WO2021182665A1 - On-site hydrogen flow rate calibration system - Google Patents

On-site hydrogen flow rate calibration system Download PDF

Info

Publication number
WO2021182665A1
WO2021182665A1 PCT/KR2020/004012 KR2020004012W WO2021182665A1 WO 2021182665 A1 WO2021182665 A1 WO 2021182665A1 KR 2020004012 W KR2020004012 W KR 2020004012W WO 2021182665 A1 WO2021182665 A1 WO 2021182665A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
valve
flow meter
tank
flow rate
Prior art date
Application number
PCT/KR2020/004012
Other languages
French (fr)
Korean (ko)
Inventor
강웅
백운봉
이생희
신진우
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2021182665A1 publication Critical patent/WO2021182665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a hydrogen flow rate field calibration system. More specifically, as a technology that can verify the measurement accuracy of the hydrogen filling amount injected from the hydrogen station to the hydrogen electric vehicle, we developed a mass measurement method on-site calibration system of the mass measurement method retrospectively from the national measurement standard. It is about a hydrogen flow rate field calibration system that can verify the measurement accuracy at the hydrogen station site.
  • the method of paying the cost according to the amount of hydrogen charged is imposed by the mass value of hydrogen gas measured by a hydrogen flow meter (Coriolis mass flow meter) in the hydrogen charger (dispenser).
  • 1 shows a hydrogen flow filling process at a hydrogen filling station.
  • 2 shows an image of a hydrogen vehicle charging of a hydrogen charger.
  • FIG. 3 is a photograph showing a Coriolis type mass flow meter installed in a hydrogen charger (dispenser).
  • 4 is a block diagram showing the principle of a Coriolis flow meter.
  • the Coriolis mass flow meter applied to domestic hydrogen chargers uses the principle that the change by the Coriolis force acting on a rotating object has a linear relationship with the mass flow as shown in FIG. Unlike the flow meters of The mass can be measured directly without
  • FIG. 5 shows a photograph of a Coriolis mass flow meter of Rheonic Corporation.
  • Each Coriolis mass flow meter development company has its own technology, and FIG. 5 shows the Coriolis flow rate of Leonyx, which is mainly used in domestic charging stations.
  • the omega shape is distorted by the Coriolis force, and the flow rate is determined by measuring the phase difference of the twist angle.
  • the reference flow rate should be a measurement value retrospectively from a national standard (eg, the gas flow standard system of the Korea Research Institute of Standards and Science) or an accredited calibration institution (eg, KOLAS Korean Accreditation Organization) so that the calibration certificate is reliable, can be recognized
  • a national standard eg, the gas flow standard system of the Korea Research Institute of Standards and Science
  • an accredited calibration institution eg, KOLAS Korean Accreditation Organization
  • the inventors of the present invention visited a domestic hydrogen filling station and checked the calibration report of the installed hydrogen flow meter. 6 shows a calibration report of a Coriolis mass flow meter in a domestic hydrogen charger.
  • each Coriolis mass flow meter in the domestic dispenser was calibrated and issued a calibration report, and it can be seen that the error is very accurate at 0.1% level. It can be seen that the uncertainty of a typical gas flow meter is 0.5 to 1%, and it is very accurate compared to 3%, which is the highest accuracy standard for hydrogen flow currently enacted by OIML (International Organization for Legal and Measures).
  • FIG. 7 is a block diagram showing the calibration of the Coriolis mass flow meter using the water flow calibration system.
  • the medium in which the calibration was made was made of water, not hydrogen.
  • the Coriolis mass flowmeter is a flowmeter that measures mass directly, it is calibrated within the same mass range as water under the assumption that it can be calibrated as a mass.
  • the flow rate of water in the storage tank is controlled with a pump and flowed to a Coriolis mass flow meter, and water is stored in a storage tank placed on the scale at the rear end, and finally as a scale.
  • the mass flow rate (kg/s) can be corrected.
  • the mass is the same as the filling condition of hydrogen, but the pressure is also made under atmospheric conditions (similar to atmospheric pressure), the temperature is also similar to atmospheric conditions, and the effect of density due to the difference between hydrogen gas and liquid water is not considered. It can be understood that calibration was performed by matching only the mass.
  • the flowmeter installed in the domestic hydrogen charger is a Coriolis-type mass flowmeter that can directly measure the mass of a flowing gas using the Coriolis force principle, and the method of calibration with liquid (water) is applied under the same mass flow condition.
  • the correlation with the measurement accuracy during charging under high-pressure and low-temperature conditions of hydrogen gas which is the condition in which hydrogen is injected.
  • the high pressure that is actually charged with hydrogen is a calibration method retroactive to the national measurement standard.
  • it is essential to calibrate the hydrogen flow meter in the hydrogen charger under low-temperature conditions.
  • the International Organization for Legal Metrology (OIML), revised in 2018, sets the maximum allowable error of a hydrogen flow meter between 1.5% and 2.0% according to the accuracy class (2, 4).
  • OIML The International Organization for Legal Metrology
  • a hydrogen flow rate field calibration system of a mass measurement method retrospectively from the national flow rate measurement standard was developed, and hydrogen in a hydrogen station was developed.
  • hydrogen is injected into an electric vehicle, it provides a technology that charges the hydrogen gas in the hydrogen storage tank in the system under high pressure and low temperature conditions, and measures the mass of the charged hydrogen gas with a precision scale to verify the measurement accuracy.
  • a precision scale to verify the measurement accuracy.
  • evaluation means for evaluating the characteristics of the flow meter to be calibrated by comparing the integrated mass of hydrogen measured through the precision balance and the integrated mass of hydrogen measured through the calibration target flow meter; further comprising, at one side of the front end of the supply pipe A first check valve provided, a first valve provided on one side of the stop of the supply pipe, a second valve provided on one side of the front end of the branch pipe, a third valve provided on one side of the rear end of the branch pipe, and one side of the inlet pipe It may be characterized by including an inlet valve provided in each.
  • the vent system includes an exhaust pipe connected to the outside of the housing from the supply pipe and the branch pipe, and a pressure control valve provided on one side of the exhaust pipe
  • the purging system includes a storage tank for storing inert gas; It may include a purge pipe connected between the inlet pipe and the storage tank to inject an inert gas in the storage tank into the hydrogen tank, and a purge valve provided at one side of the purge pipe.
  • a support provided at the lower end of the precision scale, and a movable support including a damper provided between the support and the housing; further comprising, in a system movement mode, configured to protect the precision scale and the inside of the housing can be characterized.
  • the precision scale, the calibration target flowmeter, the first temperature sensor, the first pressure sensor, the second temperature sensor, and the second pressure sensor acquire the measured data, the inlet valve, the It may further include a pressure control valve, the first valve, the second valve, the third valve, the control unit for controlling the operation of the purge valve.
  • the second valve, the third valve, the exhaust valve, and the purge valve are closed, the first valve and the inlet valve are opened, and the nozzle part is
  • the integrated mass of hydrogen measured through the precision scale and the integrated mass of hydrogen measured through the flow meter in the hydrogen charger are compared to determine the characteristics of the flow meter in the hydrogen charger. It can be characterized by evaluation.
  • the first valve, the exhaust valve, and the purge valve are closed, the second valve, the third valve, and the inlet valve are opened, and the nozzle unit is
  • the integrated mass of hydrogen measured through the precision scale and the integrated mass of hydrogen measured through the calibration target flow meter are compared to evaluate the characteristics of the flow meter to be calibrated can be characterized as
  • the first valve, the second valve, the third valve, and the purge valve are closed, the nozzle unit is removed, the inlet valve is opened, and the pressure control valve is adjusted
  • the hydrogen in the hydrogen tank is vented.
  • the pressure control valve is closed, the purge valve is opened to inject the inert gas in the storage tank into the hydrogen tank, and then the moving support is installed to move the system.
  • a hydrogen flow rate field calibration system of a mass measurement method retrospectively from the national flow rate measurement standard was developed, and in the same way as the method in which hydrogen is injected from a hydrogen station to a hydrogen electric vehicle,
  • the hydrogen storage tank in the system is filled with hydrogen gas under high pressure and low temperature conditions, and the mass of the filled hydrogen gas is measured with a precision scale to verify the measurement accuracy.
  • 1 is a hydrogen flow filling process at a hydrogen filling station
  • FIG 3 is a photo of a Coriolis-type mass flow meter installed in a hydrogen charger (dispenser);
  • FIG. 4 is a block diagram showing the principle of a Coriolis flow meter
  • FIG. 7 is a configuration diagram showing the calibration of a Coriolis mass flow meter using a water flow calibration system
  • FIG. 8 is a conceptual diagram of a hydrogen flow field calibration system according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a signal flow of the control unit of the hydrogen flow field calibration system according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation in a hydrogen charger according to an embodiment of the present invention
  • FIG. 12 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation individually installed in a system according to an embodiment of the present invention
  • FIG. 13 is a cross-sectional view of a hydrogen flow rate field calibration system according to an embodiment of the present invention in an exhaust mode
  • FIG. 14 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a purging mode
  • FIG. 15 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a moving mode
  • 16 is an example photo used for a truck, etc. when moving to the site;
  • FIG. 17 is a perspective view of a hydrogen flow rate field calibration system manufactured according to an embodiment of the present invention.
  • FIG. 19 is a photograph of a case of using high-pressure nitrogen gas in a hydrogen flow field calibration system manufactured according to an experimental example of the present invention, a photograph of a DAQ system,
  • 20 is a pressure change graph of the storage tank of the field calibration system during nitrogen filling (5 minutes 45 seconds) according to an experimental example of the present invention
  • 21 is a graph of change in instantaneous flow rate (kg/min) of a Coriolis flow meter during nitrogen charging (5 minutes 45 seconds) according to an experimental example of the present invention
  • FIG. 22 is a graph showing a comparison graph of the integrated mass (kg) of the lower precision balance of the storage tank and the integrated mass (kg) of the Coriolis flowmeter according to the experimental example of the present invention.
  • control unit 91 display unit 92: evaluation means
  • FIG. 8 shows a conceptual diagram of the hydrogen flow field calibration system according to an embodiment of the present invention.
  • the system It is a technology to verify the accuracy of weighing by filling the hydrogen storage tank with hydrogen gas under high pressure and low temperature conditions and measuring the mass of the charged hydrogen gas with a precision scale.
  • FIG. 9 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention.
  • Figure 10 is a block diagram showing a signal flow of the control unit of the hydrogen flow field calibration system according to an embodiment of the present invention.
  • the hydrogen flow rate field calibration system 100 As shown in Figure 9, the hydrogen flow rate field calibration system 100 according to the embodiment of the present invention, as a whole, the housing 1, the receptacle (Receptacle) (10), a plurality of hydrogen tanks (Hydrogen Storage Tank) (30), precision scale (Weighing Scale) (20), calibration target flowmeter (Coriolis flowmeter) (40) vent system (50), purging system (60), transport support (70), It can be seen that the control unit (DAQ) 90 and the like may be included.
  • the control unit (DAQ) 90 and the like may be included.
  • the housing 1 has an inner space and a closed outer surface.
  • the receptacle 10 is provided on one side of the outer surface of the housing 1 so that the hydrogen station dispenser nozzle part 2 is connected when charging.
  • the hydrogen tank 30 stores injected hydrogen, and may be composed of three Type IV 52L tanks applied by NEXO of Hyundai Motor Company, for example. It can be seen that each of the hydrogen tanks 30 has a first temperature sensor 33 that measures the temperature of the hydrogen injected in real time, and a first pressure sensor 34 that measures the pressure in real time. In addition, a thermocouple capable of more accurately measuring the temperature change during the injection process may be installed.
  • the precision scale 20 is provided at the lower end of the hydrogen tank 30 or at the lower end of the housing 1 as shown in FIG. 9 , and is configured to measure the mass of hydrogen collected into the hydrogen tank 30 . That is, it can measure the mass of injected hydrogen, and for example, it can be composed of a scale that will receive explosion-proof certification of Scale 300kg and Accuracy 1g.
  • the calibration target flowmeter 40 may be a Coriolis flowmeter, to measure the amount of hydrogen injected into the hydrogen tank 30, and to measure the temperature and pressure applied to the Coriolis flowmeter 40 when hydrogen is injected.
  • a second temperature sensor 41 and a second pressure sensor 42 are installed in the manifold in front of the flowmeter.
  • the vent system 50 is for preventing the hydrogen injected into the hydrogen tank 30 into the atmosphere at a low pressure, and may be composed of a pressure control valve 52 and a ball valve 53 .
  • the purging system 60 for purging the inert gas in the hydrogen tank 30 may be included in the movement mode of the system 100 .
  • the supply pipe 11 is configured to supply hydrogen injected through the receptacle 10
  • the inflow pipe 31 is branched from the end of the supply pipe 11 to the hydrogen tank 30 , respectively. It can be seen that it is configured to be connected with .
  • a first check valve 12 is provided on one side of the front end of the supply pipe 11
  • a first valve 13 is installed on one side of the middle of the supply pipe 11 .
  • an inlet valve 32 is provided at each side of the inlet pipe 31 .
  • the branch pipe 80 is branched at the middle of the supply pipe 11 and connected to the inflow pipe 31 , and a calibration target flow meter (Coriolis flow meter) 40 on one side of the branch pipe 80 . ) is provided to measure the flow rate of hydrogen injected into the hydrogen tank 30 .
  • a calibration target flow meter Coriolis flow meter
  • the second valve 81 is provided on one side of the front end of the branch pipe 80
  • the third valve 82 is installed on one side of the rear end of the branch pipe 80 .
  • vent system 50 is, as shown in FIG. 9, an exhaust pipe 51 connected to the outside of the housing 1 from the supply pipe 11 and the branch pipe 80, and this exhaust pipe 51 It can be seen that it is configured to include a pressure control valve 52 provided on one side.
  • the purging system 60 is connected between the storage tank 64 in which an inert gas such as nitrogen is stored, and the inlet pipe 31 and the storage tank 64, the storage tank 64 It may be configured to include a purge pipe 61 for injecting an inert gas in the hydrogen tank 30 into the hydrogen tank 30 , and a second check valve 62 and a purge valve 63 provided on one side of the purge pipe 61 .
  • the hydrogen flow rate on-site calibration system 100 raises the moving support unit 70 on the lower part of the entire system, protects the hydrogen tank 30 during movement, and prevents the weight from being applied to the precision scale 20 can be configured to protect.
  • the movable support 70 includes a support 71 provided at the lower end of the precision scale 20 and a plurality of dampers 72 provided between the support 71 and the housing 1 . Including, in the system movement mode, it can be configured to protect the precision scale 20 and the housing internal unit (hydrogen tank 30, etc.).
  • control unit 90 includes a precision scale 20 , a calibration target flowmeter (Coriolis flowmeter) 40 , a first temperature sensor 33 , a first pressure sensor 34 and , the second temperature sensor 41 and the second pressure sensor 42 are configured to acquire the measured data.
  • the measured and acquired data is configured to be displayed through the display unit 91 .
  • control unit 90 controls the driving of the inlet valve 32 , the pressure control valve 52 , the first valve 13 , the second valve 81 , the third valve 82 , and the purge valve 63 . This will control the mode change.
  • evaluation means 92 compares the integrated mass of hydrogen measured through the precision scale 20 with the integrated mass of hydrogen measured through the calibration target flowmeter 40 to evaluate the characteristics of the calibration target flowmeter 40 . .
  • FIG 11 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation in a hydrogen charger according to an embodiment of the present invention.
  • Figure 12 shows a cross-sectional view of the hydrogen flow rate field calibration system in the hydrogen charging mode for flow meter evaluation separately installed in the system according to an embodiment of the present invention.
  • Figure 13 shows a cross-sectional view of the hydrogen flow rate field calibration system according to an embodiment of the present invention in the exhaust mode
  • Figure 14 shows a cross-sectional view of the hydrogen flow rate field calibration system according to the embodiment of the present invention in the purging mode
  • 15 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a moving mode
  • FIG. 16 shows an example photo used for a truck or the like when moving to the field.
  • the hydrogen station dispenser nozzle unit 2 is connected to the receptacle 10 , hydrogen is supplied, and the supplied hydrogen is injected into the hydrogen tank 30 through the supply pipe 11 and the inlet pipe 31 .
  • the characteristics of the flow meter in the hydrogen charger are evaluated by comparing the accumulated mass of hydrogen measured by the precision scale 20 with the accumulated mass of hydrogen measured by the flow meter in the hydrogen charger.
  • the first valve 13 the pressure control valve 52, and the purge valve ( 63) is closed, and it can be seen that the second valve 81, the third valve 82, and the inlet valve 32 are opened.
  • the first valve 13, the second valve 81, the third valve 82, and the purge valve 63 are closed, and the nozzle unit ( It can be seen that after removing 2), the inlet valve 32 is opened and the pressure control valve 52 is adjusted to vent the hydrogen in the hydrogen tank 30 .
  • the pressure control valve 52 is closed and the purge valve 63 is opened to inject nitrogen in the storage tank 64 into the hydrogen tank 30 . That is, it is possible to execute a purging mode for filling nitrogen, not hydrogen, in the hydrogen tank 30 for safe movement of the field calibration system 100 to the field.
  • the moving support 70 in the moving mode, after changing the moving support 70 to protect the precision scale 20, it can be moved to the charging station site.
  • FIG. 16 when moving to the charging station site, it can be moved to a truck using a forklift, etc., and can be directly mounted on a truck or the like to move the truck to the charging station site and perform a flow meter performance test in the mounted state.
  • FIG. 17 shows a perspective view of a hydrogen flow field calibration system manufactured according to an embodiment of the present invention
  • FIG. 18 shows a photograph of a hydrogen flow rate field calibration system manufactured according to an embodiment of the present invention
  • FIG. 19 shows a photograph of a case of using high-pressure nitrogen gas in the hydrogen flow field calibration system manufactured according to an experimental example of the present invention, and a photograph of the DAQ system.
  • FIG. 20 shows a pressure change graph of the storage tank of the field calibration system during nitrogen filling (5 minutes 45 seconds) according to an experimental example of the present invention.
  • FIG. 21 is a graph showing a change in instantaneous flow rate (kg/min) of a Coriolis flow meter during nitrogen charging (5 minutes 45 seconds) according to an experimental example of the present invention.
  • FIG. 22 shows a comparison graph of the integrated mass (kg) of the lower precision balance of the storage tank and the integrated mass (kg) of the Coriolis flow meter according to the experimental example of the present invention.
  • 17 shows the final design of the conceptually designed gravimetric field calibration system.
  • 18 is a demonstration of the produced hydrogen flow rate field calibration system
  • a 100 bar nitrogen tank was connected to the inlet of the hydrogen flow field calibration system of the same type as the receptacle of the hydrogen electric vehicle, and the high-pressure nitrogen passed through the hydrogen flow meter, and then the valve was operated to be stored in the hydrogen tank. That is, the flow rate of nitrogen gas supplied from the nitrogen tank is measured with a Coriolis flow meter installed in the hydrogen flow field calibration system, and the nitrogen gas passing through the flow meter is stored in the tank.
  • the mass of the stored gas can be measured through the precision scale at the bottom of the tank. Thus, it is possible to evaluate the measurement characteristics of the flowmeter.
  • 21 is a result showing the instantaneous flow rate (kg/min) of the Coriolis flow meter while nitrogen gas is being filled, and initially injected at a large flow rate of 0.5 kg/min when the pressure difference between the nitrogen tank and the storage tank of the field calibration system is large.
  • the pressure difference with the nitrogen tank is reduced, and is gradually reduced to 0.1 kg/min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to an on-site hydrogen flow rate calibration system. More specifically, the present invention relates to an on-site hydrogen flow rate calibration system capable of verifying the measurement accuracy of the charged amount of hydrogen being injected into a hydrogen electric vehicle from a hydrogen station. An on-site hydrogen flow rate calibration system using a mass measurement method based on national measurement standards was developed, whereby the measurement accuracy of a hydrogen flow meter in a hydrogen charger can be verified on-site at a hydrogen station.

Description

수소 유량 현장 교정시스템Hydrogen Flow Field Calibration System
본 발명은 수소 유량 현장 교정시스템에 관한 것이다. 보다 상세하게는 수소스테이션에서 수소전기차로 주입되는 수소충전량의 계량정확도를 검증할 수 있는 기술로서, 국가측정표준으로부터 소급된 질량측정방식의 수소유량 현장교정시스템을 개발하여, 수소충전기 내의 수소유량계의 계량정확도를 수소스테이션 현장에서 검증할 수 있는 수소 유량 현장 교정시스템에 대한 것이다. The present invention relates to a hydrogen flow rate field calibration system. More specifically, as a technology that can verify the measurement accuracy of the hydrogen filling amount injected from the hydrogen station to the hydrogen electric vehicle, we developed a mass measurement method on-site calibration system of the mass measurement method retrospectively from the national measurement standard. It is about a hydrogen flow rate field calibration system that can verify the measurement accuracy at the hydrogen station site.
수소스테이션에서 수소전기차를 충전할 때, 수소충전량에 따른 비용을 지불하는 방법은 수소충전기(디스펜서)내에 수소유량계(코리올리식 질량유량계)가 측정하는 수소 기체의 질량값에 의해 부과된다. 도 1은 수소충전소에서의 수소유량 충전 프로세스를 나타낸 것이다. 도 2는 수소충전기의 수소차 충전 이미지를 도시한 것이다. When charging a hydrogen electric vehicle at a hydrogen station, the method of paying the cost according to the amount of hydrogen charged is imposed by the mass value of hydrogen gas measured by a hydrogen flow meter (Coriolis mass flow meter) in the hydrogen charger (dispenser). 1 shows a hydrogen flow filling process at a hydrogen filling station. 2 shows an image of a hydrogen vehicle charging of a hydrogen charger.
수소충전기를 통해 수소자동차로 수소가 주입될 때에는 제한된 저장탱크의 부피에서 충전효율을 높이기 위해 수소기체 상태로 고압(700 기압), 저온(영하 40도씨)의 가혹한 조건에서 충전이 된다. 도 3은 수소충전기(디스펜서) 내에 설치되어 있는 코리올리식 질량유량계 사진을 나타낸 것이다. 도 4는 코리올리스 유량계의 원리를 나타낸 구성도를 도시한 것이다. When hydrogen is injected into a hydrogen vehicle through a hydrogen charger, it is charged under harsh conditions of high pressure (700 atmospheres) and low temperature (-40 degrees Celsius) in the state of hydrogen gas in order to increase the charging efficiency in the limited volume of the storage tank. 3 is a photograph showing a Coriolis type mass flow meter installed in a hydrogen charger (dispenser). 4 is a block diagram showing the principle of a Coriolis flow meter.
국내 수소충전기에 적용되고 있는 코리올리스 질량유량계는 도 4에 도시된 바와 같이 회전하는 물체에 작용하는 코리올리힘에 의한 변화가 질량유량과 선형적인 관계를 갖는 원리를 이용함으로써 기존의 차압식, 회전식 원리의 유량계와는 달리 부피유량을 측정하는 것이 아니라, 질량유량을 직접적으로 측정할 수 있기 때문에, 압력이 700 bar까지 상승하고, 온도가 -40 ~80 ℃까지 변하는 과도적인 상태에서도 밀도의 보정이 필요 없이 질량을 직접적으로 측정할 수 있다.The Coriolis mass flow meter applied to domestic hydrogen chargers uses the principle that the change by the Coriolis force acting on a rotating object has a linear relationship with the mass flow as shown in FIG. Unlike the flow meters of The mass can be measured directly without
도 5는 레오닉사의 코리올리스 질량유량계 사진을 나타낸 것이다. 각 코리올리스 질량유량계 개발회사들 마다 각각의 고유의 기술을 가지고 있는데, 도 5는 국내 충전소에서 주로 사용되고 있는 레오닉사의 코리올리스 유량으로서 오메가(Omega)형사의 유로를 수소가 통과하면서 코리올리스 힘을 일으키게 되고, 유동이 있을때에는 코리올리스 힘에 의해서 오메가 형상이 뒤틀리게 되는데, 이 뒤틀림 각도의 위상차를 측정하여 유량을 결정하게 된다. 5 shows a photograph of a Coriolis mass flow meter of Rheonic Corporation. Each Coriolis mass flow meter development company has its own technology, and FIG. 5 shows the Coriolis flow rate of Leonyx, which is mainly used in domestic charging stations. When there is a flow, the omega shape is distorted by the Coriolis force, and the flow rate is determined by measuring the phase difference of the twist angle.
국내 수소충전소 디스펜서에서는 독일 유량계회사(레오닉, 코볼드)의 코리올리스 질량유량계가 사용되게 되는데, 수소유량 측정에 사용하기 위해서는 교정(Calibration)을 반드시 거치게 된다. 교정은 개발된 유량계가 기준유량값과의 차이의 정도를 오차(Error)로 나타내고, 이 오차가 갖는 불확도(Uncertainty)를 표시하게 된다. In domestic hydrogen filling station dispensers, Coriolis mass flowmeters from German flowmeter companies (Reonik, Kobold) are used, and calibration must be performed to use them for hydrogen flow measurement. Calibration indicates the degree of difference between the developed flowmeter and the reference flow rate as an error and displays the uncertainty of this error.
기준 유량은 국가표준(예를 들면 한국표준과학연구원의 기체유량표준시스템) 혹은 공인교정기관(예를 들면, KOLAS 한국인정기구)에서 소급된 측정값이어야지 교정성적서(Certificate)가 신뢰할 수 있고, 인정받을 수 있다. 본 발명의 발명자들은 현재 국내 수소충전소를 방문하여 설치된 수소유량계의 교정성적서를 확인하여 보았다. 도 6은 국내 수소충전기내 코리올리스 질량유량계의 교정성적서를 나타낸 것이다. The reference flow rate should be a measurement value retrospectively from a national standard (eg, the gas flow standard system of the Korea Research Institute of Standards and Science) or an accredited calibration institution (eg, KOLAS Korean Accreditation Organization) so that the calibration certificate is reliable, can be recognized The inventors of the present invention visited a domestic hydrogen filling station and checked the calibration report of the installed hydrogen flow meter. 6 shows a calibration report of a Coriolis mass flow meter in a domestic hydrogen charger.
도 6에 나타난 바와 같이, 국내 디스펜서 내의 코리올리스 질량유량계는 각각 교정을 수행하여 교정성적서를 발급받았고, 오차(Error)가 0.1% 수준으로 매우 정확한 것을 알 수 있다. 이는 일반적인 기체유량계의 불확도가 0.5 ~ 1% 수준이고, 현재 OIML(국제법정계량기구)에서 제정중인 수소유량에 대한 최고 정확도 기준인 3%에 비해 매우 정확하다고 볼 수 있다. As shown in FIG. 6 , each Coriolis mass flow meter in the domestic dispenser was calibrated and issued a calibration report, and it can be seen that the error is very accurate at 0.1% level. It can be seen that the uncertainty of a typical gas flow meter is 0.5 to 1%, and it is very accurate compared to 3%, which is the highest accuracy standard for hydrogen flow currently enacted by OIML (International Organization for Legal and Measures).
도 7은 물유량교정시스템을 이용한 코리올리스 질량유량계의 교정을 나타낸 구성도를 도시한 것이다. 그 이유로는 도 7에 도시된 바와 같이 교정이 이루어진 매질이 수소가 아닌 물로 이루어진 것임을 알 수 있었다. 즉 코리올리스 질량유량계는 질량을 바로 측정하는 원리의 유량계이기 때문에 질량으로서 교정이 가능하다는 가정아래 물로서 같은 질량 범위안에서 교정을 한 것이다. 7 is a block diagram showing the calibration of the Coriolis mass flow meter using the water flow calibration system. As a reason, as shown in FIG. 7, it was found that the medium in which the calibration was made was made of water, not hydrogen. In other words, since the Coriolis mass flowmeter is a flowmeter that measures mass directly, it is calibrated within the same mass range as water under the assumption that it can be calibrated as a mass.
도 7에 도시된 바와 같이, 저장조에 있는 물을 펌프로 유량을 조절하고 코리올리스 질량유량계로 흘려보내서, 후단에 저울(Scale) 위에 놓은 저장탱크에 물을 저장하고, 최종적으로 저울(Scale)로서 저장된 물의 질량을 측정하고, 저장되는 동안 걸린 시간을 측정하면 질량유량(kg/s)를 교정할 수 있게 되는 것이다. As shown in Fig. 7, the flow rate of water in the storage tank is controlled with a pump and flowed to a Coriolis mass flow meter, and water is stored in a storage tank placed on the scale at the rear end, and finally as a scale. By measuring the mass of stored water and measuring the time taken during storage, the mass flow rate (kg/s) can be corrected.
이는 질량은 수소의 충전조건과 동일하다고 볼 수 있지만, 압력도 상압조건(대기압과 유사)에서 이루어지고, 온도도 대기조건과 유사하고, 수소기체와 액체인 물의 차이에 의한 밀도의 영향도 고려되지 않은 채, 질량만 매칭하여 교정을 수행한 것으로 이해할 수 있다. It can be seen that the mass is the same as the filling condition of hydrogen, but the pressure is also made under atmospheric conditions (similar to atmospheric pressure), the temperature is also similar to atmospheric conditions, and the effect of density due to the difference between hydrogen gas and liquid water is not considered. It can be understood that calibration was performed by matching only the mass.
현재 국내 수소충전기에 설치된 유량계는 코리올리 힘 원리를 이용하여 흐르는 기체의 질량을 직접 측정할 수 있는 코리올리식 질량유량계로서, 동일한 질량 유량 조건에서 액체(물)로 교정하는 방법을 적용하고 있다. 그러나, 수소가 주입되는 조건인 수소기체의 고압, 저온조건에서의 충전시 측정정확도와의 상관관계는 밝혀진 연구결과가 없는 상황이다.Currently, the flowmeter installed in the domestic hydrogen charger is a Coriolis-type mass flowmeter that can directly measure the mass of a flowing gas using the Coriolis force principle, and the method of calibration with liquid (water) is applied under the same mass flow condition. However, there is no research result on the correlation with the measurement accuracy during charging under high-pressure and low-temperature conditions of hydrogen gas, which is the condition in which hydrogen is injected.
특히, 현재 국내 수소스테이션에서 수소유량계를 통해 계량한 수소충전량과 수소전기차의 저장탱크의 온도 및 압력센서로 계산하여 연료게이지로 표시되는 수소충전량 사이의 차이가 발생하여 수소스테이션의 운영자와 수소전기차의 소비자들에게 거래 신뢰성을 확보하고 있지 못하고 있다.In particular, there is a difference between the hydrogen filling amount measured through a hydrogen flow meter at the current domestic hydrogen station and the hydrogen filling amount calculated by the temperature and pressure sensor of the storage tank of the hydrogen electric vehicle and displayed on the fuel gauge. It does not secure transaction reliability to consumers.
따라서 수소스테이션에서의 수소전기차로의 수소충전 계량정확도를 확보하고, 수소스테이션과 수소전기차를 이용하는 소비자들을 보호하기 위한, 상거래 질서 확립을 위해서는 국가측정표준에서 소급된 교정방법으로 실제 수소가 충전되는 고압, 저온의 조건에서 수소충전기내 수소유량계를 교정하는 기술이 필수적이다Therefore, in order to secure the metering accuracy of hydrogen charging from the hydrogen station to the hydrogen electric vehicle, and to protect the consumers using the hydrogen station and hydrogen electric vehicle, and to establish an order for commerce transactions, the high pressure that is actually charged with hydrogen is a calibration method retroactive to the national measurement standard. However, it is essential to calibrate the hydrogen flow meter in the hydrogen charger under low-temperature conditions.
2018년에 개정된 국제법정계량기구(OIML) 규정은 정확도 등급(2, 4)에 따라 수소유량계의 최대허용오차를 1.5% ~ 2.0%으로 정하고 있으나, 고압 및 저온의 수소로 수소유량계를 교정할 수 있는 설비는 국내에는 전무하며, 외국 사례(일본, 미국)에서 초기 단계의 연구로 활용되기 시작하였다. 따라서, 수소충전기 내의 수소유량계를 수소충전 주입조건에서의 계량정확도를 검증하기 위해서는 수소스테이션 현장에서 교정이 이루어져야 한다.The International Organization for Legal Metrology (OIML), revised in 2018, sets the maximum allowable error of a hydrogen flow meter between 1.5% and 2.0% according to the accuracy class (2, 4). There is no such facility in Korea, and it has started to be used as an early stage study in foreign cases (Japan and the United States). Therefore, in order to verify the metering accuracy of the hydrogen flow meter in the hydrogen charger under the hydrogen filling injection conditions, calibration should be done at the hydrogen station site.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 국가 유량 측정표준으로부터 소급된 질량측정방식의 수소유량 현장교정시스템을 개발하여, 수소스테이션에서 수소전기차로 수소가 주입되는 방식과 동일하게, 시스템 내의 수소저장탱크에 고압, 저온조건으로 수소기체를 충전하고, 충전된 수소기체의 질량을 정밀 저울로 측정하여 계량정확도를 검증하는 기술을 제공하는데 그 목적이 있다. Therefore, the present invention has been devised to solve the conventional problems as described above. According to an embodiment of the present invention, a hydrogen flow rate field calibration system of a mass measurement method retrospectively from the national flow rate measurement standard was developed, and hydrogen in a hydrogen station was developed. In the same way that hydrogen is injected into an electric vehicle, it provides a technology that charges the hydrogen gas in the hydrogen storage tank in the system under high pressure and low temperature conditions, and measures the mass of the charged hydrogen gas with a precision scale to verify the measurement accuracy. There is a purpose.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood
본 발명의 목적은, 수소 유량계를 현장 교정하기 위한 시스템에 있어서, 내부 공간을 갖는 하우징; 상기 하우징 일측에 구비되어 충전시 수소스테이션 디스펜서 노즐부가 연결되는 리셉타클; 주입되는 수소가 저장되며 주입되는 수소의 온도를 실시간으로 측정하는 제1온도센서와, 압력을 실시간으로 측정하는 제1압력센서를 갖는 적어도 하나의 수소탱크; 상기 리셉타클을 통해 주입되는 수소가 공급되는 공급관; 상기 공급관 끝단에 분기되어 상기 수소탱크 각각과 연결되는 유입관; 상기 공급관 중단에 분기되어 상기 유입관과 연결되는 분기관과, 상기 분기관 일측에 구비되어 상기 수소탱크로 주입되는 수소의 유량을 측정하는 교정대상 유량계; 상기 교정대상 유량계 전단에 구비되어 상기 수소의 온도를 실시간으로 측정하는 제2온도센서와, 압력을 실시간으로 측정하는 제2압력센서; 상기 수소탱크 하단 또는 상기 하우징 하단에 구비되어, 상기 수소탱크 내로 수집되는 수소의 질량을 측정하는 정밀저울; 교정 평가 완료 후, 상기 수소탱크 내의 수소를 배기시키는 벤트시스템; 및 상기 교정 평가 완료 후, 상기 시스템의 이동모드시, 상기 수소탱크 내에 불활성 기체를 퍼징시키기 위한 퍼징시스템;을 포함하는 것을 특징으로 하는 수소 유량 현장 교정시스템으로서 달성될 수 있다. SUMMARY OF THE INVENTION It is an object of the present invention to provide a system for on-site calibration of a hydrogen flow meter, comprising: a housing having an interior space; a receptacle provided on one side of the housing to which the hydrogen station dispenser nozzle unit is connected when charging; At least one hydrogen tank having a first temperature sensor for storing the injected hydrogen and measuring the temperature of the injected hydrogen in real time, and a first pressure sensor for measuring the pressure in real time; a supply pipe through which hydrogen injected through the receptacle is supplied; an inlet pipe branched from the end of the supply pipe and connected to each of the hydrogen tanks; a branch pipe branched at the stop of the supply pipe and connected to the inlet pipe, and a calibration target flow meter provided at one side of the branch pipe to measure the flow rate of hydrogen injected into the hydrogen tank; a second temperature sensor provided at the front end of the calibration target flow meter to measure the temperature of the hydrogen in real time, and a second pressure sensor to measure the pressure in real time; a precision scale provided at the lower end of the hydrogen tank or at the lower end of the housing to measure the mass of hydrogen collected into the hydrogen tank; After completion of the calibration evaluation, a vent system for evacuating the hydrogen in the hydrogen tank; and a purging system for purging the inert gas in the hydrogen tank during the movement mode of the system after completion of the calibration evaluation.
그리고 상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 교정대상 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 교정대상 유량계의 특성을 평가하는 평가수단;을 더 포함하고, 상기 공급관 전단 일측에 구비되는 제1체크밸브와, 상기 공급관 중단 일측에 구비되는 제1밸브와, 상기 분기관 전단 일측에 구비되는 제2밸브와, 상기 분기관 후단 일측에 구비되는 제3밸브와, 상기 유입관 일측 각각에 구비되는 유입밸브를 포함하는 것을 특징으로 할 수 있다. And evaluation means for evaluating the characteristics of the flow meter to be calibrated by comparing the integrated mass of hydrogen measured through the precision balance and the integrated mass of hydrogen measured through the calibration target flow meter; further comprising, at one side of the front end of the supply pipe A first check valve provided, a first valve provided on one side of the stop of the supply pipe, a second valve provided on one side of the front end of the branch pipe, a third valve provided on one side of the rear end of the branch pipe, and one side of the inlet pipe It may be characterized by including an inlet valve provided in each.
또한 상기 벤트시스템은, 상기 공급관과 상기 분기관에서 상기 하우징 외측으로 연결되는 배기관과, 상기 배기관 일측에 구비되는 압력조절밸브를 포함하고, 상기 퍼징시스템은, 불활성기체가 저장되는 저장탱크와, 상기 유입관과 상기 저장탱크 사이에 연결되어 상기 저장탱크 내의 불활성기체를 상기 수소탱크로 주입시키는 퍼지관과, 상기 퍼지관 일측에 구비되는 퍼지밸브를 포함하는 것을 특징으로 할 수 있다. In addition, the vent system includes an exhaust pipe connected to the outside of the housing from the supply pipe and the branch pipe, and a pressure control valve provided on one side of the exhaust pipe, and the purging system includes a storage tank for storing inert gas; It may include a purge pipe connected between the inlet pipe and the storage tank to inject an inert gas in the storage tank into the hydrogen tank, and a purge valve provided at one side of the purge pipe.
그리고 상기 정밀저울 하단에 구비되는 지지대와, 상기 지지대와 상기 하우징 사이에 구비되는 댐퍼를 포함하는 이동지지부;를 더 포함하여, 시스템 이동모드에서, 상기 정밀저울과 상기 하우징 내부를 보호하도록 구성되는 것을 특징으로 할 수 있다. And a support provided at the lower end of the precision scale, and a movable support including a damper provided between the support and the housing; further comprising, in a system movement mode, configured to protect the precision scale and the inside of the housing can be characterized.
또한 상기 정밀저울과, 상기 교정대상 유량계와, 상기 제1온도센서, 상기 제1압력센서와, 상기 제2온도센서와, 상기 제2압력센서에서 측정된 데이터를 획득하고, 상기 유입밸브, 상기 압력조절밸브, 상기 제1밸브, 상기 제2밸브, 상기 제3밸브, 상기 퍼지밸브의 구동을 제어하는 제어부;를 더 포함하는 것을 특징으로 할 수 있다. In addition, the precision scale, the calibration target flowmeter, the first temperature sensor, the first pressure sensor, the second temperature sensor, and the second pressure sensor acquire the measured data, the inlet valve, the It may further include a pressure control valve, the first valve, the second valve, the third valve, the control unit for controlling the operation of the purge valve.
그리고 수소 충전기 내의 유량계 평가용 수소충전모드시, 상기 제2밸브와 상기 제3밸브와, 상기 배기밸브와, 상기 퍼지밸브를 닫고, 상기 제1밸브와 상기 유입밸브를 개방하고, 상기 노즐부를 상기 리셉타클에 연결하여, 상기 수소탱크에 수소를 주입하면서 상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 수소 충전기 내의 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 수소 충전기 내의 유량계의 특성을 평가하는 것을 특징으로 할 수 있다. And in the hydrogen charging mode for flow meter evaluation in the hydrogen charger, the second valve, the third valve, the exhaust valve, and the purge valve are closed, the first valve and the inlet valve are opened, and the nozzle part is By connecting to the receptacle and injecting hydrogen into the hydrogen tank, the integrated mass of hydrogen measured through the precision scale and the integrated mass of hydrogen measured through the flow meter in the hydrogen charger are compared to determine the characteristics of the flow meter in the hydrogen charger. It can be characterized by evaluation.
또한 상기 교정대상 유량계 평가용 수소충전모드시, 상기 제1밸브와, 상기 배기밸브와, 상기 퍼지밸브를 닫고, 상기 제2밸브와 상기 제3밸브와 상기 유입밸브를 개방하고, 상기 노즐부를 상기 리셉타클에 연결하여, 상기 수소탱크에 수소를 주입하면서 상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 교정대상 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 교정대상 유량계의 특성을 평가하는 것을 특징으로 할 수 있다. In addition, in the hydrogen charging mode for evaluating the flow meter to be calibrated, the first valve, the exhaust valve, and the purge valve are closed, the second valve, the third valve, and the inlet valve are opened, and the nozzle unit is By connecting to a receptacle and injecting hydrogen into the hydrogen tank, the integrated mass of hydrogen measured through the precision scale and the integrated mass of hydrogen measured through the calibration target flow meter are compared to evaluate the characteristics of the flow meter to be calibrated can be characterized as
그리고 배기모드시, 교정평가 후에, 상기 제1밸브와, 상기 제2밸브, 상기 제3밸브, 상기 퍼지밸브를 닫고, 상기 노즐부를 탈착한 후, 상기 유입밸브를 개방하고 상기 압력조절밸브를 조절하여 상기 수소탱크 내의 수소를 벤트시키는 것을 특징으로 할 수 있다. In exhaust mode, after calibration evaluation, the first valve, the second valve, the third valve, and the purge valve are closed, the nozzle unit is removed, the inlet valve is opened, and the pressure control valve is adjusted Thus, it may be characterized in that the hydrogen in the hydrogen tank is vented.
또한 퍼징, 이동모드시, 상기 압력조절밸브를 닫고, 상기 퍼지밸브를 개방하여 상기 저장탱크 내의 불활성기체를 상기 수소탱크 내에 주입시킨 후, 상기 이동지지부를 설치하여 상기 시스템을 이동시키는 것을 특징으로 할 수 있다. In addition, in the purging and movement mode, the pressure control valve is closed, the purge valve is opened to inject the inert gas in the storage tank into the hydrogen tank, and then the moving support is installed to move the system. can
본 발명의 실시예에 따른 수소 유량 현장 교정시스템에 따르면, 국가 유량 측정표준으로부터 소급된 질량측정방식의 수소유량 현장교정시스템을 개발하여, 수소스테이션에서 수소전기차로 수소가 주입되는 방식과 동일하게, 시스템 내의 수소저장탱크에 고압, 저온조건으로 수소기체를 충전하고, 충전된 수소기체의 질량을 정밀 저울로 측정하여 계량정확도를 검증할 수 있는 효과를 갖는다. According to the hydrogen flow rate field calibration system according to an embodiment of the present invention, a hydrogen flow rate field calibration system of a mass measurement method retrospectively from the national flow rate measurement standard was developed, and in the same way as the method in which hydrogen is injected from a hydrogen station to a hydrogen electric vehicle, The hydrogen storage tank in the system is filled with hydrogen gas under high pressure and low temperature conditions, and the mass of the filled hydrogen gas is measured with a precision scale to verify the measurement accuracy.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. will be able
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical spirit of the present invention together with the detailed description of the present invention, so the present invention is limited only to the matters described in those drawings and should not be interpreted.
도 1은 수소충전소에서의 수소유량 충전 프로세스, 1 is a hydrogen flow filling process at a hydrogen filling station;
도 2는 수소충전기의 수소차 충전 이미지,2 is an image of a hydrogen car charging of a hydrogen charger;
도 3은 수소충전기(디스펜서) 내에 설치되어 있는 코리올리식 질량유량계 사진,3 is a photo of a Coriolis-type mass flow meter installed in a hydrogen charger (dispenser);
도 4는 코리올리스 유량계의 원리를 나타낸 구성도,4 is a block diagram showing the principle of a Coriolis flow meter;
도 5는 레오닉사의 코리올리스 질량유량계 사진,5 is a photo of a Coriolis mass flow meter of Rheonic Corporation;
도 6은 국내 수소충전기내 코리올리스 질량유량계의 교정성적서,6 is a calibration report of a Coriolis mass flow meter in a domestic hydrogen charger,
도 7은 물유량교정시스템을 이용한 코리올리스 질량유량계의 교정을 나타낸 구성도,7 is a configuration diagram showing the calibration of a Coriolis mass flow meter using a water flow calibration system;
도 8은 본 발명의 실시예에 따른 수소유량 현장교정시스템의 개념도, 8 is a conceptual diagram of a hydrogen flow field calibration system according to an embodiment of the present invention;
도 9는 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도, 9 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention;
도 10은 본 발명의 실시예에 따른 수소유량 현장교정시스템의 제어부의 신호흐름을 나타낸 블록도, 10 is a block diagram showing a signal flow of the control unit of the hydrogen flow field calibration system according to an embodiment of the present invention;
도 11은 본 발명의 실시예에 따른 수소충전기 내 유량계 평가용 수소충전모드에서의, 수소유량 현장교정시스템의 단면도, 11 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation in a hydrogen charger according to an embodiment of the present invention;
도 12는 본 발명의 실시예에 따른 시스템에 개별 설치된 유량계 평가용 수소충전모드에서의, 수소유량 현장교정시스템의 단면도, 12 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation individually installed in a system according to an embodiment of the present invention;
도 13은 배기모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도, 13 is a cross-sectional view of a hydrogen flow rate field calibration system according to an embodiment of the present invention in an exhaust mode;
도 14는 퍼징 모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도, 14 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a purging mode;
도 15는 이동 모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도, 15 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a moving mode;
도 16은 현장으로 이동시 트럭 등에 이용하는 예시 사진,16 is an example photo used for a truck, etc. when moving to the site;
도 17은 본 발명의 실시예에 따라 제작된 수소유량 현장교정시스템의 사시도, 17 is a perspective view of a hydrogen flow rate field calibration system manufactured according to an embodiment of the present invention;
도 18은 본 발명의 실시예에 따라 제작된 수소유량 현장교정시스템의 사진,18 is a photograph of a hydrogen flow rate field calibration system manufactured according to an embodiment of the present invention;
도 19는 본 발명의 실험예에 따른 제작된 수소유량 현장교정시스템에서 고압질소기체를 이용한 경우의 사진과, DAQ 시스템 사진,19 is a photograph of a case of using high-pressure nitrogen gas in a hydrogen flow field calibration system manufactured according to an experimental example of the present invention, a photograph of a DAQ system,
도 20은 본 발명의 실험예에 따른 질소 충전(5분45초) 동안의 현장교정시스템 저장탱크의 압력변화 그래프, 20 is a pressure change graph of the storage tank of the field calibration system during nitrogen filling (5 minutes 45 seconds) according to an experimental example of the present invention;
도 21은 본 발명의 실험예에 따른 질소 충전(5분45초) 동안의 코리올리스 유량계의 순간 유량(kg/min)의 변화 그래프,21 is a graph of change in instantaneous flow rate (kg/min) of a Coriolis flow meter during nitrogen charging (5 minutes 45 seconds) according to an experimental example of the present invention;
도 22는 본 발명의 실험예에 따른 저장탱크 하부 정밀저울 적산질량(kg)과 코리올리스 유량계 적산질량(kg) 비교그래프를 도시한 것이다. 22 is a graph showing a comparison graph of the integrated mass (kg) of the lower precision balance of the storage tank and the integrated mass (kg) of the Coriolis flowmeter according to the experimental example of the present invention.
<부호의 설명><Explanation of code>
1:하우징 2:수소스테이션 디스펜서 노즐부1: Housing 2: Hydrogen Station Dispenser Nozzle
10:리셉타클 20:정밀저울 30:저장탱크10: receptacle 20: precision scale 30: storage tank
31:유입관 32:유입밸브 31: inlet pipe 32: inlet valve
33:제1온도센서 34:제1압력센서 33: first temperature sensor 34: first pressure sensor
40:코리올리스 유량계 41:제2온도센서 42:제2압력센서 40: Coriolis flow meter 41: second temperature sensor 42: second pressure sensor
50:벤트시스템50: vent system
51:배기관 52:압력조절밸브 53:볼밸브51: exhaust pipe 52: pressure control valve 53: ball valve
60:퍼징시스템 61:퍼지관 62:제2체크밸브60: purging system 61: purge pipe 62: second check valve
63:퍼지밸브 64:저장탱크63: purge valve 64: storage tank
70:이동지지부 71:지지대 72:댐퍼70: movable support 71: support 72: damper
80:분기관 81:제2밸브 82:제3밸브80: branch pipe 81: second valve 82: third valve
83:합류관83: Union Hall
90:제어부 91:디스플레이부 92:평가수단90: control unit 91: display unit 92: evaluation means
100:수소 유량 현장 교정시스템100: Hydrogen flow field calibration system
이하에서는 본 발명의 실시예에 따른 수소유량 현장교정시스템의 구성, 기능 및 그 작동방법에 대해 설명하도록 한다, 먼저 도 8은 본 발명의 실시예에 따른 수소유량 현장교정시스템의 개념도를 도시한 것이다. 도 8에 도시된 바와 같이, 본 발명의 실시예에 따르면, 국가 유량 측정표준으로부터 소급된 질량측정방식의 수소유량 현장교정시스템으로서, 수소스테이션에서 수소전기차로 수소가 주입되는 방식과 동일하게, 시스템 내의 수소저장탱크에 고압, 저온조건으로 수소기체를 충전하고, 충전된 수소기체의 질량을 정밀 저울로 측정하여 계량정확도를 검증하는 기술이다.Hereinafter, the configuration, function, and operation method of the hydrogen flow field calibration system according to an embodiment of the present invention will be described. First, FIG. 8 shows a conceptual diagram of the hydrogen flow field calibration system according to an embodiment of the present invention. . As shown in FIG. 8 , according to an embodiment of the present invention, as a hydrogen flow rate field calibration system of a mass measurement method retroactive from the national flow rate measurement standard, the same as the method in which hydrogen is injected from a hydrogen station to a hydrogen electric vehicle, the system It is a technology to verify the accuracy of weighing by filling the hydrogen storage tank with hydrogen gas under high pressure and low temperature conditions and measuring the mass of the charged hydrogen gas with a precision scale.
도 9는 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도를 도시한 것이다. 그리고 도 10은 본 발명의 실시예에 따른 수소유량 현장교정시스템의 제어부의 신호흐름을 나타낸 블록도를 도시한 것이다. 9 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention. And Figure 10 is a block diagram showing a signal flow of the control unit of the hydrogen flow field calibration system according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 본 발명의 실시예에 따른 수소 유량 현장 교정시스템(100)은, 전체적으로, 하우징(1), 리셉타클(Receptacle)(10), 복수의 수소탱크(Hydrogen Storage Tank)(30), 정밀저울(Weighing Scale)(20), 교정대상 유량계(코리올리스 유량계)(40) 벤트(vent)시스템(50), 퍼징시스템(60), 이동지지부(Transport support)(70), 제어부(DAQ)(90) 등을 포함하여 구성될 수 있음을 알 수 있다. As shown in Figure 9, the hydrogen flow rate field calibration system 100 according to the embodiment of the present invention, as a whole, the housing 1, the receptacle (Receptacle) (10), a plurality of hydrogen tanks (Hydrogen Storage Tank) (30), precision scale (Weighing Scale) (20), calibration target flowmeter (Coriolis flowmeter) (40) vent system (50), purging system (60), transport support (70), It can be seen that the control unit (DAQ) 90 and the like may be included.
하우징(1)은 내부 공간을 가지며 폐쇄된 외면을 갖는다, 리셉타클(10)은 하우징(1) 외면 일측에 구비되어 충전시 수소스테이션 디스펜서 노즐부(2)가 연결되도록 구성된다. The housing 1 has an inner space and a closed outer surface. The receptacle 10 is provided on one side of the outer surface of the housing 1 so that the hydrogen station dispenser nozzle part 2 is connected when charging.
수소탱크(30)는 도 9에 도시된 바와 같이, 주입되는 수소가 저장되며, 예를 들어 현대자동차 사의 NEXO에서 적용 중인 Type Ⅳ의 52L 탱크 3개로 구성될 수 있다. 수소탱크(30) 각각은 주입되는 수소의 온도를 실시간으로 측정하는 제1온도센서(33)와, 압력을 실시간으로 측정하는 제1압력센서(34)를 가지고 있음을 알 수 있다. 또한, 주입과정의 온도변화를 보다 정확히 측정할 수 있는 열전대(Thermo-Couple)가 설치될 수 있다. As shown in FIG. 9 , the hydrogen tank 30 stores injected hydrogen, and may be composed of three Type IV 52L tanks applied by NEXO of Hyundai Motor Company, for example. It can be seen that each of the hydrogen tanks 30 has a first temperature sensor 33 that measures the temperature of the hydrogen injected in real time, and a first pressure sensor 34 that measures the pressure in real time. In addition, a thermocouple capable of more accurately measuring the temperature change during the injection process may be installed.
정밀저울(20)은 수소탱크(30) 하단 또는 도 9에 도시된 바와 같이, 하우징(1) 하단에 구비되어, 수소탱크(30) 내로 수집되는 수소의 질량을 측정하도록 구성됨을 알 수 있다. 즉, 주입된 수소의 질량을 측정할 수 있는 것으로 예를 들어, Scale 300kg, Accuracy 1g의 방폭인증을 받을 저울로 구성될 수 있다. It can be seen that the precision scale 20 is provided at the lower end of the hydrogen tank 30 or at the lower end of the housing 1 as shown in FIG. 9 , and is configured to measure the mass of hydrogen collected into the hydrogen tank 30 . That is, it can measure the mass of injected hydrogen, and for example, it can be composed of a scale that will receive explosion-proof certification of Scale 300kg and Accuracy 1g.
교정대상 유량계(40)는 코리올리스 유량계일 수 있으며, 수소탱크(30) 내로 주입되는 수소의 양을 측정하며, 수소가 주입될 때 코리올리스 유량계(40)에 가해지는 온도와 압력을 측정하기 위해 유량계 전단 매니폴더에 제2온도센서(41)와 제2압력센서(42)가 설치된다. The calibration target flowmeter 40 may be a Coriolis flowmeter, to measure the amount of hydrogen injected into the hydrogen tank 30, and to measure the temperature and pressure applied to the Coriolis flowmeter 40 when hydrogen is injected. A second temperature sensor 41 and a second pressure sensor 42 are installed in the manifold in front of the flowmeter.
그리고 본 발명의 실시예에 따른 벤트시스템(50)을 포함하여, 교정 평가 완료 후, 수소탱크(30) 내의 수소를 배기시킬 수 있도록 구성된다. 즉 벤트시스템(50)은 수소탱크(30)에 주입된 수소를 대기중으로 낮은 압력으로 방충하기 위한 것으로 압력조절밸브(52)와 볼밸브(53)로 구성될 수 있다. And, including the vent system 50 according to the embodiment of the present invention, after completion of the calibration evaluation, the hydrogen in the hydrogen tank 30 is configured to be exhausted. That is, the vent system 50 is for preventing the hydrogen injected into the hydrogen tank 30 into the atmosphere at a low pressure, and may be composed of a pressure control valve 52 and a ball valve 53 .
그리고 본 발명의 실시예에 따르면, 교정 평가 완료 후, 상기 시스템(100)의 이동모드시, 수소탱크(30) 내에 불활성 기체를 퍼징시키기 위한 퍼징시스템(60)을 포함하여 구성될 수 있다. And, according to an embodiment of the present invention, after completion of the calibration evaluation, the purging system 60 for purging the inert gas in the hydrogen tank 30 may be included in the movement mode of the system 100 .
또한 도 9에 도시된 바와 같이, 공급관(11)은 리셉타클(10)을 통해 주입되는 수소가 공급되도록 구성되며, 유입관(31)은 공급관(11) 끝단에 분기되어 수소탱크(30) 각각과 연결되도록 구성됨을 알 수 있다. 이러한 공급관(11) 전단 일측에는 제1체크밸브(12)가 구비되고, 공급관(11) 중단 일측에는 제1밸브(13)가 설치된다. 또한, 유입관(31) 일측 각각에는 유입밸브(32)가 구비된다. In addition, as shown in FIG. 9 , the supply pipe 11 is configured to supply hydrogen injected through the receptacle 10 , and the inflow pipe 31 is branched from the end of the supply pipe 11 to the hydrogen tank 30 , respectively. It can be seen that it is configured to be connected with . A first check valve 12 is provided on one side of the front end of the supply pipe 11 , and a first valve 13 is installed on one side of the middle of the supply pipe 11 . In addition, an inlet valve 32 is provided at each side of the inlet pipe 31 .
그리고 도 9에 도시된 바와 같이, 분기관(80)은 공급관(11) 중단에 분기되어 유입관(31)과 연결되고, 이러한 분기관(80) 일측에 교정대상 유량계(코리올리스 유량계)(40)가 구비되어 수소탱크(30)로 주입되는 수소의 유량을 측정하게 된다. And, as shown in FIG. 9 , the branch pipe 80 is branched at the middle of the supply pipe 11 and connected to the inflow pipe 31 , and a calibration target flow meter (Coriolis flow meter) 40 on one side of the branch pipe 80 . ) is provided to measure the flow rate of hydrogen injected into the hydrogen tank 30 .
또한, 분기관(80) 전단 일측에 제2밸브(81)가 구비되고, 분기관(80) 후단 일측에 제3밸브(82)가 설치된다. In addition, the second valve 81 is provided on one side of the front end of the branch pipe 80 , and the third valve 82 is installed on one side of the rear end of the branch pipe 80 .
또한, 앞서 언급한 벤트시스템(50)은, 도 9에 도시된 바와 같이, 공급관(11)과 분기관(80)에서 하우징(1) 외측으로 연결되는 배기관(51)과, 이러한 배기관(51) 일측에 구비되는 압력조절밸브(52)를 포함하여 구성됨을 알 수 있다. In addition, the aforementioned vent system 50 is, as shown in FIG. 9, an exhaust pipe 51 connected to the outside of the housing 1 from the supply pipe 11 and the branch pipe 80, and this exhaust pipe 51 It can be seen that it is configured to include a pressure control valve 52 provided on one side.
그리고 본 발명의 실시예에 따른 퍼징시스템(60)은, 질소 등과 같은 불활성기체가 저장되는 저장탱크(64)와, 유입관(31)과 저장탱크(64) 사이에 연결되어 저장탱크(64) 내의 불활성기체를 수소탱크(30)로 주입시키는 퍼지관(61)과, 이러한 퍼지관(61) 일측에 구비되는 제2체크밸브(62)와 퍼지밸브(63)를 포함하여 구성될 수 있다. And the purging system 60 according to the embodiment of the present invention is connected between the storage tank 64 in which an inert gas such as nitrogen is stored, and the inlet pipe 31 and the storage tank 64, the storage tank 64 It may be configured to include a purge pipe 61 for injecting an inert gas in the hydrogen tank 30 into the hydrogen tank 30 , and a second check valve 62 and a purge valve 63 provided on one side of the purge pipe 61 .
그리고 본 발명의 실시예에 따른 수소 유량 현장 교정시스템(100)은 전체 시스템 하부에 이동지지부(70)를 올려, 이동시 수소탱크(30)를 보호하고, 정밀저울(20)에 무게가 가해지지 않도록 보호하도록 구성될 수 있다. And the hydrogen flow rate on-site calibration system 100 according to an embodiment of the present invention raises the moving support unit 70 on the lower part of the entire system, protects the hydrogen tank 30 during movement, and prevents the weight from being applied to the precision scale 20 can be configured to protect.
이러한 이동지지부(70)는 도 9에 도시된 바와 같이, 정밀저울(20) 하단에 구비되는 지지대(71)와, 이러한 지지대(71)와 하우징(1) 사이에 구비되는 복수의 댐퍼(72)를 포함하여, 시스템 이동모드에서, 정밀저울(20)과 하우징 내부 유닛(수소탱크(30) 등)을 보호하도록 구성될 수 있다. As shown in FIG. 9 , the movable support 70 includes a support 71 provided at the lower end of the precision scale 20 and a plurality of dampers 72 provided between the support 71 and the housing 1 . Including, in the system movement mode, it can be configured to protect the precision scale 20 and the housing internal unit (hydrogen tank 30, etc.).
그리고 도 10에 도시된 바와 같이, 제어부(90)는 정밀저울(20)과, 교정대상 유량계(코리올리스 유량계)(40)와, 제1온도센서(33), 제1압력센서(34)와, 제2온도센서(41)와, 제2압력센서(42)에서 측정된 데이터를 획득하도록 구성된다. 이러한 측정, 획득된 데이터는 디스플레이부(91)를 통해 디스플레이될 수 있도록 구성된다. And as shown in FIG. 10 , the control unit 90 includes a precision scale 20 , a calibration target flowmeter (Coriolis flowmeter) 40 , a first temperature sensor 33 , a first pressure sensor 34 and , the second temperature sensor 41 and the second pressure sensor 42 are configured to acquire the measured data. The measured and acquired data is configured to be displayed through the display unit 91 .
또한, 제어부(90)는 유입밸브(32), 압력조절밸브(52), 제1밸브(13), 제2밸브(81), 제3밸브(82), 퍼지밸브(63)의 구동을 조절하여 모드변경을 제어하게 된다. 그리고 평가수단(92)은 정밀저울(20)을 통해 측정된 수소의 적산질량과 교정대상 유량계(40)를 통해 측정된 수소의 적산질량을 비교하여 교정대상 유량계(40)의 특성을 평가하게 된다. In addition, the control unit 90 controls the driving of the inlet valve 32 , the pressure control valve 52 , the first valve 13 , the second valve 81 , the third valve 82 , and the purge valve 63 . This will control the mode change. And the evaluation means 92 compares the integrated mass of hydrogen measured through the precision scale 20 with the integrated mass of hydrogen measured through the calibration target flowmeter 40 to evaluate the characteristics of the calibration target flowmeter 40 . .
이하에서는 앞서 언급한 본 발명의 실시예에 따른 수소유량 현장교정시스템(100)의 작동방법에 대해 설명하도록 한다. Hereinafter, an operation method of the hydrogen flow rate field calibration system 100 according to the embodiment of the present invention will be described.
도 11은 본 발명의 실시예에 따른 수소충전기 내 유량계 평가용 수소충전모드에서의, 수소유량 현장교정시스템의 단면도를 도시한 것이다. 그리고 도 12는 본 발명의 실시예에 따른 시스템에 개별 설치된 유량계 평가용 수소충전모드에서의, 수소유량 현장교정시스템의 단면도를 도시한 것이다. 11 is a cross-sectional view of a hydrogen flow rate field calibration system in a hydrogen charging mode for flow meter evaluation in a hydrogen charger according to an embodiment of the present invention. And Figure 12 shows a cross-sectional view of the hydrogen flow rate field calibration system in the hydrogen charging mode for flow meter evaluation separately installed in the system according to an embodiment of the present invention.
또한 도 13은 배기모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도를 도시한 것이고, 도 14는 퍼징 모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도를 도시한 것이며, 도 15는 이동 모드에서의 본 발명의 실시예에 따른 수소유량 현장교정시스템의 단면도를 도시한 것이다. 또한, 도 16은 현장으로 이동시 트럭 등에 이용하는 예시 사진을 나타낸 것이다. In addition, Figure 13 shows a cross-sectional view of the hydrogen flow rate field calibration system according to an embodiment of the present invention in the exhaust mode, Figure 14 shows a cross-sectional view of the hydrogen flow rate field calibration system according to the embodiment of the present invention in the purging mode 15 is a cross-sectional view of a hydrogen flow field calibration system according to an embodiment of the present invention in a moving mode. In addition, FIG. 16 shows an example photo used for a truck or the like when moving to the field.
도 11에 도시된 바와 같이, 수소 충전기 내의 유량계 평가용 수소충전모드시에는, 제2밸브(81)와 제3밸브(82)와, 압력조절밸브(52)와, 퍼지밸브(63)를 닫고, 제1밸브(13)와 유입밸브(32)를 개방하게 됨을 알 수 있다. 11, in the hydrogen charging mode for flow meter evaluation in the hydrogen charger, the second valve 81, the third valve 82, the pressure control valve 52, and the purge valve 63 are closed. , it can be seen that the first valve 13 and the inlet valve 32 are opened.
따라서 수소스테이션 디스펜서 노즐부(2)를 리셉타클(10)에 연결하여, 수소가 공급되며 공급된 수소는 공급관(11)과, 유입관(31)을 통해 수소탱크(30) 각각에 주입된다. 이러한 과정에서 정밀저울(20)을 통해 측정된 수소의 적산질량과 수소 충전기 내의 유량계를 통해 측정된 수소의 적산질량을 비교하여 수소 충전기 내의 유량계의 특성을 평가하게 된다. Accordingly, by connecting the hydrogen station dispenser nozzle unit 2 to the receptacle 10 , hydrogen is supplied, and the supplied hydrogen is injected into the hydrogen tank 30 through the supply pipe 11 and the inlet pipe 31 . In this process, the characteristics of the flow meter in the hydrogen charger are evaluated by comparing the accumulated mass of hydrogen measured by the precision scale 20 with the accumulated mass of hydrogen measured by the flow meter in the hydrogen charger.
그리고 교정시스템(100)내에 설치된 교정대상 유량계(코리올리스 유량계) 평가용 수소충전모드시에는 도 12에 도시된 바와 같이, 제1밸브(13)와, 압력조절밸브(52)와, 퍼지밸브(63)를 닫고, 제2밸브(81)와 제3밸브(82)와 유입밸브(32)를 개방함을 알 수 있다. And in the hydrogen charging mode for evaluation of the calibration target flow meter (Coriolis flow meter) installed in the calibration system 100, as shown in FIG. 12 , the first valve 13, the pressure control valve 52, and the purge valve ( 63) is closed, and it can be seen that the second valve 81, the third valve 82, and the inlet valve 32 are opened.
따라서 수소스테이션 디스펜서 노즐부(2)를 리셉타클(10)에 연결하여, 수소가 공급되며 공급된 수소는 분기관(80)과, 교정대상 유량계(코리올리스 유량계)(40)를 거쳐, 유입관(31)을 통해 수소탱크(30) 각각에 주입된다. 이러한 과정에서 정밀저울(20)을 통해 측정된 수소의 적산질량과 교정대상 유량계(코리올리스 유량계)(40)를 통해 측정된 수소의 적산질량을 비교하여 교정대상 유량계(코리올리스 유량계)(40)의 특성을 평가하게 된다. Therefore, by connecting the hydrogen station dispenser nozzle unit 2 to the receptacle 10, hydrogen is supplied, and the supplied hydrogen passes through a branch pipe 80 and a flow meter (Coriolis flow meter) 40 to be calibrated, and an inlet pipe It is injected into each of the hydrogen tanks 30 through (31). In this process, the integrated mass of hydrogen measured through the precision balance 20 and the integrated mass of hydrogen measured through the flow meter (Coriolis flow meter) 40 to be calibrated are compared with the flow meter to be calibrated (Coriolis flow meter) to evaluate the characteristics of
즉, 도 11과 도 12에 도시된 바와 같이 본 발명의 실시예에 따른 수소유량 현장교정시스템(100)을 이용하여 수소충전기 내의 수소유량계의 계량정확도를 평가할 수 있을 뿐 아니라, 수소유량계를 직접 교정 시스템 내에 설치하여 교정대상 유량계(40)를 통과하는 수소충전량을 수소탱크(30)에 저장되어 측정한 수소질량과 비교하여 교정할 수 있음을 알 수 있다. That is, as shown in FIGS. 11 and 12, not only can the measurement accuracy of the hydrogen flow meter in the hydrogen charger be evaluated using the hydrogen flow rate field calibration system 100 according to an embodiment of the present invention, but also the hydrogen flow meter can be directly calibrated It can be seen that the amount of hydrogen filling installed in the system and passing through the flow meter 40 to be calibrated can be corrected by comparing it with the hydrogen mass measured and stored in the hydrogen tank 30 .
그리고 배기모드시에는 도 13에 도시된 바와 같이, 교정평가 후에, 제1밸브(13)와, 제2밸브(81), 제3밸브(82), 퍼지밸브(63)를 닫고, 노즐부(2)를 탈착한 후, 유입밸브(32)를 개방하고 압력조절밸브(52)를 조절하여 수소탱크(30) 내의 수소를 벤트시키게 됨을 알 수 있다. In the exhaust mode, as shown in FIG. 13, after the calibration evaluation, the first valve 13, the second valve 81, the third valve 82, and the purge valve 63 are closed, and the nozzle unit ( It can be seen that after removing 2), the inlet valve 32 is opened and the pressure control valve 52 is adjusted to vent the hydrogen in the hydrogen tank 30 .
그리고 도 14에 도시된 바와 같이, 퍼징모드시에는 압력조절밸브(52)를 닫고, 퍼지밸브(63)를 개방하여 저장탱크(64) 내의 질소를 수소탱크(30) 내에 주입시키게 된다. 즉, 현장교정시스템(100)의 현장으로의 안전한 이동을 위해 수소탱크(30) 내에 수소가 아닌 질소를 채우기 위한 퍼징(Purging) 모드를 실행할 수 있다. And, as shown in FIG. 14 , in the purging mode, the pressure control valve 52 is closed and the purge valve 63 is opened to inject nitrogen in the storage tank 64 into the hydrogen tank 30 . That is, it is possible to execute a purging mode for filling nitrogen, not hydrogen, in the hydrogen tank 30 for safe movement of the field calibration system 100 to the field.
또한, 도 15에 도시된 바와 같이, 이동모드시에, 정밀저울(20)을 보호하기 위해 이동지지부(70)를 변경한 후 충전소 현장으로 이동할 수 있다. 도 16에 도시된 바와 같이, 충전소 현장으로 이동시에는 지게차 등을 이용하여 트럭으로 이동시킬 수 있고, 또한 트럭 등에 직접 탑재하여 트럭을 충전소 현장으로 이동하여 탑재된 상태에서 유량계 성능시험을 할 수 있다.In addition, as shown in FIG. 15 , in the moving mode, after changing the moving support 70 to protect the precision scale 20, it can be moved to the charging station site. As shown in FIG. 16 , when moving to the charging station site, it can be moved to a truck using a forklift, etc., and can be directly mounted on a truck or the like to move the truck to the charging station site and perform a flow meter performance test in the mounted state.
이하에서는 앞서 언급한 본 발명의 실시예에 따른 수소유량 현장교정시스템의 실험예에 대해 설명하도록 한다. 먼저 도 17은 본 발명의 실시예에 따라 제작된 수소유량 현장교정시스템의 사시도를 도시한 것이고, 도 18은 본 발명의 실시예에 따라 제작된 수소유량 현장교정시스템의 사진을 도시한 것이며, 도 19는 본 발명의 실험예에 따른 제작된 수소유량 현장교정시스템에서 고압질소기체를 이용한 경우의 사진과, DAQ 시스템 사진을 나타낸 것이다. Hereinafter, an experimental example of the hydrogen flow rate field calibration system according to the embodiment of the present invention will be described. First, FIG. 17 shows a perspective view of a hydrogen flow field calibration system manufactured according to an embodiment of the present invention, and FIG. 18 shows a photograph of a hydrogen flow rate field calibration system manufactured according to an embodiment of the present invention, FIG. 19 shows a photograph of a case of using high-pressure nitrogen gas in the hydrogen flow field calibration system manufactured according to an experimental example of the present invention, and a photograph of the DAQ system.
그리고 도 20은 본 발명의 실험예에 따른 질소 충전(5분45초) 동안의 현장교정시스템 저장탱크의 압력변화 그래프를 도시한 것이다. 또한, 도 21은 본 발명의 실험예에 따른 질소 충전(5분45초) 동안의 코리올리스 유량계의 순간 유량(kg/min)의 변화 그래프를 도시한 것이다. 그리고 도 22는 본 발명의 실험예에 따른 저장탱크 하부 정밀저울 적산질량(kg)과 코리올리스 유량계 적산질량(kg) 비교그래프를 도시한 것이다. And Figure 20 shows a pressure change graph of the storage tank of the field calibration system during nitrogen filling (5 minutes 45 seconds) according to an experimental example of the present invention. Also, FIG. 21 is a graph showing a change in instantaneous flow rate (kg/min) of a Coriolis flow meter during nitrogen charging (5 minutes 45 seconds) according to an experimental example of the present invention. And FIG. 22 shows a comparison graph of the integrated mass (kg) of the lower precision balance of the storage tank and the integrated mass (kg) of the Coriolis flow meter according to the experimental example of the present invention.
도 17은 개념 설계된 중량식 현장 교정시스템을 최종 설계를 나타낸 것으로. 도 18은 제작된 수소유량 현장교정시스템 시진으로서,17 shows the final design of the conceptually designed gravimetric field calibration system. 18 is a demonstration of the produced hydrogen flow rate field calibration system,
① 수소탱크(Hydrogen Storage Tank) (현대자동차 NEXOType IV의 52 L 탱크 3개) ① Hydrogen Storage Tank (3 52 L tanks of Hyundai NEXOType IV)
② 정밀저울(Weighing Scale: Scale 300 kg, Accuracy 1g의 방폭인증 저울) ② Precision scale (Weighing Scale: Scale 300 kg, Accuracy 1g Explosion-proof certified scale)
③ 리셉타클(Receptacle), ④ 코리올리스 유량계(독일 RHEONIK사), ⑤ 벤트시스템(Vent system) ③ Receptacle, ④ Coriolis flowmeter (RHEONIK, Germany), ⑤ Vent system
⑥ 퍼징시스템(Purging system(질소)), ⑦ 이동지지부(Transport support),⑧ 제어부(DAQ) ⑥ Purging system (nitrogen), ⑦ Transport support, ⑧ Control unit (DAQ)
으로 구성되어 있다.is composed of
현재 수소스테이션에서는 ‘고압가스 안전관리법 시행령 및 시행규칙’에 의해 수소자동차에만 수소를 주입할 수 있기 때문에, 본 발명의 실험예로 구축된 수소유량 현장교정시스템을 실제 수소스테이션에서의 실험은 법률상과 안전상의 제한으로 이루어질수 없는 상황이다. In the current hydrogen station, hydrogen can only be injected into hydrogen cars according to the 'High-Pressure Gas Safety Management Act Enforcement Decree and Enforcement Rules'. This is a situation where this cannot be done due to safety restrictions.
따라서, 대체 실험방법으로 도 19와 같이 100 bar로 가압되어 저장되어 있는 질소 탱크를 이용하여, 고압의 수소기체의 충전시험을 수행하게 되었다. Therefore, as an alternative experimental method, a high-pressure hydrogen gas filling test was performed using a nitrogen tank pressurized to 100 bar and stored as shown in FIG. 19 .
100 bar의 질소탱크를 수소전기차의 리셉터클과 동일한 형태의 수소유량 현장교정시스템의 주입구에 연결하고, 고압의 질소가 수소유량계를 통과한 뒤, 수소 탱크에 저장되도록 밸브를 구동하였다. 즉 질소 탱크로부터 공급된 질소 기체의 유량은 수소유량 현장교정시스템에 설치된 코리올리스 유량계로 측정되게 되고, 유량계를 통과한 질소 기체는 탱크로 저장되게 되는 것이다. A 100 bar nitrogen tank was connected to the inlet of the hydrogen flow field calibration system of the same type as the receptacle of the hydrogen electric vehicle, and the high-pressure nitrogen passed through the hydrogen flow meter, and then the valve was operated to be stored in the hydrogen tank. That is, the flow rate of nitrogen gas supplied from the nitrogen tank is measured with a Coriolis flow meter installed in the hydrogen flow field calibration system, and the nitrogen gas passing through the flow meter is stored in the tank.
저장된 질소 기체는 공급을 중단한 후, 탱크 하부의 정밀 저울을 통해서 저장된 기체의 질량을 측정할 수 있게 되어, 코리올리스 유량계로 측정된 질소 기체의 적산 값과 저울에 저장된 질소 기체의 질량값을 비교하여 유량계의 측정 특성을 평가할 수 있게 된다.After stopping the supply of the stored nitrogen gas, the mass of the stored gas can be measured through the precision scale at the bottom of the tank. Thus, it is possible to evaluate the measurement characteristics of the flowmeter.
도 20은 100 bar의 질소 기체를 본 발명의 수소유량 현장교정시스템에 주입하는 실험에서 획득한 현장교정시스템의 저장탱크 입구의 압력을 측정한 결과로서 충전이 이루어지는 동안(5분 45초) 압력이 점차 65 bar까지 점차 증가하는 것을 볼 수 있다. 질소 탱크의 부피가 제한적이기 때문에, 현장교정시스템의 저장탱크로 질소가 주입되면서, 공급하는 질소 탱크의 압력이 감소하여, 최대 65 bar까지만 충전이 가능하였다.20 is a result of measuring the pressure at the inlet of the storage tank of the field calibration system obtained in the experiment of injecting 100 bar nitrogen gas into the hydrogen flow field calibration system of the present invention during charging (5 minutes 45 seconds). It can be seen that it gradually increases to 65 bar. Since the volume of the nitrogen tank is limited, as nitrogen was injected into the storage tank of the field calibration system, the pressure of the supplied nitrogen tank decreased, so that it was possible to fill up to a maximum of 65 bar.
도 21은 질소 기체가 충전되는 동안, 코리올리스 유량계의 순간 유량(kg/min)을 나타낸 결과로서, 질소 탱크와 현장교정시스템의 저장탱크의 압력차가 큰 초기에는 0.5 kg/min의 큰 유량으로 주입이 되다가, 질소 충전이 진행되면서, 현장교정시스템의 저장탱크 내의 압력이 높아지면서, 질소 탱크와의 압력차가 줄어들게 되어, 점차 0.1 kg/min까지 감소하게 된다. 최종적으로 질소 기체 탱크의 압력과 현장교정시스템의 저장탱크의 압력이 거의 동일해지게 되면, 더 이상 주입이 되지 않고 순간 유량도 0이 된다.21 is a result showing the instantaneous flow rate (kg/min) of the Coriolis flow meter while nitrogen gas is being filled, and initially injected at a large flow rate of 0.5 kg/min when the pressure difference between the nitrogen tank and the storage tank of the field calibration system is large. As the nitrogen filling progresses, as the pressure in the storage tank of the field calibration system increases, the pressure difference with the nitrogen tank is reduced, and is gradually reduced to 0.1 kg/min. Finally, when the pressure of the nitrogen gas tank and the pressure of the storage tank of the field calibration system become almost the same, no more injection and the instantaneous flow rate becomes 0.
도 22는 질소가 충전되는 동안에 시간에 따른 코리올리스 유량계의 적산 유량(kg)과 현장교정시스템의 저장탱크 하부의 정밀 저울로 측정한 적산 유량(kg)을 비교한 결과이다. 질소가 충전되면서 거의 동일한 경향으로 질소 기체의 중량을 측정하게 되고, 최종 측정이 완료된 후에 정밀 저울의 적산 유량과 코리올리스 유량계의 적산 유량을 비교하면, 약 3.5% 차이를 나타내었다. 22 is a comparison result of the integrated flow rate (kg) of the Coriolis flow meter over time while nitrogen is being charged and the integrated flow rate (kg) measured with a precision scale under the storage tank of the field calibration system. As nitrogen is charged, the weight of nitrogen gas is measured with almost the same tendency, and when the integrated flow rate of the precision balance and the integrated flow rate of the Coriolis flow meter are compared after the final measurement is completed, a difference of about 3.5% is shown.
이 결과는 본 발명의 실시예에 따라 제작한 수소유량 현장교정시스템의 성능을 평가한 기초 실험에 의한 것으로서, 향후 현장교정시스템 전체의 Ballance 조정작업과 질량 표준(기준 분동)을 이용한 저울의 정밀교정 등을 통해 측정불확도를 평가한 후에 개별 코리올리스 유량계의 수소유량 측정 특성평가를 진행하고자 한다.This result is based on a basic experiment to evaluate the performance of the hydrogen flow field calibration system manufactured according to the embodiment of the present invention, and in the future, the balance adjustment work of the entire field calibration system and the precision calibration of the scale using the mass standard (reference weight) After evaluating the measurement uncertainty through other methods, we intend to proceed with the evaluation of the hydrogen flow measurement characteristics of individual Coriolis flow meters.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In addition, in the apparatus and method described above, the configuration and method of the above-described embodiments are not limitedly applicable, but all or part of each embodiment is selectively combined so that various modifications can be made to the embodiments. may be configured.

Claims (9)

  1. 수소 유량계를 현장 교정하기 위한 시스템에 있어서, A system for field calibration of a hydrogen flow meter, comprising:
    내부 공간을 갖는 하우징;a housing having an interior space;
    상기 하우징 일측에 구비되어 충전시 수소스테이션 디스펜서 노즐부가 연결되는 리셉타클;a receptacle provided on one side of the housing to which the hydrogen station dispenser nozzle unit is connected when charging;
    주입되는 수소가 저장되며 주입되는 수소의 온도를 실시간으로 측정하는 제1온도센서와, 압력을 실시간으로 측정하는 제1압력센서를 갖는 적어도 하나의 수소탱크;At least one hydrogen tank having a first temperature sensor for storing the injected hydrogen and measuring the temperature of the injected hydrogen in real time, and a first pressure sensor for measuring the pressure in real time;
    상기 리셉타클을 통해 주입되는 수소가 공급되는 공급관; a supply pipe through which hydrogen injected through the receptacle is supplied;
    상기 공급관 끝단에 분기되어 상기 수소탱크 각각과 연결되는 유입관; an inlet pipe branched from the end of the supply pipe and connected to each of the hydrogen tanks;
    상기 공급관 중단에 분기되어 상기 유입관과 연결되는 분기관과, 상기 분기관 일측에 구비되어 상기 수소탱크로 주입되는 수소의 유량을 측정하는 교정대상 유량계; a branch pipe branched at the stop of the supply pipe and connected to the inlet pipe, and a calibration target flow meter provided at one side of the branch pipe to measure the flow rate of hydrogen injected into the hydrogen tank;
    상기 교정대상 유량계 전단에 구비되어 상기 수소의 온도를 실시간으로 측정하는 제2온도센서와, 압력을 실시간으로 측정하는 제2압력센서;a second temperature sensor provided at the front end of the calibration target flow meter to measure the temperature of the hydrogen in real time, and a second pressure sensor to measure the pressure in real time;
    상기 수소탱크 하단 또는 상기 하우징 하단에 구비되어, 상기 수소탱크 내로 수집되는 수소의 질량을 측정하는 정밀저울; a precision scale provided at the lower end of the hydrogen tank or at the lower end of the housing to measure the mass of hydrogen collected into the hydrogen tank;
    교정 평가 완료 후, 상기 수소탱크 내의 수소를 배기시키는 벤트시스템; 및After completion of the calibration evaluation, a vent system for evacuating the hydrogen in the hydrogen tank; and
    상기 교정 평가 완료 후, 상기 시스템의 이동모드시, 상기 수소탱크 내에 불활성 기체를 퍼징시키기 위한 퍼징시스템;을 포함하는 것을 특징으로 하는 수소 유량 현장 교정시스템.After completion of the calibration evaluation, a purging system for purging the inert gas in the hydrogen tank in the movement mode of the system; hydrogen flow rate field calibration system comprising a.
  2. 제 1항에 있어서, The method of claim 1,
    상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 교정대상 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 교정대상 유량계의 특성을 평가하는 평가수단;을 더 포함하고, Further comprising; evaluation means for evaluating the characteristics of the flow meter to be calibrated by comparing the integrated mass of hydrogen measured through the precision balance and the integrated mass of hydrogen measured through the calibration target flow meter;
    상기 공급관 전단 일측에 구비되는 제1체크밸브와, 상기 공급관 중단 일측에 구비되는 제1밸브와, 상기 분기관 전단 일측에 구비되는 제2밸브와, 상기 분기관 후단 일측에 구비되는 제3밸브와, 상기 유입관 일측 각각에 구비되는 유입밸브를 포함하는 것을 특징으로 하는 수소 유량 현장 교정시스템.A first check valve provided on one side of the front end of the supply pipe; , Hydrogen flow rate field calibration system comprising an inlet valve provided on each side of the inlet pipe.
  3. 제 2항에 있어서, 3. The method of claim 2,
    상기 벤트시스템은, 상기 공급관과 상기 분기관에서 상기 하우징 외측으로 연결되는 배기관과, 상기 배기관 일측에 구비되는 압력조절밸브를 포함하고, The vent system includes an exhaust pipe connected to the outside of the housing from the supply pipe and the branch pipe, and a pressure control valve provided on one side of the exhaust pipe,
    상기 퍼징시스템은, 불활성기체가 저장되는 저장탱크와, 상기 유입관과 상기 저장탱크 사이에 연결되어 상기 저장탱크 내의 불활성기체를 상기 수소탱크로 주입시키는 퍼지관과, 상기 퍼지관 일측에 구비되는 퍼지밸브를 포함하는 것을 특징으로 하는 수소 유량 현장 교정시스템.The purging system includes a storage tank in which an inert gas is stored, a purge pipe connected between the inlet pipe and the storage tank to inject the inert gas in the storage tank into the hydrogen tank, and a purge provided at one side of the purge pipe Hydrogen flow field calibration system comprising a valve.
  4. 제 3항에 있어서, 4. The method of claim 3,
    상기 정밀저울 하단에 구비되는 지지대와, 상기 지지대와 상기 하우징 사이에 구비되는 댐퍼를 포함하는 이동지지부;를 더 포함하여, 시스템 이동모드에서, 상기 정밀저울과 상기 하우징 내부를 보호하도록 구성되는 것을 특징으로 하는 수소 유량 현장 교정시스템.Further comprising; a support provided at the lower end of the precision scale, and a movable support including a damper provided between the support and the housing, characterized in that it is configured to protect the precision scale and the inside of the housing in a system movement mode Hydrogen flow field calibration system with
  5. 제 3항에 있어서, 4. The method of claim 3,
    상기 정밀저울과, 상기 교정대상 유량계와, 상기 제1온도센서, 상기 제1압력센서와, 상기 제2온도센서와, 상기 제2압력센서에서 측정된 데이터를 획득하고, 상기 유입밸브, 상기 압력조절밸브, 상기 제1밸브, 상기 제2밸브, 상기 제3밸브, 상기 퍼지밸브의 구동을 제어하는 제어부;를 더 포함하는 것을 특징으로 하는 수소 유량 현장 교정시스템.Acquire data measured by the precision scale, the flow meter to be calibrated, the first temperature sensor, the first pressure sensor, the second temperature sensor, and the second pressure sensor, the inlet valve, the pressure A control valve, the first valve, the second valve, the third valve, and a control unit for controlling the operation of the purge valve; Hydrogen flow rate field calibration system further comprising a.
  6. 제 5항에 있어서, 6. The method of claim 5,
    수소 충전기 내의 유량계 평가용 수소충전모드시, In hydrogen charging mode for flow meter evaluation in hydrogen charger,
    상기 제2밸브와 상기 제3밸브와, 상기 배기밸브와, 상기 퍼지밸브를 닫고, 상기 제1밸브와 상기 유입밸브를 개방하고, 상기 노즐부를 상기 리셉타클에 연결하여, 상기 수소탱크에 수소를 주입하면서 상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 수소 충전기 내의 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 수소 충전기 내의 유량계의 특성을 평가하는 것을 특징으로 하는 수소 유량 현장 교정시스템.The second valve, the third valve, the exhaust valve, and the purge valve are closed, the first valve and the inlet valve are opened, the nozzle part is connected to the receptacle, and hydrogen is supplied to the hydrogen tank. Hydrogen flow rate field calibration system, characterized in that the characteristic of the flow meter in the hydrogen charger is evaluated by comparing the accumulated mass of hydrogen measured through the precision balance while injecting and the accumulated mass of hydrogen measured through the flow meter in the hydrogen charger.
  7. 제 5항에 있어서, 6. The method of claim 5,
    상기 교정대상 유량계 평가용 수소충전모드시, In the hydrogen charging mode for evaluating the flow meter to be calibrated,
    상기 제1밸브와, 상기 배기밸브와, 상기 퍼지밸브를 닫고, 상기 제2밸브와 상기 제3밸브와 상기 유입밸브를 개방하고, 상기 노즐부를 상기 리셉타클에 연결하여, 상기 수소탱크에 수소를 주입하면서 상기 정밀저울을 통해 측정된 수소의 적산질량과 상기 교정대상 유량계를 통해 측정된 수소의 적산질량을 비교하여 상기 교정대상 유량계의 특성을 평가하는 것을 특징으로 하는 수소 유량 현장 교정시스템.The first valve, the exhaust valve, and the purge valve are closed, the second valve, the third valve, and the inlet valve are opened, the nozzle part is connected to the receptacle, and hydrogen is supplied to the hydrogen tank. Hydrogen flow rate field calibration system, characterized in that the characteristic of the calibration target flowmeter is evaluated by comparing the integrated mass of hydrogen measured through the precision scale while injecting and the integrated mass of hydrogen measured through the calibration target flowmeter.
  8. 제 5항에 있어서, 6. The method of claim 5,
    배기모드시, In exhaust mode,
    교정평가 후에, 상기 제1밸브와, 상기 제2밸브, 상기 제3밸브, 상기 퍼지밸브를 닫고, 상기 노즐부를 탈착한 후, 상기 유입밸브를 개방하고 상기 압력조절밸브를 조절하여 상기 수소탱크 내의 수소를 벤트시키는 것을 특징으로 하는 수소 유량 현장 교정시스템.After the calibration evaluation, the first valve, the second valve, the third valve, and the purge valve are closed, the nozzle unit is detached, and the inlet valve is opened and the pressure control valve is adjusted to control the pressure control valve in the hydrogen tank. Hydrogen flow rate field calibration system, characterized in that for venting hydrogen.
  9. 제 8항에 있어서, 9. The method of claim 8,
    퍼징, 이동모드시, When purging, moving mode,
    상기 압력조절밸브를 닫고, 상기 퍼지밸브를 개방하여 상기 저장탱크 내의 불활성기체를 상기 수소탱크 내에 주입시킨 후, 상기 이동지지부를 설치하여 상기 시스템을 이동시키는 것을 특징으로 하는 수소 유량 현장 교정시스템.Close the pressure control valve, open the purge valve to inject the inert gas in the storage tank into the hydrogen tank, and then install the moving support unit to move the system.
PCT/KR2020/004012 2020-03-11 2020-03-24 On-site hydrogen flow rate calibration system WO2021182665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200030168A KR102259295B1 (en) 2020-03-11 2020-03-11 Hydrogen Flowrate Field Calibration System
KR10-2020-0030168 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182665A1 true WO2021182665A1 (en) 2021-09-16

Family

ID=76372983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004012 WO2021182665A1 (en) 2020-03-11 2020-03-24 On-site hydrogen flow rate calibration system

Country Status (2)

Country Link
KR (1) KR102259295B1 (en)
WO (1) WO2021182665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087539A (en) * 2021-11-09 2022-02-25 浙江浙能技术研究院有限公司 Liquid hydrogen flow standard device based on dynamic and static weighing method
CN114993398A (en) * 2022-08-03 2022-09-02 四川中测流量科技有限公司 Hydrogenation machine on-site calibrating device applying mass flow meter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072794A (en) 2021-11-18 2023-05-25 한국가스공사 Evaluation Test Bed System For Hydrogen Filling Station Flowmeter
KR20230072795A (en) 2021-11-18 2023-05-25 한국가스공사 Method For Calibration Mass Measuring Module of Hydrogen Refueling Station Flow Rate Evaluation System
KR20230151319A (en) 2022-04-25 2023-11-01 한국가스공사 Flowmeter Performance Evaluation System And Flowmeter Performance Evaluation Method Of Hydrogen Refueling Station
CN114593366B (en) * 2022-05-11 2022-08-02 浙江浙能航天氢能技术有限公司 Monitoring system and monitoring method for hydrogen leakage of hydrogen station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311026B2 (en) * 1979-10-26 1991-02-15 Sony Corp
US20140290790A1 (en) * 2010-04-21 2014-10-02 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
JP2017067084A (en) * 2015-09-28 2017-04-06 株式会社タツノ Calibrator
JP2019144062A (en) * 2018-02-20 2019-08-29 株式会社タツノ Determination device
US10502649B1 (en) * 2018-09-05 2019-12-10 Air Products And Chemicals, Inc. Apparatus and method for testing compressed gas dispensing stations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7461549B1 (en) * 2007-06-27 2008-12-09 Mks Instruments, Inc. Mass flow verifiers capable of providing different volumes, and related methods
KR20170123056A (en) 2016-04-28 2017-11-07 현대자동차주식회사 Method for filling hydrogen of fuel cell vehicle
KR102310549B1 (en) 2017-01-16 2021-10-07 현대자동차주식회사 The fuel cell system in the hydrogen supplying system and control method thereof
KR102463419B1 (en) 2017-10-13 2022-11-03 현대자동차주식회사 System and method for sensing fuel charge state of fuel cell electric vehicle
KR101987357B1 (en) 2018-06-26 2019-09-30 주식회사 엔케이 Hydrogen Filling System having Hydrogen Storage Vessel and Method of Operating the same
JP2020148581A (en) * 2019-03-13 2020-09-17 アズビル株式会社 Mass flow controller, calibration system, and calibration method
KR102073137B1 (en) 2019-06-14 2020-02-04 (주)이앤씨 Hydrogen charging system for fuel cells in hydrogen station for stable hydrogen charging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311026B2 (en) * 1979-10-26 1991-02-15 Sony Corp
US20140290790A1 (en) * 2010-04-21 2014-10-02 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
JP2017067084A (en) * 2015-09-28 2017-04-06 株式会社タツノ Calibrator
JP2019144062A (en) * 2018-02-20 2019-08-29 株式会社タツノ Determination device
US10502649B1 (en) * 2018-09-05 2019-12-10 Air Products And Chemicals, Inc. Apparatus and method for testing compressed gas dispensing stations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087539A (en) * 2021-11-09 2022-02-25 浙江浙能技术研究院有限公司 Liquid hydrogen flow standard device based on dynamic and static weighing method
CN114087539B (en) * 2021-11-09 2023-08-25 浙江浙能技术研究院有限公司 Liquid hydrogen flow standard device based on dynamic and static weighing method
CN114993398A (en) * 2022-08-03 2022-09-02 四川中测流量科技有限公司 Hydrogenation machine on-site calibrating device applying mass flow meter
CN114993398B (en) * 2022-08-03 2022-10-18 四川中测流量科技有限公司 Hydrogenation machine on-site calibrating device applying mass flow meter

Also Published As

Publication number Publication date
KR102259295B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2021182665A1 (en) On-site hydrogen flow rate calibration system
WO2014003234A1 (en) System and method for measuring charge amount of pressure vessel using pressure and volume
CN104698371A (en) Multifunctional gas density relay calibration device
KR102070948B1 (en) Movable hydrogen evaluation facility device
KR102286865B1 (en) Collection device for a hydrogen gas filling apparatus
CN105387339B (en) CNG on-site proving methods
KR20170037829A (en) Collection device and collection method for a gas filling apparatus
CN104180861A (en) Standard device and measuring method using mass method for detecting high-pressure gas filling flow
WO2023010629A1 (en) Flow meter calibration system and method for cryogenic propellant rocket engine
CN110987322A (en) Fuel cell stack air tightness detection device and detection method
JP6288026B2 (en) Calibration device
JP4799566B2 (en) Gas flow meter calibration stand
US20150143869A1 (en) Method for internal combustion engine exhaust flow measurement calibration and operation
De Huu et al. Design of gravimetric primary standards for field-testing of hydrogen refuelling stations
CN111751062A (en) Method and device for testing gas leakage of containing cavity
CN111289064A (en) Online calibrating device and method for metering performance of hydrogenation machine
JP6674647B2 (en) Judgment device
WO2017034361A1 (en) Non-exposure supplied fuel quantity testing device and method of vehicle-mounted type
CN216746365U (en) Hydrogenation machine metering and calibrating device
CN109084868B (en) System and method for calibrating automobile fuel consumption detector by carbon balance method
JP5392220B2 (en) Battery box airtight inspection device
KR20230045341A (en) collection method for a hydrogen gas filling apparatus
CN215294548U (en) Standard meter method compressed hydrogen adds mechanism of qi calibrating installation
WO2023163267A1 (en) Apparatus for evaluating performance and safety of hydrogen gas charger, and evaluation method using same
CN110118635A (en) Differential pressure type air-tightness tester and test method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924562

Country of ref document: EP

Kind code of ref document: A1