WO2021182602A1 - Vehicular drive device - Google Patents

Vehicular drive device Download PDF

Info

Publication number
WO2021182602A1
WO2021182602A1 PCT/JP2021/009998 JP2021009998W WO2021182602A1 WO 2021182602 A1 WO2021182602 A1 WO 2021182602A1 JP 2021009998 W JP2021009998 W JP 2021009998W WO 2021182602 A1 WO2021182602 A1 WO 2021182602A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engaging element
electric machine
control
state
Prior art date
Application number
PCT/JP2021/009998
Other languages
French (fr)
Japanese (ja)
Inventor
田中将之
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2021182602A1 publication Critical patent/WO2021182602A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift

Definitions

  • the present invention relates to a vehicle drive device including an automatic transmission capable of switching a plurality of gears by selectively engaging a plurality of engaging elements.
  • a brake (B) and a clutch (C) are selectively engaged to switch between two gears, and a rotary electric machine (12) is used as a driving force source for wheels.
  • a rotary electric machine (12) is used as a driving force source for wheels.
  • an automatic transmission (13) that transmits the rotation of the wheel to the wheels at a constant speed or by increasing the speed (reference numerals in parentheses in the background art are those of the literature). In the 1st speed, the automatic transmission (13) is engaged with the clutch (C) and the brake (B) is released, and the rotation input to the automatic transmission (13) is output at a constant speed.
  • the clutch (C) is released and the brake (B) is engaged to increase the speed of the rotation input to the automatic transmission (13) and output it. That is, when shifting from the 1st speed to the 2nd speed, the clutch (C) is released from the engaged state and the brake (B) is engaged from the released state.
  • the engaging elements such as the clutch and the brake are changed to shift to a different shift stage, but for smooth shifting, the engaging elements are appropriately changed. It is preferable to be controlled. That is, the control amount for changing the engaging state of the engaging element (for example, the control amount of hydraulic pressure when the engaging element is hydraulically driven, and the controlled amount of current or voltage when the engaging element is electromagnetically driven) is appropriate. It is preferable to be controlled by. Therefore, the control device that controls the automatic transmission engages the engaging elements to be learned by engaging them in a neutral state in which the automatic transmission does not form a shift stage or in a state where the vehicle is stopped. It may have a configuration for learning the response characteristics of the element.
  • the control amount for changing the engaging state of the engaging element for example, the control amount of hydraulic pressure when the engaging element is hydraulically driven, and the controlled amount of current or voltage when the engaging element is electromagnetically driven
  • the control device that controls the automatic transmission engages the engaging elements to be learned by engaging them in a neutral state in which the automatic transmission does not form a shift stage
  • a plurality of gears can be switched by selectively engaging a plurality of engaging elements provided in a rotary electric machine as a driving force source of the wheel and a power transmission path connecting the rotary electric machine and the wheel.
  • a vehicle drive device including an automatic transmission, a rotary electric machine, and a control device for controlling the automatic transmission forms a target transmission stage in which the automatic transmission is one of a plurality of the transmission stages.
  • the control device is attached to the wheel by using the engaging element engaged in the engaged state as the first engaging element and the engaging element other than the first engaging element as the second engaging element.
  • the automatic transmission When the vehicle is running, the automatic transmission is used, with the torque required to be transmitted as the required torque and the rotation speed of the rotating electric machine in the state where the target shift stage is formed as the synchronous rotation speed. Matches the transmission torque of the first engaging element to the torque at which the required torque is transmitted to the wheels, and controls the rotation speed of the rotary electric machine to control the rotation speed of the rotary electric machine.
  • a test control is executed in which the rotation speed of the above is increased from the synchronous rotation speed to bring the first engaging element into a sliding engagement state, and at least the torque of the rotary electric machine is predetermined during the execution of the test control. It is preferable to change the second engaging element from the released state to the engaged state until the torque rises above the specified torque.
  • the first engaging element is slid while the automatic transmission forms any of a plurality of gears and transmits torque to be transmitted in the gears to the wheels.
  • the second engaging element is changed from the released state to the engaged state, and the response characteristic in the replacement of the engaging element is learned. That is, it is possible to learn the response characteristics in a state where the automatic transmission is not in the neutral state but in a state where a shift stage is formed, and in a state where torque is transmitted to the wheels to drive the vehicle. That is, according to this configuration, since the response characteristics can be learned when the vehicle is running, the response characteristics of the engaging elements of the automatic transmission can be learned with high frequency.
  • the response characteristic is in the actual state where oil is circulated in the hydraulic circuit. Can be learned. Therefore, it is possible to learn the response characteristics of the engaging element of the automatic transmission with high accuracy. As described above, according to this configuration, it is possible to learn the response characteristics of the engaging element of the automatic transmission with higher frequency and higher accuracy.
  • Engagement table for 2-speed automatic transmission Time chart showing an example of test control Speed diagram of automatic transmission A skeleton diagram showing an example of a vehicle drive device equipped with an 8-speed automatic transmission. 8-speed automatic transmission engagement table
  • the vehicle drive device 1 is provided in a power transmission path connecting the rotary electric machine 2 which is the driving force source of the wheel W of the vehicle and the rotary electric machine 2 and the wheel W, and a plurality of engaging elements CL. It is provided with an automatic transmission 3 capable of switching a plurality of shift stages by selective engagement of the above, and a control device 5 for controlling the rotary electric machine 2 and the automatic transmission 3.
  • FIG. 1 illustrates a two-speed transmission equipped with a planetary gear mechanism PG as the automatic transmission 3.
  • driving connection means a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque).
  • This concept includes a state in which two rotating elements are connected so as to rotate integrally, and a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and are engaging devices (friction) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.) may be included.
  • the "rotary electric machine” includes any of a motor (motor), a generator (generator), and, if necessary, a motor / generator that functions as both a motor and a generator.
  • the rotary electric machine 2 includes a stator (not shown) fixed to the case 4 which is a non-rotating member, and a rotor (not shown) rotatably supported inside the stator in the radial direction.
  • the rotary electric machine 2 is connected to a DC power supply (not shown) via an inverter (not shown) that converts power between DC and AC.
  • a DC power source is a power source that can store electricity, such as a secondary battery or a capacitor.
  • the rotary electric machine 2 is supplied with electric power from a DC power source to perform power, and also regenerates the electric power generated by the inertial force of the vehicle to the DC power source and stores the electric power in the DC power source.
  • the rotor of the rotary electric machine 2 is connected to the speed change input member IN so as to rotate integrally with the speed change input member IN to the automatic transmission 3.
  • the automatic transmission 3 is configured as a stepped automatic transmission, and in the present embodiment, it includes a planetary gear mechanism PG and a plurality of engaging elements CL for shifting.
  • the planetary gear mechanism PG includes a ring gear R, a sun gear S, and a carrier CA that supports a plurality of pinion gears P that mesh with both the ring gear R and the sun gear S, and serves as a plurality of engaging elements CL.
  • the speed change input member IN is connected to the ring gear R.
  • the shift output member OUT of the automatic transmission 3 is connected to the carrier CA.
  • the sun gear S is selectively fixed to the case 4 which is a non-rotating member via the brake B0, and is selectively connected to the carrier CA via the clutch C0.
  • the shift output member OUT of the automatic transmission 3 is drive-connected to the differential input member DG of the differential gear mechanism DF that distributes the driving force to the wheels W.
  • Other power transmission mechanisms such as a counter gear mechanism (not shown) may be provided between the shift output member OUT and the differential gear mechanism DF.
  • the automatic transmission 3 forms a shift stage by selectively engaging any one of the clutch C0 and the brake B0 as the engagement element CL.
  • two gears are formed.
  • the brake B0 is controlled to be engaged and the clutch C0 is controlled to be released.
  • the solid line in the speed diagram of FIG. 4 when the brake B0 is engaged, the sun gear S is fixed, the rotation of the ring gear R connected to the speed change input member IN is decelerated, and the carrier is used. It is output from the speed change output member OUT via the CA.
  • the brake B0 is controlled to be released and the clutch C0 is controlled to be engaged.
  • the clutch C0 is engaged, so that the sun gear S and the carrier CA are integrally rotated, and the shift input member IN is engaged.
  • the rotation of the connected ring gear R is output from the shift output member OUT at a constant speed.
  • the control device 5 determines the required torque of the vehicle (wheel W) based on information such as the accelerator opening degree and the vehicle speed, and controls the rotary electric machine 2 and the automatic transmission 3.
  • the control device 5 determines the shift stage of the automatic transmission 3 and controls the rotation of the rotary electric machine 2.
  • the required torque is the torque required to be transmitted to the wheel W at each time point.
  • the rotational speed of the rotary electric machine 2 according to the vehicle speed (rotational speed of the wheels W) in the state where any of the gears is formed is the synchronous rotational speed at the gears.
  • the control device 5 can execute torque control and rotation speed control as a control method for controlling the rotary electric machine 2.
  • the torque control is a control in which a target torque (a target value of the torque of the rotary electric machine 2) is commanded to the rotary electric machine 2 and the output torque of the rotary electric machine 2 is made to follow the target torque.
  • the rotation speed control is a control in which a target rotation speed is commanded to the rotation electric machine 2 and the rotation speed of the rotation electric machine 2 is made to follow the target rotation speed.
  • the control device 5 controls the rotary electric machine 2 based on the deviation between the current (feedback current) flowing through the rotary electric machine 2 (stator coil) and the current command.
  • the engaging element CL is a hydraulically driven friction engaging element such as a wet multi-plate clutch.
  • the control device 5 controls a hydraulic circuit (not shown) to drive the engaging element CL.
  • the hydraulic circuit includes a hydraulic control valve (linear solenoid valve or the like) for adjusting the hydraulic pressure of hydraulic oil supplied from an oil pump (not shown).
  • the opening degree of the hydraulic control valve is adjusted according to the hydraulic command (PC1, PC2: see FIG. 3) from the control device 5, and the hydraulic hydraulic oil according to the hydraulic command is supplied to each engaging element.
  • PC1 is a hydraulic command (first hydraulic command) to the first engaging element CL1 described later
  • PC2 is a hydraulic command (second hydraulic command) to the second engaging element CL2 described later. be.
  • the hydraulic command includes a first phase command in which the hydraulic control valve is set as the first opening in the initial stage, a second phase command in which the hydraulic control valve is maintained at a second opening smaller than the first opening, and a hydraulic control valve.
  • a third phase command that gradually increases the opening degree of.
  • Pressure oil is rapidly introduced into the engaging operation part of the hydraulic cylinder or the like in response to the first phase command, and the clearance between the plurality of friction plates of the wet multi-plate clutch is eliminated.
  • the hydraulic pressure of the oil supplied to the engaging operation part becomes a predetermined pressure (specifically, the stroke end immediately before the engaging element CL to be engaged starts to generate a transmission torque. Pressure) is maintained.
  • the third phase command the oil pressure supplied to the engaging operating portion is gradually increased, and the engaging element CL generates a desired transmission torque.
  • the actual oil pressure gradually rises in the fast fill period corresponding to the period of the first phase command, and reaches the stroke end pressure at some point in the period of the second phase command.
  • the engaging element CL actually generates the transmission torque.
  • the time required to start may differ depending on the engaging element CL. Further, the time may change depending on the operating environment (oil pressure, oil temperature, etc.) even if the engaging element CL is the same.
  • the stroke end pressure (corresponding to the hydraulic pressure for obtaining the steady transmission torque described later), which is the target value in the second phase command, may also differ depending on the engaging element CL. Further, the stroke end pressure may also change depending on the operating environment (oil pressure, oil temperature, etc.) even with the same engaging device. That is, these times (change start time) and stroke end pressure (steady transmission torque) are different for each engaging element CL and are also affected by the operating environment.
  • the control device 5 executes test control for learning the engagement start timing and the steady transmission torque for each engagement element CL in order to smoothly control the automatic transmission 3.
  • the engagement start time is learned as, for example, the time required from the output of the hydraulic command (first phase command) to the engagement element CL until the engagement element CL actually starts to generate the transmission torque.
  • the engagement start time may be determined based on the elapsed time from the output of the hydraulic command, or if the fast fill period is constant, based on the elapsed time from the end of the fast fill period. It may be decided.
  • the steady transmission torque is learned as the transmission torque generated by the engaging element CL to be controlled in the state where the hydraulic command (second phase command) is output. It is more preferable that the control device 5 corrects the learned engagement start timing and the steady transmission torque so as to approach the appropriate range when it is out of the appropriate range.
  • the brake B0 is engaged in order to form the first speed stage 1st.
  • Learning can be performed by changing the subject from the released state to the engaged state.
  • the shift lever may be operated immediately after the vehicle is started to change from the neutral range to the drive range. In such cases, learning opportunities are lost.
  • the control device 5 is configured to be able to perform learning even while the vehicle is traveling.
  • the control device 5 learns the response characteristics of the engaging element CL (in this case, the engaged clutch C0) in switching the shift stage from the first speed stage 1st to the second speed stage 2nd.
  • the first speed stage 1st is set as the target shift stage
  • the brake B0 which is the engagement element CL engaged in the state where the automatic transmission 3 forms the first speed stage 1st
  • CL2 The clutch C0 released in the first speed 1st, which is the target shift stage, is referred to as the second engagement element CL2 here.
  • the rotation speed of the rotary electric machine 2 is defined as the synchronous rotation speed.
  • the control device 5 adjusts the transmission torque of the first engaging element CL1 to the torque transmitted to the wheels W and rotates the rotary electric machine 2 in a state where the automatic transmission 3 forms the target shift stage.
  • a test control is executed in which the speed is controlled so that the rotation speed of the rotary electric machine 2 is increased from the synchronous rotation speed to bring the first engaging element CL1 into a sliding engagement state. That is, by adjusting the transmission torque of the first engaging element CL1 (brake B0 in this case) to the torque transmitted to the wheel W, the state in which the required torque is transmitted to the wheel W is maintained.
  • the rotation speed of the rotary electric machine 2 is increased more than the synchronous rotation speed. That is, as shown by the broken line in the speed diagram of FIG. 4, the rotation speed of the rotary electric machine 2 is maintained while the rotation speed of the carrier CA (shift output member OUT) is maintained and the first engagement element CL1 is in a sliding engagement state. To raise. Further, the control device 5 changes the released second engaging element CL2 (in this case, the clutch C0) toward the engaged state during the execution of this test control.
  • the time chart of FIG. 3 shows the rotation speed ⁇ m of the rotary electric machine 2, the output torque Tm of the rotary electric machine 2, the first hydraulic command PC1 of the first engagement element CL1 (here, the brake B0), and the second engagement element CL2 (here).
  • the second hydraulic command PC2 of the clutch C0) is shown.
  • the brake B0 is engaged before the time t1, and the first speed stage 1st is formed in the automatic transmission 3.
  • the torque required to be transmitted to the wheel W is the required torque.
  • the rotation speed ⁇ m of the rotary electric machine 2 at this time is the synchronous rotation speed ⁇ s.
  • the control device 5 lowers the first hydraulic command PC1 so that the transmission torque of the brake B0 (first engagement element CL1) matches the torque at which the required torque is transmitted to the wheel W. ..
  • the brake B0 is in a state of transmitting a torque corresponding to the required torque multiplied by the reciprocal of the gear ratio from the brake B0 to the wheels W.
  • the brake B0 is in a sliding engagement state.
  • the control device 5 makes the torque of the rotary electric machine 2 higher than the torque at which the required torque is transmitted to the wheels W, so that the rotation speed ⁇ m of the rotary electric machine 2 becomes higher than the synchronous rotation speed ⁇ s. Raise it.
  • the brake B0 can be brought into the sliding engagement state while maintaining the state in which the required torque is transmitted to the wheels W.
  • the control device 5 controls the rotation speed of the rotary electric machine 2 so as to maintain the brake B0 in the sliding engagement state. In this way, the control device 5 applies the transmission torque of the first engaging element CL1 (brake B0) to the wheel W in a state where the automatic transmission 3 forms the target shift stage (first speed stage 1st).
  • the rotation speed of the rotary electric machine 2 is controlled to raise the rotation speed ⁇ m of the rotary electric machine 2 above the synchronous rotation speed ⁇ s, and the first engaging element CL1 (brake B0) is slid. Execute the test control to make it in the correct state.
  • FIG. 3 illustrates a mode in which the output torque Tm before the time t1 is maintained between the time t3 and the time t6 (the period including the period in which the first phase command described later is output). That is, it illustrates a mode in which the output torque Tm during normal control is maintained even during test control. However, as shown by the broken line in FIG. 3, the output torque Tm may be lowered from the time t3 to the time t6 as compared with the time before the time t1. That is, the output torque Tm during the test control may be set lower than the output torque Tm during the normal control.
  • the control device 5 controls the control amount (here, hydraulic pressure) of the clutch C0 (second engaging element CL2), which is the engaging element CL for forming the second speed stage 2nd, at the time t5 during the execution of the test control. It is raised to change the clutch C0 from the released state to the engaged state. Specifically, from time t5 to time t6, the first phase command is output as the second hydraulic command PC2, and from time t6, the second phase command is output as the second hydraulic command PC2.
  • the actual oil pressure gradually increases during the fast fill period, and when the stroke end pressure is reached at some point during the phase 2 command period, the clutch C0 (second engaging element CL2) begins to generate a transmission torque. ..
  • the control device 5 detects an increase in the output torque Tm of the rotary electric machine 2 based on a predetermined threshold value (specified torque TH) (time t8). That is, the control device 5 indicates that the output torque Tm of the rotary electric machine 2 has increased when the output torque Tm of the rotary electric machine 2 has increased by the specified torque TH or more as compared with before starting to increase the control amount of the clutch C0. It can be detected, and based on that, it can be detected that the clutch C0 has started to generate a transmission torque.
  • the control device 5 controls the rotary electric machine 2 by using the feedback current from the rotary electric machine 2 (stator coil). Since the torque of the rotary electric machine 2 has a correlation with the feedback current, the control device 5 can detect that the output torque of the rotary electric machine 2 has increased based on the feedback current. That is, the control device 5 detects the output torque Tm of the rotary electric machine 2 during execution of the rotational speed control, and based on the output torque Tm, the engaged state of the second engaging element CL2 (clutch C0 in this case), specifically Specifically, the transmission torque of the second engaging element CL2 can be detected.
  • the control device 5 engages the second engaging element CL2 (here, the clutch C0) based on the relationship between the command (hydraulic command) output by itself and the detected output torque Tm of the rotary electric machine 2.
  • the relationship between the state and the control amount of the second engaging element CL2 can be acquired.
  • the control device 5 has a first phase command size “A”, a first phase command period (first period) “B”, a second phase command size “E”, and a first phase command start.
  • the time from time t5 to time t8 (response time G) and the like can be acquired as the learning amount of the responsiveness of the clutch C0.
  • the control device 5 is present with the output torque of the rotary electric machine 2 before the output torque of the rotary electric machine 2 rises (before the time t7) after the time t9 when the output torque of the rotary electric machine 2 is stable (for example, time t10).
  • the difference "D" from the output torque at (time t10) can be acquired.
  • the difference "D" of the output torque is the transmission torque (steady transmission torque) of the clutch C0 in the steady state, and is one of the learning amounts.
  • Time t8 corresponds to the change start time of the engaged state of the clutch C0. Therefore, the size of the first phase command "A”, the period of the first phase command (first period) "B”, the size of the second phase command "E”, and the start time t5 of the first phase command. From the relationship with the time from time to time t8 (response time G), the control device 5 can acquire the relationship between the change start time of the engagement state of the second engaging element CL2 and the control amount. Further, the difference "D" in the output torque of the rotary electric machine 2 corresponds to the steady transmission torque of the clutch C0. Therefore, depending on the relationship between the magnitude "E” of the second phase command and the difference "D” of the output torque of the rotary electric machine 2, the control device 5 has a relationship between the steady transmission torque of the second engaging element CL2 and the control amount. Can be obtained.
  • the control device 5 Upon acquiring this information, the control device 5 lowers the oil pressure of the clutch C0 (second engaging element CL2) to change the clutch C0 toward the released state, and the brake B0 (first engaging element CL1). The oil pressure of the brake B0 is increased to change the brake B0 from the sliding engaged state to the engaged state. At the same time, the control device 5 shifts the control mode of the rotary electric machine 2 from the rotational speed control to the normal torque control. This ends the test control. In this way, the rotary electric machine 2 is controlled in rotation speed between time t3 and time t11 during test control (between time t2 and time t12 including the transition time).
  • the learning control when the target shift stage is the first speed stage 1st, the brake B0 is the first engagement element CL1, and the clutch C0 is the second engagement element CL2 has been described. Even when the speed stage is 2nd, learning control can be performed in the same manner.
  • Clutch C0 which is an engaging element CL engaged in a state where the automatic transmission 3 forms the second speed stage 2nd, becomes the first engaging element CL1, and the brake B0 becomes the second engaging element CL2. ..
  • the control device 5 executes the test control in the same manner as described above except that the target engaging element CL is different in this way, and the second engaging element CL2 (brake B0) is released during the execution of the test control. It changes from the state of being engaged to the state of being engaged. Then, the control device 5 detects the output torque Tm of the rotary electric machine 2 and acquires the relationship between the engaged state of the second engaging element CL2 and the controlled amount of the second engaging element CL2 based on the torque. ..
  • the test control In the test control, the first engaging element CL1 in the engaged state for forming the target shift stage is controlled in the sliding engaging state, and the second engaging element CL2 in the released state is controlled. Is changed toward the engaged state. At this time, there is a possibility that torque fluctuations may occur slightly in the speed change output member OUT and the wheels W, but when the traveling speed of the vehicle is relatively high, the occupant is less likely to feel the torque fluctuations. Therefore, it is preferable that the test control is executed when the rotation speed of the wheel W is equal to or higher than a predetermined predetermined speed. As a matter of course, the test control may be executed when the rotation speed of the wheel W is less than the specified speed, including when the vehicle is stopped.
  • the control device 5 controls the controlled variable so that the change start time and the steady transmission torque approach the target value.
  • the control pattern of the control amount is adjusted so that the target control behavior in the engaging element CL can be realized according to the learning result during the test control.
  • the control amount control pattern is a change pattern (change schedule) of the control amount, a magnitude of the control amount, and the like. For example, when the response time G is longer than the target time, the length of the first phase command size “A” or the length of the first phase command period “B” is set so that the response time G becomes shorter and faster. Adjust or adjust the magnitude "E" of the second phase command.
  • the magnitude "E" of the second phase command is adjusted so that the steady-state transmission torque becomes large.
  • the control device 5 uses the adjusted control amount control pattern to control the engaging element CL in the next shift gear switching. Further, it is more preferable to execute the next test control and update the control pattern by using the control pattern of the controlled amount after such adjustment.
  • the automatic transmission 3 is illustrated by exemplifying a mode in which the automatic transmission 3 is a two-speed automatic transmission having a planetary gear mechanism PG and two engaging elements CL for shifting.
  • the automatic transmission 3 may have three or more gears.
  • 5 and 6 are a skeleton diagram and an engagement table of an automatic transmission 3 having eight gears.
  • the automatic transmission 3 has a first planetary gear mechanism PG1, a second planetary gear mechanism PG2, and a plurality of engaging elements CL for shifting.
  • the automatic transmission 3 includes a first clutch C1, a second clutch C2, a third clutch C3, a fourth clutch C4, a first brake B1, and a second brake B2 as engaging elements CL.
  • the unidirectional engaging element F is also provided is illustrated, but the unidirectional engaging element F may not be provided.
  • the first planetary gear mechanism PG1 includes a first sun gear S1, a first ring gear R1, a first pinion gear P1 that meshes with the first sun gear S1, a second pinion gear P2 that meshes with the first ring gear R1, a first pinion gear P1, and a first pinion gear P1.
  • It is a double pinion type planetary gear mechanism having a first carrier CA1 that supports both of the two pinion gears P2.
  • the second planetary gear mechanism PG2 includes a second sun gear S2, a third sun gear S3, a second ring gear R2, a third pinion gear P3 that meshes with both the second sun gear S2 and the second ring gear R2, a third pinion gear P3, and the like.
  • It is a labinyo type planetary gear mechanism having a fourth pinion gear P4 that meshes with both of the third sun gear S3 and a second carrier CA2 that supports both the third pinion gear P3 and the fourth pinion gear P4.
  • the first sun gear S1 is connected to and fixed to the case 4.
  • the first carrier CA1 is connected to the shift input member IN so as to rotate integrally with the shift input member IN, and the driving force transmitted to the shift input member IN is transmitted to the first carrier CA1.
  • the first ring gear R1 is selectively connected to the second sun gear S2 of the second planetary gear mechanism PG2 via the third clutch C3.
  • the third clutch C3 When the third clutch C3 is engaged, the first ring gear R1 and the second sun gear S2 are connected and integrally rotate.
  • the first ring gear R1 is selectively connected to the third sun gear S3 of the second planetary gear mechanism PG2 via the first clutch C1.
  • the first carrier CA1 is selectively connected to the second sun gear S2 of the second planetary gear mechanism PG2 via the fourth clutch C4.
  • the fourth clutch C4 When the fourth clutch C4 is engaged, the first carrier CA1 and the second sun gear S2 are connected and integrally rotate.
  • the torque transmitted from the shift input member IN to the first ring gear R1 via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the second sun gear S2 by the engagement of the third clutch C3. Further, the torque transmitted from the shift input member IN via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the second sun gear S2 by the engagement of the fourth clutch C4. Further, the second sun gear S2 is selectively fixed to the case 4 via the first brake B1.
  • the torque transmitted from the shift input member IN is input to the second carrier CA2 by the engagement of the second clutch C2. Further, the second carrier CA2 is selectively fixed to the case 4 via the second brake B2 or the one-way engaging element F.
  • the second ring gear R2 is drive-connected to the speed change output member OUT.
  • the torque transmitted from the shift input member IN to the first ring gear R1 via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the third sun gear S3 by the engagement of the first clutch C1.
  • the automatic transmission 3 has eight gears having different gear ratios, that is, the first gear 1st, the second gear 2nd, and the third gear 3rd. It has 4th speed 4th, 5th speed 5th, 6th speed 6th, 7th speed 7th, and 8th speed 8th as forward stages, and has two stages, 1st reverse stage Rev1 and 2nd reverse stage Rev2. It also has a reverse stage.
  • the operation table of FIG. 6 shows the operating state of a plurality of engaging elements CL for shifting at each shift stage.
  • the white circle “ ⁇ ” indicates that the engaging element CL is in the engaged state
  • “unmarked” indicates that the engaging element CL is in the released state.
  • the parenthesized circle “( ⁇ )” indicates that the one-way engaging element F is in the engaged state when the engine brake is applied or the like.
  • the "target shift" in the test control for such an 8-speed automatic transmission 3 may be any one, a plurality, or all of the plurality of shifts.
  • the "first engaging element CL1" may be any one or a plurality of the plurality of engaging elements CL.
  • the “second engaging element CL2” may be any one or a plurality of the plurality of engaging elements CL.
  • the two engaging elements CL that are engaged in the target speed change are the first engaging element CL1
  • the engaging elements CL other than the two engaging elements CL are the second engaging elements. It is CL2.
  • the first clutch C1 and the third clutch C3, which are the engaging elements CL engaged in the state of forming the third speed stage 3rd, are the first.
  • the engaging element CL1 corresponds to the engaging element CL1.
  • the 3rd clutch C3 is released and the 4th clutch C4 is engaged. Therefore, among the engaging elements other than the first engaging element CL1, by setting the fourth clutch C4 as the second engaging element CL2, the situation is such that the speed is changed from the third speed stage 3rd to the fourth speed stage 4th. It is possible to learn the responsiveness of the combined fourth clutch C4.
  • the engaging element CL to be in the sliding engaging state during the test control is one of the first clutch C1 and the third clutch C3 as the first engaging element CL1. Therefore, the third clutch C3 released with the shift from the third speed stage 3rd to the fourth speed stage 4th may be in a slip-engaged state, or may remain engaged by the shift.
  • the first clutch C1 may be in a sliding engagement state.
  • the third clutch C3 is slipped during the test control.
  • the control device 5 adjusts the transmission torque of the third clutch C3 to the torque transmitted to the wheels W while the automatic transmission 3 forms the third speed stage 3rd.
  • the rotation speed of the rotary electric machine 2 is controlled so that the rotation speed ⁇ m of the rotary electric machine 2 is increased from the synchronous rotation speed to execute the test control in which the third clutch C3 is in the sliding engagement state.
  • the fourth clutch C4 is changed from the released state to the engaged state. The same can be applied when learning about other gears.
  • the engaging element CL may be electromagnetically driven.
  • the hydraulic command PC1, PC2
  • the electromagnetic drive type it is preferable to use the voltage command or the current command as the control amount.
  • the engaging element CL may be an electrically driven type in which the friction engaging element is driven by a motor or the like.
  • control device 5 controls at least one of the change start timing of the engagement state of the second engagement element CL2 and the steady transmission torque of the second engagement element CL2 as the engagement state.
  • the form of acquiring the relationship with is illustrated.
  • the control device 5 may acquire control parameters other than these.
  • a plurality of engaging elements (CL) provided in a power transmission path connecting the rotary electric machine (2), which is the driving force source of the wheel (W), and the rotary electric machine (2) and the wheel (W).
  • the vehicle drive device (1) is engaged with the automatic transmission (3) in a state of forming a target shift stage which is one of a plurality of the shift stages (CL).
  • the first engaging element (CL1), the engaging element (CL) other than the first engaging element (CL1) is the second engaging element (CL2), and the control device (5) is the wheel.
  • the torque required to be transmitted to (W) is defined as the required torque
  • the rotational speed ( ⁇ m) of the rotary electric machine (2) in the state where the target shift stage is formed is defined as the synchronous rotational speed ( ⁇ s).
  • the transmission torque of the first engaging element (CL1) is requested to the wheels (W) in a state where the automatic transmission (3) forms the target shift stage.
  • the first type is adjusted to the torque to be transmitted, and the rotation speed of the rotary electric machine (2) is controlled to increase the rotation speed ( ⁇ m) of the rotary electric machine (2) to be higher than the synchronous rotation speed ( ⁇ s).
  • a test control is executed in which the engaging element (CL1) is in a sliding engagement state, and at least the torque of the rotary electric machine (2) rises above a predetermined specified torque (TH) during the execution of the test control. It is preferable to change the second engaging element (CL2) from the released state to the engaged state.
  • the first gear in a state where the automatic transmission (3) forms any of a plurality of gears, and while transmitting the torque to be transmitted in the gears to the wheels (W), the first gear is used.
  • the response characteristic in the replacement of the engaging element (CL) by changing the 1 engaging element (CL1) into the sliding engaging state and the second engaging element (CL2) from the released state to the engaged state.
  • the response characteristics of the engaging element (CL) of the automatic transmission (3) can be learned with high accuracy. As described above, according to this configuration, the response characteristics of the engaging element (CL) of the automatic transmission (3) can be learned with higher frequency and higher accuracy.
  • control device (5) detects the torque (Tm) of the rotary electric machine (2) during execution of the rotation speed control, and the second engaging element (CL2) is based on the torque (Tm). It is preferable to acquire the relationship between the engaged state of the above and the controlled amount of the second engaging element (CL2).
  • control device (5) has a change start timing of the engagement state of the second engagement element (CL2) and a steady transmission torque (D) of the second engagement element (CL2) as the engagement state. It is preferable to acquire the relationship between at least one of) and the controlled amount.
  • the responsiveness of the second engagement element (CL2) can be learned. Further, by acquiring the relationship between the steady transmission torque (D) of the second engaging element (CL2) and the control amount, the control required when the second engaging element (CL2) is used to form a shift stage.
  • the amount (for example, the magnitude of hydraulic pressure when the engaging element (CL) is hydraulically driven) can be learned.
  • control amount of the control amount is adjusted so that the change start time and the steady transmission torque (D) approach the target value. It is preferable to adjust the control pattern.
  • the control amount control pattern is a change pattern (change schedule) of the control amount, a magnitude of the control amount, and the like. For example, when the change start time of the engagement state of the second engaging element (CL2) is later than the target time, the control amount control pattern is set so that the change start time is earlier than the detected time. Be adjusted. Further, when the steady transmission torque is smaller than the target value, the control pattern of the control amount is adjusted so that the steady transmission torque becomes large. By updating the control pattern in this way, the control device (5) can appropriately adjust the response characteristics of the engaging element (CL) of the automatic transmission (3).
  • the engaging element (CL) is a hydraulic drive type driven by supplying hydraulic oil according to a hydraulic command via a hydraulic control valve that adjusts the hydraulic pressure.
  • the change start time includes a first phase command for setting the hydraulic control valve as a first opening and a second phase command for maintaining the hydraulic control valve at a second opening smaller than the first opening.
  • the time from the start of the first phase command until the torque of the rotary electric machine (2) rises above the specified torque (TH) is set as the response time (G), and the control device (5) is described.
  • the control pattern is adjusted so that the first period (B), which is the control time according to the first phase command, is longer than the previous time, and the response time (G)
  • the control pattern is adjusted so that the first period (B) is shorter than the previous time, and the steady transmission torque (D) is larger than the target value.
  • the control pattern is adjusted so that the magnitude of the second phase command is smaller than the previous time, and when the steady transmission torque (D) is smaller than the target value, the second phase command is issued. It is preferable to adjust the control pattern so that the size is larger than the previous time.
  • the response time (G) when the response time (G) is longer than the target time, the response time (G) is shortened by extending the first period (B) and increasing the first opening degree of the hydraulic control valve.
  • the response time (G) when the response time (G) is shorter than the target time, the response time (G) can be extended by shortening the first period (B) and reducing the first opening degree of the hydraulic control valve.
  • the steady transmission torque (D) is larger than the target value
  • the steady transmission torque (D) is reduced by reducing the second phase command and the second opening degree of the hydraulic control valve to reduce the steady transmission torque (D).
  • the steady transmission torque (D) when the torque (D) is smaller than the target value, the steady transmission torque (D) can be increased by increasing the second phase command and increasing the second opening degree of the hydraulic control valve.

Abstract

Defining as a first engagement element (CL1) an engagement element that is engaged in a state in which an automatic transmission (3) forms a target shift stage, and defining an engagement element other than the first engagement element (CL1) as a second engagement element (CL2), if the vehicle is traveling, then, in a state in which the automatic transmission (3) forms a target shift stage, a control device carries out test control which adjusts the transmission torque of the first engagement element (CL1) to a torque at which the torque required for the wheel (W) is transmitted, and controls the rotation speed of the rotary electric machine (5) to raise the rotation speed (ωm) of the rotary electric machine (5) to above the synchronous rotation speed (ωs) and set the first engagement element (CL1) to a slip-engaged state, and during execution of the test control, changes the second engagement element (CL2) from a disengaged state to an engaged state at least until the torque of the rotary electric machine (2) rises to or above a predefined standard torque (TH).

Description

車両用駆動装置Vehicle drive
 本発明は、複数の係合要素の選択的な係合によって複数の変速段を切り替え可能な自動変速機を備えた車両用駆動装置に関する。 The present invention relates to a vehicle drive device including an automatic transmission capable of switching a plurality of gears by selectively engaging a plurality of engaging elements.
 特許第3484724号公報(例えば図9)には、ブレーキ(B)とクラッチ(C)とを選択的に係合して2つの変速段を切り替え、車輪の駆動力源としての回転電機(12)の回転を等速で、又は増速して車輪へ伝達する自動変速機(13)が開示されている(背景技術において括弧内の符号は参照する文献のもの。)。この自動変速機(13)は、1速段では、クラッチ(C)が係合されると共にブレーキ(B)が解放されて、自動変速機(13)に入力された回転を等速で出力し、2速段では、クラッチ(C)が解放されると共にブレーキ(B)が係合されて、自動変速機(13)に入力された回転を増速して出力する。つまり、1速段から2速段への変速が行われる際には、クラッチ(C)が係合された状態から解放され、ブレーキ(B)が解放された状態から係合される。 In Japanese Patent No. 3484724 (for example, FIG. 9), a brake (B) and a clutch (C) are selectively engaged to switch between two gears, and a rotary electric machine (12) is used as a driving force source for wheels. There is disclosed an automatic transmission (13) that transmits the rotation of the wheel to the wheels at a constant speed or by increasing the speed (reference numerals in parentheses in the background art are those of the literature). In the 1st speed, the automatic transmission (13) is engaged with the clutch (C) and the brake (B) is released, and the rotation input to the automatic transmission (13) is output at a constant speed. In the second and second speed stages, the clutch (C) is released and the brake (B) is engaged to increase the speed of the rotation input to the automatic transmission (13) and output it. That is, when shifting from the 1st speed to the 2nd speed, the clutch (C) is released from the engaged state and the brake (B) is engaged from the released state.
特許第3484724号公報Japanese Patent No. 3484724
 このような自動変速機では、上述したように、クラッチやブレーキなどの係合要素を掛け替えて異なる変速段への変速が行われるが、円滑な変速のためには係合要素の掛け替えが適切に制御されることが好ましい。即ち、係合要素の係合状態を変化させるための制御量(例えば、係合要素が油圧駆動式の場合は油圧の制御量、電磁駆動式の場合は電流や電圧の制御量)が、適切に制御されることが好ましい。このため、自動変速機を制御する制御装置は、自動変速機が変速段を形成していないニュートラル状態や、車両が停止している状態において、学習対象の係合要素を係合させて係合要素の応答特性を学習する構成を備えている場合がある。但し、このような構成では、ニュートラル状態や停止状態となっている場合にしか学習することができないため、学習機会が限られ、学習頻度を高くすることが難しい。また、ニュートラル状態や停止状態では、車両が走行中の状態と比べて、各部の環境や条件が異なっている場合が多く、学習の精度を高めることには限界があった。 In such an automatic transmission, as described above, the engaging elements such as the clutch and the brake are changed to shift to a different shift stage, but for smooth shifting, the engaging elements are appropriately changed. It is preferable to be controlled. That is, the control amount for changing the engaging state of the engaging element (for example, the control amount of hydraulic pressure when the engaging element is hydraulically driven, and the controlled amount of current or voltage when the engaging element is electromagnetically driven) is appropriate. It is preferable to be controlled by. Therefore, the control device that controls the automatic transmission engages the engaging elements to be learned by engaging them in a neutral state in which the automatic transmission does not form a shift stage or in a state where the vehicle is stopped. It may have a configuration for learning the response characteristics of the element. However, in such a configuration, learning can be performed only in the neutral state or the stopped state, so that the learning opportunity is limited and it is difficult to increase the learning frequency. Further, in the neutral state and the stopped state, the environment and conditions of each part are often different from those in the state in which the vehicle is running, and there is a limit to improving the learning accuracy.
 そこで、より高い頻度且つより高い精度で自動変速機の係合要素の応答特性を学習することができる技術の提供が望まれる。 Therefore, it is desired to provide a technique capable of learning the response characteristics of the engaging elements of the automatic transmission with higher frequency and higher accuracy.
 上記に鑑みた、車輪の駆動力源の回転電機と、前記回転電機と前記車輪とを結ぶ動力伝達経路に設けられて複数の係合要素の選択的な係合によって複数の変速段を切り替え可能な自動変速機と、前記回転電機及び前記自動変速機を制御する制御装置と、を備えた車両用駆動装置は、前記自動変速機が複数の前記変速段の何れかである対象変速段を形成している状態で係合されている前記係合要素を第1係合要素とし、前記第1係合要素以外の前記係合要素を第2係合要素として、前記制御装置は、前記車輪に伝達することが要求されているトルクを要求トルクとし、前記対象変速段が形成されている状態での前記回転電機の回転速度を同期回転速度として、車両が走行中の場合に、前記自動変速機が前記対象変速段を形成している状態で、前記第1係合要素の伝達トルクを前記車輪に前記要求トルクが伝達されるトルクに合わせると共に、前記回転電機を回転速度制御して前記回転電機の回転速度を前記同期回転速度よりも上昇させて前記第1係合要素を滑り係合状態とするテスト制御を実行し、前記テスト制御の実行中に、少なくとも前記回転電機のトルクが予め規定された規定トルク以上に上昇するまで前記第2係合要素を解放された状態から係合された状態へ向けて変化させると好適である。 In view of the above, a plurality of gears can be switched by selectively engaging a plurality of engaging elements provided in a rotary electric machine as a driving force source of the wheel and a power transmission path connecting the rotary electric machine and the wheel. A vehicle drive device including an automatic transmission, a rotary electric machine, and a control device for controlling the automatic transmission forms a target transmission stage in which the automatic transmission is one of a plurality of the transmission stages. The control device is attached to the wheel by using the engaging element engaged in the engaged state as the first engaging element and the engaging element other than the first engaging element as the second engaging element. When the vehicle is running, the automatic transmission is used, with the torque required to be transmitted as the required torque and the rotation speed of the rotating electric machine in the state where the target shift stage is formed as the synchronous rotation speed. Matches the transmission torque of the first engaging element to the torque at which the required torque is transmitted to the wheels, and controls the rotation speed of the rotary electric machine to control the rotation speed of the rotary electric machine. A test control is executed in which the rotation speed of the above is increased from the synchronous rotation speed to bring the first engaging element into a sliding engagement state, and at least the torque of the rotary electric machine is predetermined during the execution of the test control. It is preferable to change the second engaging element from the released state to the engaged state until the torque rises above the specified torque.
 本構成によれば、自動変速機が複数の変速段の何れかを形成している状態で、且つ、車輪に当該変速段において伝達されるべきトルクを伝達させつつ、第1係合要素を滑り係合状態とし、第2係合要素を解放された状態から係合された状態へと変化させて、係合要素の掛け替えにおける応答特性を学習する。つまり、自動変速機がニュートラル状態ではなく変速段を形成している状態で、且つ、車輪にトルクを伝達して車両を走行させている状態で応答特性を学習することができる。即ち、本構成によれば、車両が走行中である場合に応答特性の学習を行うことができるため、高い頻度で自動変速機の係合要素の応答特性を学習することができる。また、変速段が形成され、車両が走行している状態であるから、例えば係合要素が油圧駆動式であるような場合には、油圧回路に油が循環している実際の状態において応答特性を学習することができる。従って、高い精度で自動変速機の係合要素の応答特性を学習することができる。このように、本構成によれば、より高い頻度且つより高い精度で自動変速機の係合要素の応答特性を学習することができる。 According to this configuration, the first engaging element is slid while the automatic transmission forms any of a plurality of gears and transmits torque to be transmitted in the gears to the wheels. In the engaged state, the second engaging element is changed from the released state to the engaged state, and the response characteristic in the replacement of the engaging element is learned. That is, it is possible to learn the response characteristics in a state where the automatic transmission is not in the neutral state but in a state where a shift stage is formed, and in a state where torque is transmitted to the wheels to drive the vehicle. That is, according to this configuration, since the response characteristics can be learned when the vehicle is running, the response characteristics of the engaging elements of the automatic transmission can be learned with high frequency. Further, since the shift stage is formed and the vehicle is running, for example, when the engaging element is a hydraulically driven type, the response characteristic is in the actual state where oil is circulated in the hydraulic circuit. Can be learned. Therefore, it is possible to learn the response characteristics of the engaging element of the automatic transmission with high accuracy. As described above, according to this configuration, it is possible to learn the response characteristics of the engaging element of the automatic transmission with higher frequency and higher accuracy.
 車両用駆動装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。 Further features and advantages of the vehicle drive device will be clarified from the following description of the embodiments described with reference to the drawings.
2段変速の自動変速機を備えた車両用駆動装置の一例を示すスケルトン図A skeleton diagram showing an example of a vehicle drive device equipped with a two-speed automatic transmission. 2段変速の自動変速機の係合表Engagement table for 2-speed automatic transmission テスト制御の一例を示すタイムチャートTime chart showing an example of test control 自動変速機の速度線図Speed diagram of automatic transmission 8段変速の自動変速機を備えた車両用駆動装置の一例を示すスケルトン図A skeleton diagram showing an example of a vehicle drive device equipped with an 8-speed automatic transmission. 8段変速の自動変速機の係合表8-speed automatic transmission engagement table
 以下、車両用駆動装置の実施形態を図面に基づいて説明する。図1に示すように、車両用駆動装置1は、車両の車輪Wの駆動力源の回転電機2と、回転電機2と車輪Wとを結ぶ動力伝達経路に設けられて複数の係合要素CLの選択的な係合によって複数の変速段を切り替え可能な自動変速機3と、回転電機2及び自動変速機3を制御する制御装置5とを備えている。図1には自動変速機3として、遊星歯車機構PGを備えた2段変速の変速装置を例示している。 Hereinafter, embodiments of the vehicle drive device will be described with reference to the drawings. As shown in FIG. 1, the vehicle drive device 1 is provided in a power transmission path connecting the rotary electric machine 2 which is the driving force source of the wheel W of the vehicle and the rotary electric machine 2 and the wheel W, and a plurality of engaging elements CL. It is provided with an automatic transmission 3 capable of switching a plurality of shift stages by selective engagement of the above, and a control device 5 for controlling the rotary electric machine 2 and the automatic transmission 3. FIG. 1 illustrates a two-speed transmission equipped with a planetary gear mechanism PG as the automatic transmission 3.
 以下の説明において、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれても良い。また、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータの何れをも含む。 In the following description, "driving connection" means a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque). This concept includes a state in which two rotating elements are connected so as to rotate integrally, and a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members. Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and are engaging devices (friction) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.) may be included. Further, the "rotary electric machine" includes any of a motor (motor), a generator (generator), and, if necessary, a motor / generator that functions as both a motor and a generator.
 回転電機2は、非回転部材であるケース4に固定されたステータ(不図示)と、ステータの径方向内側に回転可能に支持されたロータ(不図示)とを備えている。回転電機2は、直流と交流との間で電力を変換するインバータ(不図示)を介して直流電源(不図示)に接続されている。直流電源は、二次電池やキャパシタなどの蓄電可能な電源である。回転電機2は、直流電源から電力を供給されて力行すると共に、車両の慣性力等によって発電した電力を直流電源に回生して直流電源に蓄電させる。回転電機2のロータは自動変速機3への変速入力部材INと一体回転するように、変速入力部材INに連結されている。 The rotary electric machine 2 includes a stator (not shown) fixed to the case 4 which is a non-rotating member, and a rotor (not shown) rotatably supported inside the stator in the radial direction. The rotary electric machine 2 is connected to a DC power supply (not shown) via an inverter (not shown) that converts power between DC and AC. A DC power source is a power source that can store electricity, such as a secondary battery or a capacitor. The rotary electric machine 2 is supplied with electric power from a DC power source to perform power, and also regenerates the electric power generated by the inertial force of the vehicle to the DC power source and stores the electric power in the DC power source. The rotor of the rotary electric machine 2 is connected to the speed change input member IN so as to rotate integrally with the speed change input member IN to the automatic transmission 3.
 自動変速機3は、有段自動変速機として構成されており、本実施形態では、遊星歯車機構PGと、複数の変速用の係合要素CLとを備えている。図1に示すように、遊星歯車機構PGは、リングギヤRと、サンギヤSと、リングギヤR及びサンギヤSの双方に噛み合う複数のピニオンギヤPを支持するキャリヤCAとを備え、複数の係合要素CLとしては、クラッチC0及びブレーキB0を備えている。変速入力部材INは、リングギヤRに連結されている。自動変速機3の変速出力部材OUTはキャリヤCAに連結されている。サンギヤSは、ブレーキB0を介して非回転部材であるケース4に選択的に固定されると共に、クラッチC0を介してキャリヤCAに選択的に連結される。自動変速機3の変速出力部材OUTは、車輪Wに駆動力を分配する差動歯車機構DFの差動入力部材DGに駆動連結されている。尚、変速出力部材OUTと差動歯車機構DFとの間にカウンタギヤ機構(不図示)等の他の動力伝達機構が備えられていてもよい。 The automatic transmission 3 is configured as a stepped automatic transmission, and in the present embodiment, it includes a planetary gear mechanism PG and a plurality of engaging elements CL for shifting. As shown in FIG. 1, the planetary gear mechanism PG includes a ring gear R, a sun gear S, and a carrier CA that supports a plurality of pinion gears P that mesh with both the ring gear R and the sun gear S, and serves as a plurality of engaging elements CL. Includes a clutch C0 and a brake B0. The speed change input member IN is connected to the ring gear R. The shift output member OUT of the automatic transmission 3 is connected to the carrier CA. The sun gear S is selectively fixed to the case 4 which is a non-rotating member via the brake B0, and is selectively connected to the carrier CA via the clutch C0. The shift output member OUT of the automatic transmission 3 is drive-connected to the differential input member DG of the differential gear mechanism DF that distributes the driving force to the wheels W. Other power transmission mechanisms such as a counter gear mechanism (not shown) may be provided between the shift output member OUT and the differential gear mechanism DF.
 図2の係合表に示すように、自動変速機3は、係合要素CLとしてのクラッチC0とブレーキB0との何れかを選択的に係合させることで、変速段を形成する。本実施形態では、2段の変速段が形成される。第1速段1stでは、ブレーキB0が係合された状態、クラッチC0が解放された状態となるように制御される。図4の速度線図に実線で示すように、ブレーキB0が係合された状態となることにより、サンギヤSが固定され、変速入力部材INに連結されたリングギヤRの回転が減速されて、キャリヤCAを介して変速出力部材OUTから出力される。第2速段2ndでは、ブレーキB0が解放された状態、クラッチC0が係合された状態となるように制御される。これにより、図4の速度線図に一点鎖線で示すように、クラッチC0が係合された状態となることにより、サンギヤSとキャリヤCAとが一体的に回転する状態となり、変速入力部材INに連結されたリングギヤRの回転が等速のままで変速出力部材OUTから出力される。 As shown in the engagement table of FIG. 2, the automatic transmission 3 forms a shift stage by selectively engaging any one of the clutch C0 and the brake B0 as the engagement element CL. In this embodiment, two gears are formed. In the 1st speed stage 1st, the brake B0 is controlled to be engaged and the clutch C0 is controlled to be released. As shown by the solid line in the speed diagram of FIG. 4, when the brake B0 is engaged, the sun gear S is fixed, the rotation of the ring gear R connected to the speed change input member IN is decelerated, and the carrier is used. It is output from the speed change output member OUT via the CA. In the second speed stage 2nd, the brake B0 is controlled to be released and the clutch C0 is controlled to be engaged. As a result, as shown by the alternate long and short dash line in the speed diagram of FIG. 4, the clutch C0 is engaged, so that the sun gear S and the carrier CA are integrally rotated, and the shift input member IN is engaged. The rotation of the connected ring gear R is output from the shift output member OUT at a constant speed.
 制御装置5(CTRL)は、アクセル開度、車速などの情報に基づいて、車両(車輪W)の要求トルクを決定し、回転電機2及び自動変速機3を制御している。制御装置5は、自動変速機3の変速段を決定し、回転電機2の回転を制御する。ここで、要求トルクは、各時点において車輪Wに伝達することが要求されているトルクである。また、いずれかの変速段が形成されている状態での車速(車輪Wの回転速度)に応じた回転電機2の回転速度が当該変速段での同期回転速度である。制御装置5は、回転電機2を制御する制御方式として、トルク制御と回転速度制御とを実行することが可能である。ここで、トルク制御は、回転電機2に目標トルク(回転電機2のトルクの目標値)を指令し、回転電機2の出力トルクをその目標トルクに追従させる制御である。回転速度制御は、回転電機2に目標回転速度を指令し、回転電機2の回転速度をその目標回転速度に追従させる制御である。尚、制御装置5は、回転電機2(ステータコイル)を流れる電流(フィードバック電流)と、電流指令との偏差に基づいて回転電機2を制御している。 The control device 5 (CTRL) determines the required torque of the vehicle (wheel W) based on information such as the accelerator opening degree and the vehicle speed, and controls the rotary electric machine 2 and the automatic transmission 3. The control device 5 determines the shift stage of the automatic transmission 3 and controls the rotation of the rotary electric machine 2. Here, the required torque is the torque required to be transmitted to the wheel W at each time point. Further, the rotational speed of the rotary electric machine 2 according to the vehicle speed (rotational speed of the wheels W) in the state where any of the gears is formed is the synchronous rotational speed at the gears. The control device 5 can execute torque control and rotation speed control as a control method for controlling the rotary electric machine 2. Here, the torque control is a control in which a target torque (a target value of the torque of the rotary electric machine 2) is commanded to the rotary electric machine 2 and the output torque of the rotary electric machine 2 is made to follow the target torque. The rotation speed control is a control in which a target rotation speed is commanded to the rotation electric machine 2 and the rotation speed of the rotation electric machine 2 is made to follow the target rotation speed. The control device 5 controls the rotary electric machine 2 based on the deviation between the current (feedback current) flowing through the rotary electric machine 2 (stator coil) and the current command.
 本実施形態では、係合要素CLは、例えば湿式多板クラッチなどの油圧駆動式の摩擦係合要素である。制御装置5は、不図示の油圧回路を制御して係合要素CLを駆動する。油圧回路は、不図示のオイルポンプから供給される作動油の油圧を調整するための油圧制御弁(リニアソレノイド弁等)を備えている。制御装置5からの油圧指令(PC1,PC2:図3参照)に応じて油圧制御弁の開度が調整され、油圧指令に応じた油圧の作動油が各係合要素へ供給される。尚、“PC1”は後述する第1係合要素CL1への油圧指令(第1油圧指令)であり、“PC2”は後述する第2係合要素CL2への油圧指令(第2油圧指令)である。 In the present embodiment, the engaging element CL is a hydraulically driven friction engaging element such as a wet multi-plate clutch. The control device 5 controls a hydraulic circuit (not shown) to drive the engaging element CL. The hydraulic circuit includes a hydraulic control valve (linear solenoid valve or the like) for adjusting the hydraulic pressure of hydraulic oil supplied from an oil pump (not shown). The opening degree of the hydraulic control valve is adjusted according to the hydraulic command (PC1, PC2: see FIG. 3) from the control device 5, and the hydraulic hydraulic oil according to the hydraulic command is supplied to each engaging element. In addition, "PC1" is a hydraulic command (first hydraulic command) to the first engaging element CL1 described later, and "PC2" is a hydraulic command (second hydraulic command) to the second engaging element CL2 described later. be.
 油圧指令は、初期段階で油圧制御弁を第1開度とする第1相指令と、油圧制御弁を第1開度よりも小さい第2開度に維持させる第2相指令と、油圧制御弁の開度を第2開度から次第に増加させる第3相指令とを含む。第1相指令に応じて油圧シリンダなどの係合動作部に圧油が急速に導入され、湿式多板クラッチの複数の摩擦プレート間のクリアランスが解消される。次に、第2相指令に応じて、係合動作部に供給される油の油圧が、所定圧(具体的には係合させるべき係合要素CLが伝達トルクを生じさせ始める直前のストロークエンド圧)に維持される。その後、第3相指令に応じて、係合動作部に供給される油の油圧が次第に増大され、係合要素CLが所望の伝達トルクを発生させる。 The hydraulic command includes a first phase command in which the hydraulic control valve is set as the first opening in the initial stage, a second phase command in which the hydraulic control valve is maintained at a second opening smaller than the first opening, and a hydraulic control valve. Includes a third phase command that gradually increases the opening degree of. Pressure oil is rapidly introduced into the engaging operation part of the hydraulic cylinder or the like in response to the first phase command, and the clearance between the plurality of friction plates of the wet multi-plate clutch is eliminated. Next, in response to the second phase command, the hydraulic pressure of the oil supplied to the engaging operation part becomes a predetermined pressure (specifically, the stroke end immediately before the engaging element CL to be engaged starts to generate a transmission torque. Pressure) is maintained. Then, in response to the third phase command, the oil pressure supplied to the engaging operating portion is gradually increased, and the engaging element CL generates a desired transmission torque.
 ここで、実油圧は、第1相指令の期間に相当するファストフィル期間において次第に上昇していき、第2相指令の期間における何れかの時点でストロークエンド圧に到達する。
このとき、ある係合要素CL(この場合、クラッチC0又はブレーキB0)に油圧指令が出力されてから(第1相指令が出力されてから)当該係合要素CLが実際に伝達トルクを生じさせ始めるまでに要する時間(後述する変化開始時期までの時間に相当する)は、係合要素CLによって異なり得る。また、当該時間は、同じ係合要素CLであっても動作環境(油圧や油温等)によって変化し得る。また、第2相指令における目標値であるストロークエンド圧(後述する定常伝達トルクを得るための油圧に相当する)も、係合要素CLによって異なり得る。また、当該ストロークエンド圧も、同じ係合装置であっても動作環境(油圧や油温等)によって変化し得る。即ち、これらの時間(変化開始時期)やストロークエンド圧(定常伝達トルク)は、係合要素CLごとに異なると共に、動作環境による影響も受ける。
Here, the actual oil pressure gradually rises in the fast fill period corresponding to the period of the first phase command, and reaches the stroke end pressure at some point in the period of the second phase command.
At this time, after the hydraulic command is output to a certain engaging element CL (in this case, the clutch C0 or the brake B0) (after the first phase command is output), the engaging element CL actually generates the transmission torque. The time required to start (corresponding to the time until the change start time described later) may differ depending on the engaging element CL. Further, the time may change depending on the operating environment (oil pressure, oil temperature, etc.) even if the engaging element CL is the same. Further, the stroke end pressure (corresponding to the hydraulic pressure for obtaining the steady transmission torque described later), which is the target value in the second phase command, may also differ depending on the engaging element CL. Further, the stroke end pressure may also change depending on the operating environment (oil pressure, oil temperature, etc.) even with the same engaging device. That is, these times (change start time) and stroke end pressure (steady transmission torque) are different for each engaging element CL and are also affected by the operating environment.
 制御装置5は、自動変速機3を円滑に制御するために、係合要素CLごとに、係合開始時期や定常伝達トルクを学習するためのテスト制御を実行する。係合開始時期は、例えばその係合要素CLに油圧指令(第1相指令)が出力されてから当該係合要素CLが実際に伝達トルクを生じさせ始めるまでに要する時間として学習される。係合開始時期は、油圧指令が出力されてからの経過時間に基づいて決定されても良いし、ファストフィル期間が一定である場合には当該ファストフィル期間の終了時からの経過時間に基づいて決定されても良い。また、定常伝達トルクは、油圧指令(第2相指令)が出力されている状態において制御対象の係合要素CLにより生じている伝達トルクとして学習される。制御装置5は、学習した係合開始時期や定常伝達トルクが、適正範囲から外れている場合には、適正範囲に近づけるように補正するとさらに好適である。 The control device 5 executes test control for learning the engagement start timing and the steady transmission torque for each engagement element CL in order to smoothly control the automatic transmission 3. The engagement start time is learned as, for example, the time required from the output of the hydraulic command (first phase command) to the engagement element CL until the engagement element CL actually starts to generate the transmission torque. The engagement start time may be determined based on the elapsed time from the output of the hydraulic command, or if the fast fill period is constant, based on the elapsed time from the end of the fast fill period. It may be decided. Further, the steady transmission torque is learned as the transmission torque generated by the engaging element CL to be controlled in the state where the hydraulic command (second phase command) is output. It is more preferable that the control device 5 corrects the learned engagement start timing and the steady transmission torque so as to approach the appropriate range when it is out of the appropriate range.
 例えば、制御装置5は、回転電機2が動作中で車両が停車しており、自動変速機3がニュートラル状態の場合に、第1速段1stを形成するために係合状態とされるブレーキB0を対象として、解放された状態から係合された状態へ向けて変化させることにより、学習を実行することができる。しかし、運転者によっては、車両の起動後、直ちにシフトレバーを操作して、ニュートラルレンジからドライブレンジに変更する場合がある。このような場合には、学習機会が失われる。また、第1速段1stから第2速段2ndへのシフトチェンジの際の学習なども考慮すると、車両が走行中にも学習が可能であることが好ましい。本実施形態では、制御装置5は、車両が走行中においても学習を行うことが可能に構成されている。車両が走行中であれば、係合要素CLが油圧駆動式の場合に、油圧回路に油が循環しており、実際の変速環境に応じた学習が可能となる。 For example, in the control device 5, when the rotary electric machine 2 is operating and the vehicle is stopped and the automatic transmission 3 is in the neutral state, the brake B0 is engaged in order to form the first speed stage 1st. Learning can be performed by changing the subject from the released state to the engaged state. However, depending on the driver, the shift lever may be operated immediately after the vehicle is started to change from the neutral range to the drive range. In such cases, learning opportunities are lost. Further, considering learning at the time of shift change from the 1st speed stage 1st to the 2nd speed stage 2nd, it is preferable that the learning can be performed even while the vehicle is traveling. In the present embodiment, the control device 5 is configured to be able to perform learning even while the vehicle is traveling. When the vehicle is running, when the engaging element CL is a hydraulically driven type, oil circulates in the hydraulic circuit, and learning according to the actual shifting environment becomes possible.
 以下、制御装置5が、第1速段1stから第2速段2ndへの変速段の切り替えにおける係合要素CL(この場合は、係合されるクラッチC0)の応答特性を学習する場合について説明する。この場合、第1速段1stを対象変速段とし、自動変速機3が第1速段1stを形成している状態で係合されている係合要素CLであるブレーキB0を第1係合要素CL1とする。対象変速段である第1速段1stで解放されているクラッチC0は、ここでは第2係合要素CL2とする。また、その時点でのアクセル開度や車速などに基づいて車輪Wに伝達することが要求されているトルクを要求トルクとし、対象変速段が形成されている状態での車速(車輪Wの回転速度)に応じた回転電機2の回転速度を同期回転速度とする。 Hereinafter, a case where the control device 5 learns the response characteristics of the engaging element CL (in this case, the engaged clutch C0) in switching the shift stage from the first speed stage 1st to the second speed stage 2nd will be described. do. In this case, the first speed stage 1st is set as the target shift stage, and the brake B0, which is the engagement element CL engaged in the state where the automatic transmission 3 forms the first speed stage 1st, is the first engagement element. Let it be CL1. The clutch C0 released in the first speed 1st, which is the target shift stage, is referred to as the second engagement element CL2 here. Further, the torque required to be transmitted to the wheel W based on the accelerator opening and the vehicle speed at that time is set as the required torque, and the vehicle speed (rotational speed of the wheel W) in the state where the target shift stage is formed is formed. ), The rotation speed of the rotary electric machine 2 is defined as the synchronous rotation speed.
 制御装置5は、自動変速機3が対象変速段を形成している状態で、第1係合要素CL1の伝達トルクを車輪Wに要求トルクが伝達されるトルクに合わせると共に、回転電機2を回転速度制御して回転電機2の回転速度を同期回転速度よりも上昇させて第1係合要素CL1を滑り係合状態とするテスト制御を実行する。つまり、第1係合要素CL1(この場合ブレーキB0)の伝達トルクを車輪Wに要求トルクが伝達されるトルクに合わせた状態とすることで、車輪Wに要求トルクが伝達される状態を維持しつつ、回転電機2のトルクを車輪Wに要求トルクが伝達されるトルクよりも高くすることで回転電機2の回転速度を同期回転速度よりも上昇させる。即ち、図4の速度線図に破線で示すように、キャリヤCA(変速出力部材OUT)の回転速度を維持しつつ、第1係合要素CL1を滑り係合状態として、回転電機2の回転速度を上昇させる。さらに、制御装置5は、このテスト制御の実行中に、解放状態の第2係合要素CL2(この場合クラッチC0)を係合状態に向けて変化させる。 The control device 5 adjusts the transmission torque of the first engaging element CL1 to the torque transmitted to the wheels W and rotates the rotary electric machine 2 in a state where the automatic transmission 3 forms the target shift stage. A test control is executed in which the speed is controlled so that the rotation speed of the rotary electric machine 2 is increased from the synchronous rotation speed to bring the first engaging element CL1 into a sliding engagement state. That is, by adjusting the transmission torque of the first engaging element CL1 (brake B0 in this case) to the torque transmitted to the wheel W, the state in which the required torque is transmitted to the wheel W is maintained. At the same time, by making the torque of the rotary electric machine 2 higher than the torque at which the required torque is transmitted to the wheels W, the rotation speed of the rotary electric machine 2 is increased more than the synchronous rotation speed. That is, as shown by the broken line in the speed diagram of FIG. 4, the rotation speed of the rotary electric machine 2 is maintained while the rotation speed of the carrier CA (shift output member OUT) is maintained and the first engagement element CL1 is in a sliding engagement state. To raise. Further, the control device 5 changes the released second engaging element CL2 (in this case, the clutch C0) toward the engaged state during the execution of this test control.
 図3のタイムチャートは、回転電機2の回転速度ωm、回転電機2の出力トルクTm、第1係合要素CL1(ここではブレーキB0)の第1油圧指令PC1、第2係合要素CL2(ここではクラッチC0)の第2油圧指令PC2、を示している。図3に示すタイムチャートにおいて、時刻t1以前にブレーキB0が係合されて、自動変速機3には第1速段1stが形成されている。この時、車輪Wに伝達されることが要求されているトルクが要求トルクである。また、この時の回転電機2の回転速度ωmが同期回転速度ωsである。 The time chart of FIG. 3 shows the rotation speed ωm of the rotary electric machine 2, the output torque Tm of the rotary electric machine 2, the first hydraulic command PC1 of the first engagement element CL1 (here, the brake B0), and the second engagement element CL2 (here). The second hydraulic command PC2 of the clutch C0) is shown. In the time chart shown in FIG. 3, the brake B0 is engaged before the time t1, and the first speed stage 1st is formed in the automatic transmission 3. At this time, the torque required to be transmitted to the wheel W is the required torque. Further, the rotation speed ωm of the rotary electric machine 2 at this time is the synchronous rotation speed ωs.
 テスト制御の開始に当たって、制御装置5は、第1油圧指令PC1を低下させ、ブレーキB0(第1係合要素CL1)の伝達トルクが車輪Wに要求トルクが伝達されるトルクに合致する状態とする。この状態では、ブレーキB0は、要求トルクにブレーキB0から車輪Wまでの変速比の逆数を乗算したトルクに相当するトルクを伝達する状態となる。この状態では、ブレーキB0の伝達トルクよりも大きいトルクが伝わると、ブレーキB0は滑り係合状態となる。そして時刻t2以後、制御装置5は、回転電機2のトルクを車輪Wに要求トルクが伝達されるトルクよりも高くすることで、回転電機2の回転速度ωmを同期回転速度ωsよりも高い速度へ上昇させる。これにより、車輪Wに要求トルクが伝達される状態を維持したまま、ブレーキB0を滑り係合状態とすることができる。そして、制御装置5は、ブレーキB0を滑り係合状態に維持するように、回転電機2を回転速度制御する。このようにして、制御装置5は、自動変速機3が対象変速段(第1速段1st)を形成している状態で、第1係合要素CL1(ブレーキB0)の伝達トルクを車輪Wに要求トルクが伝達されるトルクに合わせると共に、回転電機2を回転速度制御して回転電機2の回転速度ωmを同期回転速度ωsよりも上昇させて第1係合要素CL1(ブレーキB0)を滑り係合状態とするテスト制御を実行する。 At the start of the test control, the control device 5 lowers the first hydraulic command PC1 so that the transmission torque of the brake B0 (first engagement element CL1) matches the torque at which the required torque is transmitted to the wheel W. .. In this state, the brake B0 is in a state of transmitting a torque corresponding to the required torque multiplied by the reciprocal of the gear ratio from the brake B0 to the wheels W. In this state, when a torque larger than the transmission torque of the brake B0 is transmitted, the brake B0 is in a sliding engagement state. Then, after time t2, the control device 5 makes the torque of the rotary electric machine 2 higher than the torque at which the required torque is transmitted to the wheels W, so that the rotation speed ωm of the rotary electric machine 2 becomes higher than the synchronous rotation speed ωs. Raise it. As a result, the brake B0 can be brought into the sliding engagement state while maintaining the state in which the required torque is transmitted to the wheels W. Then, the control device 5 controls the rotation speed of the rotary electric machine 2 so as to maintain the brake B0 in the sliding engagement state. In this way, the control device 5 applies the transmission torque of the first engaging element CL1 (brake B0) to the wheel W in a state where the automatic transmission 3 forms the target shift stage (first speed stage 1st). While adjusting the required torque to the transmitted torque, the rotation speed of the rotary electric machine 2 is controlled to raise the rotation speed ωm of the rotary electric machine 2 above the synchronous rotation speed ωs, and the first engaging element CL1 (brake B0) is slid. Execute the test control to make it in the correct state.
 尚、図3には、時刻t3から時刻t6の間(後述する第1相指令が出力される期間を含む期間)、時刻t1以前の出力トルクTmが維持される形態を例示している。つまり、通常制御中における出力トルクTmがテスト制御中にも維持される形態を例示している。しかし、図3に破線で示すように、時刻t3から時刻t6の間、出力トルクTmを時刻t1以前に比べて低下させてもよい。つまり、テスト制御中の出力トルクTmが、通常制御中における出力トルクTmよりも低く設定されてもよい。 Note that FIG. 3 illustrates a mode in which the output torque Tm before the time t1 is maintained between the time t3 and the time t6 (the period including the period in which the first phase command described later is output). That is, it illustrates a mode in which the output torque Tm during normal control is maintained even during test control. However, as shown by the broken line in FIG. 3, the output torque Tm may be lowered from the time t3 to the time t6 as compared with the time before the time t1. That is, the output torque Tm during the test control may be set lower than the output torque Tm during the normal control.
 制御装置5は、テスト制御の実行中の時刻t5において、第2速段2ndを形成するための係合要素CLであるクラッチC0(第2係合要素CL2)の制御量(ここでは油圧)を上昇させて、クラッチC0を解放された状態から係合された状態へ向けて変化させる。具体的には、時刻t5から時刻t6において、第2油圧指令PC2として第1相指令を出力し、時刻t6から第2油圧指令PC2として第2相指令を出力する。実油圧は、ファストフィル期間において次第に上昇していき、第2相指令の期間における何れかの時点でストロークエンド圧に到達すると、クラッチC0(第2係合要素CL2)が伝達トルクを生じさせ始める。クラッチC0が伝達トルクを生じさせ始めると、回転電機2の回転速度ωmを維持するために回転電機2の出力トルクTmが上昇し始める(時刻t7)。制御装置5は、予め規定されたしきい値(規定トルクTH)に基づいて、回転電機2の出力トルクTmの上昇を検出する(時刻t8)。すなわち、制御装置5は、クラッチC0の制御量を上昇させ始める前に比べて、回転電機2の出力トルクTmが規定トルクTH以上上昇した場合に、回転電機2の出力トルクTmが上昇したことを検出し、それに基づいて、クラッチC0が伝達トルクを生じさせ始めたことを検出することができる。 The control device 5 controls the control amount (here, hydraulic pressure) of the clutch C0 (second engaging element CL2), which is the engaging element CL for forming the second speed stage 2nd, at the time t5 during the execution of the test control. It is raised to change the clutch C0 from the released state to the engaged state. Specifically, from time t5 to time t6, the first phase command is output as the second hydraulic command PC2, and from time t6, the second phase command is output as the second hydraulic command PC2. The actual oil pressure gradually increases during the fast fill period, and when the stroke end pressure is reached at some point during the phase 2 command period, the clutch C0 (second engaging element CL2) begins to generate a transmission torque. .. When the clutch C0 starts to generate a transmission torque, the output torque Tm of the rotary electric machine 2 starts to increase in order to maintain the rotation speed ωm of the rotary electric machine 2 (time t7). The control device 5 detects an increase in the output torque Tm of the rotary electric machine 2 based on a predetermined threshold value (specified torque TH) (time t8). That is, the control device 5 indicates that the output torque Tm of the rotary electric machine 2 has increased when the output torque Tm of the rotary electric machine 2 has increased by the specified torque TH or more as compared with before starting to increase the control amount of the clutch C0. It can be detected, and based on that, it can be detected that the clutch C0 has started to generate a transmission torque.
 上述したように、制御装置5は、回転電機2(ステータコイル)からのフィードバック電流を用いて回転電機2を制御している。回転電機2のトルクは、このフィードバック電流との間に相関性を有するため、制御装置5は、フィードバック電流に基づいて回転電機2の出力トルクが上昇したことを検出することができる。即ち、制御装置5は、回転速度制御の実行中の回転電機2の出力トルクTmを検出し、当該出力トルクTmに基づいて第2係合要素CL2(ここではクラッチC0)の係合状態、具体的には、第2係合要素CL2の伝達トルクを検出することができる。そして、制御装置5は、自らが出力した指令(油圧指令)と、検出された回転電機2の出力トルクTmとの関係に基づいて、第2係合要素CL2(ここではクラッチC0)の係合状態と、第2係合要素CL2の制御量との関係を取得することができる。例えば、制御装置5は、第1相指令の大きさ“A”、第1相指令の期間(第1期間)“B”、第2相指令の大きさ“E”、第1相指令の開始時刻t5から時刻t8までの時間(応答時間G)、などをクラッチC0の応答性の学習量として取得することができる。 As described above, the control device 5 controls the rotary electric machine 2 by using the feedback current from the rotary electric machine 2 (stator coil). Since the torque of the rotary electric machine 2 has a correlation with the feedback current, the control device 5 can detect that the output torque of the rotary electric machine 2 has increased based on the feedback current. That is, the control device 5 detects the output torque Tm of the rotary electric machine 2 during execution of the rotational speed control, and based on the output torque Tm, the engaged state of the second engaging element CL2 (clutch C0 in this case), specifically Specifically, the transmission torque of the second engaging element CL2 can be detected. Then, the control device 5 engages the second engaging element CL2 (here, the clutch C0) based on the relationship between the command (hydraulic command) output by itself and the detected output torque Tm of the rotary electric machine 2. The relationship between the state and the control amount of the second engaging element CL2 can be acquired. For example, the control device 5 has a first phase command size “A”, a first phase command period (first period) “B”, a second phase command size “E”, and a first phase command start. The time from time t5 to time t8 (response time G) and the like can be acquired as the learning amount of the responsiveness of the clutch C0.
 制御装置5は、回転電機2の出力トルクが安定した時刻t9より後(例えば時刻t10)において、回転電機2の出力トルクが上昇する前(時刻t7より前)の回転電機2の出力トルクと現在(時刻t10)の出力トルクとの差“D”を取得することができる。この出力トルクの差“D”は、定常時におけるクラッチC0の伝達トルク(定常伝達トルク)であり、学習量の1つである。 The control device 5 is present with the output torque of the rotary electric machine 2 before the output torque of the rotary electric machine 2 rises (before the time t7) after the time t9 when the output torque of the rotary electric machine 2 is stable (for example, time t10). The difference "D" from the output torque at (time t10) can be acquired. The difference "D" of the output torque is the transmission torque (steady transmission torque) of the clutch C0 in the steady state, and is one of the learning amounts.
 時刻t8は、クラッチC0の係合状態の変化開始時期に相当する。従って、第1相指令の大きさ“A”、第1相指令の期間(第1期間)“B”、及び、第2相指令の大きさ“E”と、第1相指令の開始時刻t5から時刻t8までの時間(応答時間G)との関係によって、制御装置5は、第2係合要素CL2の係合状態の変化開始時期と制御量との関係を取得することができる。また、回転電機2の出力トルクの差“D”は、クラッチC0の定常伝達トルクに相当する。従って、第2相指令の大きさ“E”と回転電機2の出力トルクの差“D”との関係によって、制御装置5は、第2係合要素CL2の定常伝達トルクと制御量との関係を取得することができる。 Time t8 corresponds to the change start time of the engaged state of the clutch C0. Therefore, the size of the first phase command "A", the period of the first phase command (first period) "B", the size of the second phase command "E", and the start time t5 of the first phase command. From the relationship with the time from time to time t8 (response time G), the control device 5 can acquire the relationship between the change start time of the engagement state of the second engaging element CL2 and the control amount. Further, the difference "D" in the output torque of the rotary electric machine 2 corresponds to the steady transmission torque of the clutch C0. Therefore, depending on the relationship between the magnitude "E" of the second phase command and the difference "D" of the output torque of the rotary electric machine 2, the control device 5 has a relationship between the steady transmission torque of the second engaging element CL2 and the control amount. Can be obtained.
 これらの情報を取得すると、制御装置5は、クラッチC0(第2係合要素CL2)の油圧を低下させてクラッチC0を解放状態へ向けて変化させると共に、ブレーキB0(第1係合要素CL1)の油圧を上昇させてブレーキB0を滑り係合状態から係合状態へ変化させる。それと共に、制御装置5は、回転電機2の制御形態を、回転速度制御から通常のトルク制御へ移行させる。これにより、テスト制御を終了する。このように、回転電機2は、テスト制御中の時刻t3から時刻t11の間(遷移時間も含めると時刻t2から時刻t12の間)、回転速度制御される。 Upon acquiring this information, the control device 5 lowers the oil pressure of the clutch C0 (second engaging element CL2) to change the clutch C0 toward the released state, and the brake B0 (first engaging element CL1). The oil pressure of the brake B0 is increased to change the brake B0 from the sliding engaged state to the engaged state. At the same time, the control device 5 shifts the control mode of the rotary electric machine 2 from the rotational speed control to the normal torque control. This ends the test control. In this way, the rotary electric machine 2 is controlled in rotation speed between time t3 and time t11 during test control (between time t2 and time t12 including the transition time).
 以上、対象変速段が第1速段1stであり、ブレーキB0が第1係合要素CL1、クラッチC0が第2係合要素CL2である場合の学習制御について説明したが、対象変速段が第2速段2ndである場合も、同様に学習制御を行うことができる。自動変速機3が第2速段2ndを形成している状態で係合されている係合要素CLであるクラッチC0が第1係合要素CL1となり、ブレーキB0が第2係合要素CL2となる。このように対象となる係合要素CLが異なる以外、制御装置5は、上記と同様にテスト制御を実行し、当該テスト制御の実行中に、第2係合要素CL2(ブレーキB0)を解放された状態から係合された状態へ向けて変化させる。そして、制御装置5は、回転電機2の出力トルクTmを検出し、当該トルクに基づいて第2係合要素CL2の係合状態と、第2係合要素CL2の制御量との関係を取得する。 The learning control when the target shift stage is the first speed stage 1st, the brake B0 is the first engagement element CL1, and the clutch C0 is the second engagement element CL2 has been described. Even when the speed stage is 2nd, learning control can be performed in the same manner. Clutch C0, which is an engaging element CL engaged in a state where the automatic transmission 3 forms the second speed stage 2nd, becomes the first engaging element CL1, and the brake B0 becomes the second engaging element CL2. .. The control device 5 executes the test control in the same manner as described above except that the target engaging element CL is different in this way, and the second engaging element CL2 (brake B0) is released during the execution of the test control. It changes from the state of being engaged to the state of being engaged. Then, the control device 5 detects the output torque Tm of the rotary electric machine 2 and acquires the relationship between the engaged state of the second engaging element CL2 and the controlled amount of the second engaging element CL2 based on the torque. ..
 テスト制御では、対象変速段を形成するために係合された状態となっている第1係合要素CL1が滑り係合状態に制御され、解放された状態となっている第2係合要素CL2が係合される状態に向けて変化させられる。この際、変速出力部材OUTや車輪Wに、僅かにトルク変動等が生じる可能性があるが、車両の走行速度が比較的高い場合には、乗員は当該トルク変動を感じにくい。従って、テスト制御は、車輪Wの回転速度が予め規定された規定速度以上の場合に実行されると好適である。当然ながら、テスト制御は、車両が停車中も含め、車輪Wの回転速度が規定速度未満の場合に実行されてもよい。 In the test control, the first engaging element CL1 in the engaged state for forming the target shift stage is controlled in the sliding engaging state, and the second engaging element CL2 in the released state is controlled. Is changed toward the engaged state. At this time, there is a possibility that torque fluctuations may occur slightly in the speed change output member OUT and the wheels W, but when the traveling speed of the vehicle is relatively high, the occupant is less likely to feel the torque fluctuations. Therefore, it is preferable that the test control is executed when the rotation speed of the wheel W is equal to or higher than a predetermined predetermined speed. As a matter of course, the test control may be executed when the rotation speed of the wheel W is less than the specified speed, including when the vehicle is stopped.
 制御装置5は、上記のようにテスト制御を実行して、係合状態と制御量との関係を取得した後、変化開始時期及び定常伝達トルクが目標値に近づくように、制御量の制御パターンを調整する。言い換えると、テスト制御中の学習結果に応じて、係合要素CLにおいて目標とする制御挙動が実現できるように、制御量の制御パターンを調整する。制御量の制御パターンとは、制御量の変化のパターン(変化スケジュール)、制御量の大きさなどである。例えば、応答時間Gが目標時間よりも長かった場合には、応答時間Gが短く早くなるように、第1相指令の大きさ“A”や第1相指令の期間“B”の長さを調整したり、第2相指令の大きさ“E”を調整したりする。また、定常伝達トルクが目標値よりも小さかった場合には、定常伝達トルクが大きくなるように、第2相指令の大きさ“E”を調整する。制御装置5は、調整後の制御量の制御パターンを用いて、次回の変速段の切り替えにおける係合要素CLの制御を実行する。また、このような調整後の制御量の制御パターンを用いて、次回のテスト制御を実行し、制御パターンを更新するとさらに好適である。 After executing the test control as described above and acquiring the relationship between the engaged state and the controlled variable, the control device 5 controls the controlled variable so that the change start time and the steady transmission torque approach the target value. To adjust. In other words, the control pattern of the control amount is adjusted so that the target control behavior in the engaging element CL can be realized according to the learning result during the test control. The control amount control pattern is a change pattern (change schedule) of the control amount, a magnitude of the control amount, and the like. For example, when the response time G is longer than the target time, the length of the first phase command size “A” or the length of the first phase command period “B” is set so that the response time G becomes shorter and faster. Adjust or adjust the magnitude "E" of the second phase command. When the steady-state transmission torque is smaller than the target value, the magnitude "E" of the second phase command is adjusted so that the steady-state transmission torque becomes large. The control device 5 uses the adjusted control amount control pattern to control the engaging element CL in the next shift gear switching. Further, it is more preferable to execute the next test control and update the control pattern by using the control pattern of the controlled amount after such adjustment.
 ところで、上記においては、自動変速機3が、遊星歯車機構PGと2つの変速用の係合要素CLとを備えた2段変速の有段自動変速機である形態を例示して説明した。しかし、自動変速機3は、3段以上の変速段を有していてもよい。図5及び図6は、8段の変速段を有する自動変速機3のスケルトン図及び係合表である。図5に示すように、自動変速機3は、第1遊星歯車機構PG1と第2遊星歯車機構PG2と複数の変速用の係合要素CLとを有する。自動変速機3は、係合要素CLとして、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、第1ブレーキB1、第2ブレーキB2を備えている。本実施形態では、一方向係合要素Fも備えられている形態を例示しているが、一方向係合要素Fは備えられていなくてもよい。 By the way, in the above description, the automatic transmission 3 is illustrated by exemplifying a mode in which the automatic transmission 3 is a two-speed automatic transmission having a planetary gear mechanism PG and two engaging elements CL for shifting. However, the automatic transmission 3 may have three or more gears. 5 and 6 are a skeleton diagram and an engagement table of an automatic transmission 3 having eight gears. As shown in FIG. 5, the automatic transmission 3 has a first planetary gear mechanism PG1, a second planetary gear mechanism PG2, and a plurality of engaging elements CL for shifting. The automatic transmission 3 includes a first clutch C1, a second clutch C2, a third clutch C3, a fourth clutch C4, a first brake B1, and a second brake B2 as engaging elements CL. In the present embodiment, the embodiment in which the unidirectional engaging element F is also provided is illustrated, but the unidirectional engaging element F may not be provided.
 第1遊星歯車機構PG1は、第1サンギヤS1と、第1リングギヤR1と、第1サンギヤS1に噛み合う第1ピニオンギヤP1と、第1リングギヤR1に噛み合う第2ピニオンギヤP2と、第1ピニオンギヤP1及び第2ピニオンギヤP2の双方を支持する第1キャリヤCA1とを有するダブルピニオン型の遊星歯車機構である。第2遊星歯車機構PG2は、第2サンギヤS2と、第3サンギヤS3と、第2リングギヤR2と、第2サンギヤS2及び第2リングギヤR2の双方に噛み合う第3ピニオンギヤP3と、第3ピニオンギヤP3及び第3サンギヤS3の双方に噛み合う第4ピニオンギヤP4と、第3ピニオンギヤP3及び第4ピニオンギヤP4の双方を支持する第2キャリヤCA2とを有するラビニヨ型の遊星歯車機構である。 The first planetary gear mechanism PG1 includes a first sun gear S1, a first ring gear R1, a first pinion gear P1 that meshes with the first sun gear S1, a second pinion gear P2 that meshes with the first ring gear R1, a first pinion gear P1, and a first pinion gear P1. It is a double pinion type planetary gear mechanism having a first carrier CA1 that supports both of the two pinion gears P2. The second planetary gear mechanism PG2 includes a second sun gear S2, a third sun gear S3, a second ring gear R2, a third pinion gear P3 that meshes with both the second sun gear S2 and the second ring gear R2, a third pinion gear P3, and the like. It is a labinyo type planetary gear mechanism having a fourth pinion gear P4 that meshes with both of the third sun gear S3 and a second carrier CA2 that supports both the third pinion gear P3 and the fourth pinion gear P4.
 第1サンギヤS1は、ケース4に連結されて固定されている。第1キャリヤCA1は、変速入力部材INと一体回転するように、変速入力部材INに連結されて、変速入力部材INに伝達された駆動力が第1キャリヤCA1に伝達される。第1リングギヤR1は、第3クラッチC3を介して第2遊星歯車機構PG2の第2サンギヤS2に対して選択的に連結される。第3クラッチC3が係合された場合、第1リングギヤR1と第2サンギヤS2とが連結されて一体回転する。また、第1リングギヤR1は、第1クラッチC1を介して、第2遊星歯車機構PG2の第3サンギヤS3と選択的に連結される。第1クラッチC1が係合された場合、第1リングギヤR1と第3サンギヤS3とが連結されて一体回転する。また、第1キャリヤCA1は、第4クラッチC4を介して第2遊星歯車機構PG2の第2サンギヤS2に対して選択的に連結される。第4クラッチC4が係合された場合、第1キャリヤCA1と第2サンギヤS2とが連結されて一体回転する。 The first sun gear S1 is connected to and fixed to the case 4. The first carrier CA1 is connected to the shift input member IN so as to rotate integrally with the shift input member IN, and the driving force transmitted to the shift input member IN is transmitted to the first carrier CA1. The first ring gear R1 is selectively connected to the second sun gear S2 of the second planetary gear mechanism PG2 via the third clutch C3. When the third clutch C3 is engaged, the first ring gear R1 and the second sun gear S2 are connected and integrally rotate. Further, the first ring gear R1 is selectively connected to the third sun gear S3 of the second planetary gear mechanism PG2 via the first clutch C1. When the first clutch C1 is engaged, the first ring gear R1 and the third sun gear S3 are connected and integrally rotate. Further, the first carrier CA1 is selectively connected to the second sun gear S2 of the second planetary gear mechanism PG2 via the fourth clutch C4. When the fourth clutch C4 is engaged, the first carrier CA1 and the second sun gear S2 are connected and integrally rotate.
 第2サンギヤS2には、第3クラッチC3の係合により、変速入力部材INから第1遊星歯車機構PG1の第1キャリヤCA1を介して第1リングギヤR1に伝達されたトルクが入力される。また、第2サンギヤS2には、第4クラッチC4の係合により、変速入力部材INから第1遊星歯車機構PG1の第1キャリヤCA1を介して伝達されたトルクが入力される。また、第2サンギヤS2は、第1ブレーキB1を介して、ケース4に選択的に固定される。 The torque transmitted from the shift input member IN to the first ring gear R1 via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the second sun gear S2 by the engagement of the third clutch C3. Further, the torque transmitted from the shift input member IN via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the second sun gear S2 by the engagement of the fourth clutch C4. Further, the second sun gear S2 is selectively fixed to the case 4 via the first brake B1.
 第2キャリヤCA2には、第2クラッチC2の係合により、変速入力部材INから伝達されたトルクが入力される。また、第2キャリヤCA2は、第2ブレーキB2又は一方向係合要素Fを介して、ケース4に選択的に固定される。第2リングギヤR2は、変速出力部材OUTに駆動連結されている。第3サンギヤS3には、第1クラッチC1の係合により、変速入力部材INから第1遊星歯車機構PG1の第1キャリヤCA1を介して第1リングギヤR1に伝達されたトルクが入力される。 The torque transmitted from the shift input member IN is input to the second carrier CA2 by the engagement of the second clutch C2. Further, the second carrier CA2 is selectively fixed to the case 4 via the second brake B2 or the one-way engaging element F. The second ring gear R2 is drive-connected to the speed change output member OUT. The torque transmitted from the shift input member IN to the first ring gear R1 via the first carrier CA1 of the first planetary gear mechanism PG1 is input to the third sun gear S3 by the engagement of the first clutch C1.
 8段変速の自動変速機3においても、複数の変速用の係合要素CL(変速用のクラッチ(C1,C2,C3,C4)及び変速用のブレーキ(B1,B2))の係合及び解放が制御されて、第1遊星歯車機構PG1及び第2遊星歯車機構PG2による駆動力の伝達状態が切り替えられる。本例では、図6の作動表に示すように、変速用の係合要素CLの内の何れか2つが選択的に係合されて、複数の変速段の何れか1つが形成される。図6の作動表に示すように、本実施形態では、自動変速機3は、変速比の異なる8つの変速段である、第1速段1st、第2速段2nd、第3速段3rd、第4速段4th、第5速段5th、第6速段6th、第7速段7th、第8速段8thを前進段として有し、第1後進段Rev1、第2後進段Rev2の2つの後進段も有している。 Also in the 8-speed automatic transmission 3, the engagement and disengagement of a plurality of engagement elements CL (shift clutches (C1, C2, C3, C4) and shift brakes (B1, B2)) are performed. Is controlled to switch the transmission state of the driving force by the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. In this example, as shown in the operation table of FIG. 6, any two of the engaging elements CL for shifting are selectively engaged to form any one of the plurality of shifting stages. As shown in the operation table of FIG. 6, in the present embodiment, the automatic transmission 3 has eight gears having different gear ratios, that is, the first gear 1st, the second gear 2nd, and the third gear 3rd. It has 4th speed 4th, 5th speed 5th, 6th speed 6th, 7th speed 7th, and 8th speed 8th as forward stages, and has two stages, 1st reverse stage Rev1 and 2nd reverse stage Rev2. It also has a reverse stage.
 図2と同様に、図6の作動表は、各変速段での複数の変速用の係合要素CLの作動状態を示している。図6において、白抜きされた丸「〇」は係合要素CLが係合された状態にあることを示しており、「無印」は、係合要素CLが解放された状態にあることを示している。括弧付きの丸「(〇)」は、エンジンブレーキを行う場合等において、一方向係合要素Fが係合状態となることを示している。 Similar to FIG. 2, the operation table of FIG. 6 shows the operating state of a plurality of engaging elements CL for shifting at each shift stage. In FIG. 6, the white circle “◯” indicates that the engaging element CL is in the engaged state, and “unmarked” indicates that the engaging element CL is in the released state. ing. The parenthesized circle "(◯)" indicates that the one-way engaging element F is in the engaged state when the engine brake is applied or the like.
 このような8段変速の自動変速機3に対するテスト制御における「対象変速段」は、複数の変速段の内の何れか1つ、或いは複数、或いは全てであってもよい。また、「第1係合要素CL1」は、複数の係合要素CLの内の何れか1つ、或いは複数であってもよい。
同様に、「第2係合要素CL2」も、複数の係合要素CLの内の何れか1つ、或いは複数であってもよい。本例では、対象変速段において係合された状態となる2つの係合要素CLが第1係合要素CL1であり、当該2つの係合要素CL以外の係合要素CLが第2係合要素CL2である。
The "target shift" in the test control for such an 8-speed automatic transmission 3 may be any one, a plurality, or all of the plurality of shifts. Further, the "first engaging element CL1" may be any one or a plurality of the plurality of engaging elements CL.
Similarly, the "second engaging element CL2" may be any one or a plurality of the plurality of engaging elements CL. In this example, the two engaging elements CL that are engaged in the target speed change are the first engaging element CL1, and the engaging elements CL other than the two engaging elements CL are the second engaging elements. It is CL2.
 例えば、対象変速段が第3速段3rdである場合、第3速段3rdを形成している状態で係合されている係合要素CLである第1クラッチC1及び第3クラッチC3が第1係合要素CL1に相当する。第3速段3rdから第4速段4thへ変速する場合、第3クラッチC3が解放され、第4クラッチC4が係合される。従って、第1係合要素CL1以外の係合要素の内、第4クラッチC4を第2係合要素CL2とすることで、第3速段3rdから第4速段4thへ変速する場合の状況に合わせた第4クラッチC4の応答性を学習することができる。尚、この場合において、テスト制御中に滑り係合状態とする係合要素CLは、第1係合要素CL1としての第1クラッチC1及び第3クラッチC3のうち、いずれか一方とされる。従って、第3速段3rdから第4速段4thへの変速に伴って解放される第3クラッチC3を滑り係合状態としてもよいし、当該変速によっても係合されたままの状態とされる第1クラッチC1を滑り係合状態としてもよい。 For example, when the target shift stage is the third speed stage 3rd, the first clutch C1 and the third clutch C3, which are the engaging elements CL engaged in the state of forming the third speed stage 3rd, are the first. Corresponds to the engaging element CL1. When shifting from the 3rd speed 3rd to the 4th 4th speed, the 3rd clutch C3 is released and the 4th clutch C4 is engaged. Therefore, among the engaging elements other than the first engaging element CL1, by setting the fourth clutch C4 as the second engaging element CL2, the situation is such that the speed is changed from the third speed stage 3rd to the fourth speed stage 4th. It is possible to learn the responsiveness of the combined fourth clutch C4. In this case, the engaging element CL to be in the sliding engaging state during the test control is one of the first clutch C1 and the third clutch C3 as the first engaging element CL1. Therefore, the third clutch C3 released with the shift from the third speed stage 3rd to the fourth speed stage 4th may be in a slip-engaged state, or may remain engaged by the shift. The first clutch C1 may be in a sliding engagement state.
 このように、第3速段3rdから第4速段4thへ変速する場合の状況に合わせた第4クラッチC4の応答性を学習する場合であって、テスト制御中に第3クラッチC3を滑り係合状態とする場合、制御装置5は、自動変速機3が第3速段3rdを形成している状態で、第3クラッチC3の伝達トルクを車輪Wに要求トルクが伝達されるトルクに合わせると共に、回転電機2を回転速度制御して回転電機2の回転速度ωmを同期回転速度よりも上昇させて第3クラッチC3を滑り係合状態とするテスト制御を実行する。そして、テスト制御の実行中に、第4クラッチC4を解放状態から係合状態へ向けて変化させる。その他の変速段について学習場合も同様にすることができる。 In this way, in the case of learning the responsiveness of the fourth clutch C4 according to the situation when shifting from the third speed stage 3rd to the fourth speed stage 4th, the third clutch C3 is slipped during the test control. In the matching state, the control device 5 adjusts the transmission torque of the third clutch C3 to the torque transmitted to the wheels W while the automatic transmission 3 forms the third speed stage 3rd. , The rotation speed of the rotary electric machine 2 is controlled so that the rotation speed ωm of the rotary electric machine 2 is increased from the synchronous rotation speed to execute the test control in which the third clutch C3 is in the sliding engagement state. Then, during the execution of the test control, the fourth clutch C4 is changed from the released state to the engaged state. The same can be applied when learning about other gears.
〔その他の実施形態〕
 以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Hereinafter, other embodiments will be described. The configurations of the respective embodiments described below are not limited to those applied independently, and can be applied in combination with the configurations of other embodiments as long as there is no contradiction.
(1)上記においては、係合要素CLが油圧駆動式である形態を例示して説明した。しかし、係合要素CLは、電磁駆動式であってもよい。油圧駆動式の場合には、制御量として油圧指令(PC1,PC2)を例示したが、電磁駆動式の場合には、電圧指令や電流指令を制御量とすると好適である。また、係合要素CLは、摩擦係合要素がモータ等により駆動される電動駆動式であってもよい。 (1) In the above, the form in which the engaging element CL is a hydraulically driven type has been illustrated and described. However, the engaging element CL may be electromagnetically driven. In the case of the hydraulic drive type, the hydraulic command (PC1, PC2) is exemplified as the control amount, but in the case of the electromagnetic drive type, it is preferable to use the voltage command or the current command as the control amount. Further, the engaging element CL may be an electrically driven type in which the friction engaging element is driven by a motor or the like.
(2)上記においては、制御装置5が、係合状態としての、第2係合要素CL2の係合状態の変化開始時期及び第2係合要素CL2の定常伝達トルクの少なくとも一方と、制御量との関係を取得する形態を例示した。しかし、制御装置5は、これら以外の制御パラメータを取得してもよい。 (2) In the above, the control device 5 controls at least one of the change start timing of the engagement state of the second engagement element CL2 and the steady transmission torque of the second engagement element CL2 as the engagement state. The form of acquiring the relationship with is illustrated. However, the control device 5 may acquire control parameters other than these.
〔実施形態の概要〕
 以下、上記において説明した車両用駆動装置(1)の概要について簡単に説明する。
[Outline of Embodiment]
Hereinafter, the outline of the vehicle drive device (1) described above will be briefly described.
 1つの態様として、車輪(W)の駆動力源の回転電機(2)と、前記回転電機(2)と前記車輪(W)とを結ぶ動力伝達経路に設けられて複数の係合要素(CL)の選択的な係合によって複数の変速段を切り替え可能な自動変速機(3)と、前記回転電機(2)及び前記自動変速機(3)を制御する制御装置(5)と、を備えた車両用駆動装置(1)は、前記自動変速機(3)が複数の前記変速段の何れかである対象変速段を形成している状態で係合されている前記係合要素(CL)を第1係合要素(CL1)とし、前記第1係合要素(CL1)以外の前記係合要素(CL)を第2係合要素(CL2)として、前記制御装置(5)は、前記車輪(W)に伝達することが要求されているトルクを要求トルクとし、前記対象変速段が形成されている状態での前記回転電機(2)の回転速度(ωm)を同期回転速度(ωs)として、車両が走行中の場合に、前記自動変速機(3)が前記対象変速段を形成している状態で、前記第1係合要素(CL1)の伝達トルクを前記車輪(W)に前記要求トルクが伝達されるトルクに合わせると共に、前記回転電機(2)を回転速度制御して前記回転電機(2)の回転速度(ωm)を前記同期回転速度(ωs)よりも上昇させて前記第1係合要素(CL1)を滑り係合状態とするテスト制御を実行し、前記テスト制御の実行中に、少なくとも前記回転電機(2)のトルクが予め規定された規定トルク(TH)以上に上昇するまで前記第2係合要素(CL2)を解放された状態から係合された状態へ向けて変化させると好適である。 As one embodiment, a plurality of engaging elements (CL) provided in a power transmission path connecting the rotary electric machine (2), which is the driving force source of the wheel (W), and the rotary electric machine (2) and the wheel (W). ) Is provided with an automatic transmission (3) capable of switching a plurality of shift stages by selective engagement, and a control device (5) for controlling the rotary electric machine (2) and the automatic transmission (3). The vehicle drive device (1) is engaged with the automatic transmission (3) in a state of forming a target shift stage which is one of a plurality of the shift stages (CL). Is the first engaging element (CL1), the engaging element (CL) other than the first engaging element (CL1) is the second engaging element (CL2), and the control device (5) is the wheel. The torque required to be transmitted to (W) is defined as the required torque, and the rotational speed (ωm) of the rotary electric machine (2) in the state where the target shift stage is formed is defined as the synchronous rotational speed (ωs). When the vehicle is running, the transmission torque of the first engaging element (CL1) is requested to the wheels (W) in a state where the automatic transmission (3) forms the target shift stage. The first type is adjusted to the torque to be transmitted, and the rotation speed of the rotary electric machine (2) is controlled to increase the rotation speed (ωm) of the rotary electric machine (2) to be higher than the synchronous rotation speed (ωs). A test control is executed in which the engaging element (CL1) is in a sliding engagement state, and at least the torque of the rotary electric machine (2) rises above a predetermined specified torque (TH) during the execution of the test control. It is preferable to change the second engaging element (CL2) from the released state to the engaged state.
 この構成によれば、自動変速機(3)が複数の変速段の何れかを形成している状態で、且つ、車輪(W)に当該変速段において伝達されるべきトルクを伝達させつつ、第1係合要素(CL1)を滑り係合状態とし、第2係合要素(CL2)を解放された状態から係合された状態へと変化させて、係合要素(CL)の掛け替えにおける応答特性を学習する。つまり、自動変速機(3)がニュートラル状態ではなく変速段を形成している状態で、且つ、車輪(W)にトルクを伝達して車両を走行させている状態で応答特性を学習することができる。即ち、本構成によれば、車両が走行中である場合に応答特性の学習を行うことができるため、高い頻度で自動変速機(3)の係合要素(CL)の応答特性を学習することができる。また、変速段が形成され、車両が走行している状態であるから、例えば係合要素(CL)が油圧駆動式であるような場合には、油圧回路に油が循環している実際の状態において応答特性を学習することができる。従って、高い精度で自動変速機(3)の係合要素(CL)の応答特性を学習することができる。このように、本構成によれば、より高い頻度且つより高い精度で自動変速機(3)の係合要素(CL)の応答特性を学習することができる。 According to this configuration, in a state where the automatic transmission (3) forms any of a plurality of gears, and while transmitting the torque to be transmitted in the gears to the wheels (W), the first gear is used. The response characteristic in the replacement of the engaging element (CL) by changing the 1 engaging element (CL1) into the sliding engaging state and the second engaging element (CL2) from the released state to the engaged state. To learn. That is, it is possible to learn the response characteristics in a state where the automatic transmission (3) is not in the neutral state but forms a shift stage, and the vehicle is running by transmitting torque to the wheels (W). can. That is, according to this configuration, since the response characteristics can be learned when the vehicle is running, the response characteristics of the engaging element (CL) of the automatic transmission (3) can be learned with high frequency. Can be done. Further, since the shift stage is formed and the vehicle is running, for example, when the engaging element (CL) is a hydraulically driven type, the actual state in which oil is circulated in the hydraulic circuit. Response characteristics can be learned in. Therefore, the response characteristics of the engaging element (CL) of the automatic transmission (3) can be learned with high accuracy. As described above, according to this configuration, the response characteristics of the engaging element (CL) of the automatic transmission (3) can be learned with higher frequency and higher accuracy.
 また、前記制御装置(5)は、前記回転速度制御の実行中の前記回転電機(2)のトルク(Tm)を検出し、当該トルク(Tm)に基づいて前記第2係合要素(CL2)の係合状態と、前記第2係合要素(CL2)の制御量との関係を取得すると好適である。 Further, the control device (5) detects the torque (Tm) of the rotary electric machine (2) during execution of the rotation speed control, and the second engaging element (CL2) is based on the torque (Tm). It is preferable to acquire the relationship between the engaged state of the above and the controlled amount of the second engaging element (CL2).
 回転電機(2)が回転速度制御されている状態において、解放状態から係合状態へ向けて変化する第2係合要素(CL2)の伝達トルクが上昇すると、回転速度(ωm)を維持するために回転電機(2)のトルク(Tm)が変動する。このため、この変化するトルク(Tm)を検出することによって、解放された状態から係合された状態へ向けて変化する第2係合要素(CL2)の係合状態を検出することができる。この時、制御装置(5)は、第2係合要素(CL2)を、解放された状態から係合された状態へ向けて変化させているので、第2係合要素(CL2)の制御量は既知である。従って、制御装置(5)は、回転電機(2)のトルク(Tm)に基づいて、第2係合要素(CL2)の係合状態と、第2係合要素(CL2)の制御量との関係を適切に取得することができる。 In order to maintain the rotational speed (ωm) when the transmission torque of the second engaging element (CL2), which changes from the released state to the engaged state, increases while the rotary electric machine (2) is in the state where the rotational speed is controlled. The torque (Tm) of the rotary electric machine (2) fluctuates. Therefore, by detecting this changing torque (Tm), it is possible to detect the engaged state of the second engaging element (CL2) that changes from the released state to the engaged state. At this time, since the control device (5) changes the second engaging element (CL2) from the released state to the engaged state, the control amount of the second engaging element (CL2) is changed. Is known. Therefore, the control device (5) determines the engaged state of the second engaging element (CL2) and the controlled amount of the second engaging element (CL2) based on the torque (Tm) of the rotary electric machine (2). You can get the relationship properly.
 また、前記制御装置(5)は、前記係合状態としての、前記第2係合要素(CL2)の係合状態の変化開始時期及び前記第2係合要素(CL2)の定常伝達トルク(D)の少なくとも一方と、前記制御量との関係を取得すると好適である。 Further, the control device (5) has a change start timing of the engagement state of the second engagement element (CL2) and a steady transmission torque (D) of the second engagement element (CL2) as the engagement state. It is preferable to acquire the relationship between at least one of) and the controlled amount.
 第2係合要素(CL2)の係合状態の変化開始時期と制御量との関係を取得することで、第2係合要素(CL2)の応答性を学習することができる。また、第2係合要素(CL2)の定常伝達トルク(D)と制御量との関係を取得することで、第2係合要素(CL2)を使って変速段を形成させる場合に必要な制御量(例えば係合要素(CL)が油圧駆動式の場合には油圧の大きさ)を学習することができる。 By acquiring the relationship between the change start time of the engagement state of the second engagement element (CL2) and the control amount, the responsiveness of the second engagement element (CL2) can be learned. Further, by acquiring the relationship between the steady transmission torque (D) of the second engaging element (CL2) and the control amount, the control required when the second engaging element (CL2) is used to form a shift stage. The amount (for example, the magnitude of hydraulic pressure when the engaging element (CL) is hydraulically driven) can be learned.
 また、前記制御装置(5)は、前記係合状態と前記制御量との関係を取得した後、前記変化開始時期及び前記定常伝達トルク(D)が目標値に近づくように、前記制御量の制御パターンを調整すると好適である。 Further, after the control device (5) acquires the relationship between the engaged state and the control amount, the control amount of the control amount is adjusted so that the change start time and the steady transmission torque (D) approach the target value. It is preferable to adjust the control pattern.
 制御量の制御パターンとは、制御量の変化のパターン(変化スケジュール)、制御量の大きさなどである。例えば、第2係合要素(CL2)の係合状態の変化開始時期が目標時刻よりも遅かった場合には、変化開始時期が検出された時刻よりも早くなるように、制御量の制御パターンが調整される。また、定常伝達トルクが目標値よりも小さかった場合には、定常伝達トルクが大きくなるように、制御量の制御パターンが調整される。制御装置(5)がこのように制御パターンを更新していくことによって、自動変速機(3)の係合要素(CL)の応答特性を適正に調整することができる。 The control amount control pattern is a change pattern (change schedule) of the control amount, a magnitude of the control amount, and the like. For example, when the change start time of the engagement state of the second engaging element (CL2) is later than the target time, the control amount control pattern is set so that the change start time is earlier than the detected time. Be adjusted. Further, when the steady transmission torque is smaller than the target value, the control pattern of the control amount is adjusted so that the steady transmission torque becomes large. By updating the control pattern in this way, the control device (5) can appropriately adjust the response characteristics of the engaging element (CL) of the automatic transmission (3).
 また、前記係合要素(CL)は、油圧を調整する油圧制御弁を介して、油圧指令に応じた油圧の作動油が供給されることによって駆動される油圧駆動式であり、前記油圧指令は、前記油圧制御弁を第1開度とする第1相指令と、前記油圧制御弁を前記第1開度よりも小さい第2開度に維持させる第2相指令とを含み、前記変化開始時期を、前記第1相指令の開始時から前記回転電機(2)のトルクが前記規定トルク(TH)以上に上昇するまでの時間を応答時間(G)として、前記制御装置(5)は、前記応答時間(G)が目標時間よりも長い場合には、前記第1相指令による制御時間である第1期間(B)が前回よりも長くなるように前記制御パターンを調整し、前記応答時間(G)が前記目標時間よりも短い場合には、前記第1期間(B)が前回よりも短くなるように前記制御パターンを調整し、前記定常伝達トルク(D)が前記目標値よりも大きい場合には、前記第2相指令の大きさが前回よりも小さくなるように前記制御パターンを調整し、前記定常伝達トルク(D)が前記目標値よりも小さい場合には、前記第2相指令の大きさが前回よりも大きくなるように前記制御パターンを調整すると好適である。 Further, the engaging element (CL) is a hydraulic drive type driven by supplying hydraulic oil according to a hydraulic command via a hydraulic control valve that adjusts the hydraulic pressure. The change start time includes a first phase command for setting the hydraulic control valve as a first opening and a second phase command for maintaining the hydraulic control valve at a second opening smaller than the first opening. The time from the start of the first phase command until the torque of the rotary electric machine (2) rises above the specified torque (TH) is set as the response time (G), and the control device (5) is described. When the response time (G) is longer than the target time, the control pattern is adjusted so that the first period (B), which is the control time according to the first phase command, is longer than the previous time, and the response time (G) When G) is shorter than the target time, the control pattern is adjusted so that the first period (B) is shorter than the previous time, and the steady transmission torque (D) is larger than the target value. The control pattern is adjusted so that the magnitude of the second phase command is smaller than the previous time, and when the steady transmission torque (D) is smaller than the target value, the second phase command is issued. It is preferable to adjust the control pattern so that the size is larger than the previous time.
 この構成によれば、応答時間(G)が目標時間よりも長い場合には、第1期間(B)を延ばして油圧制御弁の第1開度を大きくすることによって応答時間(G)を短縮し、応答時間(G)が目標時間よりも短い場合には、第1期間(B)を縮めて油圧制御弁の第1開度を小さくすることによって応答時間(G)を延ばすことができる。また、定常伝達トルク(D)が目標値よりも大きい場合には第2相指令を小さくして油圧制御弁の第2開度を小さくすることによって定常伝達トルク(D)を小さくし、定常伝達トルク(D)が目標値よりも小さい場合には第2相指令を大きくして油圧制御弁の第2開度を大きくすることによって定常伝達トルク(D)を大きくすることができる。 According to this configuration, when the response time (G) is longer than the target time, the response time (G) is shortened by extending the first period (B) and increasing the first opening degree of the hydraulic control valve. However, when the response time (G) is shorter than the target time, the response time (G) can be extended by shortening the first period (B) and reducing the first opening degree of the hydraulic control valve. When the steady transmission torque (D) is larger than the target value, the steady transmission torque (D) is reduced by reducing the second phase command and the second opening degree of the hydraulic control valve to reduce the steady transmission torque (D). When the torque (D) is smaller than the target value, the steady transmission torque (D) can be increased by increasing the second phase command and increasing the second opening degree of the hydraulic control valve.
1:車両用駆動装置、2:回転電機、3:自動変速機、5:制御装置、CL:係合要素、CL1:第1係合要素、CL2:第2係合要素、B:第1期間、D:定常伝達トルク、G:応答時間(変化開始時期)、PC2:第2油圧指令(第2係合要素の制御量)、TH:規定トルク、Tm:回転電機の出力トルク、W:車輪、t8:時刻(変化開始時期)、ωm:回転電機の回転速度、ωs:同期回転速度 1: Vehicle drive device, 2: Rotating electric machine, 3: Automatic transmission, 5: Control device, CL: Engagement element, CL1: First engagement element, CL2: Second engagement element, B: First period , D: Steady transmission torque, G: Response time (change start time), PC2: Second hydraulic command (control amount of second engaging element), TH: Specified torque, Tm: Rotating electric machine output torque, W: Wheel , T8: Time (change start time), ωm: Rotation speed of rotating electric machine, ωs: Synchronous rotation speed

Claims (5)

  1.  車輪の駆動力源の回転電機と、前記回転電機と前記車輪とを結ぶ動力伝達経路に設けられて複数の係合要素の選択的な係合によって複数の変速段を切り替え可能な自動変速機と、前記回転電機及び前記自動変速機を制御する制御装置と、を備えた車両用駆動装置であって、
     前記自動変速機が複数の前記変速段の何れかである対象変速段を形成している状態で係合されている前記係合要素を第1係合要素とし、前記第1係合要素以外の前記係合要素を第2係合要素として、
     前記制御装置は、
     前記車輪に伝達することが要求されているトルクを要求トルクとし、前記対象変速段が形成されている状態での前記回転電機の回転速度を同期回転速度として、
     車両が走行中の場合に、前記自動変速機が前記対象変速段を形成している状態で、前記第1係合要素の伝達トルクを前記車輪に前記要求トルクが伝達されるトルクに合わせると共に、前記回転電機を回転速度制御して前記回転電機の回転速度を前記同期回転速度よりも上昇させて前記第1係合要素を滑り係合状態とするテスト制御を実行し、
     前記テスト制御の実行中に、少なくとも前記回転電機のトルクが予め規定された規定トルク以上に上昇するまで前記第2係合要素を解放された状態から係合された状態へ向けて変化させる、車両用駆動装置。
    A rotary electric machine that is a driving force source for wheels and an automatic transmission that is provided in a power transmission path connecting the rotary electric machine and the wheels and can switch a plurality of gears by selectively engaging a plurality of engaging elements. A vehicle drive device including a control device for controlling the rotary electric machine and the automatic transmission.
    The engaging element that is engaged with the automatic transmission in a state of forming a target gear that is one of a plurality of gears is used as a first engaging element, and other than the first engaging element. Using the engaging element as a second engaging element,
    The control device is
    The torque required to be transmitted to the wheels is defined as the required torque, and the rotational speed of the rotating electric machine in the state where the target shift stage is formed is defined as the synchronous rotational speed.
    When the vehicle is running, the transmission torque of the first engaging element is adjusted to the torque transmitted to the wheels while the automatic transmission forms the target shift stage, and the required torque is matched to the torque transmitted to the wheels. A test control was executed in which the rotation speed of the rotary electric machine was controlled to increase the rotation speed of the rotary electric machine to be higher than the synchronous rotation speed so that the first engaging element was in a sliding engagement state.
    During the execution of the test control, the vehicle changes the second engaging element from the released state to the engaged state until at least the torque of the rotary electric machine rises above a predetermined torque. Drive device for.
  2.  前記制御装置は、前記回転速度制御の実行中の前記回転電機のトルクを検出し、当該トルクに基づいて前記第2係合要素の係合状態と、前記第2係合要素の制御量との関係を取得する、請求項1に記載の車両用駆動装置。 The control device detects the torque of the rotary electric machine during the execution of the rotation speed control, and based on the torque, the engaged state of the second engaging element and the control amount of the second engaging element. The vehicle drive device according to claim 1, wherein the relationship is acquired.
  3.  前記制御装置は、前記係合状態としての、前記第2係合要素の係合状態の変化開始時期及び前記第2係合要素の定常伝達トルクの少なくとも一方と、前記制御量との関係を取得する、請求項2に記載の車両用駆動装置。 The control device acquires the relationship between the control amount and at least one of the change start timing of the engagement state of the second engagement element and the steady transmission torque of the second engagement element as the engagement state. The vehicle drive device according to claim 2.
  4.  前記制御装置は、前記係合状態と前記制御量との関係を取得した後、前記変化開始時期及び前記定常伝達トルクが目標値に近づくように、前記制御量の制御パターンを調整する、請求項3に記載の車両用駆動装置。 The control device claims that after acquiring the relationship between the engaged state and the controlled amount, the control amount adjusts the control pattern of the controlled amount so that the change start time and the steady transmission torque approach the target value. The vehicle drive device according to 3.
  5.  前記係合要素は、油圧を調整する油圧制御弁を介して、油圧指令に応じた油圧の作動油が供給されることによって駆動される油圧駆動式であり、
     前記油圧指令は、前記油圧制御弁を第1開度とする第1相指令と、前記油圧制御弁を前記第1開度よりも小さい第2開度に維持させる第2相指令とを含み、
     前記変化開始時期を、前記第1相指令の開始時から前記回転電機のトルクが前記規定トルク以上に上昇するまでの応答時間として、
     前記制御装置は、
      前記応答時間が目標時間よりも長い場合には、前記第1相指令による制御時間である第1期間が前回よりも長くなるように前記制御パターンを調整し、前記応答時間が前記目標時間よりも短い場合には、前記第1期間が前回よりも短くなるように前記制御パターンを調整し、
      前記定常伝達トルクが前記目標値よりも大きい場合には、前記第2相指令の大きさが前回よりも小さくなるように前記制御パターンを調整し、前記定常伝達トルクが前記目標値よりも小さい場合には、前記第2相指令の大きさが前回よりも大きくなるように前記制御パターンを調整する、請求項4に記載の車両用駆動装置。
    The engaging element is a hydraulically driven type driven by supplying hydraulic oil according to a hydraulic command via a hydraulic control valve that adjusts the hydraulic pressure.
    The hydraulic command includes a first phase command in which the hydraulic control valve is set as the first opening, and a second phase command in which the hydraulic control valve is maintained at a second opening smaller than the first opening.
    The change start time is set as the response time from the start of the first phase command until the torque of the rotary electric machine rises above the specified torque.
    The control device is
    When the response time is longer than the target time, the control pattern is adjusted so that the first period, which is the control time according to the first phase command, is longer than the previous time, and the response time is longer than the target time. If it is short, the control pattern is adjusted so that the first period is shorter than the previous time.
    When the steady transmission torque is larger than the target value, the control pattern is adjusted so that the magnitude of the second phase command is smaller than the previous time, and the steady transmission torque is smaller than the target value. The vehicle drive device according to claim 4, wherein the control pattern is adjusted so that the magnitude of the second phase command is larger than that of the previous time.
PCT/JP2021/009998 2020-03-12 2021-03-12 Vehicular drive device WO2021182602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-043001 2020-03-12
JP2020043001 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182602A1 true WO2021182602A1 (en) 2021-09-16

Family

ID=77671752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009998 WO2021182602A1 (en) 2020-03-12 2021-03-12 Vehicular drive device

Country Status (1)

Country Link
WO (1) WO2021182602A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511538A (en) * 1995-08-24 1999-10-05 アントーノフ オートモーティブ テクノロジーズ ベスローテン フェンノートシャップ Method for achieving a change in transmission ratio and transmission for doing so
JP2006334565A (en) 2005-06-06 2006-12-14 Rubutec Kk Method for coating oil on plate material and apparatus for the same
JP2007169031A (en) 2005-12-26 2007-07-05 Omine Kogyo Kk Scraper conveyer
JP2018017321A (en) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 Controller of vehicle
JP2019070427A (en) * 2017-10-11 2019-05-09 株式会社Subaru Vehicle control device
JP2019152221A (en) * 2018-02-28 2019-09-12 ダイハツ工業株式会社 Control device of continuously variable transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511538A (en) * 1995-08-24 1999-10-05 アントーノフ オートモーティブ テクノロジーズ ベスローテン フェンノートシャップ Method for achieving a change in transmission ratio and transmission for doing so
JP2006334565A (en) 2005-06-06 2006-12-14 Rubutec Kk Method for coating oil on plate material and apparatus for the same
JP2007169031A (en) 2005-12-26 2007-07-05 Omine Kogyo Kk Scraper conveyer
JP2018017321A (en) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 Controller of vehicle
JP2019070427A (en) * 2017-10-11 2019-05-09 株式会社Subaru Vehicle control device
JP2019152221A (en) * 2018-02-28 2019-09-12 ダイハツ工業株式会社 Control device of continuously variable transmission

Similar Documents

Publication Publication Date Title
JP4845971B2 (en) Powertrain control method for motor vehicle
JP4576713B2 (en) Oil pump drive control device
JP2002206630A (en) Drive controller of oil pump
WO2011105127A1 (en) Vehicle drive device
JPWO2003029700A1 (en) Shift control device for automatic transmission
JP2007022483A (en) Mode transition control method for hybrid transmission
WO2017057757A1 (en) Control device
JP2006300144A (en) Controller of automatic transmission
WO2018179672A1 (en) Control apparatus
US10759435B2 (en) Control device
CN115698549A (en) Motor vehicle comprising at least two drive motors and an automatic transmission having a fixed and power-branched transmission ratio stage
WO2021182602A1 (en) Vehicular drive device
JP4626006B2 (en) Hydraulic control device for automatic transmission
WO2016159124A1 (en) Controlling device for vehicle driving device
WO2009106947A1 (en) Vehicle drive apparatus
WO2014028205A1 (en) Double swap kickdown shift control
JP6237878B2 (en) Control device for vehicle drive device
CN110056649B (en) Transmission control
JP6922799B2 (en) Vehicle control device
JP5494827B2 (en) Control device for automatic transmission for vehicle
JP2004308850A (en) Shift control device for vehicular automatic transmission
JP6519631B2 (en) Hybrid vehicle
CN112013108A (en) Power transmission device for vehicle
JP6330613B2 (en) vehicle
JP2010175062A (en) Control device of power transmission device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP