WO2021182495A1 - Exhaust structure - Google Patents

Exhaust structure Download PDF

Info

Publication number
WO2021182495A1
WO2021182495A1 PCT/JP2021/009443 JP2021009443W WO2021182495A1 WO 2021182495 A1 WO2021182495 A1 WO 2021182495A1 JP 2021009443 W JP2021009443 W JP 2021009443W WO 2021182495 A1 WO2021182495 A1 WO 2021182495A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust pipe
upstream
downstream
exhaust
side exhaust
Prior art date
Application number
PCT/JP2021/009443
Other languages
French (fr)
Japanese (ja)
Inventor
達也 上川
智洋 藤原
建都 金田
悠治 葛西
憲仁 岩田
研二 加藤
翔 長谷川
亮二 甲斐
信隆 綾部
健 宮脇
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202180018621.0A priority Critical patent/CN115210456B/en
Publication of WO2021182495A1 publication Critical patent/WO2021182495A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to the exhaust structure.
  • a urea SCR (Selective Catalytic Reduction) system is known as a system for purifying exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). Further, in the urea SCR system, it is known that an upstream exhaust pipe provided with an injector for injecting urea water and a downstream exhaust pipe provided with an SCR catalyst are connected to each other.
  • An object of one aspect of the present disclosure is to provide an exhaust structure capable of suppressing the occurrence of corrosion.
  • the exhaust structure according to one aspect of the present disclosure is an exhaust structure in which an upstream exhaust pipe through which exhaust gas discharged from an internal combustion engine flows and a downstream exhaust pipe are connected in series, and is a downstream end of the upstream exhaust pipe. Is smaller than the inner diameter of the upstream end of the downstream exhaust pipe, the downstream end of the upstream exhaust pipe is inserted inside the upstream end of the downstream exhaust pipe, and the downstream end of the upstream exhaust pipe is inserted.
  • the outer peripheral surface of the exhaust pipe and the inner peripheral surface of the upstream end of the downstream exhaust pipe are fixed in contact with each other.
  • the occurrence of corrosion can be suppressed.
  • FIG. 1 is a schematic view showing an example of the configuration of the exhaust structure according to the embodiment of the present disclosure.
  • FIG. 2 is a schematic view showing an example of the configuration of the exhaust structure according to the comparative example of the embodiment of the present disclosure.
  • FIG. 1 is a schematic view showing an example of the configuration of the exhaust structure 100.
  • the exhaust structure 100 is mounted on, for example, a vehicle equipped with an internal combustion engine (for example, a commercial vehicle such as a bus or a truck).
  • the internal combustion engine may be a diesel engine or a gasoline engine.
  • the exhaust structure 100 includes an upstream exhaust pipe 1, a downstream exhaust pipe 2, a urea water injection device 3, a mixer 4, and an SCR (Selective Catalytic Reduction) catalyst 5.
  • the upstream exhaust pipe 1 and the downstream exhaust pipe 2 are tubular pipes through which the exhaust gas discharged from the internal combustion engine flows.
  • the upstream exhaust pipe 1 and the downstream exhaust pipe 2 are connected in series.
  • the arrow A shown in FIG. 1 indicates the flow direction of the exhaust gas in the upstream exhaust pipe 1 and the downstream exhaust pipe 2.
  • the upstream end of the upstream exhaust pipe 1 is connected to an exhaust manifold provided in the internal combustion engine. Further, although not shown, the downstream end of the downstream exhaust pipe 2 may face the atmosphere or may be connected to an exhaust diffuser or the like.
  • the inner diameter a at the downstream end of the upstream exhaust pipe 1 is shorter (smaller) than the inner diameter b at the upstream end of the downstream exhaust pipe 2.
  • the downstream end of the upstream exhaust pipe 1 is inserted inside the upstream end of the downstream exhaust pipe 2. Further, the outer peripheral surface of the downstream end of the upstream exhaust pipe 1 and the inner peripheral surface of the upstream end of the downstream exhaust pipe 2 are fixed (for example, welded) in contact with each other.
  • SUS Steel Use Stainless
  • SUS444 As the material of the upstream exhaust pipe 1, for example, SUS436, SUS444, or SUS447 can be used.
  • the downstream exhaust pipe 2 is superior in corrosion resistance to the upstream exhaust pipe 1. It can be configured as follows.
  • the upstream exhaust pipe 1 is provided with a urea water injection device 3.
  • a mixer 4 and an SCR catalyst 5 are provided in the downstream exhaust pipe 2.
  • the size, shape, positional relationship, and the like of each component shown in FIG. 1 are merely examples, and are not limited to those shown in FIG.
  • the urea water injection device 3 (an example of a reducing agent supply device) is a device that injects urea water (an example of a reducing agent) into the exhaust pipe 1.
  • the urea water injection device 3 is also called, for example, a dosing module or an injector.
  • the urea water injected by the urea water injection device 3 is hydrolyzed on the downstream side of the mixer 4, for example.
  • Ammonia generated thereby (an example of a substance generated from the reducing agent) is supplied to the SCR catalyst 5.
  • the injection amount and injection timing of urea water are controlled by a control device (not shown).
  • the mixer 4 is a device that stirs and mixes urea water and exhaust gas.
  • the exhaust gas that has passed through the mixer 4 becomes a swirling flow that entrains urea water.
  • the urea water contained in this swirling flow vaporizes before reaching the SCR catalyst 5 to become ammonia.
  • SCR catalyst 5 (an example of NOx purification catalyst) is a catalyst that reduces NOx in exhaust gas to nitrogen by ammonia generated from urea water.
  • the SCR catalyst 5 may be housed in a catalyst converter (also referred to as a catalyst casing) which is a housing that can be attached to and detached from the downstream exhaust pipe 2.
  • a catalyst converter also referred to as a catalyst casing
  • an ASC Ammonia Slip Catalyst
  • ASC is a catalyst that oxidizes and decomposes ammonia that cannot be completely consumed by the SCR catalyst 5. This makes it possible to prevent ammonia from being discharged into the atmosphere.
  • FIG. 2 is a schematic view showing an example of the configuration of the exhaust structure 200.
  • the components common to those in FIG. 1 in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the inner diameter a at the downstream end of the upstream exhaust pipe 1 is longer (larger) than the inner diameter b at the upstream end of the downstream exhaust pipe 2.
  • the upstream end of the downstream exhaust pipe 2 is inserted inside the downstream end of the upstream exhaust pipe 1. Further, the inner peripheral surface of the downstream end of the upstream exhaust pipe 1 and the outer peripheral surface of the upstream end of the downstream exhaust pipe 2 are fixed (for example, welded) in contact with each other.
  • the exhaust structure 100 of the present embodiment is characterized in that the inner diameter a of the downstream end of the upstream exhaust pipe 1 is smaller than the inner diameter b of the upstream end of the downstream exhaust pipe 2. Therefore, in the exhaust structure 100 of the present embodiment, the step as shown in FIG. 2 does not occur at the connecting portion between the upstream exhaust pipe 1 and the downstream exhaust pipe 2. Therefore, the occurrence of corrosion can be suppressed.
  • the exhaust structure 100 of the present embodiment is characterized in that the material constituting the downstream exhaust pipe 2 has higher corrosion resistance than the material constituting the upstream exhaust pipe 1. Therefore, the occurrence of corrosion is more effective at the connection portion between the upstream exhaust pipe 1 and the downstream exhaust pipe 2 where urea water may accumulate on the downstream side of the urea water injection device 3 and on the upstream side of the SCR catalyst 5. It can be suppressed.
  • the exhaust structure of the present disclosure is useful for a structure in which a plurality of exhaust pipes are connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

Provided is an exhaust structure that makes it possible to suppress corrosion. In this exhaust structure, an upstream-side exhaust pipe and a downstream-side exhaust pipe through which exhaust gas emitted from an internal combustion engine flows are connected in series. The inner diameter of the downstream end of the upstream-side exhaust pipe is smaller than the inner diameter of the upstream end of the downstream-side exhaust pipe. The downstream end of the upstream-side exhaust pipe is inserted into the upstream end of the downstream-side exhaust pipe, and is fixed with the outer peripheral surface of the downstream end of the upstream-side exhaust pipe in mutual contact with the inner peripheral surface of the upstream end of the downstream-side exhaust pipe.

Description

排気構造Exhaust structure
 本開示は、排気構造に関する。 This disclosure relates to the exhaust structure.
 従来、内燃機関から排出された排ガスを浄化するシステムとして、尿素SCR(Selective Catalytic Reduction)システムが知られている(例えば、特許文献1参照)。また、尿素SCRシステムでは、尿素水を噴射するインジェクタが設けられる上流側排気管と、SCR触媒が設けられる下流側排気管とが接続されて成ることが知られている。 Conventionally, a urea SCR (Selective Catalytic Reduction) system is known as a system for purifying exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). Further, in the urea SCR system, it is known that an upstream exhaust pipe provided with an injector for injecting urea water and a downstream exhaust pipe provided with an SCR catalyst are connected to each other.
日本国特開2018-53897号公報Japanese Patent Application Laid-Open No. 2018-53897
 しかしながら、上流側排気管と下流側排気管との接続部分に生じた段差に還元剤が溜まり、腐食が発生するおそれがあった。 However, there was a risk that the reducing agent would accumulate on the step created at the connection between the upstream exhaust pipe and the downstream exhaust pipe, causing corrosion.
 本開示の一態様の目的は、腐食の発生を抑制することができる排気構造を提供することである。 An object of one aspect of the present disclosure is to provide an exhaust structure capable of suppressing the occurrence of corrosion.
 本開示の一態様に係る排気構造は、内燃機関から排出される排ガスが流れる上流側排気管と下流側排気管とが直列に接続された排気構造であって、前記上流側排気管の下流端の内径は、前記下流側排気管の上流端の内径よりも小さく、前記上流側排気管の下流端は、前記下流側排気管の上流端の内部に挿入され、前記上流側排気管の下流端の外周面と、前記下流側排気管の上流端の内周面とが互いに接触した状態で固定されている。 The exhaust structure according to one aspect of the present disclosure is an exhaust structure in which an upstream exhaust pipe through which exhaust gas discharged from an internal combustion engine flows and a downstream exhaust pipe are connected in series, and is a downstream end of the upstream exhaust pipe. Is smaller than the inner diameter of the upstream end of the downstream exhaust pipe, the downstream end of the upstream exhaust pipe is inserted inside the upstream end of the downstream exhaust pipe, and the downstream end of the upstream exhaust pipe is inserted. The outer peripheral surface of the exhaust pipe and the inner peripheral surface of the upstream end of the downstream exhaust pipe are fixed in contact with each other.
 本開示によれば、腐食の発生を抑制することができる。 According to the present disclosure, the occurrence of corrosion can be suppressed.
図1は、本開示の実施の形態に係る排気構造の構成の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the configuration of the exhaust structure according to the embodiment of the present disclosure. 図2は、本開示の実施の形態の比較例に係る排気構造の構成の一例を示す模式図である。FIG. 2 is a schematic view showing an example of the configuration of the exhaust structure according to the comparative example of the embodiment of the present disclosure.
 本開示の実施の形態について、図面を参照しながら説明する。 The embodiment of the present disclosure will be described with reference to the drawings.
 まず、図1を用いて、本実施の形態に係る排気構造100の構成について説明する。図1は、排気構造100の構成の一例を示す模式図である。 First, the configuration of the exhaust structure 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing an example of the configuration of the exhaust structure 100.
 排気構造100は、例えば、内燃機関を搭載した車両(例えば、バス、トラック等の商用車)に搭載される。内燃機関は、ディーゼルエンジンでもよいし、ガソリンエンジンでもよい。 The exhaust structure 100 is mounted on, for example, a vehicle equipped with an internal combustion engine (for example, a commercial vehicle such as a bus or a truck). The internal combustion engine may be a diesel engine or a gasoline engine.
 図1に示すように、排気構造100は、上流側排気管1、下流側排気管2、尿素水噴射装置3、ミキサー4、SCR(Selective Catalytic Reduction)触媒5を有する。 As shown in FIG. 1, the exhaust structure 100 includes an upstream exhaust pipe 1, a downstream exhaust pipe 2, a urea water injection device 3, a mixer 4, and an SCR (Selective Catalytic Reduction) catalyst 5.
 上流側排気管1および下流側排気管2は、内燃機関から排出された排ガスが流れる筒状の配管である。上流側排気管1と下流側排気管2とは、直列に接続されている。図1に示す矢印Aは、上流側排気管1内および下流側排気管2内における排ガスの流れ方向を示している。 The upstream exhaust pipe 1 and the downstream exhaust pipe 2 are tubular pipes through which the exhaust gas discharged from the internal combustion engine flows. The upstream exhaust pipe 1 and the downstream exhaust pipe 2 are connected in series. The arrow A shown in FIG. 1 indicates the flow direction of the exhaust gas in the upstream exhaust pipe 1 and the downstream exhaust pipe 2.
 図示は省略するが、上流側排気管1の上流端は、内燃機関に設けられた排気マニホールドに接続されている。また、図示は省略するが、下流側排気管2の下流端は、大気に面してもよいし、排気ディフューザ等に接続されてもよい。 Although not shown, the upstream end of the upstream exhaust pipe 1 is connected to an exhaust manifold provided in the internal combustion engine. Further, although not shown, the downstream end of the downstream exhaust pipe 2 may face the atmosphere or may be connected to an exhaust diffuser or the like.
 上流側排気管1の下流端の内径aは、下流側排気管2の上流端の内径bよりも短い(小さい)。上流側排気管1の下流端は、下流側排気管2の上流端の内部に挿入されている。また、上流側排気管1の下流端の外周面と、下流側排気管2の上流端の内周面とは互いに接触した状態で固定(例えば、溶接)されている。 The inner diameter a at the downstream end of the upstream exhaust pipe 1 is shorter (smaller) than the inner diameter b at the upstream end of the downstream exhaust pipe 2. The downstream end of the upstream exhaust pipe 1 is inserted inside the upstream end of the downstream exhaust pipe 2. Further, the outer peripheral surface of the downstream end of the upstream exhaust pipe 1 and the inner peripheral surface of the upstream end of the downstream exhaust pipe 2 are fixed (for example, welded) in contact with each other.
 上流側排気管1の材料としては、例えば、SUS(Steel Use Stainless)436またはSUS444を用いることができる。下流側排気管2の材料としては、例えば、SUS436、SUS444、またはSUS447を用いることができる。 As the material of the upstream exhaust pipe 1, for example, SUS (Steel Use Stainless) 436 or SUS444 can be used. As the material of the downstream exhaust pipe 2, for example, SUS436, SUS444, or SUS447 can be used.
 例えば、上流側排気管1の材料として、SUS436を用い、下流側排気管2の材料として、より耐食性が高いSUS447を用いることにより、下流側排気管2が上流側排気管1よりも耐食性に優れるように構成することができる。 For example, by using SUS436 as the material of the upstream exhaust pipe 1 and SUS447 having higher corrosion resistance as the material of the downstream exhaust pipe 2, the downstream exhaust pipe 2 is superior in corrosion resistance to the upstream exhaust pipe 1. It can be configured as follows.
 上流側排気管1には、尿素水噴射装置3が設けられている。下流側排気管2には、ミキサー4、SCR触媒5が設けられている。なお、図1に示す各構成要素の大きさ、形状、位置関係等は、あくまで一例であり、図1の図示に限定されない。 The upstream exhaust pipe 1 is provided with a urea water injection device 3. A mixer 4 and an SCR catalyst 5 are provided in the downstream exhaust pipe 2. The size, shape, positional relationship, and the like of each component shown in FIG. 1 are merely examples, and are not limited to those shown in FIG.
 尿素水噴射装置3(還元剤供給装置の一例)は、排気管1内に尿素水(還元剤の一例)を噴射する装置である。尿素水噴射装置3は、例えば、ドージングモジュールまたはインジェクタなどとも呼ばれる。 The urea water injection device 3 (an example of a reducing agent supply device) is a device that injects urea water (an example of a reducing agent) into the exhaust pipe 1. The urea water injection device 3 is also called, for example, a dosing module or an injector.
 尿素水噴射装置3により噴射された尿素水は、例えば、ミキサー4より下流側において加水分解される。これにより発生したアンモニア(還元剤から発生する物質の一例)は、SCR触媒5へ供給される。なお、尿素水の噴射量や噴射タイミングは、図示しない制御装置によって制御される。 The urea water injected by the urea water injection device 3 is hydrolyzed on the downstream side of the mixer 4, for example. Ammonia generated thereby (an example of a substance generated from the reducing agent) is supplied to the SCR catalyst 5. The injection amount and injection timing of urea water are controlled by a control device (not shown).
 ミキサー4は、尿素水と排ガスとを攪拌混合させる装置である。ミキサー4を通過した排ガスは、尿素水を巻き込んだ旋回流となる。この旋回流に含まれる尿素水は、SCR触媒5に到達する前に気化してアンモニアとなる。 The mixer 4 is a device that stirs and mixes urea water and exhaust gas. The exhaust gas that has passed through the mixer 4 becomes a swirling flow that entrains urea water. The urea water contained in this swirling flow vaporizes before reaching the SCR catalyst 5 to become ammonia.
 SCR触媒5(NOx浄化触媒の一例)は、尿素水から発生したアンモニアにより、排ガス中のNOxを窒素に還元する触媒である。 SCR catalyst 5 (an example of NOx purification catalyst) is a catalyst that reduces NOx in exhaust gas to nitrogen by ammonia generated from urea water.
 なお、SCR触媒5は、下流側排気管2に対して着脱可能な筐体である触媒コンバータ(触媒ケーシングとも呼ばれる)に収容されてもよい。 The SCR catalyst 5 may be housed in a catalyst converter (also referred to as a catalyst casing) which is a housing that can be attached to and detached from the downstream exhaust pipe 2.
 また、図示は省略するが、SCR触媒5の下流側に、ASC(Ammonia Slip Catalyst)が設けられてもよい。ASCは、SCR触媒5で消費しきれなかったアンモニアを酸化、分解する触媒である。これにより、アンモニアが大気中に排出されることを防止できる。 Although not shown, an ASC (Ammonia Slip Catalyst) may be provided on the downstream side of the SCR catalyst 5. ASC is a catalyst that oxidizes and decomposes ammonia that cannot be completely consumed by the SCR catalyst 5. This makes it possible to prevent ammonia from being discharged into the atmosphere.
 以上、排気構造100の構成について説明した。 The configuration of the exhaust structure 100 has been described above.
 次に、図2を用いて、本開示の比較例に係る排気構造200について説明する。図2は、排気構造200の構成の一例を示す模式図である。なお、図2において図1と共通する構成要素については同一の符号を付し、それらの説明は適宜省略する。 Next, the exhaust structure 200 according to the comparative example of the present disclosure will be described with reference to FIG. FIG. 2 is a schematic view showing an example of the configuration of the exhaust structure 200. The components common to those in FIG. 1 in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図2に示すように、排気構造200では、上流側排気管1の下流端の内径aは、下流側排気管2の上流端の内径bよりも長い(大きい)。下流側排気管2の上流端は、上流側排気管1の下流端の内部に挿入されている。また、上流側排気管1の下流端の内周面と、下流側排気管2の上流端の外周面とは互いに接触した状態で固定(例えば、溶接)されている。 As shown in FIG. 2, in the exhaust structure 200, the inner diameter a at the downstream end of the upstream exhaust pipe 1 is longer (larger) than the inner diameter b at the upstream end of the downstream exhaust pipe 2. The upstream end of the downstream exhaust pipe 2 is inserted inside the downstream end of the upstream exhaust pipe 1. Further, the inner peripheral surface of the downstream end of the upstream exhaust pipe 1 and the outer peripheral surface of the upstream end of the downstream exhaust pipe 2 are fixed (for example, welded) in contact with each other.
 これにより、排気構造200では、上流側排気管1と下流側排気管2との接続部分において、段差(図2中の点線の囲み参照)が存在する。よって、尿素水噴射装置3から噴射された尿素水が段差に溜まり、腐食が発生するおそれがある。 As a result, in the exhaust structure 200, there is a step (see the dotted line in FIG. 2) at the connecting portion between the upstream exhaust pipe 1 and the downstream exhaust pipe 2. Therefore, the urea water injected from the urea water injection device 3 may accumulate in the step and cause corrosion.
 以上、排気構造200の構成について説明した。 The configuration of the exhaust structure 200 has been described above.
 ここまで詳述したように、本実施の形態の排気構造100では、上流側排気管1の下流端の内径aが下流側排気管2の上流端の内径bよりも小さいことを特徴とする。よって、本実施の形態の排気構造100では、上流側排気管1と下流側排気管2との接続部分において、図2に示したような段差は生じない。したがって、腐食の発生を抑制することができる。 As described in detail so far, the exhaust structure 100 of the present embodiment is characterized in that the inner diameter a of the downstream end of the upstream exhaust pipe 1 is smaller than the inner diameter b of the upstream end of the downstream exhaust pipe 2. Therefore, in the exhaust structure 100 of the present embodiment, the step as shown in FIG. 2 does not occur at the connecting portion between the upstream exhaust pipe 1 and the downstream exhaust pipe 2. Therefore, the occurrence of corrosion can be suppressed.
 また、本実施の形態の排気構造100では、下流側排気管2を構成する材料が上流側排気管1を構成する材料よりも耐食性が高いことを特徴とする。よって、尿素水噴射装置3の下流側かつSCR触媒5の上流側において尿素水が溜まるおそれがある上流側排気管1と下流側排気管2との接続部分において、腐食の発生をより効果的に抑制することができる。 Further, the exhaust structure 100 of the present embodiment is characterized in that the material constituting the downstream exhaust pipe 2 has higher corrosion resistance than the material constituting the upstream exhaust pipe 1. Therefore, the occurrence of corrosion is more effective at the connection portion between the upstream exhaust pipe 1 and the downstream exhaust pipe 2 where urea water may accumulate on the downstream side of the urea water injection device 3 and on the upstream side of the SCR catalyst 5. It can be suppressed.
 なお、本開示は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。 Note that the present disclosure is not limited to the description of the above-described embodiment, and various modifications can be made without departing from the spirit of the present embodiment.
 本出願は、2020年3月10日付で出願された日本国特許出願(特願2020-041004)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2020-041004) filed on March 10, 2020, the contents of which are incorporated herein by reference.
 本開示の排気構造は、複数の排気管を接続する構造に有用である。 The exhaust structure of the present disclosure is useful for a structure in which a plurality of exhaust pipes are connected.
 1 上流側排気管
 2 下流側排気管
 3 尿素水噴射装置(還元剤供給装置の一例)
 4 ミキサー
 5 SCR触媒
1 Upstream exhaust pipe 2 Downstream exhaust pipe 3 Urea water injection device (an example of reducing agent supply device)
4 mixer 5 SCR catalyst

Claims (3)

  1.  内燃機関から排出される排ガスが流れる上流側排気管と下流側排気管とが直列に接続された排気構造であって、
     前記上流側排気管の下流端の内径は、前記下流側排気管の上流端の内径よりも小さく、
     前記上流側排気管の下流端は、前記下流側排気管の上流端の内部に挿入され、前記上流側排気管の下流端の外周面と、前記下流側排気管の上流端の内周面とが互いに接触した状態で固定されている、
     排気構造。
    An exhaust structure in which an upstream exhaust pipe through which exhaust gas discharged from an internal combustion engine flows and a downstream exhaust pipe are connected in series.
    The inner diameter of the downstream end of the upstream exhaust pipe is smaller than the inner diameter of the upstream end of the downstream exhaust pipe.
    The downstream end of the upstream exhaust pipe is inserted inside the upstream end of the downstream exhaust pipe, and has an outer peripheral surface of the downstream end of the upstream exhaust pipe and an inner peripheral surface of the upstream end of the downstream exhaust pipe. Are fixed in contact with each other,
    Exhaust structure.
  2.  前記上流側排気管には、前記上流側排気管内に還元剤を供給する還元剤供給装置が設けられ、
     前記下流側排気管には、前記排ガスと前記還元剤とを攪拌するミキサーが設けられる、
     請求項1に記載の排気構造。
    The upstream exhaust pipe is provided with a reducing agent supply device that supplies a reducing agent into the upstream exhaust pipe.
    The downstream exhaust pipe is provided with a mixer that stirs the exhaust gas and the reducing agent.
    The exhaust structure according to claim 1.
  3.  前記下流側排気管を構成する材料は、前記上流側排気管を構成する材料よりも耐食性が高い、
     請求項1に記載の排気構造。
    The material constituting the downstream exhaust pipe has higher corrosion resistance than the material constituting the upstream exhaust pipe.
    The exhaust structure according to claim 1.
PCT/JP2021/009443 2020-03-10 2021-03-10 Exhaust structure WO2021182495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180018621.0A CN115210456B (en) 2020-03-10 2021-03-10 Exhaust structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041004A JP7314840B2 (en) 2020-03-10 2020-03-10 Exhaust structure
JP2020-041004 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182495A1 true WO2021182495A1 (en) 2021-09-16

Family

ID=77672395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009443 WO2021182495A1 (en) 2020-03-10 2021-03-10 Exhaust structure

Country Status (3)

Country Link
JP (1) JP7314840B2 (en)
CN (1) CN115210456B (en)
WO (1) WO2021182495A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264290A (en) * 2008-04-25 2009-11-12 Bosch Corp Exhaust emission control device of internal combustion engine
JP2012092769A (en) * 2010-10-28 2012-05-17 Mitsubishi Fuso Truck & Bus Corp Connection structure for exhaust emission control device
JP2018021514A (en) * 2016-08-03 2018-02-08 いすゞ自動車株式会社 Mixer unit and exhaust system
JP2018053751A (en) * 2016-09-27 2018-04-05 いすゞ自動車株式会社 Exhaust inner fuel injection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048560A1 (en) * 2007-10-09 2009-04-23 Audi Ag Device for post-treatment of exhaust gases of a lean-running internal combustion engine
WO2012127621A1 (en) * 2011-03-22 2012-09-27 トヨタ自動車株式会社 Internal combustion engine exhaust conversion apparatus
JP6114244B2 (en) * 2014-09-12 2017-04-12 本田技研工業株式会社 Vehicle exhaust system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264290A (en) * 2008-04-25 2009-11-12 Bosch Corp Exhaust emission control device of internal combustion engine
JP2012092769A (en) * 2010-10-28 2012-05-17 Mitsubishi Fuso Truck & Bus Corp Connection structure for exhaust emission control device
JP2018021514A (en) * 2016-08-03 2018-02-08 いすゞ自動車株式会社 Mixer unit and exhaust system
JP2018053751A (en) * 2016-09-27 2018-04-05 いすゞ自動車株式会社 Exhaust inner fuel injection device

Also Published As

Publication number Publication date
JP2021143601A (en) 2021-09-24
CN115210456A (en) 2022-10-18
JP7314840B2 (en) 2023-07-26
CN115210456B (en) 2024-08-20

Similar Documents

Publication Publication Date Title
US8747761B2 (en) Exhaust gas purification device
JP5066435B2 (en) Exhaust gas purification equipment for diesel engines
JP4779959B2 (en) Exhaust purification device
JP4827256B2 (en) Exhaust treatment device
JP2009167806A (en) Exhaust emission control device for internal combustion engine
EP2423479A2 (en) Exhaust gas purification apparatus
US10450921B2 (en) Exhaust purification system
GB2539711A (en) Method, apparatus and mixing device for evenly mixing reactant to exhaust gas flow
JP2018044528A (en) Engine exhaust emission control device
EP2573349B1 (en) Exhaust pipe
WO2021182495A1 (en) Exhaust structure
JP2018021514A (en) Mixer unit and exhaust system
JP2009167910A (en) Exhaust passage structure
WO2021193735A1 (en) Mixer
JP5471089B2 (en) Reducing agent supply device for urea SCR catalyst
WO2023105876A1 (en) Exhaust structure and injector attachment member
WO2020189577A1 (en) Mixer member
JP2009162122A (en) Exhaust gas passage structure
KR101610061B1 (en) Exhaust gas purification system of vehicle
JP2008082253A (en) Structure for liquid reducer injection nozzle
JP2019065785A (en) Exhaust emission control device for internal combustion engine
JP2009167869A (en) Exhaust passage structure
JP2013167158A (en) Emission control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767153

Country of ref document: EP

Kind code of ref document: A1