipment refers to equipment that can process electrical-layer signals, such as: equipment, switches, and routers that can process electrical-layer signals.
  • Optoelectronic hybrid equipment refers to equipment capable of processing optical layer signals and electrical layer signals.
  • Fig. 6 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • the network device 600 includes a memory and a processor, and may also include a communication interface and a bus. Among them, the processor, the communication interface, and the memory are connected by a bus, and the processor is used to execute executable modules of the memory, such as a computer program.
  • the memory may include a high-speed random access memory (English: Random Access Memory, abbreviation: RAM), and may also include a read-only memory, such as at least one disk memory.
  • RAM Random Access Memory
  • the communication connection between the system network element and at least one other network element is realized through at least one communication interface (which may be wired or wireless).
  • the other network elements may be the Internet, a wide area network, a local network, a metropolitan area network, and the like.
  • the bus can be an ISA bus, a PCI bus, or an EASA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on.
  • the processor can be a central processing unit, a general-purpose processor, a specific integrated circuit (English: application specific integrated circuit, abbreviation: ASIC), a microprocessor (English: digital signal processor, abbreviation: DSP), a field programmable gate array (English: : Field programmable gate array, abbreviation: FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field programmable gate array
  • the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware, which are collectively referred to herein as "modules” or “systems.”
  • this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as a part of the hardware, and can also be distributed in other forms, such as through the Internet or other wired or wireless telecommunication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种路由计算的方法、设备和系统,路由计算方法包括:第一设备接收业务请求消息,业务请求消息用于请求第一设备确定承载的业务请求消息请求建立的业务的传输路径;第一设备根据业务请求消息和第一承载能力信息确定业务的传输路径,第一承载能力信息用于指示传输路径上每一段链路的实际承载能力。通过上述方案,系统可以根据网络各段链路的实际业务承载能力进行路由计算并配置业务。

Description

一种路由计算的方法、设备和系统
本申请要求于2020年3月16日提交中国国家知识产权局、申请号为202010180618.6、发明名称为“一种路由计算的方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种业务配置的方法、设备和系统。
背景技术
对于通信系统中的每一个网络设备而言,通常用频谱宽度(slot width,SW))这一参数表达当前设备的网络资源情况,频谱宽度的实际物理意义为设备的标称频谱宽度。但是由于光网络中存在各种物理效应,网络中设备的实际谱宽往往低于标称频谱宽度,例如50G的标称频谱宽度,其实际可用资源可能只有45G,甚至40G。
上述实际频谱宽度虽然不足标称频谱宽度值,但是由于物理层业务在低速率(100G及以下)传输时受物理衰减的影响较小,因此不足以影响业务的传输。但是当未来光网络承载高速率业务(400G及以上)时,物理衰减对于实际频谱宽度的影响将增大,这可能导致实际可以承载的业务传输速率差异增大。现有技术直接用频谱宽度表示设备频谱资源的方式无法甄别各波长通道的频谱差异,从而无法选择最合适的路径进行业务承载。
发明内容
本发明实施例提供一种业务配置的方法、设备和系统,解决高速率场景下设备的标称业务能力与实际业务承载能力不匹配导致业务开通效率低的问题。
为达到上述目的,本发明实施例提供了如下技术方案。第一方面,本发明实施例提供一种路由计算的方法,包括:第一设备接收业务请求消息,所述业务请求消息用于请求所述第一设备确定承载所述业务请求消息请求建立的业务的传输路径;所述第一设备根据所述业务请求消息和第一承载能力信息确定所述业务的传输路径,所述第一承载能力信息用于指示所述传输路径上每段链路的实际承载能力。
本发明实施例的技术方案,第一设备根据第一承载能力信息,能够获知传输路径的实际业务承载能力,然后根据业务请求确定合适的传输路径,提高了业务配置的效率。
结合第一方面,在一种可能的实现方式中,在所述第一设备接收业务请求消息之前,所述方法还包括:所述第一设备接收其他设备发送的第二承载能力信息。
其中,第一承载能力信息标识业务请求消息请求建立的业务的传输路径的每一段链路的实际承载能力;第二承载能力信息标识传输路径上至少一段链路的实际承载能力。第二承载能力信息为第一承载能力信息的子集,第一承载能力信息包括其他设备发送的第二承载能力信息。结合第一方面,在另一种可能的实现方式中,所述第一设备至少保存有所述第一设备所在链路的所述承载能力信息。从而,第一设备至少保存有其所在下游链路的第三承载能力信息。
需要说明的是,所述第三承载能力信息标识第一设备所在下游链路的实际承载能力。应理解,第三承载能力信息为第一承载能力信息的子集。作为一个示例,第一承载能力信息等 于第二承载能力信息和第三承载能力信息的集合。
结合第一方面,在一种可能的实现方式中,所述第一承载能力信息包括所述传输路径上至少一段链路的实际频谱宽度。
结合第一方面,在另一种可能的实现方式中,所述第一承载能力信息包括所述传输路径上至少一段链路实际能够支持的业务速率。
本发明实施例中仅以实际频谱宽度和实际最高传输速率为例进行说明,应理解,事实上所述第一承载能力信息还具有多种其他变型格式。
结合第一方面,在一种可能的实现方式中,所述第一承载能力信息还包括所述传输路径上至少一段链路的:信道衰减、承载波长、标称频谱宽度中的至少一项。从而,通过不同纬度的扩展,第一设备可以获取部分网络设备在不同衰减级别、不同波长信道的实际承载能力。
结合第一方面,在一种可能的实现方式中,所述确定业务传输路径的方法适用于所述业务进行高速率传输场景。
需要说明的是,在本发明实施例提供的技术方案中,所述高速率传输场景指业务传输速率高于100Gbps;低速率传输场景指业务传输速率低于100Gbps。此外应理解的是,目前通信网络中的业务传输速率为离散值,例如50G、100G、200G、400G等,因此如果一段链路支持400G及以下传输速率的业务,意味着该段链路可以支持400G、200G、100G、50G等不同速率的业务。
结合第一方面,在一种可能的实现方式中,所述业务请求消息包括新业务的建路请求,和/或已有中断业务的重新建路请求。从而,本发明不仅可以通过拓扑收集实现路由计算,还可以在业务出现故障时进行重路由。
结合第一方面,在另一种可能的实现方式中,所述第一设备为所述传输路径的源设备。
结合第一方面,在一种可能的实现方式中,所述第一设备为所述业务所在网络的集中控制器。从而,本发明既可以应用于集中管理的场景,又可以应用于分布管理的场景。
第二方面,本发明实施例提供一种路由计算设备,包括:接收模块,用于接收业务请求消息;计算模块,用于根据所述业务请求消息和第一承载能力信息确定所述业务请求消息请求建立的业务的传输路径,所述第一承载能力信息用于指示所述传输路径上每一个设备的实际业务承载能力。
结合第二方面,在一种可能的实现方式中,所述接收模块还用于:接收其他设备发送的第二承载能力信息。
结合第二方面,在另一种可能的实现方式中,所述设备还包括存储模块,所述存储模块用于至少保存所述第一设备所在下游链路的所述第三承载能力信息。
结合第二方面,在一种可能的实现方式中,所述第一承载能力信息包括所述传输路径上至少一段链路的实际频谱宽度。
结合第二方面,在另一种可能的实现方式中,所述第一承载能力信息包括所述传输路径上至少一段链路实际能够支持的业务速率。
结合第二方面,在一种可能的实现方式中,所述第一承载能力信息还包括:所述传输路径上至少一段链路的:信道衰减、承载波长、标称频谱宽度中的至少一项。
结合第二方面,在一种可能的实现方式中,所述接收模块还用于接收扩展协议,所述扩展协议用于标识所述承载能力信息所在的字段。
结合第二方面,在另一种可能的实现方式中,所述接收模块还用于:接收业务请求消息, 所述业务请求消息包括新业务的建路请求,和/或已有中断业务的重新建路请求。从而,本发明不仅可以通过拓扑收集实现路由计算,还可以在业务出现故障时进行重路由。
第三方面,本发明实施例提供一种路由计算的系统,所述系统包括至少一个如第二方面及其任一中可能的实现方式中所述的设备。
第四方面,本发明提供一种计算机可读存储介质,存储有计算机程序或指令、所述程序或指令被运行时会驱动设备执行如第一方面及结合第一方面任一种可能的实现方式中所述的方法。
第五方面,本发明实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,所述计算机程序或指令被计算机执行时,使得计算机执行如第一方面及结合第一方面任一种可能的实现方式中所述的方法。
本发明提供的技术方案中,在拓扑收集、路由洪范过程中增加设备的承载能力信息,用于指示各段链路的实际承载能力,使源端设备能够根据路径的实际承载能力匹配业务,解决了高速率场景下设备的标称业务能力与实际业务承载能力不匹配导致业务无法开通或者开通效率低的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面附图中反映的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得本发明的其他实施方式。而所有这些实施例或实施方式都在本发明的保护范围之内。
图1为本申请实施例提供的一种衰减—频谱示例图;
图2为可适用于本申请实施例的一种网络拓扑示意图;
图3为可适用于本申请实施例的另一种网络拓扑示意图;
图4为可适用于本申请实施例的一种路由计算方法流程图;
图5为本申请实施例提供的一种网络设备的结构示意图;
图6为本申请实施例提供的另一种网络设备的结构示意图;
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
本申请实施例提供的技术方案可适用于业务传送网,例如,可以应用于光传送网(英文:Optical Transport Network,缩写:OTN),也可应用于分组传送网(英文:Packet Transport Network,缩写:PTN),或者波分复用(英文:Wavelength Division Multiplexing,缩写:WDM)网络中。此外,本申请实施例提供的技术方案还可以适用于无线网络(例如基站、微波)以及接入网中,例如FTTX。本发明实施例以光传送网这一应用场景为例进行具体介绍,但是这并不构成对本发明技术方案应用范围的限制。
随着通信网络业务的飞速发展,用户的流量需求不断增长,目前100G产业链已经成熟并得到了规模商用;面向未来,超100G光传输系统将在100G的基础上进一步提升网络容量、降低传输成本和功耗,有效地解决当前面临的业务流量及网络容量持续增长的压力。超100G 光传送的关键技术已经或正在快速成熟,但是在具体的业务配置过程中往往会出现如下问题:在根据业务请求及网络拓扑等信息确定满足其传输速率要求的传输路径后,业务却无法成功开通。导致业务无法成功开通的原因可能有多种,例如设备闪断、网络震荡、接口类型错误等,但是在一一排除了上述原因之后,业务还是无法成功开通。其实,业务无法成功开通的真实原因为所确定的传输路径的速率无法满足业务的要求,这在实际的网络运维过程中很难发现,因为通信网络中所标识的每一段链路的承载能力是标称值,该标称值在超100G的传输网络中比实际值要高,且二者差异较大,这种承载能力标称值与实际值不匹配的情况可能会最终导致业务开通失败。
本发明技术方案涉及到以下通用术语:
1)、调制格式
在光通信的过程中,调制是在发送端将基带信号通过信道符号变换成传输信号的过程,具体而言就是通过信道符号承载待发送的比特信息。调制格式则是通过信道符号承载比特信息的方式,例如幅度调制、频率调制或者相位调制等。不同的调制格式允许信道符号承载的比特信息位数不同。例如,偏振复用十六进制正交幅度调制(英文:Dual polarization 16 Quadrature Amplitude Modulation,缩写:DP-16QAM)格式下每个信道符号可以承载8bit信息;十六进制正交幅度调制(英文:16Quadrature Amplitude Modulation,缩写:16QAM)格式下每个信道符号可以承载4bit信息;正交相移键控(英文:Quadrature Phase Shift Keying,缩写:QPSK)格式下每个信道符号可以承载2bit信息,等等。
2)、波特率
波特率表示每秒钟传送的码元符号的个数,是衡量数据传送速率的指标,用单位时间内载波调制状态改变的次数表示。对应到频谱中,1GHz频谱对应1GBaud波特率。在光通信中,业务的传输速率等于波特率与某种调制格式下每个信道符号可以承载的比特数之积。需要说明的是,本申请实施例仅以频谱与波特率对应的情况为例进行说明,暂不考虑波特率与频谱不对应的情况。
3)、业务速率
即传送某种速率的业务时,在相应的调制格式下对波特率的要求。例如,400G速率的业务通过DP-16QAM调制格式进行业务承载,由于该格式下每个信道符号可以承载8bit信息,因此需要60G波特率才可以实现,具体地,60G波特率指3dB衰减级别下至少有60GHz频谱进行业务承载。由此,根据前述业务传输速率与波特率、每个信道符号承载的比特数之间的关系可知,60G符号/s*8bit/符号=480Gbps,扣除开销等占用的比特资源则可以支持400G速率的业务。
需要说明的是,在本发明的实施例中多次出现信道、路径及链路等术语,三者的含义及应用不同,在此予以解释和说明:本发明实施例中所述信道特指物理信道,指依托物理媒介传输信息的通道。路径,也称传输路径、业务路径等,指从起点到终点的全程路由,不仅包括前述承载信息的物理信道,还包括收发和处理信息的网络设备,此外,与信道不同的是,路径具有方向性,所述方向为业务的传输方向。链路指无源的点到点的物理连接,具体地,有线通信时,链路指两个设备之间的物理线路,如电缆或光纤,无线电通信时,链路指基站和终端之间传播电磁波的路径空间。链路就是从一个结点到相邻结点的一段物理线路,中间没有任何其他的交换结点。事实上,路径可以包括多段链路。
4)、路径计算单元
路径计算单元(英文:Path Computation Element,缩写:PCE)是一个集中式的计算单元,主要用于根据其自身的网络资源信息,例如网络拓扑、设备、当前资源使用情况等进行复杂的路径计算。具体地,当收到路径计算客户端(英文:Path Computation Client,缩写:PCC)的请求后,结合当前的网络可用资源信息并通过路由计算,给PCC返回路径信息。
5)、链路管理协议
链路管理协议(英文:Link Management Protocol,缩写:LMP),用于链路设置和控制,可以实现链路管理的功能。目前网络路由的计算依赖于对网络拓扑和资源的了解,这些信息可以通过集中式的中心网管系统或者是分布式的链路状态路由协议获得。LMP便是为这种目的而设计的通用协议,可以实现本地设备所有链路和邻居设备的自动发现。此外,针对不同的交换技术,LMP还可以具体扩展为OTN LMP,波分LMP等。本发明中涉及波分网络中的LMP。
6)、OSPF洪范
开放最短路径优先协议(英文:Open Shortest Path First,缩写:OSPF)是一种链路状态路由协议,在本发明中用于网络设备向邻居设备传递自身的承载能力消息,同时接收邻居设备发送的承载能力信息,具体可以包括设备类型、交换容量、使用状态等信息。各设备间通过交换承载能力信息,一方面将自身的路径状态数据包发送给与之相邻的设备,另一方面接收其相邻设备发送来的路径状态数据包,并根据其更新自己的数据库,从而可以获得整个区域网络的承载能力信息。
7)、物理衰减
根据物理层的实现,每一个标称频谱宽度的背后,都随着信道的衰减有一个实际的频谱宽度,这种实际的频谱宽度通常根据信道衰减的数值不同而进行相应改变。在没有频偏、码型一致的情况下,图1为一个实际频谱宽度的实例,如图1所示,标称频谱宽度为50GHz,但是随着信道衰减的变化,不同衰减水平上的实际频谱宽度不同:0.5dB衰减下,同一标称频谱宽度50GHz的实际频谱宽度只有40GHz;6dB衰减下,相应的实际频谱宽度为45GHz。
需要理解的是,高速率通信场景下,对于不同速率的业务承载有对应的衰减—频谱要求,例如400G业务在DP-16QAM调制格式下要求在3dB衰减下实现60G波特率,这里的波特率是指实际频谱宽度所对应的实际波特率。
目前业务承载能力的表达不区分物理层的实现,使用统一参数“频谱宽度”来表达资源,“频谱宽度”的实际物理含义为设备的标称频谱宽度。例如,表1为某个网络中的以设备A为起点的链路的的承载能力信息,其发送方向的频谱宽度为50G,即指该设备的出端口标称频谱宽度为50G。
表1
设备属性 频谱宽度
A(出方向) 50G
需要说明的是,在上述频谱宽度的表达方式中,设备A发送方向的带宽为50G,意味着在该发送方向上,无论信号衰减如何,全部波长的带宽均为50G。
但是事实上,由于光网络中存在多种物理效应,实际网络中的频谱宽度要低于标称频谱宽度。50G的标称频谱宽度,实际可用的可能是45G,甚至40G等不同的数值。上述表1中的表达方式无法体现实际频谱宽度信息。由于业务在低速率传输时实际的频谱宽度受物理衰减的影响较小,因此不足以影响业务的传输。但是当网络承载高速率业务时,信号衰减对于频谱宽度的影响将增大,这可能导致不同信道实际可以承载的业务速率与标称值差异较大,无 法实现预设的高速率业务传输。目前解决此问题的一种方式是以信道中最低速率承载能力定义所有波长,这将导致信道承载能力的浪费。
综上,本发明实施例中,提供了一种确定业务传输路径的方法,设备在之前的拓扑信息收集过程中,增加对承载能力信息的收集,该承载能力信息包括某段链路的实际承载能力。设备可以将获取的链路的实际承载能力应用于评估链路质量、选择合适的业务通道、快速业务恢复等场景。
表2为本发明实施例提供的一种频谱宽度表达格式示意图。
表2
Figure PCTCN2020127356-appb-000001
如表2所示,在网络拓扑收集的场景中,对于频谱宽度的表达进行了两个维度的扩展:
a)衰减维度
相比于表1,本发明实施例增加了衰减维度,体现了同一波长信道在不同衰减要求下的实际频谱宽度差异:0.5dB,3dB和6dB衰减时的实际频谱宽度。例如,设备A上第一波长实际的SW在0.5dB,3dB和6dB衰减时的实际频谱宽度分别为61G、63G和65G。按照承载网络中的数据传输要求,高速率业务对于信道在不同衰减级别下的频谱宽度有不同的要求。需要说明的是,0.5dB、3dB和6dB均为网络应用的典型值,并非统一标准。实际使用时,可能对其他水平的衰减有更细致的要求,本发明对此不进行过多限制。
b)波长维度
相比于表1,本发明实施例示出了不同波长信道所对应的实际频谱宽度。例如,第一波长,第二波长,……,第N波长在同一衰减时具有不同的实际SW。这一表达允许设备的控制单元或者集中控制器在进行路由选择时,可以选择最合适的波长信道承载业务。
上述两个维度的频谱宽度表达可以结合使用,使用该表达,设备可以获取每一个波长信道对应的实际频谱宽度,进而了解每一个波长可以承载业务的能力。例如,第一波长可以承载400G及以下速率的业务,第二波长可以承载100G及以下速率的业务。相应地,表2所示的频谱表达可以作以下表3所示的变形:
表3
Figure PCTCN2020127356-appb-000002
如表3所示,设备A不一定要全量洪范或者上报表格中的每一个属性,只需要提供关于业务承载能力的表达即可。应理解,表3中的第x波长承载能力均为所述设备的实际业务承载能力。在本发明中,实际业务承载能力可以是设备在某一衰减级别下通过某一波长承载业务时的实际SW,或者是设备在某一衰减级别下通过某一波长信道传输业务能够达到的最高传输速率。本发明实施例仅以前述两种为例进行说明,事实上实际业务容量的表达还存在其他 格式变型。
需要说明的是,上述承载能力信息的增加可以通过扩展协议的方式实现。
作为一个示例,可以通过扩展OSPF协议将各设备的承载能力信息发送给其相邻设备或者网络管理设备。具体地,可以基于RFC7688文稿的小型计算机系统接口(Small Computer System Interface,SCSI)标准扩展设备间的消息字段,扩展的消息字段用于增加承载能力信息。或者,作为另一个示例,可以通过在YANG(Yet Another Next Generation)模型中增加参数字段slot-width表示链路的承载能力信息。
例如,以下为YANG模型通过字段扩展增加承载能力信息的一个例子:
|+--ro slot-width*[lambda-id]
|+--lambda-id uint32
|+--slot-width-0p5db?decimal60
|+--slot-width-3db?decimal62
|+--slot-width-6db?decimal64
其中,lambda-id表示YANG模型的键值字段,用于标识所发送的信息;uint32表示键值的数据类型;“slot-width-0p5db?decimal60”表示0.5dB的信道衰减下实际频谱宽度为60G;“slot-width-3db?decimal62”表示3dB的信道衰减下实际频谱宽度为62G;“slot-width-6db?decimal64”表示6dB的信道衰减下实际频谱宽度为64G。
根据前述表2和表3提供的网络设备的频谱宽度表达格式示意图,在通信网络设备间使用LMP和OSPF协议的前提下,每个设备可以获取其他设备的业务承载能力信息。基于此,设备在响应业务请求时,可以选择合适的业务路径(例如波长信道)进行承载。
图2为本发明实施例提供的一种网络拓扑示意图。如图2所示,网络设备A、设备B、设备C的业务承载能力如各自对应的频谱宽度矩阵所示。需要说明的是,设备的频谱宽度矩阵表示的是以该设备为起点的链路的承载能力信息。其中,链路A-B和链路A-C的承载能力如设备A的频谱宽度矩阵所示:信道衰减为0.5dB时的实际频谱宽度为61G;3dB时的实际频谱宽度为63G;6dB时的实际频谱宽度为65G。链路B-Z的承载能力信息如设备B的频谱宽度矩阵所示:信道衰减为0.5dB时的实际频谱宽度为58G;3dB时的实际频谱宽度为59G;6dB时的实际频谱宽度为63G。链路C-Z的承载能力信息如设备C的频谱宽度矩阵所示:信道衰减为0.5dB时的实际频谱宽度为60G;3dB时的实际频谱宽度为62G;6dB时的实际频谱宽度为66G。
图3为本发明实施例提供的另一种网络拓扑示意图。如图3所示,网络设备A、设备B、设备C的业务承载能力如各自对应的频谱宽度矩阵所示,其中A-B,B-Z,A-C,C-Z网络各段的属性与图2中对应的网络各段的属性一致,且在本实施例中均未承载任何业务,处于空闲状态。与图2所示的网络拓扑不同的是,本实施例中具有新增链路A-Z,且链路A-Z之间具有已开通的至少一条业务,由于线路出现故障该业务处于中断状态,需要重新选择合适的路径承载该中断业务。在本实施例中设备A可以根据获取的各设备的频谱宽度矩阵获知各段链路的实际承载能力,从而为中断业务分别选择合适的路径进行传输。
需要说明的是,图2、图3中各设备的频谱宽度矩阵中的“实际SW”可以是一个波长信道所对应的实际频谱宽度,也可以是多个波长信道分别对应的实际频谱宽度。不同的波长信道对应的频谱宽度可以相同,也可以不同。如表2所示,如果存在多个波长信道对应的实际频谱宽度,可以在设备的频谱宽度矩阵中分别表示出来。在前述拓扑信息收集的基础上,本 实施例可以在设备收到业务请求时,通过路径计算选择合适的路径进行业务承载。
需要说明的是,上述实施例中关于网络设备业务承载能力,表3为表2的一种可能的变型格式,还可以存在多种其他变型格式。例如,可以通过“承载波长—业务速率—是否支持”这一表达格式来表达设备的业务承载能力,也可以通过“承载波长—调制格式—波特率(实际SW)”这种表达格式。
图4为本发明实施例提供的一种路由计算的方法流程图,所述流程图包括以下几个步骤:
S401:第一设备接收业务请求消息。
在本实施例中,所述第一设备可以是业务配置的源设备,业务请求消息可以通过网络的集中控制器下发给第一设备。其中,所述业务请求消息可以包括业务的源设备、宿设备、传输速率、传输时延等信息。例如,设备A接收业务请求消息包括“在设备A和设备Z之间开通400G业务”,此时设备A为业务的源设备,Z为业务的宿设备,400G为业务的传输速率。业务请求消息用于请求第一设备确定业务请求消息请求建立的业务的目标传输路径。
S402:第一设备根据业务请求消息和第一承载能力信息确定业务的传输路径。
在本实施例中,第一承载能力信息用于标识业务的目标传输路径的每一段链路的实际承载能力。示例地,第一承载能力信息还可以标识业务的所有备选传输路径的每一段链路的实际承载能力。
例如,第一承载能力信息包括所有备选传输路径上每一段链路的实际频谱宽度SW;或者,第一承载能力信息包括所有备选传输路径上每一段链路实际能够支持的业务速率。基于此,第一承载能力信息还可以包括备选传输路径上每一段链路的信道衰减、承载波长、标称频谱宽度的至少一项。每一段链路的承载能力信息具体可参照表2和表3。
以400G业务的配置过程为例进行说明,该400G业务对承载信道的要求是:3dB衰减级别下实际SW不小于60G。在本实施例中,首先,网络控制侧向设备A发送在设备A与设备Z之间开通400G业务的请求,设备A收到该请求后,开始计算设备A和设备Z之间的传输路径是否适合承载该业务。例如,在本实施例中从设备A到设备Z之间存在两条备选传输路径,分别是A-B-Z和A-C-Z。其中,备选传输路径A-B-Z的A-B段的3dB衰减下的实际SW为63G,高于业务要求的60G,传输路径A-B满足业务的要求;B-Z段的3dB衰减下的实际SW为59G,低于业务要求的60G,无法承载400G业务;综上,备选传输路径A-B-Z不能用于承载该400G业务。同时,备选传输路径A-C-Z的A-C段的3dB衰减下的实际SW为63G,高于业务要求的60G,可以承载400G业务;C-Z段的3dB衰减下的实际SW为62G,高于业务要求的60G,也可以承载400G业务;综上,备选传输路径A-C-Z可以用于承载该400G业务。基于上述计算和分析,设备A最终将选择A-C-Z作为目标传输路径进行400G业务的承载。
作为一个示例,第一设备在接收业务请求消息之前,先接收其他设备发送的第二承载能力信息。其中,第二承载能力信息为第一承载能力信息的子集,第一承载能力信息标识业务请求消息请求建立的业务的传输路径的每一段链路的实际承载能力;第二承载能力信息标识传输路径上至少一段链路的实际承载能力。
可选地,设备A可以根据第一承载能力信息直接计算出目标传输路径;如果计算出可用的传输路径有不止一条,可以通过链路质量、可用资源、传输时延等信息选择最合适的一条。
作为一个示例,当网络设备的频谱宽度矩阵通过表3所示的格式进行表达时,上述计算、分析、选择过程将更为简化,设备无需将频谱宽度转换为业务传输速率,直接确定3dB衰减 级别下各段路径是否能够承载被请求的400G业务即可。例如,通过设备的频谱宽度矩阵获取设备A在3dB衰减下通过波长λ1可以承载400G及以下的业务,设备B在3dB衰减下通过波长λ2可以承载100G及以下的业务,设备C在3dB衰减下通过波长λ3可以承载400G及以下的业务;则确认A-B、A-C、C-Z段均可以承载400G及以下的业务,B-Z段仅能承载100G及以下的业务;综上选择路径A-C-Z进行400G业务承载。其中λ1、λ2、λ3可以是相同波长。
作为一个示例,上述计算、分析和选择路径的过程可以通过网络设备内的计算模块完成;或者在部分网络中可以通过集中式的网络控制器中的路径计算单元进行,其原理与上述计算模块相同,本实施例不再进行赘述。
应理解,在本发明实施例中,设备的承载能力信息表示的是以该设备为起点的链路的业务承载能力,例如设备A的承载能力信息表示的是A-B和A-C段的业务承载能力;设备B的承载能力信息表示的是B-Z段的业务承载能力,设备C的承载能力信息表示的是C-Z段的业务承载能力。
需要说明的是,本实施例中表达各设备的承载能力信息的格式有多种,该设备在特定衰减级别下通过特定波长承载业务的实际SW仅为其中一种表达。事实上,设备承载能力信息的表达格式可以在该设备实际SW基础上存在多种变型,例如通过该设备在特定衰减级别下通过特定波长承载业务的最高速率来表示。
此外,还需要说明的是,每个设备的承载能力信息可以通过OSPF协议传送给相邻接点,同时接收相邻接点发送的相邻接点及其相邻接点的承载能力信息。基于此,在上述示例中,设备A中可以获取一定区域内各设备的承载能力信息,并根据各设备的承载能力信息确认以设备A为第一设备的各条备选路径是否能够承载需要配置的业务。
例如,第一设备通过扩展的设备间通信协议接收来自其他设备的第二承载能力信息,所述扩展的设备间通信协议增加消息字段用于标识第二承载能力信息。具体扩展方式可参照前述实施例,此处不再进行赘述。
第一设备确定业务的传输路径之后,可以向第二设备发送业务配置信息。其中,第二设备位于已确定的传输路径上,且为第一设备的相邻下游设备,业务配置信息可以包括业务类型、源宿设备、资源预留请求等,其中资源预留请求用于向第二设备请求预留一定的资源用于业务承载。此外,所述业务配置信息还可以包括传输路径信息,使其可以沿着传输路径进行逐跳转发。
作为一个示例,所述业务配置信息在传输路径的各设备之间通过资源预留协议(英文:Resource Reservation Protocol;缩写:RSVP)以信令形式传送。
需要说明的是,本实施例中业务第一设备可以替换为网络集中控制器实现。具体地,网络集中控制器接收业务请求消息,然后根据业务请求消息和承载能力信息确定业务的传输路径,之后向各设备下发业务配置信息。其中,PCE为网络集中控制器中的路径计算单元,具有网络拓扑、设备及其承载能力、当前资源使用情况等信息,可以实现复杂的路径计算。当其收到PCC的业务请求消息时,结合当前网络拓扑、各设备及其承载能力、当前资源使用情况等信息,通过路由算法计算并确定可用路径,并向PCC返回路径信息。例如,当确定业务的承载路径后,网络集中控制器向第一设备发送业务配置信息,之后第一设备及其下游设备逐跳转发所述业务配置信息;或者,网络集中控制器分别向确定路径上的所有设备下发业务配置信息,所有设备预留资源用于业务承载。
作为一个示例,当网络路径发生故障导致业务中断时,通过上述实施例中的业务配置方 法可以实现业务恢复。具体地,以图3所示的网络拓扑图为例,当路径A-Z发生故障时,上述400G和100G两条业务均中断,业务源设备A启动业务恢复机制,即重路由,以寻求其他路径承载两条业务。根据前述实施例中对图2中网络各段业务承载能力的分析,A-B、A-C、C-Z段均可以承载400G及以下的业务,B-Z段仅能承载100G及以下的业务,因此两条业务将被分别分配到A-B-Z和A-C-Z进行承载,其中,A-B-Z承载100G业务,A-C-Z承载400G业务。
作为一个示例,当路径A-Z发生故障,业务第一设备A接收业务恢复请求,所述业务恢复请求可以包括业务源、宿设备,传输速率、业务类型等信息,用于请求设备A寻求其他路径承载现存的两条中断业务。第一设备A可以先确定400G业务新的传输路径,然后确定100G业务新的传输路径;或者第一设备A先计算现有两条路径的承载能力,然后将两条路径分别分配给两条业务。
本申请实施例可以根据上述方法示例对设备或控制侧进行功能模块的划分,例如可以可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图5为本实施例提供的一种网络设备的结构示意图。该网络设备500可以是上述实施例中的任一设备,也可以是上述实施例中的网络集中控制器。作为一个示例,该网络设备500可以用于执行图4所示的方法中源设备所执行的步骤。
网络设备500至少包括接收模块510、计算模块520、存储模块530。其中,接收模块510用于执行以下步骤:接收业务请求消息;计算模块520用于根据业务请求消息和承载能力信息计算并确定业务的传输路径;存储模块530用于存储该网络设备和其它网络设备发送的承载能力信息。例如,结合图4,接收模块510具体用于执行步骤S401;计算模块520具体用于执行步骤S402。
接收模块510还可以用于:接收其他网络设备发送的承载能力信息,该步骤可以在网络设备接收业务请求消息之前完成。
作为一个示例,所述接收模块510还用于接收业务恢复请求;所述业务恢复请求用于当业务的传输路径出现故障导致业务中断时,请求源设备寻求其他路径承载中断业务。作为一个示例,当网络设备500为网络集中控制器时,接收模块510用于接收客户侧网络设备发送的业务请求消息;计算模块520用于根据业务请求消息和承载能力信息计算并确定业务的传输路径;存储模块530用于存储下层网络设备发送的承载能力信息。
可选地,当网络设备500为网络集中控制器时,接收模块510还用于接收物理层多个网络设备上报的承载能力信息。
一般来说,网络设备分为光层设备、电层设备以及光电混合设备。光层设备指的是能够处理光层信号的设备,例如:可重构光分插复用器(reconfigurable optical add-drop multiplexer,ROADM)。电层设备指的是能够处理电层信号的设备,例如:能够处理电层信号的设备,交换机和路由器。光电混合设备指的是具备处理光层信号和电层信号能力的设备。需要说明的是,根据具体的集成需要,一台网络设备可以集合多种不同的功能。本申请提供的技术方案适用于需要处理频谱的不同形态和集成度的网络设备。
图6为本发明实施例提供的一种网络设备的结构示意图。网络设备600包括存储器和处理器,还可以包括通信接口和总线。其中,处理器、通信接口和存储器通过总线连接,处理 器用于执行存储器的可执行模块,例如计算机程序。
其中,存储器可以包含高速随机存取存储器(英文:Random Access Memory,缩写:RAM),也可以包括只读存储器,例如至少一个磁盘存储器。通过至少一个通信接口(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,其他网元可以是互联网、广域网、本地网、城域网等。
总线可以是ISA总线、PCI总线或EASA总线等。此外,总线可以分为地址总线、数据总线、控制总线等。
处理器可以是中央处理器,通用处理器、特定集成电路(英文:application specific integrated circuit,缩写:ASIC)、微处理器(英文:digital signal processor,缩写:DSP),现场可编程门阵列(英文:field programmable gate array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
本申请实施例的说明书和权利要求书及上述附图中的术语“首先”、“然后”,“最后”等并不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的方案,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种路由计算的方法,其特征在于,所述方法包括:
    第一设备接收业务请求消息,所述业务请求消息用于请求所述第一设备确定承载所述业务请求消息请求建立的业务的传输路径;
    所述第一设备根据所述业务请求消息和第一承载能力信息确定所述传输路径,所述第一承载能力信息用于指示所述传输路径上每一段链路的实际承载能力。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一设备接收业务请求消息之前,所述方法还包括:所述第一设备接收其他设备发送的第二承载能力信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一设备至少保存有所述第一设备所在下游链路的第三承载能力信息。
  4. 根据权利要求1-3任一所述方法,其特征在于,所述第一承载能力信息包括所述传输路径上至少一段链路的实际频谱宽度。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述第一承载能力信息包括所述传输路径上至少一段链路实际能够支持的业务速率。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述第一承载能力信息包括:
    所述传输路径上至少一段链路的信道衰减、承载波长、标称频谱宽度中的至少一项。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述业务请求消息包括新业务的建路请求,和/或已有中断业务的重新建路请求。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述所述业务为高速率业务。
  9. 根据权利要求2所述的方法,其特征在于,所述第一设备通过扩展的设备间通信协议接收来自其他设备的所述第二承载能力信息,所述扩展的设备间通信协议增加消息字段用于标识所述第二承载能力信息。
  10. 一种路由计算设备,包括:
    接收模块,用于接收业务请求消息;
    计算模块,用于根据所述业务请求消息和第一承载能力信息确定所述业务的传输路径,所述第一承载能力信息用于指示所述传输路径上每一段链路的实际承载能力。
  11. 根据权利要求10所述的设备,其特征在于,所述接收模块还用于:接收其它设备发送的所述第二承载能力信息。
  12. 根据权利要求10或11所述的设备,其特征在于,所述设备还包括:存储模块,所述存储模块用于至少保存所述设备所在下游链路的所述第三承载能力信息。
  13. 根据权利要求10-12任一所述的设备,其特征在于,所述第一承载能力信息包括所述传输路径上至少一段链路的实际频谱宽度。
  14. 根据权利要求10-13任一所述的设备,其特征在于,所述第一承载能力信息包括所述传输路径上至少一段链路实际能够支持的业务速率。
  15. 根据权利要求10-14任一所述的设备,其特征在于,所述第一承载能力信息包括:
    所述传输路径上至少一段链路的:信道衰减、承载波长、标称频谱宽度中的至少一项。
  16. 根据权利要求11所述的方法,其特征在于,所述接收模块还用于接收扩展的设备间协议,所述扩展的设备间协议增加消息字段用于标识所述第二承载能力信息。
  17. 根据权利要求10-16任一所述的设备,其特征在于,所述接收模块还用于:
    接收业务请求消息,所述业务请求消息包括新业务的建路请求,和/或已有中断业务的重新建路请求。
  18. 一种确定业务传输路径的系统,其特征在于,所述系统包括至少一个如权利要求11-18任一项所述的设备。
  19. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令、所述程序或指令被运行时会驱动设备执行如权利要求1至9任一所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,所述计算机程序或指令被计算机执行时,使得计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2020/127356 2020-03-16 2020-11-07 一种路由计算的方法、设备和系统 WO2021184775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20925818.5A EP4109920A4 (en) 2020-03-16 2020-11-07 ROUTING CALCULATION METHOD, DEVICE AND SYSTEM
US17/944,422 US20230007563A1 (en) 2020-03-16 2022-09-14 Route calculation method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010180618.6 2020-03-16
CN202010180618.6A CN113411688B (zh) 2020-03-16 2020-03-16 一种路由计算的方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/944,422 Continuation US20230007563A1 (en) 2020-03-16 2022-09-14 Route calculation method, device, and system

Publications (1)

Publication Number Publication Date
WO2021184775A1 true WO2021184775A1 (zh) 2021-09-23

Family

ID=77676046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127356 WO2021184775A1 (zh) 2020-03-16 2020-11-07 一种路由计算的方法、设备和系统

Country Status (4)

Country Link
US (1) US20230007563A1 (zh)
EP (1) EP4109920A4 (zh)
CN (1) CN113411688B (zh)
WO (1) WO2021184775A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572837A (zh) * 2009-06-18 2009-11-04 烽火通信科技股份有限公司 一种用于ason批量路径计算的路由信息更新的方法
CN102143066A (zh) * 2011-02-17 2011-08-03 华为技术有限公司 建立标签交换路径的方法、节点设备和系统
WO2013034201A1 (en) * 2011-09-08 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Path computation in wavelength switched optical networks
CN105897575A (zh) * 2016-06-03 2016-08-24 中国电子科技集团公司第三十研究所 一种sdn下基于多约束路径计算策略的路径计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656589B (zh) * 2008-08-21 2013-04-17 华为技术有限公司 一种dwdm网络信道优化的方法和装置
CN102026046B (zh) * 2009-09-10 2013-06-26 华为技术有限公司 光网络中的路径处理方法、光通信装置及光通信系统
US8594471B2 (en) * 2011-03-30 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Adaptive waveguide optical switching system and method
CN102255801B (zh) * 2011-06-27 2014-01-01 华为技术有限公司 波分网络中的路由方法及装置
CN103748817B (zh) * 2011-08-23 2017-05-03 瑞典爱立信有限公司 用于灵活网格波长交换光网络的路由选择和带宽指配
US10284290B2 (en) * 2015-09-30 2019-05-07 Juniper Networks, Inc. Packet routing using optical supervisory channel data for an optical transport system
CN105634954B (zh) * 2016-01-08 2019-04-16 烽火通信科技股份有限公司 基于wson网络考虑光损伤的最短路径计算方法
EP3419228B1 (en) * 2016-03-15 2020-10-21 Huawei Technologies Co., Ltd. Service path establishment method, node device, and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572837A (zh) * 2009-06-18 2009-11-04 烽火通信科技股份有限公司 一种用于ason批量路径计算的路由信息更新的方法
CN102143066A (zh) * 2011-02-17 2011-08-03 华为技术有限公司 建立标签交换路径的方法、节点设备和系统
WO2013034201A1 (en) * 2011-09-08 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Path computation in wavelength switched optical networks
CN105897575A (zh) * 2016-06-03 2016-08-24 中国电子科技集团公司第三十研究所 一种sdn下基于多约束路径计算策略的路径计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109920A4

Also Published As

Publication number Publication date
EP4109920A1 (en) 2022-12-28
CN113411688A (zh) 2021-09-17
CN113411688B (zh) 2023-04-07
US20230007563A1 (en) 2023-01-05
EP4109920A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
EP2860891B1 (en) Flexible virtual optical network provisioning using distance-adaptive modulation
US11652546B2 (en) Optical network system, optical node device, and optical network control method
US9768904B2 (en) Method and apparatus for allocating slots for transmission of data
US9941992B2 (en) Method and apparatus for efficient network utilization using superchannels
WO2011053558A1 (en) System and method for optical bypass routing and switching
WO2013000328A1 (zh) 灵活栅格光网络的波长标签编码方法、处理方法及节点
CN103260094B (zh) 一种路由方法、路由策略的通知方法及相应的装置
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
EP2983316B1 (en) Method and apparatus for multicarrier spectrum transition in service hitless mode
WO2021184775A1 (zh) 一种路由计算的方法、设备和系统
WO2012163015A1 (zh) 路径计算的方法及装置
WO2010130177A1 (zh) 业务连接建立方法、路径计算单元设备及网络系统
EP2685651B1 (en) Wavelength service information notification method, device and system
KR101607473B1 (ko) 광 네트워크에서 대역폭을 할당하는 방법
CN106936721B (zh) 基于hsr的cdc-f roadm组播交换节点能效调度方法
CN109698982B (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
Baig et al. The effect of frequency slot demand in elastic optical network (EON)
Khan et al. An iterative optimization approach for routing, modulation, and categorical spatial bandwidth block allocation to improve network performance for dynamic traffic in elastic optical networks
Li et al. Service provisioning in wavelength-switched optical networks based on P2MP transceivers
Halder et al. Energy-Efficient Virtual Optical Network Embedding Over Mixed-Grid Optical Networks
WO2013120437A1 (zh) 一种路由洪泛方法及装置及路径计算方法及路径计算单元
EP2640086B1 (en) Method and node device for establishing optical cross connection
Li et al. An innovative RSA scheme in multi-domain heterogeneous software
WO2020061790A1 (zh) 基于距离自适应的波带交换方法
WO2018014274A1 (zh) 建立路径的方法和节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020925818

Country of ref document: EP

Effective date: 20220921

NENP Non-entry into the national phase

Ref country code: DE