WO2021184184A1 - Modulation and coding scheme indication for multi-slot transmissions - Google Patents

Modulation and coding scheme indication for multi-slot transmissions Download PDF

Info

Publication number
WO2021184184A1
WO2021184184A1 PCT/CN2020/079613 CN2020079613W WO2021184184A1 WO 2021184184 A1 WO2021184184 A1 WO 2021184184A1 CN 2020079613 W CN2020079613 W CN 2020079613W WO 2021184184 A1 WO2021184184 A1 WO 2021184184A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
transmission
modulation order
coding scheme
indication
Prior art date
Application number
PCT/CN2020/079613
Other languages
French (fr)
Inventor
Jing Dai
Chao Wei
Min Huang
Qiaoyu Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/079613 priority Critical patent/WO2021184184A1/en
Publication of WO2021184184A1 publication Critical patent/WO2021184184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Definitions

  • the following relates generally to wireless communications and more specifically to modulation and coding scheme indication for multi-slot transmissions.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may transmit or receive one or more single-slot transmissions.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support modulation and coding scheme indication for multi-slot transmissions.
  • the described techniques provide for receiving an indication of a modulation and coding scheme (MCS) for a transmission, and selecting a modulation order for the transmission based on the MCS and a repetition characteristic (e.g., a number of slots) of the transmission.
  • MCS modulation and coding scheme
  • the UE may select the modulation order from a new MCS table, or an updated MCS table.
  • the described techniques further provide for determining a coding rate based on the modulation order and the MCS, and performing or receiving a transmission.
  • a method of wireless communications at a UE is described.
  • the method may include receiving, from a base station, an indication of a modulation and coding scheme for a transmission, selecting a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determining a coding rate based on the indication of the modulation and coding scheme and the modulation order, and performing or receiving the transmission using the selected modulation order and the determined coding rate.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the apparatus may include means for receiving, from a base station, an indication of a modulation and coding scheme for a transmission, selecting a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determining a coding rate based on the indication of the modulation and coding scheme and the modulation order, and performing or receiving the transmission using the selected modulation order and the determined coding rate.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • selecting the modulation order for the transmission may include operations, features, means, or instructions for selecting the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
  • the set of modulation orders associated with the indicated modulation and coding scheme includes a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, where the first modulation order may be the selected modulation order.
  • selecting the modulation order from the set of modulation orders may include operations, features, means, or instructions for selecting the modulation order from a first table associated with the first repetition characteristic.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order may be the selected modulation order.
  • receiving the indication of the modulation and coding scheme for the transmission may include operations, features, means, or instructions for receiving a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
  • receiving the control message may include operations, features, means, or instructions for receiving an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order may be the selected modulation order.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of the first modulation order in the entry in the first table, where receiving the override message may be based on receiving the indication of the first modulation order in the entry in the first table.
  • the first modulation order in the entry in the first table and the second modulation order in the entry in the first table may be standardized.
  • the modulation and coding scheme and the first repetition characteristic may be jointly encoded.
  • the modulation and coding scheme may be associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  • the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including the indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
  • an indication of an initial redundancy version includes the indication of the first repetition characteristic, and where the first repetition characteristic includes a first number of slots for the transmission.
  • the first repetition characteristic includes a number of slots associated with the transmission.
  • a method of wireless communications at a UE is described.
  • the method may include receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
  • the apparatus may include means for receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
  • selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for determining a modulation order from a set of modulation orders based on the number of repetitions used for the transmission.
  • receiving the repetition configuration may include operations, features, means, or instructions for receiving, from the base station, a control message indicating the transmission and the repetition configuration, where the repetition configuration include a number of slots associated with the transmission.
  • selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, where the first modulation order includes quadrature phase shift keying (QPSK) or ⁇ /2-binary phase shift keying (BPSK) , and where the second modulation order may be associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  • QPSK quadrature phase shift keying
  • BPSK ⁇ /2-binary phase shift keying
  • a method of wireless communications at a base station may include configuring a transmission having a first repetition characteristic, transmitting, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and performing or receiving the transmission using the first modulation order and the coding rate.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to configure a transmission having a first repetition characteristic, transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and perform or receiving the transmission using the first modulation order and the coding rate.
  • the apparatus may include means for configuring a transmission having a first repetition characteristic, transmitting, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and performing or receiving the transmission using the first modulation order and the coding rate.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to configure a transmission having a first repetition characteristic, transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and perform or receiving the transmission using the first modulation order and the coding rate.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, where transmitting the indication of the modulation and coding scheme may be based on the selecting.
  • the set of modulation orders associated with the indicated modulation and coding scheme includes the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  • selecting the first modulation order from the set of modulation orders may include operations, features, means, or instructions for selecting the first modulation order from a first table associated with the first repetition characteristic, where the indication of the modulation and coding scheme for the transmission may be based on the first table.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  • transmitting the indication of the modulation and coding scheme for the transmission may include operations, features, means, or instructions for transmitting a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
  • transmitting the control message may include operations, features, means, or instructions for transmitting an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an indication of the first modulation order in the entry in the first table, where transmitting the override message may be based on transmitting the indication of the first modulation order in the entry in the first table.
  • the first modulation order in the entry in the first table and the second modulation order in the entry in the first table may be standardized.
  • the modulation and coding scheme and the first repetition characteristic may be jointly encoded.
  • the modulation and coding scheme may be associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  • the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including an indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
  • an indication of an initial redundancy version includes the indication of the first repetition characteristic, and where the first repetition characteristic includes a first number of slots for the transmission.
  • the first repetition characteristic includes a number of slots associated with the transmission.
  • a method of wireless communications at a base station may include transmitting, to a UE, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
  • the apparatus may include means for transmitting, to a UE, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
  • selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for determining a modulation order from a set of modulation orders based on the number of repetitions used for the transmission.
  • transmitting the repetition configuration may include operations, features, means, or instructions for transmitting, to the UE, a control message indicating the transmission and the repetition configuration, where the repetition configuration include a number of slots associated with the transmission.
  • selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, where the first modulation order includes quadrature phase shift keying (QPSK) or ⁇ /2-binary phase shift keying (BPSK) , and where the second modulation order may be associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  • QPSK quadrature phase shift keying
  • BPSK ⁇ /2-binary phase shift keying
  • FIG. 1 illustrates an example of a system for wireless communications that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a multi-slot transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show block diagrams of devices that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 12 shows a block diagram of a communications manager that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIG. 13 shows a diagram of a system including a device that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • FIGs. 14 through 19 show flowcharts illustrating methods that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • a wireless communications system may support multi-slot transmissions (e.g., multi-slot physical uplink shared channel (PUSCH) transmissions or multi-slot physical downlink shared channel (PDSCH) transmissions) .
  • a user equipment (UE) that is configured with multi-slot transmissions may be operating in a power constrained scenario to ensure transmission reliabilities, by increasing the transmission energy through repetition over multiple slots.
  • MCS modulation and coding scheme
  • MCS modulation and coding scheme
  • a UE that supports multi-slot transmissions may be capable of transmitting or receiving using low modulation orders and higher coding rates (e.g., as a result of increased redundancies supported by a multi-slot transmission) . That is, when performing a multi-slot transmission, a UE may be able to sustain a higher coding rate (e.g., at a low modulation order) than what is indicated in current MCS tables.
  • current configurations of MCS for a multi-slot transmission may result in inefficiencies, decreased coding rates, increased system latency, and decreased user experience.
  • a UE may select modulation rates for a transmission using new or updated MCS tables.
  • a UE may be configured with a new MCS table, or a new MCS table may be standardized.
  • the new MCS table may indicate a set of MCS indices, each index corresponding to a low modulation order and a coding rate, allowing the base station to configure a transmission having a low modulation order and a high coding rate.
  • the UE may determine whether to use the old MCS table or the new MCS table, based on a number of slots configured for a pending transmission. For instance, a base station may send an uplink or downlink grant to a UE. If the number of slots associated with the transmission satisfies a threshold (e.g., is greater than 1) , then the UE may select the new MCS table, and may select a modulation order and coding rate based on the new table.
  • a threshold e.g., is greater than 1
  • the UE may use the existing MCS table, but may receive an override message to update at least some of the MCS table.
  • Updates to the MCS table may include updated modulation order entries that are reconfigured, without any changes to target coding rates.
  • the UE may receive a semi-static configuration message (e.g., an RRC message) indicating changes to the MCS table.
  • the UE may determine to use the updated MCS table if a grant indicates a multi-slot transmission.
  • the UE may receive a downlink control information (DCI) message, which may indicate that a UE should override some entries on an old MCS table.
  • the entries to be overridden may be previous indicated to the UE (e.g., via RRC signaling) or may be known at the UE (e.g., standardized) .
  • the DCI may include a 1-bit indicator, indicating that the UE should override the MCS table with the known entries, or the UE may determine, based on a number of slots configured in a semi-static configuration message (e.g., an RRC message) or indicated in the DCI for the transmission, whether to use the updated MCS table or the original MCS table.
  • the base station may joint encode an indication of MCS and a number of slots in the DCI.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to multi-slot transmission schemes, transmission schemes, and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to modulation and coding scheme indication for multi-slot transmissions.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • Wireless communications system 100 may support multi-slot transmissions (e.g., multi-slot PUSCH transmissions or multi-slot PDSCH transmissions) .
  • a UE 115 that supports multi-slot transmissions may be power constrained to ensure higher power efficiencies.
  • current MCS tables e.g., for single-slot transmissions
  • a UE 115 that supports multi-slot transmissions may be capable of transmitting or receiving using low modulation orders and higher coding rates (e.g., as a result of increased redundancies supported by a multi-slot transmission) .
  • a UE 115 when performing a multi-slot transmission, a UE 115 may be able to sustain a higher coding rate (e.g., at a low modulation order) than what is indicated in current MCS tables.
  • current configurations of MCS for a multi-slot transmission may result in inefficiencies, decreased coding rates, increased system latency, and decreased user experience.
  • a UE 115 may select modulation rates for a transmission using new or updated MCS tables.
  • a UE 115 may be configured with a new MCS table, or a new MCS table may be standardized.
  • the new MCS table may indicate a set of MCS indices, each index corresponding to a low modulation order and a coding rate, allowing the base station 105 to configure a transmission having a low modulation order and a high coding rate.
  • the UE 115 may determine whether to use the old MCS table or the new MCS table, based on a number of slots configured for a pending transmission. For instance, a base station 105 may send an uplink or downlink grant to a UE 115. If the number of slots associated with the transmission satisfies a threshold (e.g., is greater than 1) , then the UE 115 may select the new MCS table, and may select a modulation order and coding rate based on the new table.
  • a threshold e.g., is greater than 1
  • the UE 115 may use the existing MCS table, but may receive an override message to update at least some of the MCS table. Updates to the MCS table may include updated modulation order entries that are reconfigured, without any changes to target coding rates. For example, the UE 115 may receive a semi-static configuration message (e.g., an RRC message) indicating changes to the MCS table. The UE 115 may determine to use the updated MCS table if a grant indicates a multi-slot transmission.
  • a semi-static configuration message e.g., an RRC message
  • the UE 115 may receive a downlink control information (DCI) message, which may indicate that a UE 115 should override some entries on an old MCS table.
  • the entries to be overridden may be previous indicated to the UE 115 (e.g., via RRC signaling) or may be known at the UE 115 (e.g., standardized) .
  • the DCI may include a 1-bit indicator, indicating that the UE 115 should override the MCS t able with the known entries, or the UE 115 may determine, based on a number of slots configured in the DCI for the transmission, whether to use the updated MCS table or the original MCS table.
  • the base station 105 may joint encode an indication of MCS and a number of slots in the DCI.
  • FIG. 2 illustrates an example of a multi-slot transmission scheme 200 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • multi-slot transmission scheme 200 may implement aspects of wireless communications system 100.
  • a wireless communications system may support repeated transmissions of PUSCH or PDSCH over multiple transmission time intervals (TTIs) (e.g., slots) .
  • TTIs transmission time intervals
  • a UE 115 may be configured to send multi-slot PUSCH transmissions, receive multi-slot PDSCH transmissions, or both. Such multi-slot transmissions may improve transmissions reliability.
  • a UE 115 may receive a downlink control message (e.g., a DCI message) , which may include an MCS for the transmissions (e.g., an MCS index for an MCS table) , and a resource allocation for the multi-slot transmissions.
  • the MCS and resource allocation may be common across multiple slots.
  • a base station 105 may transmit an RRC message indicating a number of slots per transmission (e.g., two slots, four slots, eight slots, or the like) . In such examples, the number of slots may be known by a UE 115 that receives a DCI, and may not be indicated in the DCI.
  • a DCI may include an indication of a number of slots for the transmissions that may override a number of slots configured in the RRC message.
  • a number of slots configured by an RRC message may be common for initial transmissions (e.g., new transmissions) and retransmissions.
  • multi-slot PUSCH or PDSCH transmissions may be used to increase transmission reliability in coverage limited scenarios.
  • a base station 105 may transmit a downlink control message (e.g., PDCCH 205) during a first slot (e.g., slot 0) .
  • PDCCH 205 may include a DCI message including an uplink grant for multi-slot transmission 210.
  • the DCI may indicate the number of slots for the multi-slot transmission 210, or the base station may have previously configured (e.g., via RRC signaling) a number of slots (e.g., 4) for subsequent scheduled transmissions.
  • UE 115 may determine to send portions of uplink transmission 215 during the subsequent four slots (e.g., slot 1, slot 2, slot 3, and slot 4) .
  • the UE 115 may receive a downlink grant, and may receive a multi-slot downlink transmission across multiple slots.
  • a transport block of the uplink transmission 215 may be the same, but encoded bits may be different. For instance, a redundancy version (RV) for each slot may be different.
  • the DCI received in PDCCH 205 may indicate a first RV for the first slot of the multi-slot transmission 210.
  • the UE 115 may determine subsequent RVs for uplink transmission 215 based on the first RV. For instance, UE 115 may determine a first RV for slot 1 based on an indication in the DCI, and a second RV for slot 2, a third RV for slot 3, etc.
  • an RV for an nth slot may be determined by n mod 4 (e.g., a pattern that repeats every four slots) .
  • the UE 115 may send the uplink transmission 215 using RV0 (e.g., in slot 1) , RV2 (e.g., in slot 2) , RV3 (e.g., in slot 3) , and RV1 (e.g., in slot 4) .
  • RV0 e.g., in slot 1
  • RV2 e.g., in slot 2
  • RV3 e.g., in slot 3
  • RV1 e.g., in slot 4
  • UE 115 may send the retransmission using RV2, RV3, RV1, RV0.
  • the UE 115 may rotate through different iterations of the same pattern for subsequent retransmissions. RVs may be similarly determined and rotated for downlink transmissions across multiple slots.
  • FIG. 3 illustrates an example of a transmission scheme 300 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • transmission scheme 300 may implement aspects of wireless communications system 100.
  • coding gain for an uplink or downlink transmission may be affected by incremental redundancy (IR) , combing gain, code block (CB) size, etc.
  • An IR combining gain may be achieved by initiating different RVs at different bit locations of a set of encoded bits of a transmission. That is, a transmission 305 (e.g., an uplink transmission or downlink transmission) may include encoded bits 310, including both information bits 315 and parity check bits 320.
  • RV0 may start at a first location in the encoded bits 310
  • RV1 may start at a second location in the encoded bits 310
  • RV2 may start a third location in the encoded bits 310
  • RV3 may start at a fourth location in the encoded bits 310.
  • a DCI may provide, to a UE 115, an indicated coding rate (R) (which may also be referred to as a target coding rate) .
  • R indicated coding rate
  • R eff an effective coding rate
  • R eff may be defined by the ratio of a number of information bits 315 and a total number of encoded bits 310.
  • R eff For single-slot transmissions (e.g., single-slot PUSCH) R eff may equal R (or may approach R) .
  • R eff may equal R eff /M where M is the number of slots for the multi-slot transmission.
  • An IR combining coding rate R IR for incremental redundancy (IR) by parity check bits of a code may be defined such that repeated bits are not counted for a calculation of an IR coding rate (R IR ) . Because repeated slots use different RVs, for higher R eff values, R eff may be equal to R IR (e.g., where there is no overlapping of different RVs for a multi-slot transmission) . However, for smaller R eff values, (e.g., where R eff ⁇ R IR, min ) R IR may not be lower than the lowest coding rate supported (R IR, min ) supported by a channel code. Thus, for transmission 305, R IR may not be lower than 1/5.
  • Encoded bits 310 may be circulated and repeated, and R IR may be truncated by R IR, min .
  • R IR may be truncated by R IR, min .
  • IR combining gain values may be determine by R IR , and a lower R IR value may correspond to a higher IR combining gain.
  • conventional MCS tables may illustrate a higher coding rate only for high modulation orders, as shown in table 1.
  • the maximum coding rate in table 1 may be about 0.66 (e.g., 679/1024) for lower modulation orders (e.g., QPSK) , but may be up to 0.93 (948/1024) for higher modulation orders (e.g., 64 QAM) .
  • an MCS with QPSK may be configured because higher modulation orders (e.g., 16 QAM, 64 QAM, or the like) , may have a lower radio frequency power efficiency due to a higher peak to average power ratio (PAPR) .
  • a UE 115 may be permitted to reduce a maximum output power by a maximum power reduction MPR) ) values, where the MPR may be 0.5 to 1 decibels (dBs) larger for 16 QAM over QPSK, and 2 to 2.5dBs larger for 64 QAM over QPSK.
  • a transmission 305 may be limited to a small transport block due to a lower coding rate and lowing modulation order. This may result in inefficient transmissions, failure to utilize the increased redundancy of multi-slot transmissions, increased system latency, and decreased user experience.
  • Increasing bandwidth to achieve largest transport block size may not be useful where a UE 115 configured to a multi-slot transmission may be power limited in increase power efficiency.
  • multi-slot transmissions may be configured with high coding rates and low modulation orders. That is, QPSK modulation, for example, may be paired with higher coding rates previously associated with higher modulation orders (e.g., 16 QAM, 64 QAM, or the like) .
  • conventional MCS tables may associate low modulation orders with conservative coding rates, so shown with reference to Table 1.
  • a UE may perform or receive transmissions using new modulation orders and coding rates (e.g., from a new table) or using updated modulation orders and coding rates (e.g., from a revised table) , as described in greater detail with reference to FIG. 4.
  • FIG. 4 illustrates an example of a process flow 400 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications system 100.
  • a UE 115-a and a base station 105-a may perform aspects of process flow 400, which may be examples of corresponding devices as described with reference to wireless communications system 100.
  • base station 105-a may configure UE 115-a to perform a multi-slot uplink transmission or receive a multi-slot downlink transmission.
  • Base station 105-a may indicate an MCS scheme (e.g., an MCS index in a table such as table 1) and a repetition characteristic (e.g., a number of slots for the multi-slot transmission.
  • UE 115-a may rely on a new table (e.g., RRC configured or standardized) , where various MCS indices correspond to low modulation orders and high coding rates.
  • UE 115-a may determine whether to use the new MCS table or a conventional MCS table based on the repetition characteristic (e.g., based on whether repetition is indicated for a scheduled transmissions) .
  • UE 115-a may reuse an existing MCS table, but may receive (e.g., via RRC signaling, a DCI message, or implicit indications) a modulation order override message, indicating MCS entries associated with higher modulation orders (e.g., 16 QAM, 64 QAM, etc. ) are to be reconfigured with lower modulation orders (e.g., QPSK) with no change to target coding rates indicated in the existing MCS table.
  • modulation order override message indicating MCS entries associated with higher modulation orders (e.g., 16 QAM, 64 QAM, etc. ) are to be reconfigured with lower modulation orders (e.g., QPSK) with no change to target coding rates indicated in the existing MCS table.
  • UE 115-a may select modulation orders and coding rates for a multi-slot transmission using multiple tables.
  • base station 105-a may configure a multi-slot transmission.
  • the multi-slot transmission may be a downlink transmission (e.g., over a PDSCH) or an uplink transmission.
  • base station 105-a may transmit a control message (e.g., a DCI message) , to UE 115-a.
  • the DCI message may include a grant, and may indicate a number of slots M for the transmission.
  • the DCI may also indicate an MCS index corresponding to one or more tables.
  • UE 115-a may determine a repetition characteristic for the transmission. For example, UE 115-a may determine how many slots are configured for the multi-slot transmission. In some examples, UE 115-a may select a table for use in determining a modulation order and coding rate for the transmission based on the determined repetition characteristic.
  • UE 115-a may select a modulation order for the transmission.
  • UE 115-a may perform a lookup function, identify an entry in a table, or the like, to identify a modulation order.
  • UE 115-a may select an MCS table from which to determine the modulation order based on a repetition characteristic determined at 420.
  • a first MCS table e.g., Table 1
  • a second MCS table e.g., a new MCS table with lower modulation orders than in Table 1 associated with high coding rates
  • UE 115-a may select the first MCS table (e.g., table 1) for a single-slot transmission. However, if M>1, then UE 115-a may select the second MCS table for a multi-slot transmission. In some examples, both the first MCS table and the second MCS table may include the same MCS indices. UE 115-a may thus select a modulation order from the first MCS table or the second MCS table corresponding to the MCS index, based on M. In some examples, UE 115-a may select a modulation order for the transmission from one of multiple MCS tables.
  • M e.g., M does not satisfy the threshold M value
  • a second MCS table may correspond to a second set of M values (e.g., 1 ⁇ M ⁇ X)
  • a third MCS table may correspond to a third set of M values (e.g., M>X) , and so forth.
  • UE 115-a may receive an indication of the second MCS table (or multiple additional MCS tables) from base station 105-a, or the second MCS table (or multiple additional MCS tables) may be standardized.
  • base station 105-a may transmit a configuration message.
  • the configuration message may include an indication of the second MCS table.
  • UE 115-a may select a modulation order from the second MCS table indicated at 405.
  • UE 115-a may already have the first MCS table, as the MCS tables may be standardized.
  • UE 115-a may select (e.g., from the second MCS table where M>1) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425.
  • UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
  • UE 115-a may receive an override message, and may update an existing (e.g., first) MCS table.
  • UE 115-a may receive, at 405, a configuration message.
  • the configuration message may be an RRC message, and may include an override message.
  • the override message may indicate that, for a first repetition characteristic (e.g., a multi-slot transmission) , UE 115-a is to use one or more updated modulation order values instead of the modulation orders indicated in the first MCS table.
  • the override message may indicate that a first portion (e.g., MCS indices 0-9 of Table 1) , UE 115-a may use the same modulation orders indicated in the first MCS table.
  • UE 115-a is instructed to revise the modulation orders of the first MCS table to have lower MCS orders, without changing the coding rates associated with the MCS indices of the second set of MCS indices.
  • revised modulation orders may all be equal to the modulation orders associated with the first set of MCS indices (e.g., may all indicate QPSK) .
  • modulation order overrides may be semi-statically configured (e.g., by RC signaling) .
  • the configuration message may be a system information message (e.g., system information block (SIB) , master information block (MIB) , remaining minimum system information (RMSI) , or the like) .
  • SIB system information block
  • MIB master information block
  • RMSI remaining minimum system information
  • base station 105-a may configure a transmission.
  • base station 105-a may transmit a control message (e.g., a DCI message) , including a grant for the transmission.
  • a control message e.g., a DCI message
  • UE 115-a may determine a repetition characteristic.
  • the repetition characteristic e.g., the number of slots for the transmission
  • the DCI e.g., in the grant
  • UE 115-a may determine that all transmissions subsequent to receiving an RRC message at 405 are to have a configured number of slots (e.g., 4 slots) .
  • UE 115-a may select a modulation order 425.
  • UE 115-a may select a modulation order based on determining the repetition characteristic at 420.
  • UE 115-a may select the modulation order from an unrevised first MCS table if the transmission is a single-slot transmission. However, if the transmission is a multi-slot transmission, UE 115-a may select a modulation order from a revised first MCS table.
  • UE 115-a may select a revised modulation order (e.g., a low modulation order, such as QPSK) , instead of a higher modulation order from the unrevised MCS table associated with the MCS index received in the DCI message at 415.
  • a revised modulation order e.g., a low modulation order, such as QPSK
  • UE 115-a may select (e.g., from the revised MCS table for a multi-slot transmission) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425.
  • UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
  • base station 105-a may transmit a dynamic override message to UE 115-a for a particular transmission.
  • base station 410 may transmit, at 415, a DCI message to UE 115-a, which may include a grant for a transmission, and an indication of an MCS index.
  • the DCI may also include an explicit override message.
  • the explicit override indicator may be a one-bit indicator. Thus, if the one-bit override message may indicate whether UE 115-a is to use an unrevised first MCS table, or a revised MCS table.
  • UE 115-a may receive signaling indicating revisions for the first MCS table (e.g., at 405, via RRC signaling) , or revised values for the first MCS table may be standardized.
  • the explicit override message may indicate that UE 115-a is to use revised entries.
  • UE 115-a may, at 425, select a modulation order from the revised MCS table. That is, UE 15-a may select an updated modulation order value associated with the MCS index received at 415, instead of selecting an unrevised modulation order from the first MCS table.
  • base station 105-a may implicitly provide an override message to UE 115-a. For instance, UE 115-a may determine, at 420, a repetition characteristic (e.g., a number of slots) for the transmission indicated at 415. For instance, UE 115-a may determine a number of slots associated with the grant included in the DCI message. If the number of slots exceeds a threshold (e.g., is greater than 1) , then UE 115-a may use revised MCS modulation orders, instead of unrevised modulation orders from the first MCS table.
  • a threshold e.g., is greater than 1
  • base station 105-a may joint encode the indication of the MCS (e.g., the MCS index) with the repetition characteristic (e.g., number of slots) . Joint encoding the MCS index and the number of slots may save DCI bits, which may result in decreased signaling overhead, and increased system efficiency.
  • a revised table may include a new column indicating a number of slots M for a configured transmission, as well as potential revised modulation order values, as shown below in table 2.
  • sets of MCS indices may correspond to different values of M.
  • signaling overhead may be decreased, as base station 105-a may indicate the MCS index at 415 and UE 115-a may determine the repetition characteristic based on the MCS index.
  • number of slots as well as MCS index may be indicated by a DCI message.
  • some MCS indices without an associated target code rate value may be associated with different M values, but associated with the same modulation values (e.g., in a revised MCS table, such as Table 2) .
  • the value of M may be additionally indicated by an RV indication included in the DCI message received at 415.
  • the value of M may be additionally indicated by an RV indication included in the DCI message received at 415.
  • RV values may be limited. That is, for four RV values (e.g., as illustrated with reference to FIG. 1 and FIG. 2) , base station 105-a may use two bits to indicate which of the four RV values is the first RV value (and UE 115-a may determine subsequent RV values of the four RV values based on the first RV value indicated in the DCI message) .
  • the first RV value may be indicated with a single bit.
  • a first RV bit may indicate which of two available RV values is to be the first RV value for the transmission, and the second RV bit may indicate whether the transmission is a 4-slot transmission or an 8-slot transmission.
  • a starting RV value may be fixed (e.g., indicated via RRC signaling or standardized) . For instance, RV0 may be used as the first RV value for a new transmission, and RV2 may be used as the first RV value for a retransmission.
  • the RV indicator field may be repurposed to indicate an M value for a particular MCS index.
  • UE 115-a may select (e.g., from the revised MCS table for a multi-slot transmission) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425.
  • UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
  • UE 115-a and base station 105-a may achieve higher coding gains due to a large transport block and codebook size, as described in greater detail with reference to FIG. 5.
  • FIG. 5 illustrates an example of a transmission scheme 500 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • transmission scheme 500 may implement aspects of wireless communications system 100.
  • multi-slot transmissions supporting low modulation orders and high coding rates may support larger transport block sizes, and thus larger code block sizes.
  • the larger transport block and code block sizes of such multi-slot transmissions may result in higher coding gains. For instance, a PUSCH transmissions configured with a coding rate R and M slot-repeated transmission, performance may be better than a set of M single-slot transmissions with a target coding rate R/M.
  • a first transmission 515-a during a first slot may include a first transport block TB1 (a first set of information bits 505) , and a set of parity check bits 510.
  • a second transmission 515-b in slot 1 may include a second transport block TB2 (a second set of information bits 505) and a set of parity check bits 510.
  • a third transmission 515-c in slot 2 may include a third transport block TB3 (a third set of information bits 505) and a set of parity check bits 510.
  • a fourth transmission 515-d in slot 3 may include a third transport block TB4 (a fourth set of information bits 505) and a set of parity check bits 510.
  • a multi-slot transmission 520 may support a large transport block size (e.g., larger number of information bits 505 than the number of information bits in TB1) .
  • the multi-slot transmission 520 may include multiple RVs (e.g., RV0, RV1, RV2, and RV3) .
  • RV0 may include a first TB (a first set of information bits 505) and a small set of parity check bits in slot 0.
  • RV2 may include a set of parity check bits in slot 1.
  • RV3 may include a set of parity check bits and a smaller number of information bits 505 (e.g., partial information bits) .
  • RV1 may include a set of parity check bits 510.
  • the larger supported transport block size across multiple slots may result in increased coding gain, increased transmission reliability, and increased power efficiency.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 may receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receive the transmission using the selected modulation and coding scheme.
  • receiving a repetition configuration may include receiving an RRC message indicating the repetition configuration, an override message, a number of slots associated with the transmission, or a combination thereof, or may include receiving a DCI indicating a grant for the transmission, the grant further indicating a number of slots associated with the transmission.
  • selecting a modulation and coding scheme based on the number of repetitions used for the transmission may include selecting, from a set of modulation orders, a modulation order associated with an MCS index and the number of repetitions (e.g., a number of slots associated with the transmission) . Additionally, selecting the modulation and coding scheme may include selecting a coding rate associated with an MCS index and the selected modulation order.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 610 and transmitter 620 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
  • analog components e.g., amplifiers, filters, antennas
  • the communications manager 615 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device to communicate using a lower number of layers during certain time periods, and only receive communicate with higher complexity as configured by the base station, resulting in increased processing efficiency.
  • a processor of a UE 115 may increase system efficiency and decrease unnecessary processing at a device.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 740.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a MCS manager 720, a modulation order manager 725, a coding rate manager 730, and a transmission manager 735.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the MCS manager 720 may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
  • the modulation order manager 725 may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission.
  • the coding rate manager 730 may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
  • the transmission manager 735 may perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the transmitter 740 may transmit signals generated by other components of the device 705.
  • the transmitter 740 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 740 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 740 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a MCS manager 810, a modulation order manager 815, a coding rate manager 820, a transmission manager 825, an override message manager 830, a control message manager 835, and a joint encoding manager 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the MCS manager 810 may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
  • the modulation order manager 815 may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission. In some examples, the modulation order manager 815 may select the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme. In some examples, the modulation order manager 815 may select the modulation order from a first table associated with the first repetition characteristic. In some examples, the modulation order manager 815 may receive, from the base station, an indication of the first modulation order in the entry in the first table, where receiving the override message is based on receiving the indication of the first modulation order in the entry in the first table.
  • the set of modulation orders associated with the indicated modulation and coding scheme includes a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, where the first modulation order is the selected modulation order.
  • the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  • the first repetition characteristic includes a number of slots associated with the transmission.
  • the coding rate manager 820 may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
  • the transmission manager 825 may perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the override message manager 830 may receive, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order.
  • the override message manager 830 may receive an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order.
  • the control message manager 835 may receive a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic. In some cases,
  • Joint encoding manager 840 may jointly encode the modulation and coding scheme and the first repetition characteristic.
  • the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including the indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 may receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include RAM and ROM.
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting modulation and coding scheme indication for multi-slot transmissions) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may configure a transmission having a first repetition characteristic, perform or receiving the transmission using the first modulation order and the coding rate, and transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
  • the communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
  • the communications manager 1015 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1015 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1015, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1015, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1020 may transmit signals generated by other components of the device 1005.
  • the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1020 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1130.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein.
  • the communications manager 1115 may include a transmission manager 1120 and a MCS manager 1125.
  • the communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
  • the transmission manager 1120 may configure a transmission having a first repetition characteristic and perform or receiving the transmission using the first modulation order and the coding rate.
  • the MCS manager 1125 may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
  • the transmitter 1130 may transmit signals generated by other components of the device 1105.
  • the transmitter 1130 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1130 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1130 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein.
  • the communications manager 1205 may include a transmission manager 1210, a MCS manager 1215, a modulation order manager 1220, an override message manager 1225, a control message manager 1230, and a joint encoding manager 1235. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the transmission manager 1210 may configure a transmission having a first repetition characteristic. In some examples, the transmission manager 1210 may perform or receiving the transmission using the first modulation order and the coding rate.
  • the MCS manager 1215 may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
  • the modulation order manager 1220 may select the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, where transmitting the indication of the modulation and coding scheme is based on the selecting.
  • the modulation order manager 1220 may select the first modulation order from a first table associated with the first repetition characteristic, where the indication of the modulation and coding scheme for the transmission is based on the first table.
  • the modulation order manager 1220 may transmit, to the UE, an indication of the first modulation order in the entry in the first table, where transmitting the override message is based on transmitting the indication of the first modulation order in the entry in the first table.
  • the set of modulation orders associated with the indicated modulation and coding scheme includes the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  • the first repetition characteristic includes a number of slots associated with the transmission.
  • the override message manager 1225 may transmit, to the UE, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  • the override message manager 1225 may transmit an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  • the control message manager 1230 may transmit a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
  • the joint encoding manager 1235 may jointly encode the modulation and coding scheme and the first repetition characteristic.
  • control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including an indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
  • FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
  • buses e.g., bus 1350
  • the communications manager 1310 may configure a transmission having a first repetition characteristic, perform or receiving the transmission using the first modulation order and the coding rate, and transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
  • the network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1330 may include RAM, ROM, or a combination thereof.
  • the memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1340
  • the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1340 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1340.
  • the processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting modulation and coding scheme indication for multi-slot transmissions) .
  • the inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
  • the UE may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
  • the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
  • the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with a first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an override message manager as described with reference to FIGs. 6 through 9.
  • the UE may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
  • the UE may select, from a set of modulation orders associated with the indicated modulation and coding scheme, a modulation order for the transmission based on the indication of the modulation and coding scheme, the override message, and the first repetition characteristic of the transmission.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
  • the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
  • the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a control message including an indication of a modulation and coding scheme for a transmission, a grant for the transmission, a first repetition characteristic, and an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
  • the UE may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
  • the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
  • the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may configure a transmission having a first repetition characteristic.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a transmission manager as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a MCS manager as described with reference to FIGs. 10 through 13.
  • the base station may perform or receiving the transmission using the first modulation order and the coding rate.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a transmission manager as described with reference to FIGs. 10 through 13.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports modulation and coding scheme indications indication for multi-slot transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a repetition configuration including a number of repetitions used for a transmission.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
  • the UE may select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
  • the UE may perform or receiving the transmission using the selected modulation and coding scheme.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports modulation and coding scheme indication for multi-slot transmission in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a undefined as described with reference to FIGs. 10 through 13.
  • the base station may select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a undefined as described with reference to FIGs. 10 through 13.
  • the base station may perform or receiving the transmission using the selected modulation and coding scheme.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a undefined as described with reference to FIGs. 10 through 13.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for receiving an indication of a modulation and coding scheme (MCS) for a transmission, and selecting a modulation order for the transmission based on the MCS and a repetition characteristic (e. g., a number of slots) of the transmission. For example, the UE may select the modulation order from a new MCS table, or an updated MCS table. The described techniques further provide for determining a coding rate based on the modulation order and the MCS, and performing or receiving a transmission.

Description

MODULATION AND CODING SCHEME INDICATION FOR MULTI-SLOT TRANSMISSIONS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to modulation and coding scheme indication for multi-slot transmissions.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . In some examples, a UE may transmit or receive one or more single-slot transmissions.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support modulation and coding scheme indication for multi-slot transmissions. Generally, the described techniques provide for receiving an indication of a modulation and coding scheme (MCS) for a transmission, and selecting a modulation order for the transmission based on the MCS and a repetition characteristic (e.g., a number of slots) of the transmission. For example, the UE may select the modulation order from a new MCS table, or an updated MCS table. The described techniques further provide for determining a  coding rate based on the modulation order and the MCS, and performing or receiving a transmission.
A method of wireless communications at a UE is described. The method may include receiving, from a base station, an indication of a modulation and coding scheme for a transmission, selecting a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determining a coding rate based on the indication of the modulation and coding scheme and the modulation order, and performing or receiving the transmission using the selected modulation order and the determined coding rate.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from a base station, an indication of a modulation and coding scheme for a transmission, selecting a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determining a coding rate based on the indication of the modulation and coding scheme and the modulation order, and performing or receiving the transmission using the selected modulation order and the determined coding rate.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the  modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation order for the transmission may include operations, features, means, or instructions for selecting the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of modulation orders associated with the indicated modulation and coding scheme includes a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, where the first modulation order may be the selected modulation order.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation order from the set of modulation orders may include operations, features, means, or instructions for selecting the modulation order from a first table associated with the first repetition characteristic.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order may be the selected modulation order.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the modulation and coding scheme for the transmission may include operations, features, means, or instructions for receiving a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the control message may include operations, features, means, or instructions for receiving an override message indicating that, for the  transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order may be the selected modulation order.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of the first modulation order in the entry in the first table, where receiving the override message may be based on receiving the indication of the first modulation order in the entry in the first table.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first modulation order in the entry in the first table and the second modulation order in the entry in the first table may be standardized.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the modulation and coding scheme and the first repetition characteristic may be jointly encoded.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the modulation and coding scheme may be associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including the indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, an indication of an initial redundancy version includes the indication of the first repetition characteristic, and where the first repetition characteristic includes a first number of slots for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first repetition characteristic includes a number of slots associated with the transmission.
A method of wireless communications at a UE is described. The method may include receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for determining a  modulation order from a set of modulation orders based on the number of repetitions used for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the repetition configuration may include operations, features, means, or instructions for receiving, from the base station, a control message indicating the transmission and the repetition configuration, where the repetition configuration include a number of slots associated with the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, where the first modulation order includes quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and where the second modulation order may be associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
A method of wireless communications at a base station is described. The method may include configuring a transmission having a first repetition characteristic, transmitting, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and performing or receiving the transmission using the first modulation order and the coding rate.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to configure a transmission having a first repetition characteristic, transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and perform or receiving the transmission using the first modulation order and the coding rate.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for configuring a transmission having a first repetition characteristic, transmitting, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and performing or receiving the transmission using the first modulation order and the coding rate.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to configure a transmission having a first repetition characteristic, transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate, and perform or receiving the transmission using the first modulation order and the coding rate.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, where transmitting the indication of the modulation and coding scheme may be based on the selecting.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of modulation orders associated with the indicated modulation and coding scheme includes the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the first modulation order from the set of modulation orders may include operations, features, means, or instructions for selecting the first modulation order from a first table associated with the first repetition characteristic, where the indication of the modulation and coding scheme for the transmission may be based on the first table.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting, to the UE, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the modulation and coding scheme for the transmission may include operations, features, means, or instructions for transmitting a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the control message may include operations, features, means, or instructions for transmitting an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an indication of the first modulation order in the entry in the first table, where transmitting the override message may be based on transmitting the indication of the first modulation order in the entry in the first table.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first modulation order in the entry in the first table and the second modulation order in the entry in the first table may be standardized.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the modulation and coding scheme and the first repetition characteristic may be jointly encoded.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the modulation and coding scheme may be associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including an indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, an indication of an initial redundancy version includes the indication of the first repetition characteristic, and where the first repetition characteristic includes a first number of slots for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first repetition characteristic includes a number of slots associated with the transmission.
A method of wireless communications at a base station is described. The method may include transmitting, to a UE, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for transmitting, to a UE, a repetition configuration including a number of repetitions used for a transmission, selecting a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and performing or receiving the transmission using the selected modulation and coding scheme.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission, and perform or receiving the transmission using the selected modulation and coding scheme.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for determining a modulation order from a set of modulation orders based on the number of repetitions used for the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the repetition configuration may include operations, features, means, or instructions for transmitting, to the UE, a control message indicating the transmission and the repetition configuration, where the repetition configuration include a number of slots associated with the transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, selecting the modulation and coding scheme for the transmission may include operations, features, means, or instructions for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, where the first modulation order includes quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and where the second modulation order may be associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a multi-slot transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a transmission scheme that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show block diagrams of devices that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 12 shows a block diagram of a communications manager that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIG. 13 shows a diagram of a system including a device that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
FIGs. 14 through 19 show flowcharts illustrating methods that support modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A wireless communications system may support multi-slot transmissions (e.g., multi-slot physical uplink shared channel (PUSCH) transmissions or multi-slot physical downlink shared channel (PDSCH) transmissions) . In some examples, a user equipment (UE) that is configured with multi-slot transmissions may be operating in a power constrained scenario to ensure transmission reliabilities, by increasing the transmission energy through repetition over multiple slots. Thus, current modulation and coding scheme (MCS) tables (e.g., for single-slot transmissions) may indicate low modulation orders to increase power efficiencies, and the low modulation orders may be associated with low coding rates. However, a UE that supports multi-slot transmissions may be capable of transmitting or receiving using low modulation orders and higher coding rates (e.g., as a result of increased redundancies supported by a multi-slot transmission) . That is, when performing a multi-slot transmission, a UE may be able to sustain a higher coding rate (e.g., at a low modulation order) than what is indicated in current MCS tables. Thus, current configurations of MCS for a multi-slot transmission may result in inefficiencies, decreased coding rates, increased system latency, and decreased user experience. Instead, to allow a UE to transmit or receive using higher coding rates for low modulation orders (e.g., coding rates higher than 0.67 with QPSK, or higher coding rates than 0.31 with π/2-BPSK for a PUSCH) , a UE may select modulation rates for a transmission using new or updated MCS tables.
In some examples, a UE may be configured with a new MCS table, or a new MCS table may be standardized. The new MCS table may indicate a set of MCS indices, each index corresponding to a low modulation order and a coding rate, allowing the base station to configure a transmission having a low modulation order and a high coding rate. The UE may determine whether to use the old MCS table or the new MCS table, based on a number of slots configured for a pending transmission. For instance, a base station may send an uplink  or downlink grant to a UE. If the number of slots associated with the transmission satisfies a threshold (e.g., is greater than 1) , then the UE may select the new MCS table, and may select a modulation order and coding rate based on the new table.
In some examples, the UE may use the existing MCS table, but may receive an override message to update at least some of the MCS table. Updates to the MCS table may include updated modulation order entries that are reconfigured, without any changes to target coding rates. For example, the UE may receive a semi-static configuration message (e.g., an RRC message) indicating changes to the MCS table. The UE may determine to use the updated MCS table if a grant indicates a multi-slot transmission.
In some examples, the UE may receive a downlink control information (DCI) message, which may indicate that a UE should override some entries on an old MCS table. The entries to be overridden may be previous indicated to the UE (e.g., via RRC signaling) or may be known at the UE (e.g., standardized) . The DCI may include a 1-bit indicator, indicating that the UE should override the MCS table with the known entries, or the UE may determine, based on a number of slots configured in a semi-static configuration message (e.g., an RRC message) or indicated in the DCI for the transmission, whether to use the updated MCS table or the original MCS table. In some examples, the base station may joint encode an indication of MCS and a number of slots in the DCI.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to multi-slot transmission schemes, transmission schemes, and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to modulation and coding scheme indication for multi-slot transmissions.
FIG. 1 illustrates an example of a wireless communications system 100 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced  broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile  telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more  resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of  symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as  mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a  serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless  communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station  105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as  synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the  MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Wireless communications system 100 may support multi-slot transmissions (e.g., multi-slot PUSCH transmissions or multi-slot PDSCH transmissions) . In some examples, a UE 115 that supports multi-slot transmissions may be power constrained to ensure higher power efficiencies. Thus, current MCS tables (e.g., for single-slot transmissions) may indicate low modulation orders associated with low coding rates to increase power efficiencies. However, a UE 115 that supports multi-slot transmissions may be capable of transmitting or receiving using low modulation orders and higher coding rates (e.g., as a result of increased redundancies supported by a multi-slot transmission) . That is, when performing a multi-slot transmission, a UE 115 may be able to sustain a higher coding rate (e.g., at a low modulation order) than what is indicated in current MCS tables. Thus, current configurations of MCS for a multi-slot transmission may result in inefficiencies, decreased coding rates, increased system latency, and decreased user experience. Instead, to allow a UE to transmit or receive using higher coding rates for low modulation orders (e.g., coding rates higher than 0.66 with QPSK) , a UE 115 may select modulation rates for a transmission using new or updated MCS tables.
In some examples, a UE 115 may be configured with a new MCS table, or a new MCS table may be standardized. The new MCS table may indicate a set of MCS indices, each index corresponding to a low modulation order and a coding rate, allowing the base station 105 to configure a transmission having a low modulation order and a high coding rate. The UE 115 may determine whether to use the old MCS table or the new MCS table, based on a number of slots configured for a pending transmission. For instance, a base station 105 may send an uplink or downlink grant to a UE 115. If the number of slots associated with the transmission satisfies a threshold (e.g., is greater than 1) , then the UE 115 may select the new MCS table, and may select a modulation order and coding rate based on the new table.
In some examples, the UE 115 may use the existing MCS table, but may receive an override message to update at least some of the MCS table. Updates to the MCS table may  include updated modulation order entries that are reconfigured, without any changes to target coding rates. For example, the UE 115 may receive a semi-static configuration message (e.g., an RRC message) indicating changes to the MCS table. The UE 115 may determine to use the updated MCS table if a grant indicates a multi-slot transmission.
In some examples, the UE 115 may receive a downlink control information (DCI) message, which may indicate that a UE 115 should override some entries on an old MCS table. The entries to be overridden may be previous indicated to the UE 115 (e.g., via RRC signaling) or may be known at the UE 115 (e.g., standardized) . The DCI may include a 1-bit indicator, indicating that the UE 115 should override the MCS t able with the known entries, or the UE 115 may determine, based on a number of slots configured in the DCI for the transmission, whether to use the updated MCS table or the original MCS table. In some examples, the base station 105 may joint encode an indication of MCS and a number of slots in the DCI.
FIG. 2 illustrates an example of a multi-slot transmission scheme 200 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. In some examples, multi-slot transmission scheme 200 may implement aspects of wireless communications system 100.
In some examples, a wireless communications system may support repeated transmissions of PUSCH or PDSCH over multiple transmission time intervals (TTIs) (e.g., slots) . In such examples, a UE 115 may be configured to send multi-slot PUSCH transmissions, receive multi-slot PDSCH transmissions, or both. Such multi-slot transmissions may improve transmissions reliability.
For a multi-slot transmission, a UE 115 may receive a downlink control message (e.g., a DCI message) , which may include an MCS for the transmissions (e.g., an MCS index for an MCS table) , and a resource allocation for the multi-slot transmissions. The MCS and resource allocation may be common across multiple slots. In some examples, a base station 105 may transmit an RRC message indicating a number of slots per transmission (e.g., two slots, four slots, eight slots, or the like) . In such examples, the number of slots may be known by a UE 115 that receives a DCI, and may not be indicated in the DCI. Or, in some examples, a DCI may include an indication of a number of slots for the transmissions that may override a number of slots configured in the RRC message. In some examples, a number of slots  configured by an RRC message may be common for initial transmissions (e.g., new transmissions) and retransmissions. In some examples, multi-slot PUSCH or PDSCH transmissions may be used to increase transmission reliability in coverage limited scenarios.
For example, a base station 105 may transmit a downlink control message (e.g., PDCCH 205) during a first slot (e.g., slot 0) . PDCCH 205 may include a DCI message including an uplink grant for multi-slot transmission 210. In some examples, the DCI may indicate the number of slots for the multi-slot transmission 210, or the base station may have previously configured (e.g., via RRC signaling) a number of slots (e.g., 4) for subsequent scheduled transmissions. Upon receiving the DCI during slot 0, UE 115 may determine to send portions of uplink transmission 215 during the subsequent four slots (e.g., slot 1, slot 2, slot 3, and slot 4) . Similarly, though not illustrated with reference to FIG. 2, the UE 115 may receive a downlink grant, and may receive a multi-slot downlink transmission across multiple slots.
In some examples, for each slot of a multi-slot transmission (e.g., multi-slot transmission 210) , a transport block of the uplink transmission 215 may be the same, but encoded bits may be different. For instance, a redundancy version (RV) for each slot may be different. In some examples, the DCI received in PDCCH 205 may indicate a first RV for the first slot of the multi-slot transmission 210. The UE 115 may determine subsequent RVs for uplink transmission 215 based on the first RV. For instance, UE 115 may determine a first RV for slot 1 based on an indication in the DCI, and a second RV for slot 2, a third RV for slot 3, etc. In some examples, an RV for an nth slot may be determined by n mod 4 (e.g., a pattern that repeats every four slots) . Thus, in some examples, for a transmission (e.g., uplink transmission 215) , the UE 115 may send the uplink transmission 215 using RV0 (e.g., in slot 1) , RV2 (e.g., in slot 2) , RV3 (e.g., in slot 3) , and RV1 (e.g., in slot 4) . If UE 115 sends a subsequent retransmission, it may send the retransmission using RV2, RV3, RV1, RV0. The UE 115 may rotate through different iterations of the same pattern for subsequent retransmissions. RVs may be similarly determined and rotated for downlink transmissions across multiple slots.
FIG. 3 illustrates an example of a transmission scheme 300 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with  aspects of the present disclosure. In some examples, transmission scheme 300 may implement aspects of wireless communications system 100.
In some examples, coding gain for an uplink or downlink transmission may be affected by incremental redundancy (IR) , combing gain, code block (CB) size, etc. An IR combining gain may be achieved by initiating different RVs at different bit locations of a set of encoded bits of a transmission. That is, a transmission 305 (e.g., an uplink transmission or downlink transmission) may include encoded bits 310, including both information bits 315 and parity check bits 320. RV0 may start at a first location in the encoded bits 310, RV1, may start at a second location in the encoded bits 310, RV2 may start a third location in the encoded bits 310, and RV3 may start at a fourth location in the encoded bits 310.
A DCI may provide, to a UE 115, an indicated coding rate (R) (which may also be referred to as a target coding rate) . An effective coding rate (R eff) may be defined by the ratio of a number of information bits 315 and a total number of encoded bits 310. For single-slot transmissions (e.g., single-slot PUSCH) R eff may equal R (or may approach R) . However, for a multi-slot transmission (e.g., a multi-slot PUSCH) , R eff may equal R eff/M where M is the number of slots for the multi-slot transmission. An IR combining coding rate R IR for incremental redundancy (IR) by parity check bits of a code, may be defined such that repeated bits are not counted for a calculation of an IR coding rate (R IR) . Because repeated slots use different RVs, for higher R eff values, R eff may be equal to R IR (e.g., where there is no overlapping of different RVs for a multi-slot transmission) . However, for smaller R eff values, (e.g., where R eff< R IR, min) R IR may not be lower than the lowest coding rate supported (R IR, min) supported by a channel code. Thus, for transmission 305, R IR may not be lower than 1/5. Encoded bits 310 may be circulated and repeated, and R IR may be truncated by R IR, min. Thus, IR combining gain values may be determine by R IR, and a lower R IR value may correspond to a higher IR combining gain.
In some examples of an uplink or downlink transmission 305, conventional MCS tables may illustrate a higher coding rate only for high modulation orders, as shown in table 1.
Figure PCTCN2020079613-appb-000001
Figure PCTCN2020079613-appb-000002
Table 1
The maximum coding rate in table 1 may be about 0.66 (e.g., 679/1024) for lower modulation orders (e.g., QPSK) , but may be up to 0.93 (948/1024) for higher modulation orders (e.g., 64 QAM) .
However, when a device sends a transmission (e.g., an uplink transmission for PUSCH coverage) , an MCS with QPSK may be configured because higher modulation orders (e.g., 16 QAM, 64 QAM, or the like) , may have a lower radio frequency power efficiency due to a higher peak to average power ratio (PAPR) . A UE 115 may be permitted to reduce a maximum output power by a maximum power reduction MPR) ) values, where the MPR may be 0.5 to 1 decibels (dBs) larger for 16 QAM over QPSK, and 2 to 2.5dBs larger for 64 QAM over QPSK.
Thus, for a multi-slot transmission, a transmission 305 may be limited to a small transport block due to a lower coding rate and lowing modulation order. This may result in inefficient transmissions, failure to utilize the increased redundancy of multi-slot transmissions, increased system latency, and decreased user experience. Increasing bandwidth to achieve largest transport block size may not be useful where a UE 115 configured to a multi-slot transmission may be power limited in increase power efficiency. Instead, to achieve high efficiency while leveraging the increased redundancy and reliability of multi-slot transmissions, multi-slot transmissions may be configured with high coding rates and low modulation orders. That is, QPSK modulation, for example, may be paired with higher coding rates previously associated with higher modulation orders (e.g., 16 QAM, 64 QAM, or the like) .
However, as discussed with reference to FIG. 1, in some examples, conventional MCS tables may associate low modulation orders with conservative coding rates, so shown with reference to Table 1. In some examples, a UE may perform or receive transmissions using new modulation orders and coding rates (e.g., from a new table) or using updated modulation orders and coding rates (e.g., from a revised table) , as described in greater detail with reference to FIG. 4.
FIG. 4 illustrates an example of a process flow 400 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of wireless communications system 100. A UE 115-a and a base station 105-a may perform aspects of process flow 400, which may be examples of corresponding devices as described with reference to wireless communications system 100.
In some examples of a wireless communications system, base station 105-a may configure UE 115-a to perform a multi-slot uplink transmission or receive a multi-slot downlink transmission. Base station 105-a may indicate an MCS scheme (e.g., an MCS index in a table such as table 1) and a repetition characteristic (e.g., a number of slots for the multi-slot transmission. In some examples, UE 115-a may rely on a new table (e.g., RRC configured or standardized) , where various MCS indices correspond to low modulation orders and high coding rates. In such examples, UE 115-a may determine whether to use the new MCS table or a conventional MCS table based on the repetition characteristic (e.g.,  based on whether repetition is indicated for a scheduled transmissions) . In some examples described herein, UE 115-a may reuse an existing MCS table, but may receive (e.g., via RRC signaling, a DCI message, or implicit indications) a modulation order override message, indicating MCS entries associated with higher modulation orders (e.g., 16 QAM, 64 QAM, etc. ) are to be reconfigured with lower modulation orders (e.g., QPSK) with no change to target coding rates indicated in the existing MCS table.
In some examples, UE 115-a may select modulation orders and coding rates for a multi-slot transmission using multiple tables. At 410, base station 105-a may configure a multi-slot transmission. The multi-slot transmission may be a downlink transmission (e.g., over a PDSCH) or an uplink transmission.
At 415, base station 105-a may transmit a control message (e.g., a DCI message) , to UE 115-a. The DCI message may include a grant, and may indicate a number of slots M for the transmission. The DCI may also indicate an MCS index corresponding to one or more tables.
At 420, having received the DCI message at 415, UE 115-a may determine a repetition characteristic for the transmission. For example, UE 115-a may determine how many slots are configured for the multi-slot transmission. In some examples, UE 115-a may select a table for use in determining a modulation order and coding rate for the transmission based on the determined repetition characteristic.
At 425, UE 115-a may select a modulation order for the transmission. UE 115-a may perform a lookup function, identify an entry in a table, or the like, to identify a modulation order. In some examples, UE 115-a may select an MCS table from which to determine the modulation order based on a repetition characteristic determined at 420. For example, a first MCS table (e.g., Table 1) may correspond to M values that do not satisfy a threshold M value, and a second MCS table (e.g., a new MCS table with lower modulation orders than in Table 1 associated with high coding rates) may correspond to M values that satisfy the threshold M values. For instance, if M=1 (e.g., M does not satisfy the threshold M value) , then UE 115-a may select the first MCS table (e.g., table 1) for a single-slot transmission. However, if M>1, then UE 115-a may select the second MCS table for a multi-slot transmission. In some examples, both the first MCS table and the second MCS table may include the same MCS indices. UE 115-a may thus select a modulation order from the first  MCS table or the second MCS table corresponding to the MCS index, based on M. In some examples, UE 115-a may select a modulation order for the transmission from one of multiple MCS tables. For instance, a first MCS table may correspond to a first set of M values (e.g., M=1) , a second MCS table may correspond to a second set of M values (e.g., 1<M≤X) , and a third MCS table may correspond to a third set of M values (e.g., M>X) , and so forth.
UE 115-a may receive an indication of the second MCS table (or multiple additional MCS tables) from base station 105-a, or the second MCS table (or multiple additional MCS tables) may be standardized. In some examples, at 405, base station 105-a may transmit a configuration message. The configuration message may include an indication of the second MCS table. At 425, UE 115-a may select a modulation order from the second MCS table indicated at 405. In some examples, UE 115-a may already have the first MCS table, as the MCS tables may be standardized.
At 430, UE 115-a may select (e.g., from the second MCS table where M>1) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425. At 435 or 440, UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
In some examples, UE 115-a may receive an override message, and may update an existing (e.g., first) MCS table. UE 115-a may receive, at 405, a configuration message. The configuration message may be an RRC message, and may include an override message. The override message may indicate that, for a first repetition characteristic (e.g., a multi-slot transmission) , UE 115-a is to use one or more updated modulation order values instead of the modulation orders indicated in the first MCS table. For instance, the override message may indicate that a first portion (e.g., MCS indices 0-9 of Table 1) , UE 115-a may use the same modulation orders indicated in the first MCS table. however, for a second set of MCS indices (e.g., MCS indices 10-31 of Table 1) , UE 115-a is instructed to revise the modulation orders of the first MCS table to have lower MCS orders, without changing the coding rates associated with the MCS indices of the second set of MCS indices. For instance, revised modulation orders may all be equal to the modulation orders associated with the first set of MCS indices (e.g., may all indicate QPSK) . Thus, modulation order overrides may be semi-statically configured (e.g., by RC signaling) . In some examples, the configuration message  may be a system information message (e.g., system information block (SIB) , master information block (MIB) , remaining minimum system information (RMSI) , or the like) .
At 410, base station 105-a may configure a transmission. At 415, base station 105-a may transmit a control message (e.g., a DCI message) , including a grant for the transmission.
At 420, UE 115-a may determine a repetition characteristic. In some examples, the repetition characteristic (e.g., the number of slots for the transmission) may be indicated in the DCI (e.g., in the grant) . In some examples, UE 115-a may determine that all transmissions subsequent to receiving an RRC message at 405 are to have a configured number of slots (e.g., 4 slots) .
At 425, UE 115-a may select a modulation order 425. In some examples, UE 115-a may select a modulation order based on determining the repetition characteristic at 420. UE 115-a may select the modulation order from an unrevised first MCS table if the transmission is a single-slot transmission. However, if the transmission is a multi-slot transmission, UE 115-a may select a modulation order from a revised first MCS table. That is, for multi-slot transmissions, UE 115-a may select a revised modulation order (e.g., a low modulation order, such as QPSK) , instead of a higher modulation order from the unrevised MCS table associated with the MCS index received in the DCI message at 415.
At 430, UE 115-a may select (e.g., from the revised MCS table for a multi-slot transmission) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425. At 435 or 440, UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
In some examples, base station 105-a may transmit a dynamic override message to UE 115-a for a particular transmission. For instance, base station 410 may transmit, at 415, a DCI message to UE 115-a, which may include a grant for a transmission, and an indication of an MCS index. The DCI may also include an explicit override message. The explicit override indicator may be a one-bit indicator. Thus, if the one-bit override message may indicate whether UE 115-a is to use an unrevised first MCS table, or a revised MCS table. UE 115-a may receive signaling indicating revisions for the first MCS table (e.g., at 405, via RRC signaling) , or revised values for the first MCS table may be standardized.
In some examples, the explicit override message may indicate that UE 115-a is to use revised entries. Upon receiving the explicit override message at 415, UE 115-a may, at 425, select a modulation order from the revised MCS table. That is, UE 15-a may select an updated modulation order value associated with the MCS index received at 415, instead of selecting an unrevised modulation order from the first MCS table.
In some examples, base station 105-a may implicitly provide an override message to UE 115-a. For instance, UE 115-a may determine, at 420, a repetition characteristic (e.g., a number of slots) for the transmission indicated at 415. For instance, UE 115-a may determine a number of slots associated with the grant included in the DCI message. If the number of slots exceeds a threshold (e.g., is greater than 1) , then UE 115-a may use revised MCS modulation orders, instead of unrevised modulation orders from the first MCS table.
In some examples, base station 105-a may joint encode the indication of the MCS (e.g., the MCS index) with the repetition characteristic (e.g., number of slots) . Joint encoding the MCS index and the number of slots may save DCI bits, which may result in decreased signaling overhead, and increased system efficiency. In such examples, a revised table may include a new column indicating a number of slots M for a configured transmission, as well as potential revised modulation order values, as shown below in table 2.
Figure PCTCN2020079613-appb-000003
Figure PCTCN2020079613-appb-000004
Table 2
In some examples, sets of MCS indices may correspond to different values of M. As shown in Table 2, MCS indices 0-9 may be associated with M=1, MCS indices 10-28 may be associated with different M values satisfying M>1 (e.g., MCS indices 10-16 may be associated with M=2, MCS indices 17-28 may be associated with M=4, etc. ) . Thus, signaling overhead may be decreased, as base station 105-a may indicate the MCS index at 415 and UE 115-a may determine the repetition characteristic based on the MCS index. For instance, if the MCS index is less than 10, then UE 115-a may determine that M=1 for a single-slot transmissions, but if the MCS index is between 10 and 16, then UE 115-a may determine that the transmission is a two-slot transmission, and may prepare according (e.g., may select a modulation order at 425 using the revised MCS table) . Thus, number of slots as well as MCS index may be indicated by a DCI message. In such examples, some MCS indices without an associated target code rate value (e.g., MCS indices associated with retransmissions, such as MCS indices 29-31 in Table 1 and Table 2 may be used for retransmission values) may be associated with different M values, but associated with the same modulation values (e.g., in a revised MCS table, such as Table 2) .
In some examples, for some M values that satisfy a threshold M value (e.g., M≥4, M=4, M=8, or the like) , the value of M may be additionally indicated by an RV indication included in the DCI message received at 415. For example, in Table 2, for MCS indices 17-28 or 31, multiple values of M may be available for a configured transmission. In such  examples, RV values may be limited. That is, for four RV values (e.g., as illustrated with reference to FIG. 1 and FIG. 2) , base station 105-a may use two bits to indicate which of the four RV values is the first RV value (and UE 115-a may determine subsequent RV values of the four RV values based on the first RV value indicated in the DCI message) . However, by limiting the available RV values to two, instead of four, the first RV value may be indicated with a single bit. The remaining bit in the RV indicator may be used to indicate one of two optional M values. For instance, for an MCS index between 17 and 28, either M=4 or M=8 may be configured for a transmission. A first RV bit may indicate which of two available RV values is to be the first RV value for the transmission, and the second RV bit may indicate whether the transmission is a 4-slot transmission or an 8-slot transmission. Or, a starting RV value may be fixed (e.g., indicated via RRC signaling or standardized) . For instance, RV0 may be used as the first RV value for a new transmission, and RV2 may be used as the first RV value for a retransmission. The RV indicator field may be repurposed to indicate an M value for a particular MCS index. For instance, a two-bit RV indicator field in the DCI message may instead be used to indicate which of a set of up to four M values (e.g., M=4, M=6, M=8, or M=10) are to be used for a transmission configured by the DCI message at 415.
At 430, UE 115-a may select (e.g., from the revised MCS table for a multi-slot transmission) a coding rate associated with the MCS index indicated at 415 and the modulation order selected at 425. At 435 or 440, UE 115-a may receive a downlink transmission or transmit an uplink transmission using the modulation order selected at 425 and the coding rate determined at 430.
By using a new MCS table, or a revised MCS table, as described herein, UE 115-a and base station 105-a may achieve higher coding gains due to a large transport block and codebook size, as described in greater detail with reference to FIG. 5.
FIG. 5 illustrates an example of a transmission scheme 500 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. In some examples, transmission scheme 500 may implement aspects of wireless communications system 100.
In some examples, multi-slot transmissions supporting low modulation orders and high coding rates, as described herein, may support larger transport block sizes, and thus  larger code block sizes. The larger transport block and code block sizes of such multi-slot transmissions may result in higher coding gains. For instance, a PUSCH transmissions configured with a coding rate R and M slot-repeated transmission, performance may be better than a set of M single-slot transmissions with a target coding rate R/M.
For instance, a first transmission 515-a during a first slot (e.g., slot 0) may include a first transport block TB1 (a first set of information bits 505) , and a set of parity check bits 510. A second transmission 515-b in slot 1 may include a second transport block TB2 (a second set of information bits 505) and a set of parity check bits 510. A third transmission 515-c in slot 2 may include a third transport block TB3 (a third set of information bits 505) and a set of parity check bits 510. A fourth transmission 515-d in slot 3 may include a third transport block TB4 (a fourth set of information bits 505) and a set of parity check bits 510.
multi-slot transmission 520 may support a large transport block size (e.g., larger number of information bits 505 than the number of information bits in TB1) . For example, the multi-slot transmission 520 may include multiple RVs (e.g., RV0, RV1, RV2, and RV3) . RV0 may include a first TB (a first set of information bits 505) and a small set of parity check bits in slot 0. RV2 may include a set of parity check bits in slot 1. RV3 may include a set of parity check bits and a smaller number of information bits 505 (e.g., partial information bits) . RV1 may include a set of parity check bits 510. The larger supported transport block size across multiple slots may result in increased coding gain, increased transmission reliability, and increased power efficiency.
FIG. 6 shows a block diagram 600 of a device 605 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 605.  The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
In some examples, the communications manager 615, or its sub-components, may receive, from a base station, a repetition configuration including a number of repetitions used for a transmission, select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission, and perform or receive the transmission using the selected modulation and coding scheme. As described above, receiving a repetition configuration may include receiving an RRC message indicating the repetition configuration, an override message, a number of slots associated with the transmission, or a combination thereof, or may include receiving a DCI indicating a grant for the transmission, the grant further indicating a number of slots associated with the transmission. in some examples, selecting a modulation and coding scheme based on the number of repetitions used for the transmission may include selecting, from a set of modulation orders, a modulation order associated with an MCS index and the number of repetitions (e.g., a number of slots associated with the transmission) . Additionally, selecting the modulation and coding scheme may include selecting a coding rate associated with an MCS index and the selected modulation order.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic  device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 615 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 610 and transmitter 620 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
The communications manager 615 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device to communicate using a lower number of layers during certain time periods, and only receive communicate with higher complexity as configured by the base station, resulting in increased processing efficiency.
Based on techniques for efficiently communicating maximum number of layers for a device as described herein, a processor of a UE 115 (e.g., controlling the receiver 610, the transmitter 620, or a transceiver 920 as described with respect to FIG. 9) may increase system efficiency and decrease unnecessary processing at a device.
FIG. 7 shows a block diagram 700 of a device 705 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 740. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a MCS manager 720, a modulation order manager 725, a coding rate manager 730, and a transmission manager 735. The communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The MCS manager 720 may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
The modulation order manager 725 may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission.
The coding rate manager 730 may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
The transmission manager 735 may perform or receiving the transmission using the selected modulation order and the determined coding rate.
The transmitter 740 may transmit signals generated by other components of the device 705. In some examples, the transmitter 740 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 740 may be an example of aspects of the  transceiver 920 described with reference to FIG. 9. The transmitter 740 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a MCS manager 810, a modulation order manager 815, a coding rate manager 820, a transmission manager 825, an override message manager 830, a control message manager 835, and a joint encoding manager 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The MCS manager 810 may receive, from a base station, an indication of a modulation and coding scheme for a transmission.
The modulation order manager 815 may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission. In some examples, the modulation order manager 815 may select the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme. In some examples, the modulation order manager 815 may select the modulation order from a first table associated with the first repetition characteristic. In some examples, the modulation order manager 815 may receive, from the base station, an indication of the first modulation order in the entry in the first table, where receiving the override message is based on receiving the indication of the first modulation order in the entry in the first table. In some cases, the set of modulation orders associated with the indicated modulation and coding scheme includes a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, where the first modulation order is the selected modulation order. In some cases, the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized. In some cases, the first repetition characteristic includes a number of slots associated with the transmission.
The coding rate manager 820 may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order.
The transmission manager 825 may perform or receiving the transmission using the selected modulation order and the determined coding rate.
The override message manager 830 may receive, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order. In some examples, the override message manager 830 may receive an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order.
The control message manager 835 may receive a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic. In some cases,
Joint encoding manager 840 may jointly encode the modulation and coding scheme and the first repetition characteristic. In some cases, the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including the indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 may receive, from a base station, an indication of a modulation and coding scheme for a transmission, select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first  repetition characteristic of the transmission, determine a coding rate based on the indication of the modulation and coding scheme and the modulation order, and perform or receiving the transmission using the selected modulation order and the determined coding rate.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as 
Figure PCTCN2020079613-appb-000005
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include RAM and ROM. The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a  memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting modulation and coding scheme indication for multi-slot transmissions) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may configure a transmission having a first repetition characteristic, perform or receiving the transmission using the first modulation order and the coding rate, and transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate. The communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
The communications manager 1015, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1015, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1015, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1015, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1020 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1130. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to modulation and coding scheme indication for multi-slot transmissions, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein. The communications manager 1115 may include a transmission manager 1120 and a MCS manager 1125. The communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
The transmission manager 1120 may configure a transmission having a first repetition characteristic and perform or receiving the transmission using the first modulation order and the coding rate.
The MCS manager 1125 may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
The transmitter 1130 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1130 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1130 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1130 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein. The communications manager 1205 may include a transmission manager 1210, a MCS manager 1215, a modulation order manager 1220, an override message manager 1225, a control message manager 1230, and a joint encoding manager 1235. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The transmission manager 1210 may configure a transmission having a first repetition characteristic. In some examples, the transmission manager 1210 may perform or receiving the transmission using the first modulation order and the coding rate.
The MCS manager 1215 may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
The modulation order manager 1220 may select the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, where transmitting the indication of the modulation and coding scheme is based on the selecting. In some examples, the modulation order manager 1220 may select the first modulation order from a first table associated with the first repetition characteristic, where the indication of the modulation and coding scheme for the transmission is based on the first table. In some examples, the modulation order manager 1220 may transmit, to the UE, an indication of the first modulation order in the entry in the first table, where transmitting the override message is based on transmitting the indication of the first modulation order in the entry in the first table. In some cases, the set of modulation orders associated with the indicated modulation and coding scheme includes the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic. In some cases, the first repetition characteristic includes a number of slots associated with the transmission.
The override message manager 1225 may transmit, to the UE, a radio resource control message including an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table. In some examples, the override message manager 1225 may transmit an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
The control message manager 1230 may transmit a control message including a grant for the transmission, the control message including the indication of the modulation and coding scheme and the first repetition characteristic.
The joint encoding manager 1235 may jointly encode the modulation and coding scheme and the first repetition characteristic.
In some cases, the control message includes a redundancy version indicator including a first portion and a second portion, the first portion of the redundancy version indicator including an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator including an indication of the first repetition characteristic, where the first repetition characteristic includes a first number of slots for the transmission.
FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
The communications manager 1310 may configure a transmission having a first repetition characteristic, perform or receiving the transmission using the first modulation order and the coding rate, and transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate.
The network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless  transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM, ROM, or a combination thereof. The memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein. In some cases, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1340 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting modulation and coding scheme indication for multi-slot transmissions) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be  stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 14 shows a flowchart illustrating a method 1400 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, from a base station, an indication of a modulation and coding scheme for a transmission. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
At 1410, the UE may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
At 1415, the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
At 1420, the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
FIG. 15 shows a flowchart illustrating a method 1500 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, from the base station, a radio resource control message including an override message indicating that, for transmissions associated with a first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an override message manager as described with reference to FIGs. 6 through 9.
At 1510, the UE may receive, from a base station, an indication of a modulation and coding scheme for a transmission. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
At 1515, the UE may select, from a set of modulation orders associated with the indicated modulation and coding scheme, a modulation order for the transmission based on the indication of the modulation and coding scheme, the override message, and the first repetition characteristic of the transmission. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
At 1520, the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
At 1525, the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
FIG. 16 shows a flowchart illustrating a method 1600 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may receive, from a base station, a control message including an indication of a modulation and coding scheme for a transmission, a grant for the transmission, a first repetition characteristic, and an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, where the first modulation order is the selected modulation order. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a MCS manager as described with reference to FIGs. 6 through 9.
At 1610, the UE may select a modulation order for the transmission based on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a modulation order manager as described with reference to FIGs. 6 through 9.
At 1615, the UE may determine a coding rate based on the indication of the modulation and coding scheme and the modulation order. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a coding rate manager as described with reference to FIGs. 6 through 9.
At 1620, the UE may perform or receiving the transmission using the selected modulation order and the determined coding rate. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a transmission manager as described with reference to FIGs. 6 through 9.
FIG. 17 shows a flowchart illustrating a method 1700 that supports modulation and coding scheme indication for multi-slot transmissions in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may configure a transmission having a first repetition characteristic. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a transmission manager as described with reference to FIGs. 10 through 13.
At 1710, the base station may transmit, to a UE, an indication of a modulation and coding scheme for the transmission, where the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a MCS manager as described with reference to FIGs. 10 through 13.
At 1715, the base station may perform or receiving the transmission using the first modulation order and the coding rate. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a transmission manager as described with reference to FIGs. 10 through 13.
FIG. 18 shows a flowchart illustrating a method 1800 that supports modulation and coding scheme indications indication for multi-slot transmissions in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a  UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive, from a base station, a repetition configuration including a number of repetitions used for a transmission. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
At 1810, the UE may select a modulation and coding scheme from the transmission based on the number of repetitions used for the transmission. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
At 1815, the UE may perform or receiving the transmission using the selected modulation and coding scheme. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an MCS manager as described with reference to FIGs. 10 through 13.
FIG. 19 shows a flowchart illustrating a method 1900 that supports modulation and coding scheme indication for multi-slot transmission in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the base station may transmit, to a UE, a repetition configuration including a number of repetitions used for a transmission. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1905 may be performed by a undefined as described with reference to FIGs. 10 through 13.
At 1910, the base station may select a modulation and coding scheme for the transmission based on the number of repetitions used for the transmission. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a undefined as described with reference to FIGs. 10 through 13.
At 1915, the base station may perform or receiving the transmission using the selected modulation and coding scheme. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a undefined as described with reference to FIGs. 10 through 13.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a  DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as  infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a  person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (144)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from a base station, an indication of a modulation and coding scheme for a transmission;
    selecting a modulation order for the transmission based at least in part on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission;
    determining a coding rate based at least in part on the indication of the modulation and coding scheme and the modulation order; and
    performing or receiving the transmission using the selected modulation order and the determined coding rate.
  2. The method of claim 1, wherein selecting the modulation order for the transmission comprises:
    selecting the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
  3. The method of claim 2, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, wherein the first modulation order is the selected modulation order.
  4. The method of claim 3, wherein selecting the modulation order from the set of modulation orders comprises:
    selecting the modulation order from a first table associated with the first repetition characteristic.
  5. The method of claim 2, further comprising:
    receiving, from the base station, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition  characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  6. The method of claim 1, wherein receiving the indication of the modulation and coding scheme for the transmission comprises:
    receiving a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  7. The method of claim 6, wherein receiving the control message comprises:
    receiving an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  8. The method of claim 7, further comprising:
    receiving, from the base station, an indication of the first modulation order in the entry in the first table, wherein receiving the override message is based at least in part on receiving the indication of the first modulation order in the entry in the first table.
  9. The method of claim 7, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  10. The method of claim 6, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  11. The method of claim 10, wherein the modulation and coding scheme is associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  12. The method of claim 10, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version  for the transmission, and the second portion of the redundancy version indicator comprising the indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  13. The method of claim 10, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  14. The method of claim 1, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  15. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission;
    selecting a modulation and coding scheme from the transmission based at least in part on the number of repetitions used for the transmission; and
    performing or receiving the transmission using the selected modulation and coding scheme.
  16. The method of claim 15, wherein selecting the modulation and coding scheme for the transmission comprises:
    determining a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  17. The method of claim 15, wherein receiving the repetition configuration comprises:
    receiving, from the base station, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  18. The method of claim 15, wherein selecting the modulation and coding scheme for the transmission comprises:
    selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order  comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  19. A method for wireless communications at a base station, comprising:
    configuring a transmission having a first repetition characteristic;
    transmitting, to a user equipment (UE) , an indication of a modulation and coding scheme for the transmission, wherein the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate; and
    performing or receiving the transmission using the first modulation order and the coding rate.
  20. The method of claim 19, further comprising:
    selecting the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, wherein transmitting the indication of the modulation and coding scheme is based at least in part on the selecting.
  21. The method of claim 20, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  22. The method of claim 21, wherein selecting the first modulation order from the set of modulation orders comprises:
    selecting the first modulation order from a first table associated with the first repetition characteristic, wherein the indication of the modulation and coding scheme for the transmission is based at least in part on the first table.
  23. The method of claim 19, further comprising:
    transmitting, to the UE, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition  characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  24. The method of claim 19, wherein transmitting the indication of the modulation and coding scheme for the transmission comprises:
    transmitting a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  25. The method of claim 24, wherein transmitting the control message comprises:
    transmitting an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  26. The method of claim 25, further comprising:
    transmitting, to the UE, an indication of the first modulation order in the entry in the first table, wherein transmitting the override message is based at least in part on transmitting the indication of the first modulation order in the entry in the first table.
  27. The method of claim 25, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  28. The method of claim 24, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  29. The method of claim 28, wherein the modulation and coding scheme is associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  30. The method of claim 28, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising  an indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  31. The method of claim 28, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  32. The method of claim 19, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  33. A method for wireless communications at a base station, comprising:
    transmitting, to a user equipment (UE) , a repetition configuration including a number of repetitions used for a transmission;
    selecting a modulation and coding scheme for the transmission based at least in part on the number of repetitions used for the transmission; and
    performing or receiving the transmission using the selected modulation and coding scheme.
  34. The method of claim 33, wherein selecting the modulation and coding scheme for the transmission comprises:
    determining a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  35. The method of claim 33, wherein transmitting the repetition configuration comprises:
    transmitting, to the UE, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  36. The method of claim 33, wherein selecting the modulation and coding scheme for the transmission comprises:
    selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the  modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  37. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, an indication of a modulation and coding scheme for a transmission;
    select a modulation order for the transmission based at least in part on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission;
    determine a coding rate based at least in part on the indication of the modulation and coding scheme and the modulation order; and
    perform or receiving the transmission using the selected modulation order and the determined coding rate.
  38. The apparatus of claim 37, wherein the instructions to select the modulation order for the transmission are executable by the processor to cause the apparatus to:
    select the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
  39. The apparatus of claim 38, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, wherein the first modulation order is the selected modulation order.
  40. The apparatus of claim 39, wherein the instructions to select the modulation order from the set of modulation orders are executable by the processor to cause the apparatus to:
    select the modulation order from a first table associated with the first repetition characteristic.
  41. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  42. The apparatus of claim 37, wherein the instructions to receive the indication of the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    receive a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  43. The apparatus of claim 42, wherein the instructions to receive the control message are executable by the processor to cause the apparatus to:
    receive an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, an indication of the first modulation order in the entry in the first table, wherein receiving the override message is based at least in part on receiving the indication of the first modulation order in the entry in the first table.
  45. The apparatus of claim 43, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  46. The apparatus of claim 42, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  47. The apparatus of claim 46, wherein the modulation and coding scheme is associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  48. The apparatus of claim 46, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising the indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  49. The apparatus of claim 46, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  50. The apparatus of claim 37, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  51. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a repetition configuration including a number of repetitions used for a transmission;
    select a modulation and coding scheme from the transmission based at least in part on the number of repetitions used for the transmission; and
    perform or receiving the transmission using the selected modulation and coding scheme.
  52. The apparatus of claim 51, wherein the instructions to select the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    determine a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  53. The apparatus of claim 51, wherein the instructions to receive the repetition configuration are executable by the processor to cause the apparatus to:
    receive, from the base station, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  54. The apparatus of claim 51, wherein the instructions to select the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    select, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  55. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    configure a transmission having a first repetition characteristic;
    transmit, to a user equipment (UE) , an indication of a modulation and coding scheme for the transmission, wherein the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate; and
    perform or receiving the transmission using the first modulation order and the coding rate.
  56. The apparatus of claim 55, wherein the instructions are further executable by the processor to cause the apparatus to:
    select the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, wherein transmitting the indication of the modulation and coding scheme is based at least in part on the selecting.
  57. The apparatus of claim 56, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  58. The apparatus of claim 57, wherein the instructions to select the first modulation order from the set of modulation orders are executable by the processor to cause the apparatus to:
    select the first modulation order from a first table associated with the first repetition characteristic, wherein the indication of the modulation and coding scheme for the transmission is based at least in part on the first table.
  59. The apparatus of claim 55, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  60. The apparatus of claim 55, wherein the instructions to transmit the indication of the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    transmit a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  61. The apparatus of claim 60, wherein the instructions to transmit the control message are executable by the processor to cause the apparatus to:
    transmit an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  62. The apparatus of claim 61, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, an indication of the first modulation order in the entry in the first table, wherein transmitting the override message is based at least in part on transmitting the indication of the first modulation order in the entry in the first table.
  63. The apparatus of claim 61, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  64. The apparatus of claim 60, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  65. The apparatus of claim 64, wherein the modulation and coding scheme is associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  66. The apparatus of claim 64, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising an indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  67. The apparatus of claim 64, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  68. The apparatus of claim 55, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  69. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a user equipment (UE) , a repetition configuration including a number of repetitions used for a transmission;
    select a modulation and coding scheme for the transmission based at least in part on the number of repetitions used for the transmission; and
    perform or receiving the transmission using the selected modulation and coding scheme.
  70. The apparatus of claim 69, wherein the instructions to select the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    determine a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  71. The apparatus of claim 69, wherein the instructions to transmit the repetition configuration are executable by the processor to cause the apparatus to:
    transmit, to the UE, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  72. The apparatus of claim 69, wherein the instructions to select the modulation and coding scheme for the transmission are executable by the processor to cause the apparatus to:
    select, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) ,  and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  73. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from a base station, an indication of a modulation and coding scheme for a transmission;
    means for selecting a modulation order for the transmission based at least in part on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission;
    means for determining a coding rate based at least in part on the indication of the modulation and coding scheme and the modulation order; and
    means for performing or receiving the transmission using the selected modulation order and the determined coding rate.
  74. The apparatus of claim 73, wherein the means for selecting the modulation order for the transmission comprises:
    means for selecting the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
  75. The apparatus of claim 74, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, wherein the first modulation order is the selected modulation order.
  76. The apparatus of claim 75, wherein the means for selecting the modulation order from the set of modulation orders comprises:
    means for selecting the modulation order from a first table associated with the first repetition characteristic.
  77. The apparatus of claim 74, further comprising:
    means for receiving, from the base station, a radio resource control message comprising an override message indicating that, for transmissions associated with the first  repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  78. The apparatus of claim 73, wherein the means for receiving the indication of the modulation and coding scheme for the transmission comprises:
    means for receiving a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  79. The apparatus of claim 78, wherein the means for receiving the control message comprises:
    means for receiving an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  80. The apparatus of claim 79, further comprising:
    means for receiving, from the base station, an indication of the first modulation order in the entry in the first table, wherein receiving the override message is based at least in part on receiving the indication of the first modulation order in the entry in the first table.
  81. The apparatus of claim 79, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  82. The apparatus of claim 78, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  83. The apparatus of claim 82, wherein the modulation and coding scheme is associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  84. The apparatus of claim 82, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion  of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising the indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  85. The apparatus of claim 82, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  86. The apparatus of claim 73, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  87. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from a base station, a repetition configuration including a number of repetitions used for a transmission;
    means for selecting a modulation and coding scheme from the transmission based at least in part on the number of repetitions used for the transmission; and
    means for performing or receiving the transmission using the selected modulation and coding scheme.
  88. The apparatus of claim 87, wherein the means for selecting the modulation and coding scheme for the transmission comprises:
    means for determining a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  89. The apparatus of claim 87, wherein the means for receiving the repetition configuration comprises:
    means for receiving, from the base station, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  90. The apparatus of claim 87, wherein the means for selecting the modulation and coding scheme for the transmission comprises:
    means for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  91. An apparatus for wireless communications at a base station, comprising:
    means for configuring a transmission having a first repetition characteristic;
    means for transmitting, to a user equipment (UE) , an indication of a modulation and coding scheme for the transmission, wherein the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate; and
    means for performing or receiving the transmission using the first modulation order and the coding rate.
  92. The apparatus of claim 91, further comprising:
    means for selecting the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, wherein transmitting the indication of the modulation and coding scheme is based at least in part on the selecting.
  93. The apparatus of claim 92, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  94. The apparatus of claim 93, wherein the means for selecting the first modulation order from the set of modulation orders comprises:
    means for selecting the first modulation order from a first table associated with the first repetition characteristic, wherein the indication of the modulation and coding scheme for the transmission is based at least in part on the first table.
  95. The apparatus of claim 91, further comprising:
    means for transmitting, to the UE, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  96. The apparatus of claim 91, wherein the means for transmitting the indication of the modulation and coding scheme for the transmission comprises:
    means for transmitting a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  97. The apparatus of claim 96, wherein the means for transmitting the control message comprises:
    means for transmitting an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  98. The apparatus of claim 97, further comprising:
    means for transmitting, to the UE, an indication of the first modulation order in the entry in the first table, wherein transmitting the override message is based at least in part on transmitting the indication of the first modulation order in the entry in the first table.
  99. The apparatus of claim 97, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  100. The apparatus of claim 96, wherein: the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  101. The apparatus of claim 100, wherein the modulation and coding scheme is associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  102. The apparatus of claim 96, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion  of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising an indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  103. The apparatus of claim 96, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  104. The apparatus of claim 91, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  105. An apparatus for wireless communications at a base station, comprising:
    means for transmitting, to a user equipment (UE) , a repetition configuration including a number of repetitions used for a transmission;
    means for selecting a modulation and coding scheme for the transmission based at least in part on the number of repetitions used for the transmission; and
    means for performing or receiving the transmission using the selected modulation and coding scheme.
  106. The apparatus of claim 105, wherein the means for selecting the modulation and coding scheme for the transmission comprises:
    means for determining a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  107. The apparatus of claim 105, wherein the means for transmitting the repetition configuration comprises:
    means for transmitting, to the UE, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  108. The apparatus of claim 105, wherein the means for selecting the modulation and coding scheme for the transmission comprises:
    means for selecting, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  109. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, an indication of a modulation and coding scheme for a transmission;
    select a modulation order for the transmission based at least in part on the indication of the modulation and coding scheme and a first repetition characteristic of the transmission;
    determine a coding rate based at least in part on the indication of the modulation and coding scheme and the modulation order; and
    perform or receiving the transmission using the selected modulation order and the determined coding rate.
  110. The non-transitory computer-readable medium of claim 109, wherein the instructions to select the modulation order for the transmission are executable to:
    select the modulation order from a set of modulation orders associated with the indicated modulation and coding scheme.
  111. The non-transitory computer-readable medium of claim 110, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises a first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic, wherein the first modulation order is the selected modulation order.
  112. The non-transitory computer-readable medium of claim 111, wherein the instructions to select the modulation order from the set of modulation orders are executable to:
    select the modulation order from a first table associated with the first repetition characteristic.
  113. The non-transitory computer-readable medium of claim 110, wherein the instructions are further executable to:
    receive, from the base station, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition characteristic, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  114. The non-transitory computer-readable medium of claim 109, wherein the instructions to receive the indication of the modulation and coding scheme for the transmission are executable to:
    receive a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  115. The non-transitory computer-readable medium of claim 114, wherein the instructions to receive the control message are executable to:
    receive an override message indicating that, for the transmission, a first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table, wherein the first modulation order is the selected modulation order.
  116. The non-transitory computer-readable medium of claim 115, wherein the instructions are further executable to:
    receive, from the base station, an indication of the first modulation order in the entry in the first table, wherein receiving the override message is based at least in part on receiving the indication of the first modulation order in the entry in the first table.
  117. The non-transitory computer-readable medium of claim 115, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  118. The non-transitory computer-readable medium of claim 114, wherein the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  119. The non-transitory computer-readable medium of claim 118, wherein the modulation and coding scheme is associated with a first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  120. The non-transitory computer-readable medium of claim 118, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising the indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  121. The non-transitory computer-readable medium of claim 118, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  122. The non-transitory computer-readable medium of claim 109, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  123. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, a repetition configuration including a number of repetitions used for a transmission;
    select a modulation and coding scheme from the transmission based at least in part on the number of repetitions used for the transmission; and
    perform or receiving the transmission using the selected modulation and coding scheme.
  124. The non-transitory computer-readable medium of claim 123, wherein the instructions to select the modulation and coding scheme for the transmission are executable to:
    determine a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  125. The non-transitory computer-readable medium of claim 123, wherein the instructions to receive the repetition configuration are executable to:
    receive, from the base station, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  126. The non-transitory computer-readable medium of claim 123, wherein the instructions to select the modulation and coding scheme for the transmission are executable to:
    select, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
  127. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    configure a transmission having a first repetition characteristic;
    transmit, to a user equipment (UE) , an indication of a modulation and coding scheme for the transmission, wherein the modulation and coding scheme for the transmission corresponds to a first modulation order associated with the first repetition characteristic and a coding rate; and
    perform or receiving the transmission using the first modulation order and the coding rate.
  128. The non-transitory computer-readable medium of claim 127, wherein the instructions are further executable to:
    select the first modulation order for the transmissions from a set of modulation orders associated with the indicated modulation and coding scheme, wherein transmitting the indication of the modulation and coding scheme is based at least in part on the selecting.
  129. The non-transitory computer-readable medium of claim 128, wherein the set of modulation orders associated with the indicated modulation and coding scheme comprises the first modulation order associated with the first repetition characteristic and a second modulation order associated with a second repetition characteristic.
  130. The non-transitory computer-readable medium of claim 129, wherein the instructions to select the first modulation order from the set of modulation orders are executable to:
    select the first modulation order from a first table associated with the first repetition characteristic, wherein the indication of the modulation and coding scheme for the transmission is based at least in part on the first table.
  131. The non-transitory computer-readable medium of claim 127, wherein the instructions are further executable to:
    transmit, to the UE, a radio resource control message comprising an override message indicating that, for transmissions associated with the first repetition characteristic, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  132. The non-transitory computer-readable medium of claim 127, wherein the instructions to transmit the indication of the modulation and coding scheme for the transmission are executable to:
    transmit a control message comprising a grant for the transmission, the control message comprising the indication of the modulation and coding scheme and the first repetition characteristic.
  133. The non-transitory computer-readable medium of claim 132, wherein the instructions to transmit the control message are executable to:
    transmit an override message indicating that, for the transmission, the first modulation order in an entry in a first table replaces a second modulation order in the entry in the first table.
  134. The non-transitory computer-readable medium of claim 133, wherein the instructions are further executable to:
    transmit, to the UE, an indication of the first modulation order in the entry in the first table, wherein transmitting the override message is based at least in part on transmitting the indication of the first modulation order in the entry in the first table.
  135. The non-transitory computer-readable medium of claim 133, wherein the first modulation order in the entry in the first table and the second modulation order in the entry in the first table are standardized.
  136. The non-transitory computer-readable medium of claim 132, wherein: the modulation and coding scheme and the first repetition characteristic are jointly encoded.
  137. The non-transitory computer-readable medium of claim 136, wherein the modulation and coding scheme is associated with the first modulation order for the first repetition characteristic and a second modulation order for a second repetition characteristic for a retransmission of the transmission.
  138. The non-transitory computer-readable medium of claim 136, wherein the control message comprises a redundancy version indicator comprising a first portion and a second portion, the first portion of the redundancy version indicator comprising an indication of an initial redundancy version for the transmission, and the second portion of the redundancy version indicator comprising an indication of the first repetition characteristic, wherein the first repetition characteristic comprises a first number of slots for the transmission.
  139. The non-transitory computer-readable medium of claim 136, wherein an indication of an initial redundancy version comprises the indication of the first repetition characteristic, and wherein the first repetition characteristic comprises a first number of slots for the transmission.
  140. The non-transitory computer-readable medium of claim 127, wherein the first repetition characteristic comprises a number of slots associated with the transmission.
  141. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    transmit, to a user equipment (UE) , a repetition configuration including a number of repetitions used for a transmission;
    select a modulation and coding scheme for the transmission based at least in part on the number of repetitions used for the transmission; and
    perform or receiving the transmission using the selected modulation and coding scheme.
  142. The non-transitory computer-readable medium of claim 141, wherein the instructions to select the modulation and coding scheme for the transmission are executable to:
    determine a modulation order from a set of modulation orders based at least in part on the number of repetitions used for the transmission.
  143. The non-transitory computer-readable medium of claim 141, wherein the instructions to transmit the repetition configuration are executable to:
    transmit, to the UE, a control message indicating the transmission and the repetition configuration, wherein the repetition configuration comprise a number of slots associated with the transmission.
  144. The non-transitory computer-readable medium of claim 141, wherein the instructions to select the modulation and coding scheme for the transmission are executable to:
    select, based on the number of repetitions for the transmission, a first modulation order in place of a second modulation order, wherein the first modulation order comprises quadrature phase shift keying (QPSK) or π/2-binary phase shift keying (BPSK) , and wherein the second modulation order is associated with a first coding rate of the  modulation and coding scheme for transmissions having a second number of repetitions different than the number of repetitions for the transmission.
PCT/CN2020/079613 2020-03-17 2020-03-17 Modulation and coding scheme indication for multi-slot transmissions WO2021184184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079613 WO2021184184A1 (en) 2020-03-17 2020-03-17 Modulation and coding scheme indication for multi-slot transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079613 WO2021184184A1 (en) 2020-03-17 2020-03-17 Modulation and coding scheme indication for multi-slot transmissions

Publications (1)

Publication Number Publication Date
WO2021184184A1 true WO2021184184A1 (en) 2021-09-23

Family

ID=77771874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079613 WO2021184184A1 (en) 2020-03-17 2020-03-17 Modulation and coding scheme indication for multi-slot transmissions

Country Status (1)

Country Link
WO (1) WO2021184184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685587A (en) * 2015-11-06 2017-05-17 株式会社Kt Method of determining modulation order and transport block size in downlink data channel, and apparatus thereof
CN108183881A (en) * 2012-06-19 2018-06-19 韩国电子通信研究院 Transmission device and transfer approach
US20180270799A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN108632196A (en) * 2017-03-21 2018-10-09 三星电子株式会社 Wireless communications method
CN109121218A (en) * 2017-06-22 2019-01-01 深圳市金立通信设备有限公司 A kind of data transmission method, device, base station and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183881A (en) * 2012-06-19 2018-06-19 韩国电子通信研究院 Transmission device and transfer approach
CN106685587A (en) * 2015-11-06 2017-05-17 株式会社Kt Method of determining modulation order and transport block size in downlink data channel, and apparatus thereof
US20180270799A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN108632196A (en) * 2017-03-21 2018-10-09 三星电子株式会社 Wireless communications method
CN109121218A (en) * 2017-06-22 2019-01-01 深圳市金立通信设备有限公司 A kind of data transmission method, device, base station and user equipment

Similar Documents

Publication Publication Date Title
US11937277B2 (en) Concurrent sidelink and uplink transmission
WO2021138580A1 (en) Transport block size determination for sidelink communications
WO2022147815A1 (en) Unified transmission configuration indicator framework for physical channels
US11723036B2 (en) Dynamic search spaces
WO2021126381A1 (en) Physical downlink control channel candidates related to physical downlink control channel repetitions
US20230284228A1 (en) Multiplexing higher priority and lower priority uplink control information on a physical uplink control channel
WO2022155873A1 (en) Multi-level time-domain scalable uplink channel resources
US20230091901A1 (en) Soft-information to help base station with duplex configuration
US20220014313A1 (en) Efficient turbo hybrid automatic repeat request feedback reporting
US11689314B2 (en) Flexible implicit modulation and coding scheme indication
EP4150806A1 (en) Link adaptation upon beam blocking determination
WO2021184184A1 (en) Modulation and coding scheme indication for multi-slot transmissions
US11963031B2 (en) Techniques for receiver-specific network coding redundancy
US11968697B2 (en) Spatial reuse for sidelink communications
WO2023130421A1 (en) Uplink switching for concurrent transmissions
US20230055926A1 (en) Techniques for receiver-specific network coding redundancy
WO2023193131A1 (en) Enhancement for aperiodic sounding reference signal scheduling
WO2023070518A1 (en) Codebook consideration for dynamic antenna adaptation
WO2022006850A1 (en) Transmitting encoding symbol identifier of raptor codes using control channel coding
US20230254092A1 (en) Flexible feedback with outer coding
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
WO2022104587A1 (en) Constellation shaping configuration and feedback
WO2023141846A1 (en) Techniques for precoding matrix indicator reporting
US20220239411A1 (en) Determining uplink control channel repetition factors
WO2022056807A1 (en) Rateless coding over a packet data convergence protocol layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926332

Country of ref document: EP

Kind code of ref document: A1