WO2021184664A1 - 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质 - Google Patents

自动工作系统、自动行走设备及其控制方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2021184664A1
WO2021184664A1 PCT/CN2020/109283 CN2020109283W WO2021184664A1 WO 2021184664 A1 WO2021184664 A1 WO 2021184664A1 CN 2020109283 W CN2020109283 W CN 2020109283W WO 2021184664 A1 WO2021184664 A1 WO 2021184664A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
area
captured image
control method
Prior art date
Application number
PCT/CN2020/109283
Other languages
English (en)
French (fr)
Inventor
朱绍明
任雪
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2021184664A1 publication Critical patent/WO2021184664A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals

Definitions

  • the invention relates to the field of intelligent control, in particular to an automatic working system, an automatic walking device, a control method thereof, and a computer-readable storage medium.
  • intelligent robots With the continuous advancement of computer technology and artificial intelligence technology, automatic walking equipment and automatic working systems of intelligent robots have slowly entered people's lives, such as intelligent sweeping robots and intelligent lawn mower robots.
  • smart robots are small in size, and are integrated with sensing devices, driving devices, batteries, etc., without manual manipulation, and can travel and work in a prescribed area.
  • the battery power when the battery power is insufficient, it can automatically return to the charging station, dock with the charging station and charge, and continue to travel and work after the charging is completed.
  • the working area of the existing automatic working system is large lawn, and the boundary is mostly energized equipment buried under the ground, so that the intelligent lawn mowing robot can sense .
  • the boundary line is buried under the ground, much manpower and material resources are required.
  • burying the boundary line requires certain requirements, for example, the angle of the corner cannot be less than 90 degrees, etc., which also limits the shape of the lawn for the intelligent lawnmower robot to work to a certain extent.
  • the present invention provides a control method of an autonomous walking device, which acquires a photographed image; processes the photographed image to acquire a processed image; divides the processed image into at least one sub-region; and acquires the area of each sub-region n-length L; statistical processing image L n> the number L of sub-areas V, and referred to as a special sub-regions and the number N b, where V L is the predetermined length threshold; if N b ⁇ 1, the captured image is determined It belongs to a lawn area; if N b > 1, it is determined that the captured image belongs to an incomplete lawn area.
  • the step of "obtaining the area length L n of each sub-area" includes: separately obtaining the distance dx n that is the furthest apart in the horizontal direction and the distance dy n that is the furthest apart in the vertical direction for each sub-region. ; Calculate the area length L n of each sub-area, where,
  • the step "if N b ⁇ 1, then determine that the captured image belongs to the lawn area" includes:
  • the step of "processing the captured image to obtain a processed image” includes: performing bilateral filtering on the captured image to generate a filtered image; normalizing the filtered image to generate a standard mode image; Perform image segmentation to generate segmented images; perform flood filling processing on the segmented images to obtain a filled image and record it as a processed image.
  • the pyramid mean shift algorithm is used for image segmentation.
  • the step of "segmenting the processed image into at least one sub-region" includes: dividing the processed image into at least one sub-region according to color.
  • the length dimension L of the threshold value V positive correlation of the captured image is a further improvement of the present invention.
  • the present invention provides an automatic working system, including: an automatic traveling device, which can work according to the above-mentioned control method; The working area, the boundary extends upward from the ground.
  • the present invention provides an automatic working system, which includes: an automatic walking device that can work according to the above-mentioned control method;
  • the geology of the working area and the non-working area is different and forms a boundary.
  • the present invention provides an automatic walking device, including a main body, a walking module, a power supply module, and a memory and a processor arranged in the main body.
  • the memory stores a computer program that can run on the processor.
  • the autonomous walking device further includes a camera provided on the main body, and the shooting direction of the camera faces the front side of the autonomous walking device along the traveling direction; the processor can realize the above-mentioned when the computer program is executed. Steps of the control method of autonomous walking equipment.
  • the autonomous walking equipment further includes an ultrasonic detector, and the ultrasonic detector is installed on the body.
  • the present invention provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, it can realize the steps in the control method of the autonomous walking device as described above.
  • the present invention can process and analyze the photographed image taken by the autonomous walking device, divide the processed image into at least one sub-region, and calculate the region length L n of the sub-region, If the area length L n of a certain sub-area is too large, it means that the range of the sub-area is large and can be judged as a special sub-area; and if the number of special sub-areas N b is more than one, it can be judged that the captured image belongs to Incomplete lawn area, it can be determined that there are large obstacles or boundaries in the captured image, which requires automatic walking equipment to retreat, turn and other operations to avoid; if the number of special sub-regions N b is not more than one, it can be It is determined that the captured image is entirely a lawn area, even if there are some obstacles such as fallen leaves, rocks, etc., it will not affect the travel and work of the automatic walking equipment. Therefore, by analyzing the captured images, it is possible to analyze whether the automatic walking encounters boundaries or obstacles, which is more convenient and
  • Figure 1 is a schematic diagram of the structure of the automatic working system of the present invention
  • Fig. 2 is a schematic flow chart of the control method of the automatic working system of the present invention.
  • Fig. 3 is a schematic diagram of image processing in the control method of the automatic working system of the present invention.
  • the self-propelled equipment of the present invention may be an automatic lawn mower, or an automatic vacuum cleaner, etc., which automatically walks in the work area for mowing and vacuuming.
  • the self-propelled equipment is a lawn mower as an example.
  • the working area may be a lawn.
  • the self-propelled equipment is not limited to lawn mowers and vacuum cleaners, but can also be other equipment, such as spraying equipment, snow removal equipment, monitoring equipment, etc., suitable for unattended equipment.
  • a control method of an autonomous walking device 1 includes:
  • N b > 1 it is determined that the captured image belongs to an incomplete lawn area.
  • the captured image captured by the autonomous vehicle 1 can be processed and analyzed, and the processed image can be divided into at least one sub-region, and the region length L n of the sub-region can be calculated. If a certain sub-region If the length of the area L n is too large, it means that the sub-area has a large range and can be judged as a special sub-area; and if the number of special sub-areas N b is more than one, it can be judged that the captured image belongs to an incomplete lawn area , It can be determined that there are large obstacles or boundaries 2 in the captured image, so that the automatic walking device 1 is required to perform operations such as backing, turning, etc.
  • the captured image is entirely a lawn area, even if there are some obstacles such as fallen leaves, rocks, etc., it will not affect the traveling and working of the autonomous walking device 1. Therefore, by analyzing the captured images, it can be analyzed whether the automatic walking encounters the boundary 2 or obstacles, which is more convenient and makes the control more sensitive and effective.
  • the step of "obtaining the area length L n of each sub-area" includes:
  • the processed image after processing the captured image to obtain the processed image, the processed image can be divided into at least one sub-areas. Since the shape of the sub-region is uncertain, it may be a variety of irregular shapes. Therefore, in the present invention, acquiring the farthest distance dx n in the horizontal direction and the farthest distance dy n in the vertical direction of each sub-region is equivalent to a smallest rectangle that can enclose the sub-region. Furthermore, the diagonal length of the smallest rectangle surrounding the sub-region is obtained as the region length L n of the sub-region. Therefore, the region length L n can better reflect the size of the subregion.
  • dx 1 is the farthest distance of the L 1 sub-region in the horizontal direction
  • dy 1 is the farthest distance of the sub-region in the vertical direction.
  • dx 1 dy 1 and the dashed box enclosing the composition of the sub-region is the smallest rectangular, L 1 so that the sub-region is the region of length L 1.
  • the processed image in Figure 3 forms a sub-region as a whole, where dx 3 is the farthest distance of the L 3 sub-region in the horizontal direction, dy 3 is the farthest distance of the sub-region in the vertical direction, and L 3 is The area length of this subarea.
  • the area length L n of a certain sub-area is longer and exceeds the length threshold V L , it can indicate that the sub-area has a larger range and is a special sub-area, and the special sub-area has a high probability of being grass and boundary 2 Or larger obstacles. If the area length L n of a certain sub-area is short and does not exceed the length threshold V L , it can be judged that the range of the sub-area is small, which may be fallen leaves, rocks, etc.
  • L 3 and L 1 are longer and exceed the length threshold V L , it can be explained that the two sub-regions have a larger range as special sub-regions, and the number of special sub-regions in the captured image is two. If there are more than one, the L 1 sub-region may be a large obstacle or boundary, and the L 3 sub-region is grass. The captured image belongs to an incomplete lawn area. In the L 2 sub-region in FIG. 3, L 2 is shorter and smaller than the length threshold V L , indicating that the sub-region may be deciduous rocks or the like.
  • the foregoing technical solution introduces a calculation method of the region length L n , if other calculation methods are adopted, as long as the size of the sub-region can be reflected, the objective of the present invention can be achieved as well.
  • step "if N b ⁇ 1, then judge that the captured image belongs to the lawn area" includes:
  • the sub-region may be small stones, shadows, bare soil, leaves and other obstacles on the lawn that will not affect the movement of the automatic walking equipment, and these obstacles Objects are not actual obstacles. Therefore, ultrasonic detectors are also installed on the automatic traveling equipment, and the ultrasonic detectors are used to detect the distance between these sub-areas and the automatic traveling equipment.
  • the sub-area cannot Cause actual obstacles; if the distance is small and not greater than the preset distance threshold V S , it means that the sub-area is a small obstacle, such as a tall stone, and it will affect the travel of the automatic walking device.
  • the present invention it is necessary to process and analyze the captured image to obtain the processed image, and then divide the processed image into at least one sub-region. Obviously, at least one sub-region can be included in the processed image.
  • the present invention provides a specific embodiment, which can process the captured image to form the processed image as described above.
  • the step of "processing the captured image to obtain a processed image” includes:
  • the segmented image meanImage is filled with water, and the filled image fillImage is obtained and recorded as the processed image.
  • bilateral filtering is a non-linear filtering method that combines the spatial proximity of the image and the similarity of pixel values. It also considers the spatial information and gray-scale similarity to achieve the purpose of edge preservation and denoising. . It is simple, non-iterative, and partial.
  • the normalization process refers to the process of performing a series of standard processing transformations on the image and transforming the image into a fixed standard form.
  • Image segmentation is a crucial preprocessing in image recognition and computer vision.
  • Image segmentation is based on the brightness and color of pixels in the image, and artificial intelligence is introduced to correct errors in segmentation caused by uneven lighting, shadows, unclear images, or noise.
  • image segmentation can be roughly processed into an image composed of several different area color blocks.
  • image segmentation can adopt a variety of methods, such as a threshold-based segmentation method, a region-based segmentation method, an edge-based segmentation method, and a specific theory-based segmentation method.
  • the pyramid mean shift algorithm is used for image segmentation.
  • the autonomous walking device 1 in the present invention since the autonomous walking device 1 in the present invention usually walks on the grass, it needs to identify large obstacles or boundaries 2. It has been filled with flooded water.
  • the flood filling process refers to filling the connected areas with the same color, and the purpose of flood filling is achieved by setting the upper and lower limits of the connectable pixels, and the relatively similar pixel areas can be connected into a whole through the same color.
  • the captured image can be processed into a processed image to facilitate subsequent analysis.
  • the processed image may include at least one sub-region, and the colors between adjacent sub-regions are not the same.
  • the step of "segmenting the processed image into at least one sub-areas” includes: segmenting the processed image into at least one sub-areas according to colors. Since the sub-regions belong to different objects, such as grass, rocks, fallen leaves, boundary 2, etc., the colors between the sub-regions are also different, so the colors can be used as the basis for segmentation. Of course, different ways of segmenting according to color can also be used, for example, by calculating the pixel value of each pixel.
  • the threshold value of the length L of the V is larger.
  • the aforementioned preset distance threshold V S is also related to the size of the captured image, and the larger the size of the captured image, the greater the value of the length threshold V S.
  • the present invention also provides an automatic working system, which includes:
  • the self-propelled equipment 1 can work according to the above-mentioned control method
  • the boundary 2 is enclosed in a ring shape and used to define the working area of the autonomous vehicle 1, and the boundary 2 extends upward from the ground.
  • the autonomous vehicle 1 obtains the photographed image, and then processes and analyzes the photographed image to obtain the area that the autonomous vehicle 1 travels. Therefore, the boundary 2 of the automatic working system of the present invention must extend upward from the ground. Only then can it be photographed and recognized by the autonomous walking device 1.
  • the present invention also provides an automatic working system, including:
  • the self-propelled equipment 1 can work according to the above-mentioned control method
  • the working area is provided with a non-working area outside the edge of the working area, and the geology of the working area and the non-working area are different and form a boundary 2.
  • the grass is the working area.
  • the non-working area can be bare soil, floor, cement board, etc., and its geology is larger than that of grass. Its color is also quite different from that of grass. Therefore, due to the obvious difference in geology, a boundary 2 will be naturally formed between the working area and the non-working area. The boundary 2 is not artificially set but formed naturally. However, due to the obvious color difference between the working area and the non-working area and the formation of the boundary 2, the control method of the present invention can also be applied.
  • the present invention also provides an autonomous walking device 1, including a main body, a walking module, a power supply module, and a memory and a processor arranged in the main body.
  • the memory stores a computer program that can run on the processor.
  • the walking device 1 also includes a camera arranged on the body, and the shooting direction of the camera faces the front side of the automatic walking device 1 along the traveling direction; the processor can realize the automatic walking as described above when the computer program is executed.
  • the body of the autonomous vehicle 1 in the present invention is provided with a camera, so that the photographed image can be photographed and acquired.
  • the photographing direction of the camera is toward the front side of the autonomous vehicle 1 in the traveling direction, so that the camera captures a view of the front side of the autonomous vehicle 1. Therefore, it is possible to analyze the subsequent movement trajectory of the autonomous vehicle 1 according to the photographed images taken by the autonomous vehicle 1: If it is determined that the photographed image belongs to the lawn area, the autonomous vehicle 1 is controlled to further walk and work; if; if it is judged to be taken If the image belongs to a non-complete lawn area, the automatic walking device 1 is controlled to stop, turn, or retreat.
  • the autonomous walking device 1 further includes an ultrasonic detector, and the ultrasonic detector is installed on the body.
  • the ultrasonic detector is used to detect the distance S n between the sub-area with a smaller area length V L and the autonomous vehicle 1. If it is judged that there is a small obstacle in the captured image, when the small obstacle is reached, the automatic traveling device 1 is controlled to stop, turn or retreat; if it is determined that there is no small obstacle in the captured image, the automatic traveling device can be controlled 1 Travel freely.
  • the present invention also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, it can realize the steps in the control method of the autonomous walking device 1 as described above. That is to say, when the processor executes the computer program, the steps of the control method of any embodiment of the autonomous walking device 1 described above can be implemented.
  • the present invention provides an automatic working system, an automatic traveling device 1 and a control method thereof, and a computer-readable storage medium.
  • the area length L of the sub-area can be adjusted.
  • n is calculated. If the area length L n of a certain sub-area is too large, it means that the sub-area has a larger range and can be judged as a special sub-area; and if the number of special sub-area N b is more than one, it can be judged
  • the captured image belongs to an incomplete lawn area, and it can be determined that there are large obstacles or boundaries 2 in the captured image, so that the automatic walking device 1 is required to perform operations such as backing, turning, etc.
  • the captured image is entirely a lawn area, even if there are some obstacles such as fallen leaves, rocks, etc., it will not affect the travel and work of the autonomous device 1. Therefore, by analyzing the captured images, it is possible to analyze whether the automatic walking encounters the boundary 2 or obstacles, which is more convenient and makes the control more sensitive and effective.
  • the present invention also proposes a specific embodiment for processing the captured image, which is mainly by performing bilateral filtering processing, normalization processing, image segmentation and flood filling processing on the captured image, thereby processing the processed image into At least one sub-region is included, and the pyramid mean shift algorithm is particularly used for image segmentation, so that the captured image processing result can more satisfy the purpose of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动工作系统、自动行走设备(1)及其控制方法及计算机可读存储介质,控制方法包括:获取拍摄图像;对拍摄图像进行处理获取处理图像;将处理图像分割为至少一个子区域;获取每一个子区域的区域长度L n;统计处理图像中L n>V L的子区域的数量,并记为特殊子区域的数量N b,其中V L为预设长度阈值;若N b≤1,则判断拍摄图像属于草坪区域;若N b>1,则判断拍摄图像属于非完全草坪区域。若特殊子区域的数量N b多于一个,则可确定拍摄图像中具有大型障碍物或边界(2)等,需要自动行走设备(1)进行后退、转弯等操作以进行避让。从而,通过分析拍摄图像可分析出自动行走是否遇到边界(2)或障碍物,更加方便,使得控制也更加灵敏、有效。

Description

自动工作系统、自动行走设备及其控制方法及计算机可读存储介质 技术领域
本发明涉及智能控制领域,特别是涉及一种自动工作系统、自动行走设备及其控制方法及计算机可读存储介质。
背景技术
随着计算机技术和人工智能技术的不断进步,智能机器人的自动行走设备、自动工作系统已经慢慢进入人们的生活,例如智能扫地机器人、智能割草机器人等。通常的,此类智能机器人体积较小,且集成有传感装置、驱动装置、电池等,无需人工操控,并可在规定的区域内行进并工作。并且,在电池电量不够时,可自动返回充电站,与充电站对接并充电,充电完成后继续行进和工作。
针对现有的智能割草机器人来说,现有的自动工作系统的工作区域均为较大的草坪,并且边界大多是为埋设在地面下的可通电设备,从而可使得智能割草机器人感应到。但是,若在地面下埋设边界线,需要花费较多的人力和物力。并且埋设边界线需要一定的要求,例如拐角的角度不能小于90度等,因而也在一定程度上限制了供智能割草机器人工作的草坪的形状。
因此,必须设计一种较为方便、可以搭建在地面上的自动工作系统,及相应的自动行走设备及其控制方法及计算机可读存储介质。
发明内容
为解决上述问题之一,本发明提供了一种自动行走设备的控制方法,获取拍摄图像;对拍摄图像进行处理获取处理图像;将处理图像分割为至少一个子区域;获取每一个子区域的区域长度L n;统计处理图像中L n>V L的子区域的数量,并记为特殊子区域的数量N b,其中V L为预设长度阈值;若N b≤1,则判断该拍摄图像属于草坪区域;若N b>1,则判断该拍摄图像属于非完全草坪区域。
作为本发明的进一步改进,步骤“获取每一个子区域的区域长度L n”包括: 分别获取每个子区域在水平方向上间隔最远的距离dx n和竖直方向上间隔最远的距离dy n;计算每个子区域的区域长度L n,其中,
Figure PCTCN2020109283-appb-000001
作为本发明的进一步改进,步骤“若N b≤1,则判断该拍摄图像属于草坪区域”之后包括:
超声波探测L n≤V L的子区域与自动行走设备之间的距离S n
统计S n≤V S的子区域的数量,并记为小型障碍物的数量N S,其中,V S为预设距离阈值;
若N S>0,则说明该拍摄图像中具有小型障碍物;
若N S=0,则说明该拍摄图像中无小型障碍物。
作为本发明的进一步改进,步骤“对拍摄图像进行处理获取处理图像”包括:对拍摄图像进行双边滤波处理,生成滤波图像;对滤波图像进行归一化处理,生成标准模式图像;对标准模式图像进行图像分割,生成分割图像;对分割图像进行漫水填充处理,获得填充图像并记为处理图像。
作为本发明的进一步改进,步骤“对标准模式图像进行图像分割”中,采用金字塔均值漂移算法进行图像分割。
作为本发明的进一步改进,步骤“将处理图像分割为至少一个子区域”包括:将处理图像按照颜色分割为至少一个子区域。
作为本发明的进一步改进,长度阈值V L与拍摄图像的尺寸正相关。
为解决上述问题之一,本发明提供了一种自动工作系统,包括:自动行走设备,可按照如上述所述的控制方法工作;边界,围设呈环状并形成用以限定自动行走设备的工作区域,所述边界自地面向上延伸。
为解决上述问题之一,本发明提供了一种自动工作系统,包括:自动行走设备,可按照如上所述的控制方法工作;工作区域,所述工作区域边沿外侧设置有非工作区域,所述工作区域和非工作区域的地质不同且形成边界。
为解决上述问题之一,本发明提供了一种自动行走设备,包括本体、行走模块、电源模块及设置于本体内的存储器和处理器,所述存储器存储有可在处 理器上运行的计算机程序,所述自动行走设备还包括设置于本体上的摄像头,所述摄像头的拍摄方向朝向该自动行走设备沿行进方向的前侧;所述处理器执行所述计算机程序时可实现如上述所述的自动行走设备的控制方法的步骤。
作为本发明的进一步改进,所述自动行走设备还包括有超声波探测器,所述超声波探测器安装于所述本体上。
为解决上述问题之一,本发明提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时可实现如上述所述的自动行走设备的控制方法中的步骤。
与现有技术相比,本发明中,可对自动行走设备所拍摄到的拍摄图像进行处理和分析,并将处理图像分割为至少一个子区域,且对子区域的区域长度L n进行计算,若某个子区域的区域长度L n过大,则说明该子区域的范围较大,可判断为特殊子区域;并且,若特殊子区域的数量N b多于一个,则可判断该拍摄图像属于非完全草坪区域,可确定该拍摄图像中具有大型障碍物或边界等,从而需要自动行走设备进行后退、转弯等操作以进行避让;若该特殊子区域的数量N b不多于一个,则可确定该拍摄图像中完全为草坪区域,即使具有一些障碍物如落叶、石块等,也不会影响自动行走设备的行进及工作。从而,通过分析拍摄图像可分析出自动行走是否遇到边界或障碍物,更加方便,使得控制也更加灵敏、有效。
附图说明
图1为本发明自动工作系统的结构示意图;
图2为本发明自动工作系统的控制方法的流程示意图;
图3为本发明自动工作系统的控制方法中处理图像的示意图。
具体实施例
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在本申请的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本申请的主题的基本结构。
本发明的自动行走设备可以是自动割草机,或者自动吸尘器等,其自动行走于工作区域以进行割草、吸尘工作,本发明具体示例中,以自动行走设备为割草机为例做具体说明,相应的,所述工作区域可为草坪。当然,自动行走设备不限于割草机和吸尘器,也可以为其它设备,如喷洒设备、除雪设备、监视设备等等适合无人值守的设备。
如图1至图3所示,提供了一种自动行走设备1的控制方法,所述控制方法包括:
获取拍摄图像;
对拍摄图像进行处理获取处理图像;
将处理图像分割为至少一个子区域;
获取每一个子区域的区域长度L n
统计处理图像中L n>V L的子区域的数量,并记为特殊子区域的数量N b,其中V L为预设长度阈值;
若N b≤1,则判断该拍摄图像属于草坪区域;
若N b>1,则判断该拍摄图像属于非完全草坪区域。
因此,本发明中,可对自动行走设备1所拍摄到的拍摄图像进行处理和分析,并将处理图像分割为至少一个子区域,且对子区域的区域长度L n进行计算,若某个子区域的区域长度L n过大,则说明该子区域的范围较大,可判断为特殊子区域;并且,若特殊子区域的数量N b多于一个,则可判断该拍摄图像属于非完全草坪区域,可确定该拍摄图像中具有大型障碍物或边界2等,从而需要自动行走设备1进行后退、转弯等操作以进行避让;若该特殊子区域的数量N b不多于一个,则可确定该拍摄图像中完全为草坪区域,即使具有一些障碍物如落 叶、石块等,也不会影响自动行走设备1的行进及工作。从而,通过分析拍摄图像可分析出自动行走是否遇到边界2或障碍物,更加方便,使得控制也更加灵敏、有效。
其中,步骤“获取每一个子区域的区域长度L n”包括:
分别获取每个子区域在水平方向上间隔最远的距离dx n和竖直方向上间隔最远的距离dy n
计算每个子区域的区域长度L n,其中,
Figure PCTCN2020109283-appb-000002
如图3所示,在本发明中,对拍摄图像进行处理获得处理图像后,处理图像上再可被分割为至少一个子区域。由于子区域的形状不确定,可能为各种各样的不规则形状。因而,在本发明中,获取每个子区域在水平方向上间隔最远的距离dx n和竖直方向上间隔最远的距离dy n,则相当于一个可将该子区域包围的最小矩形。进而,再通过求取该包围子区域的最小矩形的对角线长度,来作为该子区域的区域长度L n。因此,该区域长度L n可较好反应该子区域的大小。
如图3中的处理图像所示,具有三个子区域,其中,dx 1为该L 1子区域在水平方向上最远的距离,dy 1为该子区域在竖直方向上最远的距离,该dx 1和dy 1组成的虚线框为包围该子区域的最小矩形,从而该L 1子区域的区域长度即为L 1
而图3中的处理图像整体形成一个子区域,其中dx 3为该L 3子区域在水平方向上最远的距离,dy 3为该子区域在竖直方向上最远的距离,L 3为该子区域的区域长度。
具体的,若某个子区域的区域长度L n较长且超过了长度阈值V L,则可说明该子区域的范围较大为特殊子区域,则该特殊子区域极大概率为草地、边界2或较大障碍物。若某个子区域的区域长度L n较短且不超过长度阈值V L,则可判断该子区域的范围较小,可能为落叶、石块等。
例如,在图3中,L 3和L 1较长且超过了长度阈值V L,则可说明这两个子区域的范围较大为特殊子区域,则该拍摄图像中特殊子区域的数量为两个,大于一个,L 1子区域可能为大型障碍物或边界,L 3子区域则为草地,该拍摄图像属 于非完全草坪区域。而图3中L 2子区域中,L 2较短且小于长度阈值V L,则说明该子区域可能为落叶石块等。
当然,上述技术方案中介绍了区域长度L n的一种计算方式,若采用其他的计算方式,只要能够反应子区域的大小,则一样可以达到本发明的目的。
进一步的,步骤“若N b≤1,则判断该拍摄图像属于草坪区域”之后包括:
超声波探测其L n≤V L的子区域与自动行走设备之间的距离S n
统计S n≤V S的子区域的数量,并记为小型障碍物的数量N S,其中,V S为预设距离阈值;
若N S>0,则说明该拍摄图像中具有小型障碍物;
若N S=0,则说明该拍摄图像中无小型障碍物。
本发明中,若子区域的区域长度L n≤V L,则说明该子区域可能为草坪上的小石块、阴影、裸露土壤、叶片等不会影响自动行走设备行进的障碍物,而这些障碍物并非为实际障碍物。因此,还在自动行走设备上设置超声波探测器,采用超声探测器探测这些子区域与自动行走设备之间的距离,若距离大,且超过了预设距离阈值V S,则说明该子区域无法造成实际的阻碍;若距离小,且不大于预设距离阈值V S,则说明该子区域上为小型障碍物,例如较高的石块,且会影响自动行走设备的行进。
在本发明中,需要对拍摄图像进行处理分析后获得处理图像,再将处理图像分割为至少一个子区域。其中,显然的,处理图像中可包括至少一块子区域。
本发明中提供了一种具体实施例,可将拍摄图像处理形成如上述所述的处理图像。具体的,步骤“对拍摄图像进行处理获取处理图像”包括:
对拍摄图像进行双边滤波处理,生成滤波图像filterImage;
对滤波图像filterImage进行归一化处理,生成标准模式图像norImage;
对标准模式图像norImage进行图像分割,生成分割图像meanImage;
对分割图像meanImage进行漫水填充处理,获得填充图像fillImage并记为处理图像。
其中,双边滤波处理是一种非线性的滤波方法,是结合图像的空间邻近度 和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
而,归一化处理是指对图像进行一系列标准的处理变换、将图像变换为一固定标准形式的过程。
图像分割是图像识别和计算机视觉中至关重要的预处理。图像分割的依据为图像中像素的亮度及颜色,并通过引入人工智能的方法来纠正分割中由于光照不均匀、阴影、图像不清晰、或存在噪声等造成的错误。通过图像分割,可大致将图像处理成由若干个不同区域色块组成的图像。在本发明中从而将标准图像转换为类似于处理图像的图像。并且,图像分割可采用多种方式,例如基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。在本发明中,具体的,步骤“对标准模式图像norImage进行图像分割”中,采用金字塔均值漂移算法进行图像分割。
进一步的,由于本发明中的自动行走设备1通常在草地上行走,因而需要识别大型障碍物或边界2、草地即可,因而为了使得最终的处理图像更容易分析,本发明中还对分割图像进行了漫水填充处理。漫水填充处理是指通过同种颜色填充连通的区域,通过设置可连通像素的上下限来达到漫水填充的目的,并可通过同种颜色将较为类似的像素区域连通为一体。
通过上述方法,可将拍摄图像处理形成处理图像,以方便进行后续的分析。并且,由上述可知,经过处理,处理图像中可包括有至少一个子区域,并且相邻子区域之间的颜色不相同。
因此,步骤“将处理图像分割为至少一个子区域”包括:将处理图像按照颜色分割为至少一个子区域。子区域由于属于不同的物体,例如草地、石块、落叶、边界2等,因而之间的颜色也不相同,从而可以颜色作为分割依据。当然,按照颜色分割也可以采用不同的方式,例如通过计算每个像素点的像素值等。
当然,若采用其他的方式对拍摄图像进行处理并以颜色作为子区域的分割依据、或者采用其他的方式对拍摄图像进行处理并以其他方式对处理图像进行分割、或者采用上述方式对拍摄图像进行处理并以其他方式对处理图像进行分 割,均在本发明的保护范围之内。
另外,上述长度阈值V L与拍摄图像的尺寸相关,且拍摄图像的尺寸越大,长度阈值V L的值就越大。当然,上述预设距离阈值V S也与拍摄图像的尺寸相关,且拍摄图像的尺寸越大,长度阈值V S的值就越大。
本发明中还提供了一种自动工作系统,其包括:
自动行走设备1,可按照如上述所述的控制方法工作;
边界2,围设呈环状并用以限定自动行走设备1的工作区域,所述边界2自地面向上延伸。
由于本发明中,所述自动行走设备1通过获取拍摄图像,再对拍摄图像进行处理分析后获得自动行走设备1行进的区域,因而,本发明自动工作系统的边界2必须自地面向上延伸,从而才可以被自动行走设备1拍摄并识别到。
另外,本发明中还提供了一种自动工作系统,包括:
自动行走设备1,可按照如上述所述的控制方法工作;
工作区域,所述工作区域边沿外侧设置有非工作区域,所述工作区域和非工作区域的地质不同且形成边界2。
由于本发明中的自动行走设备1应用于割草机中,则草地即为工作区域,显然的,非工作区域中可为裸露土壤、地板、水泥板等等,其地质均和草地有较大的不同,其颜色也和草地有较大的不同。因而,由于地质的明显差距会自然的在工作区域和非工作区域之间形成边界2,该边界2不是通过人为进行设置而是自然形成的。但是,由于工作区域和非工作区域之间明显的颜色差别及边界2的形成,也还是可以应用本发明中的控制方法。
本发明中还提供了一种自动行走设备1,包括本体、行走模块、电源模块及设置于本体内的存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述自动行走设备1还包括设置于本体上的摄像头,所述摄像头的拍摄方向朝向该自动行走设备1沿行进方向的前侧;所述处理器执行所述计算机程序时可实现如上述所述的自动行走设备1的控制方法的步骤。也就是说,所述处理器执行所述计算机程序时可实现如上述所述的自动行走设备1的任何一 种实施例的控制方法的步骤。
如上述所述,本发明中的自动行走设备1的本体上设置有摄像头,从而可以拍摄并获取拍摄图像。并且,摄像头的拍摄方向朝向自动行走设备1沿行进方向的前侧,从而所述摄像头拍摄获得的是自动行走设备1前侧的景象。因而,可以根据自动行走设备1所拍摄获得的拍摄图像来分析自动行走设备1接下来的运动轨迹:若判断拍摄图像属于草坪区域,则控制自动行走设备1进一步行走及工作;若;若判断拍摄图像属于非完全草坪区域,则控制自动行走设备1进行停止或转向或后退等操作。
所述自动行走设备1还包括有超声波探测器,所述超声波探测器安装于所述本体上。所述超声波探测器用以检测区域长度V L较小的子区域和自动行走设备1之间的距离S n。若判断该拍摄图像中具有小型障碍物,则在到达该小型障碍物时控制自动行走设备1进行停止或转向或后退等操作;若判断该拍摄图像中无小型障碍物,则可控制自动行走设备1自由行进。
同样的,本发明中还提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时可实现如上述所述的自动行走设备1的控制方法中的步骤。也就是说,所述处理器执行所述计算机程序时可实现如上述所述的自动行走设备1的任何一种实施例的控制方法的步骤。
综上所述,本发明中提供了一种自动工作系统、自动行走设备1及其控制方法及计算机可读存储介质,其中,自动行走设备1的控制方法中,可对子区域的区域长度L n进行计算,若某个子区域的区域长度L n过大,则说明该子区域的范围较大,可判断为特殊子区域;并且,若特殊子区域的数量N b多于一个,则可判断该拍摄图像属于非完全草坪区域,可确定该拍摄图像中具有大型障碍物或边界2等,从而需要自动行走设备1进行后退、转弯等操作以进行避让;若该特殊子区域的数量N b不多于一个,则可确定该拍摄图像中完全为草坪区域,即使具有一些障碍物如落叶、石块等,也不会影响自动行走设备1的行进及工作。从而,通过分析拍摄图像可分析出自动行走是否遇到边界2或障碍物,更加方便,使得控制也更加灵敏、有效。
进一步的,本发明中还提出了一种处理拍摄图像的具体实施例,其主要是通过对拍摄图像进行双边滤波处理、归一化处理、图像分割及漫水填充处理,从而将处理图像处理为包括至少一块子区域,并特别的采用金字塔均值漂移算法进行图像分割,使得拍摄图像处理结果更加能够满足本发明的目的。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种自动行走设备的控制方法,其特征在于,所述控制方法包括:
    获取拍摄图像;
    对拍摄图像进行处理获取处理图像;
    将处理图像分割为至少一个子区域;
    获取每一个子区域的区域长度L n
    统计处理图像中L n>V L的子区域的数量,并记为特殊子区域的数量N b其中V L为预设长度阈值;
    若N b≤1,则判断该拍摄图像属于草坪区域;
    若N b>1,则判断该拍摄图像属于非完全草坪区域。
  2. 根据权利要求1所述的自动行走设备的控制方法,其特征在于,步骤“获取每一个子区域的区域长度L n”包括:
    分别获取每个子区域在水平方向上间隔最远的距离dx n和竖直方向上间隔最远的距离dy n
    计算每个子区域的区域长度L n,其中,
    Figure PCTCN2020109283-appb-100001
  3. 根据权利要求1所述的自动行走设备的控制方法,其特征在于,步骤“若N b≤1,则判断该拍摄图像属于草坪区域”之后包括:
    超声波探测L n≤V L的子区域与自动行走设备之间的距离S n
    统计S n≤V S的子区域的数量,并记为小型障碍物的数量N S,其中,V S为预设距离阈值;
    若N S>0,则说明该拍摄图像中具有小型障碍物;
    若N S=0,则说明该拍摄图像中无小型障碍物。
  4. 根据权利要求1所述的自动行走设备的控制方法,其特征在于,步骤“对拍摄图像进行处理获取处理图像”包括:
    对拍摄图像进行双边滤波处理,生成滤波图像;
    对滤波图像进行归一化处理,生成标准模式图像;
    对标准模式图像进行图像分割,生成分割图像;
    对分割图像进行漫水填充处理,获得填充图像并记为处理图像。
  5. 根据权利要求4所述的自动行走设备的控制方法,其特征在于,步骤“对标准模式图像进行图像分割”中,采用金字塔均值漂移算法进行图像分割。
  6. 根据权利要求1或4所述的自动行走设备的控制方法,其特征在于,步骤“将处理图像分割为至少一个子区域”包括:将处理图像按照颜色分割为至少一个子区域。
  7. 根据权利要求1所述的自动行走设备的控制方法,其特征在于,长度阈值V L与拍摄图像的尺寸正相关。
  8. 一种自动工作系统,其特征在于,包括:
    自动行走设备,可按照如权利要求1至7中的任意一项所述的控制方法工作;边界,围设呈环状并形成用以限定自动行走设备的工作区域,所述边界自地面向上延伸。
  9. 一种自动工作系统,其特征在于,包括:
    自动行走设备,可按照如权利要求1至7中的任意一项所述的控制方法工作;工作区域,所述工作区域边沿外侧设置有非工作区域,所述工作区域和非工作区域的地质不同且形成边界。
  10. 一种自动行走设备,包括本体、行走模块、电源模块及设置于本体内的存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其特征在于,所述自动行走设备还包括设置于本体上的摄像头,所述摄像头的拍摄方向朝向该自动行走设备沿行进方向的前侧;所述处理器执行所述计算机程序时可实现权利要求1至7中任意一项所述的自动行走设备的控制方法的步骤。
  11. 根据权利要求10所述的自动行走设备,其特征在于,所述自动行走设备还包括有超声波探测器,所述超声波探测器安装于所述本体上。
  12. 一种计算机可读存储介质,其存储有计算机程序,其特征在于,该计算机程序被处理器执行时可实现权利要求1至7中任意一项所述的自动行走设备的控制方法中的步骤。
PCT/CN2020/109283 2020-03-19 2020-08-14 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质 WO2021184664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197048.1A CN113495552A (zh) 2020-03-19 2020-03-19 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
CN202010197048.1 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184664A1 true WO2021184664A1 (zh) 2021-09-23

Family

ID=77767983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109283 WO2021184664A1 (zh) 2020-03-19 2020-08-14 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113495552A (zh)
WO (1) WO2021184664A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111460A (zh) * 2013-04-22 2014-10-22 苏州宝时得电动工具有限公司 自动行走设备及其障碍检测方法
CN104239886A (zh) * 2014-09-30 2014-12-24 浙江理工大学 基于图像分析的草坪与背景分界线的提取方法
CN106489103A (zh) * 2014-10-10 2017-03-08 美国iRobot公司 机器人草坪修剪边界确定
CN108267752A (zh) * 2016-12-15 2018-07-10 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
CN109658432A (zh) * 2018-12-27 2019-04-19 南京苏美达智能技术有限公司 一种移动机器人的边界生成方法及系统
EP3603371A2 (en) * 2018-08-03 2020-02-05 Lg Electronics Inc. Lawn mower robot, system of lawn mower robot and control method of lawn mower robot system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173290A1 (zh) * 2013-04-22 2014-10-30 苏州宝时得电动工具有限公司 自动行走设备及其工作区域判断方法
CN107463166A (zh) * 2016-06-03 2017-12-12 苏州宝时得电动工具有限公司 自动行走设备及其控制行走方法
CN205692049U (zh) * 2016-06-24 2016-11-16 桑斌修 一种无边界线的割草机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111460A (zh) * 2013-04-22 2014-10-22 苏州宝时得电动工具有限公司 自动行走设备及其障碍检测方法
CN104239886A (zh) * 2014-09-30 2014-12-24 浙江理工大学 基于图像分析的草坪与背景分界线的提取方法
CN106489103A (zh) * 2014-10-10 2017-03-08 美国iRobot公司 机器人草坪修剪边界确定
CN108267752A (zh) * 2016-12-15 2018-07-10 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
EP3603371A2 (en) * 2018-08-03 2020-02-05 Lg Electronics Inc. Lawn mower robot, system of lawn mower robot and control method of lawn mower robot system
CN109658432A (zh) * 2018-12-27 2019-04-19 南京苏美达智能技术有限公司 一种移动机器人的边界生成方法及系统

Also Published As

Publication number Publication date
CN113495552A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2022021630A1 (zh) 自动行走设备及其控制方法和系统及可读存储介质
CN111104933B (zh) 地图处理方法、移动机器人及计算机可读存储介质
WO2021169190A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
WO2016045593A1 (zh) 自移动机器人
WO2021169193A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
WO2021169192A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
EP4242964A1 (en) Obstacle recognition method applied to automatic traveling device and automatic traveling device
CN213424010U (zh) 一种割草机器人割草范围识别装置
WO2014173290A1 (zh) 自动行走设备及其工作区域判断方法
CN106910198A (zh) 一种草坪割草机无电线围栏的边界确定方法
CN110262487B (zh) 一种障碍物检测方法、终端及计算机可读存储介质
WO2021184665A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
CN115841633A (zh) 一种电力塔和电力线关联矫正的电力塔和电力线检测方法
WO2021042487A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
WO2021184664A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
WO2021184663A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
WO2022000878A1 (zh) 自动行走设备及其控制方法及可读存储介质
CN113223034A (zh) 一种道路边沿检测跟踪方法
Ali et al. Drivable area segmentation in deteriorating road regions for autonomous vehicles using 3D LiDAR sensor
WO2021042486A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机可读存储介质
CN111507274A (zh) 基于自适应路面条件变化机制的多车道线检测方法及系统
KR20200108949A (ko) 높이 센싱 알고리즘을 구비한 자율주행 트랙터
WO2021031406A1 (zh) 自动工作系统、自动行走设备及其控制方法
CN117274949A (zh) 基于摄像头的障碍物、边界检测方法及自动行走设备
CN115147713A (zh) 基于图像识别非工作区域的方法、系统、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925349

Country of ref document: EP

Kind code of ref document: A1