WO2021184499A1 - 针对5g nr带内调制信号实现预失真补偿处理的方法 - Google Patents

针对5g nr带内调制信号实现预失真补偿处理的方法 Download PDF

Info

Publication number
WO2021184499A1
WO2021184499A1 PCT/CN2020/088119 CN2020088119W WO2021184499A1 WO 2021184499 A1 WO2021184499 A1 WO 2021184499A1 CN 2020088119 W CN2020088119 W CN 2020088119W WO 2021184499 A1 WO2021184499 A1 WO 2021184499A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
generate
baseband
broadband
Prior art date
Application number
PCT/CN2020/088119
Other languages
English (en)
French (fr)
Inventor
王志
陈向民
Original Assignee
南京创远信息科技有限公司
上海创远仪器技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京创远信息科技有限公司, 上海创远仪器技术股份有限公司 filed Critical 南京创远信息科技有限公司
Priority to US17/911,489 priority Critical patent/US20230097877A1/en
Publication of WO2021184499A1 publication Critical patent/WO2021184499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the present invention relates to the field of 5G communication, in particular to the field of mobile communication instrument development and testing, and specifically refers to a method for realizing predistortion compensation processing for 5G NR in-band modulation signals.
  • Sub6G requires a maximum modulation bandwidth of 200MHz, and for the millimeter wave band bandwidth, it can reach 1GHz.
  • the influence of components, plates, and industrial design will cause problems with poor in-band flatness and phase consistency within the bandwidth of 5G broadband modulation signals.
  • the traditional method to solve the problem of in-band flatness and poor phase consistency in the bandwidth of 5G broadband modulation signals is to modify the different device circuits of the signal generation channel to improve the in-band flatness and phase consistency of the broadband modulation signal.
  • This method can bring certain improvements to the hardware device circuit, but the effect is very limited.
  • each board needs to be debugged separately, not only the calibration time. It is longer, and it does not achieve the desired effect.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a method for realizing predistortion compensation processing for 5G NR (New Radio) in-band modulated signals, which is easy to operate, has high efficiency, and has a wide range of applications. .
  • 5G NR New Radio
  • the method of the present invention for implementing predistortion compensation processing for 5G NR in-band modulated signals is as follows:
  • the main feature of the method for implementing predistortion compensation processing for 5G NR in-band modulated signals is that the method includes the following steps:
  • the switching signal output frequency interval is consistent with the 5G NR sub-carrier bandwidth, and the power value P0 corresponding to the current frequency is recorded through the power meter;
  • the step (1) specifically includes the following steps:
  • a continuous wave signal is generated through a broadband modulator, and the signal is sent out through a fixed-gain radio frequency channel;
  • the baseband data is generated according to the I and Q baseband signals, specifically:
  • baseband data is generated according to the I and Q baseband signals:
  • Nli(n) and Nlq(n) are I and Q baseband signals respectively
  • H(n) is the power compensation factor
  • n 0,1,...,4095.
  • the sub-carrier bandwidth in the step (1) is configured as 15kHz, 30kHz and 60kHz.
  • the filter in the step (6) is a root raised cosine filter, and the roll-off coefficient is 0.22.
  • the method of the present invention for implementing predistortion compensation for 5G NR in-band modulation signals is used to pre-measure the power difference of the continuous wave signal output by the modulation channel, pre-test the in-band imbalance, and then calculate the difference channel impulse Response; combined with the characteristics of 5G NR sub-carrier allocation and resource occupation, predistortion compensation is performed, without the need to modify the device circuits in the channel, so as to achieve the purpose of compensating the entire transmit channel.
  • This method not only greatly improves the in-band flatness and phase consistency indicators in the bandwidth of the 5G broadband modulation signal, but also improves the efficiency of R&D and production.
  • FIG. 1 is a block diagram of in-band compensation and signal generation of the method for implementing pre-distortion compensation processing for 5G NR in-band modulation signals according to the present invention.
  • FIG. 2 is a schematic diagram of the 5G NR signal quality before the 5G NR signal predistortion compensation in the method for implementing predistortion compensation processing for the 5G NR in-band modulation signal according to the present invention.
  • FIG. 3 is a schematic diagram of 5G NR signal quality after predistortion compensation of 5G NR signal in the method for implementing predistortion compensation processing for 5G NR in-band modulation signals according to the present invention.
  • the method for implementing predistortion compensation processing for 5G NR in-band modulated signals of the present invention includes the following steps:
  • the switching signal output frequency interval is consistent with the 5G NR subcarrier bandwidth, and the power value P0 corresponding to the current frequency is recorded through the power meter;
  • a continuous wave signal is generated through a broadband modulator, and the signal is sent out through a fixed-gain radio frequency channel;
  • baseband data is generated according to the I and Q baseband signals, specifically:
  • baseband data is generated according to the I and Q baseband signals:
  • Nli(n) and Nlq(n) are I and Q baseband signals respectively
  • H(n) is the power compensation factor
  • n 0,1,...,4095.
  • the sub-carrier bandwidth in the step (1) is configured as 15 kHz, 30 kHz and 60 kHz.
  • the filter in the step (6) is a root raised cosine filter, and the roll-off coefficient is 0.22.
  • the specific implementation method includes the following steps: configure the modulator to output a continuous wave signal, switch the signal output frequency interval to be consistent with the 5G NR subcarrier bandwidth, and pass the power meter Record the power value corresponding to the current frequency; the power value Pn measured by the power meter, using P0 as the reference point, calculate the power measurement difference between all points and P0, and normalize the power difference to the channel impulse response;
  • the channel impulse response is transformed into the power compensation factor H(n) of the time domain by the inverse Fourier transform of the fixed point;
  • the original baseband signal generated by the 5G NR is subjected to IFFT (inverse Fourier transform) according to different symbols l to generate two channels I and Q two-way baseband signals; multiply the power compensation factor/Q two-way baseband data point by point to generate the compensated baseband data; filter the generated baseband data, and then send it to A/D for digital analog Convert, generate analog zero-IF signal
  • the present invention provides a predistortion method for 5G NR broadband modulation signals of different frequencies, which effectively improves the in-band flatness of 5G NR broadband modulation signals, effectively reduces the bit error rate in the signal transmission process, and improves the quality of the modulation signal , Can be widely used in 5G NR signal generation equipment.
  • the 5G NR (New Radio) in-band modulation signal predistortion compensation method of the present invention measures the power difference of the continuous wave signal output by the modulation channel in advance, pre-tests the in-band imbalance, and then calculates the difference channel Impulse response; combined with the characteristics of 5G NR sub-carrier allocation and resource occupancy, predistortion compensation is performed, without the need to modify the device circuit in the channel, so as to achieve the purpose of compensating the entire transmit channel.
  • This method not only greatly improves the in-band flatness and phase consistency indicators in the bandwidth of the 5G broadband modulation signal, but also improves the efficiency of R&D and production.
  • the 5G NR in-band modulation signal predistortion compensation method specifically includes the following steps:
  • n_RB_SC the sub-carrier spacing
  • n 0, 1...4095.
  • Step 1) The neutron carrier bandwidth is configured as 15kHz, 30kHz and 60kHz, and the number of fully configured RBs is 275 RBs.
  • a 5G NR in-band modulation signal predistortion compensation method characterized in that: in step 4), the formula for inverse Fourier transform of the channel impulse response is:
  • is the sub-carrier bandwidth configuration
  • l is the symbol position
  • TC is the time interval between chips
  • k is a ratio calculated according to different sub-carrier bandwidths. Is the number of resource units in an RB, Cyclic prefix length under different sub-carrier configuration conditions.
  • the filter in step 6) adopts a root raised cosine filter with a roll-off coefficient of 0.22, which is used for filter shaping.
  • the calibration compensation and signal process includes the following steps:
  • Step 1 Compensate the impulse response acquisition process: control the digital-to-analog converter not to output, turn on the frequency synthesizer to generate the reference signal of the broadband modulator, generate the continuous wave signal through the broadband modulator, send it out through the fixed-gain RF channel, and use the signal receiving device (Such as: power meter, spectrum analyzer, etc.) for power measurement, used to obtain the power measurement value of different frequency points, and then obtain the power difference of different frequency points, and generate the difference through normalization, shaping filtering and Fourier transform Value of the channel impulse response.
  • the signal receiving device Such as: power meter, spectrum analyzer, etc.
  • Step 2 Digital compensation process. Transmission process: In the DSP, the difference channel impulse response generated by the inverse Fourier transform is multiplied point by point to realize the output gain compensation for different sub-carrier units; the compensated data is passed through A/D performs digital-to-analog conversion to generate a zero-IF analog signal into the broadband modulator, and then through the RF output, realizes the compensation of the imbalance of the entire signal generation channel through pre-distortion compensation on the digital baseband, which effectively improves the signal quality .
  • Figure 3 shows a schematic diagram of 5G NR signal quality after 5G NR signal predistortion compensation. From the measurement results, both the power of the pilot signal and the signal-to-noise ratio have been greatly improved.
  • the method of the present invention for implementing predistortion compensation for 5G NR in-band modulation signals is used to pre-measure the power difference of the continuous wave signal output by the modulation channel, pre-test the in-band imbalance, and then calculate the difference channel impulse Response; combined with the characteristics of 5G NR sub-carrier allocation and resource occupation, predistortion compensation is performed, without the need to modify the device circuits in the channel, so as to achieve the purpose of compensating the entire transmit channel.
  • This method not only greatly improves the in-band flatness and phase consistency indicators in the bandwidth of the 5G broadband modulation signal, but also improves the efficiency of R&D and production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及一种针对5G NR带内调制信号实现预失真补偿处理的方法,包括配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值P0;计算所有点与P0的功率测量差值,进行归一化,经过成型滤波,生成补偿信道冲击响应;转换成时域的功率补偿因子;进行傅里叶逆变换,生成I、Q两路基带信号;生成补偿后的基带数据;对生成后基带数据进行滤波处理,生成模拟零中频信号,进行5G NR宽带信号变频调制。采用了本发明的针对5G NR带内调制信号实现预失真补偿处理的方法,不需要对通道内的器件电路进行修正,不仅大大提高了5G宽带调制信号带宽内出现带内平坦度和相位一致性指标,还提高研发、生产的效率。

Description

针对5G NR带内调制信号实现预失真补偿处理的方法 技术领域
本发明涉及5G通信领域,尤其涉及移动通信仪表研发及测试测试领域,具体是指一种针对5G NR带内调制信号实现预失真补偿处理的方法。
背景技术
随着5G通信的快速发展,对于5G测试仪表的要求越来越高,尤其对瞬时带宽要求也越来越宽,Sub6G要求最大调制带宽到200MHz,对于毫米波频段带宽更是达到1GHz,由于受到器件、板材以及工业设计的影响,会造成5G宽带调制信号带宽内出现带内平坦度和相位一致性较差的问题。
传统解决5G宽带调制信号带宽内出现带内平坦度和相位一致性较差问题的方法是对信号发生通道的不同器件电路进行修正,进而改善宽带调制信号的带内平坦度和相位一致性。此方法通过对硬件器件电路进行修正,虽然可以带来一定的改善,但是效果非常有限,同时由于不同板卡一致性不好的状态下,要对每一块板卡进行单独调试,不仅调试校准时间较长,而且也达不到理想的效果。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种满足操作简便效率高、适用范围较为广泛的针对5G NR(New Radio,新空口)带内调制信号实现预失真补偿处理的方法。
为了实现上述目的,本发明的针对5G NR带内调制信号实现预失真补偿处理的方法如下:
该针对5G NR带内调制信号实现预失真补偿处理的方法,其主要特点是,所述的方法包括以下步骤:
(1)配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值P0;
(2)根据功率计测量的功率值P0,计算所有点与P0的功率测量差值,进行归一化,经过成型滤波,生成补偿信道冲击响应;
(3)对信道冲击响应进行傅里叶逆变换,转换成时域的功率补偿因子;
(4)把5G NR生成原始基带信号按照不同符号进行傅里叶逆变换,生成I、Q两路基带信号;
(5)把功率补偿因子与I、Q两路基带信号进行逐点相乘,生成补偿后的基带数据;
(6)对生成后基带数据进行滤波处理,进行数模转换,生成模拟零中频信号,输入宽带解调器进行5G NR宽带信号变频调制。
较佳地,所述的步骤(1)具体包括以下步骤:
(1.1)打开频率合成器,生成宽带调制器的参考信号;
(1.2)通过宽带调制器生成连续波信号,经过固定增益的射频通道发出信号;
(1.3)通过信号接收设备进行功率测量,用于获取不同频点的功率测量值。
较佳地,所述的步骤(5)中根据I、Q两路基带信号生成基带数据,具体为:
根据以下公式根据I、Q两路基带信号生成基带数据:
Ali(n)=Nli(n)×H(n);
Alq(n)=Nlq(n)×H(n);
其中,Nli(n)和Nlq(n)分别为I、Q两路基带信号,H(n)为功率补偿因子,n=0,1,……,4095。
较佳地,所述的步骤(1)中子载波带宽配置为15kHz、30kHz和60kHz。
较佳地,所述的步骤(6)中的滤波器为根升余弦滤波器,滚降系数为0.22。
采用了本发明的针对5G NR带内调制信号实现预失真补偿处理的方法,通过预先测量调制通道输出连续波信号的功率差值,预测试带内不平衡度,进而计算出差值信道冲激响应;再结合5G NR子载波分配以及资源占用的特点,进行预失真补偿,不需要对通道内的器件电路进行修正,从而达到了补偿整个发射通道的目的。此方法不仅大大提高了5G宽带调制信号带宽内出现带内平坦度和相位一致性指标,还提高研发、生产的效率。
附图说明
图1为本发明的针对5G NR带内调制信号实现预失真补偿处理的方法的带内补偿及信号发生框图。
图2为本发明的针对5G NR带内调制信号实现预失真补偿处理的方法的5G NR信号预失真补偿前5G NR信号质量示意图。
图3为本发明的针对5G NR带内调制信号实现预失真补偿处理的方法的5G NR信号预失真补偿后5G NR信号质量示意图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
本发明的该针对5G NR带内调制信号实现预失真补偿处理的方法,其中包括以下步骤:
(1)配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值P0;
(1.1)打开频率合成器,生成宽带调制器的参考信号;
(1.2)通过宽带调制器生成连续波信号,经过固定增益的射频通道发出信号;
(1.3)通过信号接收设备进行功率测量,用于获取不同频点的功率测量值;
(2)根据功率计测量的功率值P0,计算所有点与P0的功率测量差值,进行归一化,经过成型滤波,生成补偿信道冲击响应;
(3)对信道冲击响应进行傅里叶逆变换,转换成时域的功率补偿因子;
(4)把5G NR生成原始基带信号按照不同符号进行傅里叶逆变换,生成I、Q两路基带信号;
(5)把功率补偿因子与I、Q两路基带信号进行逐点相乘,生成补偿后的基带数据;
(6)对生成后基带数据进行滤波处理,进行数模转换,生成模拟零中频信号,输入宽带解调器进行5G NR宽带信号变频调制。
作为本发明的优选实施方式,所述的步骤(5)中根据I、Q两路基带信号生成基带数据,具体为:
根据以下公式根据I、Q两路基带信号生成基带数据:
Ali(n)=Nli(n)×H(n);
Alq(n)=Nlq(n)×H(n);
其中,Nli(n)和Nlq(n)分别为I、Q两路基带信号,H(n)为功率补偿因子,n=0,1,……,4095。
作为本发明的优选实施方式,所述的步骤(1)中子载波带宽配置为15kHz、30kHz和60kHz。
作为本发明的优选实施方式,所述的步骤(6)中的滤波器为根升余弦滤波器,滚降系数为0.22。
本发明的具体实施方式中,应用于5G NR信号发生的设备中,具体实现方法包括以下步骤:配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值;功率计测量的功率值Pn,以P0为参考点,计算所有点与P0的功率测量差值,并把功率差值进行归一化成信道冲击响应;把求取的信道冲击 响应进行固定点的傅里叶逆变换,转换成时域的功率补偿因子H(n);把5G NR生成原始基带信号按照不同符号l进行IFFT(傅里叶逆变换),生成两路I、Q两路基带信号;把功率补偿因子/Q两路基带数据进行逐点相乘,生成补偿后的基带数据;对生成后基带数据进行滤波处理,然后送到A/D中进行数模转换,生成模拟零中频信号然后再进入宽带解调器,进行5G NR宽带信号变频调制。
本发明提供了一种对不同频率5G NR宽带调制信号的预失真方法,有效的改善了5G NR宽带调制信号的带内平坦度,有效降低了信号传输过程中误码率,提高了调制信号质量,可广泛应用于5G NR信号发生设备中。
本发明中的5G NR(New Radio,新空口)带内调制信号预失真补偿方法,通过预先测量调制通道输出连续波信号的功率差值,预测试带内不平衡度,进而计算出差值信道冲激响应;再结合5G NR子载波分配以及资源占用的特点,进行预失真补偿,不需要对通道内的器件电路进行修正,从而达到了补偿整个发射通道的目的。此方法不仅大大提高了5G宽带调制信号带宽内出现带内平坦度和相位一致性指标,还能够提高研发、生产的效率。
在本发明的具体实施方式中,该5G NR带内调制信号预失真补偿方法,具体包括以下步骤:
1)配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值Pn,其中n=0,1…N_RB×n_RB_SC,N_RB为不同子载波带宽下的满配RB数,n_RB_SC为子载波间隔。
2)根据1)中功率计测量的功率值Pn,以P0为参考点,计算所有点与P0的功率测量差值,并把功率差值进行归一化成经过成型滤波生成补偿信道冲击响应。
3)对2)中求取的信道冲击响应进行4096点傅里叶逆变换,转换成时域的功率补偿因子H(n),n=0,1…4095。
4)把5G NR生成原始基带信号按照不同符号l进行IFFT(傅里叶逆变换),生成两路I、Q两路基带信号Nli(k),Nlq(k),其中n=0,1…4095。
5)把3)中的功率补偿因子与4)中的I/Q两路中Nli(k),Nlq(k)进行逐点相乘,生成补偿后的基带数据,生成公式为:
Ali(n)=Nli(n)×H(n);
Alq(n)=Nlq(n)×H(n);
其中n=0,1…4095。
6)对生成后基带数据进行滤波处理,然后送到A/D中进行数模转换,生成模拟零中 频信号然后再进入宽带解调器,进行5G NR宽带信号变频调制。
步骤1)中子载波带宽配置为15kHz、30kHz及60kHz,满配置RB个数为275个RB。
3.根据权利要求1所述的一种5G NR带内调制信号预失真补偿方法,其特征在于:步骤4)中用于将信道冲击响应傅里叶逆变换的公式为:
Figure PCTCN2020088119-appb-000001
Figure PCTCN2020088119-appb-000002
Figure PCTCN2020088119-appb-000003
为一个子帧间的时间间隔。
Figure PCTCN2020088119-appb-000004
Figure PCTCN2020088119-appb-000005
其中,μ为子载波带宽配置,l为符号位置,TC为码片间的时间间隔,k为根据不同子载波带宽计算出来的一个比值,
Figure PCTCN2020088119-appb-000006
为一个RB中的资源单元的个数,
Figure PCTCN2020088119-appb-000007
不同子载波配置条件下的循环前缀长度。
步骤6)中的滤波器采用根升余弦滤波器,滚降系数为0.22,,用于滤波成型。
校准补偿及信号过程包括以下步骤:
步骤1,补偿冲击响应获取过程:控制数模转换器不输出,打开频率合成器生成宽带调制器的参考信号,通过宽带调制器生成连续波信号,经过固定增益的射频通道发出,采用信号接收设备(如:功率计,频谱仪等)进行功率测量,用于获取不同频点的功率测量值,进而求取不同频点的功率差值,通过归一化、成型滤波及傅里叶变换生成差值的信道冲激响应。
步骤2,数字补偿过程发射过程:在DSP中,把通过傅里叶逆变换生成的差值信道冲激响应逐点相乘,实现对不同子载波单元进行输出增益补偿;把补偿后的数据通过A/D进行数模转换生成零中频模拟信号进入宽带调制器,再经过射频输出,实现了通过在数字基带上进行预失真补偿实现对整个信号生成通道不平衡度的补偿,有效的改善信号质量。
如图3所示为5G NR信号预失真补偿后5G NR信号质量示意图,测量结果上看,无论是导频信号的功率还是信噪比都有很大改善
采用了本发明的针对5G NR带内调制信号实现预失真补偿处理的方法,通过预先测量调 制通道输出连续波信号的功率差值,预测试带内不平衡度,进而计算出差值信道冲激响应;再结合5G NR子载波分配以及资源占用的特点,进行预失真补偿,不需要对通道内的器件电路进行修正,从而达到了补偿整个发射通道的目的。此方法不仅大大提高了5G宽带调制信号带宽内出现带内平坦度和相位一致性指标,还提高研发、生产的效率。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (5)

  1. 一种针对5G NR带内调制信号实现预失真补偿处理的方法,其特征在于,所述的方法包括以下步骤:
    (1)配置调制器输出连续波信号,切换信号输出频率间隔与5G NR子载波带宽一致,并通过功率计记录当前频率对应的功率值P0;
    (2)根据功率计测量的功率值P0,计算所有点与P0的功率测量差值,进行归一化,经过成型滤波,生成补偿信道冲击响应;
    (3)对信道冲击响应进行傅里叶逆变换,转换成时域的功率补偿因子;
    (4)把5G NR生成原始基带信号按照不同符号进行傅里叶逆变换,生成I、Q两路基带信号;
    (5)把功率补偿因子与I、Q两路基带信号进行逐点相乘,生成补偿后的基带数据;
    (6)对生成后基带数据进行滤波处理,进行数模转换,生成模拟零中频信号,输入宽带解调器进行5G NR宽带信号变频调制。
  2. 根据权利要求1所述的针对5G NR带内调制信号实现预失真补偿处理的方法,其特征在于,所述的步骤(1)具体包括以下步骤:
    (1.1)打开频率合成器,生成宽带调制器的参考信号;
    (1.2)通过宽带调制器生成连续波信号,经过固定增益的射频通道发出信号;
    (1.3)通过信号接收设备进行功率测量,用于获取不同频点的功率测量值。
  3. 根据权利要求1所述的针对5G NR带内调制信号实现预失真补偿处理的方法,其特征在于,所述的步骤(5)中根据I、Q两路基带信号生成基带数据,具体为:
    根据以下公式根据I、Q两路基带信号生成基带数据:
    Ali(n)=Nli(n)×H(n);
    Alq(n)=Nlq(n)×H(n);
    其中,Nli(n)和Nlq(n)分别为I、Q两路基带信号,H(n)为功率补偿因子,n=0,1,……,4095。
  4. 根据权利要求1所述的针对5G NR带内调制信号实现预失真补偿处理的方法,其特征在于,所述的步骤(1)中子载波带宽配置为15kHz、30kHz和60kHz。
  5. 根据权利要求1所述的针对5G NR带内调制信号实现预失真补偿处理的方法,其特征在于,所述的步骤(6)中的滤波器为根升余弦滤波器,滚降系数为0.22。
PCT/CN2020/088119 2020-03-18 2020-04-30 针对5g nr带内调制信号实现预失真补偿处理的方法 WO2021184499A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/911,489 US20230097877A1 (en) 2020-03-18 2020-04-30 Method for implementing predistortion compensation processing for 5g nr in-band modulated signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010191787.XA CN111371722B (zh) 2020-03-18 2020-03-18 针对5g nr带内调制信号实现预失真补偿处理的方法
CN202010191787.X 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021184499A1 true WO2021184499A1 (zh) 2021-09-23

Family

ID=71211962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088119 WO2021184499A1 (zh) 2020-03-18 2020-04-30 针对5g nr带内调制信号实现预失真补偿处理的方法

Country Status (3)

Country Link
US (1) US20230097877A1 (zh)
CN (1) CN111371722B (zh)
WO (1) WO2021184499A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079513A (zh) * 2022-01-07 2022-02-22 南昌大学 一种led驱动信号的调制方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118069964B (zh) * 2024-04-24 2024-06-25 成都英杰晨晖科技有限公司 一种频谱泄露补偿方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694758A (zh) * 2012-04-11 2012-09-26 上海聚星仪器有限公司 射频前端收发链路在线校准办法
US20150256216A1 (en) * 2014-03-10 2015-09-10 Texas Instruments Incorporated Method and apparatus for digital predistortion for a switched mode power amplifier
CN110166007A (zh) * 2019-05-08 2019-08-23 东南大学 基于超前项模型的宽带功率放大器数字预失真系统及方法
CN110266276A (zh) * 2019-05-17 2019-09-20 杭州电子科技大学 5g超宽带功率放大器低速数字预失真方法
CN110730055A (zh) * 2019-10-22 2020-01-24 上海创远仪器技术股份有限公司 基于信号分析仪实现5g信号发射调制质量测量的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548404B2 (en) * 2011-09-30 2013-10-01 Scintera Networks, Inc. Linearization of power amplifiers through digital in-band predistortion followed by analog predistortion
KR101258193B1 (ko) * 2011-11-22 2013-04-25 주식회사 이노와이어리스 다이렉트 업컨버전 시스템에서 i/q 불균형 보상 장치 및 방법
EP3446452B1 (en) * 2016-05-13 2020-07-01 Huawei Technologies Co., Ltd. Radio transceiving device and method using waveform adaptation
WO2018030936A1 (en) * 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein relating to time division duplex configurations for narrowband internet of things
CN109188479B (zh) * 2018-08-28 2021-04-13 西安空间无线电技术研究所 一种高精度卫星导航信号预失真方法
CN109547036A (zh) * 2018-10-17 2019-03-29 中国电子科技集团公司第四十研究所 一种宽带调制信号频响预补偿方法
CN109495174A (zh) * 2018-12-28 2019-03-19 中国电子科技集团公司第三十四研究所 一种基于ofdm调制解调的机载激光通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694758A (zh) * 2012-04-11 2012-09-26 上海聚星仪器有限公司 射频前端收发链路在线校准办法
US20150256216A1 (en) * 2014-03-10 2015-09-10 Texas Instruments Incorporated Method and apparatus for digital predistortion for a switched mode power amplifier
CN110166007A (zh) * 2019-05-08 2019-08-23 东南大学 基于超前项模型的宽带功率放大器数字预失真系统及方法
CN110266276A (zh) * 2019-05-17 2019-09-20 杭州电子科技大学 5g超宽带功率放大器低速数字预失真方法
CN110730055A (zh) * 2019-10-22 2020-01-24 上海创远仪器技术股份有限公司 基于信号分析仪实现5g信号发射调制质量测量的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAPPELLO TOMMASO; PEDNEKAR PRATHAMESH; FLORIAN CORRADO; CRIPPS STEVE; POPOVIC ZOYA; BARTON TAYLOR W.: "Supply- and Load-Modulated Balanced Amplifier for Efficient Broadband 5G Base Stations", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 67, no. 7, 1 July 2019 (2019-07-01), USA, pages 3122 - 3133, XP011732529, ISSN: 0018-9480, DOI: 10.1109/TMTT.2019.2915082 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079513A (zh) * 2022-01-07 2022-02-22 南昌大学 一种led驱动信号的调制方法及系统

Also Published As

Publication number Publication date
CN111371722B (zh) 2021-12-31
US20230097877A1 (en) 2023-03-30
CN111371722A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
Cruz et al. Designing and testing software-defined radios
WO2021184499A1 (zh) 针对5g nr带内调制信号实现预失真补偿处理的方法
CN110336572B (zh) 一种收发信机的增益平坦度补偿方法
CN102291154B (zh) 极坐标发射机
WO2021243833A1 (zh) 实现宽带iq调制实时预失真校准的电路结构及方法
JP2008539602A (ja) ポーラ変調送信回路及び通信機器
CN105591656A (zh) 一种收发信机的增益平坦度补偿方法
CN109274372B (zh) 一种tiadc系统通道间采样时刻失配误差提取方法
CN108988962A (zh) 一种宽带矢量调制信号误差矢量幅度的修正装置与方法
WO2004077662A1 (en) Power amplifying device for communication system
CN112217579B (zh) 一种误差矢量幅度可调的矢量信号产生及装置
TWI410097B (zh) 在ofdm系統中用於i/q分支均衡的系統及方法
Peng et al. Under-sampling digital predistortion of power amplifier using multi-tone mixing feedback technique
Peng et al. A frequency-domain I/Q imbalance calibration algorithm for wideband direct conversion receivers using low-cost compensator
CN103346792A (zh) 消除模数转换中时钟抖动的方法、装置及数字预失真方法
CN114374399B (zh) 高精度iq失衡矫正系统
Liu et al. Accurate time-delay estimation and alignment for RF power amplifier/transmitter characterization
CN113054953B (zh) 一种宽带波形产生组件和方法
Arslan RF impairments
Maršálek et al. Digital calibration of 60 GHz setup for use in power amplifier predistortion
Braithwaite Model order selection for digital predistortion of a RF power amplifier when the distortion spectrum exceeds the observation bandwidth
Morales et al. FPGA implementation and evaluation of a PWM-based RF modulator
Zhu et al. A blind AM/PM estimation method for power amplifier linearization
Likun Design and Implementation of Broadband Vector Modulation Calibration Based on Group Delay Mode
Lan et al. A method for compensating the D/A converter frequency response distortion in different Nyquist zones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925444

Country of ref document: EP

Kind code of ref document: A1