WO2021182408A1 - Light-emitting device and illumination device - Google Patents

Light-emitting device and illumination device Download PDF

Info

Publication number
WO2021182408A1
WO2021182408A1 PCT/JP2021/009026 JP2021009026W WO2021182408A1 WO 2021182408 A1 WO2021182408 A1 WO 2021182408A1 JP 2021009026 W JP2021009026 W JP 2021009026W WO 2021182408 A1 WO2021182408 A1 WO 2021182408A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
current
emitting element
element group
reference voltage
Prior art date
Application number
PCT/JP2021/009026
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 堺
Original Assignee
シチズン電子株式会社
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン電子株式会社, シチズン時計株式会社 filed Critical シチズン電子株式会社
Priority to JP2022507185A priority Critical patent/JP7321358B2/en
Publication of WO2021182408A1 publication Critical patent/WO2021182408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current

Definitions

  • This disclosure relates to a light emitting device and a lighting device.
  • a light emitting device that independently drives the light emission of a plurality of light emitting element trains by separately supplying a current from each of a plurality of pairs of electrodes to a plurality of light emitting element trains such as a light emitting diode (LED). It is known (see, for example, Japanese Patent Application Laid-Open No. 2016-119381 and Japanese Patent Application Laid-Open No. 2017-120897).
  • the light emitting device described in JP-A-2016-119381 and JP-A-2017-120897 adjusts the chromaticity of the emitted light by adjusting the current value of the current supplied from a plurality of electrode pairs. be able to.
  • a pair of electrode pairs, two rows of LED rows to which current is supplied from the pair of electrode pairs, and one LED row of the two rows of LED rows are current only at low voltage.
  • An LED light emitting device having a current control circuit that controls a current so as to flow a current is described.
  • the LED light emitting device described in International Publication No. 2016/03934 is to supply a current from a pair of electrode pairs to two rows of LED rows at once, and to pass a current to one of the LED rows only at a low voltage. By controlling the current, it is possible to change the light emission color of the incandescent electrode during dimming.
  • an object of the present invention is to provide a light emitting device capable of setting a current value of a current supplied from a pair of electrode pairs to a plurality of light emitting element trains to a predetermined ratio. do.
  • the light emitting device is connected in parallel to a pair of electrode pairs, a first light emitting element group that emits light when a current is supplied from the pair of electrode pairs, and a pair of light emitting element groups.
  • the current value of the second light emitting element group that emits light the current value of the first current flowing through the first light emitting element group, and the current value of the second current flowing through the second light emitting element group are
  • a reference voltage generation circuit that generates a reference voltage used to control one of the current values of the first current and the second current so as to have a predetermined ratio, and a first current and a first current based on the reference voltage. It has a current control circuit that controls one of the two currents and does not control the other of the first current and the second current.
  • the reference voltage includes a second reference voltage used for controlling the current value of the second current
  • the current control circuit has a second reference voltage based on the second reference voltage. It is preferable to include a second current control circuit that controls the second current so that the current value of the current becomes a predetermined ratio with respect to the current value of the first current.
  • the first light emitting element group emits light of the first color
  • the second light emitting element group emits light of a second color different from the first color. Is preferable.
  • the light emitting device is connected in parallel to the first light emitting element group and the second light emitting element group, and when a current is supplied from the pair of electrode pairs, either the first color or the second color is supplied.
  • the third light emitting element group that emits light of a third color different from the above and the current value of the third current flowing through the third light emitting element group are in a predetermined ratio with respect to the current value of the first current. It is preferable to further include a third current control circuit for controlling the three currents, and the reference voltage further includes a third reference voltage used for controlling the current value of the third current.
  • the reference voltage generation circuit has a second resistance pair connected in series with the first light emitting element group, and the voltage divided voltage divided by the second resistance pair is used as the second reference. It is preferable to output the voltage to the second current control circuit.
  • one of the resistors included in the second resistor pair is a variable resistor.
  • the second current control circuit has a second switch having one end connected to the light emitting element at the final stage of the second light emitting element group and one end connected to the other end of the second switch.
  • the second detection resistor, the input second reference voltage, and the second detection voltage applied to the second detection resistor are compared so that the second reference voltage matches the second detection voltage. It is preferable to have a second comparator that controls two switches.
  • the reference voltage generation circuit further has a third resistance pair connected in parallel to the second resistance pair, and the voltage divided voltage divided by the third resistance pair is used as the third reference. It is preferable to output the voltage to the third current control circuit.
  • one of the resistors included in the third resistor pair is a variable resistor.
  • the light emitting device is connected in parallel to the first light emitting element group, the second light emitting element group, and the third light emitting element group, and when a current is supplied from the pair of electrode pairs, the first color,
  • the current value of the fourth light emitting element group that emits light of a fourth color different from both the second color and the third color and the fourth current flowing through the fourth light emitting element group becomes the current value of the first current.
  • It also has a fourth current control circuit that controls the third current so that it has a predetermined ratio to the current, and the reference voltage is the fourth reference voltage used to control the current value of the fourth current.
  • the light of the first color is preferably white.
  • the reference voltage generation circuit is a first current capable of controlling the first current so that the current value of the first current becomes a predetermined ratio with respect to the current value of the second current.
  • the reference voltage generation circuit includes a control circuit and a second current control circuit capable of controlling the second current so that the current value of the second current becomes a predetermined ratio with respect to the current value of the first current.
  • the first light emitting element group emits light of the first color
  • the second light emitting element group emits light of a second color different from the first color. Is preferable.
  • the forward voltage of one of the first light emitting element group and the second light emitting element group whose current value is controlled is the first light emitting element group and the second light emitting element group whose current value is not controlled. It is preferable that the reference voltage generation circuit generates a reference voltage so that the current values of the first current and the second current become desired values, which are lower than the other forward voltage of the above.
  • the light emitting device includes a plurality of light emitting element groups and a plurality of light emitting elements, each of which is connected in parallel to a pair of electrode pairs and emits light when a current is supplied from the pair of electrode pairs.
  • Each of the groups has a plurality of transistors to which either a collector or an emitter is connected, and a switching element for short-circuiting or releasing between the base and the collector of each of the plurality of transistors.
  • any one of the plurality of transistors is short-circuited between the base and the collector via the switching element, and the other transistors of the plurality of transistors are short-circuited between the base and the collector via the switching element. It is preferable that the space between the two is opened.
  • the forward voltage of the light emitting element group connected in series to the transistor in which the base and the collector are short-circuited via the switching element is the transistor in which the space between the base and the collector is opened. It is preferable that the voltage is higher than the forward voltage of the light emitting element group connected in series with.
  • the reference voltage generation circuit has a second resistance pair connected in series with the first light emitting element group and a third resistance pair connected in parallel with the second resistance pair, and has a second resistance pair.
  • Each resistor of the resistance pair and the third resistance pair has a first contact connected to the other of the second resistance pair, a second contact connected to the other of the third resistance pair, and a first contact and a second contact.
  • the resistor is integrated with a resistor arranged between the resistor, a movable contact that can be connected to an arbitrary position of the resistor, and a third contact that is connected to the movable contact.
  • the lighting device is arranged at an operating member on which an internal gear is formed, a cylindrical shaft portion, a first gear that is arranged at one end of the shaft portion and screwed into the internal gear, and one end of the shaft portion.
  • the ratio of the current flowing through the second light emitting element group according to the rotation of the third gear having the rotating member having the second gear and the third gear screwed into the second gear, and the second It has a current adjusting unit that adjusts the ratio of the current flowing through the three light emitting element groups, and the above light emitting device.
  • the movable contact Moves so that the first voltage dividing resistance decreases and the third voltage dividing resistance increases, and when the third gear rotates in response to the operation member being rotated in the second direction opposite to the first direction.
  • the movable contact moves so that the first voltage dividing resistance increases and the third voltage dividing resistance decreases.
  • the current value of the current supplied from a pair of electrode pairs to a plurality of light emitting element trains can be set to a predetermined ratio.
  • FIG. 5 is a perspective perspective view of a light emitting device, a diffusion member, and a current adjusting unit included in the lighting device shown in FIG.
  • FIG. 5 is a circuit block diagram of the light emitting device which concerns on 2nd Embodiment. It is a figure which shows the 1st voltage dividing resistor and the 3rd voltage dividing resistor shown in FIG.
  • FIG. 5 is a chromaticity diagram showing a change in the chromaticity of the light emitted by the light emitting device shown in FIG. 7 when the first reference voltage, the second reference voltage, and the third reference voltage are changed. It is a circuit block diagram of the light emitting device which concerns on 5th Embodiment. It is a chromaticity diagram which shows the optical characteristic of the light emitted from the light emitting device shown in FIG. It is a circuit block diagram of the light emitting device which concerns on 6th Embodiment.
  • (A) is a diagram showing an example of a light emitting state of a conventional light emitting device
  • (b) is a diagram showing an example of a light emitting state of the light emitting device 6.
  • FIG. 1 is a perspective view of a lighting device equipped with a light emitting device according to the first embodiment
  • FIG. 2 is an exploded perspective view of the lighting device shown in FIG.
  • the lighting device 110 includes a first housing 111, a second housing 112, a connector 113, a heat radiating sheet 114, a light emitting device 1, a first reflective member 115, and a diffusion member 116. , A downlight having a sealing member 117 and a second reflective member 118.
  • the first housing 111 is formed by drawing a metal having high thermal conductivity such as aluminum, and houses the second housing 112, the heat radiating sheet 114, the light emitting device 1, and the first reflecting member 115.
  • the second housing 112 is formed of an insulating resin material such as polybutylene terephthalate.
  • the second housing 112 is arranged along the inner wall of the first housing 111 to improve the insulating characteristics between the electronic component mounted on the light emitting device 1 and the first housing 111.
  • a hole into which the heat radiating sheet 114 can be inserted is formed in a portion corresponding to the support portion where the first housing 111 supports the light emitting device 1.
  • the connector 113 has a pair of power supply terminals that can be connected to an external power source, and supplies electric power to electronic components mounted on the light emitting device 1.
  • the heat radiating sheet 114 is a heat radiating material formed of a synthetic resin material having high thermal conductivity such as silicon resin.
  • the heat radiating sheet 114 is arranged between the first housing 111 and the light emitting device 1, and releases heat generated while the light emitting device 1 emits light to the first housing 111.
  • the light emitting device 1 is equipped with a light emitting element such as an LED and an electronic member, and emits light in response to supply of a power supply voltage via the connector 113.
  • the light emitting device 1 is equipped with an electronic component that forms a power supply circuit that supplies electric power to a light emitting element mounted on the light emitting device 1.
  • the first reflective member 115 is an inverted conical member having an opening at the bottom, which is made of a synthetic resin material having high reflectance such as polycarbonate resin, and has outer edges on the first housing 111 and the second housing 112. It is supported and arranged so as to cover the light emitting device 1.
  • the inner wall of the first reflecting member 115 is a reflecting surface that reflects the light emitted from the light emitting device 1.
  • the diffusion member 116 is an arc-shaped member formed of a synthetic resin material such as polycarbonate, and its outer edge is supported by the first reflection member 115.
  • the diffusion member 116 has a diffusion surface on which at least one of the front surface and the back surface is textured, and diffuses and emits the light incident from the light emitting device 1 through the first reflection member 115.
  • the sealing member 117 also referred to as packing, is a ring-shaped member formed of a synthetic rubber material such as nitrile rubber, and is arranged between the diffusion member 116 and the second reflective member 118.
  • the second reflective member 118 is a mortar-shaped member formed of a highly reflective member such as aluminum, and is supported by the diffusion member 116 via the sealing member 117 and the outer edge is supported by the first housing 111.
  • NS The inner wall 57 of the second reflecting member 118 is a reflecting surface that reflects the light emitted from the light emitting device 1.
  • FIG. 3 is a circuit block diagram of the light emitting device according to the first embodiment.
  • the components of the light emitting device according to the first embodiment shown in FIG. 3 are mounted on the single circuit board 1a shown in FIG.
  • the light emitting device 1 includes a power supply circuit 10, a first light emitting element group 11, a second light emitting element group 12, a third light emitting element group 13, a reference voltage generation circuit 20, a second current control circuit 30, and the like. It has a third current control circuit 35, a first electrode 101, and a second electrode 102.
  • the power supply circuit 10 includes a supply resistor 103, a supply Zener diode 104, a supply transistor 105, and a supply capacitor 106, and power supplies for operational amplifiers 33 and 38 included in the second current control circuit 30 and the third current control circuit 35. Generate a voltage Vdd.
  • One end of the supply resistor 103 is connected to the first electrode 101, and the other end of the supply resistor 103 is connected to the cathode of the supply Zener diode 104 and the base of the supply transistor 105.
  • the anode of the supply Zener diode 104 is connected to the second electrode 102.
  • the collector of the supply transistor 105 is connected to the first electrode, and the emitter of the supply transistor 105 is connected to one end of the supply capacitor 106.
  • the other end of the supply capacitor 106 is connected to the second electrode 102.
  • the power supply circuit 10 supplies the power supply voltage Vdd having a predetermined voltage value to the operational amplifiers 33 and 38 of the second current control circuit 30 and the third current control circuit 35 by charging the supply capacitor 106.
  • the first light emitting element group 11 includes three first light emitting element rows 15 formed by six first light emitting elements 14 connected in series.
  • Each of the plurality of first light emitting elements 14 is an LED die that emits light of a first color, for example, green.
  • the number of the first light emitting elements 14 included in the first light emitting element row 15 may be 1 or 2 or more, and the number of the first light emitting element rows 15 may be 1, 2 or 4 or more.
  • the first light emitting element 14 contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG (Yttrium Aluminum Garnet) that converts the blue light emitted by the LED die into green.
  • YAG Yttrium Aluminum Garnet
  • it may be a light emitting element having a sealing material for sealing the LED die.
  • the second light emitting element group 12 includes three second light emitting element rows 17 formed by four second light emitting elements 16 connected in series.
  • Each of the plurality of second light emitting elements 16 is an LED die that emits light of a second color, for example, blue, which is different from the first color of green.
  • the number of the second light emitting elements 16 included in the second light emitting element row 17 may be 1 or 2 or more as long as it is smaller than the number of the first light emitting elements 14 connected in series in the first light emitting element row 15.
  • the number of the second light emitting element rows 17 may be 1, 2, or 4 or more.
  • the third light emitting element group 13 includes three third light emitting element rows 19 formed by four third light emitting elements 18 connected in series.
  • Each of the plurality of third light emitting elements 18 is an LED die that emits a third color different from both the first color green and the second color blue, for example, red light.
  • the number of the third light emitting elements 18 included in the third light emitting element row 19 may be 1 or 2 or more as long as it is smaller than the number of the first light emitting elements 14 connected in series in the first light emitting element row 15.
  • the number of the third light emitting element rows 19 may be 1, 2, or 4 or more.
  • the third light emitting element 18 contains an LED die that emits blue light and a light conversion material such as CASN such as a phosphor that converts the blue light emitted by the LED die into red, and the LED die. It may be a light emitting element having a sealing material for sealing.
  • the reference voltage generation circuit 20 is a voltage divider circuit having a first detection resistor 21, a second resistor pair 22, and a third resistor pair 23.
  • the reference voltage generation circuit 20 uses the second reference voltage V used to control the current values of the second current I 2 flowing through the second light emitting element group 12 and the third current I 3 flowing through the third light emitting element group 13. generating a second and a third reference voltage V 3.
  • the second current I 2 and the third current I 3 are cases where the magnitudes of the resistor 21, the resistor 32, and the resistor 37 are equal to the current value of the first current I 1 whose current value flows through the first light emitting element group 11. Is controlled so as to have a predetermined ratio smaller than the first current I 1.
  • the first detection resistor 21 is a resistance element having a resistance value of about several ⁇ , one end of which is connected to the first light emitting element group 11, and the other end of which is grounded.
  • the first detection resistor 21 detects the voltage applied to both ends as the first reference voltage V 1 .
  • the second resistance pair 22 has a first voltage dividing resistor 24 and a second voltage dividing resistor 25, and is connected in parallel to the first detection resistor 21.
  • One end of the first voltage dividing resistor 24 is connected to the first light emitting element group 11 together with one end of the first detection resistor 21, and the other end of the first voltage dividing resistor 24 is connected to one end of the second voltage dividing resistor 25.
  • the other end of the second voltage dividing resistor 25 is grounded together with the other end of the first detection resistor 21.
  • the resistance value of each of the first voltage dividing resistor 24 and the second voltage dividing resistor 25 is about several k ⁇ , which is larger than the resistance value of the first detection resistor 21.
  • the third resistor pair 23 has a third voltage dividing resistor 26 and a fourth voltage dividing resistor 27, and is connected in parallel to the first detection resistor 21 and the second resistor pair 22.
  • One end of the third voltage dividing resistor 26 is connected to the first light emitting element group 11 together with one end of the first detection resistor 21 and the first voltage dividing resistor 24, and the other end of the third voltage dividing resistor 26 is connected to the fourth voltage dividing resistor 27.
  • the other end of the fourth voltage dividing resistor 27 is grounded together with the other ends of the first detection resistor 21 and the second voltage dividing resistor 25.
  • each of the third voltage dividing resistor 26 and the fourth voltage dividing resistor 27 is about several k ⁇ , and the resistance value of the first detected resistor 21 is the same as that of the first voltage dividing resistor 24 and the second voltage dividing resistor 25. Greater than.
  • the voltage at the connection portion between the first voltage dividing resistor 24 and the second voltage dividing resistor 25 is set as the second reference voltage V 2 which is the voltage divided voltage divided by the second resistance pair 22.
  • the reference voltage generation circuit 20 is a third reference voltage V, which is a voltage dividing voltage obtained by dividing the voltage at the connection portion between the third voltage dividing resistor 26 and the fourth voltage dividing resistor 27 by the third resistance pair 23. It is output to the third current control circuit 35 as 3.
  • the second current control circuit 30 includes a second switch 31, a second detection resistor 32, and a second comparator 33.
  • the second switch 31 is an nMOSFET, the drain at one end is connected to the second light emitting element group 12, the source at the other end is connected to one end of the second detection resistor 32, and the gate as the control terminal is the second. It is connected to the output terminal of the comparator 33.
  • the other end of the second detection resistor 32 is grounded.
  • the first input terminal of the second comparator 33 is connected to the other end of the first voltage dividing resistor 24 and one end of the second voltage dividing resistor 25, and the second reference voltage V 2 is input.
  • the second input terminal of the second comparator 33 is connected to one end of the second detection resistor 32, and the second detection voltage V D2, which is the voltage across the second detection resistor 32, is input.
  • the second comparator 33 compares the input second reference voltage V 2 with the second detection voltage V D 2 applied to the second detection resistor 32, and the second reference voltage V 2 is the second detection voltage V.
  • the second switch 31 is controlled so as to match D2.
  • the third current control circuit 35 includes a third switch 36, a third detection resistor 37, and a third comparator 38.
  • the third switch 36 is an nMOSFET, the drain at one end is connected to the third light emitting element group 13, the source at the other end is connected to one end of the third detection resistor 37, and the gate as the control terminal is the third. It is connected to the output terminal of the comparator 38.
  • the other end of the third detection resistor 37 is grounded.
  • the first input terminal of the third comparator 38 is connected to the other end of the third voltage dividing resistor 26 and one end of the fourth voltage dividing resistor 27, and the third reference voltage V 3 is input.
  • the second input terminal of the third comparator 38 is connected to one end of the third detection resistor 37, and the third detection voltage V D3, which is the voltage across the third detection resistor 37, is input.
  • the third comparator 38 compares the input third reference voltage V 3 with the third detection voltage V D 3 applied to the third detection resistor 37, and the third reference voltage V 3 is the third detection voltage V.
  • the third switch 36 is controlled so as to match D3.
  • Each of the first electrode 101 and the second electrode 102 is connected to the current source 100, and the current supplied from the current source 100 is applied to the first light emitting element group 11, the second light emitting element group 12, and the third light emitting element group 13. Supply to each.
  • the current source 100 is a variable constant current power supply capable of changing the current supplied to the first electrode 101.
  • the current values of the second current I 2 flowing through the second light emitting element group 12 and the third current I 3 flowing through the third light emitting element group 13 of the first current I 1 flowing through the first light emitting element group 11 are controlled so as to have a predetermined ratio with respect to the current value.
  • the second current control circuit 30 and the third current control circuit 35 have a second current I so that the second reference voltage V 2 and the third reference voltage V 3 have a predetermined ratio to the first reference voltage V 1.
  • the second and third currents I 3 are feedback-controlled.
  • the second reference voltage V 2 and the third reference voltage V 3 become a predetermined ratio with respect to the first reference voltage V 1
  • the 2 and the 3rd current I 3 have a predetermined ratio with respect to the 1st current I 1 flowing through the 1st light emitting element group 11.
  • the second current control circuit 30 and the third current control circuit 35 are controlled so that the ratio to the first current I 1 is 3/5 and 2/5.
  • the light emitting device 1 controls the second current I 2 and the third current I 3 so as to have a predetermined ratio with respect to the first current I 1 , so that the first light emitting element group 11 to the third light emitting element group 13 Light obtained by mixing the light emitted from the light source in a desired ratio can be emitted regardless of the supplied current. Since the light emitting device 1 fixes the ratio of the current, not the absolute value of the current, even if the current input from the current source 100 changes due to dimming or the like, the first light emitting element group 11 to the third light emitting element group 13 The ratio of the light emitted from each of the above is kept constant.
  • the circuit board 1a can be replaced with a circuit board on which another light emitting device is mounted to illuminate the light emitting device 1.
  • the device 110 can mount various light emitting devices in the same housing.
  • FIG. 4 is a perspective view of the lighting device equipped with the light emitting device according to the second embodiment
  • FIG. 5 is a perspective perspective view of the light emitting device, the diffusion member, and the current adjusting unit included in the lighting device shown in FIG.
  • the lighting device 120 illuminates that the light emitting device 2 and the diffusion member 126, which is an example of an operating member in which the internal gear 126a is formed in the vicinity of the upper end, are provided in place of the light emitting device 1 and the diffusion member 116.
  • the illuminating device 120 is different from the illuminating device 110 in that it has a rotating member 121 and a current adjusting unit 127. Since the components and functions of the lighting device 120 other than the rotating member 121, the light emitting device 2, the diffusion member 126, and the current adjusting unit 127 are the same as the components and functions of the lighting device 110 with the same reference numerals, A detailed description will be omitted here.
  • the rotating member 121 has a shaft portion 122, a first gear 123, and a second gear 124.
  • the shaft portion 122 is a columnar member extending in the normal direction of the circuit board 2a of the light emitting device 2, and is arranged so as to penetrate the through hole formed in the first reflection member 115.
  • the first gear 123 is arranged at the upper end and the second gear 124 is arranged at the lower end.
  • the first gear 123 is screwed into the internal gear 126a formed on the inner wall of the upper end of the diffusion member 126.
  • the second gear 124 is an internal gear formed inside the lower end of the shaft portion 122, and is screwed into the current adjusting portion 127.
  • the current adjusting unit 127 has a third gear 128 screwed into the second gear 124, and the ratio of the current flowing through the second light emitting element group 12 and the third light emitting as the third gear 128 rotates. This is a current adjusting device that adjusts the ratio of the current flowing through the element group 13.
  • the third gear 128 is rotated via the rotating member 121, the ratio of the current flowing through the second light emitting element group 12 is increased, and the second is 3 The ratio of the current flowing through the light emitting element group 13 decreases.
  • the ratio of the current flowing through the second light emitting element group 12 decreases and the current flowing through the third light emitting element group 13 decreases. The ratio increases.
  • FIG. 6 is a circuit block diagram of the light emitting device 2 according to the second embodiment.
  • the light emitting device 2 is different from the light emitting device 1 in that it has a reference voltage generation circuit 40 instead of the reference voltage generation circuit 20. Since the components and functions of the light emitting device 2 other than the reference voltage generation circuit 40 are the same as the components and functions of the light emitting device 1 having the same reference numerals, detailed description thereof will be omitted here.
  • the reference voltage generation circuit 40 differs from the reference voltage generation circuit 20 in that it has a second resistance pair 42 and a third resistance pair 43 instead of the second resistance pair 22 and the third resistance pair 23.
  • the second resistor pair 42 has a first voltage divider resistor 44 in place of the first voltage divider resistor 24, and the third resistor pair 43 has a third voltage divider resistor 46 in place of the third voltage divider resistor 26. Since the components and functions of the reference voltage generation circuit 40 other than the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are the same as the components and functions of the reference voltage generating circuit 20 having the same reference numerals. , A detailed description is omitted here.
  • FIG. 7 is a diagram showing a first voltage dividing resistor 44 and a third voltage dividing resistor 46.
  • the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are integrated by the resistor 400, the first terminal 401, the second terminal 402, the third terminal 403, and the movable contact 404.
  • the resistor 400 is a high-resistance conductor such as a nickel-chromium alloy, and a first terminal 401 connected to the second voltage dividing resistor 25 is arranged at one end and connected to the fourth voltage dividing resistor 27.
  • the two terminals 402 are arranged at the other end.
  • the movable contact 404 is a conductor in which a third terminal 403 connected to the first light emitting element group 11 is arranged at one end and can be connected to an arbitrary position of the resistor 400.
  • the resistance values of the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are continuously changed according to the place where the movable contact 404 comes into contact with the resistor 400.
  • the movable contact 404 moves in response to the rotation of the third gear 128 of the current adjusting unit 127.
  • the third gear 128 rotates in response to the rotation of the diffusion member 126 in the first direction indicated by the arrow A
  • the movable contact 404 has a decrease in the first partial pressure resistance 44 and an increase in the third partial pressure resistance 46. Move to do.
  • the ratio of the current flowing through the second light emitting element group 12 increases, and the current flows through the third light emitting element group 13. The ratio of current decreases.
  • the movable contact 404 has an increased first partial pressure resistance 44.
  • the third partial pressure resistance 46 moves so as to decrease.
  • the reference voltage generation circuit 40 has the first voltage dividing resistor 44 and the third voltage dividing resistor 46 which are variable resistors, the first reference voltage of the second reference voltage V 2 and the third reference voltage V 3 is provided.
  • the ratio to V 1 can be changed continuously.
  • the light emitting device 2 changes the ratio of the second reference voltage V 2 and the third reference voltage V 3 to the first reference voltage V 1 to cause a second current flowing through the second light emitting element group 12 and the third light emitting element group 13.
  • the ratio of the I 2 and the third current I 3 to the first current I 1 flowing through the first light emitting element group 11 can be continuously changed.
  • FIG. 8 shows changes in the current ratios of the first current I 1 , the second current I 2, and the third current I 3 when the resistance ratios of the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are changed. It is a figure which shows.
  • the horizontal axis shows the resistance stages of the first voltage dividing resistor 44 and the third voltage dividing resistor 46
  • the vertical axis represents the first current I 1 , the second current I 2, and the third current I 3 , respectively.
  • the diamond mark indicates the first current I 1 flowing through the first light emitting element group 11
  • the triangle mark indicates the second current I 2 flowing through the second light emitting element group 12
  • the square mark indicates the third light emitting element group.
  • the third current I 3 flowing through 13 is shown.
  • the first current I 1 and the third current I 3 are 45%, and the second current I 2 is 10%.
  • the second current I 2 increases, the third current I 3 decreases, and when the resistance stage is "10", the first current I 1 and the second current I 2 are 45 [%].
  • the third current I 3 becomes 10%.
  • the maximum and minimum values of the second current and the third current and their intermediate values can be adjusted by changing the values of the resistor 25 or the resistor 27, for example.
  • the current value of the first current I 1 corresponding to the first light emitting element group 11 that emits green light is the second light emitting element group 12 and the third light emitting element group that emit blue and red light. It is larger than the respective current values of the second current I 2 and the third current I 3 corresponding to 13. Further, in the light emitting device 2, the current value of the third current I 3 decreases as the current value of the second current I 2 increases.
  • the light emitting device 2 is emitted from the second light emitting element 16 and the third light emitting element 18 by adjusting the wavelength of the light emitted from the first light emitting element 14, the second light emitting element 16, and the third light emitting element 18. By changing the ratio of light, it is possible to emit light along the blackbody locus.
  • FIG. 9 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 2.
  • the fine curve L20 shows a blackbody locus.
  • Point P21 indicates the chromaticity of the light emitted from the first light emitting element group 11
  • point P22 indicates the chromaticity of the light emitted from the second light emitting element group 12
  • point P23 indicates the chromaticity of the light emitted from the thirteenth light emitting element group 13.
  • the thick curve L24 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 2.
  • the light emitting device 2 can emit light having a chromaticity that matches the blackbody locus over a predetermined color gamut.
  • the light emitting device 2 is adjusted so that the light emitted from the first light emitting element group 11 to the third light emitting element group 13 emits light having a color deviation (Duv) of ⁇ 0.01 or less with respect to the blackbody locus. can do.
  • FIG. 10 is a circuit block diagram of the light emitting device according to the third embodiment.
  • the light emitting device 3 is different from the light emitting device 2 in that it has a reference voltage generation circuit 50 instead of the reference voltage generation circuit 40. Further, the light emitting device 3 is different from the light emitting device 2 in that it further has a current ratio control circuit 60.
  • the components and functions of the light emitting device 3 other than the reference voltage generation circuit 50 and the current ratio control circuit 60 are the same as the components and functions of the light emitting device 2 having the same reference numerals. Is omitted.
  • the reference voltage generation circuit 50 differs from the reference voltage generation circuit 40 in that it has a second resistance pair 52 and a third resistance pair 53 in place of the second resistance pair 42 and the third resistance pair 43.
  • the second resistance pair 52 has a first voltage dividing resistor 54 in place of the first voltage dividing resistor 44
  • the third resistance pair 53 has a third voltage dividing resistor 56 in place of the third voltage dividing resistor 46. Since the components and functions of the reference voltage generation circuit 50 other than the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are the same as the components and functions of the reference voltage generating circuit 40 having the same reference numerals. , A detailed description is omitted here.
  • FIG. 11 is a diagram showing a first voltage dividing resistor 54 and a third voltage dividing resistor 56.
  • the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are integrated by a resistor 500, a first terminal 501, a second terminal 502, a third terminal 503, a plurality of switches 504, and an input terminal 505.
  • the resistor 500 is a high-resistance conductor such as a nickel-chromium alloy, and a first terminal 501 connected to the second voltage dividing resistor 25 is arranged at one end and connected to the fourth voltage dividing resistor 27.
  • the two terminals 502 are arranged at the other end.
  • Each of the plurality of switches 504 is, for example, an nMOSFET, and the drain is connected to the third terminal 503 connected to the first light emitting element group 11, the source is connected to the resistor 500, and the current ratio control circuit 60 is connected.
  • a gate is connected to the input terminal 505.
  • the resistance values of the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are continuously changed according to the position of the switch 504 to be turned on.
  • the current ratio control circuit 60 includes a communication unit 61, a storage unit 62, a control unit 63, and an output unit 64.
  • the communication unit 61 is a communication interface such as I2C, and is electrically connected to a higher-level control device (not shown) that controls communication of the light emitting device 3.
  • the communication unit 61 has a pad for connecting to an external device such as a host control device.
  • the pad included in the communication unit 61 is arranged on the surface of the substrate forming the light emitting device 3, for example. By arranging the pad included in the communication unit 61 on the surface of the substrate, the light emitting device 3 can reduce the number of wirings.
  • the storage unit 62 includes, for example, a semiconductor memory device such as a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the storage unit 62 stores an operating system program, a driver program, a control program, data, and the like used for processing by the control unit 63.
  • the control unit 63 has one or a plurality of processors and peripheral circuits thereof, and controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56, for example, a CPU (Central). ProcessingUnit). Further, the control unit 63 may be formed of a discrete product such as a transistor. The control unit 63 controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56 based on the chromaticity control signal input from the upper control device via the communication unit 61.
  • the output unit 64 is electrically connected to the first voltage dividing resistor 54 and the third voltage dividing resistor 56 via a communication line, and outputs a control signal indicating a switch 504 to be turned on to the input terminal 505.
  • the control signal output from the output unit 64 indicates that any one of the plurality of switches 504 is turned on and the other switch 504 is turned off.
  • the light emitting device 3 controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56 based on the chromaticity control signal input from the upper control device, so that the second light emitting element group 12 And the ratio of the second current I 2 and the third current I 3 flowing through the third light emitting element group 13 can be changed.
  • FIG. 12 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 3.
  • the curve L30 shows a blackbody locus.
  • Point P31 indicates the chromaticity of the light emitted from the first light emitting element group 11
  • point P32 indicates the chromaticity of the light emitted from the second light emitting element group 12
  • point P33 indicates the chromaticity of the light emitted from the thirteenth light emitting element group 13.
  • the region R34 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 3.
  • the effective color gamut of the light emitting device 3 is narrower than the light source color gamut formed by connecting the points P31, P32, and P33, it emits light having the chromaticity desired for the lighting device including the blackbody locus. can do.
  • FIG. 13 is a circuit block diagram of the light emitting device according to the fourth embodiment.
  • the light emitting device 4 is different from the light emitting device 1 in that it does not have the reference voltage generation circuit 20. Further, the light emitting device 4 is different from the light emitting device 1 in that it has a current sensor 55, a first current control circuit 70, and a reference voltage generation circuit 75. Since the components and functions of the light emitting device 4 other than the current sensor 55, the first current control circuit 70, and the reference voltage generation circuit 75 are the same as the components and functions of the light emitting device 1 with the same reference numerals, A detailed description will be omitted here.
  • the current sensor 55 is, for example, a current sensor such as a current detection amplifier, and is arranged between the first electrode 101 and the first light emitting element group 11, the second light emitting element group 12, and the third light emitting element group 13.
  • the current sensor 55 detects and detects a detection current ID including a first current I 1 , a second current I 2 and a third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13.
  • the current ID is output to the reference voltage generation circuit 75 as the corresponding voltage information.
  • the first current control circuit 70 includes a first switch 71, a first reference resistor 72, and a first comparator 73.
  • the first switch 71 is an nMOSFET, the drain at one end is connected to the first light emitting element group 11, the source at the other end is connected to one end of the first reference resistor 72, and the gate as the control terminal is the first. It is connected to the output terminal of the comparator 73.
  • the other end of the first reference resistor 72 is grounded together with the other ends of the second detection resistor 32 and the third detection resistor 37.
  • the first input terminal of the first comparator 73 and the first input terminal of the second comparator 33 and the third comparator 38 are connected to the reference voltage generation circuit 75, respectively.
  • the second input terminal of the first comparator 73 is connected to one end of the first reference resistor 72, and the first detection voltage V D1 which is the voltage across the first reference resistor 72 is input.
  • the reference voltage generation circuit 75 includes an input unit 76, a storage unit 77, a control unit 78, and an output unit 79.
  • the first current I 1, as in the current value of the second current I 2 and the third current I 3 is the predetermined ratio, the first current I 1, either the second current I 2 and the third current I 3 1 Generates a reference voltage used to control one or two current values.
  • the input unit 76 is electrically connected to the current sensor 55, and a detection current signal indicating the detection current ID detected by the current sensor 55 is input.
  • the storage unit 77 includes, for example, a semiconductor memory device such as a ROM or RAM.
  • the storage unit 77 stores an operating system program, a driver program, a control program, data, and the like used for processing by the control unit 78.
  • the control unit 78 has one or more processors and peripheral circuits thereof, and is, for example, a CPU. Further, the control unit 78 may be formed by a transistor. The control unit 78 uses the first reference voltage V used to control the first current I 1 , the second current I 2 and the third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13. 1. Generates a second reference voltage V 2 and a third reference voltage V 3.
  • the control unit 78 has a first reference voltage so that the first current I 1 , the second current I 2 and the third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13 have a predetermined ratio. Generates V 1 , a second reference voltage V 2, and a third reference voltage V 3. Control unit 78, first current I 1, as the other two current values for any one current value of the second current I 2 and the third current I 3 becomes a predetermined ratio, the first current I 1 , A reference voltage for controlling any two current values of the second current I 2 and the third current I 3 is generated.
  • the control unit 78 emits light of the same voltage as the power supply voltage Vdd to the first input terminal of the comparator corresponding to the light emitting element group in which the current controlled by the reference voltage does not flow, that is, the light emitting element group functioning as the master. Outputs a voltage that does not control the current flowing through the element group. Further, a current having a predetermined ratio to the detected current ID is passed through the first input terminal of the comparator corresponding to the light emitting element group in which the current controlled by the reference voltage flows, that is, the light emitting element group functioning as a slave. The reference voltage is output.
  • the voltage is the same as the power supply voltage Vdd at the first input terminal of the first comparator 73. Is entered.
  • a second reference in which the current values of the second current I 2 and the third current I 3 are a predetermined ratio to the current value of the first current I 1 at the first input terminals of the second comparator 33 and the third comparator 38. the voltage V2 and the third reference voltage V 3 is input.
  • the same voltage as the power supply voltage Vdd is applied to the first input terminal of the second comparator 33. Is entered.
  • the voltage V 1 and the third reference voltage V 3 are input.
  • the same voltage as the power supply voltage Vdd is applied to the first input terminal of the third comparator 38. Is entered.
  • the voltage V 1 and the second reference voltage V 2 are input.
  • the output unit 79 is electrically connected to the first input terminal of the first comparator 73, the first input terminal of the second comparator 33, and the first input terminal of the third comparator 38, and the first unit generated by the control unit 78 is generated.
  • the reference voltage V 1 , the second reference voltage V 2 and the third reference voltage V 3 are output.
  • the light emitting device 4 controls the first current control circuit 70, the second current control circuit 30, and the third current control circuit 35 by the first reference voltage V 1 , the second reference voltage V 2, and the third reference voltage V 3. Therefore, the first current I 1 , the second current I 2 and the third current I 3 can be controlled to have a predetermined ratio.
  • FIG. 14 is a chromaticity diagram showing a change in the chromaticity of the light emitted by the light emitting device 4 when the first reference voltage V 1 , the second reference voltage V 2 and the third reference voltage V 3 are changed.
  • the solid line indicates the range of light that can be emitted by the light emitting device 4, and the broken line indicates the blackbody locus.
  • the light emitting device 4 has a first current I 1 , a second current flowing through the first light emitting element group 11 to the third light emitting element group 13 by the first reference voltage V 1 , the second reference voltage V 2, and the third reference voltage V 3.
  • the current I 2 and the third current I 3 can be controlled so that the chromaticity of the light emitted by the light emitting device 4 follows the blackbody locus.
  • FIG. 15 is a circuit block diagram of the light emitting device according to the fifth embodiment.
  • the light emitting device 5 is different from the light emitting device 2 in that it has a reference voltage generation circuit 84 instead of the reference voltage generation circuit 40. Further, the light emitting device 5 is different from the light emitting device 2 in that it further has a current ratio control circuit 60.
  • the components and functions of the light emitting device 5 other than the reference voltage generation circuit 84 and the current ratio control circuit 60 are the same as the components and functions of the light emitting device 2 having the same reference numerals. Is omitted.
  • the light emitting device 5 includes a power supply circuit 10, a first light emitting element group 80, a second light emitting element group 81, a third light emitting element group 82, a fourth light emitting element group 83, a reference voltage generation circuit 84, and the like. It has a second current control circuit 30, a third current control circuit 35, and a fourth current control circuit 89.
  • the light emitting device 5 further includes a current ratio control circuit 60, a first electrode 101, and a second electrode 102.
  • the power supply circuit 10, the second current control circuit 30, the third current control circuit 35, the current ratio control circuit 60, the first electrode 101 and the second electrode 102 have already been described with reference to FIGS. 3 and 10. Then, detailed explanation is omitted.
  • the first light emitting element group 80 is formed by six first light emitting elements 80a connected in series.
  • the first light emitting element 80a contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG that converts the blue light emitted by the LED die into yellow, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits white light.
  • the second light emitting element group 81 is formed by four second light emitting elements 81a connected in series.
  • the second light emitting element 81a is a light emitting diode that emits light of the first color that is blue.
  • the third light emitting element group 82 is formed by four third light emitting elements 82a connected in series.
  • the third light emitting element 82a contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG that converts the blue light emitted by the LED die into green, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits green light.
  • the fourth light emitting element group 83 is formed by four fourth light emitting elements 83a connected in series.
  • the fourth light emitting element 83a contains an LED die that emits blue light and a light conversion material such as a phosphor such as CASN that converts the blue light emitted by the LED die into red, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits red light.
  • the reference voltage generation circuit 84 is a voltage divider circuit having a first detection resistor 85, a second resistor pair 86, a third resistor pair 87, and a fourth resistor pair 88.
  • the first detection resistor 85 is a resistance element having a resistance value of about several ⁇ , one end of which is connected to the first light emitting element group 80, and the other end of which is grounded.
  • the second resistance pair 86 has a first voltage dividing resistor 86a and a second voltage dividing resistor 86b, and generates a second reference voltage V 2 that controls a second current I 2 flowing through the second light emitting element group 81.
  • the third resistance pair 87 has a third voltage dividing resistor 87a and a fourth voltage dividing resistor 87b, and generates a third reference voltage V 3 that controls a third current I 3 flowing through the third light emitting element group 82.
  • the fourth resistor pair 88 has a fifth voltage dividing resistor 88a and a sixth voltage dividing resistor 88b, and generates a fourth reference voltage V 4 that controls a fourth current I 4 flowing through the fourth light emitting element group 83.
  • the first voltage dividing resistor 86a and the fifth voltage dividing resistor 88a are variable resistors. Since the first voltage dividing resistor 86a and the fifth voltage dividing resistor 88a have the same structure as the first voltage dividing resistor 54 and the third voltage dividing resistor 56 described with reference to FIG. 11, they are described in detail here. The description is omitted.
  • the fourth current control circuit 89 has a fourth switch 89a, a fourth detection resistor 89b, and a fourth comparator 89c, and has the same configuration as the second current control circuit 30 and the third current control circuit 35.
  • FIG. 16 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 5.
  • the fine curve L50 shows a blackbody locus.
  • Point P51 indicates the chromaticity of the light emitted from the first light emitting element group 80
  • point P52 indicates the chromaticity of the light emitted from the second light emitting element group 81
  • point P53 indicates the chromaticity of the light emitted from the 82nd light emitting element group 13.
  • the chromaticity of the emitted light is indicated
  • the point P54 indicates the chromaticity of the light emitted from the fourth light emitting element group 83.
  • the region R55 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 5.
  • the first light emitting element group 80 having high luminous efficiency emits white light
  • the second light emitting element group 81 to the fourth light emitting element group 83 having lower luminous efficiency than the first light emitting element group 80 are blue.
  • Green and red light are emitted respectively.
  • the light emitting device 5 emits white light from the first light emitting element group 80 having high luminous efficiency, and emits blue, green, and red light as complementary colors from the second light emitting element group 81 to the fourth light emitting element group 83, respectively.
  • the minimum color range can be realized with a simple circuit configuration while maintaining high luminous efficiency.
  • the light emitting device 5 has a desired color and color temperature when the color of the light emitted from each of the first light emitting element group 80 to the fourth light emitting element group 83 fluctuates due to manufacturing variation or the like.
  • the current ratio control circuit 60 may be preset so that light is emitted.
  • the light emitting device 5 can reduce the chromaticity tolerance by presetting the current ratio control circuit 60 so that light having a desired color and color temperature is emitted.
  • FIG. 17 is a circuit block diagram of the light emitting device according to the sixth embodiment.
  • the light emitting device 6 is switched between the first light emitting element group 91, the second light emitting element group 92, the third light emitting element group 93, the first transistor 94, the second transistor 95, the third transistor 96, and the first switching. It has an element 97, a second switching element 98, and a third switching element 99.
  • the light emitting device 6 further includes a first electrode 101 and a second electrode 102.
  • Each of the first light emitting element group 91 to the third light emitting element group 93 includes a plurality of LEDs connected in series.
  • the LEDs included in the first light emitting element group 91 to the third light emitting element group 93 emit light of the same color such as blue.
  • the LEDs included in the first light emitting element group 91 to the third light emitting element group 93 are, for example, a green phosphor that converts the blue light emitted by the LED into green and emits the blue light, and the blue light emitted by the LED into red. It is sealed with a sealing material containing a red phosphor that is converted and emitted.
  • Each of the first transistor 94, the second transistor 95, and the third transistor 96 is an NPN bipolar transistor.
  • the collector of the first transistor 94 is connected to the first light emitting element group 91
  • the collector of the second transistor 95 is connected to the second light emitting element group 92
  • the collector of the third transistor 96 is connected to the third light emitting element group 93.
  • NS The emitters of the first transistor 94, the second transistor 95, and the third transistor 96 are grounded.
  • One end of the first switching element 97 is connected to the base of the first transistor 94, and the other end of the first switching element 97 is connected to the collector of the first transistor 94.
  • the space between one end and the other end of the first switching element 97 is open, and when the space between one end and the other end of the first switching element 97 is short-circuited by, for example, a solder jumper or wire bonding, the first switching element 97 Shorts between the base and collector of the first transistor 94.
  • One end of the second switching element 98 is connected to the base of the second transistor 95, and the other end of the second switching element 98 is connected to the collector of the second transistor 95.
  • the space between one end and the other end of the second switching element 98 is open, and when the space between one end and the other end of the second switching element 98 is short-circuited by, for example, a solder jumper or wire bonding, the second switching element 98 Shorts between the base and collector of the second transistor 95.
  • One end of the third switching element 99 is connected to the base of the third transistor 96, and the other end of the third switching element 99 is connected to the collector of the third transistor 96.
  • the space between one end and the other end of the third switching element 99 is open, and when the space between one end and the other end of the third switching element 99 is short-circuited by, for example, a solder jumper or wire bonding, the third switching element 99 Shorts between the base and collector of the third transistor 96.
  • the first transistor 94, the second transistor 95, and the third transistor 96 form a current mirror circuit.
  • the first transistor 94, the second transistor 95, and the third transistor 96 form a current mirror circuit, so that the first current I 1 and the second current I flow through the first light emitting element group 91 to the third light emitting element group 93.
  • the current values of the second and third currents I 3 are the same.
  • the switching element to be short-circuited is determined according to the forward voltage of each of the first light emitting element group 91 to the third light emitting element group 93.
  • the switching element connected to the light emitting element group having the highest threshold voltage for starting light emission in the first light emitting element group 91 to the third light emitting element group 93 may be short-circuited.
  • the current flowing in the light emitting element group having the smallest current during light emission is adjusted to the current flowing in the first light emitting element group 91 to No. It can flow through all of the three light emitting element groups 93.
  • the first light emitting element group 91 when the threshold voltage at which the first light emitting element group 91 starts emitting light is higher than the threshold voltage at which the second light emitting element group 92 and the third light emitting element group 93 start emitting light, the first light emitting element group The first switching element 97 connected to 91 is short-circuited.
  • FIG. 18A is a diagram showing an example of a light emitting state of a conventional light emitting device
  • FIG. 18B is a diagram showing an example of a light emitting state of the light emitting device 6.
  • the figures shown in FIGS. 18A and 18B are diagrams showing a light emitting state when a low voltage is applied, such as when starting light emission.
  • the threshold voltage at which light emission is started differs for each light emitting element row, only the light emitting element train having a low threshold voltage emits light, and the threshold voltage becomes high. High light emitting element rows do not emit light.
  • the first light emitting element group 91 to the third light emitting element group 93 simultaneously start light emission by the mirror circuit formed by the first transistor 94 to the third transistor 96. Can be done.
  • the light emitting devices 1 to 4 have a first light emitting element group 11 to a third light emitting element group 13 that emit green, blue, and red light, respectively, and the light emitting device according to the embodiment emits two or four or more lights. It may have a group of elements.
  • the light emitting device according to the embodiment may have two light emitting element groups that emit warm and cold colors, respectively, and four light emitting elements that emit amber light in addition to green, blue, and red. It may have a group.
  • the reference voltage generation circuit and the current control circuit are connected to the cathode of the LED in the final stage of the light emitting element group, but in the light emitting device according to the embodiment, the reference voltage generation circuit and the current control circuit are connected. May be connected to the anode of the first stage LED of the light emitting element group.
  • the first light emitting element group 11 emits green light
  • the second light emitting element group 12 emits blue light
  • the third light emitting element group 13 emits red light
  • the colors emitted from the first light emitting element group 11 to the third light emitting element group 13 are not limited.
  • the first light emitting element group 11 emits blue light
  • the second light emitting element group 12 emits red light
  • the third light emitting element group 13 emits green light. May be good.
  • the first light emitting element group 11 may emit red light
  • the second light emitting element group 12 may emit green light
  • the third light emitting element group 13 may emit blue light.
  • the first voltage dividing resistor 44 and the third voltage dividing resistor 46 and the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are integrated, but the light emitting device according to the embodiment. Then, the variable resistor included in the reference voltage generation circuit may be formed separately.
  • variable resistance and the resistance ratio control circuit are arranged as separate elements, but in the light emitting device according to the embodiment, the variable resistance and the resistance ratio control circuit are used as an IC digital potentiometer or the like. It may be integrated.
  • the reference voltage generation circuit 75 controls any two current values of the first current I 1, the second current I 2 and the third current I 3 in order to adjust the color of the emitted light. Generate a reference voltage to do so.
  • the reference voltage generation circuit responds to the forward voltage of the plurality of light emitting element groups as in the light emitting device 5. A group of light emitting elements that control the current value may be determined.
  • the reference voltage generation circuit does not control the current value of the current flowing through the light emitting element group having the highest forward voltage, but controls the current value of the current flowing through the other light emitting element group.
  • the reference voltage generation circuit is a current control circuit arranged corresponding to a light emitting element group that controls the current value of the flowing current, and a current flowing in the light emitting element group having the lowest current flowing in the light emitting element string that controls the current value. Generate a reference voltage to match the current value of.
  • the light emitting device 6 has a first light emitting element group 91 to a third light emitting element group 93, but the light emitting device according to the embodiment may have two or four or more light emitting element groups.
  • the first transistor 94 to the third transistor 96 and the first switching element 97 to the third switching element 99 are the first-stage LEDs of the first light emitting element group 91 to the third light emitting element group 93. It may be connected to the anode of.
  • the first switching element 97 to the third switching element 99 are formed so that the base and the collector of the first transistor 94 to the third transistor 96 can be short-circuited.
  • the plurality of switching elements may be formed so as to be able to release the space between the base and the collector of the plurality of transistors. The plurality of switching elements are released between the base and the collector of each of the plurality of transistors by, for example, cutting the wiring pattern forming the plurality of switching elements with a wiring pattern cutting device such as a laser irradiation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

This light-emitting device comprises: a pair of electrodes; a first light-emitting element group that emits light when a current is supplied from the pair of electrodes; a second light-emitting element group that is connected in parallel to the first light-emitting element group, and that emits light when a current is supplied from the pair of electrodes; a reference voltage generation circuit that generates a reference voltage used to control one of a first current which flows to the first light-emitting element group and a second current which flows to the second light-emitting element group so that a current value of the first current and a current value of the second current reach a predetermined ratio; and a current control circuit that controls one of the first current and the second current on the basis of the reference voltage.

Description

発光装置及び照明装置Light emitting device and lighting device
 本開示は、発光装置及び照明装置に関する。 This disclosure relates to a light emitting device and a lighting device.
 複数対の電極対のそれぞれから発光ダイオード(Light Emitting Diode、LED)等の複数の発光素子列に別個に電流を供給することで、複数の発光素子列の発光を独立して駆動する発光装置が知られている(例えば、特開2016-119381号公報及び特開2017-120897号公報を参照)。特開2016-119381号公報及び特開2017-120897号公報に記載される発光装置は、複数の電極対から供給される電流の電流値を調整することで、出射する光の色度を調整することができる。しかしながら、特開2016-119381号公報及び特開2017-120897号公報に記載される発光装置は、複数の電極対から発光素子列に電流を供給するため、電極の領域が大きくなり発光装置のサイズが大きくなると共に、配線パターンの形状が複雑となり設計コストが上昇するおそれがある。 A light emitting device that independently drives the light emission of a plurality of light emitting element trains by separately supplying a current from each of a plurality of pairs of electrodes to a plurality of light emitting element trains such as a light emitting diode (LED). It is known (see, for example, Japanese Patent Application Laid-Open No. 2016-119381 and Japanese Patent Application Laid-Open No. 2017-120897). The light emitting device described in JP-A-2016-119381 and JP-A-2017-120897 adjusts the chromaticity of the emitted light by adjusting the current value of the current supplied from a plurality of electrode pairs. be able to. However, in the light emitting devices described in JP-A-2016-119381 and JP-A-2017-120897, since the current is supplied to the light-emitting element array from a plurality of electrode pairs, the electrode region becomes large and the size of the light-emitting device becomes large. As the value increases, the shape of the wiring pattern becomes complicated, which may increase the design cost.
 国際公開第2016/039344号には、一対の電極対と、一対の電極対から電流が供給される2列のLED列と、2列のLED列の一方のLED列に低電圧時のみに電流を流すように電流を制御する電流制御回路とを有するLED発光装置が記載されている。国際公開第2016/039344号に記載されるLED発光装置は、一対の電極対から2列のLED列に一括して電流を供給すると共に、一方のLED列に低電圧時のみに電流を流すように電流を制御することで、白熱電極の調光時の発光色の変化を実現できる。 In International Publication No. 2016/03934, a pair of electrode pairs, two rows of LED rows to which current is supplied from the pair of electrode pairs, and one LED row of the two rows of LED rows are current only at low voltage. An LED light emitting device having a current control circuit that controls a current so as to flow a current is described. The LED light emitting device described in International Publication No. 2016/03934 is to supply a current from a pair of electrode pairs to two rows of LED rows at once, and to pass a current to one of the LED rows only at a low voltage. By controlling the current, it is possible to change the light emission color of the incandescent electrode during dimming.
 しかしながら、国際公開第2016/039344号に記載される発光装置では、印加される電圧が高くなると、2列のLED列の一方に電流が流れなくなり、2列のLED列の双方に含まれるLEDから出射される光を混合した光が出射されない。 However, in the light emitting device described in International Publication No. 2016/03934, when the applied voltage becomes high, current does not flow in one of the two rows of LED rows, and the LEDs included in both of the two rows of LED rows The light mixed with the emitted light is not emitted.
 本開示は、このような課題を解決するものであり、一対の電極対から複数の発光素子列に供給される電流の電流値を所定の比率に設定可能な発光装置を提供することを目的とする。 The present disclosure has been made to solve such a problem, and an object of the present invention is to provide a light emitting device capable of setting a current value of a current supplied from a pair of electrode pairs to a plurality of light emitting element trains to a predetermined ratio. do.
 本開示に係る発光装置は、一対の電極対と、一対の電極対から電流が供給されたときに、光を出射する第1発光素子群と、第1発光素子群に並列接続され、一対の電極対から電流が供給されたときに、光を出射する第2発光素子群と、第1発光素子群に流れる第1電流の電流値と第2発光素子群に流れる第2電流の電流値が所定の比率となるように、第1電流及び第2電流の電流値の一方を制御するために使用される基準電圧を生成する基準電圧生成回路と、基準電圧に基づいて、第1電流及び第2電流の一方を制御し、第1電流及び第2電流の他方を制御しない電流制御回路とを有する。 The light emitting device according to the present disclosure is connected in parallel to a pair of electrode pairs, a first light emitting element group that emits light when a current is supplied from the pair of electrode pairs, and a pair of light emitting element groups. When a current is supplied from the electrode pair, the current value of the second light emitting element group that emits light, the current value of the first current flowing through the first light emitting element group, and the current value of the second current flowing through the second light emitting element group are A reference voltage generation circuit that generates a reference voltage used to control one of the current values of the first current and the second current so as to have a predetermined ratio, and a first current and a first current based on the reference voltage. It has a current control circuit that controls one of the two currents and does not control the other of the first current and the second current.
 さらに、本開示に係る発光装置では、基準電圧は、第2電流の電流値を制御するために使用される第2基準電圧を含み、電流制御回路は、第2基準電圧に基づいて、第2電流の電流値が第1電流の電流値に対して所定の比率となるように、第2電流を制御する第2電流制御回路を含むことが好ましい。 Further, in the light emitting device according to the present disclosure, the reference voltage includes a second reference voltage used for controlling the current value of the second current, and the current control circuit has a second reference voltage based on the second reference voltage. It is preferable to include a second current control circuit that controls the second current so that the current value of the current becomes a predetermined ratio with respect to the current value of the first current.
 さらに、本開示に係る発光装置では、第1発光素子群は、第1の色の光を出射し、第2発光素子群は、第1の色と異なる第2の色の光を出射することが好ましい。 Further, in the light emitting device according to the present disclosure, the first light emitting element group emits light of the first color, and the second light emitting element group emits light of a second color different from the first color. Is preferable.
 さらに、本開示に係る発光装置は、第1発光素子群及び第2発光素子群に並列接続され、一対の電極対から電流が供給されたときに、第1の色及び第2の色の何れとも異なる第3の色の光を出射する第3発光素子群と、第3発光素子群に流れる第3電流の電流値が第1電流の電流値に対して所定の比率となるように、第3電流を制御する第3電流制御回路と、を更に有し、基準電圧は、第3電流の電流値を制御するために使用される第3基準電圧を更に含むことが好ましい。 Further, the light emitting device according to the present disclosure is connected in parallel to the first light emitting element group and the second light emitting element group, and when a current is supplied from the pair of electrode pairs, either the first color or the second color is supplied. The third light emitting element group that emits light of a third color different from the above and the current value of the third current flowing through the third light emitting element group are in a predetermined ratio with respect to the current value of the first current. It is preferable to further include a third current control circuit for controlling the three currents, and the reference voltage further includes a third reference voltage used for controlling the current value of the third current.
 さらに、本開示に係る発光装置では、基準電圧生成回路は、第1発光素子群に直列接続された第2抵抗対を有し、第2抵抗対により分圧された分圧電圧を第2基準電圧として第2電流制御回路に出力することが好ましい。 Further, in the light emitting device according to the present disclosure, the reference voltage generation circuit has a second resistance pair connected in series with the first light emitting element group, and the voltage divided voltage divided by the second resistance pair is used as the second reference. It is preferable to output the voltage to the second current control circuit.
 さらに、本開示に係る発光装置では、第2抵抗対に含まれる一方の抵抗は、可変抵抗であることが好ましい。 Further, in the light emitting device according to the present disclosure, it is preferable that one of the resistors included in the second resistor pair is a variable resistor.
 さらに、本開示に係る発光装置では、第2電流制御回路は、第2発光素子群の最終段の発光素子に一端が接続された第2スイッチと、第2スイッチの他端に一端が接続された第2検出抵抗と、入力される第2基準電圧と、第2検出抵抗に印加される第2検出電圧とを比較して、第2基準電圧が第2検出電圧と一致するように、第2スイッチを制御する第2コンパレータとを有することが好ましい。 Further, in the light emitting device according to the present disclosure, the second current control circuit has a second switch having one end connected to the light emitting element at the final stage of the second light emitting element group and one end connected to the other end of the second switch. The second detection resistor, the input second reference voltage, and the second detection voltage applied to the second detection resistor are compared so that the second reference voltage matches the second detection voltage. It is preferable to have a second comparator that controls two switches.
 さらに、本開示に係る発光装置では、基準電圧生成回路は、第2抵抗対に並列接続された第3抵抗対を更に有し、第3抵抗対により分圧された分圧電圧を第3基準電圧として第3電流制御回路に出力することが好ましい。 Further, in the light emitting device according to the present disclosure, the reference voltage generation circuit further has a third resistance pair connected in parallel to the second resistance pair, and the voltage divided voltage divided by the third resistance pair is used as the third reference. It is preferable to output the voltage to the third current control circuit.
 さらに、本開示に係る発光装置では、第3抵抗対に含まれる一方の抵抗は、可変抵抗であることが好ましい。 Further, in the light emitting device according to the present disclosure, it is preferable that one of the resistors included in the third resistor pair is a variable resistor.
 さらに、本開示に係る発光装置は、第1発光素子群、第2発光素子群及び第3発光素子群に並列接続され、一対の電極対から電流が供給されたときに、第1の色、第2の色及び第3の色の何れとも異なる第4の色の光を出射する第4発光素子群と、第4発光素子群に流れる第4電流の電流値が第1電流の電流値に対して所定の比率となるように、第3電流を制御する第4電流制御回路とを更に有し、基準電圧は、第4電流の電流値を制御するために使用される第4基準電圧を更に含み、第1の色の光は、白色であることが好ましい。 Further, the light emitting device according to the present disclosure is connected in parallel to the first light emitting element group, the second light emitting element group, and the third light emitting element group, and when a current is supplied from the pair of electrode pairs, the first color, The current value of the fourth light emitting element group that emits light of a fourth color different from both the second color and the third color and the fourth current flowing through the fourth light emitting element group becomes the current value of the first current. It also has a fourth current control circuit that controls the third current so that it has a predetermined ratio to the current, and the reference voltage is the fourth reference voltage used to control the current value of the fourth current. Further included, the light of the first color is preferably white.
 さらに、本開示に係る発光装置では、基準電圧生成回路は、第1電流の電流値が第2電流の電流値に対して所定の比率となるように、第1電流を制御可能な第1電流制御回路と、第2電流の電流値が第1電流の電流値に対して所定の比率となるように、第2電流を制御可能な第2電流制御回路と、を含み、基準電圧生成回路は、第1電流及び第2電流の一方の電流値が、第1電流及び第2電流の他方の電流値に対して所定の比率となるように、基準電圧を生成することが好ましい。 Further, in the light emitting device according to the present disclosure, the reference voltage generation circuit is a first current capable of controlling the first current so that the current value of the first current becomes a predetermined ratio with respect to the current value of the second current. The reference voltage generation circuit includes a control circuit and a second current control circuit capable of controlling the second current so that the current value of the second current becomes a predetermined ratio with respect to the current value of the first current. , It is preferable to generate a reference voltage so that one of the current values of the first current and the second current has a predetermined ratio with respect to the other current values of the first current and the second current.
 さらに、本開示に係る発光装置では、第1発光素子群は、第1の色の光を出射し、第2発光素子群は、第1の色と異なる第2の色の光を出射することが好ましい。 Further, in the light emitting device according to the present disclosure, the first light emitting element group emits light of the first color, and the second light emitting element group emits light of a second color different from the first color. Is preferable.
 さらに、本開示に係る発光装置では、電流値が制御される第1発光素子群及び第2発光素子群の一方の順電圧は、電流値が制御されない第1発光素子群及び第2発光素子群の他方の順電圧よりも低く、基準電圧生成回路は、第1電流及び第2電流の電流値が所望の値になるように、基準電圧を生成することが好ましい。 Further, in the light emitting device according to the present disclosure, the forward voltage of one of the first light emitting element group and the second light emitting element group whose current value is controlled is the first light emitting element group and the second light emitting element group whose current value is not controlled. It is preferable that the reference voltage generation circuit generates a reference voltage so that the current values of the first current and the second current become desired values, which are lower than the other forward voltage of the above.
 また、本開示に係る発光装置は、一対の電極対と、並列接続され、一対の電極対から電流が供給されたときに、それぞれが光を出射する複数の発光素子群と、複数の発光素子群のそれぞれにコレクタ及びエミッタの何れか一方が接続された複数のトランジスタと、複数のトランジスタのそれぞれのベースとコレクタとの間を短絡又は解放する切換素子とを有する。 Further, the light emitting device according to the present disclosure includes a plurality of light emitting element groups and a plurality of light emitting elements, each of which is connected in parallel to a pair of electrode pairs and emits light when a current is supplied from the pair of electrode pairs. Each of the groups has a plurality of transistors to which either a collector or an emitter is connected, and a switching element for short-circuiting or releasing between the base and the collector of each of the plurality of transistors.
 さらに、本開示に係る発光装置では、複数のトランジスタの何れか1つは切換素子を介してベースとコレクタとの間が短絡され、複数のトランジスタの他のトランジスタは切換素子を介してベースとコレクタとの間が開放されることが好ましい。 Further, in the light emitting device according to the present disclosure, any one of the plurality of transistors is short-circuited between the base and the collector via the switching element, and the other transistors of the plurality of transistors are short-circuited between the base and the collector via the switching element. It is preferable that the space between the two is opened.
 さらに、本開示に係る発光装置では、切換素子を介してベースとコレクタとの間が短絡されたトランジスタに直列接続された発光素子群の順電圧は、ベースとコレクタとの間が開放されたトランジスタに直列接続された発光素子群の順電圧よりも高いことが好ましい。 Further, in the light emitting device according to the present disclosure, the forward voltage of the light emitting element group connected in series to the transistor in which the base and the collector are short-circuited via the switching element is the transistor in which the space between the base and the collector is opened. It is preferable that the voltage is higher than the forward voltage of the light emitting element group connected in series with.
 さらに、本開示に係る発光装置では、基準電圧生成回路は、第1発光素子群に直列接続され第2抵抗対、及び第2抵抗対に並列接続された第3抵抗対を有し、第2抵抗対及び第3抵抗対のそれぞれの一方の抵抗は、第2抵抗対の他方に接続される第1接点、第3抵抗対の他方に接続される第2接点、第1接点と第2接点との間に配置される抵抗体、抵抗体の任意の場所に接続可能な可動接点、及び可動接点に接続される第3接点により一体化されることが好ましい。 Further, in the light emitting device according to the present disclosure, the reference voltage generation circuit has a second resistance pair connected in series with the first light emitting element group and a third resistance pair connected in parallel with the second resistance pair, and has a second resistance pair. Each resistor of the resistance pair and the third resistance pair has a first contact connected to the other of the second resistance pair, a second contact connected to the other of the third resistance pair, and a first contact and a second contact. It is preferable that the resistor is integrated with a resistor arranged between the resistor, a movable contact that can be connected to an arbitrary position of the resistor, and a third contact that is connected to the movable contact.
 本開示に係る照明装置は、内歯車が形成される操作部材と、円柱状の軸部、軸部の一端に配置され、内歯車に螺合される第1歯車、及び軸部の一端に配置される第2歯車を有する回転部材と、第2歯車に螺合される第3歯車を有し、第3歯車が回転することに応じて、第2発光素子群に流れる電流の比率と、第3発光素子群に流れる電流の比率とを調整する電流調整部と、上記の発光装置とを有し、第1方向に操作部材が回転されることに応じて第3歯車が回転すると、可動接点は、第1分圧抵抗が減少し且つ第3分圧抵抗が増加するように移動し、第1方向に反対の第2方向に操作部材が回転されることに応じて第3歯車が回転すると、可動接点は、第1分圧抵抗が増加し且つ第3分圧抵抗が減少するように移動する。 The lighting device according to the present disclosure is arranged at an operating member on which an internal gear is formed, a cylindrical shaft portion, a first gear that is arranged at one end of the shaft portion and screwed into the internal gear, and one end of the shaft portion. The ratio of the current flowing through the second light emitting element group according to the rotation of the third gear having the rotating member having the second gear and the third gear screwed into the second gear, and the second It has a current adjusting unit that adjusts the ratio of the current flowing through the three light emitting element groups, and the above light emitting device. When the third gear rotates in response to the rotation of the operating member in the first direction, the movable contact Moves so that the first voltage dividing resistance decreases and the third voltage dividing resistance increases, and when the third gear rotates in response to the operation member being rotated in the second direction opposite to the first direction. The movable contact moves so that the first voltage dividing resistance increases and the third voltage dividing resistance decreases.
 本開示に係る発光装置は、一対の電極対から複数の発光素子列に供給される電流の電流値を所定の比率に設定することができる。 In the light emitting device according to the present disclosure, the current value of the current supplied from a pair of electrode pairs to a plurality of light emitting element trains can be set to a predetermined ratio.
第1実施形態に係る発光装置を搭載する照明装置の斜視図である。It is a perspective view of the lighting apparatus which mounts the light emitting device which concerns on 1st Embodiment. 図1に示す照明装置の分解斜視図である。It is an exploded perspective view of the lighting apparatus shown in FIG. 第1実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 1st Embodiment. 第2実施形態に係る発光装置を搭載する照明装置の斜視図である。It is a perspective view of the lighting apparatus which mounts the light emitting device which concerns on 2nd Embodiment. 図4に示す照明装置が有する発光装置、拡散部材及び電流調整部の透視斜視図である。FIG. 5 is a perspective perspective view of a light emitting device, a diffusion member, and a current adjusting unit included in the lighting device shown in FIG. 第2実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 2nd Embodiment. 図6に示す第1分圧抵抗及び第3分圧抵抗を示す図である。It is a figure which shows the 1st voltage dividing resistor and the 3rd voltage dividing resistor shown in FIG. 図6に示す第1分圧抵抗及び第3分圧抵抗の抵抗比率を変化させたときの第1電流、第2電流及び第3電流のそれぞれの電流比率の変化を示す図である。It is a figure which shows the change of each current ratio of the 1st current, the 2nd current and the 3rd current when the resistance ratio of the 1st voltage dividing resistor and the 3rd voltage dividing resistor shown in FIG. 6 is changed. 図6に示す発光装置から出射される光の光学特性を示す色度図である。It is a chromaticity diagram which shows the optical characteristic of the light emitted from the light emitting device shown in FIG. 第3実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 3rd Embodiment. 図10に示す第1分圧抵抗及び第3分圧抵抗を示す図である。It is a figure which shows the 1st voltage dividing resistor and the 3rd voltage dividing resistor shown in FIG. 図10に示す発光装置から出射される光の光学特性を示す色度図である。It is a chromaticity diagram which shows the optical characteristic of the light emitted from the light emitting device shown in FIG. 第4実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 4th Embodiment. 第1基準電圧、第2基準電圧及び第3基準電圧を変化させたときに、図7に示す発光装置が出射する光の色度の変化を示す色度図である。FIG. 5 is a chromaticity diagram showing a change in the chromaticity of the light emitted by the light emitting device shown in FIG. 7 when the first reference voltage, the second reference voltage, and the third reference voltage are changed. 第5実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 5th Embodiment. 図15に示す発光装置から出射される光の光学特性を示す色度図である。It is a chromaticity diagram which shows the optical characteristic of the light emitted from the light emitting device shown in FIG. 第6実施形態に係る発光装置の回路ブロック図である。It is a circuit block diagram of the light emitting device which concerns on 6th Embodiment. (a)は従来の発光装置の発光状態の一例を示す図であり、(b)は発光装置6の発光状態の一例を示す図である。(A) is a diagram showing an example of a light emitting state of a conventional light emitting device, and (b) is a diagram showing an example of a light emitting state of the light emitting device 6.
 以下、図面を参照して、本開示に係る発光装置について説明する。ただし、本開示の技術的範囲はそれらの実施の形態には限定されず、請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。 Hereinafter, the light emitting device according to the present disclosure will be described with reference to the drawings. However, it should be noted that the technical scope of the present disclosure is not limited to those embodiments and extends to the inventions described in the claims and their equivalents.
 (第1実施形態に係る発光装置を搭載する照明装置の構成及び機能)
 図1は第1実施形態に係る発光装置を搭載する照明装置の斜視図であり、図2は図1に示す照明装置の分解斜視図である。
(Structure and function of a lighting device equipped with a light emitting device according to the first embodiment)
FIG. 1 is a perspective view of a lighting device equipped with a light emitting device according to the first embodiment, and FIG. 2 is an exploded perspective view of the lighting device shown in FIG.
 第1実施形態に係る照明装置110は、第1筐体111と、第2筐体112と、コネクタ113と、放熱シート114と、発光装置1と、第1反射部材115と、拡散部材116と、封止部材117と、第2反射部材118とを有するダウンライトである。 The lighting device 110 according to the first embodiment includes a first housing 111, a second housing 112, a connector 113, a heat radiating sheet 114, a light emitting device 1, a first reflective member 115, and a diffusion member 116. , A downlight having a sealing member 117 and a second reflective member 118.
 第1筐体111は、アルミニウム等の熱伝導率が高い金属を絞り加工することにより形成され、第2筐体112、放熱シート114、発光装置1及び第1反射部材115を収容する。第2筐体112は、ポリブチレンテレフタレート等の絶縁性樹脂材料によって形成される。第2筐体112は、第1筐体111の内壁に沿って配置され、発光装置1に実装される電子部品と第1筐体111との間の絶縁特性を向上させる。なお、第2筐体112は、第1筐体111が発光装置1を支持する支持部に対応する部分に、放熱シート114が挿入可能な孔が形成される。コネクタ113は、外部電源に接続可能な一対の電源端子を有し、発光装置1に実装される電子部品に電力を供給する。 The first housing 111 is formed by drawing a metal having high thermal conductivity such as aluminum, and houses the second housing 112, the heat radiating sheet 114, the light emitting device 1, and the first reflecting member 115. The second housing 112 is formed of an insulating resin material such as polybutylene terephthalate. The second housing 112 is arranged along the inner wall of the first housing 111 to improve the insulating characteristics between the electronic component mounted on the light emitting device 1 and the first housing 111. In the second housing 112, a hole into which the heat radiating sheet 114 can be inserted is formed in a portion corresponding to the support portion where the first housing 111 supports the light emitting device 1. The connector 113 has a pair of power supply terminals that can be connected to an external power source, and supplies electric power to electronic components mounted on the light emitting device 1.
 放熱シート114は、シリコン樹脂等の熱伝導率が高い合成樹脂材料で形成される放熱材料である。放熱シート114は、第1筐体111と発光装置1との間に配置され、発光装置1が光を出射する間に発生する熱を第1筐体111に放出する。発光装置1は、LED等の発光素子と電子部材が実装され、コネクタ113を介して電源電圧が供給されることに応じて光を出射する。発光装置1は、発光装置1に実装される発光素子に電力を供給する電源供給回路を形成する電子部品が実装される。 The heat radiating sheet 114 is a heat radiating material formed of a synthetic resin material having high thermal conductivity such as silicon resin. The heat radiating sheet 114 is arranged between the first housing 111 and the light emitting device 1, and releases heat generated while the light emitting device 1 emits light to the first housing 111. The light emitting device 1 is equipped with a light emitting element such as an LED and an electronic member, and emits light in response to supply of a power supply voltage via the connector 113. The light emitting device 1 is equipped with an electronic component that forms a power supply circuit that supplies electric power to a light emitting element mounted on the light emitting device 1.
 第1反射部材115は、ポリカーボネート樹脂等の反射率が高い合成樹脂材料で形成される底部に開口部を有する逆円錐状の部材であり、外縁が第1筐体111及び第2筐体112に支持され、発光装置1を覆うように配置される。第1反射部材115の内壁は、発光装置1から出射された光を反射する反射面である。拡散部材116は、ポリカーボネート等の合成樹脂材料で形成される円弧状の部材であり、外縁が第1反射部材115に支持される。拡散部材116は、表面及び裏面の少なくとも一方がシボ加工された拡散面を有し、第1反射部材115を介して発光装置1から入射される光を拡散して出射する。封止部材117は、パッキンとも称され、ニトリルゴム等の合成ゴム材料で形成されたリング状の部材であり、拡散部材116と、第2反射部材118との間に配置される。第2反射部材118は、アルミニウム等の高反射部材で形成されたすり鉢状の部材であり、封止部材117を介して拡散部材116に支持されると共に、外縁が第1筐体111に支持される。第2反射部材118の内壁57は、発光装置1から出射された光を反射する反射面である。 The first reflective member 115 is an inverted conical member having an opening at the bottom, which is made of a synthetic resin material having high reflectance such as polycarbonate resin, and has outer edges on the first housing 111 and the second housing 112. It is supported and arranged so as to cover the light emitting device 1. The inner wall of the first reflecting member 115 is a reflecting surface that reflects the light emitted from the light emitting device 1. The diffusion member 116 is an arc-shaped member formed of a synthetic resin material such as polycarbonate, and its outer edge is supported by the first reflection member 115. The diffusion member 116 has a diffusion surface on which at least one of the front surface and the back surface is textured, and diffuses and emits the light incident from the light emitting device 1 through the first reflection member 115. The sealing member 117, also referred to as packing, is a ring-shaped member formed of a synthetic rubber material such as nitrile rubber, and is arranged between the diffusion member 116 and the second reflective member 118. The second reflective member 118 is a mortar-shaped member formed of a highly reflective member such as aluminum, and is supported by the diffusion member 116 via the sealing member 117 and the outer edge is supported by the first housing 111. NS. The inner wall 57 of the second reflecting member 118 is a reflecting surface that reflects the light emitted from the light emitting device 1.
 (第1実施形態に係る発光装置の構成および機能)
 図3は、第1実施形態に係る発光装置の回路ブロック図である。図3に示す第1実施形態に係る発光装置の構成要素は、図2に示す単一の回路基板1aに実装される。
(Configuration and function of light emitting device according to the first embodiment)
FIG. 3 is a circuit block diagram of the light emitting device according to the first embodiment. The components of the light emitting device according to the first embodiment shown in FIG. 3 are mounted on the single circuit board 1a shown in FIG.
 発光装置1は、電源供給回路10と、第1発光素子群11と、第2発光素子群12と、第3発光素子群13と、基準電圧生成回路20と、第2電流制御回路30と、第3電流制御回路35と、第1電極101と、第2電極102とを有する。 The light emitting device 1 includes a power supply circuit 10, a first light emitting element group 11, a second light emitting element group 12, a third light emitting element group 13, a reference voltage generation circuit 20, a second current control circuit 30, and the like. It has a third current control circuit 35, a first electrode 101, and a second electrode 102.
 電源供給回路10は、供給抵抗103と、供給ツェナーダイオード104と、供給トランジスタ105と、供給コンデンサ106を有し、第2電流制御回路30及び第3電流制御回路35が有するオペアンプ33及び38の電源電圧Vddを生成する。 The power supply circuit 10 includes a supply resistor 103, a supply Zener diode 104, a supply transistor 105, and a supply capacitor 106, and power supplies for operational amplifiers 33 and 38 included in the second current control circuit 30 and the third current control circuit 35. Generate a voltage Vdd.
 供給抵抗103の一端は第1電極101に接続され、供給抵抗103の他端は供給ツェナーダイオード104のカソード及び供給トランジスタ105のベースに接続される。供給ツェナーダイオード104のアノードは第2電極102に接続される。供給トランジスタ105のコレクタは第1電極に接続され、供給トランジスタ105のエミッタは供給コンデンサ106の一端に接続される。供給コンデンサ106の他端は第2電極102に接続される。 One end of the supply resistor 103 is connected to the first electrode 101, and the other end of the supply resistor 103 is connected to the cathode of the supply Zener diode 104 and the base of the supply transistor 105. The anode of the supply Zener diode 104 is connected to the second electrode 102. The collector of the supply transistor 105 is connected to the first electrode, and the emitter of the supply transistor 105 is connected to one end of the supply capacitor 106. The other end of the supply capacitor 106 is connected to the second electrode 102.
 電源供給回路10は、供給コンデンサ106を充電することにより、所定の電圧値を有する電源電圧Vddを第2電流制御回路30及び第3電流制御回路35が有するオペアンプ33及び38に供給する。 The power supply circuit 10 supplies the power supply voltage Vdd having a predetermined voltage value to the operational amplifiers 33 and 38 of the second current control circuit 30 and the third current control circuit 35 by charging the supply capacitor 106.
 第1発光素子群11は、直列接続された6個の第1発光素子14により形成された3つの第1発光素子列15を含む。複数の第1発光素子14のそれぞれは、例えば緑色である第1の色の光を出射するLEDダイである。第1発光素子列15に含まれる第1発光素子14の数は、1又は2以上でもよく、第1発光素子列15の数は1、2又は4以上であってもよい。また、第1発光素子14は、青色の光を出射するLEDダイと、LEDダイが出射した青色の光を緑色に変換するYAG(Yttrium Aluminum Garnet)等の蛍光体等の光変換材が含有され、且つ、LEDダイを封止する封止材とを有する発光素子であってもよい。 The first light emitting element group 11 includes three first light emitting element rows 15 formed by six first light emitting elements 14 connected in series. Each of the plurality of first light emitting elements 14 is an LED die that emits light of a first color, for example, green. The number of the first light emitting elements 14 included in the first light emitting element row 15 may be 1 or 2 or more, and the number of the first light emitting element rows 15 may be 1, 2 or 4 or more. Further, the first light emitting element 14 contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG (Yttrium Aluminum Garnet) that converts the blue light emitted by the LED die into green. Moreover, it may be a light emitting element having a sealing material for sealing the LED die.
 第2発光素子群12は、直列接続された4個の第2発光素子16により形成された3つの第2発光素子列17を含む。複数の第2発光素子16のそれぞれは、第1の色である緑色と異なる第2の色、例えば青色の光を出射するLEDダイである。第2発光素子列17に含まれる第2発光素子16の数は、第1発光素子列15に含まれる直列接続された第1発光素子14の数よりも少なければ、1又は2以上でもよく、第2発光素子列17の数は1、2又は4以上であってもよい。 The second light emitting element group 12 includes three second light emitting element rows 17 formed by four second light emitting elements 16 connected in series. Each of the plurality of second light emitting elements 16 is an LED die that emits light of a second color, for example, blue, which is different from the first color of green. The number of the second light emitting elements 16 included in the second light emitting element row 17 may be 1 or 2 or more as long as it is smaller than the number of the first light emitting elements 14 connected in series in the first light emitting element row 15. The number of the second light emitting element rows 17 may be 1, 2, or 4 or more.
 第3発光素子群13は、直列接続された4個の第3発光素子18により形成された3つの第3発光素子列19を含む。複数の第3発光素子18のそれぞれは、第1の色である緑色及び第2の色である青色の双方と異なる第3の色、例えば赤色の光を出射するLEDダイである。第3発光素子列19に含まれる第3発光素子18の数は、第1発光素子列15に含まれる直列接続された第1発光素子14の数よりも少なければ、1又は2以上でもよく、第3発光素子列19の数は1、2又は4以上であってもよい。また、第3発光素子18は、青色の光を出射するLEDダイと、LEDダイが出射した青色の光を赤色に変換する蛍光体等のCASN等の光変換材が含有され、且つ、LEDダイを封止する封止材とを有する発光素子であってもよい。 The third light emitting element group 13 includes three third light emitting element rows 19 formed by four third light emitting elements 18 connected in series. Each of the plurality of third light emitting elements 18 is an LED die that emits a third color different from both the first color green and the second color blue, for example, red light. The number of the third light emitting elements 18 included in the third light emitting element row 19 may be 1 or 2 or more as long as it is smaller than the number of the first light emitting elements 14 connected in series in the first light emitting element row 15. The number of the third light emitting element rows 19 may be 1, 2, or 4 or more. Further, the third light emitting element 18 contains an LED die that emits blue light and a light conversion material such as CASN such as a phosphor that converts the blue light emitted by the LED die into red, and the LED die. It may be a light emitting element having a sealing material for sealing.
 基準電圧生成回路20は、第1検出抵抗21と、第2抵抗対22と、第3抵抗対23とを有する分圧回路である。基準電圧生成回路20は、第2発光素子群12に流れる第2電流I2及び第3発光素子群13に流れる第3電流I3の電流値を制御するために使用される第2基準電圧V2及び第3基準電圧V3を生成する。第2電流I2及び第3電流I3は、電流値が第1発光素子群11に流れる第1電流I1の電流値に対して、抵抗21と抵抗32と抵抗37の大きさが等しい場合には、第1電流I1よりも小さい所定の比率となるように、制御される。第1検出抵抗21は、数Ω程度の抵抗値を有する抵抗素子であり、一端が第1発光素子群11に接続され、他端が接地される。第1検出抵抗21は、両端に印加される電圧を第1基準電圧V1として検出する。 The reference voltage generation circuit 20 is a voltage divider circuit having a first detection resistor 21, a second resistor pair 22, and a third resistor pair 23. The reference voltage generation circuit 20 uses the second reference voltage V used to control the current values of the second current I 2 flowing through the second light emitting element group 12 and the third current I 3 flowing through the third light emitting element group 13. generating a second and a third reference voltage V 3. The second current I 2 and the third current I 3 are cases where the magnitudes of the resistor 21, the resistor 32, and the resistor 37 are equal to the current value of the first current I 1 whose current value flows through the first light emitting element group 11. Is controlled so as to have a predetermined ratio smaller than the first current I 1. The first detection resistor 21 is a resistance element having a resistance value of about several Ω, one end of which is connected to the first light emitting element group 11, and the other end of which is grounded. The first detection resistor 21 detects the voltage applied to both ends as the first reference voltage V 1 .
 第2抵抗対22は、第1分圧抵抗24と、第2分圧抵抗25とを有し、第1検出抵抗21に並列接続される。第1分圧抵抗24の一端は第1検出抵抗21の一端と共に第1発光素子群11に接続され、第1分圧抵抗24の他端は第2分圧抵抗25の一端に接続される。第2分圧抵抗25の他端は、第1検出抵抗21の他端と共に接地される。第1分圧抵抗24及び第2分圧抵抗25のそれぞれの抵抗値は、数kΩ程度であり、第1検出抵抗21の抵抗値よりも大きい。 The second resistance pair 22 has a first voltage dividing resistor 24 and a second voltage dividing resistor 25, and is connected in parallel to the first detection resistor 21. One end of the first voltage dividing resistor 24 is connected to the first light emitting element group 11 together with one end of the first detection resistor 21, and the other end of the first voltage dividing resistor 24 is connected to one end of the second voltage dividing resistor 25. The other end of the second voltage dividing resistor 25 is grounded together with the other end of the first detection resistor 21. The resistance value of each of the first voltage dividing resistor 24 and the second voltage dividing resistor 25 is about several kΩ, which is larger than the resistance value of the first detection resistor 21.
 第3抵抗対23は、第3分圧抵抗26と、第4分圧抵抗27とを有し、第1検出抵抗21及び第2抵抗対22に並列接続される。第3分圧抵抗26の一端は第1検出抵抗21及び第1分圧抵抗24の一端と共に第1発光素子群11に接続され、第3分圧抵抗26の他端は第4分圧抵抗27の一端に接続される。第4分圧抵抗27の他端は、第1検出抵抗21及び第2分圧抵抗25の他端と共に接地される。第3分圧抵抗26及び第4分圧抵抗27のそれぞれの抵抗値は、数kΩ程度であり、第1分圧抵抗24及び第2分圧抵抗25と同様に第1検出抵抗21の抵抗値よりも大きい。 The third resistor pair 23 has a third voltage dividing resistor 26 and a fourth voltage dividing resistor 27, and is connected in parallel to the first detection resistor 21 and the second resistor pair 22. One end of the third voltage dividing resistor 26 is connected to the first light emitting element group 11 together with one end of the first detection resistor 21 and the first voltage dividing resistor 24, and the other end of the third voltage dividing resistor 26 is connected to the fourth voltage dividing resistor 27. Connected to one end of. The other end of the fourth voltage dividing resistor 27 is grounded together with the other ends of the first detection resistor 21 and the second voltage dividing resistor 25. The resistance value of each of the third voltage dividing resistor 26 and the fourth voltage dividing resistor 27 is about several kΩ, and the resistance value of the first detected resistor 21 is the same as that of the first voltage dividing resistor 24 and the second voltage dividing resistor 25. Greater than.
 基準電圧生成回路20は、第1分圧抵抗24と第2分圧抵抗25との接続部の電圧を、第2抵抗対22により分圧された分圧電圧である第2基準電圧V2として第2電流制御回路30に出力する。また、基準電圧生成回路20は、第3分圧抵抗26と第4分圧抵抗27との接続部の電圧を、第3抵抗対23により分圧された分圧電圧である第3基準電圧V3として第3電流制御回路35に出力する。 In the reference voltage generation circuit 20, the voltage at the connection portion between the first voltage dividing resistor 24 and the second voltage dividing resistor 25 is set as the second reference voltage V 2 which is the voltage divided voltage divided by the second resistance pair 22. Output to the second current control circuit 30. Further, the reference voltage generation circuit 20 is a third reference voltage V, which is a voltage dividing voltage obtained by dividing the voltage at the connection portion between the third voltage dividing resistor 26 and the fourth voltage dividing resistor 27 by the third resistance pair 23. It is output to the third current control circuit 35 as 3.
 第2電流制御回路30は、第2スイッチ31と、第2検出抵抗32と、第2コンパレータ33とを有する。第2スイッチ31は、nMOSFETであり、一端であるドレインが第2発光素子群12に接続され、他端であるソースが第2検出抵抗32の一端に接続され、制御端子であるゲートが第2コンパレータ33の出力端子に接続される。第2検出抵抗32の他端は、接地される。第2コンパレータ33の第1入力端子は、第1分圧抵抗24の他端及び第2分圧抵抗25の一端に接続され、第2基準電圧V2が入力される。第2コンパレータ33の第2入力端子は、第2検出抵抗32の一端に接続され、第2検出抵抗32の両端の電圧である第2検出電圧VD2が入力される。第2コンパレータ33は、入力される第2基準電圧V2と、第2検出抵抗32に印加される第2検出電圧VD2とを比較して、第2基準電圧V2が第2検出電圧VD2と一致するように、第2スイッチ31を制御する。 The second current control circuit 30 includes a second switch 31, a second detection resistor 32, and a second comparator 33. The second switch 31 is an nMOSFET, the drain at one end is connected to the second light emitting element group 12, the source at the other end is connected to one end of the second detection resistor 32, and the gate as the control terminal is the second. It is connected to the output terminal of the comparator 33. The other end of the second detection resistor 32 is grounded. The first input terminal of the second comparator 33 is connected to the other end of the first voltage dividing resistor 24 and one end of the second voltage dividing resistor 25, and the second reference voltage V 2 is input. The second input terminal of the second comparator 33 is connected to one end of the second detection resistor 32, and the second detection voltage V D2, which is the voltage across the second detection resistor 32, is input. The second comparator 33 compares the input second reference voltage V 2 with the second detection voltage V D 2 applied to the second detection resistor 32, and the second reference voltage V 2 is the second detection voltage V. The second switch 31 is controlled so as to match D2.
 第3電流制御回路35は、第3スイッチ36と、第3検出抵抗37と、第3コンパレータ38とを有する。第3スイッチ36は、nMOSFETであり、一端であるドレインが第3発光素子群13に接続され、他端であるソースが第3検出抵抗37の一端に接続され、制御端子であるゲートが第3コンパレータ38の出力端子に接続される。第3検出抵抗37の他端は、接地される。第3コンパレータ38の第1入力端子は、第3分圧抵抗26の他端及び第4分圧抵抗27の一端に接続され、第3基準電圧V3が入力される。第3コンパレータ38の第2入力端子は、第3検出抵抗37の一端に接続され、第3検出抵抗37の両端の電圧である第3検出電圧VD3が入力される。第3コンパレータ38は、入力される第3基準電圧V3と、第3検出抵抗37に印加される第3検出電圧VD3とを比較して、第3基準電圧V3が第3検出電圧VD3と一致するように、第3スイッチ36を制御する。 The third current control circuit 35 includes a third switch 36, a third detection resistor 37, and a third comparator 38. The third switch 36 is an nMOSFET, the drain at one end is connected to the third light emitting element group 13, the source at the other end is connected to one end of the third detection resistor 37, and the gate as the control terminal is the third. It is connected to the output terminal of the comparator 38. The other end of the third detection resistor 37 is grounded. The first input terminal of the third comparator 38 is connected to the other end of the third voltage dividing resistor 26 and one end of the fourth voltage dividing resistor 27, and the third reference voltage V 3 is input. The second input terminal of the third comparator 38 is connected to one end of the third detection resistor 37, and the third detection voltage V D3, which is the voltage across the third detection resistor 37, is input. The third comparator 38 compares the input third reference voltage V 3 with the third detection voltage V D 3 applied to the third detection resistor 37, and the third reference voltage V 3 is the third detection voltage V. The third switch 36 is controlled so as to match D3.
 第1電極101及び第2電極102のそれぞれは、電流源100に接続され、電流源100から供給される電流を第1発光素子群11、第2発光素子群12及び第3発光素子群13のそれぞれに供給する。電流源100は、第1電極101に供給する電流を変更可能な可変定電流電源である。 Each of the first electrode 101 and the second electrode 102 is connected to the current source 100, and the current supplied from the current source 100 is applied to the first light emitting element group 11, the second light emitting element group 12, and the third light emitting element group 13. Supply to each. The current source 100 is a variable constant current power supply capable of changing the current supplied to the first electrode 101.
 発光装置1は、第2発光素子群12に流れる第2電流I2及び第3発光素子群13に流れる第3電流I3の電流値が第1発光素子群11に流れる第1電流I1の電流値に対して所定の比率となるように、第2電流I2及び第3電流I3を制御する。第2電流制御回路30及び第3電流制御回路35は、第2基準電圧V2及び第3基準電圧V3が第1基準電圧V1に対して所定の比率になるように、第2電流I2及び第3電流I3をフィードバック制御する。第2基準電圧V2及び第3基準電圧V3が第1基準電圧V1に対して所定の比率になることで、第2発光素子群12及び第3発光素子群13に流れる第2電流I2及び第3電流I3は、第1発光素子群11に流れる第1電流I1に対して所定の比率になる。 In the light emitting device 1, the current values of the second current I 2 flowing through the second light emitting element group 12 and the third current I 3 flowing through the third light emitting element group 13 of the first current I 1 flowing through the first light emitting element group 11 The second current I 2 and the third current I 3 are controlled so as to have a predetermined ratio with respect to the current value. The second current control circuit 30 and the third current control circuit 35 have a second current I so that the second reference voltage V 2 and the third reference voltage V 3 have a predetermined ratio to the first reference voltage V 1. The second and third currents I 3 are feedback-controlled. When the second reference voltage V 2 and the third reference voltage V 3 become a predetermined ratio with respect to the first reference voltage V 1 , the second current I flowing through the second light emitting element group 12 and the third light emitting element group 13 The 2 and the 3rd current I 3 have a predetermined ratio with respect to the 1st current I 1 flowing through the 1st light emitting element group 11.
 例えば、第2基準電圧V2及び第3基準電圧V3の第1基準電圧V1に対する比率が3/5及び2/5であるとき、第2電流制御回路30及び第3電流制御回路35は、第1電流I1に対する比率が3/5及び2/5となるように第2電流I2及び第3電流I3を制御する。 For example, when the ratios of the second reference voltage V 2 and the third reference voltage V 3 to the first reference voltage V 1 are 3/5 and 2/5, the second current control circuit 30 and the third current control circuit 35 , The second current I 2 and the third current I 3 are controlled so that the ratio to the first current I 1 is 3/5 and 2/5.
 (第1実施形態に係る発光装置の作用効果)
 発光装置1は、第2電流I2及び第3電流I3を第1電流I1に対して所定の比率になるように制御することで、第1発光素子群11~第3発光素子群13から出射された光を所望の比率で混合した光を、供給される電流にかかわらず出射することができる。発光装置1は、電流の絶対値ではなく電流の比率を固定するので、調光等で電流源100から入力される電流が変化しても、第1発光素子群11~第3発光素子群13のそれぞれから出射される光の比率は、一定に保たれる。
(Action and effect of the light emitting device according to the first embodiment)
The light emitting device 1 controls the second current I 2 and the third current I 3 so as to have a predetermined ratio with respect to the first current I 1 , so that the first light emitting element group 11 to the third light emitting element group 13 Light obtained by mixing the light emitted from the light source in a desired ratio can be emitted regardless of the supplied current. Since the light emitting device 1 fixes the ratio of the current, not the absolute value of the current, even if the current input from the current source 100 changes due to dimming or the like, the first light emitting element group 11 to the third light emitting element group 13 The ratio of the light emitted from each of the above is kept constant.
 また、発光装置1は、電源供給回路10を含めて電子部品が単一の回路基板1aに実装されるので、他の発光装置が実装された回路基板に回路基板1aを交換することで、照明装置110は、種々の発光装置を同一の筐体内に搭載することができる。 Further, since the electronic components of the light emitting device 1 including the power supply circuit 10 are mounted on a single circuit board 1a, the circuit board 1a can be replaced with a circuit board on which another light emitting device is mounted to illuminate the light emitting device 1. The device 110 can mount various light emitting devices in the same housing.
 (第2実施形態に係る発光装置を搭載する照明装置の構成及び機能)
 図4は第2実施形態に係る発光装置を搭載する照明装置の斜視図であり、図5は図4に示す照明装置が有する発光装置、拡散部材及び電流調整部の透視斜視図である。
(Structure and function of a lighting device equipped with a light emitting device according to the second embodiment)
FIG. 4 is a perspective view of the lighting device equipped with the light emitting device according to the second embodiment, and FIG. 5 is a perspective perspective view of the light emitting device, the diffusion member, and the current adjusting unit included in the lighting device shown in FIG.
 第2実施形態に係る照明装置120は、発光装置2、及び上端の近傍に内歯車126aが形成される操作部材の一例である拡散部材126を発光装置1及び拡散部材116の代わり有することが照明装置110と相違する。また、照明装置120は、回転部材121及び電流調整部127を有することが照明装置110と相違する。回転部材121、発光装置2、拡散部材126及び電流調整部127以外の照明装置120の構成要素の構成及び機能は、同一符号が付された照明装置110の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The lighting device 120 according to the second embodiment illuminates that the light emitting device 2 and the diffusion member 126, which is an example of an operating member in which the internal gear 126a is formed in the vicinity of the upper end, are provided in place of the light emitting device 1 and the diffusion member 116. Different from device 110. Further, the illuminating device 120 is different from the illuminating device 110 in that it has a rotating member 121 and a current adjusting unit 127. Since the components and functions of the lighting device 120 other than the rotating member 121, the light emitting device 2, the diffusion member 126, and the current adjusting unit 127 are the same as the components and functions of the lighting device 110 with the same reference numerals, A detailed description will be omitted here.
 回転部材121は、軸部122と、第1歯車123と、第2歯車124とを有する。軸部122は、発光装置2の回路基板2aの法線方向に延伸する円柱状の部材であり、第1反射部材115に形成される貫通孔を貫通するように配置される。軸部122は、上端に第1歯車123が配置されると共に、下端に第2歯車124が配置される。第1歯車123は、拡散部材126の上端の内壁に形成される内歯車126aに螺合される。第2歯車124は、軸部122の下端の内部に形成される内歯車であり、電流調整部127に螺合される。 The rotating member 121 has a shaft portion 122, a first gear 123, and a second gear 124. The shaft portion 122 is a columnar member extending in the normal direction of the circuit board 2a of the light emitting device 2, and is arranged so as to penetrate the through hole formed in the first reflection member 115. In the shaft portion 122, the first gear 123 is arranged at the upper end and the second gear 124 is arranged at the lower end. The first gear 123 is screwed into the internal gear 126a formed on the inner wall of the upper end of the diffusion member 126. The second gear 124 is an internal gear formed inside the lower end of the shaft portion 122, and is screwed into the current adjusting portion 127.
 電流調整部127は、第2歯車124に螺合する第3歯車128を有し、第3歯車128が回転することに応じて、第2発光素子群12に流れる電流の比率と、第3発光素子群13に流れる電流の比率とを調整する電流調整装置である。 The current adjusting unit 127 has a third gear 128 screwed into the second gear 124, and the ratio of the current flowing through the second light emitting element group 12 and the third light emitting as the third gear 128 rotates. This is a current adjusting device that adjusts the ratio of the current flowing through the element group 13.
 矢印Aに示す方向に拡散部材126が操作者によって回転されると、回転部材121を介して第3歯車128が回転して、第2発光素子群12に流れる電流の比率が増加すると共に、第3発光素子群13に流れる電流の比率が減少する。一方、矢印Aに示す方向の反対の方向に拡散部材126が操作者によって回転されると、第2発光素子群12に流れる電流の比率が減少すると共に、第3発光素子群13に流れる電流の比率が増加する。 When the diffusion member 126 is rotated by the operator in the direction indicated by the arrow A, the third gear 128 is rotated via the rotating member 121, the ratio of the current flowing through the second light emitting element group 12 is increased, and the second is 3 The ratio of the current flowing through the light emitting element group 13 decreases. On the other hand, when the diffusion member 126 is rotated by the operator in the direction opposite to the direction indicated by the arrow A, the ratio of the current flowing through the second light emitting element group 12 decreases and the current flowing through the third light emitting element group 13 decreases. The ratio increases.
 (第2実施形態に係る発光装置の構成および機能)
 図6は、第2実施形態に係る発光装置2の回路ブロック図である。
(Configuration and function of light emitting device according to the second embodiment)
FIG. 6 is a circuit block diagram of the light emitting device 2 according to the second embodiment.
 発光装置2は、基準電圧生成回路20の代わりに基準電圧生成回路40を有することが発光装置1と相違する。基準電圧生成回路40以外の発光装置2の構成要素の構成及び機能は、同一符号が付された発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The light emitting device 2 is different from the light emitting device 1 in that it has a reference voltage generation circuit 40 instead of the reference voltage generation circuit 20. Since the components and functions of the light emitting device 2 other than the reference voltage generation circuit 40 are the same as the components and functions of the light emitting device 1 having the same reference numerals, detailed description thereof will be omitted here.
 基準電圧生成回路40は、第2抵抗対42及び第3抵抗対43を第2抵抗対22及び第3抵抗対23の代わりに有することが基準電圧生成回路20と相違する。第2抵抗対42は第1分圧抵抗44を第1分圧抵抗24の代わりに有し、第3抵抗対43は第3分圧抵抗46を第3分圧抵抗26の代わりに有する。第1分圧抵抗44及び第3分圧抵抗46以外の基準電圧生成回路40の構成要素の構成及び機能は、同一符号が付された基準電圧生成回路20の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The reference voltage generation circuit 40 differs from the reference voltage generation circuit 20 in that it has a second resistance pair 42 and a third resistance pair 43 instead of the second resistance pair 22 and the third resistance pair 23. The second resistor pair 42 has a first voltage divider resistor 44 in place of the first voltage divider resistor 24, and the third resistor pair 43 has a third voltage divider resistor 46 in place of the third voltage divider resistor 26. Since the components and functions of the reference voltage generation circuit 40 other than the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are the same as the components and functions of the reference voltage generating circuit 20 having the same reference numerals. , A detailed description is omitted here.
 図7は、第1分圧抵抗44及び第3分圧抵抗46を示す図である。 FIG. 7 is a diagram showing a first voltage dividing resistor 44 and a third voltage dividing resistor 46.
 第1分圧抵抗44及び第3分圧抵抗46は、抵抗体400、第1端子401、第2端子402、第3端子403及び可動接点404により一体化される。抵抗体400は、例えばニッケルクロム合金等の高抵抗の導電体であり、第2分圧抵抗25に接続される第1端子401が一端に配置され、第4分圧抵抗27に接続される第2端子402が他端に配置される。可動接点404は、第1発光素子群11に接続される第3端子403が一端に配置され、抵抗体400の任意の場所に接続可能な導体である。第1分圧抵抗44及び第3分圧抵抗46の抵抗値は、可動接点404が抵抗体400に接触する場所に応じて連続的に変更する。 The first voltage dividing resistor 44 and the third voltage dividing resistor 46 are integrated by the resistor 400, the first terminal 401, the second terminal 402, the third terminal 403, and the movable contact 404. The resistor 400 is a high-resistance conductor such as a nickel-chromium alloy, and a first terminal 401 connected to the second voltage dividing resistor 25 is arranged at one end and connected to the fourth voltage dividing resistor 27. The two terminals 402 are arranged at the other end. The movable contact 404 is a conductor in which a third terminal 403 connected to the first light emitting element group 11 is arranged at one end and can be connected to an arbitrary position of the resistor 400. The resistance values of the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are continuously changed according to the place where the movable contact 404 comes into contact with the resistor 400.
 可動接点404は、電流調整部127が有する第3歯車128が回転することに応じて移動する。矢印Aに示す第1方向に拡散部材126が回転されることに応じて第3歯車128が回転すると、可動接点404は、第1分圧抵抗44が減少し且つ第3分圧抵抗46が増加するように移動する。第1分圧抵抗44が減少し且つ第3分圧抵抗46が増加するように移動することで、第2発光素子群12に流れる電流の比率が増加すると共に、第3発光素子群13に流れる電流の比率が減少する。 The movable contact 404 moves in response to the rotation of the third gear 128 of the current adjusting unit 127. When the third gear 128 rotates in response to the rotation of the diffusion member 126 in the first direction indicated by the arrow A, the movable contact 404 has a decrease in the first partial pressure resistance 44 and an increase in the third partial pressure resistance 46. Move to do. By moving so that the first voltage dividing resistor 44 decreases and the third voltage dividing resistor 46 increases, the ratio of the current flowing through the second light emitting element group 12 increases, and the current flows through the third light emitting element group 13. The ratio of current decreases.
 また、矢印Aに示す第1方向の反対の第2方向に拡散部材126が回転されることに応じて第3歯車128が回転すると、可動接点404は、第1分圧抵抗44が増加し且つ第3分圧抵抗46が減少するように移動する。第1分圧抵抗44が増加し且つ第3分圧抵抗46が減少するように移動することで、第2発光素子群12に流れる電流の比率が減少すると共に、第3発光素子群13に流れる電流の比率が増加する。 Further, when the third gear 128 rotates in response to the rotation of the diffusion member 126 in the second direction opposite to the first direction indicated by the arrow A, the movable contact 404 has an increased first partial pressure resistance 44. The third partial pressure resistance 46 moves so as to decrease. By moving so that the first voltage dividing resistor 44 increases and the third voltage dividing resistor 46 decreases, the ratio of the current flowing through the second light emitting element group 12 decreases, and the current flows through the third light emitting element group 13. The ratio of current increases.
 (第2形態に係る発光装置の作用効果)
 発光装置2は、可変抵抗である第1分圧抵抗44及び第3分圧抵抗46を基準電圧生成回路40が有するので、第2基準電圧V2及び第3基準電圧V3の第1基準電圧V1に対する比率を連続的に変化できる。発光装置2は、第2基準電圧V2及び第3基準電圧V3の第1基準電圧V1に対する比率を変化させることで第2発光素子群12及び第3発光素子群13に流れる第2電流I2及び第3電流I3の第1発光素子群11に流れる第1電流I1に対する比率を連続的に変化できる。
(Action and effect of the light emitting device according to the second form)
In the light emitting device 2, since the reference voltage generation circuit 40 has the first voltage dividing resistor 44 and the third voltage dividing resistor 46 which are variable resistors, the first reference voltage of the second reference voltage V 2 and the third reference voltage V 3 is provided. The ratio to V 1 can be changed continuously. The light emitting device 2 changes the ratio of the second reference voltage V 2 and the third reference voltage V 3 to the first reference voltage V 1 to cause a second current flowing through the second light emitting element group 12 and the third light emitting element group 13. The ratio of the I 2 and the third current I 3 to the first current I 1 flowing through the first light emitting element group 11 can be continuously changed.
 図8は、第1分圧抵抗44及び第3分圧抵抗46の抵抗比率を変化させたときの第1電流I1、第2電流I2及び第3電流I3のそれぞれの電流比率の変化を示す図である。図8において、横軸は第1分圧抵抗44及び第3分圧抵抗46の抵抗の段階を示し、縦軸は第1電流I1、第2電流I2及び第3電流I3のそれぞれの電流比率〔%〕を示す。図8において、ひし形印は第1発光素子群11に流れる第1電流I1を示し、三角形印は第2発光素子群12に流れる第2電流I2を示し、四角形印は第3発光素子群13に流れる第3電流I3を示す。 FIG. 8 shows changes in the current ratios of the first current I 1 , the second current I 2, and the third current I 3 when the resistance ratios of the first voltage dividing resistor 44 and the third voltage dividing resistor 46 are changed. It is a figure which shows. In FIG. 8, the horizontal axis shows the resistance stages of the first voltage dividing resistor 44 and the third voltage dividing resistor 46, and the vertical axis represents the first current I 1 , the second current I 2, and the third current I 3 , respectively. Indicates the current ratio [%]. In FIG. 8, the diamond mark indicates the first current I 1 flowing through the first light emitting element group 11 , the triangle mark indicates the second current I 2 flowing through the second light emitting element group 12, and the square mark indicates the third light emitting element group. The third current I 3 flowing through 13 is shown.
 抵抗段階が「0」であるとき、第1電流I1及び第3電流I3が45〔%〕であり、第2電流I2が10%である。抵抗段階が増えるに従って、第2電流I2は増加し、第3電流I3は減少し、抵抗段階が「10」であるとき、第1電流I1及び第2電流I2が45〔%〕になり、第3電流I3が10%になる。なお、上記第2電流及び第3電流の、最大値及び最小値及びこれらの中間値は、例えば抵抗25若しくは抵抗27の値を変えることで、各々調整することができる。 When the resistance step is "0", the first current I 1 and the third current I 3 are 45%, and the second current I 2 is 10%. As the resistance stage increases, the second current I 2 increases, the third current I 3 decreases, and when the resistance stage is "10", the first current I 1 and the second current I 2 are 45 [%]. And the third current I 3 becomes 10%. The maximum and minimum values of the second current and the third current and their intermediate values can be adjusted by changing the values of the resistor 25 or the resistor 27, for example.
 発光装置2では、緑色の光を出射する第1発光素子群11に対応する第1電流I1の電流値は、青色及び赤色の光を出射する第2発光素子群12及び第3発光素子群13に対応する第2電流I2及び第3電流I3のそれぞれの電流値よりも大きい。また、発光装置2では、第3電流I3の電流値は、第2電流I2の電流値が増加するに従って減少する。発光装置2は、第1発光素子14、第2発光素子16及び第3発光素子18から出射される光の波長を調整することで、第2発光素子16及び第3発光素子18から出射される光の比率を変化させることで、黒体軌跡に沿った光を出射することができる。 In the light emitting device 2, the current value of the first current I 1 corresponding to the first light emitting element group 11 that emits green light is the second light emitting element group 12 and the third light emitting element group that emit blue and red light. It is larger than the respective current values of the second current I 2 and the third current I 3 corresponding to 13. Further, in the light emitting device 2, the current value of the third current I 3 decreases as the current value of the second current I 2 increases. The light emitting device 2 is emitted from the second light emitting element 16 and the third light emitting element 18 by adjusting the wavelength of the light emitted from the first light emitting element 14, the second light emitting element 16, and the third light emitting element 18. By changing the ratio of light, it is possible to emit light along the blackbody locus.
 図9は、発光装置2から出射される光の光学特性を示す色度図である。図9において、細曲線L20は、黒体軌跡を示す。点P21は第1発光素子群11から出射される光の色度を示し、点P22は第2発光素子群12から出射される光の色度を示し、点P23は第13発光素子群13から出射される光の色度を示す。太曲線L24は、発光装置2が出射可能な光の色度を示す有効色域を示す。 FIG. 9 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 2. In FIG. 9, the fine curve L20 shows a blackbody locus. Point P21 indicates the chromaticity of the light emitted from the first light emitting element group 11, point P22 indicates the chromaticity of the light emitted from the second light emitting element group 12, and point P23 indicates the chromaticity of the light emitted from the thirteenth light emitting element group 13. Indicates the chromaticity of the emitted light. The thick curve L24 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 2.
 発光装置2は、所定の色域に亘って黒体軌跡と一致する色度を有する光を出射することができる。発光装置2は、第1発光素子群11~第3発光素子群13から出射される光が黒体軌跡に対して色偏差(Duv)が±0.01以下になる光を出射するように調整することができる。 The light emitting device 2 can emit light having a chromaticity that matches the blackbody locus over a predetermined color gamut. The light emitting device 2 is adjusted so that the light emitted from the first light emitting element group 11 to the third light emitting element group 13 emits light having a color deviation (Duv) of ± 0.01 or less with respect to the blackbody locus. can do.
 (第3実施形態に係る発光装置の構成および機能)
 図10は、第3実施形態に係る発光装置の回路ブロック図である。
(Configuration and function of light emitting device according to the third embodiment)
FIG. 10 is a circuit block diagram of the light emitting device according to the third embodiment.
 発光装置3は、基準電圧生成回路40の代わりに基準電圧生成回路50を有することが発光装置2と相違する。また、発光装置3は、電流比率制御回路60を更に有することが発光装置2と相違する。基準電圧生成回路50及び電流比率制御回路60以外の発光装置3の構成要素の構成及び機能は、同一符号が付された発光装置2の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The light emitting device 3 is different from the light emitting device 2 in that it has a reference voltage generation circuit 50 instead of the reference voltage generation circuit 40. Further, the light emitting device 3 is different from the light emitting device 2 in that it further has a current ratio control circuit 60. The components and functions of the light emitting device 3 other than the reference voltage generation circuit 50 and the current ratio control circuit 60 are the same as the components and functions of the light emitting device 2 having the same reference numerals. Is omitted.
 基準電圧生成回路50は、第2抵抗対52及び第3抵抗対53を第2抵抗対42及び第3抵抗対43の代わりに有することが基準電圧生成回路40と相違する。第2抵抗対52は第1分圧抵抗54を第1分圧抵抗44の代わりに有し、第3抵抗対53は第3分圧抵抗56を第3分圧抵抗46の代わりに有する。第1分圧抵抗54及び第3分圧抵抗56以外の基準電圧生成回路50の構成要素の構成及び機能は、同一符号が付された基準電圧生成回路40の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The reference voltage generation circuit 50 differs from the reference voltage generation circuit 40 in that it has a second resistance pair 52 and a third resistance pair 53 in place of the second resistance pair 42 and the third resistance pair 43. The second resistance pair 52 has a first voltage dividing resistor 54 in place of the first voltage dividing resistor 44, and the third resistance pair 53 has a third voltage dividing resistor 56 in place of the third voltage dividing resistor 46. Since the components and functions of the reference voltage generation circuit 50 other than the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are the same as the components and functions of the reference voltage generating circuit 40 having the same reference numerals. , A detailed description is omitted here.
 図11は、第1分圧抵抗54及び第3分圧抵抗56を示す図である。 FIG. 11 is a diagram showing a first voltage dividing resistor 54 and a third voltage dividing resistor 56.
 第1分圧抵抗54及び第3分圧抵抗56は、抵抗体500、第1端子501、第2端子502、第3端子503、複数のスイッチ504及び入力端子505により一体化される。抵抗体500は、例えばニッケルクロム合金等の高抵抗の導電体であり、第2分圧抵抗25に接続される第1端子501が一端に配置され、第4分圧抵抗27に接続される第2端子502が他端に配置される。複数のスイッチ504のそれぞれは、例えばnMOSFETであり、第1発光素子群11に接続される第3端子503にドレインが接続され、抵抗体500にソースが接続され、電流比率制御回路60に接続される入力端子505にゲートが接続される。第1分圧抵抗54及び第3分圧抵抗56の抵抗値は、オンするスイッチ504の位置に応じて連続的に変更する。 The first voltage dividing resistor 54 and the third voltage dividing resistor 56 are integrated by a resistor 500, a first terminal 501, a second terminal 502, a third terminal 503, a plurality of switches 504, and an input terminal 505. The resistor 500 is a high-resistance conductor such as a nickel-chromium alloy, and a first terminal 501 connected to the second voltage dividing resistor 25 is arranged at one end and connected to the fourth voltage dividing resistor 27. The two terminals 502 are arranged at the other end. Each of the plurality of switches 504 is, for example, an nMOSFET, and the drain is connected to the third terminal 503 connected to the first light emitting element group 11, the source is connected to the resistor 500, and the current ratio control circuit 60 is connected. A gate is connected to the input terminal 505. The resistance values of the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are continuously changed according to the position of the switch 504 to be turned on.
 電流比率制御回路60は、通信部61と、記憶部62と、制御部63と、出力部64とを有する。 The current ratio control circuit 60 includes a communication unit 61, a storage unit 62, a control unit 63, and an output unit 64.
 通信部61は、I2C等の通信インターフェース等であり、発光装置3を通信制御する不図示の上位制御装置に電気的に接続される。通信部61は、上位制御装置等の外部装置と接続するためのパッドを有する。通信部61が有するパッドは、例えば発光装置3を形成する基板の表面に配置される。通信部61が有するパッドを基板の表面に配置することで、発光装置3は、配線数を削減できる。 The communication unit 61 is a communication interface such as I2C, and is electrically connected to a higher-level control device (not shown) that controls communication of the light emitting device 3. The communication unit 61 has a pad for connecting to an external device such as a host control device. The pad included in the communication unit 61 is arranged on the surface of the substrate forming the light emitting device 3, for example. By arranging the pad included in the communication unit 61 on the surface of the substrate, the light emitting device 3 can reduce the number of wirings.
 記憶部62は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等の半導体メモリ装置を備える。記憶部62は、制御部63での処理に用いられるオペレーティングシステムプログラム、ドライバプログラム、制御プログラム及びデータ等を記憶する。 The storage unit 62 includes, for example, a semiconductor memory device such as a ROM (Read Only Memory) or a RAM (Random Access Memory). The storage unit 62 stores an operating system program, a driver program, a control program, data, and the like used for processing by the control unit 63.
 制御部63は、一又は複数個のプロセッサ及びその周辺回路を有し、第1分圧抵抗54と第3分圧抵抗56との間の抵抗比率を制御するものであり、例えば、CPU(Central Processing Unit)である。また、制御部63は、トランジスタ等のディスクリート品により形成されてもよい。制御部63は、通信部61を介して上位制御装置から入力される色度制御信号に基づいて、第1分圧抵抗54と第3分圧抵抗56との間の抵抗比率を制御する。 The control unit 63 has one or a plurality of processors and peripheral circuits thereof, and controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56, for example, a CPU (Central). ProcessingUnit). Further, the control unit 63 may be formed of a discrete product such as a transistor. The control unit 63 controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56 based on the chromaticity control signal input from the upper control device via the communication unit 61.
 出力部64は、第1分圧抵抗54及び第3分圧抵抗56に通信線を介して電気的に接続され、オンするスイッチ504を示す制御信号を入力端子505に出力する。出力部64から出力される制御信号は、複数のスイッチ504の何れか1つをオンし、他のスイッチ504をオフすることを示す。 The output unit 64 is electrically connected to the first voltage dividing resistor 54 and the third voltage dividing resistor 56 via a communication line, and outputs a control signal indicating a switch 504 to be turned on to the input terminal 505. The control signal output from the output unit 64 indicates that any one of the plurality of switches 504 is turned on and the other switch 504 is turned off.
 (第3形態に係る発光装置の作用効果)
 発光装置3は、上位制御装置から入力される色度制御信号に基づいて、第1分圧抵抗54と第3分圧抵抗56との間の抵抗比率を制御することで第2発光素子群12及び第3発光素子群13に流れる第2電流I2及び第3電流I3の比率を変化できる。
(Action and effect of the light emitting device according to the third form)
The light emitting device 3 controls the resistance ratio between the first voltage dividing resistor 54 and the third voltage dividing resistor 56 based on the chromaticity control signal input from the upper control device, so that the second light emitting element group 12 And the ratio of the second current I 2 and the third current I 3 flowing through the third light emitting element group 13 can be changed.
 図12は、発光装置3から出射される光の光学特性を示す色度図である。図12において、曲線L30は、黒体軌跡を示す。点P31は第1発光素子群11から出射される光の色度を示し、点P32は第2発光素子群12から出射される光の色度を示し、点P33は第13発光素子群13から出射される光の色度を示す。領域R34は、発光装置3が出射可能な光の色度を示す有効色域を示す。 FIG. 12 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 3. In FIG. 12, the curve L30 shows a blackbody locus. Point P31 indicates the chromaticity of the light emitted from the first light emitting element group 11, point P32 indicates the chromaticity of the light emitted from the second light emitting element group 12, and point P33 indicates the chromaticity of the light emitted from the thirteenth light emitting element group 13. Indicates the chromaticity of the emitted light. The region R34 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 3.
 発光装置3の有効色域は、点P31、点P32及び点P33を結線して形成される光源色域よりも狭くなるものの、黒体軌跡を含む照明装置に望まれる色度を有する光を出射することができる。 Although the effective color gamut of the light emitting device 3 is narrower than the light source color gamut formed by connecting the points P31, P32, and P33, it emits light having the chromaticity desired for the lighting device including the blackbody locus. can do.
 (第4実施形態に係る発光装置の構成および機能)
 図13は、第4実施形態に係る発光装置の回路ブロック図である。
(Configuration and function of light emitting device according to the fourth embodiment)
FIG. 13 is a circuit block diagram of the light emitting device according to the fourth embodiment.
 発光装置4は、基準電圧生成回路20を有さないことが発光装置1と相違する。また、発光装置4は、電流センサ55、第1電流制御回路70及び基準電圧生成回路75を有することが発光装置1と相違する。電流センサ55、第1電流制御回路70及び基準電圧生成回路75以外の発光装置4の構成要素の構成及び機能は、同一符号が付された発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The light emitting device 4 is different from the light emitting device 1 in that it does not have the reference voltage generation circuit 20. Further, the light emitting device 4 is different from the light emitting device 1 in that it has a current sensor 55, a first current control circuit 70, and a reference voltage generation circuit 75. Since the components and functions of the light emitting device 4 other than the current sensor 55, the first current control circuit 70, and the reference voltage generation circuit 75 are the same as the components and functions of the light emitting device 1 with the same reference numerals, A detailed description will be omitted here.
 電流センサ55は、例えば電流検出アンプ等の電流センサであり、第1電極101と第1発光素子群11、第2発光素子群12及び第3発光素子群13との間に配置される。電流センサ55は、第1発光素子群11~第3発光素子群13に流れる第1電流I1、第2電流I2及び第3電流I3を含む検出電流IDを検出し、検出した検出電流IDを対応する電圧情報として基準電圧生成回路75に出力する。 The current sensor 55 is, for example, a current sensor such as a current detection amplifier, and is arranged between the first electrode 101 and the first light emitting element group 11, the second light emitting element group 12, and the third light emitting element group 13. The current sensor 55 detects and detects a detection current ID including a first current I 1 , a second current I 2 and a third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13. The current ID is output to the reference voltage generation circuit 75 as the corresponding voltage information.
 第1電流制御回路70は、第1スイッチ71と、第1基準抵抗72と、第1コンパレータ73とを有する。第1スイッチ71は、nMOSFETであり、一端であるドレインが第1発光素子群11に接続され、他端であるソースが第1基準抵抗72の一端に接続され、制御端子であるゲートが第1コンパレータ73の出力端子に接続される。第1基準抵抗72の他端は、第2検出抵抗32及び第3検出抵抗37の他端と共に接地される。第1コンパレータ73の第1入力端子と、第2コンパレータ33及び第3コンパレータ38の第1入力端子は、それぞれ、基準電圧生成回路75に接続される。第1コンパレータ73の第2入力端子は、第1基準抵抗72の一端に接続され、第1基準抵抗72の両端の電圧である第1検出電圧VD1が入力される。 The first current control circuit 70 includes a first switch 71, a first reference resistor 72, and a first comparator 73. The first switch 71 is an nMOSFET, the drain at one end is connected to the first light emitting element group 11, the source at the other end is connected to one end of the first reference resistor 72, and the gate as the control terminal is the first. It is connected to the output terminal of the comparator 73. The other end of the first reference resistor 72 is grounded together with the other ends of the second detection resistor 32 and the third detection resistor 37. The first input terminal of the first comparator 73 and the first input terminal of the second comparator 33 and the third comparator 38 are connected to the reference voltage generation circuit 75, respectively. The second input terminal of the first comparator 73 is connected to one end of the first reference resistor 72, and the first detection voltage V D1 which is the voltage across the first reference resistor 72 is input.
 基準電圧生成回路75は、入力部76と、記憶部77と、制御部78と、出力部79とを有する。第1電流I1、第2電流I2及び第3電流I3の電流値が所定の比率となるように、第1電流I1、第2電流I2及び第3電流I3の何れか1つもしくは2つの電流値を制御するために使用される基準電圧を生成する。 The reference voltage generation circuit 75 includes an input unit 76, a storage unit 77, a control unit 78, and an output unit 79. The first current I 1, as in the current value of the second current I 2 and the third current I 3 is the predetermined ratio, the first current I 1, either the second current I 2 and the third current I 3 1 Generates a reference voltage used to control one or two current values.
 入力部76は、電流センサ55に電気的に接続され、電流センサ55が検出した検出電流IDを示す検出電流信号が入力される。 The input unit 76 is electrically connected to the current sensor 55, and a detection current signal indicating the detection current ID detected by the current sensor 55 is input.
 記憶部77は、例えば、ROM、RAM等の半導体メモリ装置を備える。記憶部77は、制御部78での処理に用いられるオペレーティングシステムプログラム、ドライバプログラム、制御プログラム及びデータ等を記憶する。 The storage unit 77 includes, for example, a semiconductor memory device such as a ROM or RAM. The storage unit 77 stores an operating system program, a driver program, a control program, data, and the like used for processing by the control unit 78.
 制御部78は、一又は複数個のプロセッサ及びその周辺回路を有し、例えば、CPUである。また、制御部78は、トランジスタにより形成されてもよい。制御部78は、第1発光素子群11~第3発光素子群13に流れる第1電流I1、第2電流I2及び第3電流I3を制御するために使用される第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3を生成する。 The control unit 78 has one or more processors and peripheral circuits thereof, and is, for example, a CPU. Further, the control unit 78 may be formed by a transistor. The control unit 78 uses the first reference voltage V used to control the first current I 1 , the second current I 2 and the third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13. 1. Generates a second reference voltage V 2 and a third reference voltage V 3.
 制御部78は、第1発光素子群11~第3発光素子群13に流れる第1電流I1、第2電流I2及び第3電流I3が所定の比率となるように、第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3を生成する。制御部78は、第1電流I1、第2電流I2及び第3電流I3の何れか1つの電流値に対する他の2つの電流値が所定の比率になるように、第1電流I1、第2電流I2及び第3電流I3の何れか2つの電流値を制御する基準電圧を生成する。制御部78は、基準電圧によって制御される電流が流れない発光素子群、すなわちマスターとして機能する発光素子群に対応するコンパレータの第1入力端子には、例えば電源電圧Vddと同一の電圧等の発光素子群に流れる電流を制御しない電圧を出力する。また、基準電圧によって制御される電流が流れる発光素子群、すなわちスレーブとして機能する発光素子群に対応するコンパレータの第1入力端子には、検出電流IDに対して所定の比率となる電流を流す基準電圧が出力する。 The control unit 78 has a first reference voltage so that the first current I 1 , the second current I 2 and the third current I 3 flowing through the first light emitting element group 11 to the third light emitting element group 13 have a predetermined ratio. Generates V 1 , a second reference voltage V 2, and a third reference voltage V 3. Control unit 78, first current I 1, as the other two current values for any one current value of the second current I 2 and the third current I 3 becomes a predetermined ratio, the first current I 1 , A reference voltage for controlling any two current values of the second current I 2 and the third current I 3 is generated. The control unit 78 emits light of the same voltage as the power supply voltage Vdd to the first input terminal of the comparator corresponding to the light emitting element group in which the current controlled by the reference voltage does not flow, that is, the light emitting element group functioning as the master. Outputs a voltage that does not control the current flowing through the element group. Further, a current having a predetermined ratio to the detected current ID is passed through the first input terminal of the comparator corresponding to the light emitting element group in which the current controlled by the reference voltage flows, that is, the light emitting element group functioning as a slave. The reference voltage is output.
 例えば、第2電流I2及び第3電流I3の電流値を制御し、第1電流I1の電流値を制御しないとき、第1コンパレータ73の第1入力端子に電源電圧Vddと同一の電圧が入力される。第2コンパレータ33及び第3コンパレータ38の第1入力端子に、第2電流I2及び第3電流I3の電流値が第1電流I1の電流値に対して所定の比率となる第2基準電圧V2及び第3基準電圧V3が入力される。 For example, when the current values of the second current I 2 and the third current I 3 are controlled and the current value of the first current I 1 is not controlled, the voltage is the same as the power supply voltage Vdd at the first input terminal of the first comparator 73. Is entered. A second reference in which the current values of the second current I 2 and the third current I 3 are a predetermined ratio to the current value of the first current I 1 at the first input terminals of the second comparator 33 and the third comparator 38. the voltage V2 and the third reference voltage V 3 is input.
 また、第1電流I1及び第3電流I3の電流値を制御し、第2電流I2の電流値を制御しないとき、第2コンパレータ33の第1入力端子に電源電圧Vddと同一の電圧が入力される。第1コンパレータ73及び第3コンパレータ38の第1入力端子に、第1電流I1及び第3電流I3の電流値が第2電流I2の電流値に対して所定の比率となる第1基準電圧V1及び第3基準電圧V3が入力される。 Further, when the current values of the first current I 1 and the third current I 3 are controlled and the current values of the second current I 2 are not controlled, the same voltage as the power supply voltage Vdd is applied to the first input terminal of the second comparator 33. Is entered. A first reference in which the current values of the first current I 1 and the third current I 3 are a predetermined ratio to the current values of the second current I 2 at the first input terminals of the first comparator 73 and the third comparator 38. The voltage V 1 and the third reference voltage V 3 are input.
 また、第1電流I1及び第2電流I2の電流値を制御し、第3電流I3の電流値を制御しないとき、第3コンパレータ38の第1入力端子に電源電圧Vddと同一の電圧が入力される。第1コンパレータ73及び第2コンパレータ33の第1入力端子に、第1電流I1及び第2電流I2の電流値が第3電流I3の電流値に対して所定の比率となる第1基準電圧V1及び第2基準電圧V2が入力される。 Further, when the current values of the first current I 1 and the second current I 2 are controlled and the current value of the third current I 3 is not controlled, the same voltage as the power supply voltage Vdd is applied to the first input terminal of the third comparator 38. Is entered. A first reference in which the current values of the first current I 1 and the second current I 2 are a predetermined ratio to the current values of the third current I 3 at the first input terminals of the first comparator 73 and the second comparator 33. The voltage V 1 and the second reference voltage V 2 are input.
 出力部79は、第1コンパレータ73の第1入力端子、第2コンパレータ33の第1入力端子、及び第3コンパレータ38の第1入力端子に電気的に接続され、制御部78が生成した第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3を出力する。 The output unit 79 is electrically connected to the first input terminal of the first comparator 73, the first input terminal of the second comparator 33, and the first input terminal of the third comparator 38, and the first unit generated by the control unit 78 is generated. The reference voltage V 1 , the second reference voltage V 2 and the third reference voltage V 3 are output.
 (第4形態に係る発光装置の作用効果)
 発光装置4は、第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3により第1電流制御回路70、第2電流制御回路30及び第3電流制御回路35を制御することで、第1電流I1、第2電流I2及び第3電流I3が所定の比率となるように制御できる。
(Action and effect of the light emitting device according to the fourth form)
The light emitting device 4 controls the first current control circuit 70, the second current control circuit 30, and the third current control circuit 35 by the first reference voltage V 1 , the second reference voltage V 2, and the third reference voltage V 3. Therefore, the first current I 1 , the second current I 2 and the third current I 3 can be controlled to have a predetermined ratio.
 図14は、第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3を変化させたときに発光装置4が出射する光の色度の変化を示す色度図である。図14において、実線は発光装置4が出射可能な光の範囲を示し、破線は黒体軌跡を示す。 FIG. 14 is a chromaticity diagram showing a change in the chromaticity of the light emitted by the light emitting device 4 when the first reference voltage V 1 , the second reference voltage V 2 and the third reference voltage V 3 are changed. In FIG. 14, the solid line indicates the range of light that can be emitted by the light emitting device 4, and the broken line indicates the blackbody locus.
 発光装置4は、第1基準電圧V1、第2基準電圧V2及び第3基準電圧V3により、第1発光素子群11~第3発光素子群13に流れる第1電流I1、第2電流I2及び第3電流I3を、発光装置4が出射する光の色度が黒体軌跡に沿うように制御することができる。 The light emitting device 4 has a first current I 1 , a second current flowing through the first light emitting element group 11 to the third light emitting element group 13 by the first reference voltage V 1 , the second reference voltage V 2, and the third reference voltage V 3. The current I 2 and the third current I 3 can be controlled so that the chromaticity of the light emitted by the light emitting device 4 follows the blackbody locus.
 (第5実施形態に係る発光装置の構成および機能)
 図15は、第5実施形態に係る発光装置の回路ブロック図である。
(Configuration and function of light emitting device according to the fifth embodiment)
FIG. 15 is a circuit block diagram of the light emitting device according to the fifth embodiment.
 発光装置5は、基準電圧生成回路40の代わりに基準電圧生成回路84を有することが発光装置2と相違する。また、発光装置5は、電流比率制御回路60を更に有することが発光装置2と相違する。基準電圧生成回路84及び電流比率制御回路60以外の発光装置5の構成要素の構成及び機能は、同一符号が付された発光装置2の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The light emitting device 5 is different from the light emitting device 2 in that it has a reference voltage generation circuit 84 instead of the reference voltage generation circuit 40. Further, the light emitting device 5 is different from the light emitting device 2 in that it further has a current ratio control circuit 60. The components and functions of the light emitting device 5 other than the reference voltage generation circuit 84 and the current ratio control circuit 60 are the same as the components and functions of the light emitting device 2 having the same reference numerals. Is omitted.
 発光装置5は、電源供給回路10と、第1発光素子群80と、第2発光素子群81と、第3発光素子群82と、第4発光素子群83と、基準電圧生成回路84と、第2電流制御回路30と、第3電流制御回路35と、第4電流制御回路89とを有する。発光装置5は、電流比率制御回路60と、第1電極101と、第2電極102とを更に有する。 The light emitting device 5 includes a power supply circuit 10, a first light emitting element group 80, a second light emitting element group 81, a third light emitting element group 82, a fourth light emitting element group 83, a reference voltage generation circuit 84, and the like. It has a second current control circuit 30, a third current control circuit 35, and a fourth current control circuit 89. The light emitting device 5 further includes a current ratio control circuit 60, a first electrode 101, and a second electrode 102.
 電源供給回路10、第2電流制御回路30、第3電流制御回路35、電流比率制御回路60、第1電極101及び第2電極102は、図3及び10を参照して既に説明したので、ここでは詳細な説明は省略する。 The power supply circuit 10, the second current control circuit 30, the third current control circuit 35, the current ratio control circuit 60, the first electrode 101 and the second electrode 102 have already been described with reference to FIGS. 3 and 10. Then, detailed explanation is omitted.
 第1発光素子群80は、直列接続された6個の第1発光素子80aにより形成される。第1発光素子80aは、青色の光を出射するLEDダイと、LEDダイが出射した青色の光を黄色に変換するYAG等の蛍光体等の光変換材が含有され、且つ、LEDダイを封止する封止材とを有し、白色の光を出射する発光素子である。 The first light emitting element group 80 is formed by six first light emitting elements 80a connected in series. The first light emitting element 80a contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG that converts the blue light emitted by the LED die into yellow, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits white light.
 第2発光素子群81は、直列接続された4個の第2発光素子81aにより形成される。第2発光素子81aは、青色である第1の色の光を出射する発光ダイオードである。 The second light emitting element group 81 is formed by four second light emitting elements 81a connected in series. The second light emitting element 81a is a light emitting diode that emits light of the first color that is blue.
 第3発光素子群82は、直列接続された4個の第3発光素子82aにより形成される。第3発光素子82aは、青色の光を出射するLEDダイと、LEDダイが出射した青色の光を緑色に変換するYAG等の蛍光体等の光変換材が含有され、且つ、LEDダイを封止する封止材とを有し、緑色の光を出射する発光素子である。 The third light emitting element group 82 is formed by four third light emitting elements 82a connected in series. The third light emitting element 82a contains an LED die that emits blue light and a light conversion material such as a phosphor such as YAG that converts the blue light emitted by the LED die into green, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits green light.
 第4発光素子群83は、直列接続された4個の第4発光素子83aにより形成される。第4発光素子83aは、青色の光を出射するLEDダイと、LEDダイが出射した青色の光を赤色に変換するCASN等の蛍光体等の光変換材が含有され、且つ、LEDダイを封止する封止材とを有し、赤色の光を出射する発光素子である。 The fourth light emitting element group 83 is formed by four fourth light emitting elements 83a connected in series. The fourth light emitting element 83a contains an LED die that emits blue light and a light conversion material such as a phosphor such as CASN that converts the blue light emitted by the LED die into red, and seals the LED die. It is a light emitting element that has a sealing material to stop and emits red light.
 基準電圧生成回路84は、第1検出抵抗85と、第2抵抗対86と、第3抵抗対87と、第4抵抗対88とを有する分圧回路である。第1検出抵抗85は、第1検出抵抗21と同様に、数Ω程度の抵抗値を有する抵抗素子であり、一端が第1発光素子群80に接続され、他端が接地される。第2抵抗対86は、第1分圧抵抗86a及び第2分圧抵抗86bを有し、第2発光素子群81に流れる第2電流I2を制御する第2基準電圧V2を生成する。第3抵抗対87は、第3分圧抵抗87a及び第4分圧抵抗87bを有し、第3発光素子群82に流れる第3電流I3を制御する第3基準電圧V3を生成する。第4抵抗対88は、第5分圧抵抗88a及び第6分圧抵抗88bを有し、第4発光素子群83に流れる第4電流I4を制御する第4基準電圧V4を生成する。 The reference voltage generation circuit 84 is a voltage divider circuit having a first detection resistor 85, a second resistor pair 86, a third resistor pair 87, and a fourth resistor pair 88. Like the first detection resistor 21, the first detection resistor 85 is a resistance element having a resistance value of about several Ω, one end of which is connected to the first light emitting element group 80, and the other end of which is grounded. The second resistance pair 86 has a first voltage dividing resistor 86a and a second voltage dividing resistor 86b, and generates a second reference voltage V 2 that controls a second current I 2 flowing through the second light emitting element group 81. The third resistance pair 87 has a third voltage dividing resistor 87a and a fourth voltage dividing resistor 87b, and generates a third reference voltage V 3 that controls a third current I 3 flowing through the third light emitting element group 82. The fourth resistor pair 88 has a fifth voltage dividing resistor 88a and a sixth voltage dividing resistor 88b, and generates a fourth reference voltage V 4 that controls a fourth current I 4 flowing through the fourth light emitting element group 83.
 第1分圧抵抗86a及び第5分圧抵抗88aは、可変抵抗である。第1分圧抵抗86a及び第5分圧抵抗88aは、図11を参照して説明された第1分圧抵抗54及び第3分圧抵抗56をと同様の構造を有するので、ここでは詳細な説明は省略する。 The first voltage dividing resistor 86a and the fifth voltage dividing resistor 88a are variable resistors. Since the first voltage dividing resistor 86a and the fifth voltage dividing resistor 88a have the same structure as the first voltage dividing resistor 54 and the third voltage dividing resistor 56 described with reference to FIG. 11, they are described in detail here. The description is omitted.
 第4電流制御回路89は、第4スイッチ89aと、第4検出抵抗89bと、第4コンパレータ89cとを有し、第2電流制御回路30及び第3電流制御回路35と同様な構成を有する。 The fourth current control circuit 89 has a fourth switch 89a, a fourth detection resistor 89b, and a fourth comparator 89c, and has the same configuration as the second current control circuit 30 and the third current control circuit 35.
 図16は、発光装置5から出射される光の光学特性を示す色度図である。図16において、細曲線L50は、黒体軌跡を示す。点P51は第1発光素子群80から出射される光の色度を示し、点P52は第2発光素子群81から出射される光の色度を示し、点P53は第82発光素子群13から出射される光の色度を示し、点P54は第4発光素子群83から出射される光の色度を示す。領域R55は、発光装置5が出射可能な光の色度を示す有効色域を示す。 FIG. 16 is a chromaticity diagram showing the optical characteristics of the light emitted from the light emitting device 5. In FIG. 16, the fine curve L50 shows a blackbody locus. Point P51 indicates the chromaticity of the light emitted from the first light emitting element group 80, point P52 indicates the chromaticity of the light emitted from the second light emitting element group 81, and point P53 indicates the chromaticity of the light emitted from the 82nd light emitting element group 13. The chromaticity of the emitted light is indicated, and the point P54 indicates the chromaticity of the light emitted from the fourth light emitting element group 83. The region R55 indicates an effective color gamut indicating the chromaticity of light that can be emitted by the light emitting device 5.
 発光装置5では、発光効率が高い第1発光素子群80は白色の光を出射し、発光効率が第1発光素子群80よりも低い第2発光素子群81~第4発光素子群83は青色、緑色及び赤色の光をそれぞれ出射する。発光装置5は、発光効率が高い第1発光素子群80から白色の光を出射し、第2発光素子群81~第4発光素子群83から青色、緑色及び赤色の光をそれぞれ補色として出射することで、最低限の色域を高い発光効率を維持しつつ、簡単な回路構成で実現できる。 In the light emitting device 5, the first light emitting element group 80 having high luminous efficiency emits white light, and the second light emitting element group 81 to the fourth light emitting element group 83 having lower luminous efficiency than the first light emitting element group 80 are blue. , Green and red light are emitted respectively. The light emitting device 5 emits white light from the first light emitting element group 80 having high luminous efficiency, and emits blue, green, and red light as complementary colors from the second light emitting element group 81 to the fourth light emitting element group 83, respectively. As a result, the minimum color range can be realized with a simple circuit configuration while maintaining high luminous efficiency.
 また、発光装置5では、第1発光素子群80~第4発光素子群83のそれぞれが出射される光の色が製造ばらつき等に起因して変動した場合に、所望の色及び色温度を有する光が出射されるように電流比率制御回路60がプリセットされてもよい。発光装置5は、所望の色及び色温度を有する光が出射されるように電流比率制御回路60がプリセットされることで、色度公差を小さくすることができる。 Further, the light emitting device 5 has a desired color and color temperature when the color of the light emitted from each of the first light emitting element group 80 to the fourth light emitting element group 83 fluctuates due to manufacturing variation or the like. The current ratio control circuit 60 may be preset so that light is emitted. The light emitting device 5 can reduce the chromaticity tolerance by presetting the current ratio control circuit 60 so that light having a desired color and color temperature is emitted.
 (第6実施形態に係る発光装置の構成および機能)
 図17は、第6実施形態に係る発光装置の回路ブロック図である。
(Configuration and function of light emitting device according to the sixth embodiment)
FIG. 17 is a circuit block diagram of the light emitting device according to the sixth embodiment.
 発光装置6は、第1発光素子群91と、第2発光素子群92と、第3発光素子群93と、第1トランジスタ94と、第2トランジスタ95と、第3トランジスタ96と、第1切換素子97と、第2切換素子98と、第3切換素子99とを有する。発光装置6は、第1電極101と、第2電極102とを更に有する。 The light emitting device 6 is switched between the first light emitting element group 91, the second light emitting element group 92, the third light emitting element group 93, the first transistor 94, the second transistor 95, the third transistor 96, and the first switching. It has an element 97, a second switching element 98, and a third switching element 99. The light emitting device 6 further includes a first electrode 101 and a second electrode 102.
 第1発光素子群91~第3発光素子群93のそれぞれは、直列接続された複数のLEDを含む。第1発光素子群91~第3発光素子群93に含まれるLEDは、例えば青色等の同一色の光を出射する。第1発光素子群91~第3発光素子群93に含まれるLEDは、例えばLEDが出射する青色の光を緑色に変換して出射する緑色蛍光体、及びLEDが出射する青色の光を赤色に変換して出射する赤色蛍光体を含む封止材によって封止される。 Each of the first light emitting element group 91 to the third light emitting element group 93 includes a plurality of LEDs connected in series. The LEDs included in the first light emitting element group 91 to the third light emitting element group 93 emit light of the same color such as blue. The LEDs included in the first light emitting element group 91 to the third light emitting element group 93 are, for example, a green phosphor that converts the blue light emitted by the LED into green and emits the blue light, and the blue light emitted by the LED into red. It is sealed with a sealing material containing a red phosphor that is converted and emitted.
 第1トランジスタ94、第2トランジスタ95及び第3トランジスタ96のそれぞれは、NPNバイポーラトランジスタである。第1トランジスタ94のコレクタは第1発光素子群91に接続され、第2トランジスタ95のコレクタは第2発光素子群92に接続され、第3トランジスタ96のコレクタは第3発光素子群93に接続される。第1トランジスタ94、第2トランジスタ95及び第3トランジスタ96のエミッタは、接地される。 Each of the first transistor 94, the second transistor 95, and the third transistor 96 is an NPN bipolar transistor. The collector of the first transistor 94 is connected to the first light emitting element group 91, the collector of the second transistor 95 is connected to the second light emitting element group 92, and the collector of the third transistor 96 is connected to the third light emitting element group 93. NS. The emitters of the first transistor 94, the second transistor 95, and the third transistor 96 are grounded.
 第1切換素子97の一端は第1トランジスタ94のベースに接続され、第1切換素子97の他端は第1トランジスタ94のコレクタに接続される。第1切換素子97の一端と他端の間は、解放されており、第1切換素子97の一端と他端の間が例えばハンダジャンパ及びワイヤボンディング等により短絡されたとき、第1切換素子97は、第1トランジスタ94のベースとコレクタとの間を短絡する。 One end of the first switching element 97 is connected to the base of the first transistor 94, and the other end of the first switching element 97 is connected to the collector of the first transistor 94. The space between one end and the other end of the first switching element 97 is open, and when the space between one end and the other end of the first switching element 97 is short-circuited by, for example, a solder jumper or wire bonding, the first switching element 97 Shorts between the base and collector of the first transistor 94.
 第2切換素子98の一端は第2トランジスタ95のベースに接続され、第2切換素子98の他端は第2トランジスタ95のコレクタに接続される。第2切換素子98の一端と他端の間は、解放されており、第2切換素子98の一端と他端の間が例えばハンダジャンパ及びワイヤボンディング等により短絡されたとき、第2切換素子98は、第2トランジスタ95のベースとコレクタとの間を短絡する。 One end of the second switching element 98 is connected to the base of the second transistor 95, and the other end of the second switching element 98 is connected to the collector of the second transistor 95. The space between one end and the other end of the second switching element 98 is open, and when the space between one end and the other end of the second switching element 98 is short-circuited by, for example, a solder jumper or wire bonding, the second switching element 98 Shorts between the base and collector of the second transistor 95.
 第3切換素子99の一端は第3トランジスタ96のベースに接続され、第3切換素子99の他端は第3トランジスタ96のコレクタに接続される。第3切換素子99の一端と他端の間は、解放されており、第3切換素子99の一端と他端の間が例えばハンダジャンパ及びワイヤボンディング等により短絡されたとき、第3切換素子99は、第3トランジスタ96のベースとコレクタとの間を短絡する。 One end of the third switching element 99 is connected to the base of the third transistor 96, and the other end of the third switching element 99 is connected to the collector of the third transistor 96. The space between one end and the other end of the third switching element 99 is open, and when the space between one end and the other end of the third switching element 99 is short-circuited by, for example, a solder jumper or wire bonding, the third switching element 99 Shorts between the base and collector of the third transistor 96.
 第1切換素子97、第2切換素子98及び第3切換素子99の何れか1つが短絡されると、第1トランジスタ94、第2トランジスタ95及び第3トランジスタ96は、カレントミラー回路を形成する。第1トランジスタ94、第2トランジスタ95及び第3トランジスタ96は、カレントミラー回路を形成することで、第1発光素子群91~第3発光素子群93に流れる第1電流I1、第2電流I2及び第3電流I3の電流値は、同一になる。 When any one of the first switching element 97, the second switching element 98, and the third switching element 99 is short-circuited, the first transistor 94, the second transistor 95, and the third transistor 96 form a current mirror circuit. The first transistor 94, the second transistor 95, and the third transistor 96 form a current mirror circuit, so that the first current I 1 and the second current I flow through the first light emitting element group 91 to the third light emitting element group 93. The current values of the second and third currents I 3 are the same.
 短絡される切換素子は、第1発光素子群91~第3発光素子群93のそれぞれの順電圧に応じて決定される。例えば、第1発光素子群91~第3発光素子群93の中で発光を開始するしきい値電圧が一番高い発光素子群に接続される切換素子が短絡されてもよい。しきい値電圧が一番高い発光素子群に接続される切換素子を短絡することで、発光時に流れる電流が一番小さい発光素子群に流れる電流に合わせた電流を第1発光素子群91~第3発光素子群93の全てに流すことができる。例えば、第1発光素子群91が発光を開始するしきい値電圧が第2発光素子群92及び第3発光素子群93が発光を開始するしきい値電圧よりも高いとき、第1発光素子群91に接続される第1切換素子97が短絡される。 The switching element to be short-circuited is determined according to the forward voltage of each of the first light emitting element group 91 to the third light emitting element group 93. For example, the switching element connected to the light emitting element group having the highest threshold voltage for starting light emission in the first light emitting element group 91 to the third light emitting element group 93 may be short-circuited. By short-circuiting the switching element connected to the light emitting element group having the highest threshold voltage, the current flowing in the light emitting element group having the smallest current during light emission is adjusted to the current flowing in the first light emitting element group 91 to No. It can flow through all of the three light emitting element groups 93. For example, when the threshold voltage at which the first light emitting element group 91 starts emitting light is higher than the threshold voltage at which the second light emitting element group 92 and the third light emitting element group 93 start emitting light, the first light emitting element group The first switching element 97 connected to 91 is short-circuited.
 (第6実施形態に係る発光装置の作用効果)
 発光時に第1発光素子群91~第3発光素子群93に流れる電流をしきい値電圧が一番高い発光素子群に流れる電流に合わせることで、第1発光素子群91~第3発光素子群93から出射される光を均一にすることができる。
(Action and effect of the light emitting device according to the sixth embodiment)
By matching the current flowing through the first light emitting element group 91 to the third light emitting element group 93 at the time of light emission with the current flowing through the light emitting element group having the highest threshold voltage, the first light emitting element group 91 to the third light emitting element group The light emitted from 93 can be made uniform.
 図18(a)は従来の発光装置の発光状態の一例を示す図であり、図18(b)は発光装置6の発光状態の一例を示す図である。図18(a)及び18(b)に示す図は、発光を開始するときなどの低電圧が印加されたときの発光状態を示す図である。 FIG. 18A is a diagram showing an example of a light emitting state of a conventional light emitting device, and FIG. 18B is a diagram showing an example of a light emitting state of the light emitting device 6. The figures shown in FIGS. 18A and 18B are diagrams showing a light emitting state when a low voltage is applied, such as when starting light emission.
 図18(a)に示す従来の発光装置では、発光を開始するしきい値電圧が発光素子列毎に相違するため、しきい値電圧が低い発光素子列のみが発光し、しきい値電圧が高い発光素子列は発光しない。 In the conventional light emitting device shown in FIG. 18A, since the threshold voltage at which light emission is started differs for each light emitting element row, only the light emitting element train having a low threshold voltage emits light, and the threshold voltage becomes high. High light emitting element rows do not emit light.
 図18(b)に示す発光装置6では、第1トランジスタ94~第3トランジスタ96により形成されるミラー回路により、第1発光素子群91~第3発光素子群93は、発光を同時に開始することができる。 In the light emitting device 6 shown in FIG. 18B, the first light emitting element group 91 to the third light emitting element group 93 simultaneously start light emission by the mirror circuit formed by the first transistor 94 to the third transistor 96. Can be done.
 (実施形態に係る発光装置の変形例)
 発光装置1~4は、緑色、青色及び赤色の光をそれぞれが出射する第1発光素子群11~第3発光素子群13を有するが、実施形態に係る発光装置は、2又は4以上の発光素子群を有してもよい。例えば、実施形態に係る発光装置は、暖色及び寒色のそれぞれの光を出射する2つの発光素子群を有してもよく、緑色、青色及び赤色に加えてアンバーの光を出射する4つの発光素子群を有してもよい。
(Modified example of the light emitting device according to the embodiment)
The light emitting devices 1 to 4 have a first light emitting element group 11 to a third light emitting element group 13 that emit green, blue, and red light, respectively, and the light emitting device according to the embodiment emits two or four or more lights. It may have a group of elements. For example, the light emitting device according to the embodiment may have two light emitting element groups that emit warm and cold colors, respectively, and four light emitting elements that emit amber light in addition to green, blue, and red. It may have a group.
 また、発光装置1~4では、基準電圧生成回路及び電流制御回路は発光素子群の最終段のLEDのカソードに接続されるが、実施形態に係る発光装置では、基準電圧生成回路及び電流制御回路は発光素子群の初段のLEDのアノードに接続されてもよい。 Further, in the light emitting devices 1 to 4, the reference voltage generation circuit and the current control circuit are connected to the cathode of the LED in the final stage of the light emitting element group, but in the light emitting device according to the embodiment, the reference voltage generation circuit and the current control circuit are connected. May be connected to the anode of the first stage LED of the light emitting element group.
 また、発光装置2では、第1発光素子群11が緑色の光を出射し、第2発光素子群12が青色の光を出射し、第3発光素子群13が赤色の光を出射するが、実施形態に係る発光装置では、第1発光素子群11~第3発光素子群13が出射される色は限定されない。実施形態に係る発光装置では、第1発光素子群11が青色の光を出射し、第2発光素子群12が赤色の光を出射し、第3発光素子群13が緑色の光を出射してもよい。また、第1発光素子群11が赤色の光を出射し、第2発光素子群12が緑色の光を出射し、第3発光素子群13が青色の光を出射してもよい。 Further, in the light emitting device 2, the first light emitting element group 11 emits green light, the second light emitting element group 12 emits blue light, and the third light emitting element group 13 emits red light. In the light emitting device according to the embodiment, the colors emitted from the first light emitting element group 11 to the third light emitting element group 13 are not limited. In the light emitting device according to the embodiment, the first light emitting element group 11 emits blue light, the second light emitting element group 12 emits red light, and the third light emitting element group 13 emits green light. May be good. Further, the first light emitting element group 11 may emit red light, the second light emitting element group 12 may emit green light, and the third light emitting element group 13 may emit blue light.
 また、発光装置2及び3では、第1分圧抵抗44及び第3分圧抵抗46並びに第1分圧抵抗54及び第3分圧抵抗56は、一体化されるが、実施形態に係る発光装置では、基準電圧生成回路が有する可変抵抗は、別個に形成されてもよい。 Further, in the light emitting devices 2 and 3, the first voltage dividing resistor 44 and the third voltage dividing resistor 46 and the first voltage dividing resistor 54 and the third voltage dividing resistor 56 are integrated, but the light emitting device according to the embodiment. Then, the variable resistor included in the reference voltage generation circuit may be formed separately.
 また、発光装置3では、可変抵抗と抵抗比率制御回路とが別個の素子として配置されるが、実施形態に係る発光装置では、可変抵抗及び抵抗比率制御回路は、IC化されたデジタルポテンショメータ等として一体化されてもよい。 Further, in the light emitting device 3, the variable resistance and the resistance ratio control circuit are arranged as separate elements, but in the light emitting device according to the embodiment, the variable resistance and the resistance ratio control circuit are used as an IC digital potentiometer or the like. It may be integrated.
 また、発光装置4では、基準電圧生成回路75は、出射する光の色を調整するために第1電流I1、第2電流I2及び第3電流I3の何れか2つの電流値を制御するための基準電圧を生成する。しかしながら、実施形態に係る発光装置では、基準電圧生成回路は、複数の発光素子列が同一の色の光を出射するとき、発光装置5と同様に複数の発光素子群の順電圧に応じて、電流値を制御する発光素子群を決定してもよい。 Further, in the light emitting device 4, the reference voltage generation circuit 75 controls any two current values of the first current I 1, the second current I 2 and the third current I 3 in order to adjust the color of the emitted light. Generate a reference voltage to do so. However, in the light emitting device according to the embodiment, when the plurality of light emitting element trains emit light of the same color, the reference voltage generation circuit responds to the forward voltage of the plurality of light emitting element groups as in the light emitting device 5. A group of light emitting elements that control the current value may be determined.
 実施形態に係る発光装置では、基準電圧生成回路は、順電圧が一番高い発光素子群に流れる電流の電流値を制御せず、他の発光素子群に流れる電流の電流値を制御する。基準電圧生成回路は、流れる電流の電流値を制御する発光素子群に対応して配置される電流制御回路に、電流値を制御する発光素子列に流れる電流の一番低い発光素子群に流れる電流の電流値と一致するように、基準電圧を生成する。 In the light emitting device according to the embodiment, the reference voltage generation circuit does not control the current value of the current flowing through the light emitting element group having the highest forward voltage, but controls the current value of the current flowing through the other light emitting element group. The reference voltage generation circuit is a current control circuit arranged corresponding to a light emitting element group that controls the current value of the flowing current, and a current flowing in the light emitting element group having the lowest current flowing in the light emitting element string that controls the current value. Generate a reference voltage to match the current value of.
 また、発光装置6は、第1発光素子群91~第3発光素子群93を有するが、実施形態に係る発光装置は、2又は4以上の発光素子群を有してもよい。また、実施形態に係る発光装置では、第1トランジスタ94~第3トランジスタ96及び第1切換素子97~第3切換素子99は、第1発光素子群91~第3発光素子群93の初段のLEDのアノードに接続されてもよい。 Further, the light emitting device 6 has a first light emitting element group 91 to a third light emitting element group 93, but the light emitting device according to the embodiment may have two or four or more light emitting element groups. Further, in the light emitting device according to the embodiment, the first transistor 94 to the third transistor 96 and the first switching element 97 to the third switching element 99 are the first-stage LEDs of the first light emitting element group 91 to the third light emitting element group 93. It may be connected to the anode of.
 また、発光装置6では、第1切換素子97~第3切換素子99は、第1トランジスタ94~第3トランジスタ96のそれぞれのベースとコレクタとの間を短絡可能なように形成される。しかしながら、実施形態に係る発光装置では、複数の切換素子は、複数のトランジスタのそれぞれのベースとコレクタとの間を解放可能なように形成されてもよい。複数の切換素子は、例えば複数の切換素子を形成する配線パターンを、レーザ照射装置等の配線パターン切断装置で切断することにより、複数のトランジスタのそれぞれのベースとコレクタとの間を解放される。 Further, in the light emitting device 6, the first switching element 97 to the third switching element 99 are formed so that the base and the collector of the first transistor 94 to the third transistor 96 can be short-circuited. However, in the light emitting device according to the embodiment, the plurality of switching elements may be formed so as to be able to release the space between the base and the collector of the plurality of transistors. The plurality of switching elements are released between the base and the collector of each of the plurality of transistors by, for example, cutting the wiring pattern forming the plurality of switching elements with a wiring pattern cutting device such as a laser irradiation device.

Claims (18)

  1.  一対の電極対と、
     前記一対の電極対から電流が供給されたときに、光を出射する第1発光素子群と、
     前記第1発光素子群に並列接続され、前記一対の電極対から電流が供給されたときに、光を出射する第2発光素子群と、
     前記第1発光素子群に流れる第1電流の電流値と前記第2発光素子群に流れる第2電流の電流値が所定の比率となるように、前記第1電流及び前記第2電流の電流値の一方を制御するために使用される基準電圧を生成する基準電圧生成回路と、
     前記基準電圧に基づいて、前記第1電流及び前記第2電流の一方を制御し、前記第1電流及び前記第2電流の他方を制御しない電流制御回路と、
     を有することを特徴とする発光装置。
    A pair of electrodes and
    A group of first light emitting elements that emit light when a current is supplied from the pair of electrodes,
    A second light emitting element group that is connected in parallel to the first light emitting element group and emits light when a current is supplied from the pair of electrode pairs.
    The current values of the first current and the second current so that the current value of the first current flowing through the first light emitting element group and the current value of the second current flowing through the second light emitting element group have a predetermined ratio. A reference voltage generator that generates a reference voltage used to control one of them,
    A current control circuit that controls one of the first current and the second current based on the reference voltage and does not control the other of the first current and the second current.
    A light emitting device characterized by having.
  2.  前記基準電圧は、前記第2電流の電流値を制御するために使用される第2基準電圧を含み、
     前記電流制御回路は、前記第2基準電圧に基づいて、前記第2電流の電流値が前記第1電流の電流値に対して所定の比率となるように、前記第2電流を制御する第2電流制御回路を含む、請求項1に記載の発光装置。
    The reference voltage includes a second reference voltage used to control the current value of the second current.
    The current control circuit controls the second current based on the second reference voltage so that the current value of the second current becomes a predetermined ratio with respect to the current value of the first current. The light emitting device according to claim 1, further comprising a current control circuit.
  3.  前記第1発光素子群は、第1の色の光を出射し、
     前記第2発光素子群は、前記第1の色と異なる第2の色の光を出射する、請求項2に記載の発光装置。
    The first light emitting element group emits light of the first color and emits light of the first color.
    The light emitting device according to claim 2, wherein the second light emitting element group emits light of a second color different from the first color.
  4.  前記第1発光素子群及び前記第2発光素子群に並列接続され、前記一対の電極対から電流が供給されたときに、前記第1の色及び前記第2の色の何れとも異なる第3の色の光を出射する第3発光素子群と、
     前記第3発光素子群に流れる第3電流の電流値が前記第1電流の電流値に対して所定の比率となるように、前記第3電流を制御する第3電流制御回路と、を更に有し、
     前記基準電圧は、前記第3電流の電流値を制御するために使用される第3基準電圧を更に含む、請求項3に記載の発光装置。
    A third color that is connected in parallel to the first light emitting element group and the second light emitting element group and is different from any of the first color and the second color when a current is supplied from the pair of electrodes. A third light emitting element group that emits colored light,
    Further, there is a third current control circuit that controls the third current so that the current value of the third current flowing through the third light emitting element group becomes a predetermined ratio with respect to the current value of the first current. death,
    The light emitting device according to claim 3, wherein the reference voltage further includes a third reference voltage used for controlling the current value of the third current.
  5.  前記基準電圧生成回路は、前記第1発光素子群に直列接続された第2抵抗対を有し、前記第2抵抗対により分圧された分圧電圧を前記第2基準電圧として前記第2電流制御回路に出力する、請求項4に記載の発光装置。 The reference voltage generation circuit has a second resistance pair connected in series with the first light emitting element group, and the voltage division voltage divided by the second resistance pair is used as the second reference voltage as the second current. The light emitting device according to claim 4, which outputs to a control circuit.
  6.  前記第2抵抗対に含まれる一方の抵抗は、可変抵抗である、請求項5に記載の発光装置。 The light emitting device according to claim 5, wherein one of the resistors included in the second resistor pair is a variable resistor.
  7.  前記第2電流制御回路は、
     第2発光素子群の最終段の発光素子に一端が接続された第2スイッチと、
     前記第2スイッチの他端に一端が接続された第2検出抵抗と、
     入力される前記第2基準電圧と、前記第2検出抵抗に印加される第2検出電圧とを比較して、前記第2基準電圧が前記第2検出電圧と一致するように、前記第2スイッチを制御する第2コンパレータと、
     を有する、請求項5又は6に記載の発光装置。
    The second current control circuit is
    The second switch, one end of which is connected to the light emitting element in the final stage of the second light emitting element group,
    A second detection resistor with one end connected to the other end of the second switch,
    The second switch is compared with the input second reference voltage and the second detection voltage applied to the second detection resistor so that the second reference voltage matches the second detection voltage. The second comparator that controls
    The light emitting device according to claim 5 or 6.
  8.  前記基準電圧生成回路は、前記第2抵抗対に並列接続された第3抵抗対を更に有し、前記第3抵抗対により分圧された分圧電圧を前記第3基準電圧として前記第3電流制御回路に出力する、請求項5~7の何れか一項に記載の発光装置。 The reference voltage generation circuit further has a third resistance pair connected in parallel to the second resistance pair, and the divided voltage divided by the third resistance pair is used as the third reference voltage as the third current. The light emitting device according to any one of claims 5 to 7, which outputs to a control circuit.
  9.  前記第3抵抗対に含まれる一方の抵抗は、可変抵抗である、請求項8に記載の発光装置。 The light emitting device according to claim 8, wherein one of the resistors included in the third resistor pair is a variable resistor.
  10.  前記第1発光素子群、前記第2発光素子群及び前記第3発光素子群に並列接続され、前記一対の電極対から電流が供給されたときに、前記第1の色、前記第2の色及び前記第3の色の何れとも異なる第4の色の光を出射する第4発光素子群と、
     前記第4発光素子群に流れる第4電流の電流値が前記第1電流の電流値に対して所定の比率となるように、前記第3電流を制御する第4電流制御回路と、を更に有し、
     前記基準電圧は、前記第4電流の電流値を制御するために使用される第4基準電圧を更に含み、
     前記第1の色の光は、白色である、請求項4に記載の発光装置。
    When the first light emitting element group, the second light emitting element group, and the third light emitting element group are connected in parallel and a current is supplied from the pair of electrode pairs, the first color and the second color are used. And a fourth light emitting element group that emits light of a fourth color different from any of the third colors, and
    Further, there is a fourth current control circuit that controls the third current so that the current value of the fourth current flowing through the fourth light emitting element group becomes a predetermined ratio with respect to the current value of the first current. death,
    The reference voltage further includes a fourth reference voltage used to control the current value of the fourth current.
    The light emitting device according to claim 4, wherein the light of the first color is white.
  11.  前記基準電圧生成回路は、
     前記第1電流の電流値が前記第2電流の電流値に対して所定の比率となるように、前記第1電流を制御可能な第1電流制御回路と、
     前記第2電流の電流値が前記第1電流の電流値に対して所定の比率となるように、前記第2電流を制御可能な第2電流制御回路と、を含み、
     前記基準電圧生成回路は、前記第1電流及び前記第2電流の一方の電流値が、前記第1電流及び前記第2電流の他方の電流値に対して所定の比率となるように、前記基準電圧を生成する、請求項1に記載の発光装置。
    The reference voltage generation circuit is
    A first current control circuit capable of controlling the first current so that the current value of the first current becomes a predetermined ratio with respect to the current value of the second current.
    A second current control circuit capable of controlling the second current so that the current value of the second current has a predetermined ratio to the current value of the first current is included.
    The reference voltage generation circuit uses the reference voltage so that one of the first current and the second current has a predetermined ratio to the other current values of the first current and the second current. The light emitting device according to claim 1, which generates a voltage.
  12.  前記第1発光素子群は、第1の色の光を出射し、
     前記第2発光素子群は、前記第1の色と異なる第2の色の光を出射する、請求項11に記載の発光装置。
    The first light emitting element group emits light of the first color and emits light of the first color.
    The light emitting device according to claim 11, wherein the second light emitting element group emits light of a second color different from the first color.
  13.  電流値が制御される前記第1発光素子群及び前記第2発光素子群の一方の順電圧は、電流値が制御されない前記第1発光素子群及び前記第2発光素子群の他方の順電圧よりも低く、
     前記基準電圧生成回路は、前記第1電流及び前記第2電流の電流値が所望の値になるように、前記基準電圧を生成する、請求項11に記載の発光装置。
    The forward voltage of one of the first light emitting element group and the second light emitting element group whose current value is controlled is higher than the other forward voltage of the first light emitting element group and the second light emitting element group whose current value is not controlled. Also low,
    The light emitting device according to claim 11, wherein the reference voltage generation circuit generates the reference voltage so that the current values of the first current and the second current become desired values.
  14.  一対の電極対と、
     並列接続され、前記一対の電極対から電流が供給されたときに、それぞれが光を出射する複数の発光素子群と、
     前記複数の発光素子群のそれぞれにコレクタ及びエミッタの何れか一方が接続された複数のトランジスタと、
     前記複数のトランジスタのそれぞれのベースとコレクタとの間を短絡又は解放する切換素子と、
     を有することを特徴とする発光装置。
    A pair of electrodes and
    A group of light emitting elements that are connected in parallel and emit light when a current is supplied from the pair of electrodes.
    A plurality of transistors in which either a collector or an emitter is connected to each of the plurality of light emitting elements, and a plurality of transistors.
    A switching element that short-circuits or releases between the base and collector of each of the plurality of transistors,
    A light emitting device characterized by having.
  15.  前記複数のトランジスタの何れか1つは前記切換素子を介してベースとコレクタとの間が短絡され、前記複数のトランジスタの他のトランジスタは前記切換素子を介してベースとコレクタとの間が開放される、請求項14に記載の発光装置。 One of the plurality of transistors is short-circuited between the base and the collector via the switching element, and the other transistors of the plurality of transistors are opened between the base and the collector via the switching element. The light emitting device according to claim 14.
  16.  前記切換素子を介してベースとコレクタとの間が短絡されたトランジスタに直列接続された前記発光素子群の順電圧は、ベースとコレクタとの間が開放されたトランジスタに直列接続された前記発光素子群の順電圧よりも高い、請求項15に記載の発光装置。 The forward voltage of the light emitting element group connected in series to the transistor in which the base and the collector are short-circuited via the switching element is the light emitting element connected in series to the transistor in which the base and the collector are opened. The light emitting device according to claim 15, which is higher than the forward voltage of the group.
  17.  前記基準電圧生成回路は、前記第1発光素子群に直列接続され第2抵抗対、及び前記第2抵抗対に並列接続された第3抵抗対を有し、
     前記第2抵抗対及び前記第3抵抗対のそれぞれの一方の抵抗は、前記第2抵抗対の他方に接続される第1接点、前記第3抵抗対の他方に接続される第2接点、前記第1接点と前記第2接点との間に配置される抵抗体、前記抵抗体の任意の場所に接続可能な可動接点、及び前記可動接点に接続される第3接点により一体化される、請求項4に記載の発光装置。
    The reference voltage generation circuit has a second resistance pair connected in series to the first light emitting element group and a third resistance pair connected in parallel to the second resistance pair.
    The resistance of each of the second resistance pair and the third resistance pair is a first contact connected to the other of the second resistance pair, a second contact connected to the other of the third resistance pair, and the above. A claim that is integrated by a resistor arranged between the first contact and the second contact, a movable contact that can be connected to an arbitrary location of the resistor, and a third contact that is connected to the movable contact. Item 4. The light emitting device according to item 4.
  18.  内歯車が形成される操作部材と、
     円柱状の軸部、前記軸部の一端に配置され、前記内歯車に螺合される第1歯車、及び前記軸部の一端に配置される第2歯車を有する回転部材と、
     前記第2歯車に螺合される第3歯車を有し、前記第3歯車が回転することに応じて、第2発光素子群に流れる電流の比率と、第3発光素子群に流れる電流の比率とを調整する電流調整部と、
     請求項17に記載の発光装置と、を有し、
     第1方向に前記操作部材が回転されることに応じて前記第3歯車が回転すると、前記可動接点は、前記第1分圧抵抗が減少し且つ前記第3分圧抵抗が増加するように移動し、
     前記第1方向に反対の第2方向に前記操作部材が回転されることに応じて前記第3歯車が回転すると、前記可動接点は、前記第1分圧抵抗が増加し且つ前記第3分圧抵抗が減少するように移動する、照明装置。
    The operating member on which the internal gear is formed and
    A rotating member having a columnar shaft portion, a first gear arranged at one end of the shaft portion and screwed into the internal gear, and a second gear arranged at one end of the shaft portion.
    It has a third gear screwed into the second gear, and the ratio of the current flowing through the second light emitting element group to the ratio of the current flowing through the third light emitting element group according to the rotation of the third gear. The current adjuster that adjusts and
    The light emitting device according to claim 17,
    When the third gear rotates in response to the rotation of the operating member in the first direction, the movable contact moves so that the first voltage dividing resistance decreases and the third voltage dividing resistance increases. death,
    When the third gear rotates in response to the rotation of the operating member in the second direction opposite to the first direction, the movable contact has the first partial pressure resistance increased and the third partial pressure. A luminaire that moves to reduce resistance.
PCT/JP2021/009026 2020-03-09 2021-03-08 Light-emitting device and illumination device WO2021182408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022507185A JP7321358B2 (en) 2020-03-09 2021-03-08 Light emitting device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040040 2020-03-09
JP2020040040 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182408A1 true WO2021182408A1 (en) 2021-09-16

Family

ID=77671811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009026 WO2021182408A1 (en) 2020-03-09 2021-03-08 Light-emitting device and illumination device

Country Status (2)

Country Link
JP (1) JP7321358B2 (en)
WO (1) WO2021182408A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037407A1 (en) * 2009-08-14 2011-02-17 Ahn Byunghak Led light emitting device
US20120200229A1 (en) * 2011-02-07 2012-08-09 Cypress Semiconductor Corporation Mutli-string led current control system and method
JP2014507711A (en) * 2011-01-12 2014-03-27 シティー ユニバーシティ オブ ホンコン Current balancing circuit and method
JP2016129126A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Illumination system and illumination equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037407A1 (en) * 2009-08-14 2011-02-17 Ahn Byunghak Led light emitting device
JP2014507711A (en) * 2011-01-12 2014-03-27 シティー ユニバーシティ オブ ホンコン Current balancing circuit and method
US20120200229A1 (en) * 2011-02-07 2012-08-09 Cypress Semiconductor Corporation Mutli-string led current control system and method
JP2016129126A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Illumination system and illumination equipment

Also Published As

Publication number Publication date
JP7321358B2 (en) 2023-08-04
JPWO2021182408A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9622316B2 (en) Light emitting diode replacement lamp
JP5454171B2 (en) Drive circuit for semiconductor light source of vehicle lamp, vehicle lamp
US9232602B2 (en) Color temperature adjustment for LED lamps using switches
US7946730B2 (en) Light emitting diode replacement lamp
EP2486775B1 (en) Solid state lighting devices including thermal management and related methods
WO1999057945A1 (en) A lamp employing a monolithic led device
JP2005100799A (en) Variable color light emitting diode module and variable color light emitting diode luminaire
JP2014157744A (en) Light emitting circuit, light emitting module and lighting apparatus
US11428394B2 (en) Light board for lighting fixture
US11006496B2 (en) LED lamp with current-regulated warm dimming
WO2021182408A1 (en) Light-emitting device and illumination device
TW202027561A (en) Techniques for color control in dimmable lighting devices and related systems and methods
EP2820351B1 (en) Led lighting arrangement
JP6481245B2 (en) Light emitting device
JP6536967B2 (en) Light emitting device and lighting device
JP2001067910A (en) Illuminating lamp using light emitting element
TWI725301B (en) Lighting fixtures
JP2021057196A (en) Light source module and lighting device
TW202007242A (en) Light fixture with dynamically controllable light distribution
JP2019175715A (en) Led illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768349

Country of ref document: EP

Kind code of ref document: A1