WO2021184200A1 - 通信方法、装置及设备 - Google Patents

通信方法、装置及设备 Download PDF

Info

Publication number
WO2021184200A1
WO2021184200A1 PCT/CN2020/079726 CN2020079726W WO2021184200A1 WO 2021184200 A1 WO2021184200 A1 WO 2021184200A1 CN 2020079726 W CN2020079726 W CN 2020079726W WO 2021184200 A1 WO2021184200 A1 WO 2021184200A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
message
ssb
information
availability
Prior art date
Application number
PCT/CN2020/079726
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
周涵
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20925443.2A priority Critical patent/EP4109800A4/en
Priority to PCT/CN2020/079726 priority patent/WO2021184200A1/zh
Priority to CN202080096410.4A priority patent/CN115191094A/zh
Publication of WO2021184200A1 publication Critical patent/WO2021184200A1/zh
Priority to US17/945,577 priority patent/US20230019909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device and equipment.
  • the terminal equipment (or user equipment (UE)) in the radio resource control idle state (radio resource control idle, RRC_IDLE) or the RRC inactive state (RRC_INACTIVE) is mainly Two things are done: monitoring paging (Paging) messages and radio resource management (radio resource measurement, RRM) measurement.
  • the present application provides a communication method, device and equipment to solve the problem of large power consumption loss caused by terminal equipment monitoring paging messages and performing RRM measurement in the prior art, and not only can be saved to be in the RRC idle state or RRC inactive state
  • the power consumption of the stateful terminal equipment for AGC adjustment/time-frequency tracking/RRM measurement/beam management is conducive to improving the processing performance of the terminal equipment, and it also makes the terminal equipment need not re-acquire the RRC connection when the reference signal availability changes.
  • the configuration information of the reference signal in the RRC state can reduce the configuration signaling overhead of the RRC idle state/inactive state.
  • the present application provides a communication method, including: receiving a first message from a network device, the first message including configuration information of at least one first reference signal; receiving a second message from the network device, the second message is used for Indicate the availability of at least one second reference signal, at least one second reference signal has a QCL relationship with at least one synchronization signal/physical broadcast channel block SSB, and at least one first reference signal includes at least one second reference signal; according to the configuration information and the first The second message is to receive a reference signal whose availability is in an available state among the at least one second reference signal from the network device.
  • the terminal device receives the first message from the network device, and the first message includes the configuration information of at least one first reference signal, so that the terminal device can clearly based on the configuration information of the at least one first reference signal Determine the configured reference signal.
  • the terminal device receives a second message from the network device, where the second message is used to indicate the available state of the at least one second reference signal, and the at least one second reference signal has a QCL relationship with the at least one SSB.
  • the second message is used to indicate the availability of at least one second reference signal that has a QCL relationship with the at least one SSB at the granularity of the SSB or the granularity of the beam/beam direction corresponding to the SSB, that is, to indicate the beam/beam direction corresponding to the at least one SSB more finely
  • the availability of the above reference signal allows the terminal device to clarify the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the terminal device can receive from the network device the reference signal whose availability is available in the at least one second reference signal, which is beneficial to the terminal device based on
  • the usability of the reference signal in the usable state is used for AGC adjustment/time-frequency tracking/RRM measurement/beam management, etc., which solves the problem of terminal equipment failure due to the inconsistent transmission of the reference signal and the variable availability of the reference signal in different beam/beam directions.
  • the problem of power consumption for necessary operations saves the power consumption for AGC adjustment/time-frequency tracking/RRM measurement/beam management, etc., improves the processing performance of the terminal device, and also enables the terminal device to change when the reference signal availability changes , There is no need to reacquire the configuration information of the reference signal, which reduces the configuration signaling overhead of the RRC idle state/inactive state.
  • the above-mentioned at least one second reference signal may be an existing reference signal in the NR system, and the always on signal is not added, which avoids the addition of an always on signal in the NR system, and satisfies the design of the NR system to reduce the always on signal. in principle.
  • the terminal device can also know each paging moment PO of the terminal device in advance, the terminal device can monitor the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB and each of the paging messages.
  • the reference signal that is closest to monitoring the paging message and whose availability is in the available state can be received from the network device in the reference signal, which further reduces the wake-up time of the terminal device and saves the power consumption of the terminal device for unnecessary operations.
  • the method further includes: receiving first information from a network device, where the first information is used to determine a correspondence between at least one information bit in the second message and at least one SSB, Or, determine the correspondence between the at least one information bit in the second message and the SSB index corresponding to the at least one SSB, so that the network device uses the "bridge" function of the SSB, based on the information bit in the second message and the SSB/SSB index
  • the corresponding relationship between the SSB and the QCL relationship between the SSB and the at least one second reference signal, the corresponding relationship between the at least one information bit in the second message and the at least one second reference signal can be configured so that the network device can pass the first reference signal.
  • At least one information bit in the second message indicates the availability of at least one second reference signal, so that the terminal device determines the correspondence between the at least one information bit in the second message and the at least one second reference signal based on the first information, Furthermore, the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB is determined.
  • the method further includes: receiving a third message from the network device, where the third message is used to configure the default availability of at least one second reference signal, so that the terminal device can use the In the case of the information bit indicating the availability of the at least one second reference signal, the availability of the at least one second reference signal can be determined according to the default availability of the at least one second reference signal. Therefore, the network device can configure the default availability of the at least one second reference signal based on the third message, so that the terminal device determines the availability of the at least one second reference signal based on the third message.
  • the method further includes: when the second message is not received or the second message does not include information bits for indicating the availability of the at least one second reference signal, according to The information bit used to indicate the availability of at least one second reference signal in the last received second message determines the availability of at least one second reference signal; or, the second message is not received or is not included in the second message
  • the information bit used to indicate the availability of at least one second reference signal determine the availability of at least one second reference signal according to the default availability of the at least one second reference signal; or, when the second message or the first reference signal is not received
  • the second message does not include information bits for indicating the availability of the at least one second reference signal, it is determined that the availability of the at least one second reference signal is in an unavailable state; or, when the second message or the second message is not received If the information bit used to indicate the availability of the at least one second reference signal is not included in the data, it is determined that the availability of the at least one second reference signal is available; or, the second
  • the present application provides a communication method, including: sending a first message to a terminal device, the first message including configuration information of at least one first reference signal; sending a second message to the terminal device, the second message is used for Indicate the availability of at least one second reference signal, at least one second reference signal has a QCL relationship with at least one synchronization signal/physical broadcast channel block SSB, and at least one first reference signal includes at least one second reference signal; sending at least one second reference signal to the terminal device A reference signal whose availability is in the available state among the second reference signals.
  • the network device sends a first message to the terminal device, and the first message includes the configuration information of at least one first reference signal, so that the terminal device can clearly based on the configuration information of the at least one first reference signal Determine the configured reference signal.
  • the network device sends a second message to the terminal device, where the second message is used to indicate the available state of the at least one second reference signal, and the at least one second reference signal has a QCL relationship with the at least one SSB.
  • the second message is used to indicate the availability of at least one second reference signal that has a QCL relationship with the at least one SSB at the granularity of the SSB or the granularity of the beam/beam direction corresponding to the SSB, that is, to indicate the beam/beam direction corresponding to the at least one SSB more finely
  • the availability of the above reference signal allows the terminal device to clarify the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the network device sends to the terminal device at least one reference signal whose availability is available in the second reference signal, so that the terminal device can obtain information from the network according to the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the device receives at least one reference signal whose availability is in the available state among the second reference signals, which is beneficial for the terminal device to perform AGC adjustment/time-frequency tracking/RRM measurement/beam management based on the reference signal whose availability is in the available state.
  • the constant transmission and the variable availability of the reference signal in different beams/beam directions lead to the problem of unnecessary power consumption of terminal equipment, which saves the power consumption for AGC adjustment/time-frequency tracking/RRM measurement/beam management, etc.
  • the processing performance of the terminal device is improved, and the terminal device does not need to re-acquire the configuration information of the reference signal when the availability of the reference signal changes, which reduces the configuration signaling overhead of the RRC idle state/inactive state.
  • the above-mentioned at least one second reference signal may be an existing reference signal in the NR system, and the always on signal is not added, which avoids the addition of an always on signal in the NR system, and satisfies the design of the NR system to reduce the always on signal. in principle.
  • the terminal device can know each paging moment PO of the terminal device in advance, the terminal device is made to monitor the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB and each of the paging messages.
  • the reference signal that is closest to monitoring the paging message and whose availability is in the available state can be received from the network device in the reference signal, which further reduces the wake-up time of the terminal device and saves the power consumption of the terminal device for unnecessary operations.
  • the method further includes: sending first information to the terminal device, where the first information is used to determine the correspondence between at least one information bit in the second message and the at least one SSB, Or, determine the correspondence between the at least one information bit in the second message and the SSB index corresponding to the at least one SSB, so that the network device uses the "bridge" function of the SSB, based on the information bit in the second message and the SSB/SSB index
  • the corresponding relationship between the SSB and the QCL relationship between the SSB and the at least one second reference signal, the corresponding relationship between the at least one information bit in the second message and the at least one second reference signal can be configured so that the network device can pass the first reference signal.
  • At least one information bit in the second message indicates the availability of at least one second reference signal, so that the terminal device determines the correspondence between the at least one information bit in the second message and the at least one second reference signal based on the first information, Furthermore, the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB is determined.
  • the method further includes: sending a third message to the terminal device, where the third message is used to configure the default availability of the at least one second reference signal, so that the terminal device can use the In the case of the information bit indicating the availability of the at least one second reference signal, the availability of the at least one second reference signal can be determined according to the default availability of the at least one second reference signal. Therefore, the network device can configure the default availability of the at least one second reference signal based on the third message, so that the terminal device determines the availability of the at least one second reference signal based on the third message.
  • the configuration information includes: second information, and the second information is used to determine the QCL relationship between the at least one second reference signal and the at least one SSB, and/or, Determining a QCL relationship between at least one second reference signal and at least one reference signal other than at least one SSB, and at least one reference signal other than at least one SSB has a QCL relationship with at least one SSB, So that the terminal device can determine the QCL relationship between the at least one second reference signal and the at least one SSB based on the second information, so as to adopt the corresponding relationship between the SSB described in the foregoing content and the at least one information bit in the second message, The correspondence between at least one information bit in the second message and at least one second reference signal is determined.
  • the second message in the case that the bitmap in the second message is used to indicate the availability of at least one second reference signal, the second message is the SIB1 of the system message or other SIB; or, the second message is the downlink control information DCI carried by the physical downlink control channel PDCCH or the information carried by the physical downlink shared channel PDSCH.
  • the number of bitmaps in the second message is n, n is taken to be greater than or equal to 1 and less than N, n and N are positive integers, and the bitmap The bitmap is used to indicate the availability of at least one second reference signal, and the bitmap includes at least one information bit, which provides multiple implementation possibilities of the bitmap in the second message.
  • the first bitmap in the second message is in any paging moment PO
  • the monitoring timing of each PDCCH is the same, which makes the design simple and convenient.
  • the terminal device only needs to obtain the first bitmap on at least one PDCCH monitoring timing in a paging moment PO, and use one of the PDCCH monitoring timings.
  • the first bitmap obtained above can determine the availability of at least one second reference signal that has a QCL relationship with all SSBs.
  • the first bitmap in the second message is different at each PDCCH monitoring timing in any paging moment PO, so that different first bitmaps indicate the QCL relationship with different SSBs.
  • the availability of at least one second reference signal can reduce the number of bits in the first bitmap and save command signaling overhead.
  • the second message is the paging DCI carried by the PDCCH
  • the number of bits in the first bitmap in the second message in different POs is the same Therefore, the correspondence between the first bitmap in the second message in different POs and the at least one second reference signal is the same, which is convenient for simple design.
  • the type of at least one second reference signal includes: tracking reference At least one of the signal TRS, the channel state information reference signal CSI-RS, the synchronization signal/physical broadcast channel block SSB, or the secondary synchronization signal SSS.
  • the configuration information is used to configure the maximum number of second reference signals of the same function and the same type according to the function and type of the at least one second reference signal, so as to save configuration information. Let; or, the maximum number of second reference signals of the same function and of the same type is predefined, so as to save configuration signaling.
  • the configuration information is used to configure the maximum number of reference signal resource sets to which second reference signals of the same function and type belong according to the function and type of at least one second reference signal.
  • the maximum number of reference signal resource sets to which second reference signals of the same function and type belong is predefined, in order to save configuration signaling.
  • the second message includes: a first bitmap and a second bitmap, and the information bits in the first bitmap correspond to at least one second reference signal The first function, the information bit in the second bitmap corresponds to the second function of at least one second reference signal.
  • the network device uses the "bridge" function of the SSB to build the correspondence between the second message and the at least one second reference signal. Therefore, the number of SSBs actually sent in one SS burst set can affect the number of information bits in the second message.
  • the number of bits in the first bitmap in the second message is less than or equal to a synchronization signal/synchronization signal/physical broadcast channel sent in a set of synchronization signals/physical broadcast channel blocks The number of block SSBs.
  • the first bitmap includes: at least one information domain field; wherein the number of bits in the information domain field is determined according to information associated with determining the number of SSBs of.
  • the first bitmap includes: a first information field field and a second information field field; wherein the number of bits in the first information field field is equal to the configuration of the SSB
  • the number of bits in the inOneGroup field in the parameter ssb-PositionsInBurst is equal to the number of bits in the first value
  • the number of bits in the second information field field is equal to the number of bits in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst.
  • the first bitmap includes an information field field; wherein, the number of bits in the first bitmap is equal to the number of bits in the inOneGroup field in the SSB configuration parameter ssb-PositionsInBurst equal to the first value Or, the number of bits in the first bitmap is equal to the number of bits in the groupPresence field in the configuration parameter ssb-PositionsInBurst of the SSB that is equal to the second value.
  • the number of bits reserved for paging DCI is limited, and the number of bits in the first bitmap may be greater than the number of bits reserved for paging DCI, or it may be less than or equal to that of paging DCI.
  • the number of reserved bits Therefore, the present application can set the number of bits of the first bitmap based on the specific conditions of the paging DCI, so that the first bitmap can be carried by the paging DCI.
  • the second message is used to indicate that the availability of the at least one second reference signal takes effect within the first time period.
  • the first duration includes: at least one paging discontinuous reception DRX cycle; or, one or more of the cycle time windows configured or predefined by the network device Time window; or, in the case that the second message is the paging DCI carried by the PDCCH, a time period before the next PO at the paging moment PO where the second message is located, where the next PO and the second message
  • the length of the DRX cycle between the POs or, when the second message is the paging DCI carried by the PDCCH, it is located in a period of time after the next PO of the PO where the second message is located, where the next The duration of one DRX cycle between a PO and the PO where the second message is located; or, in the case where the second message is a paging DCI carried by the PDCCH, it is located a time period after the PO where the second message is located.
  • the present application provides a communication device.
  • the device may be a terminal device or a chip in the terminal device.
  • the device may include an interface unit, and the interface unit may be a transceiver.
  • the terminal device may also include a processing unit, and the processing unit may be a processor.
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the terminal device executes the first aspect and any one of the possible designs of the first aspect. Corresponding function in.
  • the device When the device is a chip in a terminal device, the device may include an interface unit, which may be an input/output interface, a pin, or a circuit.
  • the terminal device may also include a processing unit, which may be a processor; the terminal device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to make the terminal device.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or it can be located in a terminal device A storage unit outside the chip (for example, read-only memory, random access memory, etc.).
  • this application provides a communication device.
  • the device may be a network device or a chip in the network device.
  • the device may include an interface unit, and the interface unit may be a transceiver.
  • the device may also include a processing unit, and the processing unit may be a processor.
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the network device executes any possible design of the second aspect and the second aspect.
  • the device may include an interface unit, which may be an input/output interface, a pin, or a circuit.
  • the device may also include a processing unit, and the processing unit may be a processor.
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the chip in the network device executes any one of the second aspect and the second aspect.
  • the storage unit can be a storage unit in the chip (for example, registers, caches, etc.), or a storage unit outside the chip in a network device (for example, read-only memory, random access memory, etc.). Memory, etc.).
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the terminal device executes any one of the first aspect and the first aspect.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the network device executes any one of the second aspect and the second aspect.
  • the present application provides a program product.
  • the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the terminal device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the terminal device to implement the first aspect and the communication method in any one of the possible designs of the first aspect.
  • the present application provides a program product.
  • the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the network device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the network device to implement the second aspect and the communication method in any one of the possible designs of the second aspect.
  • Figure 1 is a schematic diagram of the architecture of a communication system
  • FIG. 2 is a schematic diagram of the moment when the SSB appears and the paging moment PO in the paging DRX cycle;
  • Figure 3 is a schematic diagram of a network device sending CSI-RS and SSB to a terminal device;
  • FIG. 4 is a signaling flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of reference signals including CSI-RS and SSB provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the relationship between the first information bit, the SSB, and the reference signal provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of a bitmap in a second message provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a bitmap in a second message provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a reference signal provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of a reference signal provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of the first duration provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 21 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 25 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 26 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a alone, b alone or c alone can mean: a alone, b alone, c alone, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of a, b and c, where a, b, and c can be single or multiple.
  • the terms "first" and "second" are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • wireless communication systems include but are not limited to: Narrow Band-Internet of Things (NB-IoT), Long Term Evolution System (Long Term) Evolution, LTE), the 5th Generation mobile communication technology (5G) system (for example, the new radio system), and the next-generation wireless communication system.
  • NB-IoT Narrow Band-Internet of Things
  • LTE Long Term Evolution System
  • 5G 5th Generation mobile communication technology
  • the communication devices involved in this application mainly include network equipment and terminal equipment.
  • Network equipment It can be a base station, or an access point, or an access network device, or it can refer to a device in the access network that communicates with terminal equipment through one or more sectors on an air interface.
  • the network device can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station, or a transmitting/receiving point (Tx/Rx Point, TRP), or a 5G network
  • Evolutional Node B, eNB or eNodeB Long Term Evolution
  • a relay station or a transmitting/receiving point (Tx/Rx Point, TRP)
  • Tx/Rx Point TRP
  • 5G network 5G network
  • the base station in the network such as gNB, etc., or the next-generation network, is not limited here.
  • Terminal equipment It can be a wireless terminal or a wired terminal.
  • a wireless terminal can be a device that provides voice and/or other business data connectivity to users, a handheld device with wireless connection function, or other processing equipment connected to a wireless modem .
  • the wireless terminal can communicate with one or more core networks via the RAN.
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal.
  • a mobile phone or called a "cellular" phone
  • a computer with a mobile terminal For example, it can be a portable, pocket-sized, Hand-held, computer-built or vehicle-mounted mobile devices that exchange language and/or data with wireless access networks.
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • Fig. 1 is a schematic diagram of a communication system architecture.
  • the communication system of the present application may include at least one network device and at least one terminal device, and the network device and the terminal device communicate with each other.
  • the terminal equipment in the RRC idle state or the RRC inactive state mainly completes the two things of monitoring paging messages and performing RRM measurement.
  • the terminal device in order to monitor the paging physical downlink control channel (PDCCH), the terminal device generally performs time/frequency tracking (time/frequency tracking), AGC adjustment (automatic gain control, AGC tuning), or beam selection (beam selection). ) And other operations.
  • time/frequency tracking time/frequency tracking
  • AGC adjustment automatic gain control, AGC tuning
  • beam selection beam selection
  • the network device configures the terminal device with a discontinuous reception cycle (DRX cycle).
  • DRX cycle a discontinuous reception cycle
  • a terminal device can monitor a paging message at a paging occasion (PO), and can enter a sleep state at other moments without monitoring the paging message.
  • the paging moment PO of the terminal device is determined by the identification (ID) of the terminal device.
  • ID the identification
  • different terminal devices may have different paging moments PO for monitoring paging messages.
  • the network device can broadcast a reference signal to the terminal device (the reference signal is usually a synchronization signal/physical broadcast channel block (synchronization signal/ physical broadcast channel block (SSB)), so that the terminal device makes AGC adjustment and time-frequency synchronization based on the SSB, so that the terminal device wakes up to monitor the paging message at the paging moment PO corresponding to the terminal device.
  • the terminal device may perform operations such as AGC adjustment and time-frequency synchronization based on the primary synchronization signal (PSS) and/or the secondary synchronization signal (SSS) in the SSB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the network device sends the synchronization signal/physical broadcast channel block set (SS burst set) to the terminal device in the form of beam-sweeping, such as periodically sending the SS burst set, And the network device also sends a paging message to the terminal device in the form of beam scanning.
  • SS burst set synchronization signal/physical broadcast channel block set
  • the network device repeatedly sends the SSB/paging message to the terminal device in multiple beams/beam directions, where the beam/beam direction corresponding to the SSB is consistent with the beam/beam direction corresponding to the paging message.
  • the beam/beam direction corresponding to the paging message corresponds to the PDCCH monitoring occasion in a paging moment PO.
  • the beam/beam direction corresponding to the SSB corresponds to the PDCCH monitoring occurrence in a paging moment PO.
  • An SS burst set includes multiple SSBs, and multiple SSBs in an SS burst set have different SSB indexes.
  • a paging moment PO is composed of multiple physical downlink control channel monitoring occasions (PDCCH monitoring occasions), that is, the k-th PDCCH Monitoring occurrence corresponds to the k-th actually sent SSB in an SS burst set, k is taken over the total number of PDCCH monitoring occurrences greater than or equal to 1 and less than or equal to, and k is a positive integer.
  • the number of beams or beam directions are usually fixed, so the SSB corresponding to one beam and the SSB corresponding to the beam direction of the beam are the same.
  • the terminal device Before monitoring the paging message, the terminal device can generally make beam selection based on the reference signal (ie, SSB), and then monitor the paging message on the PDCCH monitoring occasion corresponding to the selected beam/beam direction. If the terminal device does not select the appropriate beam/beam direction in advance, in order to ensure that paging messages are not missed, the terminal device may monitor paging messages on multiple PDCCH monitoring occasions corresponding to multiple beams/beam directions. In this way, AGC adjustment and time-frequency synchronization, beam selection, and monitoring paging messages on multiple PDCCH monitoring occasions will consume large power consumption of the terminal device.
  • the reference signal ie, SSB
  • the purpose of mobility RRM measurement is to enable terminal equipment in the RRC idle state or RRC inactive state to perform cell selection/cell reselection (cell selection/cell reselection), and to make it in the RRC connected state (RRC_CONNECTED)
  • the terminal equipment does cell handover, so that the terminal equipment can maintain better connection performance while moving.
  • reference signals used for RRM measurement mainly include two types: SSB and CSI-RS.
  • the SSB is a cell-level signal. Therefore, the terminal device can be used in the RRC idle state, the RRC inactive state, or the RRC connected state.
  • CSI-RS can only be used by terminal devices in RRC connected state.
  • the network device When the terminal device is in the RRC connected state, the network device usually configures the CSI-RS for RRM measurement through RRC signaling, and the terminal device in the RRC connected state specifically adopts SSB and/or CSI-RS and is usually configured by RRC signaling.
  • the network device configures additional reference signals according to data transmission service requirements. For example, for a terminal device in the RRC connected state, the network device can be configured with a tracking reference signal (tracking reference signal, TRS) used for the terminal device to perform time-frequency tracking, or it can be configured for the terminal device to perform channel state information (channel state information). , CSI) measurement, CSI reporting, beam measurement (such as layer one-reference signal receiving Power (L1-RSRP) measurement), L1-RSRP reporting, etc.
  • TRS tracking reference signal
  • TRS tracking reference signal
  • CSI channel state information
  • CSI channel state information
  • CSI reporting such as layer one-reference signal receiving Power (L1-RSRP) measurement
  • L1-RSRP layer one-reference signal receiving Power
  • CSI-RS can also be configured for the terminal
  • the device performs RRM measurement, RRM measurement report (for example, report RSRP/reference signal receiving quality (RSRQ)/signal to interference plus noise ratio (SINR)) and other mobile CSI-RS (CSI-RS) RS for mobility).
  • RRM measurement report for example, report RSRP/reference signal receiving quality (RSRQ)/signal to interference plus noise ratio (SINR)
  • SINR signal to interference plus noise ratio
  • CSI-RS mobile CSI-RS
  • the terminal device can only perform RRM measurement based on SSB at present.
  • the terminal device performs AGC adjustment, time-frequency synchronization, beam selection, and RRM measurement based on SSB, and SSB is based on SSB.
  • For periodic transmission there is a certain periodic interval between the moments when the SSB appears, making the SSB relatively sparse.
  • the period range of the SSB includes any one of 5ms, 10ms, 20ms, 40ms, 80ms, or 160ms.
  • the terminal device when the terminal device performs RRM measurement based on SSB, if the network device configures the terminal device with the SSB measurement time configuration (SS/PBCH block measurement time configuration window duration, SMTC), then the terminal device will only be in the SMTC window time window (SMTC window). RRM measurement is performed within duration); if the network device does not configure SMTC for the terminal device, the terminal device assumes that the period of the SSB is 5ms.
  • SS/PBCH block measurement time configuration window duration SS/PBCH block measurement time configuration window duration
  • the terminal equipment will have a large power consumption to monitor paging messages and perform RRM measurements, and the reasons are as follows:
  • the paging moment PO when the terminal device monitors the paging message is related to the identification ID of the terminal device, and the SSB is a cell-level broadcast signal, the SSB has a certain periodic interval and is relatively sparse. Therefore, the moment of SSB (or SMTC) may appear.
  • the terminal device in the RRC idle/inactive state not only needs to search The PO wakes up when it monitors the paging message at the paging time. It also needs to perform AGC adjustment, time-frequency synchronization or beam selection based on the SSB at the time when the SSB appears (or within the SMTC time window), so that either the terminal device needs to wake up twice or Many times, the terminal device may maintain a longer wake-up time between the above two processes, which is not conducive to the saving of power consumption of the terminal device.
  • the terminal equipment Due to the large period of SSB, if the interval between the time when SSB occurs and the paging time PO is large, then at the paging time PO of the terminal equipment, the terminal equipment is based on the beam/beam direction selected by the SSB (ie PDCCH). Monitoring occasions) may undergo major changes due to the movement and rotation of the terminal equipment. Therefore, the terminal equipment still needs to scan and monitor paging messages on multiple beams/beam directions (ie multiple PDCCH monitoring occasions) at the paging moment PO in order to Reaching the requirements of measurement accuracy causes the terminal device to maintain a long wake-up time, which is also not conducive to the saving of power consumption of the terminal device.
  • the terminal device may need SSBs in multiple SS burst sets or SSBs with multiple SMTC time windows to perform AGC adjustment, time-frequency tracking or RRM measurement, especially in poor channel conditions or in high frequency bands (such as according to the third generation
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the terminal equipment in idle state or RRC inactive state is in multiple SMTC time windows of the SSB or adopts multiple SS burst sets to monitor paging messages and perform mobility RRM measurement, which requires the terminal equipment to be in multiple SMTC time windows Or the wake-up state (or light sleep state) is maintained at the moment when multiple SS burst sets occur, which leads to an increase in the number of wake-ups or an increase in the wake-up duration, which is also not conducive to saving the power consumption of the terminal device.
  • the period of the SSB is 20 ms, and every two frames has a paging frame (Paging Frame, PF), and the time when the SSB occurs is not aligned with the paging time PO.
  • the paging moment of the terminal device is located at PO1.
  • the terminal device In order to monitor the paging message at PO1, the terminal device needs to wake up in advance at the time when the SSB appears before PO1. Therefore, the terminal device can perform AGC adjustment, time-frequency tracking, beam selection, or RRM measurement based on the SSB.
  • the AGC adjustment may require multiple SSBs. As a result, the terminal device may not be able to complete an RRM measurement for all SSBs in one SS burst set, so The terminal device may continue to perform RRM measurement based on the SSB in an SS burst set after PO1.
  • the terminal device needs to wake up multiple times or maintain a long wake-up time, resulting in higher power consumption of the terminal device.
  • the network device configures more reference signals for the terminal device to provide more opportunities for the terminal device, which can reduce the wake-up time of the terminal device and save The power consumption of the terminal device.
  • the network equipment will configure reference signals (for example, TRS/CSI-RS) other than SSB for the terminal equipment in the RRC connected state.
  • the terminal device in the RRC idle state or the RRC inactive state can use the reference signal Perform AGC adjustment/time-frequency tracking/beam selection/RRM measurement in order to save the power consumption of the terminal equipment.
  • the design principle of the NR system is to minimize the transmission frequency of the "always on" reference signal, and usually only maintain a relatively low frequency. Less reference signal transmission.
  • SSB is the only "always on” signal in the NR system, and the period at which the network device sends the SSB to the terminal device can be configured, and it is not necessary to send the SSB every frame.
  • the network equipment Since the reference signal configured for the terminal equipment in the RRC connected state is a reference signal that already exists in the cell, the network equipment does not specifically configure additional reference signals for the terminal equipment in the RRC idle state or the RRC inactive state, which also avoids The "always on" reference signal is added to the NR system.
  • the reference signal of the RRC connected state configured by the network device for the terminal device in the RRC idle state or the RRC inactive state may also be configured for multiple terminal devices in the RRC connected state.
  • the network devices configure reference signals opposite to each other, that is, the network devices configure the reference signals specifically for different terminal devices. And when the reference signal is no longer needed (for example, the terminal device related to the reference signal is not in the RRC connection state), the network device can release the reference signal and no longer send the reference signal to the terminal device, thereby saving the network device's power. Consumption.
  • the network device will send reference signals to different beams/beam directions at different times, and no reference signals need to be sent. Stop sending the reference signal in the beam/beam direction, thereby saving the power consumption of the network equipment.
  • an SS burst set includes 4 actually sent SSBs, the indexes of which are SSB0, SSB1, SSB2, and SSB3, respectively.
  • a paging moment PO includes 4 PDCCH monitoring occasions (corresponding to 4 beams/beam directions), and each PDCCH monitoring occasion corresponds to an actual transmitted SSB.
  • the CSI-RS is a reference signal configured by the network equipment for the terminal equipment in the RRC connected state.
  • a CSI-RS resource set includes 4 CSI-RS, and the indexes are CSI-RS0, CSI-RS1, and CSI. -RS2 and CSI-RS3. Each of the 4 CSI-RSs has a quasi co-location (QCL) relationship with one of the 4 SSBs.
  • QCL quasi co-location
  • the CSI-RS that has a QCL relationship with SSB3 is not available.
  • the network device sends the reference signals CSI-RS0, CSI-RS1, and CSI-RS2 to the terminal device, and stops sending the reference signal CSI-RS3 to the terminal device.
  • the CSI-RS that has a QCL relationship with SSB0 is not available.
  • the network device sends reference signals CSI-RS1, CSI-RS2, and CSI-RS3 to the terminal device, and stops sending the reference signal CSI-RS0 to the terminal device.
  • each paging DRX cycle may include multiple paging moments PO, and at each paging moment PO, one or more terminal devices will monitor the paging PDCCH.
  • the present application provides a communication method, device, and equipment, which can indicate the availability of the reference signal in the beam/beam direction corresponding to at least one SSB in a more precise manner, so that the terminal device can obtain information from the reference signal.
  • Receive a reference signal whose availability is available in the beam/beam direction corresponding to at least one SSB so that the terminal device can perform AGC adjustment, time-frequency tracking, beam selection, or RRM measurement based on the available reference signal, and solve the problem of reference signal
  • the inconsistent transmission and the variable availability of reference signals in different beams/beam directions lead to the problem of unnecessary operation of the terminal device and consume power consumption, which saves power consumption for monitoring paging messages and performing RRM measurements.
  • the above-mentioned reference signal may be an existing reference signal, which avoids the addition of an always on signal in the NR system, and satisfies the design principle of reducing the always on signal of the NR system.
  • the aforementioned reference signal may be a reference signal resource that has been configured for a terminal device in an RRC connected state.
  • the aforementioned reference signal may also be a newly added reference signal, for example, a reference signal resource additionally configured for a terminal device in an RRC idle state/inactive state.
  • the terminal device can also know the respective paging moments PO of the terminal device, the terminal device can receive from the reference signal that the availability in the beam/beam direction corresponding to at least one SSB is available and is the closest to monitoring the paging message.
  • the reference signal of the terminal device avoids unnecessary power consumption by the terminal device, and improves the processing capacity of the terminal device.
  • Fig. 4 is a signaling flowchart of a communication method provided by an embodiment of this application. As shown in Fig. 4, the communication method of this application may include:
  • a network device sends a first message to a terminal device, where the first message includes configuration information of at least one first reference signal.
  • the network device may configure one or more first reference signals for the terminal device.
  • the at least one first reference signal may include at least one second reference signal, or may include at least one second reference signal and at least one other reference signal, which is not limited in this application.
  • the terminal device may implement at least one of AGC adjustment, time-frequency synchronization, beam management, or RRM measurement based on at least one second reference signal.
  • the at least one first reference signal may specifically include an existing reference signal in the RRC idle state or the RRC inactive state, or may include an existing reference signal in the RRC connected state, or may include the signal in the foregoing two cases, or not
  • the reference signals that already exist in the system are reference signals that are additionally configured by the network equipment for the terminal equipment in the RRC idle state or the RRC inactive state, which is not limited in this application.
  • the network device may use the reference signal that already exists in the NR system as the first reference signal configured for the terminal device. Therefore, in order for the terminal device to obtain the configuration information of the first reference signal, the increase of the always on signal can be avoided.
  • the type of the second reference signal configured by the network device for the terminal device may include: TRS, CSI-RS, SSB, or Secondary Synchronization Signal (Secondary Synchronization Signal, At least one of SSS).
  • the reference signal configured by the network device for the terminal device may have multiple functions.
  • TRS is a type of CSI-RS, used for terminal equipment to perform time-frequency tracking.
  • the network device can configure CSI-RS for channel quality measurement.
  • CSI-RS For example, a terminal device can receive CSI-RS, and then measure: channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), CSI-RS resource Indication (CSI-RS Resource indicator, CRI) or layer indicator (Layer indicator, LI), and then the terminal device reports the obtained measurement result to the network device.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • CSI-RS resource Indication CSI-RS Resource indicator, CRI
  • Layer indicator Layer indicator
  • CSI-RS can be used for beam management.
  • the network device can configure whether the terminal device reports the measurement result.
  • the network device can configure the terminal device to report L1-RSRP, then the terminal device can receive the reference signal and calculate the L1-RSRP; the network device can also configure the reported amount to NULL, which means that the terminal device does not need to report the beam measurement result.
  • CSI-RS can be used for mobility RRM measurement.
  • the network device configures the CSI-RS used for RRM measurement for the terminal device through the configuration cell CSI-RS-ResourceConfigMobility.
  • the reference signal configured for the terminal device in the RRC connected state in the prior art may have different functions.
  • the second reference signal configured by the network device for the terminal device in the RRC idle state or the RRC inactive state may also have one or more functions, which is not limited in this application.
  • the function of the second reference signal may include: time-frequency tracking, beam management, radio resource management RRM measurement, automatic gain control AGC adjustment, channel state information CSI calculation, or layer 1 reference signal received power L1-RSRP calculation. At least one.
  • the type of the second reference signal configured for the terminal device in the RRC idle state or the RRC inactive state may include, but is not limited to, TRS used for time-frequency tracking or AGC adjustment and CSI-RS used for RRM measurement.
  • the terminal device does not need to report the CSI measurement result and the L1-RSRP measurement result in the RRC idle state or the RRC inactive state
  • the reference signal used for CSI measurement/reporting and L1-RSRP measurement/reporting can also be used for The terminal device performs other functions, such as AGC adjustment, time-frequency tracking, beam selection, etc.
  • the terminal device can cache the calculated CSI/L1-RSRP and other results, and then report the cached result after entering the RRC connected state
  • the network equipment can also configure the terminal equipment to report the measured CSI/L1-RSRP, which helps to improve the data between the network equipment and the terminal equipment Transmission performance. Therefore, the type of the second reference signal configured for the terminal device in the RRC idle state or the RRC inactive state may also include: a reference signal used for CSI/L1-RSRP calculation and/or reporting.
  • the second reference signal that the network device may configure for the terminal device includes multiple configurations. Therefore, the network device may use multiple methods to obtain the configuration information of the second reference signal. Among them, this application does not limit the specific implementation form of the configuration information of the second reference signal.
  • the terminal device may send request information to the network device, where the request information is used to request the network device to configure a certain function or a certain type of second reference signal for the terminal device.
  • the terminal device may send the non-access stratum (Non-Access Stratum, NAS) signaling to carry the request information to the network device in the RRC idle state/RRC inactive state.
  • the terminal device may send request information to the network device in the RRC connected state before returning to the idle state/inactive state from the RRC connected state.
  • Non-Access Stratum Non-Access Stratum
  • the network device may configure second reference signals with different functions for the terminal device through different information elements (IE). For example, the network device configures the terminal device with the second reference signal for time-frequency tracking through the non-zero power (NZP)-CSI-RS-ResourceSet IE, or the network device configures the terminal device with the CSI-RS-ResourceConfigMobility IE as the terminal The device is configured with a second reference signal for RRM measurement.
  • IE information elements
  • the network device generally configures the terminal device with a second reference signal for time-frequency tracking/beam management and RRM measurement through different IEs.
  • the terminal device may implement other functions in addition to the function configured by the second reference signal. For example, the terminal device may also perform AGC adjustment/beam selection, etc. based on the second reference signal used for RRM measurement.
  • the network device configures the second reference signal used for time-frequency tracking/beam management for the terminal device
  • the specific implementation form of the configuration information of the second reference signal will be illustrated by combining two possible embodiments.
  • the network device may be configured with multiple second reference signals.
  • the configuration information of the second reference signal may include: multiple configuration information elements of the second reference signal, and the configuration of each second reference signal
  • the information element may include, but is not limited to: the number of the second reference signal, the time-frequency resource unit mapping mode of the second reference signal, the power control offset of the second reference signal, the scrambling code number of the second reference signal, The time domain period and period offset of the second reference signal, the transmission configuration indicator state ((Transmission Configuration Indicator state, TCI state) of the second reference signal, that is, the QCL source reference signal (QCL source reference signal) indicating the second reference signal signal) and parameters such as the QCL type between the second reference signal and the QCL source reference signal.
  • TCI state Transmission Configuration Indicator state
  • QCL source reference signal QCL source reference signal
  • the network device may also set multiple reference signal resource sets, and each reference signal resource set may be associated with one or more second reference signals, wherein all the second reference signals in each reference resource set
  • the functions and types of the reference signals are the same, or, the functions of all the second reference signals in each reference resource set are the same, or the types of all the second reference signals in each reference signal resource set are the same, this application There is no restriction on this.
  • the configuration information of the second reference signal may include: configuration information elements of multiple reference signal resource sets, configuration information elements of each reference signal resource set, that is, configuration information of the second reference signal in each reference signal resource set.
  • This element may specifically include but is not limited to: reference signal resource set number, second reference signal number, second reference signal function (for example, repetition parameter represents beam management function, time-frequency tracking signal information (trs- Info) parameter indicates time-frequency tracking function) and so on.
  • the configuration information element of the reference signal resource set may indicate that the second reference signal associated with the reference signal resource set is TRS, which is used for time-frequency tracking.
  • the repetition parameter is configured to be on, it means that all resources associated with the reference signal resource set are sent through the same downlink spatial domain transmission filter in the network device, and all the resources associated with the reference signal resource set The reference signal is sent through the same number of ports, then the configuration information element of the reference signal resource set may indicate that the second reference signal associated with the reference signal resource set is used for beam management, so that the terminal device can perform beam selection.
  • the function of the configuration information element of the reference signal resource set is determined by the report configuration associated with the reference signal resource set.
  • the report configuration is channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), CSI-RS resource indicator (CSI-RS Resource indicator, CRI) ) Or layer indicator (LI), the configuration information element of the reference signal resource set may indicate that the second reference signal associated with the reference signal resource set is used for calculating CSI.
  • the configuration information element of the reference signal resource set may indicate that the second reference signal associated with the reference signal resource set is used for beam management.
  • the network device Since the terminal device does not need to report the CSI in the RRC idle state or the RRC inactive state, the network device does not need to configure how to report configuration information for the terminal device in the RRC idle state/RRC inactive state.
  • the functions of some reference signals need to be determined according to the parameters in the reported configuration information associated with the reference signal. Therefore, in this application, the network device may add additional parameters to the configuration information of the second reference signal to indicate the function of the second reference signal.
  • adding one or more parameters in addition to the trs-Info parameter and the repetition parameter indicates a certain function.
  • a new parameter for example, L1-RSRP
  • the terminal device jointly determines the function of the second reference signal based on the configuration information of the second reference signal and the protocol predefined rules.
  • the protocol predefines the function of the second reference signal when the trs-Info parameter and the repetition parameter are defaulted.
  • the network device may configure one reference signal resource set to be associated with a second reference signal of one function, or configure multiple reference signal resource sets to be associated with a second reference signal of the same function.
  • the second reference signal of any function may be one or more types of reference signals.
  • the network device can Limit the number of second reference signals.
  • the network device may configure the maximum number of second reference signals of the same function and the same type through configuration information, or configure the maximum number of all second reference signals through configuration information.
  • the maximum number of second reference signals of the same function can also be configured through configuration information
  • the maximum number of second reference signals of the same type can also be configured through configuration information
  • the foregoing at least two methods can be combined to configure the second reference signal quantity.
  • the network device may not configure the number of second reference signals through configuration information, but determine the number of second reference signals through protocol provisions.
  • the maximum number of second reference signals of the same function and of the same type is predefined, or the maximum number of all second reference signals is predefined, or, the same function
  • the maximum number of second reference signals is predefined, or the maximum number of second reference signals of the same type is predefined, or the maximum numbers of the aforementioned at least two methods are both predefined, and this application does not require
  • the foregoing manner configures the number of configuration second reference signals. As a result, configuration instructions for network devices are saved.
  • the number of second reference signals may also be jointly determined by network equipment and protocol regulations.
  • Y is equal to the maximum number of SSB candidates (candidate) A in one SS burst set in the frequency range of the current serving cell.
  • Y is equal to the number of SSBs actually sent by the current serving cell in an SS burst set.
  • the serving cell is the cell where the terminal device resides in the RRC idle state or the RRC inactive state.
  • Y is equal to B1 times the maximum number of SSB candidates (candidate) A in an SS burst set in the frequency range of the current serving cell, or Y is equal to the current service
  • the number of second reference signals may be limited in this application, or the second reference signal may belong to (or be associated with)
  • the number of reference signal resource sets is limited, or both the number of second reference signals and the number of reference signal resource sets to which the second reference signals belong may be limited.
  • the network device may configure the maximum number of reference signal resource sets to which the second reference signal of the same function and type belongs through configuration information.
  • the network device may not configure the number of reference signal resource sets through configuration information, but determine the number of reference signal resource sets to which the second reference signal belongs through protocol provisions.
  • the maximum number of reference signal resource sets to which second reference signals of the same function and of the same type belong is predefined. As a result, configuration instructions for network devices are saved.
  • the number of reference signal resource sets can also be determined jointly by network equipment and protocol regulations.
  • the network device only configures one reference signal resource set, so that one reference signal resource set can include all second reference signals with the same function, which saves configuration signaling overhead.
  • the network device configuration or protocol stipulates that the value of Z is less than or equal to the number of SSBs actually sent in an SS burst set, or less than or equal to the frequency range of the current serving cell.
  • the maximum number of SSB candidates (candidates) in an SS burst set in order to save configuration commands.
  • the network device When the network device configures the second reference signal for the RRM measurement of the terminal device, the network device can implement the configuration in a variety of ways. With reference to the following feasible embodiments, specific implementation forms of the configuration information of the second reference signal are illustrated by examples.
  • the second reference signal used for RRM measurement is usually configured by one or more information elements (IE).
  • IE information elements
  • the cell is a cell CSI-RS-Resource-Mobility.
  • different second reference signals in the same cell can be associated with the same reference signal resource set, that is, associated with the same cell, and different reference signal resource sets can be distinguished by cell ID/Physical cell ID. .
  • the second reference signals in different cells may be associated with the same configuration mobile information element (ConfigMobility IE).
  • different second reference signals configured for the same configured mobile cell have the same subcarrier spacing, and different associated cells have the same SSB frequency.
  • the network device may also use other manners to configure the second reference signal for the terminal device to obtain the configuration information of the second reference signal, and the present application is not limited to the foregoing implementation manner.
  • the network device may also implement other reference signal configurations.
  • the network device can obtain the configuration information of the at least one first reference signal.
  • the network device after the network device determines the configuration information of the at least one first reference signal, it can send the configuration information of the at least one first reference signal to the terminal device through the first message, so that the terminal device is based on the configuration of the at least one first reference signal Information, timely and accurately learn the configuration of the type and function of the second reference signal in the at least one first reference signal.
  • the first message may be a system information (System Information, SI), or may be other messages except SI, such as a paging physical downlink shared channel (PDSCH) scheduled by a PDCCH, This application does not limit this.
  • SI System Information
  • PDSCH paging physical downlink shared channel
  • SI can include master information block (Master Information Block, MIB) and remaining minimum system information (RMSI) (ie: System Information Blocks Type1, SIB1) ), and other system information (Other system information, OSI, that is, other SIBs except SIB1, such as SIB2-SIBn, n>2, n is a positive integer).
  • MIB Master Information Block
  • RMSI remaining minimum system information
  • OSI System Information Blocks Type1, SIB1
  • OSI System information
  • the network device may carry the configuration information of at least one first reference signal through SIB1, and may also carry the configuration information of at least one first reference signal through OSI. Some one or more of SIB2 to SIB9, or a newly added system message block. The network device may also carry configuration information of at least one first reference signal in both SIB1 and OSI, which is not limited in this application.
  • the network device may send the configuration information of at least one first reference signal to the terminal device in a broadcast manner, or may send the configuration information of the at least one first reference signal to the terminal device according to a request message sent from the terminal device.
  • the request message is used to request configuration information of at least one first reference signal or configuration information of at least one second reference signal or request a first message.
  • the network device may also send at least one first reference signal to the terminal device.
  • the configuration information of the reference signal or the first message including the configuration information of the at least one second reference signal is sent.
  • the network device periodically sends the first message to the terminal device according to the sending period of the first message or the sending period of the configuration information of at least one first reference signal or the sending period of the configuration information of at least one second reference signal.
  • the application does not limit the specific manner in which the network device sends the first message to the terminal device.
  • the network device sends a second message to the terminal device, where the second message is used to indicate the availability of at least one second reference signal, and the at least one second reference signal has a QCL relationship with the at least one SSB.
  • the network device sends multiple SS burst sets (such as periodically sending SS burst sets) to the terminal device in the form of beam scanning.
  • a SS burst set includes multiple SSBs.
  • the network device also sends a paging message to the terminal device in the form of beam scanning. That is to say, the beam/beam direction corresponding to the sending SSB and the paging message are usually the same, and one SSB/one paging message corresponds to the same beam/beam direction.
  • the beam/beam direction corresponding to the paging message corresponds to the PDCCH monitoring occasion in a paging moment PO. That is, the beam/beam direction corresponding to the SSB corresponds to the PDCCH monitoring occurrence in a paging moment PO.
  • the availability of the reference signal may change and is not always available, and at any time, the availability of the reference signal in at least one beam/beam direction may also change.
  • the reference signal as the CSI-RS configured by the terminal equipment in the RRC connection state as an example, although the CSI-RS has the advantages of higher frequency domain bandwidth and higher measurement accuracy than SSB, and the CSI-RS is the cell pair in the RRC connection state. Existing resources configured by the terminal device, however, those skilled in the art can understand that the CSI-RS is not always sent.
  • the network device may only be in the C-DRX cycle
  • the active period (Active time) in the C-DRX cycle sends the CSI-RS used for RRM measurement to the terminal device, and the non-active time in the C-DRX cycle can selectively send the CSI-RS to the terminal device Or choose not to send the CSI-RS resource to the terminal device.
  • the terminal device in the RRC idle state or the RRC inactive state still performs RRM measurement at the corresponding time-frequency position, such as measuring the reference signal received power (reference signal received) power, RSRP), resulting in inaccurate RRM measurement results.
  • the terminal device performs an unnecessary measurement process, which consumes unnecessary power consumption of the terminal device.
  • the network device may send the second message to the terminal device.
  • the second message may indicate the availability of at least one second reference signal, and there is a QCL relationship between the at least one second reference signal and the at least one SSB.
  • the network device may indicate the availability of at least one second reference signal having a QCL relationship with at least one SSB through a second message, that is, indicate that the at least one second reference signal is in the beam/beam corresponding to the at least one SSB. Availability in beam direction.
  • the second message can indicate the availability of at least one second reference signal at the granularity of the beam/beam direction, which is beneficial to more finely indicate at least one of the at least one beam/beam direction.
  • the availability of the second reference signal avoids the problem that the terminal device consumes unnecessary power consumption due to unnecessary operations.
  • this application does not limit the specific implementation form of the second message.
  • at least one information bit (also referred to as a bit (bit)) in the second message is used in this application to indicate the availability of at least one second reference signal.
  • this application does not limit the specific bearing manner of at least one information bit in the second message.
  • At least one information bit in the second message may be carried in SIB1 of the system message SI or other SIBs, where the other SIBs may be existing OSIs or newly added system message blocks, or may be carried in PDCCH Downlink Control Information (DCI) or information carried by the PDSCH, where the DCI carried by the PDCCH or the information carried by the PDSCH may be information that already exists in the NR system, such as the paging DCI carried by the PDCCH .
  • the paging information carried by the paging PDSCH can also carry the newly added information in the NR system, such as the newly introduced PDCCH in the RRC idle state/inactive state, specifically, for example, Wakeup PDCCH (for example, the PDCCH is used for In order to indicate whether there is paging information of the terminal device, etc., this application does not limit this.
  • the second message is the SIB1 of the system message SI or other SIBs, where the other SIBs can be the existing OSI or the newly added system message block, or the downlink control information (Downlink Control Information, DCI) carried by the PDCCH ) Or the information carried by the PDSCH, where the DCI carried by the PDCCH or the information carried by the PDSCH can be information that already exists in the NR system, such as paging DCI carried by the PDCCH, or paging information carried by the PDSCH , It can also carry the newly added information in the NR system, such as the newly introduced PDCCH in the RRC idle state/inactive state, specifically, for example, Wakeup PDCCH (for example, the PDCCH is used to indicate whether there is paging information for terminal equipment ), etc., this application does not limit this.
  • DCI Downlink Control Information
  • the availability of the at least one second reference signal may include: an available state or an unavailable state.
  • the available state refers to: it means that the network device will (or may) send the reference signal on the reference signal resource corresponding to the reference signal configured for the terminal device.
  • the terminal device may assume that the network device will send the reference signal on the reference signal resource corresponding to the reference signal configured for the terminal device, and the terminal device may receive the reference signal.
  • the unavailable state refers to: indicates that the network device does not (or may not) send the reference signal on the reference signal resource corresponding to the reference signal configured for the terminal device.
  • the terminal device cannot assume that the network device sends the reference signal on the reference signal resource corresponding to the reference signal configured for the terminal device.
  • the network device sends to the terminal device at least one reference signal whose availability is in an available state among the second reference signals.
  • the network device can determine the availability of any second reference signal. It is understandable that, for any second reference signal indicated by the second message, if the network device indicates that the second reference signal is available, the network device will send the second reference signal. If the network device indicates that the second reference signal is not available, whether the network device still sends the second reference signal is not limited in this application.
  • the network device may send at least one reference signal whose availability is available in the second reference signal to the terminal device, and may also send at least one reference signal whose availability is available in the second reference signal to the terminal device. And the reference signal whose availability is in the unavailable state, which is not limited in this application.
  • the remaining part of the reference signal that does not indicate the availability can be pre-defined through the network device configuration or protocol The availability of the remaining reference signals in the at least one second reference signal.
  • the terminal device receives, from the network device, a reference signal whose availability is in an available state among the at least one second reference signal according to the configuration information and the second message.
  • the network device sends at least one second reference signal to the terminal device on the reference signal resource corresponding to the reference signal configured for the terminal device.
  • the network device may send at least one SSB whose availability is available to the terminal device, and at least one SSB whose availability is available is distributed in at least one beam/beam direction, so that the terminal device The SSB can be received from at least one beam/beam direction.
  • At least one SSB whose availability is in the available state may also be sent in the form of an SS burst set, that is, each SS burst set includes the at least one SSB whose availability is in the available state.
  • the network device may send to the terminal device at least one CSI-RS whose availability is in an available state (such as periodically sending CSI-RS reference signals), and the availability of at least one CSI-RS in the available state is
  • One CSI-RS reference signal is distributed in at least one beam/beam direction, so that the terminal device can receive the CSI-RS from at least one beam/beam direction.
  • the network device can send at least one SSB and at least one CSI-RS reference signal to the terminal device in the foregoing two manners, which will not be repeated here, so that the terminal The device can receive SSB and CSI-RS from at least one beam/beam direction.
  • the terminal device can determine the network based on the configuration information of the at least one first reference signal The type and function configuration of at least one second reference signal configured by the device for the terminal device. Also, because the second message is used to indicate the availability of at least one second reference signal that has a QCL relationship with at least one SSB, in this application, the terminal device can determine that the at least one second reference signal is at least The availability of the beam/beam direction corresponding to an SSB.
  • the terminal device can receive from the network device the reference signal that is available in the available state in the beam/beam direction corresponding to the at least one SSB in the at least one second reference signal according to the configuration information and the second message, so as to be in the available state based on the availability.
  • AGC adjustment/time-frequency tracking/RRM measurement/beam management, etc. are carried out on the reference signal to avoid unnecessary consumption of power consumption by the terminal equipment.
  • the terminal device since the terminal device has learned the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB, and the terminal device can also learn each paging time PO of the terminal device, the terminal device can On the reference signal resource corresponding to the reference signal configured for the terminal device, the at least one second reference signal received from the network device is available in the available state in the beam/beam direction corresponding to the at least one SSB and is closest to monitoring the paging message Reference signal to perform AGC adjustment/time-frequency tracking/RRM measurement/beam management based on the reference signal whose availability is available.
  • the terminal equipment it is not only conducive to the terminal equipment to make the appropriate selection of the reference signal, but not to receive the reference signal whose availability is unavailable in the beam/beam direction corresponding to at least one SSB, and it can also choose to receive the reference signal closest to monitoring the paging message.
  • the reference signal of the terminal device avoids unnecessary power consumption by the terminal device, and improves the processing capacity of the terminal device.
  • the reference signal closest to monitoring the paging message can be understood as, among the at least one second reference signal whose availability is available, the one closest to the paging moment PO is located before and/or after the paging moment PO Or, it can be understood that, compared with the existing SSB in the system, if there are one or more second reference signals whose availability is available, the second reference signal is closer to the paging time PO, then The terminal device only needs to receive the second reference signal closer to the paging moment PO, thereby avoiding receiving further SSB, reducing the wake-up time of the terminal device, and saving power consumption. If there is no second reference signal whose availability is available, the second reference signal distance paging If the paging time PO is closer, the terminal device still needs to receive the SSB closer to the paging time PO.
  • each SS burst set includes four SSBs, and the indexes are SSB0, SSB1, SSB2, and SSB3.
  • Each CSI-RS reference signal resource set includes four CSI-RSs, and the indexes are CSI-RS0, CSI-RS1, CSI-RS2, and CSI-RS3.
  • the terminal device can determine that in the at least one second reference signal before the first paging moment PO1 in FIG. 5, the second reference signal includes CSI-RS, and CSI-RS0 with QCL relationship with SSB0 is available, CSI-RS1 with QCL relationship with SSB1 is available, CSI-RS2 with QCL relationship with SSB2 is available, and CSI-RS3 with QCL relationship with SSB3 is not available.
  • the terminal device determines that the CSI-RS in the CSI-RS reference signal resource set sent by the network device is greater than the SSB in the SS burst set sent by the network device from the first paging moment PO1 is closer.
  • the terminal device can receive the CSI-RS in the CSI-RS reference signal resource set but not the SSB in the SS burst set, and the terminal device can receive CSI in the CSI-RS reference signal resource set -At least one of RS0, CSI-RS1, and CSI-RS2 without receiving CSI-RS3, so that terminal equipment can perform AGC adjustment/time-frequency tracking based on at least one of CSI-RS0, CSI-RS1, and CSI-RS2 /RRM measurement/beam management, etc.
  • the terminal device determines that the SSB in the SS burst set sent by the network device is longer than the CSI-RS in the CSI-RS reference signal resource set sent by the network device at the second paging moment PO2 is closer. Therefore, the terminal device can receive the SSB in the SS burst set but not the CSI-RS in the CSI-RS reference signal resource set, and the terminal device can receive SSB0, SSB1, SSB2 in the SS burst set. And SSB3, so that the terminal device can perform AGC adjustment/time-frequency tracking/RRM measurement/beam management based on at least one of SSB0, SSB1, SSB2, and SSB3.
  • first paging moment PO1 and the second paging moment PO2 belong to the same paging DRX cycle, and the first paging moment PO1 and the second paging moment PO2 For the adjacent paging moment PO, the terminal devices that monitor the paging PDCCH at the first paging moment PO1 and the second paging moment PO2 are different.
  • the terminal device can use the reference signal configured for the terminal device in the RRC connected state, avoiding the increase of the always on signal.
  • the terminal device can also know the respective paging moments PO of the terminal device, the terminal device can perform AGC based on the reference signal that is closest to the monitoring paging message in the beam/beam direction corresponding to at least one SSB and whose availability is available. Adjustment/time-frequency tracking/RRM measurement/beam management, etc., further reduce unnecessary power consumption of terminal equipment.
  • the terminal device does not need to re-acquire the configuration information of the reference signal, and only needs to learn the availability of at least one second reference signal that has been configured according to the second message, which can reduce the RRC idle state/inactive state.
  • the reference signal configuration signaling overhead is not need to re-acquire the configuration information of the reference signal, and only needs to learn the availability of at least one second reference signal that has been configured according to the second message, which can reduce the RRC idle state/inactive state.
  • a first message is sent to a terminal device through a network device.
  • the first message includes configuration information of at least one first reference signal, so that the terminal device can clearly determine the location based on the configuration information of the at least one first reference signal.
  • the network device may send a second message to the terminal device, where the second message is used to indicate the availability of the at least one second reference signal, and the at least one second reference signal has a QCL relationship with the at least one SSB.
  • the second message is used to indicate the availability of at least one second reference signal that has a QCL relationship with the at least one SSB at the granularity of the SSB or the granularity of the beam/beam direction corresponding to the SSB, that is, to indicate the beam/beam direction corresponding to the at least one SSB more finely
  • the availability of the above reference signal allows the terminal device to clarify the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the network device sends to the terminal device at least one reference signal whose availability is in an available state among the second reference signals.
  • the terminal device may receive from the network device the reference signal whose availability is available in the at least one second reference signal, which is beneficial to the terminal device based on the availability of AGC adjustment/time-frequency tracking/RRM measurement/beam management with reference signals in the available state solves the unnecessary operation of terminal equipment due to the inconsistent transmission of reference signals and the variable availability of reference signals in different beam/beam directions
  • the problem of power consumption saves the power consumption for AGC adjustment/time-frequency tracking/RRM measurement/beam management, etc., improves the processing performance of the terminal equipment, and also makes the terminal equipment unnecessary when the reference signal availability changes. Reacquiring the configuration information of the reference signal reduces the configuration signaling overhead of the RRC idle state/inactive state.
  • the at least one second reference signal configured by the network device for the terminal device may be a reference signal that already exists in the NR system, and the always on signal is not added, which avoids the addition of an always on signal in the NR system, and satisfies the requirements of the NR system.
  • the design principle of reducing the always on signal may be a reference signal that already exists in the NR system, and the always on signal is not added, which avoids the addition of an always on signal in the NR system, and satisfies the requirements of the NR system.
  • the terminal device may receive the second reference signal from the network device according to the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB and each paging moment of the monitoring paging message.
  • the reference signal with the most recent call message and availability in the available state further reduces the wake-up time of the terminal device and saves the power consumption of the terminal device for unnecessary operations.
  • the SSB and paging messages are sent in beam scanning. form. That is, the beam/beam directions corresponding to the sending SSB and the paging message are usually the same, and one SSB/one paging message corresponds to one beam/beam direction. And the beam/beam direction corresponding to the paging message corresponds to the PDCCH monitoring occasion in a paging moment PO. Therefore, the beam/beam direction corresponding to the SSB corresponds to the PDCCH monitoring occasion in the paging moment PO. .
  • the terminal device may assume that the demodulation reference signal (DM-RS) of the paging PDCCH and the paging PDSCH and the associated SSB have a QCL relationship, and the following parameters are: QCL: Delay spread, Doppler spread, Doppler shift, average gain, average delay, or spatial reception parameters (spatial) Rx parameters).
  • DM-RS demodulation reference signal
  • the terminal device wants to use the reference signal (or reference signal resource) configured by the network device to perform AGC adjustment/time-frequency tracking/beam selection/RRM measurement, the reference signal ( Or the reference signal resource) should have a QCL relationship with the SSB.
  • the network device may also configure the QCL relationship between the at least one second reference signal and the SSB in the configuration information, so that The terminal device can determine at least one second reference signal having a QCL relationship with at least one SSB based on the configuration information, and then use the description of the beam/beam direction corresponding to the aforementioned SSB, so that the terminal device can determine at least one second reference signal based on the second message.
  • quasi co-location can be configured between different reference signals, or between different reference signal resources, or between different antenna ports (antenna ports). relation. If the two antenna ports have a QCL relationship, it indicates that the large-scale channel fading parameters calculated from one port can infer the large-scale channel fading parameters experienced by the other port, where the large-scale channel fading parameters include at least one of the following parameters : Delay spread, Doppler spread, Doppler shift, average gain, average delay, or spatial Rx parameters ).
  • the QCL relationship can usually be configured through the TCI state.
  • the TCI state can associate 1 or 2 reference signals other than the reference signal as the QCL source reference signal, and configure the QCL type between the current reference signal antenna port and the source reference signal.
  • the NR protocol supports the configuration of 4 QCL types, namely QCL-TypeA, QCL-TypeB, QCL-TypeC, and QCL-TypeD.
  • the two reference signals (or reference signal resources) mentioned in this application have a QCL relationship, or QCL, which can indicate the QCL between the two reference signals (or reference signal resources).
  • QCL QCL relationship
  • the relationship is one or more of QCL-TypeA, QCL-TypeB, QCL-TypeC, or QCL-TypeD.
  • the QCL relationship mentioned in this application can also be a QCL relationship in a broader meaning.
  • there is a QCL relationship between two reference signals which does not necessarily mean that the two reference signals must have a QCL relationship.
  • -One or more QCL types among TypeA, QCL-TypeB, QCL-TypeC or QCL-TypeD are possible.
  • there is a QCL-TypeD type between reference signal 1 and reference signal 2 and there is a QCL-TypeD type between reference signal 2 and reference signal 3, and there is no QCL-TypeA, QCL-TypeB, or QCL-TypeA type between reference signal 1 and reference signal 3.
  • One or more of QCL-TypeC or QCL-TypeD, but reference signal 1 and reference signal 3 can be considered to have a QCL relationship.
  • the terminal device may determine the QCL relationship between the at least one second reference signal and the SSB in multiple ways.
  • the configuration information sent by the network device may include: second information, where the second information may configure the QCL relationship between the at least one second reference signal and the SSB by configuring the TCI state of the at least one second reference signal,
  • a QCL source reference signal source reference signal
  • other parameters in the configuration information may also be used for expression, which is not limited in this application.
  • the second information is used to determine the QCL relationship between at least one second reference signal and at least one SSB, or the second information is used to determine at least one second reference signal and at least one other than at least one SSB.
  • QCL relationship between reference signals, at least one reference signal other than at least one SSB has a QCL relationship with at least one SSB, or the second information is used to determine at least one second reference signal and at least one SSB
  • the QCL relationship between at least one second reference signal and at least one reference signal other than at least one SSB is used to determine the QCL relationship between at least one second reference signal and at least one other reference signal other than at least one SSB.
  • the second information can be used to determine that there is a QCL relationship between two reference signals.
  • the two reference signals refer to at least one second reference signal and SSB.
  • the second information can be used to directly determine the QCL relationship between the at least one second reference signal and the SSB, or it can be used to determine the relationship between the at least one second reference signal and other reference signals by using other reference signals other than the SSB. It has a QCL relationship and other reference signals have a QCL relationship with the SSB to indirectly determine the QCL relationship between the at least one second reference signal and the SSB.
  • At least one second reference can also be determined by a combination of the foregoing two methods For the QCL relationship between the signal and the SSB, this application does not limit the specific representation form of the second information.
  • the network device may configure the QCL source reference signal of at least one second reference signal as SSB.
  • the QCL source reference signal is SSB.
  • at least one second reference signal is associated with two QCL source reference signals, at least one of the QCL source reference signals is SSB.
  • At least one second reference signal includes reference signal 2, the QCL source reference signal of reference signal 2 does not include SSB but is reference signal 1, and the QCL source reference signal associated with reference signal 1 is SSB, then the reference signal 2 and the reference signal 1 have a certain QCL type, and the reference signal 1 and the SSB have a certain QCL type, that is, the QCL relationship between the reference signal 2 and the SSB having a certain QCL type with the reference signal 1 can be determined.
  • the terminal device determines that the reference signal 1 is available, or monitors the reference signal resource of the reference signal 1 (e.g., judgment reference test). The signal strength, SNR, or RSRP of signal 1 is greater than a certain threshold) when the reference signal 1, the terminal device can receive the reference signal 2; otherwise, the terminal device is usually not required to receive the reference signal 2, and the terminal device does not receive the reference signal 2.
  • At least one second reference signal used for RRM measurement for example, a reference signal (or reference signal resource) configured by CSI-RS-Resource-Mobility signaling.
  • the network device may configure at least one second reference signal (or reference signal resource) to be associated with one SSB, and configure whether the CSI-RS and the associated SSB have a QCL-TypeD relationship.
  • all reference signals in the same cell are either configured to be associated SSB, or do not configure the associated SSB.
  • the network device can optionally configure a cell number (referred to as the second cell).
  • the protocol specifies a default number for the second cell.
  • the second cell is the first cell by default, or the serving cell where the terminal device currently resides.
  • Manner 2 There is no parameter for configuring the number of the second cell, and the second cell described below is the first cell.
  • the number of all second reference signals configured in the first cell is equal to the number of SSBs actually sent in one SS burst set in the second cell, and all second reference signals configured in the first cell
  • the number of the second reference signal there is a one-to-one correspondence with the SSB actually sent in one SS burst set in the second cell from small to large (or large to small) according to the SSB index, That is, it has a QCL relationship.
  • the specific type of the QCL relationship may be at least one of TypeA, TypeB, TypeC, or TypeD.
  • the QCL relationship is TypeD.
  • the first cell and the second cell may be the same cell (having the same physical layer cell number), or may be different cells, which is not limited in this application.
  • the network device When all the second reference signals in the same cell (referred to as the first cell) are configured with the associated SSB, the network device will also configure the cell number where the associated SSB is located.
  • the associated SSB is an SSB that is actually sent in one SS burst set located in the first cell, that is, the cell where the associated SSB is located is also the first cell.
  • the second information can also be described as used to determine the QCL relationship between the two reference signal resources.
  • the specific implementation process please refer to the above content. I won’t repeat it here.
  • the second information can be configured through a network device, can also be defined by a protocol, or can be pre-stored in a terminal device, which is not limited in this application.
  • the terminal device can directly determine the second information.
  • the terminal device can receive the second information from the network device.
  • the terminal device can determine whether there is a QCL relationship between at least one second reference signal and the SSB based on the second information, so that at least one reference signal can be determined based on the corresponding relationship between the SSB and the beam/beam direction described in the foregoing. Availability of the second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the terminal device needs to know the second message and the at least one second reference signal before receiving at least one second reference signal whose availability is available from the network device according to the configuration information and the second message in S104. Correspondence between signals.
  • the network device may send first information to the terminal device, where the first information is used to determine that there is a correspondence between at least one information bit in the second message and the at least one SSB, or the first information is used to determine
  • the correspondence between at least one information bit in the second message and the SSB index (index) corresponding to at least one SSB enables the network device to use the “bridge” function of the SSB, based on the information bit in the second message and the SSB/SSB index
  • the corresponding relationship between (index) and the QCL relationship between the SSB and the at least one second reference signal, the corresponding relationship between the at least one information bit in the second message and the at least one second reference signal can be configured to facilitate the network
  • the device indicates the availability of the at least one second reference signal through
  • the first information may be set in the configuration information of the at least one first reference signal in the first message, or may be set in other information except the configuration information of the at least one first reference signal in the first message, It can also be set in other messages except the first message, which is not limited in this application. And this application does not limit the specific implementation form of the first information.
  • the first information can be used to determine one SSB/one SSB index corresponding to each information bit, and the design is simple, or the first information can be used to determine multiple SSBs/multiple SSBs corresponding to each information bit
  • the index (index) saves the signaling overhead of the second message, so as to configure a correspondence between at least one information bit in the second message and at least one SSB.
  • this application does not limit the specific implementation form of the information bit determined by the first information, the specific implementation form of the SSB, and the specific implementation form of the SSB index corresponding to the SSB.
  • the SSB index mentioned in this application can be found in the following content, which will not be repeated here.
  • the first information may be configured by a network device, may also be defined by a protocol, or may be stored in a terminal device in advance, which is not limited in this application.
  • the terminal device can directly determine the first information.
  • the terminal device can receive the first information from the network device.
  • the terminal device can determine the correspondence between the at least one information bit in the second message and the at least one second reference signal based on the first information and the QCL relationship between the SSB and the at least one second reference signal, so that The terminal device determines the availability of the at least one second reference signal in the beam/beam direction corresponding to the at least one SSB.
  • the first information is used to determine that the first information bits in the second message correspond to i actually sent SSBs, and there are q+r+1 second reference signals and i actually sent SSBs. (Ie, SSB 1 to SSB i) have a QCL relationship, then the first information bit corresponds to q+r+1 second reference signals that have a QCL relationship with i actually sent SSBs, so that the first information bit can indicate q+ r+1 availability of the second reference signal.
  • i and j are positive integers
  • q and r are natural numbers
  • the number of bits of the first information bit is greater than or equal to 1.
  • the network device may also send third information to the terminal device, where the third information is used to configure a correspondence between at least one information bit in the second message and at least one second reference signal. Therefore, the terminal device can determine the correspondence between at least one information bit in the second message and the at least one second reference signal based on the third information without resorting to the "bridge" function of the SSB, so that the network device can be based on the second message At least one information bit in indicates the availability of the at least one second reference signal, so that the terminal device determines the availability of the at least one second reference signal based on the third information.
  • the third information may be configured by network equipment, may also be defined by a protocol, or may be pre-stored in a terminal device, which is not limited in this application.
  • the terminal device can directly determine the third information.
  • the terminal device can receive the third information from the network device.
  • the terminal device can determine the correspondence between at least one information bit in the second message and the at least one second reference signal based on the third information, so that the terminal device can determine the availability of the at least one second reference signal.
  • the terminal device may not receive an information bit indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB.
  • the terminal device sends the second message, or the network device sends the second message to the terminal device but the terminal device does not receive the second message, or the network device sends the second message to the terminal device, but the terminal device receives the second message but fails to receive it
  • the second message is reached, or the network device sends the second message to the terminal device, but the second message received by the terminal device does not include a message indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB Information bits, this application does not limit this method.
  • the second message may be the paging DCI carried by the PDCCH.
  • the terminal device detects the paging DCI carried by the PDCCH.
  • the paging DCI refers to the Paging-Radio Network Tempory Identity of the terminal device.
  • P-RNTI P-RNTI
  • the information bit used to indicate the availability of at least one second reference signal that has a QCL relationship with at least one SSB is not received in the paging DCI, that is, the paging DCI does not include information bits used to indicate that it has a QCL relationship with at least one SSB. At least one information bit of the availability of the second reference signal.
  • the cyclic redundancy check cyclic redundancy check, CRC
  • the network device may send a third message to the terminal device, where the third message is used to configure the default availability of the at least one second reference signal.
  • the network device may configure the default availability of at least one second reference signal according to actual conditions.
  • the default availability may be that the availability of all second reference signals in each beam/beam direction is unavailable, or it may be that the availability of all second reference signals in each beam/beam direction is available, or, It may be that the availability of all second reference signals in at least one beam/beam direction is unavailable, or it may be that the availability of all second reference signals in at least one beam/beam direction is available, or it may be all
  • the availability of at least one second reference signal for the second reference signal is an unavailable state, or it may be that the availability of at least one second reference signal for all second reference signals is an available state, which is not limited in this application.
  • the third message includes default availability configuration information for different functions or different types of second reference signals.
  • the third message can be configured by a network device, can also be defined by a protocol, or can be stored in a terminal device in advance, which is not limited in this application.
  • the terminal device can directly determine the third message.
  • the terminal device can receive the third message from the network device.
  • the network device can configure the default availability of at least one second reference signal, so that the terminal device does not receive a signal indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB.
  • the availability of at least one second reference signal can be determined based on the third message.
  • the first message in addition to using the third message to configure the default availability of at least one second reference signal, can also be used to configure the default availability of at least one second reference signal, which is not limited in this application. .
  • the terminal device may also adopt various other methods to determine the at least one second reference signal Availability.
  • the terminal device may determine the availability of the at least one second reference signal according to the information bits used to indicate the availability of the at least one second reference signal having a QCL relationship with the at least one SSB in the second message received last time.
  • the second message received last time refers to the second message that the terminal device successfully received from the network device before the time when the terminal device received the second message this time and is closest to the time when the second message was received this time. information.
  • the terminal device does not receive the information bit used to indicate the availability of the at least one second reference signal having a QCL relationship with the at least one SSB at this time when the second message is received.
  • the terminal device may determine that the availability of the at least one second reference signal is an unavailable state.
  • the terminal device may determine that the availability of the at least one second reference signal is an available state.
  • the terminal device may determine that the availability of at least one reference signal in the at least one second reference signal is an available state.
  • the terminal device can determine the availability of at least one second reference signal according to the actual situation and the foregoing manner.
  • the specific method used can be determined through the configuration of the network device or the method predefined by the protocol. It should be noted that this application is not limited to the foregoing implementation manners.
  • the second reference signal may include multiple types and/or functions, and different second reference signals may have a QCL relationship with different SSBs (or SSB indexes), therefore, in this application, the first At least one information bit in the second message can be represented in the form of a bitmap, and the number of bitmaps in the second message is n, n is greater than or equal to 1 and less than N, n and N are positive integers,
  • the bitmap is used to indicate the availability of a reference signal having a QCL relationship with at least one SSB.
  • the number N can be configured by the network device, or defined by the protocol, or can be based on the function/type of the second reference signal and the correspondence between at least one information bit in the second message and the at least one second reference signal It is implicitly determined and can also be stored in the terminal device in advance, which is not limited in this application.
  • the number n can also be configured by the network device, or defined by the protocol, or pre-stored in the terminal device, or according to the function/type of the reference signal and at least one information bit in the second message and at least one second message. The correspondence between the reference signals is implicitly determined, which is not limited in this application.
  • the first bitmap in the second message can be the same at each PDCCH monitoring timing in any paging moment PO, which makes the design simple and Conveniently, the terminal device only needs to obtain the first bitmap at at least one PDCCH monitoring timing in a paging moment PO, and the first bitmap obtained at any one of the PDCCH monitoring timings can be completely determined Availability of at least one second reference signal having a QCL relationship with at least one SSB.
  • the first bitmap in the second message may be different at each PDCCH monitoring occasion in any paging moment PO, for example, at any PDCCH monitoring occasion in any paging moment PO
  • the number of SSBs and/or the indexes of the SSBs corresponding to the first bitmap are different, so that the different first bitmaps indicate the available status of reference signals that have a QCL relationship with different SSBs.
  • the first bit The bitmap does not need to correspond to all SSB indexes, and the number of bits in the first bitmap can be saved, and the overhead of command signaling can be saved.
  • the first bitmap described here can be different in each PDCCH monitoring timing in any paging moment PO. It can be that the number of bits in the first bitmap is the same, but different first bitmaps correspond to The reference signals are different, or the reference signals corresponding to different first bitmaps are different, and the number of bits of the different first bitmaps is also different.
  • an SS burst set has 4 SSBs sent, and the indexes are SSB0, SSB1, SSB2, and SSB3.
  • the network device is configured with 4 second reference signals of CSI-RS, the indexes of which are CSI-RS0, CSI-RS1, CSI-RS2, and CSI-RS3 respectively.
  • CSI-RS0 has a QCL relationship with SSB0
  • CSI-RS1 has a QCL relationship with SSB1
  • CSI-RS2 has a QCL relationship with SSB2
  • CSI-RS3 has a QCL relationship with SSB3.
  • the first bitmap includes 4 bits, which correspond to 4 SSBs respectively, and further correspond to 4 CSI-RSs of which the 4 SSBs have a QCL relationship respectively.
  • the first bitmap sent by the network device at each PDCCH monitoring occasion in any paging moment PO contains 4 bits, and the corresponding relationship with the 4 CSI-RSs is the same.
  • the first bitmap contains 3 bits.
  • the first bitmap sent by the network equipment at each PDCCH monitoring occasion in any paging moment PO contains 3 bits: the first bitmap sent at the first PDCCH monitoring occasion contains the The 3 bits correspond to SSB3, SSB0, and SSB1 respectively, and then respectively correspond to the 3 CSI-RSs of the 3 SSBs that have a QCL relationship; the 3 bits contained in the first bitmap sent at the second PDCCH monitoring opportunity The bits correspond to SSB0, SSB1, and SSB2 respectively, and then respectively correspond to the 3 CSI-RSs of the 3 SSBs that have a QCL relationship; the 3 bits contained in the first bitmap sent at the third PDCCH monitoring opportunity The bits correspond to SSB1, SSB2, and SSB3 respectively, and then respectively correspond to the 3 CSI-RSs of the 3 SSBs that have a QCL relationship; the 3 bits contained in the first bitmap sent on the fourth PDCCH monitoring opportunity They correspond to
  • the number of bits in the first bitmap in the second message at different paging moments PO may be the same, and the first bitmap and the at least one second bitmap The corresponding relationship between the reference signals is also the same, which is convenient and simple to design.
  • the first bitmap may be one or more bitmaps, and the first bitmap may include one or more information bits, which is not limited in this application.
  • the second message may include multiple implementation forms.
  • the second message may include: a first bitmap and a second bitmap, the information bits in the first bitmap correspond to the first function of at least one second reference signal, and the information bits in the second bitmap The information bit corresponds to the second function of at least one second reference signal.
  • the first bitmap may be one or more bitmaps
  • the second bitmap may be one or more bitmaps
  • the information bits in the first bitmap correspond to at least one second reference signal
  • the first type, the information bit in the second bitmap corresponds to the second type of at least one second reference signal.
  • the first type and the second type can be any type of the second reference signal.
  • the first category and the second category may be the same or different, which is not limited in this application.
  • the first function may include one or more functions
  • the second function may include one or more functions
  • the functions of the first function and the second function may be completely the same or partly the same.
  • the content is not limited.
  • any bitmap includes one or more information bits.
  • the following describes the correspondence between the function of at least one second reference signal and the bitmap in combination with several feasible implementation manners.
  • At least one second reference signal of the same function is mapped (that is, corresponding) to the same bitmap, and at least one second reference signal of different functions is mapped to different bitmaps.
  • one information bit only corresponds to at least one second reference signal of one function.
  • the second message includes bitmap 1, bitmap 2, and bitmap 3.
  • the bitmap 1 includes K1 bits, and the bitmap 1 corresponds to at least one second reference signal TRS used for time-frequency tracking.
  • the bitmap 2 includes K2 bits, and the bitmap 2 corresponds to at least one second reference signal used for beam management (for example, used for the terminal device to calculate L1-RSRP).
  • the bitmap 3 includes K3 bits, and the bitmap 3 corresponds to at least one second reference signal CSI-RS used for RRM measurement.
  • K1, K2, and K3 are respectively greater than or equal to 0, and when the network device is not configured with at least one second reference signal corresponding to the bitmap, the number of bits in the bitmap is 0.
  • different bitmaps corresponding to different reference signal functions have different numbers of bits.
  • the mapping relationship between each bitmap and the SSB is different. If the network device configures the mapping relationship between the bitmap and the SSB (that is, the first information), the network device needs to separately configure the corresponding relationship between each bitmap and the SSB.
  • different bitmaps corresponding to different reference signal functions have the same number of bits.
  • the mapping relationship between each bitmap and SSB is the same, and the network device only needs to configure the mapping relationship between any one of the bitmaps and the SSB, and the mapping relationship between all bitmaps and SSB can be configured.
  • the corresponding relationship between each bitmap and the SSB is individually configured to save configuration signaling overhead.
  • the reference signal function refers to the function of the second reference signal, and the specific content can be referred to the foregoing description, which will not be repeated here.
  • At least one second reference signal of different reference signal functions is mapped to the same bitmap.
  • one information bit corresponds to one or more second reference signals with different reference signal functions at the same time.
  • the second message may also include a third bitmap, a fourth bitmap, etc.
  • the number of bitmaps in the second message is not limited in this application.
  • the number of second reference signals (or second reference signal resources) configured by the network device is greater than or equal to the number actually sent in one SS burst set The number of SSBs.
  • the number of SSBs actually sent in an SS burst set is S.
  • the number of second reference signals configured by the network device is N.
  • the network device configures at least one second reference signal and the SSB index k is QCL. Therefore, N ⁇ S.
  • the network device uses the "bridge" function of the SSB to build the correspondence between the second message and the at least one second reference signal. Therefore, the number of SSBs actually sent in one SS burst set can affect the number of information bits in the second message.
  • the number of bits of the first bitmap in the second message may be less than or equal to the number of SSBs actually sent in one SS burst set.
  • the network device can send the SSB to the terminal device in the manner of beam scanning, and the network device can periodically send the SS burst set to the terminal device, and each SS burst set includes one or more SSBs.
  • each bitmap such as the second bitmap and the third bitmap in the second message may be less than or equal to the number of actually sent SSBs in one SS burst set.
  • the first bitmap may include: at least one information domain field. Among them, this application does not limit the number of information bits in the information field field and the position in the first bitmap.
  • the number of bits of at least one information field field is determined according to information associated with determining the number of SSBs, taking into account the influence of the number of SSBs.
  • the information associated with determining the number of SSBs may include multiple identification forms, such as the inOneGroup field and the groupPresence field in the configuration parameter ssb-PositionsInBurst of the SSB.
  • the first bitmap will be described in combination with several feasible implementations.
  • the number of bits of the information field in the first bitmap can be determined based on the inOneGroup field (including 8 bits) and the groupPresence field (including 8 bits).
  • the first bitmap may include: a first information field field and a second information field field; wherein the number of bits in the first information field field is equal to the bits in the inOneGroup field in the configuration parameter ssb-PositionsInBurst of the SSB The number of bits equal to the first value, the number of bits in the second information field is equal to the number of bits in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst equal to the second value, then the number of bits in the first bitmap The number of bits is less than or equal to 16.
  • the SSB index corresponding to the k-th information bit of the first information field field in the first order includes one or more of the following indexes: m-1, m+7, m+15, m +23, m+31, m+39, m+47, and m+55.
  • the SSB index mentioned here refers to the SSB index of the candidate SSB defined by the protocol.
  • the k-th information bit in the first information field in the first order corresponds to the second information bit in the inOneGroup field of the SSB configuration parameter ssb-PositionsInBurst in the first order in which the k-th information bit in the first order is equal to 1.
  • the second information bit is the m-th information bit in the first order in the inOneGroup field in the configuration parameter ssb-PositionsInBurst of the SSB, and k and m are positive integers.
  • the SSB index corresponding to the g-th information bit of the second information field field in the second order includes one or more of the following indexes: 8(p-1), 8(p-1) +1, 8(p-1)+2, 8(p-1)+3, 8(p-1)+4, 8(p-1)+5, 8(p-1)+6 and 8( p-1)+7.
  • the SSB index mentioned here refers to the SSB index of the candidate SSB defined by the protocol.
  • the g-th information bit in the second information field field in the second order corresponds to the third information bit in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst in the second order in which the g-th information bit is equal to 1
  • the third information bit is the p-th information bit in the second order in the groupPresence field in the configuration parameter ssb-PositionsInBurst of the SSB, and p and g are positive integers.
  • the first value may be 0 or 1.
  • the second value can be 0 or 1.
  • the first numerical value and the second numerical value may be the same or different.
  • the first order can be from high to low, or from low to high.
  • the second order can be from high to low, or from low to high.
  • the first order and the second order may be the same or different.
  • 8 candidate SSB indexes can be determined by one of the information bits in the second information field, and 8 candidate SSB indexes can also be determined by one of the information bits in the first information field.
  • These 16 candidates At least one of the SSB indexes is the same, and this same SSB index is the determined SSB index.
  • one of the information bits in the second information field field and one of the information bits in the first information field field can uniquely determine an actually sent SSB index, then at least one second information bit that has a QCL relationship with the SSB The reference signal corresponds to these two bits.
  • all at least one second reference signal corresponding to these two bits is an available state, or the availability of at least one second reference signal in at least one second reference signal (or reference signal resource) corresponding to these two bits is an available state.
  • the SSB index determined by the k-th information bit is: 8(p-1)+m-1.
  • the first information field field corresponds to the m-th information bit from the highest bit to the lowest bit in the inOneGroup field.
  • the first bitmap may include an information field field; wherein, the number of bits in the information field field is equal to the number of bits in the inOneGroup field in the SSB configuration parameter ssb-PositionsInBurst equal to the first value.
  • the number of bits, or the number of bits in the information field is equal to the number of bits in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst that is equal to the second value.
  • the number of bits in the first bitmap is less than or equal to 8.
  • the kth information bit from the highest bit to the lowest bit (or from the lowest bit to the highest bit) of the first bitmap corresponds to the kth information bit equal to 1 from the highest bit to the lowest bit in the inOneGroup field.
  • inOneGroup The k-th information bit equal to 1 from the highest bit to the lowest bit in the field is the m-th bit in the inOneGroup field, and the first bit bitmap is called from the highest bit to the lowest bit (or from the lowest bit to the highest bit)
  • the k-th information bit corresponds to the m-th information bit from the highest bit to the lowest bit in the inOneGroup field.
  • the SSB candidate index corresponding to the k-th information bit from the highest bit to the lowest bit (or from the lowest bit to the highest bit) of the first bitmap includes one or more of the following indexes: m-1, m+ 7. m+15, m+23, m+31, m+39, m+47 and m+55.
  • the SSB index of the actually sent SSB corresponding to the kth information bit in the first bitmap can be determined through the first bitmap and the groupPresence field, and the kth information bit in the first bitmap is sum
  • a second reference signal in a QCL relationship with the determined SSB corresponding to the k-th information bit is in a corresponding relationship.
  • the actually sent SSBs in an SS burst set are divided into M groups, and each group contains 1 or Multiple SSB indexes, the M groups of SSB indexes respectively correspond to M bits of the first bitmap, where M can be configured by the network device or specified by the protocol. For example, the maximum value of M can be 8 or 12.
  • dividing the SSB actually sent in one SS burst set into M groups may be uniform division, for example, the number of SSB indexes included in each group is the same, or non-uniform division.
  • the specific division method can be network configuration or protocol regulations.
  • the first bitmap includes one information field field, and the number of bits in the information field is equal to the number equal to 1 in the groupPresence field, and the number of bits in the first bitmap ⁇ 8.
  • the information field field is the first bitmap from the highest bit to the lowest bit (or from the lowest bit to the highest bit).
  • the gth information bit corresponds to the gth information bit equal to 1 from the highest bit to the lowest bit in the groupPresence field.
  • the first bitmap is called from the highest bit to the lowest bit (or from the lowest bit to the lowest bit). Highest bit)
  • the gth information bit corresponds to the pth information bit from the highest bit to the lowest bit in the groupPresence field.
  • the SSB candidate index corresponding to the g-th information bit from the highest bit to the lowest bit (or from the lowest bit to the highest bit) of the first bitmap includes one or more of the following indexes: 8(p-1) , 8(p-1)+1, 8(p-1)+2, 8(p-1)+3, 8(p-1)+4, 8(p-1)+5, 8(p- 1) +6 and 8(p-1)+7.
  • the meaning of the first bitmap may include multiple implementation manners. Below, a variety of feasible implementation manners are used to illustrate the specific meaning of the first bitmap with examples.
  • one of the fourth information bits in the first bitmap is set to 1 (or set to 0), it indicates that there is at least one second reference signal in the second reference signal corresponding to the fourth information bit.
  • the reference signal is available.
  • the terminal device can detect whether the network device sends the second reference signal by detecting (such as detecting signal strength, SNR, or RSRP, etc. parameters) at the corresponding time-frequency position of the second reference signal.
  • one of the fourth information bits in the first bitmap is set to 0 (or set to 1), it indicates that the availability of the second reference signal corresponding to the fourth information bit is all unavailable The status or part is available. If the terminal device receives 1 information bit set to 0 from the network device, the terminal device cannot assume that the availability of the second reference signal corresponding to the fourth information bit is available.
  • one of the fourth information bits in the first bitmap is set to 1 (or set to 0), it indicates that the availability of all the second reference signals corresponding to the fourth information bit is all available state. If the terminal device receives 1 information bit set to 1 from the network device, the terminal device can assume (may assume) that the availability of the second reference signal corresponding to the fourth information bit is available.
  • one of the fourth information bits in the first bitmap is set to 0 (or set to 1), it indicates that the availability of the second reference signal corresponding to the fourth information bit is all unavailable The status or part is available. If the terminal device receives 1 information bit set to 0 from the network device, the terminal device cannot assume that the availability of the second reference signal corresponding to the fourth information bit is available.
  • the second reference signal uses SSB as the direct or indirect QCL source reference signal. Therefore, when the number of second reference signals is greater than the number of SSBs, one SSB is the source of multiple second reference signals.
  • the QCL source reference signal, or multiple second reference signals have a QCL relationship with the same SSB. Considering that the information bits in the second message are mapped to the SSB, this application can realize that one information bit corresponds to multiple second reference signals associated with one SSB, which can save signaling overhead.
  • the second reference signal when the second reference signal includes CSI-RS, before the first paging moment PO1, the second reference signal having a QCL relationship with SSB0 includes CSI-RS0 and CSI-RS1. At this time, CSI -The availability of RS0 and CSI-RS1 are both available, and the beams/beam directions corresponding to CSI-RS0 and CSI-RS1 do not overlap.
  • the second reference signal that has a QCL relationship with SSB0 Before the second paging moment PO2, the second reference signal that has a QCL relationship with SSB0 includes CSI-RS0 and CSI-RS1. At this time, the availability of CSI-RS0 is unavailable, and the availability of CSI-RS1 is available Status, and the beams/beam directions corresponding to CSI-RS0 and CSI-RS1 do not overlap.
  • the second reference signal having a QCL relationship with SSB0 includes CSI-RS0 and CSI-RS1.
  • CSI -The availability of RS0 and CSI-RS1 are both available, and the beams/beam directions corresponding to CSI-RS0 and CSI-RS1 overlap.
  • the second reference signal having a QCL relationship with SSB0 includes CSI-RS0 and CSI-RS1.
  • the availability of CSI-RS0 is in an unavailable state
  • the availability of CSI-RS1 is in an available state.
  • the beams/beam directions corresponding to CSI-RS0 and CSI-RS1 overlap.
  • the corresponding information bit in the first bitmap indicates at least one The availability of the second reference signal is an available state.
  • the second message can be used to indicate that the availability of at least one second reference signal having a QCL relationship with at least one SSB takes effect within the first time period, or it can be used to indicate that the availability of at least one second reference signal having a QCL relationship with at least one SSB takes effect.
  • An information bit of the availability of the second reference signal takes effect within the first time period, so that the terminal device determines the availability of the at least one reference signal during the first time period according to the indication of the second message.
  • the first duration may include: at least one paging DRX cycle, wherein the interval between two adjacent paging moments PO of the same terminal device is one paging DRX cycle; or, or configured by the network device One or more time windows in the predefined periodic time window; or, when the second message is the paging DCI or the paging PDSCH carried by the PDCCH, it is located at the next paging moment PO where the second message is located A time period before the PO, where the duration of one DRX cycle between the next PO and the PO where the second message is located; or, when the second message is the paging DCI or paging PDSCH carried by the PDCCH, It is located in a time period after the next PO of the PO where the second message is located, where the distance between the next PO and the PO where the second message is located is one DRX cycle; or, when the second message is the search carried by the PDCCH In the case of calling DCI
  • the next paging moment PO refers to the next paging moment PO that still belongs to the terminal device that is the nearest to the terminal device to complete monitoring the paging message at the paging moment PO, that is, the paging moment PO where the second message is located.
  • the unit of the first duration may be an absolute time, such as seconds (s), milliseconds (ms), etc., or the number of frames, or the number of subframes, or the number of time slots, or a multiple of the paging DRX cycle.
  • the first duration can be configured through a network device, or defined by a protocol, or stored in a terminal device in advance, which is not limited in this application.
  • the specific representation of the first duration will be described as an example.
  • the first duration is represented by t1
  • the second message is represented by A.
  • the information bit used to indicate the availability of the second reference signal in the second message takes effect within a period of time (that is, the first duration) after the second message.
  • the start time of a time period (that is, the first duration) after the second message is the end time of the second message.
  • the network device is configured or the time window of the predefined period, and the information bit used for indicating the availability of the second reference signal in the second message takes effect within the time window where the second message is located.
  • the information bit used to indicate the availability of the second reference signal in the second message is within the time window where the second message is located, and takes effect after the second message; or takes effect within the entire time window where the second message is located .
  • the time window is represented by T. It is understandable that this application includes, but is not limited to, the time when the terminal device receives the second message within a time window.
  • the terminal device may receive the second message for indicating the second reference at any time within a time window T.
  • the second message of the information bits of the signal availability is indicating the information bits of the signal availability.
  • the network device is configured or the time window of the predefined period, and the second message is used to indicate that the second information bit of the second reference signal is available at the next time of the time window where the second message is located. Take effect in the window.
  • the time window is represented by T. It is understandable that this application includes, but is not limited to, the time when the terminal device receives the second message within a time window.
  • the terminal device may receive the second reference signal for indicating the second message at any time within a time window T. The availability of information bits in the second message.
  • the information bit used to indicate the availability of the second reference signal in the second message is at the paging moment where the second message is located. It takes effect after PO and before the next paging moment PO after the paging moment PO where the second message is located. There is an interval of 1 paging DRX cycle between the paging moment PO where the second message is located and the next paging moment PO of the paging moment PO where the second message is located.
  • the information bit used to indicate the availability of the second reference signal in the second message is at the paging moment where the second message is located.
  • the PO takes effect within a period of time before the next paging time PO. There is an interval of 1 paging DRX cycle between the paging moment PO where the second message is located and the next paging moment PO of the paging moment PO where the second message is located.
  • the information bit used to indicate the availability of the second reference signal in the second message is at the paging moment where the second message is located.
  • the PO's next paging time will take effect within a period of time after PO. There is an interval of 1 paging DRX cycle between the paging moment PO where the second message is located and the next paging moment PO of the paging moment PO where the second message is located.
  • the information bit used to indicate the availability of the second reference signal in the second message is at the paging moment where the second message is located. It takes effect within a period of time after PO and including the next paging moment PO after the paging moment PO where the second message is located. There is an interval of 1 paging DRX cycle between the paging moment PO where the second message is located and the next paging moment PO of the paging moment PO where the second message is located.
  • the above time period is determined according to one or more SSBs (or one or more SS burst sets) closest to the paging moment PO.
  • a time period before the paging moment PO ie, the first duration
  • a period of time is a period of time between the SSB closest to the paging moment PO after the paging moment PO and the paging moment PO
  • a period of time including the paging moment PO is a time period between the SSB closest to the paging moment PO before the paging moment PO and the SSB closest to the paging moment PO after the paging moment PO.
  • the indication information used to indicate the availability of at least one second reference signal having a QCL relationship with at least one SSB in the second message has an effective time, and the first duration is its effective time, and after the first duration, The previous indication information is no longer valid.
  • the network device needs to re-send the indication information for indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB.
  • the terminal device needs to re-receive the indication information to determine the future The availability of at least one second reference signal is determined within the time period.
  • the terminal device after the terminal device receives the indication information used to indicate the availability of the at least one second reference signal having a QCL relationship with at least one SSB becomes invalid, for example, after the first time period when the indication information becomes valid, it may appear
  • the information bit used to indicate the availability of at least one second reference signal that has a QCL relationship with at least one SSB is not received (for details, please refer to the foregoing content, which will not be repeated here), therefore, four feasible options are used below In the foregoing case, the specific implementation process of the terminal device continuing to use the at least one second reference signal configured by the network device is described.
  • the terminal device will follow the last received first time period.
  • the information bit used in the second message to indicate the availability of at least one second reference signal that has a QCL relationship with at least one SSB is used to determine the availability of at least one second reference signal for a period of time thereafter (that is, the first duration thereafter), until The terminal device again receives the information bit used to indicate the availability of the at least one second reference signal having a QCL relationship with the at least one SSB.
  • the above method saves indication signaling overhead.
  • the network device when the availability of at least one second reference signal does not change, the network device does not need to send a second message, or does not need to send information indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB Bit, only when the availability of part or all of the second reference signal changes, the network device sends an information bit for indicating the availability of at least one second reference signal that has a QCL relationship with at least one SSB (or sends a second message) .
  • the network device when the availability of a second reference signal that has a QCL relationship with a certain SSB index changes from an available state to an unavailable state, the network device sends a second message to indicate that the availability of the second reference signal is in an unavailable state.
  • Information bits indicate.
  • the terminal device assumes that at least for a period of time thereafter.
  • the availability of one second reference signal is in an unavailable state until the terminal device again receives an information bit used to indicate the availability of at least one second reference signal having a QCL relationship with at least one SSB.
  • the terminal device assumes that at least for a period of time thereafter.
  • the availability of one second reference signal is all available until the terminal device again receives an information bit used to indicate the availability of at least one second reference signal having a QCL relationship with at least one SSB.
  • the terminal device after the first time period in which the indication information used to indicate the availability of the at least one second reference signal in the second message becomes effective, if the above situation occurs, the terminal device will follow at least The default availability of one second reference signal determines the availability of at least one second reference signal until the terminal device again receives an information bit used to indicate the availability of at least one second reference signal having a QCL relationship with at least one SSB.
  • At least one information bit in the second message described in this application corresponds to at least one SSB, or it can be understood that at least one information bit corresponds to at least one SSB index, or at least one information bit corresponds to at least one SSB. At least one SSB corresponding to the index corresponds.
  • the SSB index mentioned in this application may be the SSB index defined in the existing protocol, that is, the SSB index represents the index corresponding to all candidate SSBs in an SS burst set, or according to an SS burst set The number of SSBs actually sent in the renamed index.
  • the maximum number of candidate SSBs in an SS burst set is 4, and the indexes of the 4 candidate SSBs are SSB 0, SSB 1, SSB 2, and SSB 3.
  • the above index is the index defined by the agreement.
  • the network device only broadcasts the SSB corresponding to SSB 0 and the SSB corresponding to SSB 2 defined in the protocol, for a total of 2 SSBs, then it is determined that at least one information bit and at least one information bit in the second message
  • the terminal device can determine the SSB corresponding to the SSB 0 and the SSB corresponding to the SSB 2 defined in the protocol.
  • the terminal device may determine the two actually sent SSBs according to the SSB index renamed in a certain order. For example, the network device can rename the indexes of the two actually sent SSBs as SSB0 and SSB1. When determining the correspondence between at least one information bit in the second message and at least one SSB, the terminal device can follow the renamed SSB. The corresponding SSB and the SSB corresponding to SSB 1 are determined.
  • the actually sent SSB corresponding to at least one information bit in the determined second message is the same.
  • the network device transmits the medium access control element (MAC CE).
  • MAC CE medium access control element
  • one MAC CE is used to activate/deactivate a reference signal resource set.
  • indicating the availability of at least one second reference signal having a QCL relationship with at least one SSB through at least one information bit or one or more bitmaps in the second message has the following advantages:
  • the availability of the reference signal can be indicated with finer granularity in the beam/beam direction corresponding to the SSB, so that the terminal device can clarify the availability of at least one second reference signal in the beam/beam direction corresponding to the at least one SSB;
  • At least one information bit corresponds to at least one SSB (or SSB index), and then has a QCL with at least one SSB (or SSB index)
  • Corresponding to at least one second reference signal of the relationship can realize the use of a smaller number of bits to indicate the availability of all configured second reference signals, which can save indication signaling overhead compared with MAC CE activation/deactivation in the RRC connected state.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 10 of the present application is used to implement operations corresponding to a terminal device or a chip in a terminal device in any of the foregoing method embodiments.
  • the communication device 10 may include: a first receiving module 11, a second The receiving module 12 and the third receiving module 13.
  • the first receiving module 11 is configured to receive a first message from a network device, where the first message includes configuration information of at least one first reference signal;
  • the second receiving module 12 is configured to receive a second message from a network device, the second message is used to indicate the availability of at least one second reference signal, and the at least one second reference signal and at least one synchronization signal/physical broadcast channel block SSB have a QCL
  • the at least one first reference signal includes at least one second reference signal
  • the third receiving module 13 is configured to receive, according to the configuration information and the second message, a reference signal whose availability is in an available state among the at least one second reference signal from the network device.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 19, based on the structure shown in FIG. 18, the communication device 10 of this application may further include: a fourth receiving Module 14.
  • the fourth receiving module 14 is configured to receive first information from a network device, and the first information is used to determine the correspondence between at least one information bit in the second message and at least one SSB, or to determine at least one information bit in the second message Correspondence between one information bit and the SSB index corresponding to at least one SSB.
  • FIG. 20 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 20, based on the structure shown in FIG. 18, the communication device 10 of this application may further include: a fifth receiving Module 15.
  • the fifth receiving module 11 is configured to receive a third message from the network device, and the third message is used to configure the default availability of at least one second reference signal.
  • FIG. 21 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 21, based on the structure shown in FIG. 18, the communication device 10 of this application may further include: a determining module 16 .
  • the determining module 16 is configured to: when the second receiving module 12 does not receive the second message or the second message does not include information bits for indicating the availability of at least one second reference signal, according to the second message received last time The information bit used to indicate the availability of at least one second reference signal in determining the availability of at least one second reference signal; or,
  • the determining module 16 is configured to, when the second receiving module 12 does not receive the second message or the second message does not include information bits for indicating the availability of the at least one second reference signal, default according to the at least one second reference signal The availability of at least one second reference signal is determined to be available; or,
  • the determining module 16 is configured for the second receiving module 12 to determine the availability of at least one second reference signal when the second message is not received or the second message does not include information bits for indicating the availability of the at least one second reference signal Is unavailable; or,
  • the determining module 16 is configured for the second receiving module 12 to determine the availability of at least one second reference signal when the second message is not received or the second message does not include information bits for indicating the availability of the at least one second reference signal Is available; or,
  • the determining module 16 is configured to determine the presence of the at least one second reference signal when the second message is not received by the second receiving module 12 or the second message does not include information bits for indicating the availability of the at least one second reference signal At least one reference signal whose availability is available.
  • the configuration information includes: second information, and the second information is used to determine the QCL relationship between the at least one second reference signal and the at least one SSB, and/or to determine the relationship between the at least one second reference signal and the at least one SSB.
  • the second message in the case where the bitmap in the second message is used to indicate the availability of at least one second reference signal, the second message is the SIB1 or other SIB of the system message; or, the second message is the physical downlink The downlink control information DCI carried by the control channel PDCCH or the information carried by the physical downlink shared channel PDSCH.
  • the number of bitmaps in the second message is n, n is taken to be greater than or equal to 1 and less than N, n and N are positive integers, and the bitmap is used to indicate the number of at least one second reference signal Availability, the bitmap includes at least one information bit.
  • the first bitmap in the second message is the same at each PDCCH monitoring occasion in any paging moment PO Or different.
  • the number of bits in the first bitmap in the second message in different POs is the same.
  • the type of at least one second reference signal includes: tracking reference signal TRS, channel state information reference signal CSI- At least one of RS, synchronization signal/physical broadcast channel block SSB, or secondary synchronization signal SSS.
  • the configuration information is used to configure the maximum number of second reference signals of the same function and of the same type according to the function and type of at least one second reference signal; or, the maximum number of second reference signals of the same function and type of the same function.
  • the quantity is predefined.
  • the configuration information is used to configure the maximum number of reference signal resource sets to which second reference signals of the same function and of the same type belong according to the function and type of the at least one second reference signal; or, those of the same function and type The maximum number of reference signal resource sets to which the second reference signal belongs is predefined.
  • the second message includes: a first bitmap and a second bitmap, the information bits in the first bitmap correspond to the first function of at least one second reference signal, and the second bitmap The information bit corresponds to the second function of at least one second reference signal.
  • the number of bits of the first bitmap in the second message is less than or equal to the number of synchronization signals/physical broadcast channel blocks SSB sent in a synchronization signal/physical broadcast channel block set.
  • the first bitmap includes: at least one information field field; wherein the number of bits of the information field field is determined according to information associated with determining the number of SSBs.
  • the first bitmap includes: a first information domain field and a second information domain field; wherein the number of bits in the first information domain field is equal to the bits in the inOneGroup field in the configuration parameter ssb-PositionsInBurst of the SSB.
  • the number of bits equal to the first value, the number of bits in the second information field is equal to the number of bits in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst, the number of bits equal to the second value; or, the first bitmap It includes an information field; where the number of bits in the first bitmap is equal to the number of bits in the inOneGroup field in the SSB configuration parameter ssb-PositionsInBurst that is equal to the first value, or the bits of the first bitmap The number is equal to the number of bits whose bits in the groupPresence field in the configuration parameter ssb-PositionsInBurst of the SSB are equal to the second value.
  • the second message is used to indicate that the availability of the at least one second reference signal takes effect within the first time period.
  • the first duration includes: at least one paging discontinuous reception DRX cycle; or, one or more time windows in the cycle time window configured or predefined by the network device; or, the second message is In the case of the paging DCI carried by the PDCCH, it is located a period of time before the next PO at the paging moment PO where the second message is located, where the next PO is separated from the PO where the second message is located
  • the duration of a DRX cycle or, in the case that the second message is the paging DCI carried by the PDCCH, it is located in a time period after the next PO of the PO where the second message is located, where the next PO and the The time length of one DRX cycle between the PO where the second message is located; or, in the case where the second message is a paging DCI carried by the PDCCH, it is located a time period after the PO where the second message is located.
  • the communication device of the present application can be used to implement the technical solutions of the terminal device or the chip in the terminal device in the method embodiment shown in FIG. Refer to the related description of the method embodiment, which will not be repeated here.
  • the modules here can also be replaced with components or circuits.
  • FIG. 22 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 20 of the present application is used to implement operations corresponding to a network device or a chip in a network device in any of the foregoing method embodiments.
  • the communication device 20 may include: a first sending module 21, a second The sending module 22 and the third sending module 23.
  • the first sending module 21 is configured to send a first message to a terminal device, where the first message includes configuration information of at least one first reference signal;
  • the second sending module 22 is configured to send a second message to the terminal device, the second message is used to indicate the availability of at least one second reference signal, and the at least one second reference signal and the at least one synchronization signal/physical broadcast channel block SSB have a QCL
  • the at least one first reference signal includes at least one second reference signal
  • the third sending module 23 is configured to send at least one second reference signal to the terminal device.
  • FIG. 23 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 23, based on the structure shown in FIG. 22, the communication device 20 of this application may further include: a fourth transmission Module 24.
  • the fourth sending module 24 is configured to send the first information to the terminal device.
  • the first information is used to determine the correspondence between at least one information bit in the second message and at least one SSB, or to determine at least one SSB in the second message Correspondence between one information bit and the SSB index corresponding to at least one SSB.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 24, based on the structure shown in FIG. 22, the communication device 20 of this application may further include: Module 25.
  • the fifth sending module 25 is configured to send a third message to the terminal device, and the third message is used to configure the default availability of at least one second reference signal.
  • the configuration information includes: second information, and the second information is used to determine the QCL relationship between the at least one second reference signal and the at least one SSB, and/or to determine the relationship between the at least one second reference signal and the at least one SSB.
  • the second message in the case where the bitmap in the second message is used to indicate the availability of at least one second reference signal, the second message is the SIB1 or other SIB of the system message; or, the second message is the physical downlink The downlink control information DCI carried by the control channel PDCCH or the information carried by the physical downlink shared channel PDSCH.
  • the number of bitmaps in the second message is n, n is taken to be greater than or equal to 1 and less than N, n and N are positive integers, and the bitmap is used to indicate the number of at least one second reference signal Availability, the bitmap includes at least one information bit.
  • the first bitmap in the second message is the same at each PDCCH monitoring occasion in any paging moment PO Or different.
  • the number of bits in the first bitmap in the second message in different POs is the same.
  • the type of at least one second reference signal includes: tracking reference signal TRS, channel state information reference signal CSI- At least one of RS, synchronization signal/physical broadcast channel block SSB, or secondary synchronization signal SSS.
  • the configuration information is used to configure the maximum number of second reference signals of the same function and of the same type according to the function and type of at least one second reference signal; or, the maximum number of second reference signals of the same function and of the same type.
  • the quantity is predefined.
  • the configuration information is used to configure the maximum number of reference signal resource sets to which second reference signals of the same function and of the same type belong according to the function and type of the at least one second reference signal; or, those of the same function and type The maximum number of reference signal resource sets to which the second reference signal belongs is predefined.
  • the second message includes: a first bitmap and a second bitmap, the information bits in the first bitmap correspond to the first function of at least one second reference signal, and the second bitmap The information bit corresponds to the second function of at least one second reference signal.
  • the number of bits of the first bitmap in the second message is less than or equal to the number of synchronization signals/physical broadcast channel blocks SSBs sent in a synchronization signal/physical broadcast channel block set.
  • the first bitmap includes: at least one information field field; wherein the number of bits of the information field field is determined according to information associated with determining the number of SSBs.
  • the first bitmap includes: a first information field field and a second information field field; wherein the number of bits in the first information field field is equal to the bits in the inOneGroup field in the configuration parameter ssb-PositionsInBurst of the SSB.
  • the number of bits equal to the first value, the number of bits in the second information field is equal to the number of bits in the groupPresence field in the SSB configuration parameter ssb-PositionsInBurst, the number of bits equal to the second value; or, the first bitmap It includes an information field field; where the number of bits in the first bitmap is equal to the number of bits in the inOneGroup field in the SSB configuration parameter ssb-PositionsInBurst that is equal to the first value, or the bits of the first bitmap The number is equal to the number of bits whose bits in the groupPresence field in the configuration parameter ssb-PositionsInBurst of the SSB are equal to the second value.
  • the second message is used to indicate that the availability of the at least one second reference signal takes effect within the first time period.
  • the first duration includes: at least one paging discontinuous reception DRX cycle; or, one or more time windows in the cycle time window configured or predefined by the network device; or, the second message is In the case of the paging DCI carried by the PDCCH, it is located a time period before the next PO at the paging moment PO where the second message is located, where the next PO and the PO where the second message is located are one DRX cycle away Duration; or, in the case that the second message is the paging DCI carried by the PDCCH, it is a time period after the PO where the second message is located, where the next PO and the PO where the second message is located
  • the time interval is one DRX cycle; or, when the second message is a paging DCI carried by the PDCCH, it is located a time period after the PO where the second message is located.
  • the communication device of the present application can be used to implement the technical solutions of the network device or the chip in the network device in the method embodiment shown in Figs. Refer to the related description of the method embodiment, which will not be repeated here.
  • the modules here can also be replaced with components or circuits.
  • the present application may divide the communication device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in each embodiment of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 25 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the terminal device may include:
  • the memory 31 is used to store program instructions, and the memory 31 may be a flash (flash memory).
  • the processor 32 is configured to call and execute program instructions in the memory 31 to implement various steps corresponding to the terminal device or the chip in the terminal device in the communication method of FIG. 1 to FIG. 17. For details, refer to the related description in the foregoing method embodiment.
  • the communication interface 33 may include an independent output interface and an input interface, or may be an integrated interface that integrates input and output. Wherein, the output interface is used to output data, and the input interface is used to obtain input data.
  • the above output data is the general term output in the above method embodiment, and the input data is the general term input in the above method embodiment.
  • the terminal device may be used to execute various steps and/or processes corresponding to the corresponding terminal device or the chip in the terminal device in the foregoing method embodiment.
  • FIG. 26 is a schematic structural diagram of a network device provided by an embodiment of the application.
  • the network device 40 includes a memory 41 for storing program instructions, and the memory 41 may be a flash (flash memory).
  • the processor 42 is configured to call and execute program instructions in the memory 41 to implement various steps corresponding to the network device or the chip in the network device in the communication method of FIG. 1 to FIG. 17. For details, refer to the related description in the foregoing method embodiment.
  • the communication interface 43 may include an independent output interface and an input interface, or may be an integrated interface that integrates input and output. Wherein, the output interface is used to output data, and the input interface is used to obtain input data.
  • the above output data is the general term output in the above method embodiment, and the input data is the general term input in the above method embodiment.
  • the network device may be used to execute various steps and/or processes corresponding to the corresponding network device or the chip in the network device in the foregoing method embodiment.
  • the present application also provides a readable storage medium in which an execution instruction is stored.
  • an execution instruction is stored.
  • the terminal device executes the communication method in the foregoing method embodiment.
  • the present application also provides a readable storage medium in which an execution instruction is stored.
  • an execution instruction is stored.
  • the network device executes the communication method in the foregoing method embodiment.
  • the application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the terminal device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the terminal device to implement the communication method in the foregoing method embodiment.
  • the application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the network device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the network device to implement the communication method in the foregoing method embodiment.
  • the present application also provides a chip, which is connected to a memory, or a memory is integrated on the chip, and when the software program stored in the memory is executed, the communication method in the foregoing method embodiment is implemented.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

本申请提供一种通信方法、装置及设备。该方法包括:从网络设备接收第一消息,第一消息中包括至少一个第一参考信号的配置信息;从网络设备接收第二消息,第二消息用于指示至少一个第二参考信号的可用状态,至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,至少一个第一参考信号包括至少一个第二参考信号;根据配置信息和第二消息,从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号。从而节省了为处于RRC空闲态或RRC非激活态的终端设备进行AGC调整/时频跟踪/RRM测量/波束管理等消耗的功耗。

Description

通信方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
在新无线电(new radio,NR)技术中,处于无线资源控制空闲态(radio resource control idle,RRC_IDLE)或RRC非激活态(RRC_INACTIVE)的终端设备(或称用户设备(user equipment,UE))主要完成两件事:监听寻呼(Paging)消息和无线资源管理(radio resource measurement,RRM)测量。
目前,终端设备为监听寻呼消息和进行RRM测量的功耗损耗会较大。因此,如何降低为监听寻呼消息和进行RRM测量造成的功耗损耗是现亟需解决的问题。
发明内容
本申请提供一种通信方法、装置及设备,以解决现有技术中终端设备监听寻呼消息和进行RRM测量造成的功耗损耗较大的问题,不仅可以节省为处于RRC空闲态或RRC非激活态的终端设备进行AGC调整/时频跟踪/RRM测量/波束管理等消耗的功耗,有利于提升终端设备的处理性能,同时还使得终端设备在参考信号可用性发生变化时,无需重新获取RRC连接态的参考信号的配置信息,可以降低RRC空闲态/非激活态的配置信令开销。
第一方面,本申请提供一种通信方法,包括:从网络设备接收第一消息,第一消息中包括至少一个第一参考信号的配置信息;从网络设备接收第二消息,第二消息用于指示至少一个第二参考信号的可用性,至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,至少一个第一参考信号包括至少一个第二参考信号;根据配置信息和第二消息,从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号。
通过第一方面提供的通信方法,终端设备从网络设备接收第一消息,第一消息中包括至少一个第一参考信号的配置信息,使得终端设备可以基于至少一个第一参考信号的配置信息明确地确定所配置的参考信号。终端设备从网络设备接收第二消息,第二消息用于指示至少一个第二参考信号的可用状态,且至少一个第二参考信号与至少一个SSB具有QCL关系。第二消息用于在SSB粒度或SSB对应的波束/波束方向粒度指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性,即,更精细的指示至少一个SSB对应的波束/波束方向上参考信号的可用性,使得终端设备可以明确至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。从而,终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性,可以从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号,有利于终端设备基于可用性为可用状态的参考信 号进行AGC调整/时频跟踪/RRM测量/波束管理等,解决了由于参考信号不一直发送以及参考信号在不同波束/波束方向上可变的可用性而导致终端设备进行不必要操作消耗功耗的问题,节省了为进行AGC调整/时频跟踪/RRM测量/波束管理等消耗的功耗,提升了终端设备的处理性能,同时还使得终端设备在参考信号可用性发生变化时,无需重新获取参考信号的配置信息,降低了RRC空闲态/非激活态的配置信令开销。
进一步地,上述至少一个第二参考信号可以为NR系统中已存在的参考信号,并不会增加always on信号,避免了NR系统中增加always on信号,满足了NR系统的减少always on信号的设计原则。
进一步地,由于终端设备还可以事先获知终端设备的各个寻呼时刻PO,因此,终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性以及监听寻呼消息的各个寻呼时刻,可以从网络设备接收参考信号中的距监听寻呼消息最近且可用性为可用状态的参考信号,进一步降低了终端设备的唤醒时长,节省了终端设备进行不必要操作的功耗消耗。
在第一方面的一种可能的设计中,该方法还包括:从网络设备接收第一信息,第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB之间的对应关系,或者,确定第二消息中的至少一个信息比特与至少一个SSB对应的SSB索引之间的对应关系,使得网络设备借助SSB的“桥梁”作用,基于第二消息中的信息比特与SSB/SSB索引之间的对应关系以及SSB与至少一个第二参考信号之间的QCL关系,可以配置出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,以便网络设备通过第二消息中的至少一个信息比特指示出至少一个第二参考信号的可用性,使得终端设备基于第一信息确定出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,进而确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。
在第一方面的一种可能的设计中,该方法还包括:从网络设备接收第三消息,第三消息用于配置至少一个第二参考信号默认的可用性,可以使终端设备在未收到用于指示至少一个第二参考信号的可用性的信息比特的情况下,能够根据至少一个第二参考信号默认的可用性来确定所述至少一个第二参考信号的可用性。从而,网络设备基于该第三消息,可以配置至少一个第二参考信号默认的可用性,使得终端设备基于第三消息确定出至少一个第二参考信号的可用性。
在第一方面的一种可能的设计中,该方法还包括:在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特的情况下,根据上一次接收到的第二消息中用于指示至少一个第二参考信号的可用性的信息比特,确定至少一个第二参考信号的可用性;或者,在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特的情况下,根据至少一个第二参考信号默认的可用性,确定至少一个第二参考信号的可用性;或者,在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特的情况下,确定至少一个第二参考信号的可用性为不可用状态;或者,在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特的情况下,确定至少一个第二参考信号的可用性为可用状态;或者,在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特的情况下,确定至少一个第二参考信号中存在至少一个可用性 为可用状态的参考信号。
第二方面,本申请提供一种通信方法,包括:向终端设备发送第一消息,第一消息中包括至少一个第一参考信号的配置信息;向终端设备发送第二消息,第二消息用于指示至少一个第二参考信号的可用性,至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,至少一个第一参考信号包括至少一个第二参考信号;向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号。
通过第二方面提供的通信方法,网络设备向终端设备发送第一消息,第一消息中包括至少一个第一参考信号的配置信息,使得终端设备可以基于至少一个第一参考信号的配置信息明确地确定所配置的参考信号。网络设备向终端设备发送第二消息,第二消息用于指示至少一个第二参考信号的可用状态,且至少一个第二参考信号与至少一个SSB具有QCL关系。第二消息用于在SSB粒度或SSB对应的波束/波束方向粒度指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性,即,更精细的指示至少一个SSB对应的波束/波束方向上参考信号的可用性,使得终端设备可以明确至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。从而,网络设备向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号,使得终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性,可以从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号,有利于终端设备基于可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等,解决了由于参考信号不一直发送以及参考信号在不同波束/波束方向上可变的可用性而导致终端设备进行不必要操作消耗功耗的问题,节省了为进行AGC调整/时频跟踪/RRM测量/波束管理等消耗的功耗,提升了终端设备的处理性能,同时还使得终端设备在参考信号可用性发生变化时,无需重新获取参考信号的配置信息,降低了RRC空闲态/非激活态的配置信令开销。
进一步地,上述至少一个第二参考信号可以为NR系统中已存在的参考信号,并不会增加always on信号,避免了NR系统中增加always on信号,满足了NR系统的减少always on信号的设计原则。
进一步地,由于终端设备可以事先获知终端设备的各个寻呼时刻PO,因此,使得终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性以及监听寻呼消息的各个寻呼时刻,可以从网络设备接收参考信号中的距监听寻呼消息最近且可用性为可用状态的参考信号,进一步降低了终端设备的唤醒时长,节省了终端设备进行不必要操作的功耗消耗。
在第二方面的一种可能的设计中,该方法还包括:向终端设备发送第一信息,第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB之间的对应关系,或者,确定第二消息中的至少一个信息比特与至少一个SSB对应的SSB索引之间的对应关系,使得网络设备借助SSB的“桥梁”作用,基于第二消息中的信息比特与SSB/SSB索引之间的对应关系以及SSB与至少一个第二参考信号之间的QCL关系,可以配置出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,以便网络设备通过第二消息中的至少一个信息比特指示出至少一个第二参考信号的可用性,使得终端设备基于第一信息确定出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,进而确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。
在第二方面的一种可能的设计中,该方法还包括:向终端设备发送第三消息,第三消息用于配置至少一个第二参考信号默认的可用性,可以使终端设备在未收到用于指示至少一个第二参考信号的可用性的信息比特的情况下,能够根据至少一个第二参考信号默认的可用性来确定所述至少一个第二参考信号的可用性。从而,网络设备基于该第三消息,可以配置至少一个第二参考信号默认的可用性,使得终端设备基于第三消息确定出至少一个第二参考信号的可用性。
在第一方面或第二方面的一种可能的设计中,配置信息包括:第二信息,第二信息用于确定至少一个第二参考信号与至少一个SSB之间的QCL关系,和/或,确定至少一个第二参考信号与至少一个除了至少一个SSB之外的其他的参考信号之间的QCL关系,至少一个除了至少一个SSB之外的其他的参考信号与至少一个SSB之间具有QCL关系,以便终端设备基于该第二信息,可以确定至少一个第二参考信号与至少一个SSB之间的QCL关系,以便通过前述内容描述的SSB与第二消息中的至少一个信息比特之间的对应关系,确定出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系。
在第一方面或第二方面的一种可能的设计中,在第二消息中的比特位图用于指示至少一个第二参考信号的可用性的情况下,第二消息为系统消息的SIB1或者其他SIB;或者,第二消息为物理下行控制信道PDCCH所承载的下行控制信息DCI或者物理下行共享信道PDSCH所承载的信息。
在第一方面或第二方面的一种可能的设计中,第二消息中的比特位图的数量为n个,n取遍大于等于1且小于N,n和N为正整数,比特位图用于指示至少一个第二参考信号的可用性,比特位图包括至少一个信息比特,提供了第二消息中比特位图的多种实现可能。
在第一方面或第二方面的一种可能的设计中,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是相同的,使得设计简单且方便,终端设备只需要在一个寻呼时刻PO中的至少一个PDCCH监听时机上获取第一比特位图即可,通过其中一个PDCCH监听时机上获取的第一比特位图,可以确定与所有SSB具有QCL关系的至少一个第二参考信号的可用性。或者,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是不同的,以便通过不同的第一比特位图指示出与不同的SSB具有QCL关系的至少一个第二参考信号的可用性,这样能够降低第一比特位图的比特个数,节省指令信令的开销。
在第一方面或第二方面的一种可能的设计中,在第二消息为PDCCH所承载的寻呼DCI的情况下,不同PO中第二消息中的第一比特位图的比特个数相同,进而不同PO中第二消息中的第一比特位图与至少一个第二参考信号之间的对应关系是相同的,方便简单设计。
在第一方面或第二方面的一种可能的设计中,在终端设备处于无线资源控制RRC空闲态或者无线资源控制RRC非激活态的情况下,至少一个第二参考信号的种类包括:追踪参考信号TRS、信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SSB或者辅同步信号SSS中的至少一种。
在第一方面或第二方面的一种可能的设计中,配置信息用于按照至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号的最大数量,以便节省配置信令;或者,同一功能且相同种类的第二参考信号的最大数量为预定义的,以便节省配置信令。
在第一方面或第二方面的一种可能的设计中,配置信息用于按照至少一个第二参考信 号的功能和种类配置同一功能和相同种类的第二参考信号所属的参考信号资源集合的最大数量,以便节省配置信令;或者,同一功能且相同种类的第二参考信号所属的参考信号资源集合的最大数量为预定义的,以便节省配置信令。
在第一方面或第二方面的一种可能的设计中,第二消息包括:第一比特位图和第二比特位图,第一比特位图中的信息比特对应至少一个第二参考信号的第一功能,第二比特位图中的信息比特对应至少一个第二参考信号的第二功能。
本申请中,充分考虑到网络设备借助SSB的“桥梁”作用,来搭建第二消息与至少一个第二参考信号之间的对应关系。因此,一个SS burst set中实际发送的SSB的个数可以影响到第二消息中信息比特的个数。
在第一方面或第二方面的一种可能的设计中,第二消息中的第一比特位图的比特个数小于等于一个同步信号/物理广播信道块集合中发送的同步信号/物理广播信道块SSB的个数。
在第一方面或第二方面的一种可能的设计中,第一比特位图包括:至少一个信息域字段;其中,信息域字段的比特个数是根据与确定SSB的个数关联的信息确定的。
在第一方面或第二方面的一种可能的设计中,第一比特位图包括:第一信息域字段和第二信息域字段;其中,第一信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,第二信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数;或者,第一比特位图包括一个信息域字段;其中,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,或者,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数。
本申请中,由于寻呼DCI的预留的比特个数有限,而第一比特位图的比特个数可能会大于寻呼DCI的预留的比特个数,也可能会小于等于寻呼DCI的预留的比特个数,因此,本申请可以结合寻呼DCI的具体情况,对第一比特位图的比特个数进行设置,使得第一比特位图能够由寻呼DCI承载。
在第一方面或第二方面的一种可能的设计中,第二消息用于指示至少一个第二参考信号的可用性在第一时长内生效。
在第一方面或第二方面的一种可能的设计中,第一时长包括:至少一个寻呼不连续接收DRX周期;或者,网络设备配置的或预定义的周期时间窗中的一个或多个时间窗;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的寻呼时刻PO的下一个PO之前的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO的下一个PO之后的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO之后的一个时间段。
第三方面,本申请提供一种通信装置,装置可以是终端设备,也可以是终端设备内的芯片。当装置是终端设备时,装置可以包括接口单元,接口单元可以是收发器。终端设备还可以包括处理单元,处理单元可以是处理器。终端设备还可以包括存储单元,存储单元 可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使终端设备执行上述第一方面及第一方面任一种可能的设计中的相应的功能。当装置是终端设备内的芯片时,装置可以包括接口单元,接口单元可以是输入/输出接口、管脚或电路等。终端设备还可以包括处理单元,处理单元可以是处理器;终端设备还可以包括存储单元,存储单元可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使终端设备中的芯片执行上述第一方面及第一方面任一种可能的设计中的相应的功能,存储单元可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备内的位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,本申请提供一种通信装置,装置可以是网络设备,也可以是网络设备内的芯片。当装置是网络设备时,装置可以包括接口单元,接口单元可以是收发器。装置还可以包括处理单元,处理单元可以是处理器。网络设备还可以包括存储单元,存储单元可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使网络设备执行上述第二方面及第二方面任一种可能的设计中的相应的功能。当装置是网络设备内的芯片时,装置可以包括接口单元,接口单元可以是输入/输出接口、管脚或电路等。装置还可以包括处理单元,处理单元可以是处理器。网络设备还可以包括存储单元,存储单元可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使网络设备中的芯片执行上述第二方面及第二方面任一种可能的设计中的相应的功能,存储单元可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是网络设备内的位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行第一方面及第一方面任一种可能的设计中的通信方法。
第六方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行第二方面及第二方面任一种可能的设计中的通信方法。
第七方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施第一方面及第一方面任一种可能的设计中的通信方法。
第八方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施第二方面及第二方面任一种可能的设计中的通信方法。
附图说明
图1为一种通信系统的架构示意图;
图2为一种出现SSB的时刻以及寻呼DRX周期中的寻呼时刻PO的示意图;
图3为一种网络设备向终端设备发送CSI-RS和SSB的示意图;
图4为本申请一实施例提供的一种通信方法的信令流程图;
图5为本申请一实施例提供的包括CSI-RS和SSB的参考信号的示意图;
图6为本申请一实施例提供的第一信息比特、SSB以及参考信号的关系示意图;
图7为本申请一实施例提供的第二消息中比特位图的示意图;
图8为本申请一实施例提供的第二消息中比特位图的示意图;
图9为本申请一实施例提供的参考信号的示意图;
图10为本申请一实施例提供的参考信号的示意图;
图11为本申请一实施例提供的第一时长的示意图;
图12为本申请一实施例提供的第一时长的示意图;
图13为本申请一实施例提供的第一时长的示意图;
图14为本申请一实施例提供的第一时长的示意图;
图15为本申请一实施例提供的第一时长的示意图;
图16为本申请一实施例提供的第一时长的示意图;
图17为本申请一实施例提供的第一时长的示意图;
图18为本申请一实施例提供的一种通信装置的结构示意图;
图19为本申请一实施例提供的一种通信装置的结构示意图;
图20为本申请一实施例提供的一种通信装置的结构示意图;
图21为本申请一实施例提供的一种通信装置的结构示意图;
图22为本申请一实施例提供的一种通信装置的结构示意图;
图23为本申请一实施例提供的一种通信装置的结构示意图;
图24为本申请一实施例提供的一种通信装置的结构示意图;
图25为本申请一实施例提供的一种终端设备的结构示意图;
图26为本申请一实施例提供的一种网络设备的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,单独a,单独b或单独c中的至少一项(个),可以表示:单独a,单独b,单独c,组合a和b,组合a和c,组合b和c,或组合a、b和c,其中a,b,c可以是单个,也可以是多个。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本申请可以应用于无线通信系统,需要说明的是,本申请提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、长期演进系统(Long Term Evolution,LTE),第五代移动通信(the 5th Generation mobile communication technology,5G)系统(例如,新无线电系统),以及下一代无线通信系统。
本申请涉及的通信装置主要包括网络设备和终端设备。
网络设备:可以是基站,或者接入点,或者接入网设备,或者可以是指接入网中在空 中接口上通过一个或多个扇区与终端设备通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站,或者发送/接收点(Tx/Rx Point,TRP),或者5G网络中的基站,例如gNB等,或者下一代网络,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经RAN与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
图1为一种通信系统架构示意图,如图1所示,本申请的通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备之间进行通信。
通常,处于RRC空闲态或RRC非激活态的终端设备主要完成监听寻呼消息和进行RRM测量这两件事。
一方面,终端设备为了监听寻呼物理下行控制信道(physical downlink control channel,PDCCH),一般执行时频跟踪(time/frequency tracking)、AGC调整(automatic gain control,AGC tuning)或者波束选择(beam selection)等操作。
为了监听寻呼消息,网络设备会给终端设备配置寻呼不连续接收周期(discontinuous reception cycle,DRX cycle)。通常,终端设备在一个寻呼DRX周期内,可以在一个寻呼时刻(paging occasion,PO)监听寻呼消息,在其他时刻便可进入睡眠状态且不去监听寻呼消息。其中,终端设备的寻呼时刻PO由终端设备的标识(identification,ID)决定,通常不同的终端设备可能会有不同的监听寻呼消息的寻呼时刻PO。
对于处于RRC空闲态或RRC非激活态的终端设备,由于终端设备进入了睡眠状态,因此,网络设备可以向终端设备广播参考信号(该参考信号通常为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)),使得终端设备基于SSB做出AGC调整和时频同步,以便在终端设备对应的寻呼时刻PO唤醒去监听寻呼消息。例如,终端设备可以基于SSB中的主同步信号(primary synchronization signal,PSS),和/或辅同步信号(secondary synchronization signal,SSS)做出AGC调整,时频同步等操作。
另外,在NR的多波束(beam)场景下,网络设备以波束扫描(beam-sweeping)的形式向终端设备发送同步信号/物理广播信道块集合(SS burst set),如周期发送SS burst set,且网络设备同样以波束扫描的形式向终端设备发送寻呼消息。
也就是说,网络设备在多个波束/波束方向中重复向终端设备发送SSB/寻呼消息,其中SSB对应的波束/波束方向与寻呼消息对应的波束/波束方向保持一致。并且,为了确保终端设备可以在一个寻呼时刻PO中的PDCCH monitoring occasion上监听到寻呼消息,寻呼消息对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应。
综上可知,SSB对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应。一个SS burst set包括多个SSB,一个SS burst set中的多个SSB具有不同的SSB索引,一个寻呼时刻PO由多个物理下行控制信道监听时机(PDCCH monitoring occasions)组成,即第k个PDCCH monitoring occasion对应一个SS burst set中的第k个实际发送的SSB,k取遍大于等于1且小于等于PDCCH monitoring occasions的总数,k为正整数。另外,在波束扫描的方式中,波束数量或者波束方向通常是固定的,故一个波束对应的SSB与该波束的波束方向对应的SSB是同一个。
在监听寻呼消息之前,终端设备一般可以基于参考信号(即SSB)做出波束选择,再在所选择的波束/波束方向所对应的PDCCH monitoring occasion上监听寻呼消息。如果终端设备不提前选择合适的波束/波束方向,那么为了保证不漏掉寻呼消息,终端设备可能会在多个波束/波束方向所对应的多个PDCCH monitoring occasions上去监听寻呼消息。这样,AGC调整和时频同步、波束选择以及在多个PDCCH monitoring occasion监听寻呼消息均会消耗终端设备较大的功耗。
另一方面,移动性RRM测量的目的是为了使处于RRC空闲态或RRC非激活态的终端设备做小区选择/小区重选(cell selection/cell reselection),以及为了使处于RRC连接态(RRC_CONNECTED)的终端设备做小区切换,从而使终端设备在移动中也能维持较好的连接性能。
目前,用作RRM测量的参考信号主要包括两种:SSB和CSI-RS。其中,SSB是小区级的信号,因此,终端设备在RRC空闲态、RRC非激活态或者RRC连接态均可以使用。CSI-RS只能由处于RRC连接态的终端设备使用。
在终端设备处于RRC连接态时,网络设备通常通过RRC信令配置CSI-RS用作RRM测量,且处于RRC连接态的终端设备具体采用SSB和/或CSI-RS通常由RRC信令进行配置。
并且,在终端设备由RRC的空闲态或RRC非激活态进入RRC连接态之后,网络设备再根据数据传输业务需求,配置额外的参考信号。例如,针对处于RRC连接态的终端设备,网络设备可以配置用于终端设备执行时频跟踪的追踪参考信号(tracking reference signal,TRS),也可配置用于终端设备执行信道状态信息(channel state information,CSI)测量、CSI上报、波束测量(如层1参考信号接收功率(layer one-reference signal receiving Power,L1-RSRP)测量)、L1-RSRP上报等的CSI-RS,也可配置用于终端设备执行RRM测量、RRM测量上报(例如上报RSRP/参考信号接收质量(reference signal receiving quality,RSRQ)/信干噪比(signal to interference plus noise ratio,SINR))等的移动CSI-RS(CSI-RS for mobility)。
在终端设备处于RRC空闲态或RRC非激活态时,终端设备目前只能基于SSB进行RRM测量,其中终端设备执行AGC调整、时频同步、波束选择以及RRM测量均是基于SSB,而SSB是以周期发送的,出现SSB的时刻之间具有一定的周期间隔,使得SSB比 较稀疏。一般情况下,在NR系统中,SSB的周期范围包括:5ms、10ms、20ms、40ms、80ms或者160ms中任意一个。
并且,在终端设备基于SSB进行RRM测量时,如果网络设备为终端设备配置了SSB测量时间配置(SS/PBCH block measurement time configuration window duration,SMTC),那么终端设备只在SMTC窗口时间窗(SMTC window duration)内执行RRM测量;如果网络设备没有为终端设备配置SMTC,那么终端设备假设SSB的周期为5ms。
基于前述内容,终端设备为监听寻呼消息和进行RRM测量会功率损耗较大,原因如下:
1、由于终端设备监听寻呼消息的寻呼时刻PO与终端设备的标识ID有关,且SSB是小区级广播信号,SSB具有一定的周期间隔,较为稀疏,因此,可能出现SSB的时刻(或者SMTC时间窗)与终端设备在寻呼DRX周期内监听寻呼消息的寻呼时刻PO无法对齐的现象。那么,为了预先基于SSB做AGC调整、时频同步或者波束选择等,终端设备会提前在出现SSB的时刻唤醒(wake-up),导致处于RRC空闲态/非激活态的终端设备不仅需要在寻呼时刻PO监听寻呼消息时唤醒,还需要在出现SSB的时刻(或者SMTC时间窗内)基于SSB执行AGC调整、时频同步或者波束选择时唤醒,从而,要么使得终端设备需要唤醒两次或多次,要么使得终端设备在上述两个过程之间维持较长的唤醒时长,不利于终端设备功耗的节省。
2、由于SSB的周期较大,如果出现SSB的时刻与寻呼时刻PO之间的间隔较大,那么在终端设备的寻呼时刻PO,终端设备基于SSB所选择的波束/波束方向(即PDCCH monitoring occasions)可能由于终端设备移动和旋转等原因发生较大变化,所以终端设备仍然需要在寻呼时刻PO的多个波束/波束方向(即多个PDCCH monitoring occasions)上扫描监听寻呼消息,以便达到测量精度的要求,导致终端设备需要维持较长的唤醒时间,也不利于终端设备功耗的节省。
3、终端设备可能需要多个SS burst set中的SSB或者多个SMTC时间窗的SSB来执行AGC调整、时频跟踪或者RRM测量,尤其在信道条件较差或者在高频段(如根据第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议所规定的5G网络中的FR2频段,其中FR2频段的频率范围是24.25GHz-52.6GHz,通常被称为毫米波(mmWave))正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的长度较短的情况下。当信道条件较差或者高频段(如FR2频段)下OFDM符号长度较短时,由于SSB较稀疏,故一个SSB可能不足以完成预处理过程(如AGC调整、时频同步等),导致处于RRC空闲态或RRC非激活态的终端设备在SSB的多个SMTC时间窗内或者采用多个SS burst set,监听寻呼消息和进行移动性RRM测量,这就需要终端设备在多个SMTC时间窗内或者出现多个SS burst set的时刻维持唤醒状态(或者浅睡眠状态),导致唤醒次数增多或者唤醒时长增长,同样不利于终端设备功耗的节省。
下面,结合图2,对上述内容中终端设备消耗较大功耗的具体原因过程进行举例说明。
如图2所示,SSB的周期为20ms,每两个帧有一个帧是寻呼帧(Paging Frame,PF),且出现SSB的时刻和寻呼时刻PO未对齐。终端设备的寻呼时刻位于PO1,为了在PO1监听寻呼消息,终端设备需要在PO1之前,出现SSB的时刻提前唤醒。从而,终端设备可以基于SSB做AGC调整、时频跟踪、波束选择或者进行RRM测量等。当信道条件较 差或者在高频段(如FR2频段)OFDM符号的长度较短时,AGC调整可能需要多个SSB,导致终端设备可能在一个SS burst set内无法针对所有SSB完成一次RRM测量,所以终端设备可能会在PO1之后的一个SS burst set内继续基于SSB做RRM测量。
可见,终端设备需要唤醒多次,或维持较长的唤醒时间,造成终端设备较高的功耗。
诸如上述原因,处于RRC空闲态或RRC激活态的终端设备基于SSB监听寻呼消息和RRM测量需要很大的功率消耗。为了解决上述问题,一种传统的可行方法中,网络设备通过给终端设备配置更多的参考信号(reference signal),以便为终端设备提供更多时机,这样便可减少终端设备的唤醒时间,节省终端设备的功耗。可选地,由于一个小区中会同时存在处于RRC空闲态、RRC非激活态以及RRC连接态的终端设备。并且,网络设备会为处于RRC连接态的终端设备配置除SSB以外的参考信号(例如TRS/CSI-RS)。因此,如果可以将为RRC连接态的终端设备配置的参考信号配置给处于RRC空闲态或RRC非激活态的终端设备,则处于RRC空闲态或RRC非激活态的终端设备便可利用该参考信号执行AGC调整/时频跟踪/波束选择/RRM测量,以便节省终端设备的功耗。
本领域技术人员可以理解,在NR系统中,为了节省空口资源及降低网络设备的功耗,NR系统设计原则为尽量减少“总存在(always on)”的参考信号的发送频率,通常只维持较少的参考信号的发送。目前,SSB是NR系统中唯一的“always on”信号,且网络设备向终端设备发送SSB的周期可以进行配置,不一定每帧都发送SSB。由于为处于RRC连接态的终端设备配置的参考信号是小区中已经存在的参考信号,网络设备并没有为处于RRC空闲态或RRC非激活态的终端设备专门配置额外的参考信号,也避免了在NR系统中增加“always on”的参考信号。
然而,网络设备为处于RRC空闲态或RRC非激活态的终端设备所配置的RRC连接态的参考信号,也可能是为多个处于RRC连接态的终端设备所配置的。并且,一般情况下,针对不同的处于RRC连接态的终端设备,网络设备是相互对立配置参考信号的,即网络设备是针对不同的终端设备专门(specific)配置参考信号。且当该参考信号不再被需要(如该参考信号相关的终端设备不处于RRC连接态)时,网络设备可以释放该参考信号,不再向终端设备发送该参考信号,从而节省网络设备的功耗。另外,在多波束系统中(如FR2频段),由于终端设备的移动性(如用户发生移动,或者,终端设备被遮挡/翻转等)、不同终端设备的数据业务不同、连接态下的不连续接收(connected-discontinuous reception,C-DRX)周期不同、不同终端设备离开连接态的时间不同等原因,网络设备在不同时刻会向不同的波束/波束方向上发送参考信号,在不需要发送参考信号的波束/波束方向上停止发送参考信号,从而节省网络设备的功耗。
下面,结合图3,对上述内容中网络设备为处于RRC连接态的终端设备所配置的参考信号的具体发送情况进行举例说明。
如图3所示,一个SS burst set包括4个实际发送的SSB,索引分别为SSB0、SSB1、SSB2和SSB3。一个寻呼时刻PO包括4个PDCCH monitoring occasion(对应于4个波束/波束方向),每个PDCCH monitoring occasion对应一个实际发送的SSB。图3中,CSI-RS是网络设备为处于RRC连接态的终端设备所配置的参考信号,一个CSI-RS资源集合中包括4个CSI-RS,索引分别为CSI-RS0、CSI-RS1、CSI-RS2和CSI-RS3。这4个CSI-RS中每个CSI-RS分别与4个SSB中一个SSB有准共址(quasi co-location,QCL)关系。
在图3中第1个寻呼时刻PO1之前的参考信号中,与SSB3有QCL关系的CSI-RS不可用。网络设备向终端设备发送参考信号CSI-RS0、CSI-RS1和CSI-RS2,且停止向终端设备发送参考信号CSI-RS3。
在图3中第2个寻呼时刻PO2之前的参考信号中,与SSB0有QCL关系的CSI-RS不可用。网络设备向终端设备发送参考信号CSI-RS1、CSI-RS2和CSI-RS3,且停止向终端设备发送参考信号CSI-RS0。
可见,RRC连接态下所配置的参考信号的可用性不是一直为可用状态的,且参考信号在不同波束/波束方向上的可用性也是会发生变化的。
需要说明的是,图3中,第1个寻呼时刻PO1位于寻呼DRX周期1,第2个寻呼时刻PO2位于寻呼DRX周期2,寻呼DRX周期1和寻呼DRX周期2为相邻的寻呼DRX周期,并不是同一个寻呼DRX周期。且每个寻呼DRX周期内可以包括多个寻呼时刻PO,在每个寻呼时刻PO会有一个或多个终端设备监听寻呼PDCCH。
因此,充分考虑到上述问题,本申请提供了一种通信方法、装置及设备,可以通过更精细的指示至少一个SSB对应的波束/波束方向上参考信号的可用性,使得终端设备能够从参考信号中接收在至少一个SSB对应的波束/波束方向上的可用性为可用状态的参考信号,以便终端设备基于可用的参考信号执行AGC调整、时频跟踪、波束选择或进行RRM测量等,解决了由于参考信号不一直发送以及参考信号在不同波束/波束方向上可变的可用性而导致终端设备进行不必要操作消耗功耗的问题,节省了为监听寻呼消息和进行RRM测量消耗的功耗。从而提升了终端设备的处理性能。进一步地,上述参考信号可以为已存在的参考信号,避免了NR系统中增加always on信号,满足NR系统的减少always on信号的设计原则。例如,上述参考信号可以是为处于RRC连接态的终端设备已经配置的参考信号资源。上述参考信号也可以为新增的参考信号,例如为处于RRC空闲态/非激活态的终端设备额外配置的参考信号资源。另外,由于终端设备还可以获知终端设备的各个寻呼时刻PO,因此,终端设备可以从参考信号中接收在至少一个SSB对应的波束/波束方向上的可用性为可用状态且距监听寻呼消息最近的参考信号,避免了终端设备消耗不必要的功耗,提升了终端设备的处理能力。
下面,结合图4,对本申请的通信方法的具体实现过程进行详细说明。
图4为本申请一实施例提供的一种通信方法的信令流程图,如图4所示,本申请的通信方法可以包括:
S101、网络设备向终端设备发送第一消息,第一消息中包括至少一个第一参考信号的配置信息。
本申请中,网络设备可以为终端设备配置一个或者多个第一参考信号。其中,至少一个第一参考信号可以包括至少一个第二参考信号,也可以包括至少一个第二参考信号以及至少一个其他的参考信号,本申请对此不做限定。终端设备可以基于至少一个第二参考信号实现诸如AGC调整、时频同步、波束管理或RRM测量中的至少一种。
至少一个第一参考信号具体可以包括RRC空闲态或RRC非激活态下已存在的参考信号,或者可以包括RRC连接态下已存在的参考信号,或者可以包括前述两种情况中的信号,或者不是系统中已存在的参考信号,而是网络设备为处于RRC空闲态或RRC非激活态的终端设备额外配置的参考信号,本申请对此不做限定。
可选地,为了避免违背NR系统的减少always on信号的设计原则,网络设备可以将NR系统中已存在的参考信号作为为终端设备配置的第一参考信号。从而,以便终端设备获得第一参考信号的配置信息,能够避免always on信号的增加。
其中,本申请对至少一个第二参考信号的种类不做限定。可选地,在终端设备处于RRC空闲态或者RRC非激活态时,网络设备配置给终端设备的第二参考信号的种类可以包括:TRS、CSI-RS、SSB或者辅同步信号(Secondary Synchronization Signal,SSS)中的至少一种。
本领域技术人员可以理解,网络设备给终端设备配置的参考信号可以有多种功能。例如:
1、时频跟踪:TRS是CSI-RS的一种,用于终端设备执行时频跟踪。
2、CSI计算:在RRC连接态时,网络设备可以配置CSI-RS用于信道质量测量。例如终端设备可以接收CSI-RS,然后测量得出:信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(Precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、CSI-RS资源指示(CSI-RS Resource indicatior,CRI)或层指示(layer indicator,LI),然后终端设备将得出的测量结果上报给网络设备。
3、波束管理:CSI-RS可以用于波束管理。在RRC连接态,用于波束管理的参考信号,网络设备可以配置终端设备是否上报测量结果。网络设备可以配置终端设备上报L1-RSRP,则终端设备可接收该参考信号并计算L1-RSRP;网络设备还可以将上报量配置为NULL,则表示终端设备不需要上报波束测量结果。
4、RRM测量:CSI-RS可以用于移动性RRM测量。例如,在RRC连接态,网络设备通过配置信元CSI-RS-ResourceConfigMobility为终端设备配置用于RRM测量的CSI-RS。
基于上述内容,现有技术中为处于RRC连接态的终端设备所配置的参考信号可以具有不同的功能。本申请中,网络设备为处于RRC空闲态或RRC非激活态的终端设备所配置的第二参考信号也可以具有一种或者多种功能,本申请对此不做限定。可选地,第二参考信号的功能可以包括:时频跟踪、波束管理、无线资源管理RRM测量、自动增益控制AGC调整、信道状态信息CSI计算或者层1参考信号接收功率L1-RSRP计算中的至少一种。
例如,为处于RRC空闲态或RRC非激活态的终端设备所配置的第二参考信号的种类可以包括但不限于用于时频跟踪或者AGC调整的TRS以及用于RRM测量的CSI-RS。另外,虽然终端设备在RRC空闲态或RRC非激活态时不需要上报CSI测量结果以及L1-RSRP测量结果,但是,用于CSI测量/上报和L1-RSRP测量/上报的参考信号也可以用于终端设备执行其他功能,例如AGC调整、时频跟踪、波束选择等。另外,终端设备虽然在RRC空闲态/非激活态不上报CSI/L1-RSRP,但终端设备可以将计算的CSI/L1-RSRP等结果缓存下来,等到进入RRC连接态后再将缓存的结果上报给网络设备,或者在一种实现方式中,在RRC空闲态/非激活态,网络设备也能够配置终端设备上报测量的CSI/L1-RSRP,有助于提高网络设备和终端设备之间的数据传输性能。因此,为处于RRC空闲态或RRC非激活态的终端设备所配置的第二参考信号的种类还可以包括:用于CSI/L1-RSRP计算和/或上报的参考信号。
由于参考信号的种类和/或功能包括多种,且监听寻呼消息和进行RRM测量中包括多 个功能实现,使得网络设备可能为终端设备配置的第二参考信号包括多种配置情况,因此,本申请中,网络设备可以采用多种方式,获得第二参考信号的配置信息。其中,本申请对第二参考信号的配置信息的具体实现形式不做限定。
可选地,终端设备可以向网络设备发送请求信息,该请求信息用于请求网络设备为终端设备配置某种功能或某种类型的第二参考信号。例如,终端设备可以在RRC空闲态/RRC非激活态向网络设备发送非接入层(Non-Access Stratum,NAS)信令承载请求信息。又如,终端设备在从RRC连接态回退到空闲态/非激活态之前,可以在RRC连接态向网络设备发送请求信息。
本申请中,网络设备可以通过不同的信元(information element,IE)为终端设备配置不同功能的第二参考信号。例如,网络设备通过非零功率(none zero power,NZP)-CSI-RS-ResourceSet IE为终端设备配置用于时频跟踪的第二参考信号,或者,网络设备通过CSI-RS-ResourceConfigMobility IE为终端设备配置用于RRM测量的第二参考信号。
下面,分别对网络设备为终端设备配置用于时频跟踪/波束管理的参考信号和用于RRM测量的第二参考信号的具体实现过程进行详细描述。可以理解的是,网络设备一般通过不同的IE为终端设备配置用于时频跟踪/波束管理和进行RRM测量的第二参考信号。但是,根据不同的终端设备实现能力,基于一种功能的第二参考信号,终端设备可能会实现除该第二参考信号所配置的功能之外的其他功能。例如,终端设备也可能会基于用于RRM测量的第二参考信号执行AGC调整/波束选择等。
在网络设备为终端设备配置用于时频跟踪/波束管理的第二参考信号时,结合两种可行的实施例,对第二参考信号的配置信息的具体实现形式进行举例说明。
一种可行的实施例中,网络设备可以配置多个第二参考信号,那么,第二参考信号的配置信息可以包括:多个第二参考信号的配置信元,每个第二参考信号的配置信元可以包括但不限于:该第二参考信号的编号、该第二参考信号的时频资源单元映射方式、该第二参考信号的功率控制偏移、该第二参考信号的扰码编号、该第二参考信号的时域周期和周期偏移、该第二参考信号的传输配置指示状态((Transmission Configuration Indicator state,TCI state),即指示第二参考信号的QCL源参考信号(QCL source reference signal)以及该第二参考信号与该QCL源参考信号之间的QCL类型等参数。
另一种可行的实施例中,网络设备还可以设置多个参考信号资源集合,每个参考信号资源集合可以关联一个或者多个第二参考信号,其中,每个参考资源集合中全部的第二参考信号的功能和种类均相同,或者,每个参考资源集合中全部的第二参考信号的功能均相同,或者,每个参考信号资源集合中全部的第二参考信号的种类均相同,本申请对此不做限定。
那么,第二参考信号的配置信息可以包括:多个参考信号资源集合的配置信元,每个参考信号资源集合的配置信元,即每个参考信号资源集合中的第二参考信号的配置信元,具体可以包括但不限于:参考信号资源集合的编号、第二参考信号的编号、第二参考信号的功能(例如,重复(repetition)参数表示波束管理功能,时频跟踪信号信息(trs-Info)参数表示时频跟踪功能)等。
例如,若trs-Info参数配置为true,则该参考信号资源集合的配置信元可以表示该参考信号资源集合所关联的第二参考信号是TRS,用于时频跟踪。若repetition参数配置为on, 则表示该参考信号资源集合关联的所有资源都是通过网络设备中相同的下行空域发送滤波器(downlink spatial domain transmission filter)发送的,且该参考信号资源集合关联的所有参考信号通过相同的端口数被发送,那么该参考信号资源集合的配置信元可以表示该参考信号资源集合所关联的第二参考信号用于波束管理,以便终端设备进行波束选择。若一个参考信号资源集合中不包括trs-Info参数和repetition参数,在RRC连接态时,该参考信号资源集合的配置信元的功能是通过该参考信号资源集合所关联的上报配置所决定的。在该上报配置为信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(Precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、CSI-RS资源指示(CSI-RS Resource indicatior,CRI)或层指示(layer indicator,LI)时,该参考信号资源集合的配置信元可以表示该参考信号资源集合所关联的第二参考信号用于计算CSI。在该上报量配置为L1-RSRP(L1-RSRP是波束级测量结果)时,该参考信号资源集合的配置信元可以表示该参考信号资源集合所关联的第二参考信号用于波束管理。
由于终端设备在RRC空闲态或RRC非激活态不需要上报CSI,所以网络设备不需要为RRC空闲态/RRC非激活态的终端设备配置如何上报的配置信息。而现有技术中,在RRC连接态,有些参考信号的功能是需要根据参考信号所关联的上报配置信息中的参数确定的。所以在本申请中,网络设备在第二参考信号的配置信息中,可以新增额外的参数用于指示第二参考信号的功能。
例如,在trs-Info参数和repetition参数之外新增一个或多个参数表示某种功能。比如,新增一个参数(例如,L1-RSRP)表示波束管理/波束选择功能。或者,又如,终端设备基于第二参考信号的配置信息以及协议预定义规则共同确定第二参考信号的功能。比如,协议预定义当trs-Info参数和repetition参数缺省时第二参考信号的功能。
另外,本申请中,网络设备可以配置一个参考信号资源集合关联一种功能的第二参考信号,也可以配置多个参考信号资源集合关联同一功能的第二参考信号。任意一种功能的第二参考信号可以为一个或者多个种类的参考信号。
基于上述内容,在RRC空闲态/非激活态,由于网络设备的配置指令可承载比特数是有限的,因此,为确保终端设备所配置的第二参考信号的功能和种类的齐全,网络设备可以限定第二参考信号的数量。
可选地,网络设备按照参考信号的功能和种类,可以通过配置信息来配置同一功能和相同种类的第二参考信号的最大数量,也可以通过配置信息来配置所有第二参考信号的最大数量,也可以通过配置信息配置同一功能的第二参考信号的最大数量,也可以通过配置信息配置同一种类的第二参考信号的最大数量,也可以将前述至少两个方式进行组合来配置第二参考信号的数量。由此,节省了网络设备的配置指令。
除了上述实现方式之外,网络设备也可以不通过配置信息来配置第二参考信号的数量,而是通过协议规定,来确定第二参考信号的数量。在全部的第二参考信号中,可选地,同一功能且相同种类的第二参考信号的最大数量为预定义的,或者,所有第二参考信号的最大数量为预定义的,或者,同一功能的第二参考信号的最大数量为预定义的,或者,同一种类的第二参考信号的最大数量为预定义的,或者,前述至少两个方式的最大数量均为预定义的,本申请不需要前述方式对配置第二参考信号的数量进行配置。由此,节省了网络设备的配置指令。另外,第二参考信号的数量也可以由网络设备和协议规定共同确定。
为了便于说明,以同一功能的第二参考信号的最大数量为Y个,Y为正整数为例,下面对第二参考信号的最大数量Y的具体实现过程进行举例说明。
例如,针对某一种种类或某一种功能的第二参考信号,Y等于当前服务小区所处频率范围的在一个SS burst set内的最大SSB候选(candidate)数目A。对于载波频率f,针对FR1频段,当f≤3GHz时,Y=A=4;当f>3GHz(即3GHz<f≤6GHz)时,Y=A=8;针对FR2频段,当f>6GHz时,Y=A=64。或者,Y等于当前服务小区在一个SS burst set内实际发送的SSB的个数。其中,服务小区为终端设备处于RRC空闲态或RRC非激活态所驻留的小区。
又如,针对用于时频跟踪的第二参考信号,Y等于当前服务小区所处频率范围的在一个SS burst set内的最大SSB候选(candidate)数目A的B1倍,或者,Y等于当前服务小区在一个SS burst set内实际发送的SSB的个数的B2倍,倍数B1和B2是正整数,如B1=2或4,B2=2或4。
其中,当网络设备通过参考信号资源集合的方式为终端设备配置第二参考信号时,本申请中可以对第二参考信号的数量进行限定,也可以对第二参考信号所属(或者所关联)的参考信号资源集合的数量进行限定,也可以既对第二参考信号的数量进行限定又对第二参考信号所属的参考信号资源集合的数量进行限定。
其中,第二参考信号的数量的限定过程可参见前述内容,此处不做赘述。下面,对第二参考信号所属的参考信号资源集合的数量进行限定的具体实现方式进行描述。
可选地,网络设备按照第二参考信号的功能和种类,可以通过配置信息,来配置同一功能和相同种类的第二参考信号所属的参考信号资源集合的最大数量。另外,除了上述实现方式之外,网络设备也可以不通过配置信息来配置参考信号资源集合的数量,而是通过协议规定,来确定第二参考信号所属的参考信号资源集合的数量。可选地,同一功能且相同种类的第二参考信号所属的参考信号资源集合的最大数量为预定义的。由此,节省了网络设备的配置指令。另外,参考信号资源集合的数量也可以由网络设备和协议规定共同确定。
为了便于说明,以同一功能的第二参考信号所属的参考信号资源集合的最大数量为Z个,Z为正整数为例,下面对不同功能的参考信号资源集合的最大数量Z的具体实现程进行举例说明。
例如,针对用于非时频跟踪的第二参考信号,网络设备针对同一功能的第二参考信号只配置1个参考信号资源集合,此时,Z=1,以便简化配置。
又如,针对用于波束管理的第二参考信号,网络设备只配置1个参考信号资源集合,以便一个参考信号资源集合能够包括所有相同功能的第二参考信号,节省了配置信令开销。
又如,针对用于时频跟踪的第二参考信号,网络设备配置或协议规定Z的值小于等于一个SS burst set内实际发送的SSB的个数,或者小于等于当前服务小区所处频率范围的在一个SS burst set内的最大SSB候选(candidate)数目,以便节省配置指令。
综上,无论是通过配置信息还是协议规定的方式对第二参考信号和/或参考信号资源集合的数量进行限定,均可以节省网络设备的配置信令,有利于提高网络设备的处理速率,节省空口资源。
在网络设备为终端设备进行RRM测量配置第二参考信号时,网络设备可以采用多种 方式实现配置。结合下面可行的实施例,对第二参考信号的配置信息的具体实现形式进行举例说明。
一种可行的实施例中,用于RRM测量的第二参考信号通常由一个或者多个信元(Information Element,IE)进行配置。例如,当第二参考信号为CSI-RS时,该信元为信元CSI-RS-Resource-Mobility。并且,同一小区中的不同的第二参考信号可以与同一个参考信号资源集合关联,即关联到同一个信元中,并通过小区编号(cell ID/Physical cell ID)区分不同的参考信号资源集合。不同小区中的第二参考信号可以关联到同一个配置移动信元(ConfigMobility IE)中。且同一个配置移动信元所配置的不同的第二参考信号具有相同的子载波间隔,所关联的不同小区具有相同的SSB频率。
需要说明的是,除了上述方式之外,网络设备也可以采用其他方式为终端设备配置第二参考信号以获得第二参考信号的配置信息,本申请不限于上述实现方式。
另外,若至少一个第一参考信号中还包括其他的参考信号,则网络设备还可以实现其他的参考信号的配置,具体过程可以参见现有技术的实现过程,此处不做赘述。从而,网络设备可以得到至少一个第一参考信号的配置信息。
本申请中,网络设备确定好至少一个第一参考信号的配置信息后,可以通过第一消息向终端设备发送至少一个第一参考信号的配置信息,使得终端设备基于至少一个第一参考信号的配置信息,及时且准确地获知至少一个第一参考信号中第二参考信号的种类和功能等配置情况。
其中,该第一消息可以为系统消息(System Information,SI),也可以为除SI之外的其他消息,如寻呼PDCCH所调度的寻呼物理下行共享信道(Physical Downlink Shared Channel,PDSCH),本申请对此不做限定。
本领域技术人员可以理解,SI可以包括为主信息块(Master Information Block,MIB)和剩余最小系统消息(remaining minimum system information,RMSI)(即:系统消息块类型1(System Information Blocks Type1,SIB1)),和其他系统消息(Other system information,OSI,即除了SIB1以外的其他SIB,如SIB2-SIBn,n>2,n为正整数)。
在该第一消息为SI的情况下,为了便于配置,网络设备可以通过SIB1来承载至少一个第一参考信号的配置信息,也可以通过OSI来承载至少一个第一参考信号的配置信息,如现有的SIB2至SIB9中的一个或者多个,或者,新增的系统消息块。网络设备还可以在SIB1和OSI中均承载有至少一个第一参考信号的配置信息,本申请对此不做限定。
本申请中,网络设备可以采用广播的方式向终端设备发送至少一个第一参考信号的配置信息,也可以根据从终端设备发送的请求消息向终端设备发送至少一个第一参考信号的配置信息,该请求消息用于请求至少一个第一参考信号的配置信息或者至少一个第二参考信号的配置信息或者请求第一消息。另外,网络设备在至少一个第一参考信号的配置信息发生改变或者至少一个第二参考信号的配置信息发生改变或者第一消息中的其他信息发生改变时,也可以向终端设备发送至少一个第一参考信号的配置信息或发送包括至少一个第二参考信号的配置信息的第一消息。或者,网络设备按照第一消息的发送周期或至少一个第一参考信号的配置信息的发送周期或至少一个第二参考信号的配置信息的发送周期,周期性地向终端设备发送第一消息,本申请对网络设备向终端设备发送第一消息的具体方式不做限定。
S102、网络设备向终端设备发送第二消息,第二消息用于指示至少一个第二参考信号的可用性,至少一个第二参考信号与至少一个SSB具有QCL关系。
本领域技术人员可以理解,在NR的多波束/多波束方向的场景下,网络设备以波束扫描的形式向终端设备发送多个SS burst set(如周期发送SS burst set),其中,每个多个SS burst set中包括多个SSB。并且,网络设备同样以波束扫描的形式向终端设备发送寻呼消息。也就是说,发送SSB与寻呼消息对应的波束/波束方向通常保持一致,且一个SSB/一个寻呼消息对应同一个波束/波束方向。另外,寻呼消息对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应的。即,SSB对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应的。
在实际应用过程中,参考信号的可用性可能发生改变,并不是一直为可用状态的,且在任意一个时刻,参考信号可能在至少一个波束/波束方向上的可用性也是会发生变换的。以参考信号为终端设备处于RRC连接态所配置的CSI-RS为例,虽然CSI-RS具有频域带宽较高、其测量精度比SSB高等优点,且CSI-RS为小区对处于RRC连接态的终端设备所配置的现有资源,但是,本领域技术人员可以理解,CSI-RS并不是一直发送的。例如,若一个处于RRC连接态的终端设备被配置了连接态下的不连续接收(Connected-DRX,C-DRX),且C-DRX周期大于80ms,则网络设备可能只会在C-DRX周期中的活跃期间(Active time)向终端设备发送用作RRM测量的CSI-RS,而在C-DRX周期中的不活跃期间(non-active time)可以选择性地向终端设备发送该CSI-RS或者选择不向终端设备发送该CSI-RS资源。这样,在网络设备停止向终端设备发送CSI-RS时,处于RRC空闲态或RRC非激活态的终端设备仍在相应的时频位置上进行RRM测量,如测量了参考信号接收功率(reference signal received power,RSRP),从而造成RRM测量的结果不准确,这样终端设备进行了不必要的测量过程,会消耗终端设备不必要的功耗。
基于上述内容,网络设备可以向终端设备发送第二消息。该第二消息可以指示至少一个第二参考信号的可用性,且至少一个第二参考信号与至少一个SSB之间具有QCL关系。具体的,本申请中,网络设备可以通过第二消息,指示出与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性,即指示至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。即,借助于SSB对应的波束/波束方向,第二消息可以在波束/波束方向的粒度来指示至少一个第二参考信号的可用性,有利于更精细地指示至少一个波束/波束方向上的至少一个第二参考信号的可用性,避免了终端设备由于进行不必要的操作而消耗不必要的功耗的问题。
其中,本申请对第二消息的具体实现形式不做限定。可选地,本申请中采用第二消息中的至少一个信息比特(也称为比特(bit))用于指示至少一个第二参考信号的可用性。且本申请对第二消息中的至少一个信息比特的具体承载方式不做限定。
可选地,第二消息中的至少一个信息比特可以承载在系统消息SI的SIB1或者其他SIB,其中,其他SIB可以为现有的OSI或者新增的系统消息块,也可以承载在PDCCH所承载的下行控制信息(Downlink Control Information,DCI)或者PDSCH所承载的信息,其中PDCCH所承载的DCI或者PDSCH所承载的信息可以为NR系统中已存在的信息,例如寻呼PDCCH所承载的寻呼DCI,寻呼PDSCH所承载的寻呼信息,也可以承载在NR系统中新增加的信息,如RRC空闲态/非激活态新引入的PDCCH,具体例如,唤醒(Wakeup) PDCCH(例如,该PDCCH用于指示是否存在终端设备的寻呼信息)等,本申请对此不做限定。
可选地,第二消息就是系统消息SI的SIB1或者其他SIB,其中,其他SIB可以为现有的OSI或者新增的系统消息块,或者是PDCCH所承载的下行控制信息(Downlink Control Information,DCI)或者PDSCH所承载的信息,其中PDCCH所承载的DCI或者PDSCH所承载的信息可以为NR系统中已存在的信息,例如寻呼PDCCH所承载的寻呼DCI,寻呼PDSCH所承载的寻呼信息,也可以承载在NR系统中新增加的信息,如RRC空闲态/非激活态新引入的PDCCH,具体例如,唤醒(Wakeup)PDCCH(例如,该PDCCH用于指示是否存在终端设备的寻呼信息)等,本申请对此不做限定。
其中,至少一个第二参考信号的可用性可以包括:可用状态或者不可用状态。
可用状态指的是:表示网络设备在为终端设备配置的参考信号对应的参考信号资源上会(或可能会)发送参考信号。终端设备可以假设在为终端设备配置的参考信号相应的参考信号资源上网络设备会发送参考信号,终端设备可以接收该参考信号。
不可用状态指的是:表示网络设备在为终端设备配置的参考信号对应的参考信号资源上不(或可能不)发送参考信号。终端设备不能假设网络设备在为终端设备配置的参考信号对应的参考信号资源上发送参考信号。
S103、网络设备向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号。
本申请中,网络设备可以确定任意一个第二参考信号的可用性。可以理解的是,针对第二消息所指示的任意一个第二参考信号而言,如果网络设备指示该第二参考信号可用,则网络设备会发送该第二参考信号。如果网络设备指示该第二参考信号不可用,网络设备是否仍然发送该第二参考信号,本申请不做限制。
也就是说,本申请中,网络设备可以向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号,也可以向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号以及可用性为不可用状态的参考信号,本申请对此不做限定。
另外,如果网络设备只通过第二消息指示了所配置的至少一个第二参考信号中的部分参考信号的可用性,则对于未指示可用性的剩余的部分参考信号,可以通过网络设备配置或协议预定义至少一个第二参考信号中剩余的参考信号的可用性。
S104、终端设备根据配置信息和第二消息,从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号。
本申请中,网络设备在为终端设备配置的参考信号对应的参考信号资源上,向终端设备发送至少一个第二参考信号。例如,当至少一个第二参考信号包括SSB时,网络设备可以向终端设备发送至少一个可用性为可用状态的SSB,至少一个可用性为可用状态的SSB分布在至少一个波束/波束方向上,使得终端设备可以从至少一个波束/波束方向上能够接收到SSB。至少一个可用性为可用状态的SSB也可以是以SS burst set的形式发送的,即每个SS burst set包括所述至少一个可用性为可用状态的SSB。又如,当至少一个第二参考信号包括CSI-RS时,网络设备可以向终端设备发送可用性为可用状态的至少一个CSI-RS(如周期发送CSI-RS参考信号),可用性为可用状态的至少一个CSI-RS参考信号分布在至少一个波束/波束方向上,使得终端设备可以从至少一个波束/波束方向上能够接收到 CSI-RS。又如,当至少一个第二参考信号包括SSB和CSI-RS时,网络设备可以按照前述两者方式向终端设备发送至少一个SSB和至少一个CSI-RS参考信号,此处不做赘述,使得终端设备可以从至少一个波束/波束方向上能够接收到SSB和CSI-RS。
由于至少一个第一参考信号的配置信息能够表明为终端设备所配置的至少一个第二参考信号的配置情况,因此,本申请中,终端设备基于至少一个第一参考信号的配置信息,可以确定网络设备为终端设备所配置的至少一个第二参考信号的种类和功能等配置情况。又由于第二消息用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性,因此,本申请中,终端设备基于该第二消息,可以确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。从而,终端设备根据配置信息和第二消息,可以从网络设备接收至少一个第二参考信号中的在至少一个SSB对应的波束/波束方向上可用性为可用状态的参考信号,以便基于可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等,避免了终端设备消耗不必要的功耗。
另外,进一步地,由于终端设备已获知至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性,且终端设备还可以获知终端设备的各个寻呼时刻PO,因此,终端设备可以在为终端设备配置的参考信号对应的参考信号资源上,从网络设备接收至少一个第二参考信号中的在至少一个SSB对应的波束/波束方向上可用性为可用状态且距监听寻呼消息最近的参考信号,以便基于可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等。从而,不仅有利于终端设备做出参考信号的恰当选择,而不会接收在至少一个SSB对应的波束/波束方向上可用性为不可用状态的参考信号,同时还可以选择接收距监听寻呼消息最近的参考信号,避免了终端设备消耗不必要的功耗,提升了终端设备的处理能力。
需要说明的是,距监听寻呼消息最近的参考信号可以理解为,在可用性为可用状态的至少一个第二参考信号中,距寻呼时刻PO最近的位于寻呼时刻PO之前的和/或之后的一个或多个第二参考信号;或者,可以理解为,与系统中已存在的SSB相比,若存在一个或多个可用性为可用状态的第二参考信号距寻呼时刻PO更近,则终端设备只需要接收距寻呼时刻PO更近的第二参考信号,从而避免接收更远的SSB,减少终端设备唤醒时间,节省功耗,若不存在可用性为可用状态的第二参考信号距寻呼时刻PO更近,则终端设备仍需要接收距寻呼时刻PO更近的SSB。
在一个具体实施例中,以至少一个第二参考信号包括CSI-RS为例,假设网络设备按照图5所示实施例,在不同时刻向终端设备分别发送SS burst set和CSI-RS参考信号资源集合(如周期发送SS burst set和CSI-RS),SSB为小区中广播的参考信号。其中,每个SS burst set中包括四个SSB,索引分别为SSB0、SSB1、SSB2和SSB3。每个CSI-RS参考信号资源集合中包括四个CSI-RS,索引分别为CSI-RS0、CSI-RS1、CSI-RS2和CSI-RS3。
本申请中,终端设备基于至少一个第一参考信号的配置信息和第二消息,可以确定出在图5中第一个寻呼时刻PO1之前的至少一个第二参考信号中,第二参考信号包括CSI-RS,且与SSB0具有QCL关系的CSI-RS0可用,与SSB1具有QCL关系的CSI-RS1可用,与SSB2具有QCL关系的CSI-RS2可用,与SSB3具有QCL关系的CSI-RS3不可用。
在图5中第一个寻呼时刻PO1之前,终端设备确定网络设备发送的CSI-RS参考信号资源集合中的CSI-RS比网络设备发送的SS burst set中的SSB距离第一个寻呼时刻PO1 更近,因此,终端设备可以接收该CSI-RS参考信号资源集合中的CSI-RS而不会接收SS burst set中的SSB,且终端设备可以在该CSI-RS参考信号资源集合中接收CSI-RS0、CSI-RS1和CSI-RS2中的至少一个,而不会接收CSI-RS3,使得终端设备可以基于CSI-RS0、CSI-RS1和CSI-RS2中的至少一个进行AGC调整/时频跟踪/RRM测量/波束管理等。
在图5中第二个寻呼时刻PO2之前,终端设备确定网络设备发送的SS burst set中的SSB比网络设备发送的CSI-RS参考信号资源集合中的CSI-RS距离第二个寻呼时刻PO2更近,因此,终端设备可以接收该SS burst set中的SSB而不会接收该CSI-RS参考信号资源集合中的CSI-RS,且终端设备可以在SS burst set中接收SSB0、SSB1、SSB2和SSB3,使得终端设备可以基于SSB0、SSB1、SSB2和SSB3中的至少一个进行AGC调整/时频跟踪/RRM测量/波束管理等。
需要说明的是,图5中,可以认为第一个寻呼时刻PO1和第二个寻呼时刻PO2同属于一个寻呼DRX周期,且第一个寻呼时刻PO1和第二个寻呼时刻PO2为相邻的寻呼时刻PO,在第一个寻呼时刻PO1和第二个寻呼时刻PO2上监听寻呼PDCCH的终端设备不同。
本申请中,通过以至少一个SSB对应的波束/波束方向的粒度指示参考信号是否可用,可以实现更精细的指示参考信号的可用性,以便终端设备基于至少一个SSB对应的波束/波束方向指示的可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等,降低了终端设备的不必要功耗。进一步地,终端设备可以利用为处于RRC连接态终端设备所配置的参考信号,避免了always on信号的增加。进一步地,由于终端设备还可以获知终端设备的各个寻呼时刻PO,因此,终端设备可以基于至少一个SSB对应的波束/波束方向上距监听寻呼消息最近且可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等,进一步地降低了终端设备的不必要功耗。另外,在参考信号可用性发生变化时终端设备无需重新获取参考信号的配置信息,只需要根据第二消息就能获知已经配置的至少一个第二参考信号的可用性,能够降低RRC空闲态/非激活态的参考信号配置信令开销。
本申请提供的通信方法,通过网络设备向终端设备发送第一消息,第一消息中包括至少一个第一参考信号的配置信息,使得终端设备可以基于至少一个第一参考信号的配置信息明确确定所配置的至少一个第二参考信号。网络设备可以向终端设备发送第二消息,第二消息用于指示至少一个第二参考信号的可用性,且至少一个第二参考信号与至少一个SSB具有QCL关系。第二消息用于在SSB粒度或SSB对应的波束/波束方向粒度指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性,即,更精细的指示至少一个SSB对应的波束/波束方向上参考信号的可用性,使得终端设备可以明确至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。网络设备向终端设备发送至少一个第二参考信号中可用性为可用状态的参考信号。终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性,可以从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号,有利于终端设备基于可用性为可用状态的参考信号进行AGC调整/时频跟踪/RRM测量/波束管理等,解决了由于参考信号不一直发送以及参考信号在不同波束/波束方向上可变的可用性而导致终端设备进行不必要操作消耗功耗的问题,节省了为进行AGC调整/时频跟踪/RRM测量/波束管理等消耗的功耗,提升了终端设备的处理性能,同时还使得终端设备在参考信号可用性发生变化时,无需重新获取 参考信号的配置信息,降低了RRC空闲态/非激活态的配置信令开销。
进一步地,网络设备为终端设备配置的至少一个第二参考信号可以为NR系统中已存在的参考信号,并不会增加always on信号,避免了NR系统中增加always on信号,满足了NR系统的减少always on信号的设计原则。
进一步地,终端设备根据至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性以及监听寻呼消息的各个寻呼时刻,可以从网络设备接收第二参考信号中的距监听寻呼消息最近且可用性为可用状态的参考信号,进一步降低了终端设备的唤醒时长,节省了终端设备进行不必要操作的功耗消耗。
基于上述描述内容,正是由于在NR系统的多波束/波束方向场景中(例如FR2频段),在终端设备处于RRC空闲态或RRC非激活态时,发送SSB和寻呼消息都是以波束扫描的形式。即发送SSB与寻呼消息对应的波束/波束方向通常保持一致,且一个SSB/一个寻呼消息对应一个波束/波束方向。且寻呼消息对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应的,因而,SSB对应的波束/波束方向与一个寻呼时刻PO中的PDCCH monitoring occasion是相对应的。
此外,现有协议中,终端设备可以假设寻呼PDCCH和寻呼PDSCH的解调参考信号(demodulation reference signal,DM-RS)和所关联的SSB是具有QCL关系的,且是针对如下的参数是QCL的:时延扩展(delay spread)、多普勒扩展(doppler spread)、多普勒频移(doppler shift)、平均增益(average gain)、平均时延(average delay)或者空间接收参数(spatial Rx parameters)。
故,在RRC空闲态或RRC非激活态,终端设备若想使用网络设备所配置的参考信号(或者参考信号资源)执行AGC调整/时频跟踪/波束选择/RRM测量等操作,则参考信号(或者参考信号资源)应与SSB具有QCL关系。
本申请中,除了上述对配置信息中至少一个第二参考信号的基本配置情况之外,网络设备还可以在配置信息中,对至少一个第二参考信号与SSB之间的QCL关系进行配置,使得终端设备基于配置信息能够确定出与至少一个SSB具有QCL关系的至少一个第二参考信号,再借助前述SSB对应的波束/波束方向的描述,使得终端设备基于第二消息能够确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。
本领域技术人员可以理解,在NR系统中,不同的参考信号之间,或者不同参考信号资源之间,或者不同天线端口(antenna port)之间可以配置准共址(quasi co-location,QCL)关系。如果两个天线端口具有QCL关系,则表明从一个端口计算出的大尺度信道衰落参数可以推断另一个端口所经历的大尺度信道衰落参数,其中,大尺度信道衰落参数包括如下参数中的至少一个:时延扩展(delay spread)、多普勒扩展(doppler spread)、多普勒频移(doppler shift)、平均增益(average gain)、平均时延(average delay)或者空间接收参数(spatial Rx parameters)。
另外,QCL关系通常可以通过TCI状态进行配置。TCI状态可以关联1个或2个除了参考信号之外的其他的参考信号作为QCL源参考信号,且配置当前参考信号天线端口与源参考信号之间的QCL类型。目前,NR协议支持配置4种QCL类型,分别为QCL-TypeA,QCL-TypeB,QCL-TypeC,QCL-TypeD。
需要说明的是,本申请所提及的两个参考信号(或者参考信号资源)之间具有QCL 关系,或者说是QCL的,可以表明这两个参考信号(或者参考信号资源)之间的QCL关系为QCL-TypeA、QCL-TypeB、QCL-TypeC或者QCL-TypeD中的一种或多种。
可选地,本申请中所提及的QCL关系,也可以是更广泛含义的QCL关系,例如两个参考信号之间具有QCL关系,不一定意味着这两个参考信号之间一定是具有QCL-TypeA、QCL-TypeB、QCL-TypeC或者QCL-TypeD中的一种或多种QCL类型。例如,参考信号1和参考信号2之间有QCL-TypeD类型,参考信号2和参考信号3之间有QCL-TypeD类型,参考信号1和参考信号3之间没有QCL-TypeA、QCL-TypeB、QCL-TypeC或者QCL-TypeD中的一种或多种QCL类型,但参考信号1和参考信号3之间可以认为具有QCL关系。
其中,终端设备可以通过多种方式确定至少一个第二参考信号与SSB之间的QCL关系。可选地,网络设备发送的配置信息可以包括:第二信息,其中,第二信息可以通过配置至少一个第二参考信号的TCI状态进行配置至少一个第二参考信号与SSB之间的QCL关系,例如采用QCL源参考信号(source reference signal)进行表示,也可以采用配置信息中的其他参数进行表示,本申请对此不做限定。
该第二信息用于确定至少一个第二参考信号与至少一个SSB之间的QCL关系,或者,该第二信息用于确定至少一个第二参考信号与至少一个除了至少一个SSB之外的其他的参考信号之间的QCL关系,至少一个除了至少一个SSB之外的其他的参考信号与至少一个SSB之间具有QCL关系,或者,该第二信息用于确定至少一个第二参考信号与至少一个SSB之间的QCL关系以及用于确定至少一个第二参考信号与至少一个除了至少一个SSB之外的其他的参考信号之间的QCL关系,至少一个除了至少一个SSB之外的其他的参考信号与至少一个SSB之间具有QCL关系。
也就是说,该第二信息可以用于确定两个参考信号之间具有QCL关系。其中,这两个参考信号指的是至少一个第二参考信号与SSB。第二信息可以用于直接地确定至少一个第二参考信号与SSB之间的QCL关系,也可以借助除了SSB之外的其他的参考信号,分别确定至少一个第二参考信号与其他参考信号之间具有QCL关系,以及其他参考信号与SSB之间具有QCL关系,来间接地确定至少一个第二参考信号与SSB之间的QCL关系,还可以通过前述两种方式的组合来确定至少一个第二参考信号与SSB之间的QCL关系,本申请对第二信息的具体表示形式不做限定。
例如,在RRC空闲态或RRC非激活态时,网络设备可以配置至少一个第二参考信号的QCL源参考信号为SSB。当至少一个第二参考信号只关联一个QCL源参考信号时,该QCL源参考信号是SSB。当至少一个第二参考信号关联两个QCL源参考信号时,其中至少一个QCL源参考信号是SSB。
又如,至少一个第二参考信号包括参考信号2,参考信号2的QCL源参考信号不包括SSB,而是为参考信号1,且参考信号1所关联的QCL源参考信号是SSB,则参考信号2与参考信号1具有某种QCL类型,参考信号1和SSB具有某种QCL类型,即可以确定参考信号2和与参考信号1具有某种QCL类型的SSB之间的QCL关系。并且,在RRC空闲态或RRC非激活态时,如果终端设备收到上述配置信息,则当终端设备确定参考信号1可用,或者在参考信号1的参考信号资源上监测到(如,判断参考考信号1的信号强度、SNR或RSRP等参数大于一定阈值)参考信号1时,终端设备才可以接收参考信号2;否则,通常不要求终端设备接收参考信号2,终端设备也不接收参考信号2。
另外,针对用于RRM测量的至少一个第二参考信号,例如CSI-RS-Resource-Mobility信令所配置的参考信号(或者参考信号资源)。网络设备可配置至少一个第二参考信号(或参考信号资源)关联到一个SSB,并配置该CSI-RS和所关联的SSB之间是否是QCL-TypeD关系。
下面,结合三种可行的实现方式,对用于RRM测量的至少一个第二参考信号与SSB之间的QCL关系的具体实现过程进行描述。
一种可行的实现方式中,在RRC空闲态或RRC非激活态,针对网络设备配置给终端设备的用于RRM测量的至少一个第二参考信号,同一小区中的所有参考信号要么都配置关联的SSB,要么都不配置关联的SSB。
当同一小区(称为第一小区)中的所有第二参考信号都没有配置关联的SSB时,方式1、网络设备可选配置一个小区编号(称为第二小区)。当网络设备未配置第二小区编号时,则协议规定一个第二小区的默认编号。例如,默认第二小区就是第一小区,或者是终端设备当前驻留的服务小区。方式2、不存在配置第二小区编号的参数,如下描述的第二小区就是第一小区。则第一小区中所配置的所有第二参考信号的个数与第二小区中的在一个SS burst set内实际发送的SSB的个数相等,且第一小区中所配置的所有第二参考信号按照第二参考信号的编号从小到大(或者从大到小)与第二小区中的在一个SS burst set内实际发送的SSB按照SSB索引从小到大(或者从大到小)一一对应,即具有QCL关系。
其中,QCL关系的具体类型可以为TypeA、TypeB、TypeC或者TypeD中的至少一种,例如,QCL关系为TypeD。且第一小区和第二小区可以是同一个小区(具有相同的物理层小区编号),也可以是不同的小区,本申请对此不做限定。
当同一小区(称为第一小区)中的所有第二参考信号都配置了关联的SSB时,网络设备还会配置所关联的SSB位于的小区编号。可选地,所关联的SSB是位于第一小区中的在一个SS burst set内实际发送的SSB,即所关联的SSB位于的小区也为第一小区。
另外,由于一个参考信号资源中的第二参考信号的种类相同,因此,第二信息也可以描述为用于确定两个参考信号资源之间具有QCL关系,具体的实现过程可参见上述内容,此处不做赘述。
需要说明的是,本申请中,第二信息可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,本申请对此不做限定。当第二信息由协议定义或者预先存储在终端设备中时,终端设备可以直接确定该第二信息。当第二信息通过网络设备配置时,终端设备可以从网络设备接收该第二信息。
由此,终端设备基于该第二信息,可以确定至少一个第二参考信号是否与SSB之间具有QCL关系,以便通过前述内容描述的SSB与波束/波束方向之间的对应关系,确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。
基于前述描述内容,终端设备在S104中的根据配置信息和第二消息,从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号之前,需要获知第二消息与至少一个第二参考信号之间的对应关系。可选地,网络设备可以向终端设备发送第一信息,该第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB之间具有对应关系,或者,该第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB对应的SSB索引(index)之间的对应关系,使得网络设备借助SSB的“桥梁”作用,基于第二消息中 的信息比特与SSB/SSB索引(index)之间的对应关系以及SSB与至少一个第二参考信号之间的QCL关系,可以配置出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,以便网络设备通过第二消息中的至少一个信息比特指示出至少一个第二参考信号的可用性,使得终端设备基于第一信息确定出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,进而再根据第二消息确定出与至少一个信息比特对应的至少一个第二参考信号的可用性。
其中,第一信息可以设置在第一消息中的至少一个第一参考信号的配置信息中,也可以设置在第一消息中的除了至少一个第一参考信号的配置信息之外的其他信息中,也可以设置在除了第一消息之外的其他消息中,本申请对此不做限定。且本申请对第一信息的具体实现形式不做限定。
例如,第一信息可以用于确定每个信息比特对应的一个SSB/一个SSB索引(index),设计简单,或者,第一信息可以用于确定每个信息比特对应的多个SSB/多个SSB索引(index),节省第二消息的信令开销,以便配置出第二消息中的至少一个信息比特与至少一个SSB之间具有对应关系。
另外,本申请对第一信息所确定信息比特的具体实现形式、SSB的具体实现形式以及SSB对应的SSB索引的具体实现形式均不做限定。其中本申请提及的SSB索引可参见下文内容,此处不做赘述。
需要说明的是,本申请中,第一信息可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,本申请对此不做限定。当第一信息由协议定义或者预先存储在终端设备中时,终端设备可以直接确定该第一信息。当第一信息通过网络设备配置时,终端设备可以从网络设备接收该第一信息。
由此,终端设备基于该第一信息以及SSB与至少一个第二参考信号之间的QCL关系,可以确定第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,以便终端设备确定出至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性。
如图6所示,第一信息用于确定第二消息中的第一信息比特与i个实际发送的SSB是对应的,共有q+r+1个第二参考信号与i个实际发送的SSB(即,SSB 1至SSB i)有QCL关系,则第一信息比特对应与i个实际发送的SSB有QCL关系的q+r+1个第二参考信号,从而第一信息比特可以指示q+r+1个第二参考信号的可用性。
其中,i和j为正整数,q和r为自然数,第一信息比特的比特个数大于等于1。
另外,本申请中,网络设备还可以向终端设备发送第三信息,该第三信息用于配置第二消息中的至少一个信息比特与至少一个第二参考信号之间具有对应关系。从而,终端设备无需借助SSB的“桥梁”作用,基于第三信息便可确定出第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,使得网络设备基于第二消息中的至少一个信息比特指示出至少一个第二参考信号的可用性,使得终端设备基于第三信息确定出至少一个第二参考信号的可用性。
需要说明的是,本申请中,第三信息可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,本申请对此不做限定。当第三信息由协议定义或者预先存储在终端设备中时,终端设备可以直接确定该第三信息。当第三信息通过网络设备配置时,终端设备可以从网络设备接收该第三信息。
由此,终端设备基于该第三信息,可以确定第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系,以便终端设备确定出至少一个第二参考信号的可用性。
基于前述描述内容,由于各种主客观因素,终端设备可能存在未收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特的情况,比如,网络设备未向终端设备发送第二消息,或者,网络设备向终端设备发送了第二消息但终端设备未收到第二消息,或者,网络设备向终端设备发送了第二消息,但终端设备接收错误而未接收到第二消息,或者,网络设备向终端设备发送了第二消息,但终端设备接收到的第二消息中未包括用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特,本申请对此方式不做限定。
例如,第二消息可以为PDCCH所承载的寻呼DCI,终端设备检测到PDCCH所承载的寻呼DCI,该寻呼DCI是指终端设备的寻呼无线网络临时标识(Paging-Radio Network Tempory Identity,P-RNTI)加扰的DCI,指示了网络设备发送给终端设备的寻呼消息所在的资源位置。其中,在寻呼DCI中未收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特,即寻呼DCI不包含用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特。或者,终端设备在寻呼PDCCH的循环冗余校验(cyclic redundancy check,CRC)未通过时,未检测到寻呼DCI。
为了避免上述情况的发生,网络设备可以向终端设备发送第三消息,该第三消息用于配置至少一个第二参考信号默认的可用性。其中,网络设备可以根据实际情况,对至少一个第二参考信号的默认的可用性进行配置。例如,默认的可用性可以为全部第二参考信号在各个波束/波束方向上的可用性为不可用状态,或者,可以为全部第二参考信号在各个波束/波束方向上的可用性为可用状态,或者,可以为全部第二参考信号在至少一个波束/波束方向上的可用性为不可用状态,或者,可以为全部第二参考信号在至少一个波束/波束方向上的可用性为可用状态,或者,可以为全部第二参考信号存在至少一个第二参考信号的可用性为不可用状态,或者,可以为全部第二参考信号存在至少一个第二参考信号的可用性为可用状态,本申请对此不做限定。
作为一种实现方式,第三消息包括分别针对不同功能或不同种类的第二参考信号默认的可用性的配置信息。
需要说明的是,本申请中,第三消息可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,本申请对此不做限定。当第三消息由协议定义或者预先存储在终端设备中时,终端设备可以直接确定该第三消息。当第三消息通过网络设备配置时,终端设备可以从网络设备接收该第三消息。
由此,网络设备基于该第三消息,可以配置至少一个第二参考信号默认的可用性,使得终端设备在未接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特的情况时,能够基于第三消息确定出至少一个第二参考信号的可用性。另外,本申请中除了可以利用第三消息来配置至少一个第二参考信号默认的可用性之外,还可以利用第一消息来配置至少一个第二参考信号默认的可用性,本申请对此不做限定。
此外,在未接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特的情况时,终端设备也可以采用其他的多种方式,确定至少一个第二参考信号的可用性。
可选地,终端设备可以根据上一次接收到的第二消息中用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特,确定至少一个第二参考信号的可用性。其中,上一次接收到的第二消息指的是:终端设备在本次接收第二消息的时机之前、且距离本次接收第二消息的时机最近的终端设备从网络设备成功接收到的第二消息。终端设备在本次接收第二消息的时机未接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特。
可选地,终端设备可以确定至少一个第二参考信号的可用性为不可用状态。
可选地,终端设备可以确定至少一个第二参考信号的可用性为可用状态。
可选地,终端设备可以确定至少一个第二参考信号中存在至少一个参考信号的可用性为可用状态。
综上,终端设备可以根据实际情况及上述方式,确定至少一个第二参考信号的可用性。具体采用何种方式可以通过网络设备配置或者协议预定义的方式确定。需要说明的是,本申请不限于上述实现方式。
基于前述描述内容,由于第二参考信号可能包括多种种类和/或功能,且不同的第二参考信号可能与不同的SSB(或SSB索引)之间具有QCL关系,因此,本申请中,第二消息中的至少一个信息比特可以采用比特位图的形式进行表示,且第二消息中的比特位图的数量为n个,n取遍大于等于1且小于N,n和N为正整数,比特位图用于指示与至少一个SSB具有QCL关系的参考信号的可用性。
其中,数量N可以通过网络设备进行配置,也可以由协议定义,也可以根据第二参考信号的功能/种类以及第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系隐式确定,也可以预先存储在终端设备中,本申请对此不做限定。且数量n也可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,也可以根据参考信号的功能/种类以及第二消息中的至少一个信息比特与至少一个第二参考信号之间的对应关系隐式确定,本申请对此也不做限定。
在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上可以是相同的,使得设计简单且方便,终端设备只需要在一个寻呼时刻PO中的至少一个PDCCH监听时机上获取第一比特位图即可,通过其中任意一个PDCCH监听时机上获取的第一比特位图,都可以完整的确定与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性。或者,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上可以是不同的,例如,在任意一个寻呼时刻PO中的不同的PDCCH监听时机上的第一比特位图所对应的SSB的个数和/或SSB的索引不同,以便通过不同的第一比特位图指示出与不同的SSB具有QCL关系的参考信号的可用状态,这样,第一比特位图不需要与所有SSB索引进行对应,能够节省第一比特位图的比特个数,能节省指令信令的开销。此处叙述的第一比特位图在任意一个寻呼时刻PO中的各个PDCCH监听时机上可以是不同的,可以是第一比特位图的比特个数相同,但不同的第一比特位图对应的参考信号不同,或者,不同的第一比特位图对应的参考信号不同,且不同的第一比特位图的比特个数也不相同。
例如,在一个小区中,一个SS burst set发送有4个SSB,索引分别为SSB0、SSB1、SSB2和SSB3。网络设备配置了4个CSI-RS的第二参考信号,索引分别为CSI-RS0、CSI-RS1、 CSI-RS2和CSI-RS3。CSI-RS0与SSB0具有QCL关系,CSI-RS1与SSB1具有QCL关系,CSI-RS2与SSB2具有QCL关系,CSI-RS3与SSB3具有QCL关系。第一比特位图包含4个比特,这4个比特分别与4个SSB对应,进而分别与这4个SSB分别有QCL关系的4个CSI-RS对应。网络设备在任意一个寻呼时刻PO中的每个PDCCH监听时机上所发送的第一比特位图都是包含4个比特,且与4个CSI-RS的对应关系相同。
在如上第二种方式中,第一比特位图包含3个比特。网络设备在任意一个寻呼时刻PO中的每个PDCCH监听时机上所发送的第一比特位图都是包含3个比特:在第一个PDCCH监听时机上所发送的第一比特位图包含的3个比特分别与SSB3、SSB0、SSB1对应,进而分别与这3个SSB分别有QCL关系的3个CSI-RS对应;在第二个PDCCH监听时机上所发送的第一比特位图包含的3个比特分别与SSB0、SSB1、SSB2对应,进而分别与这3个SSB分别有QCL关系的3个CSI-RS对应;在第三个PDCCH监听时机上所发送的第一比特位图包含的3个比特分别与SSB1、SSB2、SSB3对应,进而分别与这3个SSB分别有QCL关系的3个CSI-RS对应;在第四个PDCCH监听时机上所发送的第一比特位图包含的3个比特分别与SSB2、SSB3、SSB0对应,进而分别与这3个SSB分别有QCL关系的3个CSI-RS对应。
综上可以看出,如上的第二种方式可以节省比特开销。
需要说明的是,本申请中,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是否相同,可以结合实际情况进行配置,此处不做限定。
在第二消息为PDCCH所承载的寻呼DCI的情况下,不同寻呼时刻PO中第二消息中的第一比特位图的比特个数可以相同,进而第一比特位图与至少一个第二参考信号之间的对应关系也相同,方便简单设计。其中,第一比特位图可以为一个或者多个比特位图,且第一比特位图中可以包括一个或者多个信息比特,本申请对此不做限定。
需要说明的是,本申请中,不同寻呼时刻PO中第二消息中的第一比特位图的比特个数是否相同,可以结合实际情况进行配置,此处不做限定。
基于前述描述内容,第二消息可以包括多种实现形式。可选地,第二消息可以包括:第一比特位图和第二比特位图,第一比特位图中的信息比特对应至少一个第二参考信号的第一功能,第二比特位图中的信息比特对应至少一个第二参考信号的第二功能。
其中,第一比特位图可以为一个或者多个比特位图,第二比特位图可以为一个或者多个比特位图,且第一比特位图中的信息比特对应至少一个第二参考信号的第一种类,第二比特位图中的信息比特对应至少一个第二参考信号的第二种类,第一种类与第二种类可以为第二参考信号的任意一个种类,具体内容参见前述描述此处不做赘述。且第一种类与第二种类可以相同,也可以不同,本申请对此不做限定。
另外,第一功能可以包括一个或者多个功能,第二功能可以包括一个或者多个功能,且第一功能中的功能与第二功能的功能可以完全相同,也可以部分相同,本申请对上述内容均不做限定。
基于上述描述,任意一个比特位图包括一个或者多个信息比特。下面,结合几个可行的实现方式,对至少一个第二参考信号的功能与比特位图之间的对应关系进行描述。
一种可行的实现方式中,同一功能的至少一个第二参考信号映射(即对应)到同一个比特位图,不同功能的至少一个第二参考信号映射到不同的比特位图。此时,一个信息比 特只对应1种功能的至少一个第二参考信号。
如图7所示,第二消息包括比特位图1、比特位图2和比特位图3。其中,比特位图1包括K1个比特,比特位图1对应至少一个用于时频跟踪的第二参考信号TRS。比特位图2包括K2个比特,比特位图2对应至少一个用于波束管理的第二参考信号(例如,用于终端设备计算L1-RSRP)。比特位图3包括K3个比特,比特位图3对应至少一个用于RRM测量的第二参考信号CSI-RS。
其中,K1,K2,K3分别大于或等于0,当网络设备没有配置比特位图所对应的至少一个第二参考信号时,该比特位图的比特个数为0。为了便于说明,图7中,K1=2,K2=1,K3=3,且一格代表一个信息比特。
可选地,对应不同参考信号功能的不同的比特位图的比特个数不等。这样,每一个比特位图与SSB的映射关系不同。如果是网络设备配置比特位图与SSB之间的映射关系(即第一信息),则网络设备需要单独配置每个比特位图与SSB之间的对应关系。
可选地,对应不同参考信号功能的不同的比特位图的比特个数相等。例如,如上例子中,K1=K2=K3。每一个比特位图与SSB的映射关系相同,进而网络设备只需要配置其中任意一个比特位图和SSB之间的映射关系,就可以实现配置所有比特位图和SSB之间的映射关系,不需要单独配置每个比特位图与SSB之间的对应关系,节省配置信令开销。
其中,参考信号功能指的是第二参考信号的功能,具体内容可参见前述描述,此处不做赘述。
可选地,网络设备配置或协议规定,不管是单波束/波束方向场景还是多波束/波束方向场景,用1个比特去指示一种参考信号功能的至少一个第二参考信号的可用性。例如,如上例子中,K1=K2=K3=1。
另一种可行的实现方式中,不同参考信号功能的至少一个第二参考信号映射到同一个比特位图。此时,一个信息比特同时对应1个或多个不同参考信号功能的第二参考信号。
如图8所示,第二消息包括比特位图1,比特位图1中包括K个信息比特,比特位图1中每一信息比特对应一种或者多种参考信号功能的第二参考信号。其中,K大于或等于0。为了便于说明,图8中,K=6,且一格代表一个信息比特。即,比特位图1中的任意一个比特和与该比特对应的SSB有QCL关系的所有参考信号功能的第二参考信号进行对应。
另外,第二消息也可以包括第三比特位图、第四比特位图等,本申请对第二消息中的比特位图的个数不做限定。
另一种可行的实现方式中,对于任一功能的第二参考信号,网络设备配置的第二参考信号(或者说是第二参考信号资源)的个数大于等于一个SS burst set内实际发送的SSB的个数。
例如,假设一个SS burst set内实际发送的SSB的个数为S。对于同一功能的至少一个第二参考信号,网络设备配置的第二参考信号的个数为N。针对SSB索引(index)k(1≤k≤S)(该SSB被称为第k个实际发送的SSB),网络设备配置至少一个第二参考信号与SSB index k是QCL的。故,N≥S。考虑到网络设备借助SSB的“桥梁”作用,来搭建第二消息与至少一个第二参考信号之间的对应关系。因此,一个SS burst set中实际发送的SSB的个数可以影响到第二消息中信息比特的个数。可选地,第二消息中的第一比特位图的比特个数可以小于等于一个SS burst set中实际发送的SSB的个数。其中,网络设备 可以以波束扫描的方式向终端设备发送SSB,网络设备可以向终端设备周期发送SS burst set,且每个SS burst set中包括一个或者多个SSB。
需要说明的是,第二消息中的第二比特位图、第三比特位图等各个比特位图的个数均可以小于等于一个SS burst set中实际发送SSB的个数。
本申请中,第一比特位图可以包括:至少一个信息域字段。其中,本申请对信息域字段中信息比特的个数以及在第一比特位图中的位置均不做限定。
可选地,至少一个信息域字段的比特个数是根据与确定SSB的个数关联的信息确定的,兼顾到SSB个数的影响。其中,确定SSB的个数关联的信息可以包括多种标识形式,如SSB的配置参数ssb-PositionsInBurst中的inOneGroup域和groupPresence域等。下面,结合几种可行的实现方式,对第一比特位图的具体实现方式进行描述。
一种可行的实现方式中,第一比特位图中的信息域字段的比特个数可以基于inOneGroup域(包括8个比特)和groupPresence域(包括8个比特)进行确定。
可选地,第一比特位图可以包括:第一信息域字段和第二信息域字段;其中,第一信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,第二信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数,那么,第一比特位图的比特个数≤16。
当第一数值为1时,第一信息域字段按照第一顺序的第k个信息比特对应SSB索引包括如下索引中的1个或多个:m-1、m+7、m+15、m+23、m+31、m+39、m+47和m+55。这里所述的SSB索引指的是协议已定义的候选SSB的SSB索引。
其中,第一信息域字段按照第一顺序的第k个信息比特与SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中按照第一顺序的第k个信息比特位等于1的第二信息比特对应,第二信息比特为SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中按照第一顺序的第m个信息比特,k和m为正整数。
当第二数值为1时,第二信息域字段按照第二顺序的第g个信息比特对应SSB索引包括如下索引中的1个或多个:8(p-1)、8(p-1)+1、8(p-1)+2、8(p-1)+3、8(p-1)+4、8(p-1)+5、8(p-1)+6和8(p-1)+7。这里所述的SSB索引指的是协议已定义的候选SSB的SSB索引。
其中,第二信息域字段按照第二顺序的第g个信息比特与SSB的配置参数ssb-PositionsInBurst中的groupPresence域中按照第二顺序的第g个信息比特位等于1的第三信息比特对应,第三信息比特为SSB的配置参数ssb-PositionsInBurst中的groupPresence域中按照第二顺序的第p个信息比特,p和g为正整数。
其中,第一数值可以为0,也可以为1。第二数值可以为0,也可以为1。且第一数值和第二数值可以相同,也可以不同。第一顺序可以为从高到低,也可以为从低到高。第二顺序可以为从高到低,也可以为从低到高。且第一顺序和第二顺序可以相同,也可以不同。本申请对前述内容均不做限定。
由此,通过第二信息域字段中的其中1个信息比特可以确定8个候选SSB索引,通过第一信息域字段中的其中1个信息比特也可以确定8个候选SSB索引,这16个候选SSB索引中至少有1个是相同的,这个相同的SSB索引即为所确定的SSB索引。这样,通过 第二信息域字段中的其中1个信息比特以及第一信息域字段中的其中1个信息比特可以唯一确定一个实际发送的SSB索引,那么与该SSB有QCL关系的至少一个第二参考信号与这两个比特成对应关系。
例如,当第二信息域字段中的1个信息比特和第一信息域字段中的1个信息比特的数值同时为1时,则全部与这两个比特所对应的至少一个第二参考信号(或者参考信号资源)的可用性为可用状态,或,与这两个比特所对应的至少一个第二参考信号(或者参考信号资源)中存在至少一个第二参考信号的可用性为可用状态。
基于上述描述内容,第二信息域字段从最高位到最低位(或从最低位到最高位)第g个信息比特和第一信息域字段从最高位到最低位(或从最低位到最高位)第k个信息比特所确定的SSB索引为:8(p-1)+m-1。其中,假设第二信息域字段从最高位到最低位(或从最低位到最高位)第g个比特与groupPresence域中从最高位到最低位的第p个信息比特对应,第一信息域字段从最高位到最低位(或从最低位到最高位)第k个信息比特与inOneGroup域中从最高位到最低位的第m个信息比特对应。
另一种可行的实现方式中,第一比特位图可以包括一个信息域字段;其中,信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,或者,信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数,具体实现过程参见前述描述内容,此处不做赘述。那么,第一比特位图的比特个数≤8。
例如,第一比特位图从最高位到最低位(或从最低位到最高位)第k个信息比特与inOneGroup域中从最高位到最低位的第k个等于1的信息比特对应,假设inOneGroup域中从最高位到最低位的第k个等于1的信息比特是该inOneGroup域中的第m个比特,则称第一比特位图从最高位到最低位(或从最低位到最高位)第k个信息比特与inOneGroup域中从最高位到最低位的第m个信息比特对应。故,第一比特位图从最高位到最低位(或从最低位到最高位)第k个信息比特所对应的SSB候选索引包括如下索引中的1个或多个:m-1、m+7、m+15、m+23、m+31、m+39、m+47和m+55。
第一比特位图从最高位到最低位(或从最低位到最高位)第k个信息比特所对应的8个SSB中哪些是实际发送的SSB,是根据groupPresence域所指示的。所以,通过第一比特位图和groupPresence域可以确定第一比特位图中的第k个信息比特所对应的实际发送的SSB的SSB索引,则第一比特位图中的第k个信息比特和与所确定的与第k个信息比特对应的SSB成QCL关系的第二参考信号成对应关系。
另一种可行的实现方式中,按照实际发送的SSB索引(index)从低位到高位或者从高位到低位的排序,将一个SS burst set内实际发送的SSB分成M组,每组包含1个或多个SSB索引,这M组SSB索引分别对应第一比特位图的M个比特,其中,M可由网络设备配置或协议规定。如M的最大取值可以为8或12。并且,将一个SS burst set内实际发送的SSB划分为M组可以是均匀划分,例如每组包含的SSB索引的个数相同,或者是非均匀划分。具体划分方式可以是网络配置,或者协议规定。
例如,类似于groupPresence域,第一比特位图包括1个信息域字段,该信息域字段的比特个数等于groupPresence域中等于1的个数,则第一比特位图的比特个数≤8。该信息域字段即第一比特位图从最高位到最低位(或从最低位到最高位)第g个信息比特与 groupPresence域中从最高位到最低位的第g个等于1的信息比特对应,假设groupPresence域中从最高位到最低位的第g个等于1的信息比特是该groupPresence域中的第p个比特,则称第一比特位图从最高位到最低位(或从最低位到最高位)第g个信息比特与groupPresence域中从最高位到最低位的第p个信息比特对应。故,第一比特位图从最高位到最低位(或从最低位到最高位)第g个信息比特所对应的SSB候选索引包括如下索引中的1个或多个:8(p-1)、8(p-1)+1、8(p-1)+2、8(p-1)+3、8(p-1)+4、8(p-1)+5、8(p-1)+6和8(p-1)+7。
第一比特位图从最高位到最低位(或从最低位到最高位)第g个信息比特所对应的8个SSB中哪些是实际发送的SSB,是根据inOneGroup域所指示的。所以,通过第一比特位图和inOneGroup域可以确定第一比特位图中的第g个信息比特所对应的实际发送的SSB的SSB索引,则第一比特位图中的第g个信息比特和与所确定的与所述第g个信息比特对应的SSB成QCL关系的第二参考信号成对应关系。
基于前述描述,第一比特位图的含义可以包括多种实现方式。下面,采用多种可行的实现方式,对第一比特位图的具体含义进行举例说明。
一种可行的实现方式中,若第一比特位图中的其中一个第四信息比特置1(或置0),表明与该第四信息比特对应的第二参考信号中,至少有一个第二参考信号是可用的。终端设备可以在第二参考信号相应的时频位置上通过检测(如检测信号强度、SNR或RSRP等参数),来检测网络设备是否发送第二参考信号。
另一种可行的实现方式中,若第一比特位图中的其中一个第四信息比特置0(或置1),表明与该第四信息比特对应的第二参考信号的可用性全部为不可用状态或部分为可用状态。终端设备如果从网络设备接收到有1个置0的信息比特,则终端设备便不能假设该第四信息比特对应的第二参考信号的可用性为可用状态。
另一种可行的实现方式中,若第一比特位图中的其中一个第四信息比特置1(或置0),表明与该第四信息比特对应的全部第二参考信号的可用性全部为可用状态。终端设备如果从网络设备接收到1个置1的信息比特,则终端设备便可以假设(可能会假设)该第四信息比特对应的第二参考信号的可用性为可用状态。
另一种可行的实现方式中,若第一比特位图中的其中一个第四信息比特置0(或置1),表明与该第四信息比特对应的第二参考信号的可用性全部为不可用状态或部分为可用状态。终端设备如果从网络设备接收到1个置0的信息比特,则终端设备便不能假设该第四信息比特对应的第二参考信号的可用性为可用状态。
基于前述描述,考虑第二参考信号是以SSB为直接或者间接的QCL源参考信号,故,当第二参考信号的个数大于SSB的个数时,1个SSB是多个第二参考信号的QCL源参考信号,或者,多个第二参考信号与同一SSB具有QCL关系。又考虑到第二消息中的信息比特是映射到SSB的,本申请可以实现一个信息比特对应1个SSB所关联的多个第二参考信号,可以节省信令开销。
如图9所示,当第二参考信号包括CSI-RS时,在第一个寻呼时刻PO1之前,与SSB0具有QCL关系的第二参考信号包括CSI-RS0和CSI-RS1,此时,CSI-RS0和CSI-RS1的可用性均可用状态,且CSI-RS0和CSI-RS1各自对应的波束/波束方向不重叠。在第二个寻呼时刻PO2之前,与SSB0具有QCL关系的第二参考信号包括CSI-RS0和CSI-RS1,此 时,CSI-RS0的可用性为不可用状态,CSI-RS1的可用性性为可用状态,且CSI-RS0和CSI-RS1各自对应的波束/波束方向不重叠。
如图10所示,当第二参考信号包括CSI-RS时,在第一个寻呼时刻PO1之前,与SSB0具有QCL关系的第二参考信号包括CSI-RS0和CSI-RS1,此时,CSI-RS0和CSI-RS1的可用性均为可用状态,且CSI-RS0和CSI-RS1各自对应的波束/波束方向重叠。在第二个寻呼时刻PO2之前,与SSB0具有QCL关系的第二参考信号包括CSI-RS0和CSI-RS1,此时,CSI-RS0的可用性为不可用状态,CSI-RS1的可用性为可用状态,且CSI-RS0和CSI-RS1各自对应的波束/波束方向重叠。
另外,作为一种可能的实现方式,若与1个SSB所关联的多个第二参考信号中至少有一个参考信号的可用性为可用状态,则第一比特位图中对应的信息比特指示至少一个第二参考信号的可用性为可用状态。
基于前述描述内容,第二消息可以用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性在第一时长内生效,或者说是用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特在第一时长内生效,以便终端设备在第一时长内按照该第二消息的指示来确定至少一个参考信号的可用性。
其中,本申请对第一时长的具体表示形式不做限定。可选地,第一时长可以包括:至少一个寻呼DRX周期,其中,同一个终端设备的相邻两个寻呼时刻PO之间的间隔为一个寻呼DRX周期;或者,网络设备配置的或预定义的周期时间窗中的一个或多个时间窗;或者,在第二消息为PDCCH所承载的寻呼DCI或寻呼PDSCH的情况下,位于第二消息所在的寻呼时刻PO的下一个PO之前的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI或寻呼PDSCH的情况下,位于第二消息所在的PO的下一个PO之后的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI或寻呼PDSCH的情况下,位于第二消息所在的PO之后的一个时间段。
其中,下一个寻呼时刻PO指的是距终端设备完成在寻呼时刻PO监听寻呼消息最近的仍属于该终端设备的下一个寻呼时刻PO,即,第二消息所在的寻呼时刻PO与第二消息所在的寻呼时刻PO的下一个PO之间间隔1个寻呼DRX周期。另外,第一时长的单位可以为绝对时间,如秒(s)、毫秒(ms)等,或帧数,或子帧数,或时隙数,或寻呼DRX周期的倍数等。
需要说明的是,本申请中,第一时长可以通过网络设备进行配置,也可以由协议定义,也可以预先存储在终端设备中,本申请对此不做限定。
下面,结合图11-图17,对第一时长的具体表示方式进行举例说明。为了便于说明,图11-图17中,第一时长采用t1进行示意,第二消息采用A进行示意。
例如,如图11所示,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息之后的一个时间段(即第一时长)内生效。可选地,第二消息之后的一个时间段(即第一时长)的起始时刻是第二消息的结束时刻。
又如,如图12所示,网络设备配置或预定义周期的时间窗,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的时间窗内生效。可选地,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的时间窗内,且在第二消息之后 生效;或者在第二消息所在的整个时间窗内生效。为了便于说明,图12中,时间窗采用T进行示意。可以理解的是,本申请包括但不限于终端设备在一个时间窗内接收第二消息的时间,例如,终端设备可能会在一个时间窗T内的任意一个时刻接收到包含用于指示第二参考信号的可用性的信息比特的第二消息。
又如,如图13所示,网络设备配置或预定义周期的时间窗,第二消息中用于指示第二参考信号的可用第二的信息比特在第二消息所在的时间窗的下一个时间窗内生效。为了便于说明,图13中,时间窗采用T进行示意。可以理解的是,本申请包括但不限于终端设备在一个时间窗内接收第二消息的时间,例如,终端设备可能会在一个时间窗T内的任意时刻收到包含用于指示第二参考信号的可用性的信息比特的第二消息。
又如,如图14所示,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的寻呼时刻PO之后、且在第二消息所在的寻呼时刻PO之后的下一个寻呼时刻PO之前的时间段内生效。第二消息所在的寻呼时刻PO与第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之间间隔1个寻呼DRX周期。
又如,如图15所示,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之前的一个时间段内生效。第二消息所在的寻呼时刻PO与第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之间间隔1个寻呼DRX周期。
又如,如图16所示,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之后的一个时间段内生效。第二消息所在的寻呼时刻PO与第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之间间隔1个寻呼DRX周期。
又如,如图17所示,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中用于指示第二参考信号的可用性的信息比特在第二消息所在的寻呼时刻PO之后、且包括第二消息所在的寻呼时刻PO之后的下一个寻呼时刻PO的一个时间段内生效。第二消息所在的寻呼时刻PO与第二消息所在的寻呼时刻PO的下一个寻呼时刻PO之间间隔1个寻呼DRX周期。
可选地,如上的时间段(即第一时长)是根据距离寻呼时刻PO的最近的一个或多个SSB(或一个或多个SS burst set)确定的。例如,寻呼时刻PO之前的一个时间段(即第一时长)是寻呼时刻PO之前距离该寻呼时刻PO最近的SSB与该寻呼时刻PO之间的一个时间段;寻呼时刻PO之后的一个时间段(即第一时长)是寻呼时刻PO之后距离该寻呼时刻PO最近的SSB与该寻呼时刻PO之间的一个时间段;包括寻呼时刻PO的一个时间段(即第一时长)是寻呼时刻PO之前距离该寻呼时刻PO最近的SSB与该寻呼时刻PO之后距离该寻呼时刻PO最近的SSB之间的一个时间段。
可以理解的是,第二消息中用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的指示信息具有生效时间,第一时长即为其生效时间,在第一时长之后,之前的指示信息就不再生效,网络设备需要重新发送用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的指示信息,终端设备需要重新接收该指示信息,以确定在之后的时间段内确定至少一个第二参考信号的可用性。
本申请中,终端设备在接收到的用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的指示信息失效之后,例如在指示信息生效的第一时长结束之后,可能会出现未接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特的情况(具体情况可参见前述内容,此处不做赘述),因此,下面,采用四种可行的实现方式,在上述情况下,对终端设备继续使用网络设备配置的至少一个第二参考信号的具体实现过程进行描述。
一种可行的实现方式中,在第二消息中用于指示至少一个第二参考信号的可用性的指示信息生效的第一时长结束之后,若发生上述情况,则终端设备按照上一次接收到的第二消息中用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特,来确定此后一段时间内(即此后的第一时长)至少一个第二参考信号的可用性,直至终端设备再次接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特为止。
由此,上述方式节省了指示信令开销。另外,当至少一个第二参考信号的可用性不发生变化时,网络设备不需要发送第二消息,或不需要发送用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特,只有当部分或全部第二参考信号的可用性发生变化时,网络设备才发送用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特(或发送第二消息)。例如,与某一个SSB index具有QCL关系的第二参考信号的可用性由可用状态变化为不可用状态时,网络设备通过第二消息来发送用于指示该第二参考信号的可用性为不可用状态的信息比特进行指示。
另一种可行的实现方式中,在第二消息中用于指示至少一个第二参考信号的可用性的指示信息生效的第一时长结束之后,若发生上述情况,则终端设备假设此后一段时间内至少一个第二参考信号的可用性是不可用状态的,直至终端设备再次接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特为止。
另一种可行的实现方式中,在第二消息中用于指示至少一个第二参考信号的可用性的指示信息生效的第一时长结束之后,若发生上述情况,则终端设备假设此后一段时间内至少一个第二参考信号的可用性全部是可用状态的,直至终端设备再次接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特为止。
另一种可行的实现方式中,在第二消息中用于指示至少一个第二参考信号的可用性的指示信息生效的第一时长结束之后,若发生上述情况,则终端设备此后一段时间内根据至少一个第二参考信号默认的可用性,确定至少一个第二参考信号的可用性,直至终端设备再次接收到用于指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性的信息比特为止。
可以理解的是,本申请中所述的第二消息中的至少一个信息比特与至少一个SSB对应,也可以理解成至少一个信息比特与至少一个SSB索引对应,或者至少一个信息比特与至少一个SSB索引所对应的至少一个SSB对应。
其中,本申请中所述的SSB索引,可以是现有协议中已定义的SSB索引,即SSB索引表示的是一个SS burst set中所有候选SSB所对应的索引,或者,是按照一个SS burst set中实际发送的SSB的个数重新命名的索引。
例如,一个SS burst set中最大候选SSB个数为4,4个候选SSB的索引分别为SSB 0, SSB 1,SSB 2,SSB 3。如上索引即为协议已定义的索引。假设在一个小区中,网络设备只广播发送了协议已定义的SSB 0所对应的SSB和SSB 2所对应的SSB,共2个SSB,则在确定第二消息中的至少一个信息比特与至少一个SSB的对应关系时,终端设备可以按照协议已定义的SSB 0所对应的SSB和SSB 2所对应的SSB进行确定。或者,终端设备可以将2个实际发送的SSB按照一定顺序重新命名的SSB索引进行确定。例如网络设备可以将2个实际发送的SSB的索引重新命名为SSB0和SSB1,则在确定第二消息中的至少一个信息比特与至少一个SSB的对应关系时,终端设备可以按照重新命名的SSB 0所对应的SSB和SSB 1所对应的SSB进行确定。
其中,不管是按照协议已定义的SSB索引或者是按照重新命名的SSB索引,所确定的第二消息中的至少一个信息比特所对应的实际发送的SSB是相同的。
可以理解的是,现有技术中,在RRC连接态时,针对网络设备配置的半持续的参考信号资源,网络设备是通过发送介质访问控制信元(medium access control control element,MAC CE)来进行激活或去激活的,1个MAC CE用于激活/去激活一个参考信号资源集合。而本申请实施例中,通过第二消息中的至少一个信息比特或者一个或多个比特位图指示与至少一个SSB具有QCL关系的至少一个第二参考信号的可用性具有如下好处:
(1)可以在与SSB对应的波束/波束方向粒度更精细的指示参考信号的可用性,使得终端设备可以明确至少一个第二参考信号在至少一个SSB对应的波束/波束方向上的可用性;
(2)借助SSB的“桥梁”作用,通过至少一个信息比特(例如以比特位图的方式)与至少一个SSB(或SSB索引)进行对应,进而和与至少一个SSB(或SSB索引)具有QCL关系的至少一个第二参考信号进行对应,可以实现使用较少的比特数指示所有配置的第二参考信号可用性,与RRC连接态的MAC CE激活/去激活相比可以节省指示信令开销。
示例性地,本申请还提供一种通信装置。图18为本申请一实施例提供的一种通信装置的结构示意图。本申请的通信装置10用于实现上述任一方法实施例中对应于终端设备或者终端设备中的芯片的操作,如图18所示,该通信装置10可以包括:第一接收模块11、第二接收模块12和第三接收模块13。
第一接收模块11,用于从网络设备接收第一消息,第一消息中包括至少一个第一参考信号的配置信息;
第二接收模块12,用于从网络设备接收第二消息,第二消息用于指示至少一个第二参考信号的可用性,至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,至少一个第一参考信号包括至少一个第二参考信号;
第三接收模块13,用于根据配置信息和第二消息,从网络设备接收至少一个第二参考信号中可用性为可用状态的参考信号。
图19为本申请一实施例提供的一种通信装置的结构示意图,如图19所示,本申请的通信装置10在图18所示结构的基础上,进一步地,还可以包括:第四接收模块14。
第四接收模块14,用于从网络设备接收第一信息,第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB之间的对应关系,或者,确定第二消息中的至少一个信息比特与至少一个SSB对应的SSB索引之间的对应关系。
图20为本申请一实施例提供的一种通信装置的结构示意图,如图20所示,本申请的 通信装置10在图18所示结构的基础上,进一步地,还可以包括:第五接收模块15。
第五接收模块11,用于从网络设备接收第三消息,第三消息用于配置至少一个第二参考信号默认的可用性。
图21为本申请一实施例提供的一种通信装置的结构示意图,如图21所示,本申请的通信装置10在图18所示结构的基础上,进一步地,还可以包括:确定模块16。
确定模块16,用于在第二接收模块12未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特时,根据上一次接收到的第二消息中用于指示至少一个第二参考信号的可用性的信息比特,确定至少一个第二参考信号的可用性;或者,
确定模块16,,用于在第二接收模块12未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特时,根据至少一个第二参考信号默认的可用性,确定至少一个第二参考信号的可用性为可用状态;或者,
确定模块16,用于第二接收模块12在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特时,确定至少一个第二参考信号的可用性为不可用状态;或者,
确定模块16,用于第二接收模块12在未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特时,确定至少一个第二参考信号的可用性为可用状态;或者,
确定模块16,用于在第二接收模块12未接收到第二消息或者第二消息中未包括用于指示至少一个第二参考信号的可用性的信息比特时,确定至少一个第二参考信号中存在至少一个可用性为可用状态的参考信号。
在一些实施例中,配置信息包括:第二信息,第二信息用于确定至少一个第二参考信号与至少一个SSB之间的QCL关系,和/或,确定至少一个第二参考信号与至少一个除了至少一个SSB之外的其他的参考信号之间的QCL关系,至少一个除了至少一个SSB之外的其他的参考信号与至少一个SSB之间具有QCL关系。
在一些实施例中,在第二消息中的比特位图用于指示至少一个第二参考信号的可用性的情况下,第二消息为系统消息的SIB1或者其他SIB;或者,第二消息为物理下行控制信道PDCCH所承载的下行控制信息DCI或者物理下行共享信道PDSCH所承载的信息。
在一些实施例中,第二消息中的比特位图的数量为n个,n取遍大于等于1且小于N,n和N为正整数,比特位图用于指示至少一个第二参考信号的可用性,比特位图包括至少一个信息比特。
在一些实施例中,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是相同的或不同的。
在一些实施例中,在第二消息为PDCCH所承载的寻呼DCI的情况下,不同PO中第二消息中的第一比特位图的比特个数相同。
在一些实施例中,在终端设备处于无线资源控制RRC空闲态或者无线资源控制RRC非激活态的情况下,至少一个第二参考信号的种类包括:追踪参考信号TRS、信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SSB或者辅同步信号SSS中的至少一种。
在一些实施例中,配置信息用于按照至少一个第二参考信号的功能和种类配置同一功 能和相同种类的第二参考信号的最大数量;或者,同一功能且相同种类的第二参考信号的最大数量为预定义的。
在一些实施例中,配置信息用于按照至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号所属的参考信号资源集合的最大数量;或者,同一功能且相同种类的第二参考信号所属的参考信号资源集合的最大数量为预定义的。
在一些实施例中,第二消息包括:第一比特位图和第二比特位图,第一比特位图中的信息比特对应至少一个第二参考信号的第一功能,第二比特位图中的信息比特对应至少一个第二参考信号的第二功能。
在一些实施例中,第二消息中的第一比特位图的比特个数小于等于一个同步信号/物理广播信道块集合中发送的同步信号/物理广播信道块SSB的个数。
在一些实施例中,第一比特位图包括:至少一个信息域字段;其中,信息域字段的比特个数是根据与确定SSB的个数关联的信息确定的。
在一些实施例中,第一比特位图包括:第一信息域字段和第二信息域字段;其中,第一信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,第二信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数;或者,第一比特位图包括一个信息域字段;其中,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,或者,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数。
在一些实施例中,第二消息用于指示至少一个第二参考信号的可用性在第一时长内生效。
在一些实施例中,第一时长包括:至少一个寻呼不连续接收DRX周期;或者,网络设备配置的或预定义的周期时间窗中的一个或多个时间窗;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的寻呼时刻PO的下一个PO之前的一个时间段,其中,所述下一个PO与所述第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO的下一个PO之后的一个时间段,其中,所述下一个PO与所述第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO之后的一个时间段。
本申请的通信装置,可以用于执行图1-图17所示方法实施例中终端设备或者终端设备中的芯片的技术方案,其实现原理和技术效果类似,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
示例性地,本申请还提供一种通信装置。图22为本申请一实施例提供的一种通信装置的结构示意图。本申请的通信装置20用于实现上述任一方法实施例中对应于网络设备或者网络设备中的芯片的操作,如图22所示,该通信装置20可以包括:第一发送模块21、第二发送模块22和第三发送模块23。
第一发送模块21,用于向终端设备发送第一消息,第一消息中包括至少一个第一参考信号的配置信息;
第二发送模块22,用于向终端设备发送第二消息,第二消息用于指示至少一个第二参考信号的可用性,至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,至少一个第一参考信号包括至少一个第二参考信号;
第三发送模块23,用于向终端设备发送至少一个第二参考信号。
图23为本申请一实施例提供的一种通信装置的结构示意图,如图23所示,本申请的通信装置20在图22所示结构的基础上,进一步地,还可以包括:第四发送模块24。
第四发送模块24,用于向终端设备发送第一信息,第一信息用于确定第二消息中的至少一个信息比特与至少一个SSB之间的对应关系,或者,确定第二消息中的至少一个信息比特与至少一个SSB对应的SSB索引之间的对应关系。
图24为本申请一实施例提供的一种通信装置的结构示意图,如图24所示,本申请的通信装置20在图22所示结构的基础上,进一步地,还可以包括:第五发送模块25。
第五发送模块25,用于向终端设备发送第三消息,第三消息用于配置至少一个第二参考信号默认的可用性。
在一些实施例中,配置信息包括:第二信息,第二信息用于确定至少一个第二参考信号与至少一个SSB之间的QCL关系,和/或,确定至少一个第二参考信号与至少一个除了至少一个SSB之外的其他的参考信号之间的QCL关系,至少一个除了至少一个SSB之外的其他的参考信号与至少一个SSB之间具有QCL关系。
在一些实施例中,在第二消息中的比特位图用于指示至少一个第二参考信号的可用性的情况下,第二消息为系统消息的SIB1或者其他SIB;或者,第二消息为物理下行控制信道PDCCH所承载的下行控制信息DCI或者物理下行共享信道PDSCH所承载的信息。
在一些实施例中,第二消息中的比特位图的数量为n个,n取遍大于等于1且小于N,n和N为正整数,比特位图用于指示至少一个第二参考信号的可用性,比特位图包括至少一个信息比特。
在一些实施例中,在第二消息为PDCCH所承载的寻呼DCI的情况下,第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是相同的或不同的。
在一些实施例中,在第二消息为PDCCH所承载的寻呼DCI的情况下,不同PO中第二消息中的第一比特位图的比特个数相同。
在一些实施例中,在终端设备处于无线资源控制RRC空闲态或者无线资源控制RRC非激活态的情况下,至少一个第二参考信号的种类包括:追踪参考信号TRS、信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SSB或者辅同步信号SSS中的至少一种。
在一些实施例中,配置信息用于按照至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号的最大数量;或者,同一功能且相同种类的第二参考信号的最大数量为预定义的。
在一些实施例中,配置信息用于按照至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号所属的参考信号资源集合的最大数量;或者,同一功能且相同种类的第二参考信号所属的参考信号资源集合的最大数量为预定义的。
在一些实施例中,第二消息包括:第一比特位图和第二比特位图,第一比特位图中的信息比特对应至少一个第二参考信号的第一功能,第二比特位图中的信息比特对应至少一个第二参考信号的第二功能。
在一些实施例中,第二消息中的第一比特位图的比特个数小于等于一个同步信号/物理广播信道块集合中发送的同步信号/物理广播信道块SSB的个数。
在一些实施例中,第一比特位图包括:至少一个信息域字段;其中,信息域字段的比特个数是根据与确定SSB的个数关联的信息确定的。
在一些实施例中,第一比特位图包括:第一信息域字段和第二信息域字段;其中,第一信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,第二信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数;或者,第一比特位图包括一个信息域字段;其中,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,或者,第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数。
在一些实施例中,第二消息用于指示至少一个第二参考信号的可用性在第一时长内生效。
在一些实施例中,第一时长包括:至少一个寻呼不连续接收DRX周期;或者,网络设备配置的或预定义的周期时间窗中的一个或多个时间窗;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的寻呼时刻PO的下一个PO之前的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO的下一个PO之后的一个时间段,其中,下一个PO与第二消息所在的PO之间相距一个DRX周期的时长;或者,在第二消息为PDCCH所承载的寻呼DCI的情况下,位于第二消息所在的PO之后的一个时间段。
本申请的通信装置,可以用于执行图1-图17所示方法实施例中网络设备或者网络设备中的芯片的技术方案,其实现原理和技术效果类似,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
本申请可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图25为本申请一实施例提供的一种终端设备的结构示意图,该终端设备可以包括:
存储器31,用于存储程序指令,该存储器31可以是flash(闪存)。
处理器32,用于调用并执行存储器31中的程序指令,以实现图1-图17的通信方法中对应终端设备或者终端设备中的芯片的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括通信接口33,即输入/输出接口。通信接口33可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该终端设备可以用于执行上述方法实施例中相应的终端设备或者终端设备中的芯片对应的各个步骤和/或流程。
图26为本申请一实施例提供的一种网络设备的结构示意图,该网络设备40包括:存储器41,用于存储程序指令,该存储器41可以是flash(闪存)。
处理器42,用于调用并执行存储器41中的程序指令,以实现图1-图17的通信方法中对应网络设备或者网络设备中的芯片的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括通信接口43,即输入/输出接口。通信接口43可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该网络设备可以用于执行上述方法实施例中相应的网络设备或者网络设备中的芯片对应的各个步骤和/或流程。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行上述方法实施例中的通信方法。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施上述方法实施例中的通信方法。
本申请还提供一种芯片,所述芯片与存储器相连,或者所述芯片上集成有存储器,当所述存储器中存储的软件程序被执行时,实现上述方法实施例中的通信方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    从网络设备接收第一消息,所述第一消息中包括至少一个第一参考信号的配置信息;
    从所述网络设备接收第二消息,所述第二消息用于指示至少一个第二参考信号的可用性,所述至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,所述至少一个第一参考信号包括所述至少一个第二参考信号;
    根据所述配置信息和所述第二消息,从所述网络设备接收所述至少一个第二参考信号中可用性为可用状态的参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第一信息,所述第一信息用于确定所述第二消息中的至少一个信息比特与所述至少一个SSB之间的对应关系,或者,确定所述第二消息中的至少一个信息比特与所述至少一个SSB对应的SSB索引之间的对应关系。
  3. 根据权利要求1或2的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第三消息,所述第三消息用于配置所述至少一个第二参考信号默认的可用性。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    在未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,根据上一次接收到的第二消息中用于指示所述至少一个第二参考信号的可用性的信息比特,确定所述至少一个第二参考信号的可用性;或者,
    在未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,根据所述至少一个第二参考信号默认的可用性,确定所述至少一个第二参考信号的可用性;或者,
    在未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号的可用性为不可用状态;或者,
    在未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号的可用性为可用状态;或者,
    在未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号中存在至少一个可用性为可用状态的参考信号。
  5. 一种通信方法,其特征在于,包括:
    向终端设备发送第一消息,所述第一消息中包括至少一个第一参考信号的配置信息;
    向所述终端设备发送第二消息,所述第二消息用于指示至少一个第二参考信号的可用性,所述至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,所述至少一个第一参考信号包括所述至少一个第二参考信号;
    向所述终端设备发送所述至少一个第二参考信号中可用性为可用状态的参考信号。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一信息,所述第一信息用于确定所述第二消息中的至少一个信 息比特与所述至少一个SSB之间的对应关系,或者,确定所述第二消息中的至少一个信息比特与所述至少一个SSB对应的SSB索引之间的对应关系。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三消息,所述第三消息用于配置所述至少一个第二参考信号默认的可用性。
  8. 一种通信装置,其特征在于,包括:接口单元;
    所述接口单元,用于从网络设备接收第一消息,所述第一消息中包括至少一个第一参考信号的配置信息;
    所述接口单元,还用于从所述网络设备接收第二消息,所述第二消息用于指示至少一个第二参考信号的可用性,所述至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,所述至少一个第一参考信号包括所述至少一个第二参考信号;
    所述接口单元,用于根据所述配置信息和所述第二消息,从所述网络设备接收所述至少一个第二参考信号中可用性为可用状态的参考信号。
  9. 根据权利要求8所述的装置,其特征在于,
    所述接口单元,还用于从所述网络设备接收第一信息,所述第一信息用于确定所述第二消息中的至少一个信息比特与所述至少一个SSB之间的对应关系,或者,确定所述第二消息中的至少一个信息比特与所述至少一个SSB对应的SSB索引之间的对应关系。
  10. 根据权利要求8或9所述的装置,其特征在于,
    所述接口单元,还用于从所述网络设备接收第三消息,所述第三消息用于配置所述至少一个第二参考信号默认的可用性。
  11. 根据权利要求8-10任一项所述的装置,其特征在于,所述装置还包括:处理单元;
    所述处理单元,还用于在所述接口单元未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,根据上一次接收到的第二消息中用于指示所述至少一个第二参考信号的可用性的信息比特,确定所述至少一个第二参考信号的可用性;或者,
    在所述接口单元未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,根据所述至少一个第二参考信号默认的可用性,确定所述至少一个第二参考信号的可用性;或者,
    在所述接口单元未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号的可用性为不可用状态;或者,
    在所述接口单元未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号的可用性为可用状态;或者,
    在所述接口单元未接收到所述第二消息或者所述第二消息中未包括用于指示所述至少一个第二参考信号的可用性的信息比特的情况下,确定所述至少一个第二参考信号中存在至少一个可用性为可用状态的参考信号。
  12. 一种通信装置,其特征在于,包括:接口单元;
    所述接口单元,用于向终端设备发送第一消息,所述第一消息中包括至少一个第一参 考信号的配置信息;
    所述接口单元,还用于向所述终端设备发送第二消息,所述第二消息用于指示至少一个第二参考信号的可用性,所述至少一个第二参考信号与至少一个同步信号/物理广播信道块SSB具有QCL关系,所述至少一个第一参考信号包括所述至少一个第二参考信号;
    所述接口单元,还用于向所述终端设备发送所述至少一个第二考信号中可用性为可用状态的参考信号。
  13. 根据权利要求12所述的装置,其特征在于,
    所述接口单元,还用于向所述终端设备发送第一信息,所述第一信息用于确定所述第二消息中的至少一个信息比特与所述至少一个SSB之间的对应关系,或者,确定所述第二消息中的至少一个信息比特与所述至少一个SSB对应的SSB索引之间的对应关系。
  14. 根据权利要求12或13所述的装置,其特征在于,
    所述接口单元,还用于向所述终端设备发送第三消息,所述第三消息用于配置所述至少一个第二参考信号默认的可用性。
  15. 根据权利要求1-7任一项所述的方法或根据权利要求8-14任一项所述的装置,其特征在于,所述配置信息包括:第二信息,所述第二信息用于确定所述至少一个第二参考信号与所述至少一个SSB之间的QCL关系,和/或,确定所述至少一个第二参考信号与至少一个除了所述至少一个SSB之外的其他的参考信号之间的QCL关系,所述至少一个除了所述至少一个SSB之外的其他的参考信号与所述至少一个SSB之间具有QCL关系。
  16. 根据权利要求1-7、15任一项所述的方法或根据权利要求8-15任一项所述的装置,其特征在于,在所述第二消息中的比特位图用于指示所述至少一个第二参考信号的可用性的情况下,
    所述第二消息为系统消息的SIB1或者其他SIB;或者,
    所述第二消息为物理下行控制信道PDCCH所承载的下行控制信息DCI或者物理下行共享信道PDSCH所承载的信息。
  17. 根据权利要求1-7、15、16任一项所述的方法或根据权利要求8-16任一项所述的装置,其特征在于,所述第二消息中的比特位图的数量为n个,n取遍大于等于1且小于N,n和N为正整数,所述比特位图用于指示至少一个第二参考信号的可用性,所述比特位图包括至少一个信息比特。
  18. 根据权利要求17所述的方法或装置,其特征在于,
    在所述第二消息为PDCCH所承载的寻呼DCI的情况下,所述第二消息中的第一比特位图在任意一个寻呼时刻PO中的每个PDCCH监听时机上是相同的或不同的。
  19. 根据权利要求17或18所述的方法或装置,其特征在于,
    在所述第二消息为PDCCH所承载的寻呼DCI的情况下,不同PO中所述第二消息中的第一比特位图的比特个数相同。
  20. 根据权利要求1-7、15-19任一项所述的方法或根据权利要求8-19任一项所述的装置,其特征在于,在终端设备处于无线资源控制RRC空闲态或者无线资源控制RRC非激活态的情况下,所述至少一个第二参考信号的种类包括:
    追踪参考信号TRS、信道状态信息参考信号CSI-RS、同步信号/物理广播信道块SSB或者辅同步信号SSS中的至少一种。
  21. 根据权利要求1-7、15-20任一项所述的方法或根据权利要求8-20任一项所述的装置,其特征在于,所述配置信息用于按照所述至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号的最大数量;或者,同一功能且相同种类的第二参考信号的最大数量为预定义的。
  22. 根据权利要求1-7、15-21任一项所述的方法或根据权利要求8-21任一项所述的装置,其特征在于,所述配置信息用于按照所述至少一个第二参考信号的功能和种类配置同一功能和相同种类的第二参考信号所属的参考信号资源集合的最大数量;或者,同一功能且相同种类的第二参考信号所属的参考信号资源集合的最大数量为预定义的。
  23. 根据权利要求1-7、15-22任一项所述的方法或根据权利要求8-22任一项所述的装置,其特征在于,所述第二消息包括:第一比特位图和第二比特位图,所述第一比特位图中的信息比特对应至少一个第二参考信号的第一功能,第二比特位图中的信息比特对应至少一个第二参考信号的第二功能。
  24. 根据权利要求1-7、15-23任一项所述的方法或根据权利要求8-23任一项所述的装置,其特征在于,
    所述第二消息中的第一比特位图的比特个数小于等于一个同步信号/物理广播信道块集合中发送的同步信号/物理广播信道块SSB的个数。
  25. 根据权利要求24所述的方法或装置,其特征在于,所述第一比特位图包括:至少一个信息域字段;其中,所述信息域字段的比特个数是根据与确定SSB的个数关联的信息确定的。
  26. 根据权利要求25所述的方法或装置,其特征在于,
    所述第一比特位图包括:第一信息域字段和第二信息域字段;其中,所述第一信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,所述第二信息域字段的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数;或者,
    所述第一比特位图包括一个信息域字段;其中,所述第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的inOneGroup域中比特位等于第一数值的比特个数,或者,所述第一比特位图的比特个数等于SSB的配置参数ssb-PositionsInBurst中的groupPresence域中比特位等于第二数值的比特个数。
  27. 根据权利要求1-7、15-26任一项所述的方法或根据权利要求8-26任一项所述的装置,其特征在于,
    所述第二消息用于指示所述至少一个第二参考信号的可用性在第一时长内生效。
  28. 根据权利要求27所述的方法或装置,其特征在于,
    所述第一时长包括:
    至少一个寻呼不连续接收DRX周期;或者,
    网络设备配置的或预定义的周期时间窗中的一个或多个时间窗;或者,
    在所述第二消息为PDCCH所承载的寻呼DCI的情况下,位于所述第二消息所在的寻呼时刻PO的下一个PO之前的一个时间段,其中,所述下一个PO与所述第二消息所在的PO之间相距一个DRX周期的时长;或者,
    在所述第二消息为PDCCH所承载的寻呼DCI的情况下,位于所述第二消息所在的PO 的下一个PO之后的一个时间段,其中,所述下一个PO与所述第二消息所在的PO之间相距一个DRX周期的时长;或者,
    在所述第二消息为PDCCH所承载的寻呼DCI的情况下,位于所述第二消息所在的PO之后的一个时间段。
  29. 一种可读存储介质,其特征在于,包括:所述可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,所述终端设备执行权利要求1-4、15-28任一项所述的通信方法;或者,所述可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,所述网络设备执行权利要求5-7、15-28任一项所述的通信方法。
  30. 一种通信设备,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中存储的程序指令以实现权利要求1-4、15-28任一项所述的通信方法,或者,所述处理器用于调用所述存储器中存储的程序指令以实现权利要求5-7、15-28任一项所述的通信方法。
PCT/CN2020/079726 2020-03-17 2020-03-17 通信方法、装置及设备 WO2021184200A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20925443.2A EP4109800A4 (en) 2020-03-17 2020-03-17 COMMUNICATION METHOD AND APPARATUS, AND RELATED DEVICE
PCT/CN2020/079726 WO2021184200A1 (zh) 2020-03-17 2020-03-17 通信方法、装置及设备
CN202080096410.4A CN115191094A (zh) 2020-03-17 2020-03-17 通信方法、装置及设备
US17/945,577 US20230019909A1 (en) 2020-03-17 2022-09-15 Communication method, apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079726 WO2021184200A1 (zh) 2020-03-17 2020-03-17 通信方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/945,577 Continuation US20230019909A1 (en) 2020-03-17 2022-09-15 Communication method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2021184200A1 true WO2021184200A1 (zh) 2021-09-23

Family

ID=77769963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079726 WO2021184200A1 (zh) 2020-03-17 2020-03-17 通信方法、装置及设备

Country Status (4)

Country Link
US (1) US20230019909A1 (zh)
EP (1) EP4109800A4 (zh)
CN (1) CN115191094A (zh)
WO (1) WO2021184200A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007254A (zh) * 2021-10-30 2022-02-01 哲库科技(北京)有限公司 Ssb开窗方法及装置、通信设备、存储介质
CN114342492A (zh) * 2021-11-25 2022-04-12 北京小米移动软件有限公司 终端与网络同步的方法、装置、通信设备及存储介质
WO2023284717A1 (zh) * 2021-07-14 2023-01-19 夏普株式会社 由用户设备执行的方法以及用户设备
WO2023071465A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 通信方法和装置
WO2023174423A1 (zh) * 2022-03-17 2023-09-21 展讯通信(上海)有限公司 参考信号确定方法与装置、终端
WO2023192764A1 (en) * 2022-04-01 2023-10-05 Qualcomm Incorporated Techniques for power reduction in single subscriber identity module (ssim) and multi-sim (msim) 5g new radio (nr) standalone (sa) user equipment (ue) devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497690A (zh) * 2020-04-03 2021-10-12 展讯通信(上海)有限公司 参考信号确定方法、装置、电子设备及存储介质
US11671992B2 (en) * 2020-04-08 2023-06-06 Apple, Inc Transmission configuration indicator (TCI) acquisition mechanism for secondary cell activation of a frequency range 2 (FR2) unknown cell
KR20220037677A (ko) * 2020-09-18 2022-03-25 삼성전자주식회사 무선 통신 시스템에서 유휴 모드 참조 신호를 송수신하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151988A (zh) * 2012-10-19 2019-01-04 黑莓有限公司 使用小区作为路径损耗或定时参考
CN110392991A (zh) * 2017-06-16 2019-10-29 Lg电子株式会社 测量同步信号块的方法及其装置
CN110831197A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 用于rrc空闲态上行传输的方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399356B2 (en) * 2018-06-26 2022-07-26 Qualcomm Incorporated Synchronization signal block (SSB)-based positioning measurement signals
US11637670B2 (en) * 2020-03-10 2023-04-25 Samsung Electronics Co., Ltd. Method and apparatus for CSI-RS in RRC_IDLE/inactive state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151988A (zh) * 2012-10-19 2019-01-04 黑莓有限公司 使用小区作为路径损耗或定时参考
CN110392991A (zh) * 2017-06-16 2019-10-29 Lg电子株式会社 测量同步信号块的方法及其装置
CN110831197A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 用于rrc空闲态上行传输的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: ""UE Power saving scheme for RRM measurements, R1-1812643", 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051478885 *
See also references of EP4109800A4 *
VIVO: ""On UE Power Consumption Reduction in RRM Measurements, R1-1810415", 3GPP TSG RAN WG1 MEETING #94BIS, 12 October 2018 (2018-10-12), XP051517824 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284717A1 (zh) * 2021-07-14 2023-01-19 夏普株式会社 由用户设备执行的方法以及用户设备
WO2023071465A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 通信方法和装置
CN114007254A (zh) * 2021-10-30 2022-02-01 哲库科技(北京)有限公司 Ssb开窗方法及装置、通信设备、存储介质
CN114342492A (zh) * 2021-11-25 2022-04-12 北京小米移动软件有限公司 终端与网络同步的方法、装置、通信设备及存储介质
WO2023174423A1 (zh) * 2022-03-17 2023-09-21 展讯通信(上海)有限公司 参考信号确定方法与装置、终端
WO2023192764A1 (en) * 2022-04-01 2023-10-05 Qualcomm Incorporated Techniques for power reduction in single subscriber identity module (ssim) and multi-sim (msim) 5g new radio (nr) standalone (sa) user equipment (ue) devices

Also Published As

Publication number Publication date
EP4109800A1 (en) 2022-12-28
CN115191094A (zh) 2022-10-14
EP4109800A4 (en) 2023-04-26
US20230019909A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021184200A1 (zh) 通信方法、装置及设备
US20210378000A1 (en) Communication method, apparatus, and device
CA3110097C (en) Methods and apparatus for wireless transmitireceive unit (wtru) power control
WO2021180206A1 (en) Power efficient paging mechanism with paging early indicator
CN109845130B (zh) 与为在无线通信网络中工作的通信设备提供波束覆盖有关的方法和装置
US20200178172A1 (en) Systems and Methods for Adaptively Monitoring Downlink Control Channel in Discontinuous Reception
US11503543B2 (en) Signal transmission method and device
US11032770B2 (en) Wake-up-radio discovery frame
US20170273135A1 (en) Methods of managing long inactivity periods in non-full duplex operation
JP2020511884A (ja) Mtc機器の電力消費を抑えるシグナリング指標
US10110398B2 (en) Adaptive receive diversity
CN113365307B (zh) 一种测量管理方法及装置、通信设备
US20210385750A1 (en) State transition processes for wireless device power savings
JP7211541B2 (ja) Ue、無線局、及び方法
US20210168812A1 (en) Data transmission method and apparatus
CN114503684B (zh) 信息传输方法以及相关设备
WO2020253969A1 (en) Csi reporting triggered wake-up
US10708002B2 (en) Adaptive channel estimation for power optimization for narrow band systems
KR20170019701A (ko) 간섭 억제를 위한 적응형 공통 참조 신호(crs) 전송 방법 및 장치
WO2024022517A1 (zh) 发送节能信号的方法、配置方法、装置及设备
WO2022205042A1 (en) Method, device, and system for wake up burst in wireless networks
WO2023159472A1 (zh) 通信方法及终端设备
WO2023241292A1 (zh) 通信方法和装置
WO2023240504A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
US20230180044A1 (en) Method for enhancing wireless communication device measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020925443

Country of ref document: EP

Effective date: 20220921

NENP Non-entry into the national phase

Ref country code: DE