WO2021184586A1 - 基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质 - Google Patents

基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021184586A1
WO2021184586A1 PCT/CN2020/099187 CN2020099187W WO2021184586A1 WO 2021184586 A1 WO2021184586 A1 WO 2021184586A1 CN 2020099187 W CN2020099187 W CN 2020099187W WO 2021184586 A1 WO2021184586 A1 WO 2021184586A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
monitoring
local disk
prometheus
configuration file
Prior art date
Application number
PCT/CN2020/099187
Other languages
English (en)
French (fr)
Inventor
梁桂明
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021184586A1 publication Critical patent/WO2021184586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3034Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3051Monitoring arrangements for monitoring the configuration of the computing system or of the computing system component, e.g. monitoring the presence of processing resources, peripherals, I/O links, software programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/32Monitoring with visual or acoustical indication of the functioning of the machine
    • G06F11/324Display of status information
    • G06F11/327Alarm or error message display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/172Caching, prefetching or hoarding of files

Definitions

  • This application relates to the field of cloud monitoring, and in particular to a private cloud monitoring method, device, computer equipment, and storage medium based on a non-flat network.
  • Cloud services are the increase, use, and interaction modes of Internet-based related services, which usually involve the provision of dynamic, easily expandable and often virtualized resources through the Internet. Cloud services can put the software, hardware, and data needed by the enterprise on the network, and use different IT equipment to connect to each other at any time and place to achieve data access, computing and other purposes.
  • common cloud services include public cloud (Public Cloud) and private cloud (Private Cloud).
  • Public Cloud public cloud
  • Private Cloud Private Cloud
  • Private Clouds the private cloud (Private Clouds) is built for a single customer to use, so it can provide the most effective control of data, security and service quality.
  • each cloud manufacturer tailors the public cloud monitoring solution and then deploys it to the customer's private cloud.
  • the inventor realized that it is difficult for the customer to monitor the related private cloud at this time. Operation and maintenance has increased the operation and maintenance cost and time of various cloud vendors.
  • the monitoring solution for private cloud is delivered to each user in the form of a product, and the network used between different users is basically isolated; at the same time, in the existing private cloud open source monitoring solution, Data collection is basically based on the push method, such as the data push scheme based on zabbix, and the data push scheme based on open-falcon. There is no direct use of the monitoring scheme that can directly pull data, so it is not It can realize real-time and reliable monitoring of relevant performance data of the entire private cloud.
  • the embodiments of the application provide a private cloud monitoring method, device, computer equipment, and storage medium based on a non-flat network, which can enable the control service system to comprehensively and quickly monitor the cloud management platform, and effectively reduce the operation and maintenance costs of private cloud monitoring , Improve the user experience.
  • an embodiment of the present application provides a private cloud monitoring method based on a non-flat network.
  • the method includes: if a monitoring request initiated by a cloud management platform is received, obtaining the local disk of the monitoring service system according to the monitoring request Prometheus monitoring configuration file, the cloud management platform includes a number of servers to be monitored, the configuration file includes a data collection strategy and an alarm strategy; if the monitoring service system includes a local disk, according to the data collection in the configuration file
  • the strategy and preset data transfers pull the corresponding first performance data from the server to be monitored in the network of the cloud management platform that is not located in the local disk of the monitoring service system; store the pulled first performance data To the Prometheus database in the local disk of the monitoring service system; perform alarm analysis on the corresponding data read from the Prometheus database in the local disk according to the alarm policy of the configuration file.
  • the embodiment of the present application also provides a private cloud monitoring device based on a non-flat network.
  • the device includes: a file acquisition unit configured to, if a monitoring request initiated by a cloud management platform is received, obtain data according to the monitoring request.
  • the first data pull unit is configured to:
  • the service system includes a local disk, and according to the data collection strategy in the configuration file and the preset data transfer, the corresponding server to be monitored in the cloud management platform is not located in the network of the local disk of the monitoring service system.
  • the alarm strategy performs alarm analysis on the corresponding data read from the Prometheus database in the local disk.
  • an embodiment of the present application also provides a computer device.
  • the computer device includes a memory and a processor connected to the memory; the memory is used to store a computer program; and the processor is used to run the A computer program stored in the memory to perform the following steps: if a monitoring request initiated by the cloud management platform is received, the configuration file for Prometheus monitoring in the local disk of the monitoring service system is obtained according to the monitoring request, and the cloud management platform includes several For the server to be monitored, the configuration file includes a data collection strategy and an alarm strategy; if the monitoring service system includes a local disk, the data collection strategy in the configuration file and the preset data transfer are transferred from the cloud management platform.
  • the alarm policy of the configuration file performs alarm analysis on the corresponding data read from the Prometheus database in the local disk.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program, when executed by a processor, causes the processor to perform the following operations: If a monitoring request initiated by the cloud management platform is received, the configuration file for Prometheus monitoring in the local disk of the monitoring service system is obtained according to the monitoring request.
  • the cloud management platform includes a number of servers to be monitored, and the configuration file includes a data collection strategy And alarm strategy; if the monitoring service system includes a local disk, according to the data collection strategy in the configuration file and the preset data transfer from the cloud management platform that is not located in the network of the local disk of the monitoring service system Pull the corresponding first performance data from the server to be monitored; store the pulled first performance data in the Prometheus database in the local disk of the monitoring service system; The corresponding data read from the Prometheus database in the disk is used for alarm analysis.
  • the embodiments of the application provide a private cloud monitoring method, device, computer equipment, and storage medium based on a non-flat network.
  • the embodiment of the application can realize the pull of data in different networks through the settings of the transfer service unit and the data collection unit, thereby realizing network resource monitoring, storage resource monitoring, and middleware resource monitoring of a private cloud-based cloud management platform , Flexible monitoring and triggered monitoring, etc., can realize the comprehensive and rapid monitoring of the cloud management platform by the monitoring service system, effectively reduce the operation and maintenance cost of private cloud monitoring, and improve the user experience.
  • FIG. 1 is a schematic flowchart of a method for monitoring a private cloud based on a non-flat network provided by an embodiment of the present application;
  • Figure 1a is a schematic diagram of an application scenario of a private cloud monitoring method based on a non-flat network provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a sub-process of a private cloud monitoring method based on a non-flat network provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a sub-process of a private cloud monitoring method based on a non-flat network provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a method for monitoring a private cloud based on a non-flat network according to another embodiment of the present application
  • FIG. 5 is a schematic block diagram of a private cloud monitoring device based on a non-flat network provided by an embodiment of the present application
  • FIG. 6 is a schematic block diagram of a first data pulling unit of a non-flat network-based private cloud monitoring device provided by an embodiment of the present application;
  • FIG. 7 is a schematic block diagram of a first alarm analysis unit unit of a private cloud monitoring device based on a non-flat network provided by an embodiment of the present application;
  • FIG. 8 is a schematic block diagram of a private cloud monitoring device based on a non-flat network according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structural composition of a computer device provided by an embodiment of the present application.
  • Figure 1 is a schematic flowchart of a non-flat network-based private cloud monitoring method provided by an embodiment of the present application.
  • Figure 1a is a non-flat network-based private cloud monitoring method in an embodiment of the present application. Schematic diagram of the scene.
  • the private cloud monitoring method based on the non-flat network is applied to the management server 10 in the monitoring server system.
  • the management server 10 can pull data in different networks through the setting of the transfer service unit and the data collection unit, thereby realizing the network of the cloud management platform 20 based on the private cloud.
  • Resource monitoring, storage resource monitoring, middleware resource monitoring, elastic scaling monitoring, and triggered monitoring, etc. enable the monitoring service system to comprehensively and quickly monitor the cloud management platform 20, effectively reducing the operation and maintenance costs of private cloud monitoring, and increasing User experience.
  • the steps of the private cloud monitoring method based on the non-flat network will be described in detail below from the perspective of the management server 10.
  • FIG. 1 it is a private cloud monitoring method based on a non-flat network provided by an embodiment of the present application, and the steps of the method include steps S101 to S104.
  • Step S101 If a monitoring request initiated by the cloud management platform is received, a configuration file for Prometheus monitoring in the local disk of the monitoring service system is obtained according to the monitoring request.
  • the cloud management platform includes a number of servers to be monitored, and the configuration file includes Data collection strategy and warning strategy.
  • the monitoring service system is used to monitor related data information of the cloud management platform.
  • the monitoring server of the monitoring service system receives a monitoring request initiated by the user cloud management platform, it can obtain monitoring according to the monitoring request.
  • the cloud management platform here is a platform used to manage the user’s private cloud.
  • the platform may include related servers or server clusters that provide private clouds.
  • the related servers or server clusters here are those to be monitored. server.
  • the monitoring service system can monitor the relevant data information of the private cloud. In order to realize the comprehensive monitoring of the private cloud and avoid the influence of network isolation on the pull of related data, it is necessary to distinguish whether the server to be monitored is local to the monitoring service system. Whether the disks are on the same network.
  • Step S102 If the monitoring service system includes a local disk, according to the data collection strategy in the configuration file and the preset data transfer, from the cloud management platform that is not located in the network of the local disk of the monitoring service system Pull the corresponding first performance data from the monitoring server.
  • the monitoring server can directly transfer data from the cloud management platform that is not located in the monitoring service from the data collection strategy in the configuration file and the preset data transfer. Pull the corresponding first performance data from the server to be monitored in the network of the local disk of the system. That is, the monitoring server can parse the obtained configuration file, thereby obtaining the data collection strategy in the configuration file, so as to pull and collect data.
  • the server to be monitored in the cloud management platform that is not located in the local disk of the monitoring service system can be monitored through a preset data transfer.
  • the performance data such as the transmitted data flow information, data storage information, and server CPU ratio are monitored and acquired, and the performance of the private cloud can be monitored and alarmed through subsequent comparative analysis.
  • the data collection strategy may be to collect and update related data every preset time.
  • the local disk may also include a master local subdisk and a slave local subdisk, wherein the relevant data in the master local subdisk can be backed up to the slave local subdisk in time, so that Ensure the high availability of the monitoring service system.
  • the preset data transfer document may include a transfer service module and a data collection module, so the step S102 may specifically include steps S201 to S202.
  • Step S201 Control the transit service module to send a data collection request to the data collection module according to the data collection strategy in the configuration file, so that the data collection module receives the network where the current disk is not located in the monitoring service system
  • the server to be monitored pushes the first performance data through the HTTP interface, and pushes the received first performance data to the transit service module for caching.
  • the transfer service module in the preset data transfer document may be Pushgateway.
  • Pushgateway is an independent service, and Pushgateway is located between the application sending metrics and the Prometheus server.
  • Pushgateway receives metrics and uses them as targets to be pulled by Prometheus-based servers; it can also be viewed as a proxy service, which receives metrics instead of detection. Therefore, the transit service module, as a middleware, can receive the relevant performance data of the server to be monitored in the network isolation pushed by the data collection module for the monitoring server to pull.
  • the server to be monitored that is not located in the network where the local disk of the monitoring service system is located may be a storage server
  • the first performance data includes a storage space occupancy ratio
  • the step S201 may specifically be:
  • the transfer service module is controlled to send a data collection request to the data collection module, so that the data collection module receives storage servers that are not located in the network where the monitoring service system is located through an HTTP interface Push the storage space occupancy ratio, and push the received storage space occupancy ratio to the transit service module for caching.
  • the storage server and the local disk of the monitoring server system are not in the same network, at this time, to realize the Prometheus monitoring in the local disk, it is necessary to control the transfer service module to the transfer service module through the data collection strategy in the configuration file of the monitoring server.
  • the data collection module sends a data collection request.
  • the data collection module receives the data collection request, it can receive the storage space occupancy ratio pushed by the storage server through the HTTP interface. At the same time, it can also push the data through the HTTP interface.
  • the storage space occupancy ratio is pushed to the transit service module for caching.
  • the storage server may be a NAS storage cluster.
  • the NAS storage cluster may include multiple storage units. There may be network isolation between different storage units, and each sub-storage unit includes multiple levels of sub-storage units.
  • Storage unit usually a lower-level sub-storage unit can push storage-related first performance data to a higher-level sub-storage unit, and can push data directly to the data collection module through the highest-level sub-storage unit.
  • the collection module can push the collected first performance data (such as storage space occupancy ratio) from different networks to the transit service module for caching.
  • the server to be monitored that is not located in the network where the monitoring service system is located may also be a network server, and the first performance data includes rate, bandwidth, throughput, delay, delay bandwidth product, and round trip time RTT. , Utilization rate, etc.
  • the server to be monitored that is not located in the network where the monitoring service system is located may also be a storage server, and the details are not repeated here.
  • Step S202 Pull the first performance data cached in the transit service module.
  • the monitoring server can directly pull the first performance data cached in the transit service module, thereby reducing the impact of network isolation on the comprehensive monitoring of the cloud management platform, and improving the efficiency of monitoring and user experience.
  • Step S103 Store the pulled first performance data in the Prometheus database in the local disk of the monitoring service system.
  • the collected data can be stored in the Prometheus database of the local disk of the monitoring service system, and an alarm is required when During analysis, data is retrieved from the Prometheus database, which not only facilitates data management, but also facilitates data processing and analysis by users.
  • Step S104 Perform alarm analysis on the corresponding data read from the Prometheus database in the local disk according to the alarm policy of the configuration file.
  • the monitoring server can also read corresponding data from the Prometheus database in the local disk according to the alarm policy of the configuration file, and can implement alarm analysis and processing on the read related data.
  • step S104 of the present application may specifically include steps S301 to S303.
  • Step S301 Analyze the alarm policy of the configuration file to obtain data analysis rules and a preset alarm range.
  • the configuration file includes an alarm policy.
  • the alarm policy can include data analysis rules and preset alarm ranges.
  • the data analysis rules refer to the method of data analysis
  • the preset alarm range refers to if the entire cloud is managed. The scope of the results obtained after analyzing the data related to the threat or impact caused by the platform's private cloud.
  • Step S302 Analyze the corresponding data read from the Prometheus database in the local disk according to the data analysis rule to obtain a corresponding analysis result.
  • the corresponding data read from the Prometheus database in the local disk can be comprehensively analyzed through the data analysis rule, so as to obtain a corresponding analysis result.
  • step S303 if the analysis result is within the preset alarm range, corresponding alarm information is generated for alarm.
  • the analysis result when the analysis result is within the preset alarm range, it indicates that the private cloud is facing threats or the security performance is unstable. At this time, corresponding alarm information can be generated to alert the user to handle.
  • step S104 of the present application may be further included before step S104 of the present application:
  • Step S105 Pull corresponding second performance data from the server to be monitored in the network where the local disk of the monitoring service system is located according to the data collection strategy in the configuration file.
  • the monitoring server can directly pull the related second performance data on the server to be monitored at this time.
  • the second performance data may also be the storage space occupancy ratio of the storage server, or may also be the rate, bandwidth, throughput, delay, delay bandwidth product, round trip time RTT, utilization, etc. of the network server, or may also be Data such as the CPU operating ratio of the server, of course, is not specifically limited in this embodiment, as long as it is performance data that meets the monitoring of the private cloud.
  • the first performance data may not be particularly limited.
  • Step S106 Store the pulled second performance data in the Prometheus database in the local disk of the monitoring service system.
  • the monitoring server can store the pulled second performance data in the Prometheus database in the local disk of the monitoring service system to facilitate unified analysis and processing by the monitoring server, thereby realizing comprehensive monitoring of the private cloud.
  • the embodiments of the present application can pull data in different networks through the settings of the transit service unit and the data collection unit, so as to realize the network resource monitoring, storage resource monitoring, and intermediate monitoring of the cloud management platform based on the private cloud.
  • Software resource monitoring, elastic scaling monitoring, and triggered monitoring can realize comprehensive and rapid monitoring of the cloud management platform by the monitoring service system, effectively reducing the operation and maintenance costs of private cloud monitoring, and improving the user experience.
  • FIG. 4 is a schematic flowchart of a non-flat network-based private cloud monitoring method provided by another embodiment of the present application.
  • the steps of the method include steps S401 to S404'.
  • steps S401 to S404' The relevant explanations and detailed descriptions of steps similar to steps S101-S104 in the above-mentioned embodiment will not be repeated here, and the following detailed description will be given for the steps added in this embodiment.
  • Step S401 If a monitoring request initiated by the cloud management platform is received, a configuration file for Prometheus monitoring in the local disk of the monitoring service system is obtained according to the monitoring request.
  • the cloud management platform includes a number of servers to be monitored, and the configuration file includes Data collection strategy and warning strategy.
  • Step S402 If the monitoring service system includes a local disk, according to the data collection strategy in the configuration file and the preset data transfer, from the cloud management platform that is not located in the network of the local disk of the monitoring service system Pull the corresponding first performance data from the monitoring server.
  • Step S403 Store the pulled first performance data in the Prometheus database in the local disk of the monitoring service system.
  • Step S404 Perform an alarm analysis on the corresponding data read from the Prometheus database in the local disk according to the alarm policy of the configuration file.
  • Step S402' if the monitoring service system includes multiple local disks with network isolation, respectively determine the server to be monitored in the network where each local disk is located. Among them, if the monitoring service system includes multiple local disks with network isolation, each local disk can use Prometheus monitoring for data monitoring. At this time, the server to be monitored included in the network where each local disk is located can be determined, so that corresponding data acquisition and analysis can be performed respectively.
  • step S402a' the data collection strategy in the configuration file monitored by Prometheus in each local disk is obtained.
  • the data collection strategy and the alarm strategy in the configuration file monitored by Prometheus in each local disk can be obtained to perform corresponding data processing respectively.
  • step S403' the performance data of the server to be monitored in the network where each local disk is located is collected according to different data collection strategies, and correspondingly stored in the Prometheus database of the corresponding local disk.
  • the performance data of the servers to be monitored in different networks can be collected respectively, and the collected performance data can be stored in the Prometheus database of the corresponding local disk for calling.
  • one of the local disks is determined as the primary local disk according to the preset rules, so as to pull the performance data in the Prometheus database of the remaining local disks and store it in the Prometheus database of the primary local disk.
  • the preset rule here may refer to the local disk with the largest number of servers to be detected in the network where the local disk is located as the primary local disk, and the monitoring server of the primary local disk can pull the Prometheus database in the remaining local disks
  • the performance data in the database is stored in the Prometheus database on the main local disk for corresponding analysis.
  • Step S405' Determine the alarm strategy in the configuration file monitored by Prometheus of the master local disk, and perform alarm analysis according to the alarm strategy from the corresponding data read from the Prometheus database of the master local disk. Specifically, it may be to determine the alarm policy in the configuration file of the Prometheus monitoring of the main local disk, and implement a comprehensive analysis of the performance data in the Prometheus database according to the alarm policy.
  • the program can be stored in a computer-readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), etc.
  • an embodiment of the present application also proposes a non-flat network-based private cloud monitoring device.
  • the device 100 includes: a file acquisition unit 101 and first data The pulling unit 102, the first storage unit 103, and the first alarm analysis unit 104.
  • the file acquisition unit 101 is configured to, if a monitoring request initiated by a cloud management platform is received, obtain a configuration file for Prometheus monitoring in the local disk of the monitoring service system according to the monitoring request, and the cloud management platform includes a number of servers to be monitored ,
  • the configuration file includes a data collection strategy and an alarm strategy.
  • the first data pulling unit 102 is configured to, if the monitoring service system includes a local disk, according to the data collection strategy in the configuration file and the preset data transfer from the cloud management platform that is not located in the monitoring service Pull the corresponding first performance data from the server to be monitored in the network of the local disk of the system.
  • the preset data transfer may include a transfer service module and a data collection module, so the first data pulling unit 102 may specifically include a first data pushing unit 201 And the first processing unit 202.
  • the first data push unit 201 is configured to control the transit service module to send a data collection request to the data collection module according to the data collection strategy in the configuration file, so that the data collection module receives the data collection module that is not located in the monitoring service.
  • the server to be monitored in the network where the current disk of the system is located pushes the first performance data through the HTTP interface, and pushes the received first performance data to the transit service module for caching.
  • the first processing unit 202 is configured to pull the first performance data cached in the transit service module.
  • the first storage unit 103 is configured to store the pulled first performance data in the Prometheus database in the local disk of the monitoring service system.
  • the first alarm analysis unit 104 is configured to perform alarm analysis on the corresponding data read from the Prometheus database in the local disk according to the alarm policy of the configuration file.
  • the first alarm analysis unit 104 of the present application may specifically include an analysis unit 301, an analysis unit 302, and an alarm unit 303.
  • the parsing unit 301 is configured to analyze the alarm policy of the configuration file to obtain data analysis rules and a preset alarm range.
  • the configuration file includes an alarm strategy.
  • the alarm strategy can include data analysis rules and preset alarm ranges.
  • data analysis rules refer to the method of analyzing data
  • the preset alarm range refers to how to manage the entire cloud. The scope of the results obtained after analyzing the data related to the threat or impact caused by the platform's private cloud.
  • the analysis unit 302 is configured to analyze corresponding data read from the Prometheus database in the local disk according to the data analysis rule to obtain corresponding analysis results.
  • the corresponding data read from the Prometheus database in the local disk can be comprehensively analyzed through the data analysis rule, so as to obtain a corresponding analysis result.
  • the warning unit 303 is configured to generate corresponding warning information for warning if the analysis result is within a preset warning range. Among them, when the analysis result is within the preset alarm range, it indicates that the private cloud is facing threats or the security performance is unstable. At this time, corresponding alarm information can be generated to alert the user to handle.
  • the first alarm analysis unit 104 of the present application may also include the following units:
  • the second data pulling unit 105 is configured to pull corresponding second performance data from the server to be monitored in the network where the local disk of the monitoring service system is located according to the data collection strategy in the configuration file. Wherein, if the server to be monitored is located in the network where the local disk of the monitoring service system is located, the monitoring server can directly pull the related second performance data on the server to be monitored at this time.
  • the second performance data may also be the storage space occupancy ratio of the storage server, or may also be the rate, bandwidth, throughput, delay, delay bandwidth product, round trip time RTT, utilization, etc. of the network server, or may also be Data such as the CPU operating ratio of the server, of course, is not specifically limited in this embodiment, as long as it is performance data that meets the monitoring of the private cloud. Similarly, the first performance data may not be particularly limited.
  • the second storage unit 106 is configured to store the pulled second performance data in the Prometheus database in the local disk of the monitoring service system.
  • the monitoring server can store the pulled second performance data in the Prometheus database in the local disk of the monitoring service system to facilitate unified analysis and processing by the monitoring server, thereby realizing comprehensive monitoring of the private cloud.
  • the device 400 includes: a file acquisition unit 401, a second A data pulling unit 402, a first storage unit 403, a first alarm analysis unit 404, a server determination unit 402', a policy acquisition unit 402a', a second storage unit 403', a third storage unit 404', and a second alarm analysis Unit 405'.
  • the file acquisition unit 401 is configured to, if a monitoring request initiated by the cloud management platform is received, obtain the configuration file of Prometheus monitoring in the local disk of the monitoring service system according to the monitoring request.
  • the cloud management platform includes a number of servers to be monitored.
  • the configuration file includes data collection strategy and alarm strategy.
  • the first data pulling unit 402 is configured to, if the monitoring service system includes a local disk, according to the data collection strategy in the configuration file and the preset data transfer from the cloud management platform that is not located in the monitoring service system The corresponding first performance data is pulled from the server to be monitored in the network of the local disk.
  • the first storage unit 403 is configured to store the pulled first performance data in the Prometheus database in the local disk of the monitoring service system.
  • the first alarm analysis unit 404 is configured to perform alarm analysis on the corresponding data read from the Prometheus database in the local disk according to the alarm policy of the configuration file.
  • the server determining unit 402' is configured to determine the server to be monitored in the network where each local disk is located if the monitoring service system includes multiple local disks with network isolation. Among them, if the monitoring service system includes multiple local disks with network isolation, each local disk can use Prometheus monitoring for data monitoring. At this time, the server to be monitored included in the network where each local disk is located can be determined, so that corresponding data acquisition and analysis can be performed respectively.
  • the strategy acquisition unit 402a' is configured to acquire the data acquisition strategy in the configuration file monitored by Prometheus in each local disk. Among them, in order to determine the data of the server to be monitored in the network where each local disk is located, the data collection strategy and the alarm strategy in the configuration file monitored by Prometheus in each local disk can be obtained to perform corresponding data processing respectively.
  • the second storage unit 403' is configured to collect the performance data of the server to be monitored in the network where each local disk is located according to different data collection strategies, and store the performance data in the Prometheus database of the corresponding local disk accordingly.
  • the performance data of the servers to be monitored in different networks can be collected respectively, and the collected performance data can be stored in the Prometheus database of the corresponding local disk for calling.
  • the third storage unit 404' is configured to determine one of the local disks as the primary local disk according to preset rules, so as to pull the performance data from the Prometheus database of the remaining local disks and store it in the Prometheus database of the primary local disk.
  • the preset rule here may refer to the local disk with the largest number of servers to be detected in the network where the local disk is located as the primary local disk, and the monitoring server of the primary local disk can pull the Prometheus database in the remaining local disks
  • the performance data in the database is stored in the Prometheus database on the main local disk for corresponding analysis.
  • the second alarm analysis unit 405' is used to determine the alarm policy in the configuration file monitored by the Prometheus of the main local disk, and perform alarm analysis according to the alarm policy from the corresponding data read from the Prometheus database of the main local disk. Specifically, it may be to determine the alarm policy in the configuration file of the Prometheus monitoring of the main local disk, and implement a comprehensive analysis of the performance data in the Prometheus database according to the alarm policy.
  • the above file acquisition unit 101, first data pull unit 102, first storage unit 103, and first alarm analysis unit 104 can be embedded in hardware or independent of non-flat network-based In the private cloud monitoring device of, it can also be stored in the memory of the private cloud monitoring device based on the non-flat network in the form of software, so that the processor can call and execute the operations corresponding to the above units.
  • the processor can be a central processing unit (CPU), a microprocessor, a single-chip microcomputer, and so on.
  • the above-mentioned private cloud monitoring device based on the non-flat network may be implemented in the form of a computer program, and the computer program may run on the computer device as shown in FIG. 9.
  • FIG. 9 is a schematic diagram of the structural composition of a computer device of this application.
  • the device can be a server, the server can be an independent server, or a server cluster composed of multiple servers.
  • the computer device 500 includes a processor 502, a memory, and a network interface 505 connected through a system bus 501, where the memory may include a non-volatile storage medium 503 and an internal memory 504.
  • the non-volatile storage medium 503 can store an operating system 5031 and a computer program 5032.
  • the processor 502 can execute a private cloud monitoring method based on a non-flat network.
  • the processor 502 is used to provide calculation and control capabilities, and support the operation of the entire computer device 500.
  • the internal memory 504 provides an environment for the running of the computer program 5032 in the non-volatile storage medium 503.
  • the processor 502 can execute a private cloud monitoring method based on a non-flat network. .
  • the network interface 505 is used for network communication with other devices.
  • FIG. 9 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device 500 to which the solution of the present application is applied.
  • the specific computer device 500 may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
  • the processor 502 is configured to run a computer program 5032 stored in a memory to implement the steps in the non-flat network-based private cloud monitoring method in the foregoing embodiment.
  • the processor 502 may be a central processing unit (Central Processing Unit, CPU), and the processor 502 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor.
  • the computer program may be stored in a storage medium, and the storage medium is a computer-readable storage medium.
  • the computer program is executed by at least one processor in the computer system to implement the process steps of the foregoing method embodiment.
  • the computer-readable storage medium may be non-volatile or volatile.
  • the storage medium stores a computer program, and when the computer program is executed by the processor, the processor executes the steps in the non-flat network-based private cloud monitoring method in the foregoing embodiment.
  • the storage medium is a physical, non-transitory storage medium, such as a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a magnetic disk, or an optical disk, etc., which can store program codes. medium.
  • a physical, non-transitory storage medium such as a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a magnetic disk, or an optical disk, etc., which can store program codes. medium.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of each unit is only a logical function division, and there may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the steps in the method in the embodiment of the present application can be adjusted, merged, and deleted in order according to actual needs.
  • the units in the devices in the embodiments of the present application may be combined, divided, and deleted according to actual needs.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a terminal, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质,该方法应用于云监控领域,涉及大数据技术,该方法包括:若接收到云管理平台发起的监控请求,根据监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件;根据配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的第一性能数据;将拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;根据配置文件的告警策略对从本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。该方法可实现对云管理平台的全面快速的监控,有效降低了私有云监控的运维成本。

Description

基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质
本申请要求于2020年03月18日提交中国专利局、申请号为202010189441.6,发明名称为“基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及云监控领域,尤其涉及一种基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质。
背景技术
云服务是基于互联网的相关服务的增加、使用和交互模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云服务可以将企业所需的软硬件、资料都放到网络上,在任何时间、地点,使用不同的IT设备互相连接,实现数据存取、运算等目的。当前,常见的云服务有公共云(Public Cloud)与私有云(Private Cloud)两种。其中的私有云(Private Clouds)是为一个客户单独使用而构建的,因而能够提供对数据、安全性和服务质量的最有效控制。
在当前的私有云监控方案中,各个云厂商都是基于对公有云的监控方案进行裁剪,然后部署到客户的私有云中,发明人意识到此时客户很难实现对相关私有云的监控的运维,增加了各个云厂商的运维成本和时间。再者,针对私有云的监控方案是以产品的形式交付给到各个用户的,不同的用户之间所使用的网络也基本属于隔离状态;同时在现有的私有云的开源的监控方案上,基本都是基于推送的方式去做数据采集的,如基于zabbix的数据推送的方案,也有基于open-falcon的数据推送方案,并没有没有直接使用可直接进行数据拉取的监控方案,故并不能够实现对整个私有云的相关性能数据的实时可靠的监控。
发明内容
本申请实施例提供一种基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质,能够使得控服务系统对云管理平台的全面快速的监控,有效降低了私有云监控的运维成本,提高了用户的使用体验度。
第一方面,本申请实施例提供了一种基于非扁平网络的私有云监控方法,该方法包括:若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
第二方面,本申请实施例还提供了一种基于非扁平网络的私有云监控装置,该装置包括:文件获取单元,用于若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务 系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;第一数据拉取单元,用于若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;第一存储单元,用于将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;第一告警分析单元,用于根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
第三方面,本申请实施例还提供了一种计算机设备,所述计算机设备包括存储器,以及与所述存储器相连的处理器;所述存储器用于存储计算机程序;所述处理器用于运行所述存储器中存储的计算机程序,以执行以下步骤:若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行以下操作:若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
本申请实施例提供了一种基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质。本申请实施例能够通过中转服务单元以及收集数据单元的设置来实现对处于不同网络的数据的拉取,从而实现对基于私有云的云管理平台的网络资源监控、存储资源监控、中间件资源监控、弹性伸缩监控以及触发的监控等,能够实现监控服务系统对云管理平台的全面快速的监控,有效降低了私有云监控的运维成本,提高了用户的使用体验度效果。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基于非扁平网络的私有云监控方法的流程示意图;
图1a是本申请实施例提供的一种基于非扁平网络的私有云监控方法的应用场景示意图;
图2是本申请实施例提供的一种基于非扁平网络的私有云监控方法的子流程示意图;
图3是本申请实施例提供的一种基于非扁平网络的私有云监控方法的子流程示意图;
图4是本申请另一实施例提供的一种基于非扁平网络的私有云监控方法的流程示意图;
图5是本申请实施例提供的一种基于非扁平网络的私有云监控装置的示意性框图;
图6是本申请实施例提供的一种基于非扁平网络的私有云监控装置的第一数据拉取单元的示意性框图;
图7是本申请实施例提供的一种基于非扁平网络的私有云监控装置的第一告警分析单元单元的示意性框图;
图8是本申请另一实施例提供的一种基于非扁平网络的私有云监控装置的示意性框图;
图9是本申请实施例提供的一种计算机设备结构组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
请参阅图1和图1a,图1是本申请实施例提供的一种基于非扁平网络的私有云监控方法的示意流程图,图1a是本申请实施例中基于非扁平网络的私有云监控方法的场景示意图。该基于非扁平网络的私有云监控方法应用于监控服务器系统中的管理服务器10中。该管理服务器10根据基于非扁平网络的私有云监控方法能够通过中转服务单元以及收集数据单元的设置来实现对处于不同网络的数据的拉取,从而实现对基于私有云的云管理平台20的网络资源监控、存储资源监控、中间件资源监控、弹性伸缩监控以及触发的监控等,能够使得监控服务系统对云管理平台20的全面快速的监控,有效降低了私有云监控的运维成本,提高了用户的使用体验度。以下将以管理服务器10的角度详细地介绍该基于非扁平网络的私有云监控方法的各个步骤。
如图1所示,其是本申请实施例提供的一种基于非扁平网络的私有云监控方法,该方法的步骤包括步骤S101~S104。
步骤S101,若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述 配置文件包括数据采集策略和告警策略。
在本实施例中,监控服务系统用于实现对云管理平台的相关数据信息的监控,当监控服务系统的监控服务器接收到用户云管理平台发起的监控请求,此时可以根据该监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件。通常,此处的云管理平台为用户的私有云的用于实现对其管理的平台,该平台可以包括提供私有云的相关服务器或者服务器群集等,此处的相关服务器或者服务器群集即为待监控服务器。而监控服务系统能够实现对私有云的相关数据信息的监控,为了实现对私有云的全面监控,避免网络隔离对于相关数据拉取的影响,此时需要区分待监控服务器是否与监控服务系统的本地磁盘是否位于同一网络中。
步骤S102,若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据。
在本实施例中,当所述监控服务系统包括一个本地磁盘的时候,监控服务器能够所述配置文件中的数据采集策略以及预设的数据中转件,直接从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据。即监控服务器能够解析所获取的配置文件,从而获取到配置文件中的数据采集策略,以便进行数据的拉取和采集。例如,对于私有云而言,为对其性能及安全等进行实时监控,此时可以通过预设的数据中转件对云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器传输的数据流量信息、数据存储信息以及服务器的CPU占比等性能数据进行监控获取,并通过后续的对比分析来实现对私有云的性能的监控和告警等。
作为可选的实施例,该数据采集策略可以是每隔预设时间即对相关数据进行一次采集更新。
作为另一可选的实施例,所述本地磁盘还可以包括一个主本地子磁盘以及一个从本地子磁盘,其中,主本地子磁盘中的相关数据可以及时备份至从本地子磁盘中,从而可以确保监控服务系统的高可用性。
如图2所示,作为进一步的的实施例,所述预设的数据中转件可以包括中转服务模块以及数据收集模块,故所述步骤S102具体可以包括步骤S201~S202。
步骤S201,根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存。
其中,所述预设的数据中转件中的中转服务模块可以是Pushgateway。Pushgateway是一个独立的服务,Pushgateway位于应用程序发送指标和Prometheus服务器之间。Pushgateway接收指标,然后将其作为目标被基于Prometheus的服务器拉取;也可以将其看作代理服务,它接收度量,而不是探测。故中转服务模块作为中间件,能够接收数据采集模块所推送的处于网络隔离中的待监控服务器的相关的性能数据,以供监控服务器进行拉取。
作为进一步的实施例,不位于监控服务系统的本地磁盘所在的网络中的待监控服务器可以是存储服务器,所述第一性能数据包括存储空间占用比,所述步骤S201具体可以是:
根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统所在的网络中的存储服务器通过HTTP接口推送的存储空间占用比,并将所接收到的存储空间占用比推送到所述中转服务模块进行缓存。
其中,若存储服务器与监控服务器系统的本地磁盘不在同一网络中,此时的要实现本地磁盘中的Prometheus监控,需要通过监控服务器所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,当数据采集模块接收到数据采集请求后,则能够接收有存储服务器通过HTTP接口推送的存储空间占用比,同时也鞥能够通过HTTP接口推送数据的形式将相关的存储空间占用比推送至中转服务模块进行缓存。
再者,例如,所述存储服务器可以是NAS存储集群,该NAS存储集群可以包括多个存储单元,不同的存储单元之间可能存在网络隔离,且每个子存储单元之间包括多个级别的子存储单元,通常低一级的子存储单元能够向高一级的子存储单元推送跟存储相关的第一性能数据,并能够通过最高一级的子存储单元将数据直接推送至数据收集模块,数据收集模块则能够将所收集到的来自各个不同网络的第一性能数据(如存储空间占用比)推送至中转服务模块中进行缓存。
作为另一实施例,不位于监控服务系统所在的网络中的待监控服务器还可以是网络服务器,所述第一性能数据包括速率、带宽、吞吐量、时延、时延带宽积、往返时间RTT、利用率等。所述步骤S201的具体实现方式可以参见上述当不位于监控服务系统所在的网络中的待监控服务器还可以是存储服务器时的相关说明,具体在此不再赘述。
步骤S202,拉取所述中转服务模块中缓存的第一性能数据。
其中,监控服务器能够直接拉取所述中转服务模块中缓存的第一性能数据,从而减少了网络隔离对云管理平台的全面监控的影响,提高了监控的效率和用户使用体验度。
步骤S103,将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
在本实施例中,当监控服务器采集到相应的数据后,为了便于对相关数据进行统计分析,可以将所采集到的数据都存储到监控服务系统的本地磁盘的Prometheus数据库中,当需要进行告警分析的时候,则从Prometheus数据库中进行数据调取,不仅方便数据的管理,还便于用户对数据的处理和分析。
步骤S104,根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
在本实施例中,监控服务器还能够根据所述配置文件的告警策略,从本地磁盘中的Prometheus数据库中读取的相应的数据,并能够实现对所读取的相关数据进行告警分析处理。
作为可选的实施例,如图3所示,本申请的步骤S104具体可以包括步骤S301~S303。
步骤S301,解析所述配置文件的告警策略以得到数据分析规则以及预设告警范围。其中, 配置文件中包括有告警策略,通常告警策略可以包括数据分析规则和预设告警范围,其中,数据分析规则是指对数据进行分析的方法,预设告警范围是指若会对整个云管理平台的私有云造成威胁或影响的相关数据被分析之后得到的结果范围。
步骤S302,根据所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行分析以得到相应的分析结果。其中,可以通过所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行全面地分析,从而得到一个相应的分析结果。
步骤S303,若所述分析结果位于预设告警范围内,则生成相应的告警信息以进行告警。其中,当分析结果位于预设告警范围内时,则表明私有云面临威胁或者安全性能不稳定,此时可以生成相应的告警信息进行告警提示用户进行处理。
另外,在一实施例中,本申请的步骤S104之前还可以包括以下步骤:
步骤S105,根据所述配置文件中的数据采集策略从位于监控服务系统的本地磁盘所在的网络中的待监控服务器上拉取相应的第二性能数据。其中,若待监控服务器位于监控服务系统的本地磁盘所在的网络中,此时监控服务器能够直接拉取该待监控服务器上的相关的第二性能数据。所述第二性能数据也可是存储服务器的存储空间占用比,或者还可以是网络服务器的速率、带宽、吞吐量、时延、时延带宽积、往返时间RTT、利用率等,或者还可以是服务器的CUP运行比例等数据,当然,在本实施例中,具体也不做限制,只要是满足对私有云的监控的性能数据均可,同理,第一性能数据也可以不做特别限制。
步骤S106,将所拉取的第二性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。其中,监控服务器能够将拉取的第二性能数据存储到监控服务系统的本地磁盘中的Prometheus数据库中以便于进行监控服务器进行统一分析处理,从而实现对私有云的全面的监控。
综上,本申请实施例能够通过中转服务单元以及收集数据单元的设置来实现对处于不同网络的数据的拉取,从而实现对基于私有云的云管理平台的网络资源监控、存储资源监控、中间件资源监控、弹性伸缩监控以及触发的监控等,能够实现监控服务系统对云管理平台的全面快速的监控,有效降低了私有云监控的运维成本,提高了用户的使用体验度效果。
请参阅图4,图4是本申请另一实施例提供的一种基于非扁平网络的私有云监控方法的示意流程图。如图4所示,该方法的步骤包括步骤S401~S404′。其中与上述实施例中的步骤S101-S104类似的步骤的相关解释和详细说明在此不再赘述,下面详细说明的为本实施例中所增加的步骤。
步骤S401,若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略。
步骤S402,若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据。
步骤S403,将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
步骤S404,根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
步骤S402′,若所述监控服务系统包括多个具有网络隔离的本地磁盘,分别确定每个本地磁盘所处的网络中的待监控服务器。其中,若监控服务系统包括多个具有网络隔离的本地磁盘,则每个本地磁盘都可以使用Prometheus监控进行数据监控。此时可以确定每个本地磁盘所处的网络中所包括的待监控服务器,从而分别进行相应的数据获取和分析。
步骤S402a′,获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略。其中,为了确定每个本地磁盘的所在网络的待监控服务器额数据,可以获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略和告警策略以分别进行相应的数据处理。
步骤S403′,分别根据不同的数据采集策略采集每个本地磁盘所处的网络中的待监控服务器的性能数据,并对应地存储至相应的本地磁盘的Prometheus数据库中。其中,根据不同的数据采集策略可以分别对应采集处于不同网络中的待监控服务器的性能数据,并将采集到的性能数据存储至相应的本地磁盘的Prometheus数据库中,以供调用。
步骤S404′,根据预设规则确定其中一个本地磁盘为主本地磁盘,以拉取其余的本地磁盘的Prometheus数据库中的性能数据,并存储至主本地磁盘的Prometheus数据库中。其中,此处的预设规则可以是指将本地磁盘所在网络中包括的待检测服务器的数量最多的本地磁盘作为主本地磁盘,该主本地磁盘的监控服务器能够拉取其余的本地磁盘中Prometheus数据库中的性能数据,并都存储至主本地磁盘的Prometheus数据库中,以便于进行相应的分析。
步骤S405′,确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略从主本地磁盘的Prometheus数据库中读取的相应的数据进行告警分析。其中,具体可以是确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略实现Prometheus数据库中的性能数据的全面分析。
本领域普通技术员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
请参阅图5,对应上述一种基于非扁平网络的私有云监控方法,本申请实施例还提出一种基于非扁平网络的私有云监控装置,该装置100包括:文件获取单元101、第一数据拉取单元102、第一存储单元103以及第一告警分析单元104。
所述文件获取单元101,用于若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略。
所述第一数据拉取单元102,用于若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本 地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据。
如图6所示,作为进一步的的实施例,所述预设的数据中转件可以包括中转服务模块以及数据收集模块,故所述第一数据拉取单元102具体可以包括第一数据推送单元201以及第一处理单元202。
所述第一数据推送单元201,用于根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存。
所述第一处理单元202,用于拉取所述中转服务模块中缓存的第一性能数据。
所述第一存储单元103,用于将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
所述第一告警分析单元104,用于根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
作为可选的实施例,如图7所示,本申请的所述第一告警分析单元104具体可以包括解析单元301、分析单元302以及告警单元303。
所述解析单元301,用于解析所述配置文件的告警策略以得到数据分析规则以及预设告警范围。其中,配置文件中包括有告警策略,通常告警策略可以包括数据分析规则和预设告警范围,其中,数据分析规则是指对数据进行分析的方法,预设告警范围是指若会对整个云管理平台的私有云造成威胁或影响的相关数据被分析之后得到的结果范围。
所述分析单元302,用于根据所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行分析以得到相应的分析结果。其中,可以通过所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行全面地分析,从而得到一个相应的分析结果。
所述告警单元303,用于若所述分析结果位于预设告警范围内,则生成相应的告警信息以进行告警。其中,当分析结果位于预设告警范围内时,则表明私有云面临威胁或者安全性能不稳定,此时可以生成相应的告警信息进行告警提示用户进行处理。
另外,在一实施例中,本申请的第一告警分析单元104之前还可以包括以下单元:
第二数据拉取单元105,用于根据所述配置文件中的数据采集策略从位于监控服务系统的本地磁盘所在的网络中的待监控服务器上拉取相应的第二性能数据。其中,若待监控服务器位于监控服务系统的本地磁盘所在的网络中,此时监控服务器能够直接拉取该待监控服务器上的相关的第二性能数据。所述第二性能数据也可是存储服务器的存储空间占用比,或者还可以是网络服务器的速率、带宽、吞吐量、时延、时延带宽积、往返时间RTT、利用率等,或者还可以是服务器的CUP运行比例等数据,当然,在本实施例中,具体也不做限制,只要是满足对私有云的监控的性能数据均可,同理,第一性能数据也可以不做特别限制。
第二存储单元106,用于将所拉取的第二性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。其中,监控服务器能够将拉取的第二性能数据存储到监控服务系统的 本地磁盘中的Prometheus数据库中以便于进行监控服务器进行统一分析处理,从而实现对私有云的全面的监控。
请参阅图8,对应上述一种基于非扁平网络的私有云监控方法,本申请另一实施例还提出一种基于非扁平网络的私有云监控装置,该装置400包括:文件获取单元401、第一数据拉取单元402、第一存储单元403、第一告警分析单元404、服务器确定单元402′、策略获取单元402a′、第二存储单元403′、第三存储单元404′以及第二告警分析单元405′。
文件获取单元401,用于若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略。
第一数据拉取单元402,用于若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据。
第一存储单元403,用于将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
第一告警分析单元404,用于根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
服务器确定单元402′,用于若所述监控服务系统包括多个具有网络隔离的本地磁盘,分别确定每个本地磁盘所处的网络中的待监控服务器。其中,若监控服务系统包括多个具有网络隔离的本地磁盘,则每个本地磁盘都可以使用Prometheus监控进行数据监控。此时可以确定每个本地磁盘所处的网络中所包括的待监控服务器,从而分别进行相应的数据获取和分析。
策略获取单元402a′,用于获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略。其中,为了确定每个本地磁盘的所在网络的待监控服务器额数据,可以获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略和告警策略以分别进行相应的数据处理。
第二存储单元403′,用于分别根据不同的数据采集策略采集每个本地磁盘所处的网络中的待监控服务器的性能数据,并对应地存储至相应的本地磁盘的Prometheus数据库中。其中,根据不同的数据采集策略可以分别对应采集处于不同网络中的待监控服务器的性能数据,并将采集到的性能数据存储至相应的本地磁盘的Prometheus数据库中,以供调用。
第三存储单元404′,用于根据预设规则确定其中一个本地磁盘为主本地磁盘,以拉取其余的本地磁盘的Prometheus数据库中的性能数据,并存储至主本地磁盘的Prometheus数据库中。其中,此处的预设规则可以是指将本地磁盘所在网络中包括的待检测服务器的数量最多的本地磁盘作为主本地磁盘,该主本地磁盘的监控服务器能够拉取其余的本地磁盘中Prometheus数据库中的性能数据,并都存储至主本地磁盘的Prometheus数据库中,以便于进行相应的分析。
第二告警分析单元405′,用于确定主本地磁盘的Prometheus监控的配置文件中的告警 策略,根据该告警策略从主本地磁盘的Prometheus数据库中读取的相应的数据进行告警分析。其中,具体可以是确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略实现Prometheus数据库中的性能数据的全面分析。
需要说明的是,所属领域的技术人员可以清楚地了解到,上述基于非扁平网络的私有云监控装置100和各单元的具体实现过程,可以参考前述方法实施例中的相应描述,为了描述的方便和简洁,在此不再赘述。
由以上可见,在硬件实现上,以上文件获取单元101、第一数据拉取单元102、第一存储单元103以及第一告警分析单元104等可以以硬件形式内嵌于或独立于基于非扁平网络的私有云监控的装置中,也可以以软件形式存储于基于非扁平网络的私有云监控装置的存储器中,以便处理器调用执行以上各个单元对应的操作。该处理器可以为中央处理单元(CPU)、微处理器、单片机等。
上述基于非扁平网络的私有云监控装置可以实现为一种计算机程序的形式,计算机程序可以在如图9所示的计算机设备上运行。
图9为本申请一种计算机设备的结构组成示意图。该设备可以是服务器,该服务器可以是独立的服务器,也可以是多个服务器组成的服务器集群。
参照图9,该计算机设备500包括通过系统总线501连接的处理器502、存储器和网络接口505,其中,存储器可以包括非易失性存储介质503和内存储器504。
该非易失性存储介质503可存储操作系统5031和计算机程序5032,该计算机程序5032被执行时,可使得处理器502执行一种基于非扁平网络的私有云监控方法。
该处理器502用于提供计算和控制能力,支撑整个计算机设备500的运行。
该内存储器504为非易失性存储介质503中的计算机程序5032的运行提供环境,该计算机程序5032被处理器502执行时,可使得处理器502执行一种基于非扁平网络的私有云监控方法。
该网络接口505用于与其它设备进行网络通信。本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备500的限定,具体的计算机设备500可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,所述处理器502用于运行存储在存储器中的计算机程序5032,以实现上述实施例中的基于非扁平网络的私有云监控方法中的步骤。
应当理解,在本申请实施例中,处理器502可以是中央处理单元(Central Processing Unit,CPU),该处理器502还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本领域普通技术人员可以理解的是实现上述实施例的方法中的全部或部分流程,是可以 通过计算机程序来指令相关的硬件来完成。该计算机程序可存储于一存储介质中,该存储介质为计算机可读存储介质。该计算机程序被该计算机系统中的至少一个处理器执行,以实现上述方法的实施例的流程步骤。
因此,本申请还提供一种存储介质。该计算机可读存储介质可以是非易失性,也可以是易失性。该存储介质存储有计算机程序,该计算机程序被处理器执行时使处理器执行上述实施例中的基于非扁平网络的私有云监控方法中的步骤。
所述存储介质为实体的、非瞬时性的存储介质,例如可以是U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的实体存储介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。例如,各个单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。本申请实施例装置中的单元可以根据实际需要进行合并、划分和删减。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,终端,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种基于非扁平网络的私有云监控方法,其中,所述方法包括:
    若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;
    若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;
    将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;
    根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
  2. 如权利要求1所述的方法,其中,所述预设的数据中转件包括中转服务模块以及数据收集模块,所述根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据的步骤,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存;
    拉取所述中转服务模块中缓存的第一性能数据。
  3. 如权利要求2所述的方法,其中,所述不位于监控服务系统的本地磁盘所在的网络中的待监控服务器是存储服务器,所述第一性能数据包括存储空间占用比,所述根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存的步骤,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统所在的网络中的存储服务器通过HTTP接口推送的存储空间占用比,并将所接收到的存储空间占用比推送到所述中转服务模块进行缓存。
  4. 如权利要求2所述的方法,其中,不位于监控服务系统所在的网络中的待监控服务器是网络服务器,所述第一性能数据包括速率、带宽、吞吐量、时延、时延带宽积、往返时间以及利用率中的一个或者多个。
  5. 如权利要求1所述的方法,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析的步骤,包括:
    解析所述配置文件的告警策略以得到数据分析规则以及预设告警范围;
    根据所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行分析以得到相应的分析结果;
    若所述分析结果位于预设告警范围内,则生成相应的告警信息以进行告警。
  6. 如权利要求1所述的方法,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析的步骤之前,还包括:
    根据所述配置文件中的数据采集策略从位于监控服务系统的本地磁盘所在的网络中的待监控服务器上拉取相应的第二性能数据;
    将所拉取的第二性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
  7. 如权利要求1所述的方法,其中,所述若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件的步骤之后,还包括:
    若所述监控服务系统包括多个具有网络隔离的本地磁盘,分别确定每个本地磁盘所处的网络中的待监控服务器;
    获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略;
    分别根据不同的数据采集策略采集每个本地磁盘所处的网络中的待监控服务器的性能数据,并对应地存储至相应的本地磁盘的Prometheus数据库中;
    根据预设规则确定其中一个本地磁盘为主本地磁盘,以拉取其余的本地磁盘的Prometheus数据库中的性能数据,并存储至主本地磁盘的Prometheus数据库中;
    确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略从主本地磁盘的Prometheus数据库中读取的相应的数据进行告警分析。
  8. 一种基于非扁平网络的私有云监控装置,其中,所述装置包括:
    文件获取单元,用于若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;
    第一数据拉取单元,用于若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;
    第一存储单元,用于将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;
    第一告警分析单元,用于根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
  9. 一种计算机设备,包括存储器以及与所述存储器相连的处理器;其中,所述存储器用于存储计算机程序;所述处理器用于运行所述存储器中存储的计算机程序,以执行以下步骤:
    若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;
    若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设 的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;
    将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;
    根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
  10. 如权利要求9所述的计算机设备,其中,所述预设的数据中转件包括中转服务模块以及数据收集模块,所述根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存;
    拉取所述中转服务模块中缓存的第一性能数据。
  11. 如权利要求10所述的计算机设备,其中,所述不位于监控服务系统的本地磁盘所在的网络中的待监控服务器是存储服务器,所述第一性能数据包括存储空间占用比,所述根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统所在的网络中的存储服务器通过HTTP接口推送的存储空间占用比,并将所接收到的存储空间占用比推送到所述中转服务模块进行缓存。
  12. 如权利要求9所述的计算机设备,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析,包括:
    解析所述配置文件的告警策略以得到数据分析规则以及预设告警范围;
    根据所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行分析以得到相应的分析结果;
    若所述分析结果位于预设告警范围内,则生成相应的告警信息以进行告警。
  13. 如权利要求9所述的计算机设备,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析之前,还包括:
    根据所述配置文件中的数据采集策略从位于监控服务系统的本地磁盘所在的网络中的待监控服务器上拉取相应的第二性能数据;
    将所拉取的第二性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
  14. 如权利要求9所述的计算机设备,其中,所述若接收到云管理平台发起的监控请求, 根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件之后,还包括:
    若所述监控服务系统包括多个具有网络隔离的本地磁盘,分别确定每个本地磁盘所处的网络中的待监控服务器;
    获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略;
    分别根据不同的数据采集策略采集每个本地磁盘所处的网络中的待监控服务器的性能数据,并对应地存储至相应的本地磁盘的Prometheus数据库中;
    根据预设规则确定其中一个本地磁盘为主本地磁盘,以拉取其余的本地磁盘的Prometheus数据库中的性能数据,并存储至主本地磁盘的Prometheus数据库中;
    确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略从主本地磁盘的Prometheus数据库中读取的相应的数据进行告警分析。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行以下操作:
    若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件,所述云管理平台包括若干待监控服务器,所述配置文件包括数据采集策略和告警策略;
    若所述监控服务系统包括一个本地磁盘,根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据;
    将所拉取的第一性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中;
    根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析。
  16. 如权利要求15所述的计算机可读存储介质,其中,所述预设的数据中转件包括中转服务模块以及数据收集模块,所述根据所述配置文件中的数据采集策略以及预设的数据中转件从云管理平台中的不位于监控服务系统的本地磁盘的网络中的待监控服务器上拉取相应的的第一性能数据,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述中转服务模块进行缓存;
    拉取所述中转服务模块中缓存的第一性能数据。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述不位于监控服务系统的本地磁盘所在的网络中的待监控服务器是存储服务器,所述第一性能数据包括存储空间占用比,所述根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统的本次磁盘所在的网络中的待监控服务器通过HTTP接口推送的第一性能数据,并将所接收到的第一性能数据推送到所述 中转服务模块进行缓存,包括:
    根据所述配置文件中的数据采集策略控制所述中转服务模块向所述数据收集模块发送数据采集请求,以使所述数据采集模块接收不位于监控服务系统所在的网络中的存储服务器通过HTTP接口推送的存储空间占用比,并将所接收到的存储空间占用比推送到所述中转服务模块进行缓存。
  18. 如权利要求15所述的计算机可读存储介质,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析,包括:
    解析所述配置文件的告警策略以得到数据分析规则以及预设告警范围;
    根据所述数据分析规则对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行分析以得到相应的分析结果;
    若所述分析结果位于预设告警范围内,则生成相应的告警信息以进行告警。
  19. 如权利要求15所述的计算机可读存储介质,其中,所述根据所述配置文件的告警策略对从所述本地磁盘中的Prometheus数据库中读取的相应的数据进行告警分析之前,还包括:
    根据所述配置文件中的数据采集策略从位于监控服务系统的本地磁盘所在的网络中的待监控服务器上拉取相应的第二性能数据;
    将所拉取的第二性能数据存储至监控服务系统的本地磁盘中的Prometheus数据库中。
  20. 如权利要求15所述的计算机可读存储介质,其中,所述若接收到云管理平台发起的监控请求,根据所述监控请求获取监控服务系统的本地磁盘中的Prometheus监控的配置文件之后,还包括:
    若所述监控服务系统包括多个具有网络隔离的本地磁盘,分别确定每个本地磁盘所处的网络中的待监控服务器;
    获取每个本地磁盘中的Prometheus监控的配置文件中的数据采集策略;
    分别根据不同的数据采集策略采集每个本地磁盘所处的网络中的待监控服务器的性能数据,并对应地存储至相应的本地磁盘的Prometheus数据库中;
    根据预设规则确定其中一个本地磁盘为主本地磁盘,以拉取其余的本地磁盘的Prometheus数据库中的性能数据,并存储至主本地磁盘的Prometheus数据库中;
    确定主本地磁盘的Prometheus监控的配置文件中的告警策略,根据该告警策略从主本地磁盘的Prometheus数据库中读取的相应的数据进行告警分析。
PCT/CN2020/099187 2020-03-18 2020-06-30 基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质 WO2021184586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010189441.6 2020-03-18
CN202010189441.6A CN111459750A (zh) 2020-03-18 2020-03-18 基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021184586A1 true WO2021184586A1 (zh) 2021-09-23

Family

ID=71683209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099187 WO2021184586A1 (zh) 2020-03-18 2020-06-30 基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN111459750A (zh)
WO (1) WO2021184586A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113778001A (zh) * 2021-09-28 2021-12-10 上海市大数据股份有限公司 一种适用于应用系统的实时数据监控系统
CN114422339A (zh) * 2022-03-29 2022-04-29 西安塔力科技有限公司 一种自动调度的分布式数据监控系统及方法
CN114553740A (zh) * 2022-03-11 2022-05-27 以萨技术股份有限公司 一种跨网监控的方法、系统、可读存储介质及设备
CN114945020A (zh) * 2022-05-17 2022-08-26 宝信软件(武汉)有限公司 一种基于云平台的云边协同数据接入方法以及系统
CN114978860A (zh) * 2022-03-31 2022-08-30 亿玛创新网络(天津)有限公司 故障监控方法、装置、电子设备及存储介质
CN115174256A (zh) * 2022-07-27 2022-10-11 上海宏时数据系统有限公司 Zabbix应用的处理方法、装置、设备及介质
CN115314403A (zh) * 2022-07-29 2022-11-08 济南浪潮数据技术有限公司 一种混沌工程平台集成私有云的方法、系统及装置
CN115695180A (zh) * 2022-10-28 2023-02-03 北京大学 一种私有云平台及其搭建和管理方法
CN115904879A (zh) * 2023-01-06 2023-04-04 天津卓朗昆仑云软件技术有限公司 用于Prometheus集群的实例分配系统、方法及设备
WO2023142054A1 (zh) * 2022-01-27 2023-08-03 中远海运科技股份有限公司 一种面向容器微服务的性能监控告警方法及告警系统
CN117376417A (zh) * 2023-12-08 2024-01-09 中铁四局集团有限公司 数据采集方法、系统、装置、计算设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112084098A (zh) * 2020-10-21 2020-12-15 中国银行股份有限公司 资源监控系统及工作方法
CN112162912A (zh) * 2020-10-23 2021-01-01 新华三大数据技术有限公司 一种云资源监控方法及系统
CN112751726B (zh) * 2020-12-17 2022-09-09 北京达佳互联信息技术有限公司 一种数据处理方法、装置、电子设备和存储介质
CN113704063B (zh) * 2021-08-26 2024-05-14 北京百度网讯科技有限公司 一种云手机的性能监控方法、装置、设备及存储介质
CN113867197A (zh) * 2021-09-16 2021-12-31 浪潮云信息技术股份公司 一种基于Prometheus的云数据中心实例监控方法
CN116737498A (zh) * 2023-06-15 2023-09-12 中科驭数(北京)科技有限公司 遥测数据采集方法、系统、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544837A (zh) * 2016-06-24 2018-01-05 腾讯科技(深圳)有限公司 云服务设备性能数据采集系统、方法和装置
CN107844399A (zh) * 2017-10-10 2018-03-27 武汉斗鱼网络科技有限公司 自动监控数据库服务的方法、存储介质、电子设备及系统
CN110262944A (zh) * 2019-06-21 2019-09-20 四川长虹电器股份有限公司 一种对K8s集群容器资源进行监控并进行告警的方法
KR102062576B1 (ko) * 2018-10-10 2020-01-06 숭실대학교산학협력단 Vm 기반의 vnf 및 컨테이너 기반의 vnf를 모두 모니터링하기 위한 vnf 모니터링 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749951B2 (en) * 2018-05-01 2020-08-18 YugaByte Inc Selection of leader nodes in distributed data services
CN110515702A (zh) * 2019-08-29 2019-11-29 浪潮云信息技术有限公司 一种计算节点故障虚拟机的自动疏散方法及装置
CN110688281A (zh) * 2019-09-25 2020-01-14 凡普数字技术有限公司 监控系统中的告警方法、装置以及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544837A (zh) * 2016-06-24 2018-01-05 腾讯科技(深圳)有限公司 云服务设备性能数据采集系统、方法和装置
CN107844399A (zh) * 2017-10-10 2018-03-27 武汉斗鱼网络科技有限公司 自动监控数据库服务的方法、存储介质、电子设备及系统
KR102062576B1 (ko) * 2018-10-10 2020-01-06 숭실대학교산학협력단 Vm 기반의 vnf 및 컨테이너 기반의 vnf를 모두 모니터링하기 위한 vnf 모니터링 시스템
CN110262944A (zh) * 2019-06-21 2019-09-20 四川长虹电器股份有限公司 一种对K8s集群容器资源进行监控并进行告警的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU LEI: "The Design and Implementation of a Cloud Monitoring System Based on Private Cloud", MASTER'S THESES, 1 December 2017 (2017-12-01), pages 1 - 69, XP055851605 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113778001A (zh) * 2021-09-28 2021-12-10 上海市大数据股份有限公司 一种适用于应用系统的实时数据监控系统
WO2023142054A1 (zh) * 2022-01-27 2023-08-03 中远海运科技股份有限公司 一种面向容器微服务的性能监控告警方法及告警系统
CN114553740A (zh) * 2022-03-11 2022-05-27 以萨技术股份有限公司 一种跨网监控的方法、系统、可读存储介质及设备
CN114553740B (zh) * 2022-03-11 2023-11-10 以萨技术股份有限公司 一种跨网监控的方法、系统、可读存储介质及设备
CN114422339A (zh) * 2022-03-29 2022-04-29 西安塔力科技有限公司 一种自动调度的分布式数据监控系统及方法
CN114978860A (zh) * 2022-03-31 2022-08-30 亿玛创新网络(天津)有限公司 故障监控方法、装置、电子设备及存储介质
CN114945020A (zh) * 2022-05-17 2022-08-26 宝信软件(武汉)有限公司 一种基于云平台的云边协同数据接入方法以及系统
CN114945020B (zh) * 2022-05-17 2023-08-08 宝信软件(武汉)有限公司 一种基于云平台的云边协同数据接入方法以及系统
CN115174256A (zh) * 2022-07-27 2022-10-11 上海宏时数据系统有限公司 Zabbix应用的处理方法、装置、设备及介质
CN115314403A (zh) * 2022-07-29 2022-11-08 济南浪潮数据技术有限公司 一种混沌工程平台集成私有云的方法、系统及装置
CN115314403B (zh) * 2022-07-29 2024-05-28 郑州浪潮数据技术有限公司 一种混沌工程平台集成私有云的方法、系统及装置
CN115695180A (zh) * 2022-10-28 2023-02-03 北京大学 一种私有云平台及其搭建和管理方法
CN115695180B (zh) * 2022-10-28 2024-04-30 北京大学 一种私有云平台及其搭建和管理方法
CN115904879A (zh) * 2023-01-06 2023-04-04 天津卓朗昆仑云软件技术有限公司 用于Prometheus集群的实例分配系统、方法及设备
CN117376417B (zh) * 2023-12-08 2024-03-05 中铁四局集团有限公司 数据采集方法、系统、装置、计算设备及存储介质
CN117376417A (zh) * 2023-12-08 2024-01-09 中铁四局集团有限公司 数据采集方法、系统、装置、计算设备及存储介质

Also Published As

Publication number Publication date
CN111459750A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021184586A1 (zh) 基于非扁平网络的私有云监控方法、装置、计算机设备及存储介质
CN115053499B (zh) 云基础设施的集中管理、配设和监控
US10671721B1 (en) Timeout management services
US10785255B1 (en) Cluster configuration within a scalable malware detection system
WO2021184587A1 (zh) 基于Prometheus的私有云监控方法、装置、计算机设备及存储介质
US11467911B2 (en) Systems and methods for detection of degradation of a virtual desktop environment
EP2563062B1 (en) Long connection management apparatus and link resource management method for long connection communication
US9600319B2 (en) Computer-readable medium, apparatus, and method for offloading processing from a virtual switch to a physical switch
US9219691B2 (en) Source-driven switch probing with feedback request
US8543692B2 (en) Network system
US8305911B2 (en) System and method for identifying and managing service disruptions using network and systems data
US10230644B2 (en) Distributed API proxy system and apparatus and method for managing traffic in such system
US10182033B1 (en) Integration of service scaling and service discovery systems
CN106464584B (zh) 根据程序设计接口提供路由器信息
US11265389B2 (en) System and method for computation of user experience score for virtual apps and desktop users
US9847970B1 (en) Dynamic traffic regulation
US20140337471A1 (en) Migration assist system and migration assist method
US11102126B2 (en) Method, apparatus, and system for adjusting routing of network traffic or utilization of network nodes
US12001287B2 (en) Systems and methods for detection of degradation of a virtual desktop environment
US20230097099A1 (en) Selection of gateways for reconnection upon detection of reachability issues with backend resources
US20210377294A1 (en) Constraining resource allocation rate for stateful multi-tenant http proxies and denial-of-service attack prevention
KR101916799B1 (ko) 빅데이터 서버 부하 분산 제어 장치 및 방법
CN110661673B (zh) 一种心跳检测的方法及装置
US20190349436A1 (en) Methods, apparatus and systems for resuming transmission link
CN112448987A (zh) 一种熔断降级的触发方法、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925715

Country of ref document: EP

Kind code of ref document: A1