WO2021182320A1 - Electrode for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
WO2021182320A1
WO2021182320A1 PCT/JP2021/008654 JP2021008654W WO2021182320A1 WO 2021182320 A1 WO2021182320 A1 WO 2021182320A1 JP 2021008654 W JP2021008654 W JP 2021008654W WO 2021182320 A1 WO2021182320 A1 WO 2021182320A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
electrode
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2021/008654
Other languages
French (fr)
Japanese (ja)
Inventor
信行 是津
手嶋 勝弥
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Priority to JP2022507136A priority Critical patent/JPWO2021182320A1/ja
Publication of WO2021182320A1 publication Critical patent/WO2021182320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to electrodes for lithium ion secondary batteries and lithium ion secondary batteries.
  • the present application claims priority based on Japanese Patent Application No. 2020-041660 filed in Japan on March 11, 2020, the contents of which are incorporated herein by reference.
  • a non-aqueous electrolyte type secondary battery such as a lithium ion battery
  • This lithium ion battery is composed of a positive electrode and a negative electrode having a property of reversibly inserting and removing lithium ions, and a non-aqueous electrolyte.
  • Lithium composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use as small power sources for mobile phones and notebook computers.
  • application is being attempted to medium- and large-sized power sources such as automobile applications and power storage applications. As the range of application is expanded in this way, extending the life of the lithium secondary battery is an important issue.
  • an LNMO type composite oxide containing, for example, lithium, nickel, manganese and oxygen is used as the lithium composite oxide used as the positive electrode active material. Since the LNMO type composite oxide can be used at a high potential and has high safety, its application to large batteries is progressing, and attempts are being made to increase the capacity. For example, in order to improve the capacity of a battery using an LNMO type lithium composite oxide, it is described that the content of additives is reduced to produce a dense lithium composite oxide film having few voids (Patent Document). 1).
  • the LNMO type composite oxide has an advantage that it can be used at a high potential, there is a problem that a metal element is eluted into the electrolytic solution during high potential operation and the battery is deteriorated. Therefore, an electrode having a coating layer of a water-repellent material on the surface of the electrode active material has been proposed (Patent Document 2).
  • An object of the present invention is a method for manufacturing an electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a positive electrode for a lithium ion secondary battery, which can further suppress battery deterioration and improve battery characteristics as compared with the conventional case. To provide.
  • the present inventors can select a molecule having various functions as a coating layer formed on the surface of the electrode active material, and elution or electrolysis of the above metal element depends on the function of a specific molecule. It has been found that the effectiveness of the coating layer against the oxidative decomposition of the liquid is determined. In particular, by using a coating layer suitable for the surface of a positive electrode active material composed of lithium cobalt oxide (LCO), nickel-cobalt-lithium manganate (NCM), or nickel-cobalt-lithium aluminate (NCA), It has been found that the deterioration of the lithium ion secondary battery can be further suppressed and the battery characteristics can be improved.
  • LCO lithium cobalt oxide
  • NCM nickel-cobalt-lithium manganate
  • NCA nickel-cobalt-lithium aluminate
  • the gist structure of the present invention is as follows. [1] A current collector and an electrode active material-containing layer provided on the current collector are provided.
  • the electrode active material-containing layer has an electrode active material and a coating layer provided on the surface of the electrode active material.
  • the electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
  • the coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
  • the first coating contains an aminosilane compound having an amino group at the end of the molecule.
  • the lithium ion secondary according to the above [1], wherein the second coating portion contains a compound having a functional group selected from the group consisting of a carboxylic acid, a carboxylic acid salt, a carboxylic acid anhydride, a succinic anhydride and an acylisourea. Battery electrode.
  • the electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
  • the coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
  • the first coating contains an aminosilane compound having an amino group at the end of the molecule.
  • the lithium composite oxide having a layered rock salt type structure is one of lithium cobalt oxide (LCO), nickel-cobalt-lithium manganate (NCM), and nickel-cobalt-lithium aluminate (NCA).
  • LCO lithium cobalt oxide
  • NCM nickel-cobalt-lithium manganate
  • NCA nickel-cobalt-lithium aluminate
  • a lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to any one of the above [1] to [10] and an electrolyte.
  • an electrode for a lithium ion secondary battery and a lithium ion secondary battery capable of further suppressing battery deterioration and improving battery characteristics as compared with the conventional case.
  • FIG. 1 is a diagram showing an example of a configuration of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the cycle characteristics of the lithium ion secondary battery in Examples and Comparative Examples.
  • FIG. 3 is a diagram showing the relationship between the heating time at the time of forming the coating layer and the cycle characteristics in the examples.
  • FIG. 4 is a diagram showing the characteristic evaluation of the positive electrode by the floating test in the example.
  • FIG. 5 (a) is an electron microscope image of the electrode active material in the example
  • FIG. 5 (b) is an electron microscope image of the electrode active material in the comparative example.
  • the electrode for a lithium ion secondary battery according to the present embodiment includes a current collector and an electrode active material-containing layer provided on the current collector.
  • the current collector is composed of, for example, a metal foil.
  • Metal foil is suitable for use in batteries of various shapes such as cylindrical, square and laminated.
  • Carbon may be vapor-deposited on the surface of the current collector in order to further enhance the adhesion between the electrode active material and the current collector.
  • an aluminum foil can be used as the current collector on the positive electrode side.
  • the current collector is preferably hydrophilized by surface treatment. Since the surface of the current collector is made hydrophilic, hydrogen bonds are easily formed when the electrode-forming slurry is dried, and an electrode having high adhesive strength can be obtained. Examples of the hydrophilization treatment on the surface of the current collector include a method of irradiating ultraviolet rays (UV) in an ozone (O 3 ) atmosphere (UV / O 3 treatment).
  • UV ultraviolet rays
  • O 3 ozone
  • the electrode active material-containing layer includes an electrode active material and a coating layer provided on the surface of the electrode active material.
  • the electrode active material contains a lithium composite oxide having a layered rock salt type structure.
  • the term "layered” as used herein means a thin sheet-like shape.
  • the "rock salt type structure” is a sodium chloride type structure which is one of the crystal structures, and the face-centered cubic lattice formed by each of the cations and anions is 1 / of the ridge of the unit cell. Refers to a structure that is offset by 2.
  • the lithium composite oxide includes lithium cobalt oxide (hereinafter, also referred to as “LCO”), nickel-cobalt-lithium manganate (hereinafter, also referred to as “NCM”), and nickel-cobalt-lithium aluminate (hereinafter, also referred to as “NCM”).
  • LCO lithium cobalt oxide
  • NCM nickel-cobalt-lithium manganate
  • NCM nickel-cobalt-lithium aluminate
  • it is preferably one of (also referred to as "NCA”).
  • nickel-cobalt-lithium manganate (NCM) or nickel-cobalt-lithium aluminate (NCA) is more preferable.
  • the lithium salt of the above-mentioned ternary transition metal oxide having a layered rock salt type structure as the electrode active material, it is possible to obtain a lithium ion secondary battery having excellent energy density and thermal stability.
  • the particles of the lithium salt of the ternary transition metal oxide such as NCM and NCA have a smaller particle size and a larger specific surface area (about 10 times) than the particles of LCO and the like. As a result, the contact area between the active material particles and the electrolyte can be increased.
  • the effect of suppressing the reaction between the electrode active material and the electrolyte becomes remarkable due to the coating layer, and the conductivity of lithium ions between the active material particles and the electrolyte is improved as compared with the case where this configuration is not adopted.
  • the power of the lithium ion secondary battery can be increased.
  • the electrode active material contains Ni as a constituent element.
  • the capacity density of the lithium ion secondary battery tends to increase, and the elution of metal elements in the charged state tends to decrease.
  • the long-term reliability of the lithium ion secondary battery in the charged state can be improved and the cycle characteristics of the lithium ion secondary battery can be improved as compared with the case where this configuration is not adopted.
  • the electrode active material may have a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
  • the first electrode active material particles are, for example, primary particles.
  • the second electrode active material particles may be primary particles or secondary particles.
  • the particle size of the first electrode active material particles is preferably 0.1 ⁇ m or more and 4 ⁇ m or less, and more preferably 0.7 ⁇ m or more and 2 ⁇ m or less.
  • the particle size of the second electrode active material particles is preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 6 ⁇ m or more and 15 ⁇ m or less.
  • the material constituting the first electrode active material particles may be the same as or different from the material constituting the second electrode active material particles.
  • the material constituting the first electrode active material particles is NCM
  • the material constituting the second electrode active material particles may be NCM or NCA.
  • the shape of the first electrode active material particles may be the same as or different from the shape of the second electrode active material particles.
  • the coating layer contains an aminosilane compound having an amino group at the end of the molecule, having at least one ethyleneimine group, or having a dialkylamino group.
  • This coating layer is preferably composed of a self-assembled monolayer (SAM).
  • SAM self-assembled monolayer
  • the self-assembled monomolecular film is formed by using an organic molecule having a functional group forming a predetermined chemical bond as a terminal group with respect to the electrode active material to form a chemical bond with the electrode active material.
  • An anchored organic molecule is regulated from the surface of the electrode active material and interacts with each other to form a monomolecular film in an orderly arrangement.
  • the coating layer on the surface of the electrode active material in this way, the elution of the metal element into the electrolytic solution can be suppressed by the coating even when the electrode active material is operated at a high voltage, whereby the elution of the metal element into the electrolytic solution can be suppressed. It is possible to suppress a decrease in capacity due to elution of the metal element of the electrode active material.
  • the movement of molecules is restricted to some extent, but if the coating layer contains an aminosilane compound having an amino group at the end of the molecule, the amino group capable of capturing lithium ions by one molecule acts effectively.
  • the activation energy required for desolvation of the solvated lithium ions in the electrolytic solution can be obtained. It is possible to reduce the amount and realize high efficiency of lithium ion transport at the interface between the electrode active material and the electrolytic solution.
  • a monomolecular film with high crystallinity such as a monomolecular film composed of linear molecules such as an alkyl group or a fluoroalkyl group always accompanies the formation of defects at the same time as crystallization, whereas ethyleneimine in the molecular chain.
  • the aminosilane compound is active because it reacts with an acid-base reaction with a carboxylic acid and a salt thereof, a carboxylic acid anhydride, a succinic anhydride or acylisourea nucleophilically, and easily forms an imide bond even at room temperature.
  • the amino group at the molecular end of the monomolecular film coated on the surface of the substance can easily immobilize the compound having the functional group. Therefore, by coating the surface of the active material with the aminosilane compound, a compound having a functional group such as a carboxylic acid and a salt thereof, a carboxylic acid anhydride, a succinic anhydride, or an acylisourea can be immobilized on the surface of the active material.
  • Examples of the compound to be immobilized include secondary electrode active material particles having different particle diameters and morphologies, solid electrolyte particles, strong dielectric particles, polymer binders such as sodium carboxymethyl cellulose and styrene butadiene copolymer, polyacrylic acid, and polyvinylidene fluoride.
  • Examples thereof include, but are not limited to, conductive aids made of carbon materials such as acetylene black, carbon nanotubes, graphene, and hetero-nanocarbon.
  • the aminosilane compound having an amino group at the molecular terminal is not particularly limited, and examples thereof include (3-aminopropyl) triethoxysilane (hereinafter, also referred to as “APTES”) as shown below.
  • APTES (3-aminopropyl) triethoxysilane
  • the aminosilane compound has an amino group at the molecular terminal and at least one ethyleneimine group.
  • an aminosilane compound is not particularly limited, but for example, as shown below, N- (6-aminohexyl) aminomethyltriethoxysilane (hereinafter, also referred to as "AHAMETES”), N- (3-tri), N- (3-tri).
  • AHAMETES N- (6-aminohexyl) aminomethyltriethoxysilane
  • DAEAPTS Methoxysilylpropyl diethylenetriamine
  • the aminosilane compound having a dialkylamino group is not particularly limited, and examples thereof include N, N-diethylaminopropyltrimethoxysilane (hereinafter, also referred to as “SID”) as shown below.
  • SID N, N-diethylaminopropyltrimethoxysilane
  • the reaction related to the deinsertion and insertion of lithium ions is uniformly carried out over the entire surface of the electrode active material. For this reason, it is preferable that 80% or more, more preferably 85% or more, still more preferably 90% or more of the surface of the electrode active material is covered with the coating layer.
  • the coverage of the coating layer can be measured using a transmission electron microscope (TEM), an energy dispersive X-ray spectrometer (EDX), and an X-ray photoelectron spectroscopy (XPS).
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray spectrometer
  • XPS X-ray photoelectron spectroscopy
  • the ratio of the portion of the surface of the active material covered by the coating layer is calculated and used as the coverage ratio.
  • the ratio of the portion of the surface of the electrode active material covered by the coating layer is calculated from the surface atomic concentration measurement, and the coverage is obtained. Consistency with may be considered.
  • the average thickness of the coating layer is preferably 0.5 nm or more and 0.3 ⁇ m or less, more preferably 0.5 nm or more and 0.1 ⁇ m or less, and further preferably 0.5 nm or more and 10 nm or less. It is particularly preferably 0.8 nm or more and 6.0 nm or less, and most preferably 1.0 nm or more and 3.0 nm or less.
  • the average thickness can be calculated based on the angle-resolved core level spectrum of the coating layer on the surface of the electrode active material measured by X-ray photoelectron spectroscopy (XPS). Alternatively, it can be measured by wavelength / angle-resolved ellipsometry or an atomic force microscope.
  • the coating layer is the first electrode active material. It may have a first coating portion provided on the surface of the material particles and a second coating portion provided on the surface of the second electrode active material particles. At this time, the mass ratio of the first electrode active material particles on which the first coating portion is formed and the second electrode active material particles on which the second coating portion is formed is 15 to 0.5: 85 to 99.5. Is preferable, and 10 to 1: 90 to 99 is more preferable.
  • the average thickness of the first coating may be the same as or different from the average thickness of the second coating.
  • the average thickness of the first coating portion is preferably 0.5 nm or more and 10 nm or less, and more preferably 0.5 nm or more and 10 nm or less.
  • the average thickness of the second coating portion is preferably 0.5 nm or more and 0.3 ⁇ m, and more preferably 2 nm or more and 0.1 ⁇ m or less.
  • the material constituting the first coating portion may be the same as or different from the material constituting the second coating portion.
  • the first coating contains, for example, an aminosilane compound having an amino group at the molecular terminal
  • the second coating is a carboxylic acid.
  • Carboxylic acid anhydride, succinic anhydride and acylisourea preferably contain a compound having a functional group selected from the group.
  • succinic anhydride include 3-triethoxysilylpropyl succinic anhydride (hereinafter, also referred to as “TPSA”), as shown below.
  • the compound having a functional group constituting the second coating portion is easily immobilized on the amino group at the molecular terminal in the aminosilane compound constituting the first coating portion.
  • the first electrode active material particles can be selectively accumulated in the gaps between the particles of the second electrode active material particles, and the energy density can be further increased.
  • the first coating portion contains, for example, an aminosilane compound having an amino group at the molecular terminal
  • the second coating portion contains. It is preferably an imide compound.
  • the imide compound include polyimide (PI), polyetherimide (PEI), and polyamideimide (PAI).
  • the first electrode active material particles can be selectively accumulated by the gaps between the particles of the second electrode active material particles, and the loss of energy density can be minimized due to the weight increase due to the second coating portion.
  • the capacity retention rate associated with the charge / discharge cycle can be maintained at a higher level.
  • the coating layer can be formed by surface-treating the electrode active material with the above-mentioned silane coupling agent containing an aminosilane compound.
  • a coating layer is formed on the surface of the primary particles and / or the secondary particles of the lithium composite oxide.
  • the timing of forming the coating layer on the surface of the electrode active material is not particularly limited, but from the viewpoint of uniformly forming the coating layer on the surface of the electrode active material, the coating layer is formed on the surface of the electrode active material before the production of the electrode. It is preferable to form.
  • a coating layer may be formed on the surface of the mixture after mixing the electrode active material and another mixture, or an electrode may be manufactured in advance and a coating layer may be formed on the surface of the mixture electrode. It may be formed.
  • a coating layer containing the above-mentioned aminosilane compound is formed on the surface of the electrode active material, and an electrode for a lithium ion secondary battery having the electrode active material-containing layer can be obtained.
  • the method for forming the coating layer is not particularly limited, and examples thereof include a coating method, a vapor phase method, and a liquid phase method.
  • the liquid phase method or the gas phase method is preferable, and the liquid phase method is more preferable.
  • a polar solvent such as NMP (N-methylpyrrolidinone)
  • the electrode having a low Ni content is not so high.
  • a solvent such as ethanol or isopropanol is used.
  • the vapor phase method include a vacuum deposition method, a sputtering method, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the lithium ion secondary battery according to the present embodiment includes the above-mentioned electrode for a lithium ion secondary battery and an electrolyte.
  • This secondary battery can have the same configuration as a conventional or known secondary battery except that it has the above electrodes.
  • FIG. 1 is a diagram showing an example of the configuration of a lithium ion secondary battery according to the present embodiment.
  • the lithium ion secondary battery 1 is a coin-type secondary battery and includes a positive electrode 2, a negative electrode 3, and an electrolyte 4.
  • the positive electrode 2 includes a current collector 21 and an electrode active material-containing layer 22 provided on the current collector 21.
  • the negative electrode 3 includes a current collector 31 and an electrode active material-containing layer 32 provided on the current collector 31.
  • the electrolyte 4 is, for example, an electrolytic solution.
  • the lithium ion secondary battery 1 is a stainless steel positive electrode side case 6 in which the separator 5 provided between the positive electrode 2 and the negative electrode 3 and the positive electrode 2, the negative electrode 3 and the electrolyte 4 are housed in cooperation with each other. And the negative electrode side case 7, and the polypropylene gasket 8 between the positive electrode side case 6 and the negative electrode side case 7 and interposed around the outer peripheral portions thereof can be provided.
  • the electrode active material-containing layer 22 of the positive electrode 2 contains the above-mentioned electrode active material and coating layer according to the present embodiment.
  • the positive electrode 2 is not particularly limited except that it has the electrode active material-containing layer 22.
  • the positive electrode 2 can be produced, for example, by adjusting a positive electrode mixture containing the above lithium composite oxide, a conductive material and a binder.
  • a carbon material can be used as the conductive material of the positive electrode.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to improve the conductivity inside the positive electrode by adding a small amount to the positive electrode mixture to improve charge / discharge efficiency and output characteristics, but if too much is added, it depends on the binder. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
  • thermoplastic resin As the binder contained in the positive electrode, a thermoplastic resin can be used.
  • this thermoplastic resin include polyvinylidene fluoride (hereinafter, also referred to as PVDF), polytetrafluoroethylene (hereinafter, also referred to as PTFE), ethylene tetrafluoride, propylene hexafluoride, vinylidene fluoride-based copolymer, and hexafluoride.
  • Fluororesin such as propylene fluoride / vinylidene fluoride copolymer, ethylene tetrafluoride / perfluorovinyl ether copolymer; polyolefin resin such as polyethylene and polypropylene; can be mentioned.
  • the organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate.
  • Ester-based solvents such as dimethylacetamide, amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP);
  • the electrode active material-containing layer 32 of the negative electrode 3 contains at least an electrode active material.
  • an electrode active material As the electrode active material of the negative electrode, a compound capable of occluding and releasing lithium ions can be used alone or in combination. Examples of compounds capable of occluding and releasing lithium ions include metal materials such as lithium, alloy materials containing titanium, silicon, tin and the like, graphite, coke, calcined organic polymer compounds or carbon materials such as amorphous carbon. Can be mentioned. Not only these electrode active materials can be used alone, but also a plurality of types of these electrode active materials can be mixed and used.
  • titanium-containing oxides for example, TiO 2 (B) which is titanium oxide having a bronze structure, Li 4 Ti 5 O 12 which is lithium titanate
  • silicon oxide and the like.
  • a lithium foil when used as the negative electrode active material, it can be formed by crimping the lithium foil to the surface of a current collector made of a metal such as copper.
  • the negative electrode active material When an alloy material or carbon material is used as the negative electrode active material, the negative electrode active material is mixed with a binder, a conductive auxiliary agent, etc. in a solvent such as water or N-methylpyrrolidone, and then made of a metal such as copper. It can be formed by applying it on a current collector.
  • the binder is preferably formed from a polymer material, and is preferably a material that is chemically and physically stable in the atmosphere inside the lithium secondary battery.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and acrylonitrile-butadiene rubber (NBR). , Fluorine rubber and the like.
  • the conductive auxiliary agent include Ketjen black, acetylene black, carbon black, graphite, carbon nanotubes, amorphous carbon and the like.
  • the conductive polymer polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene and the like can be exemplified.
  • the electrode active material-containing layer 32 of the negative electrode 3 may include an electrode active material and a coating layer provided on the surface of the electrode active material.
  • the coating layer of the electrode active material-containing layer 32 can have the same structure as the coating layer of the electrode active material-containing layer 22 in the positive electrode 2.
  • the electrolytic solution is a medium for transporting charged carriers such as ions between the positive electrode and the negative electrode, and is not particularly limited, but is physically, chemically, and electrically stable in an atmosphere in which a lithium ion secondary battery is used. Is desirable.
  • electrolytic solution LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9)
  • An electrolytic solution in which one or more selected from SO 2 ) is used as a supporting electrolyte and this is dissolved in an organic solvent is preferable.
  • organic solvent examples include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like, and mixtures thereof.
  • an electrolytic solution containing a carbonate solvent is preferable because it has high stability at high temperatures.
  • a solid polymer electrolyte in which the above electrolyte is contained in a solid polymer such as polyethylene oxide, or a solid electrolyte such as ceramic or glass having lithium ion conductivity can also be used.
  • separator which is a member that has both an electrical insulating action and an ionic conduction action, between the positive electrode and the negative electrode.
  • the separator also serves to retain the liquid electrolyte.
  • the separator include a porous synthetic resin film, particularly a porous film made of a polyolefin polymer (polyethylene, polypropylene) or glass fiber, and a non-woven fabric.
  • the separator preferably adopts a form larger than that of the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.
  • the positive electrode, the negative electrode, the electrolyte, the separator and the like are generally housed in a case composed of the above-mentioned positive electrode side case 6 and negative electrode side case 7.
  • the case is not particularly limited, and can be made of a known material and form. That is, the lithium secondary battery of the present invention is not particularly limited in its shape, and can be used as a battery having various shapes such as a coin type, a cylindrical type, and a square type. Further, the case of the lithium secondary battery of the present embodiment is not limited, and is used as a battery of various forms such as a case made of metal or resin that can hold its outer shape, a soft case such as a laminate pack, and the like. can.
  • Example 1 ⁇ Manufacturing of positive electrodes for lithium-ion secondary batteries> NCM523 (Ni: 50% by mass, Co: 20% by mass, Mn: 30% by mass) and DB (conductive aid) are weighed, mixed in a mortar, placed in a special container, and mixed (manufactured by Shinky, product name). Kneaded with "Awatori Rentaro") for 2 minutes. After confirming that the mixture was sufficiently stirred, the binder (PVDF / NMP: 10% by mass) was weighed, added dropwise, and kneaded with a mixer for 2 minutes. Next, 100 ⁇ L of NMP was added dropwise, kneaded with a mixer for 2 minutes, then further kneaded with a mixer for 2 minutes, and defoamed for 30 seconds.
  • NCM523 Ni: 50% by mass, Co: 20% by mass, Mn: 30% by mass
  • DB conductive aid
  • the obtained material was applied to an aluminum foil and dried at atmospheric pressure at 100 ° C. Then, it was punched to ⁇ 14 mm using a punching machine, and vacuum dried at 120 ° C. for 10 hours or more. After completion of vacuum drying, press molding was performed at 50 kN for 1 minute to obtain a positive electrode material. At this time, the mass ratio of the electrode active material: the conductive auxiliary agent: the binder in the positive electrode material was 90: 5: 5, and the tap density was 2.68 g / cm 3 to 2.83 g / cm 3 .
  • the screw tube and the above electrode material are installed in a closed container made of SUS, and 50 ⁇ L of APTES (manufactured by Tokyo Chemical Industry Co., Ltd.) as a surface treatment agent is put in the screw tube and sealed, and the inside of the closed container is sealed.
  • the pressure was 10325 Pa, and the closed container was heated at 120 ° C. for 3 to 15 hours.
  • a positive electrode for a lithium ion secondary battery having a coating layer formed on the surface of the electrode active material was obtained.
  • the positive electrode can (positive electrode side case), the positive electrode for the lithium ion secondary battery obtained above, the separator, the gasket, the spacer, the spring and the negative electrode can (negative electrode side case) are laminated in this order, and the electrolytic solution (1M LiPF 6) is inside.
  • Lithium foil was used for the negative electrode.
  • Example 2 A coin cell was produced in the same manner as in Example 1 except that AHAMETES (manufactured by Gelest) was applied onto the aluminum foil instead of APTES to form a coating layer when the positive electrode was produced.
  • AHAMETES manufactured by Gelest
  • Example 3 A coin cell was produced in the same manner as in Example 1 except that DAEAPTS (manufactured by Sigma-Aldrich Co., Ltd.) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
  • DAEAPTS manufactured by Sigma-Aldrich Co., Ltd.
  • Example 1 A coin cell was produced in the same manner as in Example 1 except that FAS13 (manufactured by Shin-Etsu Chemical Co., Ltd.) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
  • FAS13 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane
  • Example 2 A coin cell was produced in the same manner as in Example 1 except that FAS17 (manufactured by Gsrest) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
  • FAS17 Heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane
  • the coating layer contains an aminosilane compound having an amino group at the molecular terminal, and the initial discharge capacity is higher than that of Comparative Examples 1 and 2. It was found that the decrease in discharge capacity was small and deterioration could be suppressed. Further, comparing Examples 1 to 3, in Examples 2 to 3, the aminosilane compound has an amino group at the molecular terminal and has one or two ethyleneimine groups, and is more than Example 1. However, it was found that the decrease in discharge capacity became smaller and the deterioration could be further suppressed. In particular, in Example 3, it was found that the aminosilane compound has two ethyleneimine groups, the decrease in discharge capacity is the smallest, and the deterioration can be suppressed most.
  • the coating layer was formed on the surface of the electrode active material in the same manner as in Example 3 except that the heating time at the time of forming the coating layer was changed to 1 hour, 3 hours, 6 hours, 9 hours, and 15 hours, respectively.
  • the formed positive electrode for a lithium ion secondary battery was obtained. Then, each cycle characteristic was evaluated in the same manner as described above. The results are shown in FIG.
  • the heating time at the time of forming the coating layer is 3 hours or 15 hours, the coverage of the coating layer is 80% and 99%, respectively, the oxidative decomposition of the electrolytic solution is suppressed, and the circuit is closed. It was found that the voltage drop can be sufficiently suppressed.
  • Example 4 In the dry room, 5 g of primary particles of NCM111 (Ni: 34% by mass, Co: 33% by mass, Mn: 33% by mass) having an average particle size of 1 ⁇ m are added to a plastic container by adding 5 g weighing and 60 mL of ethanol, and further. 200 ⁇ L of DAEAPTS (manufactured by Sigma-Aldrich) was added as a surface treatment agent, and the container was stirred at room temperature for 12 hours. After stirring, suction filtration was performed using a membrane filter having a pore diameter of 1 ⁇ m, and then vacuum drying was performed at 45 ° C.
  • DAEAPTS manufactured by Sigma-Aldrich
  • NCM111 a material A having a coating layer formed on the surface of the electrode active material (NCM111) was obtained. Further, in a dry room, 5 g of secondary particles of NCM111 (Ni: 34% by mass, Co: 33% by mass, Mn: 33% by mass) having an average particle size of 10 ⁇ m were weighed in a plastic container, and 60 mL of ethanol was added. Further, TPSA (manufactured by Tokyo Kasei Co., Ltd.) was added as a surface treatment agent, and the container was stirred at room temperature for 12 hours. As a result, a material B having a coating layer formed on the surface of the electrode active material was obtained.
  • TPSA manufactured by Tokyo Kasei Co., Ltd.
  • the material A and the material B are mixed at a mass ratio of 1: 9, and 1% by mass of AB (conductive auxiliary agent) with respect to the total weight of NCM111 is weighed, mixed in a mortar, and placed in a special container. Kneaded with a mixer (manufactured by Shinky Co., Ltd., product name "Awatori Rentaro") for 2 minutes. After confirming that the mixture was sufficiently stirred, a binder (PVDF / NMP: 10% by mass) was weighed in 1% by mass based on the total weight of NCM111, added dropwise, and kneaded with a mixer for 2 minutes.
  • AB conductive auxiliary agent
  • the obtained material C was applied to an aluminum foil and dried at a pressure of 20000 pascals and 120 ° C. Then, it was punched to ⁇ 14 mm using a punching machine, and vacuum dried at 120 ° C. for 12 hours or more. After completion of vacuum drying, press molding was performed at 50 kN for 3 minutes to obtain a positive electrode for a lithium ion secondary battery. At this time, the mass ratio of the electrode active material: the conductive auxiliary agent: the binder in the positive electrode was 98: 1: 1, and the tap density was 3.0 g / cm 3 to 3.5 g / cm 3 . Using the obtained positive electrode for a lithium ion secondary battery, a coin cell was produced in the same manner as described above.
  • Example 5 Instead of the material B in which the coating layer (TPSA) is formed on the surface of the electrode active material (NCM111), PI (manufactured by IST, product name "DREAMBOND (registered trademark) 100") is added as a surface treatment agent to perform the electrode activity.
  • PI manufactured by IST, product name "DREAMBOND (registered trademark) 100"
  • a coin cell was produced in the same manner as in Example 4 except that the material D having the coating layer (PI) formed on the surface of the substance (NCM111) was used.
  • Example 4 Using the coin cells obtained in Example 4 and Comparative Example 3, the discharge capacity and the capacity retention rate were measured by the same method as above. The results are shown in Table 2 and FIG.
  • Example 4 From the results in Table 2, in Example 4, the coating layer of the primary particles contained an aminosilane compound having an amino group at the molecular terminal and two ethyleneimine groups, and the coating layer of the secondary particles was a highly reactive acid. It was found that when an acid anhydride having an anhydride group was contained, the decrease in discharge capacity from the initial discharge capacity was small and deterioration could be suppressed. Further, when the electron microscope image of the electrode active material used in Example 4 was confirmed, as shown in FIG. 5A, the primary particles uniformly entered the gaps between the secondary particles, and the entire electrode active material was used as an electrode. It was found that the active material particles were extremely densely packed.
  • the amino groups in the coating layer of the primary particles react with the acid anhydride groups in the coating layer of the secondary particles, so that the primary particles are selectively accumulated in the gaps between the secondary particles, resulting in a high capacity. It is presumed that the maintenance rate was obtained.
  • the coating layer of the primary particles contains an aminosilane compound having an amino group at the molecular terminal and two ethyleneimine groups, and the coating layer of the secondary particles is an imide having a highly reactive imide group. It was found that when the compound was contained, the decrease in discharge capacity from the initial discharge capacity was very small, and deterioration could be significantly suppressed.
  • Comparative Example 3 the coating layer was not formed in either the primary particles or the secondary particles of the electrode active material, the discharge capacity was significantly reduced from the initial discharge capacity, and the deterioration was insufficiently suppressed. .. Further, when the electron microscope image of the electrode active material used in Comparative Example 3 was confirmed, as shown in FIG. 5 (b), the primary particles irregularly entered the gaps between the secondary particles, and the entire electrode active material became It was found that the electrode active material particles were sparsely filled.

Abstract

This electrode for lithium ion secondary batteries is provided with a collector and an electrode active material-containing layer that is provided on the collector. The electrode active material-containing layer comprises an electrode active material and a coating layer that is provided on the surface of the electrode active material; and the coating layer contains an aminosilane compound that has an amino group, at least one ethyleneimine group or a dialkylamino group at an end of the molecule.

Description

リチウムイオン二次電池用電極およびリチウムイオン二次電池Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
 本発明は、リチウムイオン二次電池用電極およびリチウムイオン二次電池に関する。
 本願は、2020年3月11日に、日本に出願された特願2020-041660号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to electrodes for lithium ion secondary batteries and lithium ion secondary batteries.
The present application claims priority based on Japanese Patent Application No. 2020-041660 filed in Japan on March 11, 2020, the contents of which are incorporated herein by reference.
 近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の、非水電解液系の二次電池が提案され、実用に供されている。このリチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正極及び負極と、非水系の電解質とにより構成されている。
 リチウム複合酸化物は、リチウム二次電池の正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源として実用化されている。更に自動車用途や電力貯蔵用途などの中・大型電源においても適用が試みられている。このように適用範囲の拡大に伴い、リチウム二次電池の長寿命化は重要な課題である。
In recent years, as a battery expected to be smaller, lighter, and have a higher capacity, a non-aqueous electrolyte type secondary battery such as a lithium ion battery has been proposed and put into practical use. This lithium ion battery is composed of a positive electrode and a negative electrode having a property of reversibly inserting and removing lithium ions, and a non-aqueous electrolyte.
Lithium composite oxide is used as a positive electrode active material for a lithium secondary battery. Lithium secondary batteries have already been put into practical use as small power sources for mobile phones and notebook computers. Furthermore, application is being attempted to medium- and large-sized power sources such as automobile applications and power storage applications. As the range of application is expanded in this way, extending the life of the lithium secondary battery is an important issue.
 正極活物質に用いられるリチウム複合酸化物には、例えばリチウム、ニッケル、マンガン及び酸素を含む、LNMO型の複合酸化物が用いられる。
 LNMO型の複合酸化物は、高電位で使用でき、かつ安全性も高いことから大型電池への適用が進んでおり、高容量化するための試みがされている。
 例えば、LNMO型のリチウム複合酸化物を用いた電池の容量を向上させるため、添加剤の含有量を削減し、空隙の少ない緻密なリチウム複合酸化膜を製造したことが記載されている(特許文献1)。
As the lithium composite oxide used as the positive electrode active material, an LNMO type composite oxide containing, for example, lithium, nickel, manganese and oxygen is used.
Since the LNMO type composite oxide can be used at a high potential and has high safety, its application to large batteries is progressing, and attempts are being made to increase the capacity.
For example, in order to improve the capacity of a battery using an LNMO type lithium composite oxide, it is described that the content of additives is reduced to produce a dense lithium composite oxide film having few voids (Patent Document). 1).
 ここで、LNMO型の複合酸化物は、高電位で使用できるという長所があるものの、高電位動作時に金属元素が電解液中に溶出してしまい、電池が劣化するという問題がある。そこで、電極活物質の表面に撥水性材料の被覆層を備える電極が提案されている(特許文献2)。 Here, although the LNMO type composite oxide has an advantage that it can be used at a high potential, there is a problem that a metal element is eluted into the electrolytic solution during high potential operation and the battery is deteriorated. Therefore, an electrode having a coating layer of a water-repellent material on the surface of the electrode active material has been proposed (Patent Document 2).
特開2014-35909号公報Japanese Unexamined Patent Publication No. 2014-35909 特開2017-174692号公報JP-A-2017-174692
 しかしながら、上記従来技術では、電池劣化の抑制が十分とは言えず、電極活物質の表面に形成される被覆層の構成を更に検討、改良する余地がある。 However, it cannot be said that the above-mentioned conventional technique sufficiently suppresses battery deterioration, and there is room for further study and improvement of the composition of the coating layer formed on the surface of the electrode active material.
 本発明の目的は、電池劣化を更に抑制して、従来よりも電池特性を向上することができるリチウムイオン二次電池用電極、リチウムイオン二次電池およびリチウムイオン二次電池用正極の製造方法を提供することにある。 An object of the present invention is a method for manufacturing an electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a positive electrode for a lithium ion secondary battery, which can further suppress battery deterioration and improve battery characteristics as compared with the conventional case. To provide.
 本発明者らは、鋭意研究の結果、電極活物質の表面に形成する被覆層として、様々な機能を有する分子の選択が可能であり、特定の分子の機能によって、上記金属元素の溶出や電解液の酸化分解に対する被覆層の有効性の可否が決定されることを見出した。特に、コバルト酸リチウム(LCO)、ニッケル-コバルト-マンガン酸リチウム(NCM)、あるいはニッケル-コバルト-アルミニウム酸リチウム(NCA)で構成される正極活物質の表面に適した被覆層を用いることで、リチウムイオン二次電池の劣化が更に抑制され、電池特性を向上できることを見出した。 As a result of diligent research, the present inventors can select a molecule having various functions as a coating layer formed on the surface of the electrode active material, and elution or electrolysis of the above metal element depends on the function of a specific molecule. It has been found that the effectiveness of the coating layer against the oxidative decomposition of the liquid is determined. In particular, by using a coating layer suitable for the surface of a positive electrode active material composed of lithium cobalt oxide (LCO), nickel-cobalt-lithium manganate (NCM), or nickel-cobalt-lithium aluminate (NCA), It has been found that the deterioration of the lithium ion secondary battery can be further suppressed and the battery characteristics can be improved.
 すなわち、本発明の要旨構成は、以下の通りである。
[1]集電体と、前記集電体上に設けられた電極活物質含有層とを備え、
 前記電極活物質含有層は、電極活物質と、前記電極活物質の表面に設けられた被覆層とを有し、
 前記被覆層が、分子末端にアミノ基を有するか、少なくとも1つのエチレンイミン基を有するか又はジアルキルアミノ基を有するアミノシラン化合物を含む、リチウムイオン二次電池用電極。
That is, the gist structure of the present invention is as follows.
[1] A current collector and an electrode active material-containing layer provided on the current collector are provided.
The electrode active material-containing layer has an electrode active material and a coating layer provided on the surface of the electrode active material.
An electrode for a lithium ion secondary battery, wherein the coating layer contains an aminosilane compound having an amino group at the molecular terminal, at least one ethyleneimine group, or a dialkylamino group.
[2]前記アミノシラン化合物が、分子末端にアミノ基を有し且つ少なくとも1つのエチレンイミン基を有する、上記[1]に記載のリチウムイオン二次電池用電極。 [2] The electrode for a lithium ion secondary battery according to the above [1], wherein the aminosilane compound has an amino group at the molecular terminal and at least one ethyleneimine group.
[3]前記アミノシラン化合物が、N-(3-トリメトキシシリルプロピル)ジエチレントリアミンである、上記[2]に記載のリチウムイオン二次電池用電極。 [3] The electrode for a lithium ion secondary battery according to the above [2], wherein the aminosilane compound is N- (3-trimethoxysilylpropyl) diethylenetriamine.
[4]前記被覆層が、自己組織化単分子膜で構成される、上記[1]に記載のリチウムイオン二次電池用電極。 [4] The electrode for a lithium ion secondary battery according to the above [1], wherein the coating layer is composed of a self-assembled monolayer.
[5]前記電極活物質の表面のうち前記被覆層が覆っている部分の割合を示す被覆率が、80%以上である、上記[1]~[4]のいずれかに記載のリチウムイオン二次電池用電極。 [5] The lithium ion battery according to any one of [1] to [4] above, wherein the coating ratio indicating the ratio of the portion of the surface of the electrode active material covered by the coating layer is 80% or more. Electrode for next battery.
[6]前記電極活物質は、第一電極活物質粒子と、前記第一電極活物質粒子よりも粒径の大きい第二電極活物質粒子とを有し、
 前記被覆層は、前記第一電極活物質粒子の表面に設けられた第一被覆部と、前記第二電極活物質粒子の表面に設けられた第二被覆部とを有し、
 前記第一被覆部が、分子末端にアミノ基を有するアミノシラン化合物を含み、
 前記第二被覆部が、カルボン酸、カルボン酸塩、無水カルボン酸、無水コハク酸及びアシルイソ尿素からなる群から選択された官能基を有する化合物を含む、上記[1]に記載のリチウムイオン二次電池用電極。
[6] The electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
The coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
The first coating contains an aminosilane compound having an amino group at the end of the molecule.
The lithium ion secondary according to the above [1], wherein the second coating portion contains a compound having a functional group selected from the group consisting of a carboxylic acid, a carboxylic acid salt, a carboxylic acid anhydride, a succinic anhydride and an acylisourea. Battery electrode.
[7]前記電極活物質は、第一電極活物質粒子と、前記第一電極活物質粒子よりも粒径の大きい第二電極活物質粒子とを有し、
 前記被覆層は、前記第一電極活物質粒子の表面に設けられた第一被覆部と、前記第二電極活物質粒子の表面に設けられた第二被覆部とを有し、
 前記第一被覆部が、分子末端にアミノ基を有するアミノシラン化合物を含み、
 前記第二被覆部が、イミド系化合物を含む、上記[1]に記載のリチウムイオン二次電池用電極。
[7] The electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
The coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
The first coating contains an aminosilane compound having an amino group at the end of the molecule.
The electrode for a lithium ion secondary battery according to the above [1], wherein the second coating portion contains an imide compound.
[8]前記電極活物質は、層状岩塩型構造を有するリチウム複合酸化物を含む、上記[1]に記載のリチウムイオン二次電池用電極。 [8] The electrode for a lithium ion secondary battery according to the above [1], wherein the electrode active material contains a lithium composite oxide having a layered rock salt type structure.
[9]前記層状岩塩型構造を有するリチウム複合酸化物は、LiNiO、LiCoO、LiNiCoMn(k+l+m=1)およびLiNiCoAl(k+l+m=1)のうちのいずれかである、上記[8]に記載のリチウムイオン二次電池用電極。 [9] lithium composite oxide having a layered rock-salt structure, LiNiO 2, LiCoO 2, LiNi k Co l Mn m O 2 (k + l + m = 1) and LiNi k Co l Al m O 2 in (k + l + m = 1 ) The electrode for a lithium ion secondary battery according to the above [8], which is one of the above.
[10]前記層状岩塩型構造を有するリチウム複合酸化物は、コバルト酸リチウム(LCO)、ニッケル-コバルト-マンガン酸リチウム(NCM)およびニッケル-コバルト-アルミニウム酸リチウム(NCA)のうちのいずれかである、上記[9]に記載のリチウムイオン二次電池用電極。 [10] The lithium composite oxide having a layered rock salt type structure is one of lithium cobalt oxide (LCO), nickel-cobalt-lithium manganate (NCM), and nickel-cobalt-lithium aluminate (NCA). The electrode for a lithium ion secondary battery according to the above [9].
[11]上記[1]~[10]のいずれかに記載のリチウムイオン二次電池用電極と、電解質とを備える、リチウムイオン二次電池。 [11] A lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to any one of the above [1] to [10] and an electrolyte.
 本発明によれば、電池劣化を更に抑制して、従来よりも電池特性を向上することができるリチウムイオン二次電池用電極およびリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide an electrode for a lithium ion secondary battery and a lithium ion secondary battery capable of further suppressing battery deterioration and improving battery characteristics as compared with the conventional case.
図1は、本発明の実施形態に係るリチウムイオン二次電池の構成の一例を示す図である。FIG. 1 is a diagram showing an example of a configuration of a lithium ion secondary battery according to an embodiment of the present invention. 図2は、実施例および比較例におけるリチウムイオン二次電池のサイクル特性を示すグラフである。FIG. 2 is a graph showing the cycle characteristics of the lithium ion secondary battery in Examples and Comparative Examples. 図3は、実施例における被覆層形成時の加熱時間とサイクル特性との関係を示す図である。FIG. 3 is a diagram showing the relationship between the heating time at the time of forming the coating layer and the cycle characteristics in the examples. 図4は、実施例におけるフローティング試験による正極の特性評価を示す図である。FIG. 4 is a diagram showing the characteristic evaluation of the positive electrode by the floating test in the example. 図5(a)は、実施例における電極活物質の電子顕微鏡画像であり、図5(b)は、比較例における電極活物質の電子顕微鏡画像である。FIG. 5 (a) is an electron microscope image of the electrode active material in the example, and FIG. 5 (b) is an electron microscope image of the electrode active material in the comparative example.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[リチウムイオン二次電池用電極の構成]
 本実施形態に係るリチウムイオン二次電池用電極は、集電体と、上記集電体上に設けられた電極活物質含有層とを備えている。
[Construction of electrodes for lithium-ion secondary batteries]
The electrode for a lithium ion secondary battery according to the present embodiment includes a current collector and an electrode active material-containing layer provided on the current collector.
〈集電体〉
 集電体は、例えば金属箔で構成される。金属箔は、円筒型、角型、ラミネート型といった多様な形の電池で使用するのに適している。電極活物質と集電体の密着性を更に高めるために、集電体の表面にカーボンが蒸着されていてもよい。
<Current collector>
The current collector is composed of, for example, a metal foil. Metal foil is suitable for use in batteries of various shapes such as cylindrical, square and laminated. Carbon may be vapor-deposited on the surface of the current collector in order to further enhance the adhesion between the electrode active material and the current collector.
 電極のうち、正極側の集電体としては、例えばアルミニウム箔を用いることができる。集電体は表面処理によって親水化されているものが好ましい。集電体表面が親水化されていることによって、電極形成用スラリーの乾燥時に水素結合が形成されやすくなり、接着力が高い電極を得ることができる。集電体表面の親水化処理は、例えばオゾン(O)雰囲気下で紫外線(UV)照射する方法(UV/O処理)などが挙げられる。 Among the electrodes, for example, an aluminum foil can be used as the current collector on the positive electrode side. The current collector is preferably hydrophilized by surface treatment. Since the surface of the current collector is made hydrophilic, hydrogen bonds are easily formed when the electrode-forming slurry is dried, and an electrode having high adhesive strength can be obtained. Examples of the hydrophilization treatment on the surface of the current collector include a method of irradiating ultraviolet rays (UV) in an ozone (O 3 ) atmosphere (UV / O 3 treatment).
〈電極活物質含有層〉
 電極活物質含有層は、電極活物質と、該電極活物質の表面に設けられた被覆層とを含んでいる。
<Electrode active material-containing layer>
The electrode active material-containing layer includes an electrode active material and a coating layer provided on the surface of the electrode active material.
(電極活物質)
 電極活物質は、層状岩塩型構造を有するリチウム複合酸化物を含んでいる。ここでいう「層状」とは、薄いシート状の形状のことを意味する。また、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことであり、陽イオンおよび陰イオンのそれぞれが形成する面心立方格子が、互いに単位格子の稜の1/2だけずれた構造を指す。
(Electrode active material)
The electrode active material contains a lithium composite oxide having a layered rock salt type structure. The term "layered" as used herein means a thin sheet-like shape. The "rock salt type structure" is a sodium chloride type structure which is one of the crystal structures, and the face-centered cubic lattice formed by each of the cations and anions is 1 / of the ridge of the unit cell. Refers to a structure that is offset by 2.
 層状岩塩型構造を有するリチウム複合酸化物としては、例えば、LiNiO、LiCoO、LiNiCoMn(k+l+m=1)およびLiNiCoAl(k+l+m=1)のうちのいずれかを挙げることができる。 The lithium composite oxide having a layered rock-salt structure, for example, LiNiO 2, LiCoO 2, LiNi k Co l Mn m O 2 (k + l + m = 1) and LiNi k Co l Al m O 2 (k + l + m = 1) of the Any of the above can be mentioned.
 上記リチウム複合酸化物は、具体的には、コバルト酸リチウム(以下、「LCO」ともいう)、ニッケル-コバルト-マンガン酸リチウム(以下、「NCM」ともいう)およびニッケル-コバルト-アルミニウム酸リチウム(以下、「NCA」ともいう)のうちのいずれかであるのが好ましい。また、ニッケル-コバルト-マンガン酸リチウム(NCM)またはニッケル-コバルト-アルミニウム酸リチウム(NCA)であるのがより好ましい。 Specifically, the lithium composite oxide includes lithium cobalt oxide (hereinafter, also referred to as “LCO”), nickel-cobalt-lithium manganate (hereinafter, also referred to as “NCM”), and nickel-cobalt-lithium aluminate (hereinafter, also referred to as “NCM”). Hereinafter, it is preferably one of (also referred to as "NCA"). Further, nickel-cobalt-lithium manganate (NCM) or nickel-cobalt-lithium aluminate (NCA) is more preferable.
 このように、電極活物質として層状岩塩型構造を有する上記3元系の遷移金属酸化物のリチウム塩を用いることにより、エネルギー密度と熱安定性とに優れたリチウムイオン二次電池を得ることができる。
 また、NCMやNCA等の3元系の遷移金属酸化物のリチウム塩の粒子は、LCO等の粒子より粒径が小さく、比表面積が大きい(約10倍)。これにより、活物質粒子と電解質との接触面積を大きくすることができる。この結果、被覆層によって電極活物質と電解質との反応を抑制する作用効果が顕著となり、本構成を採用しない場合と比較して、活物質粒子と電解質との間でリチウムイオンの伝導性が向上し、リチウムイオン二次電池の電力を上昇させることができる。
As described above, by using the lithium salt of the above-mentioned ternary transition metal oxide having a layered rock salt type structure as the electrode active material, it is possible to obtain a lithium ion secondary battery having excellent energy density and thermal stability. can.
Further, the particles of the lithium salt of the ternary transition metal oxide such as NCM and NCA have a smaller particle size and a larger specific surface area (about 10 times) than the particles of LCO and the like. As a result, the contact area between the active material particles and the electrolyte can be increased. As a result, the effect of suppressing the reaction between the electrode active material and the electrolyte becomes remarkable due to the coating layer, and the conductivity of lithium ions between the active material particles and the electrolyte is improved as compared with the case where this configuration is not adopted. However, the power of the lithium ion secondary battery can be increased.
 また、電極活物質として層状岩塩型構造を有する上記3元系の遷移金属酸化物のリチウム塩を用いることにより、電極活物質が構成元素としてNiを含むことになる。この場合、リチウムイオン二次電池の容量密度が上昇し、また、充電状態での金属元素の溶出が少なくなる傾向がある。これにより、本構成を採用しない場合と比較して、充電状態でのリチウムイオン二次電池の長期信頼性を向上させ、リチウムイオン二次電池のサイクル特性を向上させることができる。 Further, by using the lithium salt of the above-mentioned ternary transition metal oxide having a layered rock salt type structure as the electrode active material, the electrode active material contains Ni as a constituent element. In this case, the capacity density of the lithium ion secondary battery tends to increase, and the elution of metal elements in the charged state tends to decrease. As a result, the long-term reliability of the lithium ion secondary battery in the charged state can be improved and the cycle characteristics of the lithium ion secondary battery can be improved as compared with the case where this configuration is not adopted.
 電極活物質は、第一電極活物質粒子と、該第一電極活物質粒子よりも粒径の大きい第二電極活物質粒子とを有していてもよい。第一電極活物質粒子は、例えば一次粒子である。第二電極活物質粒子は、一次粒子であってもよいし、二次粒子であってもよい。これにより、大粒径の第二電極活物質粒子間の間隙に小粒径の第一電極活物質粒子が入り込んでち密化し、電極密度の増大によってエネルギー密度を増大させることができる。また、第二電極活物質粒子よりも粒径の小さい第一電極活物質粒子を用いることにより、体積膨張、収縮による電極活物質の破壊を緩和することができる。 The electrode active material may have a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle. The first electrode active material particles are, for example, primary particles. The second electrode active material particles may be primary particles or secondary particles. As a result, the first electrode active material particles having a small particle size enter into the gaps between the second electrode active material particles having a large particle size and become dense, and the energy density can be increased by increasing the electrode density. Further, by using the first electrode active material particles having a particle size smaller than that of the second electrode active material particles, it is possible to alleviate the destruction of the electrode active material due to volume expansion and contraction.
 第一電極活物質粒子の粒径は、0.1μm以上4μm以下であるのが好ましく、0.7μm以上2μm以下であるのがより好ましい。第二電極活物質粒子の粒径は、5μm以上20μm以下であるのが好ましく、6μm以上15μm以下であるのがより好ましい。
 第一電極活物質粒子を構成する材料は、第二電極活物質粒子を構成する材料と同じであってもよいし、異なっていてもよい。例えば、第一電極活物質粒子を構成する材料がNCMである場合、第二電極活物質粒子を構成する材料は、NCMであってもよいし、NCAであってもよい。また、第一電極活物質粒子の形状は、第二電極活物質粒子の形状と同じであってもよいし、異なっていてもよい。
The particle size of the first electrode active material particles is preferably 0.1 μm or more and 4 μm or less, and more preferably 0.7 μm or more and 2 μm or less. The particle size of the second electrode active material particles is preferably 5 μm or more and 20 μm or less, and more preferably 6 μm or more and 15 μm or less.
The material constituting the first electrode active material particles may be the same as or different from the material constituting the second electrode active material particles. For example, when the material constituting the first electrode active material particles is NCM, the material constituting the second electrode active material particles may be NCM or NCA. Further, the shape of the first electrode active material particles may be the same as or different from the shape of the second electrode active material particles.
(被覆層)
 被覆層は、分子末端にアミノ基を有するか、少なくとも1つのエチレンイミン基を有するか又はジアルキルアミノ基を有するアミノシラン化合物を含んでいる。この被覆層は、自己組織化単分子膜(Self-Assembled Monolayer:SAM)で構成されるのが好ましい。自己組織化単分子膜とは、電極活物質に対し、所定の化学結合を形成する官能基を末端基として有する有機分子を用いることにより、その電極活物質に対して、化学結合を形成させ、アンカリングされた有機分子が電極活物質表面からの規制および有機分子間の相互作用によって、秩序的に配列した状態となり、単分子膜となったものをいう。
(Coating layer)
The coating layer contains an aminosilane compound having an amino group at the end of the molecule, having at least one ethyleneimine group, or having a dialkylamino group. This coating layer is preferably composed of a self-assembled monolayer (SAM). The self-assembled monomolecular film is formed by using an organic molecule having a functional group forming a predetermined chemical bond as a terminal group with respect to the electrode active material to form a chemical bond with the electrode active material. An anchored organic molecule is regulated from the surface of the electrode active material and interacts with each other to form a monomolecular film in an orderly arrangement.
 このように、電極活物質の表面に上記被覆層が設けられることで、高電圧で動作させた場合でも、被覆によって金属元素の電解液中への溶出が抑制でき、これにより、電解液中に電極活物質の金属元素が溶出することに起因する容量の低下を抑制できる。電極活物質の表面では、分子の動きがある程度制限されるところ、被覆層が分子末端にアミノ基を有するアミノシラン化合物を含んでいると、1分子でリチウムイオンを捕捉可能なアミノ基が有効に作用し、電極活物質の表面近傍でリチウムイオン、あるいは溶媒和したリチウムイオンがアミノ基と弱く配位することで、電解液に溶媒和しているリチウムイオンの脱溶媒和に必要な活性化エネルギーを低減し、電極活物質と電解液との界面でのリチウムイオン輸送の高効率化を実現することが可能となる。また、アルキル基あるいはフルオロアルキル基のような直鎖状分子からなる単分子膜のような結晶性の高い単分子膜は結晶化と同時に必ず欠陥の形成を伴うのに対し、分子鎖にエチレンイミン基或いはジアルキルアミノ基を有することで、隣接する分子鎖間の自己組織化が妨げられ、単分子膜はアモルファス化するため、欠陥の生成を伴わないち密な単分子膜が形成される。これにより、電極表面と電解液との直接接触面積はより制限されるため、電解液の分解による電池性能の劣化を結晶性単分子膜を被覆する場合と比較してより効率的に防止することができる。つまり、少なくとも1つのエチレンイミン基を有するか或いはジアルキルアミノ基を有する前記アミノシラン化合物の単分子膜を電極活物質表面に形成することで、電解液の酸化分解の更なる抑制を実現することができ、加えて電極活物質と電解液との界面でのリチウムイオン輸送の高効率化を実現することが可能となる。 By providing the coating layer on the surface of the electrode active material in this way, the elution of the metal element into the electrolytic solution can be suppressed by the coating even when the electrode active material is operated at a high voltage, whereby the elution of the metal element into the electrolytic solution can be suppressed. It is possible to suppress a decrease in capacity due to elution of the metal element of the electrode active material. On the surface of the electrode active material, the movement of molecules is restricted to some extent, but if the coating layer contains an aminosilane compound having an amino group at the end of the molecule, the amino group capable of capturing lithium ions by one molecule acts effectively. However, by weakly coordinating lithium ions or solvated lithium ions with amino groups near the surface of the electrode active material, the activation energy required for desolvation of the solvated lithium ions in the electrolytic solution can be obtained. It is possible to reduce the amount and realize high efficiency of lithium ion transport at the interface between the electrode active material and the electrolytic solution. In addition, a monomolecular film with high crystallinity such as a monomolecular film composed of linear molecules such as an alkyl group or a fluoroalkyl group always accompanies the formation of defects at the same time as crystallization, whereas ethyleneimine in the molecular chain. By having a group or a dialkylamino group, self-assembly between adjacent molecular chains is hindered, and the monomolecular film becomes amorphous, so that a dense monomolecular film is formed without the formation of defects. As a result, the direct contact area between the electrode surface and the electrolytic solution is more limited, so that deterioration of battery performance due to decomposition of the electrolytic solution can be prevented more efficiently than in the case of coating a crystalline monomolecular film. Can be done. That is, by forming a monomolecular film of the aminosilane compound having at least one ethyleneimine group or a dialkylamino group on the surface of the electrode active material, further suppression of oxidative decomposition of the electrolytic solution can be realized. In addition, it is possible to improve the efficiency of lithium ion transport at the interface between the electrode active material and the electrolytic solution.
 また、上記アミノシラン化合物は、カルボン酸およびその塩との酸塩基反応や無水カルボン酸、無水コハク酸やアシルイソ尿素とは求核的に反応して、室温でも容易にイミド結合を形成するため、活物質表面に被膜する単分子膜の分子末端のアミノ基は、上記官能基を有する化合物を容易に固定化することができる。そのため、活物質表面に当該アミノシラン化合物を被膜することで、カルボン酸およびその塩や無水カルボン酸、無水コハク酸、アシルイソ尿素などの官能基をもつ化合物を活物質表面に固定化することができる。固定化する化合物としては、粒径や形態の異なる第二電極活物質粒子や固体電解質粒子、強誘電体粒子、カルボキシメチルセルロースナトリウムやスチレンブタジエンコポリマー、ポリアクリル酸、ポリフッ化ビニリデンなどの高分子バインダー、アセチレンブラックやカーボンナノチューブ、グラフェン、ヘテロナノカーボンなどの炭素材料からなる導電助剤などが挙げられるが、必ずしもこれらに限定されるものではない。 Further, the aminosilane compound is active because it reacts with an acid-base reaction with a carboxylic acid and a salt thereof, a carboxylic acid anhydride, a succinic anhydride or acylisourea nucleophilically, and easily forms an imide bond even at room temperature. The amino group at the molecular end of the monomolecular film coated on the surface of the substance can easily immobilize the compound having the functional group. Therefore, by coating the surface of the active material with the aminosilane compound, a compound having a functional group such as a carboxylic acid and a salt thereof, a carboxylic acid anhydride, a succinic anhydride, or an acylisourea can be immobilized on the surface of the active material. Examples of the compound to be immobilized include secondary electrode active material particles having different particle diameters and morphologies, solid electrolyte particles, strong dielectric particles, polymer binders such as sodium carboxymethyl cellulose and styrene butadiene copolymer, polyacrylic acid, and polyvinylidene fluoride. Examples thereof include, but are not limited to, conductive aids made of carbon materials such as acetylene black, carbon nanotubes, graphene, and hetero-nanocarbon.
 分子末端にアミノ基を有するアミノシラン化合物としては、特に制限されないが、例えば、以下に示すように、(3-アミノプロピル)トリエトキシシラン(以下、「APTES」ともいう)が挙げられる。 The aminosilane compound having an amino group at the molecular terminal is not particularly limited, and examples thereof include (3-aminopropyl) triethoxysilane (hereinafter, also referred to as “APTES”) as shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記アミノシラン化合物は、分子末端にアミノ基を有し且つ少なくとも1つのエチレンイミン基を有するのがより好ましい。このようなアミノシラン化合物としては、特に制限されないが、例えば、以下に示すように、N-(6-アミノヘキシル)アミノメチルトリエトキシシラン(以下、「AHAMTES」ともいう)、N-(3-トリメトキシシリルプロピル)ジエチレントリアミン(以下、「DAEAPTS」ともいう)が挙げられる。 It is more preferable that the aminosilane compound has an amino group at the molecular terminal and at least one ethyleneimine group. Such an aminosilane compound is not particularly limited, but for example, as shown below, N- (6-aminohexyl) aminomethyltriethoxysilane (hereinafter, also referred to as "AHAMETES"), N- (3-tri), N- (3-tri). Methoxysilylpropyl) diethylenetriamine (hereinafter, also referred to as “DAEAPTS”) can be mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ジアルキルアミノ基を有するアミノシラン化合物としては、特に制限されないが、例えば、以下に示すように、N,N-ジエチルアミノプロピルトリメトキシシラン(以下、「SID」ともいう)が挙げられる。 The aminosilane compound having a dialkylamino group is not particularly limited, and examples thereof include N, N-diethylaminopropyltrimethoxysilane (hereinafter, also referred to as “SID”) as shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本実施形態では、リチウムイオンの脱挿入に関わる反応を電極活物質の表面全体で均一に行う。このために、電極活物質の表面の80%以上、より好ましくは85%以上、さらに好ましくは90%以上が、被覆層によって被覆されていることが好ましい。
 被覆層の被覆率は、透過電子顕微鏡(TEM)、エネルギー分散型X線分光器(EDX)、X線光電子分光法(XPS)を用いて測定することができる。
 具体的には、電極活物質に形成された被覆層は、透過型電子顕微鏡(TEM)、及び、エネルギー分散型X線分光器(EDX)を用いて100個の電極活物質を観察し、電極活物質の表面のうち被覆層が覆っている部分の割合を算出し、被覆率とする。
 加えて、X線光電子分光法(XPS)を用いて表面原子濃度計測から電極活物質の表面のうち被覆層が覆っている部分の割合を算出し、被覆率を求め、上記のEDXによる算出結果との整合性を考察してもよい。
In the present embodiment, the reaction related to the deinsertion and insertion of lithium ions is uniformly carried out over the entire surface of the electrode active material. For this reason, it is preferable that 80% or more, more preferably 85% or more, still more preferably 90% or more of the surface of the electrode active material is covered with the coating layer.
The coverage of the coating layer can be measured using a transmission electron microscope (TEM), an energy dispersive X-ray spectrometer (EDX), and an X-ray photoelectron spectroscopy (XPS).
Specifically, for the coating layer formed on the electrode active material, 100 electrode active materials are observed using a transmission electron microscope (TEM) and an energy dispersive X-ray spectroscope (EDX), and the electrodes are electrodelied. The ratio of the portion of the surface of the active material covered by the coating layer is calculated and used as the coverage ratio.
In addition, using X-ray photoelectron spectroscopy (XPS), the ratio of the portion of the surface of the electrode active material covered by the coating layer is calculated from the surface atomic concentration measurement, and the coverage is obtained. Consistency with may be considered.
 本実施形態において、被覆層の平均厚さは、0.5nm以上0.3μm以下であることが好ましく、より好ましくは0.5nm以上0.1μm以下であり、さらに好ましくは0.5nm以上10nm以下であり、特に好ましくは0.8nm以上6.0nm以下であり、最も好ましくは1.0nm以上3.0nm以下である。上記平均厚さは、電極活物質の表面の被覆層をX線光電子分光法(XPS)による角度分解コアレベルスペクトルを測定し、このスペクトルデータを基に算出することができる。あるいは、波長・角度分解エリプソメトリーや原子間力顕微鏡でも測定可能である。 In the present embodiment, the average thickness of the coating layer is preferably 0.5 nm or more and 0.3 μm or less, more preferably 0.5 nm or more and 0.1 μm or less, and further preferably 0.5 nm or more and 10 nm or less. It is particularly preferably 0.8 nm or more and 6.0 nm or less, and most preferably 1.0 nm or more and 3.0 nm or less. The average thickness can be calculated based on the angle-resolved core level spectrum of the coating layer on the surface of the electrode active material measured by X-ray photoelectron spectroscopy (XPS). Alternatively, it can be measured by wavelength / angle-resolved ellipsometry or an atomic force microscope.
 また、上記電極活物質が第一電極活物質粒子と、該第一電極活物質粒子と粒径の異なる第二電極活物質粒子とを有している場合、上記被覆層は、第一電極活物質粒子の表面に設けられた第一被覆部と、第二電極活物質粒子の表面に設けられた第二被覆部とを有していてもよい。このとき、第一被覆部が形成された第一電極活物質粒子と、第二被覆部が形成された第二電極活物質粒子の質量比は、15~0.5:85~99.5あるのが好ましく、10~1:90~99であるのがより好ましい。 When the electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size different from that of the first electrode active material particle, the coating layer is the first electrode active material. It may have a first coating portion provided on the surface of the material particles and a second coating portion provided on the surface of the second electrode active material particles. At this time, the mass ratio of the first electrode active material particles on which the first coating portion is formed and the second electrode active material particles on which the second coating portion is formed is 15 to 0.5: 85 to 99.5. Is preferable, and 10 to 1: 90 to 99 is more preferable.
 第一被覆部の平均厚さは、第二被覆部の平均厚さと同じであってもよいし、異なっていてもよい。第一被覆部の平均厚さは、0.5nm以上10nm以下であるのが好ましく、0.5nm以上10nm以下であるのがより好ましい。第二被覆部の平均厚さは、0.5nm以上0.3μmであるのが好ましく、2nm以上0.1μm以下であるのがより好ましい。 The average thickness of the first coating may be the same as or different from the average thickness of the second coating. The average thickness of the first coating portion is preferably 0.5 nm or more and 10 nm or less, and more preferably 0.5 nm or more and 10 nm or less. The average thickness of the second coating portion is preferably 0.5 nm or more and 0.3 μm, and more preferably 2 nm or more and 0.1 μm or less.
 第一被覆部を構成する材料は、第二被覆部を構成する材料と同じであってもよいし、異なっていてもよい。第一被覆部を構成する材料が第二被覆部を構成する材料と異なる場合、例えば、第一被覆部は、例えば分子末端にアミノ基を有するアミノシラン化合物を含み、第二被覆部は、カルボン酸、カルボン酸塩、無水カルボン酸、無水コハク酸及びアシルイソ尿素からなる群から選択された官能基を有する化合物を含むのが好ましい。無水コハク酸としては、例えば、以下に示すように、3-トリエトキシシリルプロピルコハク酸無水物(以下、「TPSA」ともいう)が挙げられる。第二被覆部に上記材料を用いることにより、第二被覆部を構成する官能基をもつ化合物が、第一被覆部を構成するアミノシラン化合物における分子末端のアミノ基に容易に固定化される。その結果、第一電極活物質粒子を第二電極活物質粒子の粒子間の間隙に選択的に集積させることができ、エネルギー密度を更に増大させることができる。 The material constituting the first coating portion may be the same as or different from the material constituting the second coating portion. When the material constituting the first coating is different from the material constituting the second coating, for example, the first coating contains, for example, an aminosilane compound having an amino group at the molecular terminal, and the second coating is a carboxylic acid. , Carboxylic acid anhydride, succinic anhydride and acylisourea preferably contain a compound having a functional group selected from the group. Examples of succinic anhydride include 3-triethoxysilylpropyl succinic anhydride (hereinafter, also referred to as “TPSA”), as shown below. By using the above material for the second coating portion, the compound having a functional group constituting the second coating portion is easily immobilized on the amino group at the molecular terminal in the aminosilane compound constituting the first coating portion. As a result, the first electrode active material particles can be selectively accumulated in the gaps between the particles of the second electrode active material particles, and the energy density can be further increased.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、第一被覆部を構成する材料が第二被覆部を構成する材料と異なる場合、例えば、第一被覆部は、例えば分子末端にアミノ基を有するアミノシラン化合物を含み、第二被覆部は、イミド系化合物であるのが好ましい。イミド系化合物としては、例えばポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等が挙げられる。第二被覆部に上記材料を用いることにより、第二被覆部を構成する官能基をもつ化合物が、第一被覆部を構成するアミノシラン化合物における分子末端のアミノ基により容易に固定化される。その結果、第一電極活物質粒子を第二電極活物質粒子の粒子間の間隙により選択的に集積させることができ、第二被覆部による重量増加によりエネルギー密度の損失を最小限に抑制しながら、電解液の分解反応を抑制するなどにより、充放電サイクルに伴う容量維持率をより高い水準で維持することでできる。 When the material constituting the first coating portion is different from the material constituting the second coating portion, for example, the first coating portion contains, for example, an aminosilane compound having an amino group at the molecular terminal, and the second coating portion contains. It is preferably an imide compound. Examples of the imide compound include polyimide (PI), polyetherimide (PEI), and polyamideimide (PAI). By using the above material for the second coating portion, the compound having a functional group constituting the second coating portion is easily immobilized by the amino group at the molecular end in the aminosilane compound constituting the first coating portion. As a result, the first electrode active material particles can be selectively accumulated by the gaps between the particles of the second electrode active material particles, and the loss of energy density can be minimized due to the weight increase due to the second coating portion. By suppressing the decomposition reaction of the electrolytic solution, the capacity retention rate associated with the charge / discharge cycle can be maintained at a higher level.
[被覆層の形成方法]
 被覆層は、上述のアミノシラン化合物を含むシランカップリング剤によって電極活物質を表面処理することで形成することができる。電極活物質を表面処理することで、リチウム複合酸化物の一次粒子及び/又は二次粒子の表面に被覆層が形成される。電極活物質の表面に上記被覆層を形成するタイミングは、特に制限されないが、電極活物質の表面に均一に被覆層を形成する観点から、電極の製造前に、電極活物質の表面に被覆層を形成するのが好ましい。但し、これに限られず、電極活物質とその他の合剤を混合した後に該混合物の表面に被覆層を形成してもよいし、あらかじめ電極を製造し、該合剤電極の表面に被覆層を形成してもよい。これにより、電極活物質の表面に、上述のアミノシラン化合物を含む被覆層が形成され、電極活物質含有層を有するリチウムイオン二次電池用電極が得られる。
[Method of forming the coating layer]
The coating layer can be formed by surface-treating the electrode active material with the above-mentioned silane coupling agent containing an aminosilane compound. By surface-treating the electrode active material, a coating layer is formed on the surface of the primary particles and / or the secondary particles of the lithium composite oxide. The timing of forming the coating layer on the surface of the electrode active material is not particularly limited, but from the viewpoint of uniformly forming the coating layer on the surface of the electrode active material, the coating layer is formed on the surface of the electrode active material before the production of the electrode. It is preferable to form. However, the present invention is not limited to this, and a coating layer may be formed on the surface of the mixture after mixing the electrode active material and another mixture, or an electrode may be manufactured in advance and a coating layer may be formed on the surface of the mixture electrode. It may be formed. As a result, a coating layer containing the above-mentioned aminosilane compound is formed on the surface of the electrode active material, and an electrode for a lithium ion secondary battery having the electrode active material-containing layer can be obtained.
 上記被覆層を形成する方法としては、特に制限されないが、例えば、塗布法、気相法、液相法等が挙げられる。本実施形態においては液相法又は気相法が好ましく、液相法がより好ましい。液相法では、Ni含有量が多いNCMやNCAなどのハイニッケル系の電極活物質を用いる場合にはNMP(N-メチルピロリジノン)などの極性溶媒が使用され、Ni含有量がそれ程多くない電極活物質を用いる場合にはエタノールやイソプロパノールなどの溶媒が使用される。気相法としては、真空蒸着法、スパッタ法、化学気相成長(CVD)法及びプラズマ化学気相法が挙げられる。 The method for forming the coating layer is not particularly limited, and examples thereof include a coating method, a vapor phase method, and a liquid phase method. In the present embodiment, the liquid phase method or the gas phase method is preferable, and the liquid phase method is more preferable. In the liquid phase method, when a high nickel-based electrode active material such as NCM or NCA having a high Ni content is used, a polar solvent such as NMP (N-methylpyrrolidinone) is used, and the electrode having a low Ni content is not so high. When an active material is used, a solvent such as ethanol or isopropanol is used. Examples of the vapor phase method include a vacuum deposition method, a sputtering method, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
[リチウムイオン二次電池の構成]
 本実施形態に係るリチウムイオン二次電池は、上記リチウムイオン二次電池用電極と、電解質とを備える。この二次電池は、上記電極を有すること以外は、従来あるいは公知の二次電池と同様の構成とすることができる。
[Construction of lithium-ion secondary battery]
The lithium ion secondary battery according to the present embodiment includes the above-mentioned electrode for a lithium ion secondary battery and an electrolyte. This secondary battery can have the same configuration as a conventional or known secondary battery except that it has the above electrodes.
 図1は、本実施形態に係るリチウムイオン二次電池の構成の一例を示す図である。
 図1に示すように、リチウムイオン二次電池1は、コイン型二次電池であり、正極2と、負極3と、電解質4とを備える。正極2は、集電体21と、該集電体21上に設けられた電極活物質含有層22とを備える。負極3は、集電体31と、該集電体31上に設けられた電極活物質含有層32とを備える。電解質4は、例えば電解液である。
 また、リチウムイオン二次電池1は、正極2と負極3の間に設けられたセパレータ5と、互いに協働して正極2、負極3および電解質4を内部に収容するステンレス製の正極側ケース6および負極側ケース7と、正極側ケース6と負極側ケース7との間であって且つそれらの外周部に介装されたポリプロピレン製のガスケット8と、を備えることができる。
FIG. 1 is a diagram showing an example of the configuration of a lithium ion secondary battery according to the present embodiment.
As shown in FIG. 1, the lithium ion secondary battery 1 is a coin-type secondary battery and includes a positive electrode 2, a negative electrode 3, and an electrolyte 4. The positive electrode 2 includes a current collector 21 and an electrode active material-containing layer 22 provided on the current collector 21. The negative electrode 3 includes a current collector 31 and an electrode active material-containing layer 32 provided on the current collector 31. The electrolyte 4 is, for example, an electrolytic solution.
Further, the lithium ion secondary battery 1 is a stainless steel positive electrode side case 6 in which the separator 5 provided between the positive electrode 2 and the negative electrode 3 and the positive electrode 2, the negative electrode 3 and the electrolyte 4 are housed in cooperation with each other. And the negative electrode side case 7, and the polypropylene gasket 8 between the positive electrode side case 6 and the negative electrode side case 7 and interposed around the outer peripheral portions thereof can be provided.
(正極)
 正極2の電極活物質含有層22は、本実施形態に係る上述の電極活物質及び被覆層を含んでいる。正極2は、電極活物質含有層22を有すること以外は、特に限定されない。正極2は、例えば、上記リチウム複合酸化物、導電材およびバインダーを含む正極合剤を調整することで製造することができる。
(Positive electrode)
The electrode active material-containing layer 22 of the positive electrode 2 contains the above-mentioned electrode active material and coating layer according to the present embodiment. The positive electrode 2 is not particularly limited except that it has the electrode active material-containing layer 22. The positive electrode 2 can be produced, for example, by adjusting a positive electrode mixture containing the above lithium composite oxide, a conductive material and a binder.
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えば、アセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
A carbon material can be used as the conductive material of the positive electrode. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to improve the conductivity inside the positive electrode by adding a small amount to the positive electrode mixture to improve charge / discharge efficiency and output characteristics, but if too much is added, it depends on the binder. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVDFともいう)、ポリテトラフルオロエチレン(以下、PTFEともいう)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
As the binder contained in the positive electrode, a thermoplastic resin can be used. Examples of this thermoplastic resin include polyvinylidene fluoride (hereinafter, also referred to as PVDF), polytetrafluoroethylene (hereinafter, also referred to as PTFE), ethylene tetrafluoride, propylene hexafluoride, vinylidene fluoride-based copolymer, and hexafluoride. Fluororesin such as propylene fluoride / vinylidene fluoride copolymer, ethylene tetrafluoride / perfluorovinyl ether copolymer; polyolefin resin such as polyethylene and polypropylene; can be mentioned.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。 When the positive electrode mixture is made into a paste, the organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate. Ester-based solvents such as dimethylacetamide, amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP);
(負極)
 負極3の電極活物質含有層32は、少なくとも電極活物質を含む。負極の電極活物質としては、リチウムイオンを吸蔵及び放出できる化合物を単独または組み合わせて用いることができる。リチウムイオンを吸蔵及び放出できる化合物の一例としては、リチウム等の金属材料、チタン、ケイ素、スズ等を含有する合金材料、グラファイト、コークス、有機高分子化合物焼成体又は非晶質炭素等の炭素材料が挙げられる。
 これらの電極活物質は単独で用いるだけでなく、これらを複数種類混合して用いることもできる。これらの物質のうち、負極3の電極活物質として、チタン含有酸化物(たとえば、ブロンズ構造の酸化チタンであるTiO(B)、チタン酸リチウムであるLiTi12)、酸化シリコン、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、シリコンおよびシリコンを含む合金(たとえば,Si80Ti20)や錫などを用いることが好ましい。
 例えば、負極活物質としてリチウム箔を用いる場合、銅等の金属からなる集電体の表面にリチウム箔を圧着することで形成できる。
(Negative electrode)
The electrode active material-containing layer 32 of the negative electrode 3 contains at least an electrode active material. As the electrode active material of the negative electrode, a compound capable of occluding and releasing lithium ions can be used alone or in combination. Examples of compounds capable of occluding and releasing lithium ions include metal materials such as lithium, alloy materials containing titanium, silicon, tin and the like, graphite, coke, calcined organic polymer compounds or carbon materials such as amorphous carbon. Can be mentioned.
Not only these electrode active materials can be used alone, but also a plurality of types of these electrode active materials can be mixed and used. Among these substances, as the electrode active material of the negative electrode 3, titanium-containing oxides (for example, TiO 2 (B) which is titanium oxide having a bronze structure, Li 4 Ti 5 O 12 which is lithium titanate), silicon oxide, and the like. It is preferred to use natural graphite, artificial graphite, hard carbon, soft carbon, silicon and alloys containing silicon (eg Si 80 Ti 20 ), tin and the like.
For example, when a lithium foil is used as the negative electrode active material, it can be formed by crimping the lithium foil to the surface of a current collector made of a metal such as copper.
 また、負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着材、導電助剤等を水、N-メチルピロリドン等の溶媒中で混合した後、銅等の金属からなる集電体上に塗布することで形成することができる。上記結着材は、高分子材料から形成されることが望ましく、リチウム二次電池内の雰囲気において化学的・物理的に安定な材料であることが望ましい。 When an alloy material or carbon material is used as the negative electrode active material, the negative electrode active material is mixed with a binder, a conductive auxiliary agent, etc. in a solvent such as water or N-methylpyrrolidone, and then made of a metal such as copper. It can be formed by applying it on a current collector. The binder is preferably formed from a polymer material, and is preferably a material that is chemically and physically stable in the atmosphere inside the lithium secondary battery.
 結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、フッ素ゴム等が挙げられる。
 また導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などが例示できる。また、導電性高分子ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなどが例示できる。
Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and acrylonitrile-butadiene rubber (NBR). , Fluorine rubber and the like.
Examples of the conductive auxiliary agent include Ketjen black, acetylene black, carbon black, graphite, carbon nanotubes, amorphous carbon and the like. Moreover, the conductive polymer polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene and the like can be exemplified.
 また、負極3の電極活物質含有層32は、電極活物質と、該電極活物質の表面に設けられた被覆層とを含んでいてもよい。この場合、電極活物質含有層32の被覆層は、正極2における電極活物質含有層22の被覆層と同様の構成を有することができる。これにより、電解液の分解による電池性能の劣化を防止することができ、また、電極活物質と電解液との界面でのリチウムイオン輸送の高効率化を実現することが可能となる。 Further, the electrode active material-containing layer 32 of the negative electrode 3 may include an electrode active material and a coating layer provided on the surface of the electrode active material. In this case, the coating layer of the electrode active material-containing layer 32 can have the same structure as the coating layer of the electrode active material-containing layer 22 in the positive electrode 2. As a result, deterioration of battery performance due to decomposition of the electrolytic solution can be prevented, and high efficiency of lithium ion transport at the interface between the electrode active material and the electrolytic solution can be realized.
(電解液)
 電解液は、正極及び負極の間のイオンなどの荷電担体の輸送を行う媒体であり、特に限定しないが、リチウムイオン二次電池が使用される雰囲気下で物理的、化学的、電気的に安定なものが望ましい。
(Electrolyte)
The electrolytic solution is a medium for transporting charged carriers such as ions between the positive electrode and the negative electrode, and is not particularly limited, but is physically, chemically, and electrically stable in an atmosphere in which a lithium ion secondary battery is used. Is desirable.
 例えば、電解液としては、LiBF、LiPF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)の中から選ばれた1種以上を支持電解質とし、これを有機溶媒に溶解させた電解液が好ましい。 For example, as the electrolytic solution, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9) An electrolytic solution in which one or more selected from SO 2 ) is used as a supporting electrolyte and this is dissolved in an organic solvent is preferable.
 有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等及びこれらの混合物が例示できる。中でもカーボネート系溶媒を含む電解液は、高温での安定性が高いことから好ましい。また、ポリエチレンオキサイドなどの固体高分子に上記の電解質を含んだ固体高分子電解質やリチウムイオン伝導性を有するセラミック、ガラス等の固体電解質も使用可能である。 Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like, and mixtures thereof. Of these, an electrolytic solution containing a carbonate solvent is preferable because it has high stability at high temperatures. Further, a solid polymer electrolyte in which the above electrolyte is contained in a solid polymer such as polyethylene oxide, or a solid electrolyte such as ceramic or glass having lithium ion conductivity can also be used.
 正極と負極との間には、電気的な絶縁作用とイオン伝導作用とを両立する部材であるセパレータを介装することが望ましい。電解質が液状である場合にはセパレータは、液状の電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)やガラス繊維からなる多孔質膜、不織布が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極よりも更に大きい形態を採用することが好ましい。 It is desirable to insert a separator, which is a member that has both an electrical insulating action and an ionic conduction action, between the positive electrode and the negative electrode. When the electrolyte is liquid, the separator also serves to retain the liquid electrolyte. Examples of the separator include a porous synthetic resin film, particularly a porous film made of a polyolefin polymer (polyethylene, polypropylene) or glass fiber, and a non-woven fabric. Further, the separator preferably adopts a form larger than that of the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.
 正極、負極、電解質、セパレータなどは、上述の正極側ケース6および負極側ケース7等で構成されるケース内に収納することが一般的である。ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。すなわち、本発明のリチウム二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状の電池として使用できる。また、本実施形態のリチウム二次電池のケースについても限定されるものではなく、金属製あるいは樹脂製のその外形を保持できるケース、ラミネートパック等の軟質のケース等、種々の形態の電池として使用できる。 The positive electrode, the negative electrode, the electrolyte, the separator and the like are generally housed in a case composed of the above-mentioned positive electrode side case 6 and negative electrode side case 7. The case is not particularly limited, and can be made of a known material and form. That is, the lithium secondary battery of the present invention is not particularly limited in its shape, and can be used as a battery having various shapes such as a coin type, a cylindrical type, and a square type. Further, the case of the lithium secondary battery of the present embodiment is not limited, and is used as a battery of various forms such as a case made of metal or resin that can hold its outer shape, a soft case such as a laminate pack, and the like. can.
 以下、本発明の実施例を説明する。本発明は、以下の実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to the following examples.
(実施例1)
<リチウムイオン二次電池用正極の製造>
 NCM523(Ni:50質量%、Co:20質量%、Mn:30質量%)とDB(導電助剤)とを秤量して乳鉢で混合し、専用容器に入れてミキサー(シンキー社製、製品名「あわとり練太郎」)で2分間混練した。十分に撹拌されていることを確認した後、バインダー(PVDF/NMP:10質量%)を秤量、滴下し、ミキサーで2分間混練した。次にNMPを100μL滴下し、ミキサーで2分間混練し、その後更にミキサーで2分間混練して、30秒間脱泡した。
(Example 1)
<Manufacturing of positive electrodes for lithium-ion secondary batteries>
NCM523 (Ni: 50% by mass, Co: 20% by mass, Mn: 30% by mass) and DB (conductive aid) are weighed, mixed in a mortar, placed in a special container, and mixed (manufactured by Shinky, product name). Kneaded with "Awatori Rentaro") for 2 minutes. After confirming that the mixture was sufficiently stirred, the binder (PVDF / NMP: 10% by mass) was weighed, added dropwise, and kneaded with a mixer for 2 minutes. Next, 100 μL of NMP was added dropwise, kneaded with a mixer for 2 minutes, then further kneaded with a mixer for 2 minutes, and defoamed for 30 seconds.
 得られた材料をアルミニウム箔に塗布し、大気圧、100℃で乾燥させた。次いで、打抜き機を用いてφ14mmで打ち抜き、120℃、10時間以上で真空乾燥させた。真空乾燥終了後、50kN、1分間でプレス成形し、正極材料を得た。このとき、正極材料における電極活物質:導電助剤:バインダーの質量比は、90:5:5、タップ密度は2.68g/cm~2.83g/cmであった。 The obtained material was applied to an aluminum foil and dried at atmospheric pressure at 100 ° C. Then, it was punched to φ14 mm using a punching machine, and vacuum dried at 120 ° C. for 10 hours or more. After completion of vacuum drying, press molding was performed at 50 kN for 1 minute to obtain a positive electrode material. At this time, the mass ratio of the electrode active material: the conductive auxiliary agent: the binder in the positive electrode material was 90: 5: 5, and the tap density was 2.68 g / cm 3 to 2.83 g / cm 3 .
 次に、ドライルームにおいて、SUS製の密閉容器内にスクリュー管と上記電極材料とを設置し、表面処理剤としてAPTES(東京化成工業社製)50μLをスクリュー管に入れて密閉し、密閉容器内の圧力を10325Paとし、密閉容器を120℃、3~15時間で、加熱した。これにより、電極活物質の表面に被覆層が形成されたリチウムイオン二次電池用正極を得た。 Next, in the dry room, the screw tube and the above electrode material are installed in a closed container made of SUS, and 50 μL of APTES (manufactured by Tokyo Chemical Industry Co., Ltd.) as a surface treatment agent is put in the screw tube and sealed, and the inside of the closed container is sealed. The pressure was 10325 Pa, and the closed container was heated at 120 ° C. for 3 to 15 hours. As a result, a positive electrode for a lithium ion secondary battery having a coating layer formed on the surface of the electrode active material was obtained.
<コインセルの作製>
 正極缶(正極側ケース)、上記で得られたリチウムイオン二次電池用正極、セパレータ、ガスケット、スペーサ、バネおよび負極缶(負極側ケース)をこの順に積層し、内部に電解液(1M LiPF EC/DMC(1:2))を収容して、コインセルを作製した。負極にはリチウム箔を用いた。
<Making coin cells>
The positive electrode can (positive electrode side case), the positive electrode for the lithium ion secondary battery obtained above, the separator, the gasket, the spacer, the spring and the negative electrode can (negative electrode side case) are laminated in this order, and the electrolytic solution (1M LiPF 6) is inside. EC / DMC (1: 2)) was housed to produce a coin cell. Lithium foil was used for the negative electrode.
(実施例2)
 正極の製造時にAPTESに代えてAHAMTES(Gelest社製)をアルミニウム箔上に塗布して被覆層を形成したこと以外は、実施例1と同様にしてコインセルを作製した。
(Example 2)
A coin cell was produced in the same manner as in Example 1 except that AHAMETES (manufactured by Gelest) was applied onto the aluminum foil instead of APTES to form a coating layer when the positive electrode was produced.
(実施例3)
 正極の製造時にAPTESに代えてDAEAPTS(シグマアルドリッチ社製)をアルミニウム箔上に塗布して被覆層を形成したこと以外は、実施例1と同様にしてコインセルを作製した。
(Example 3)
A coin cell was produced in the same manner as in Example 1 except that DAEAPTS (manufactured by Sigma-Aldrich Co., Ltd.) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
(比較例1)
 正極の製造時にAPTESに代えてFAS13(信越化学社製)をアルミニウム箔上に塗布して被覆層を形成したこと以外は、実施例1と同様にしてコインセルを作製した。
 FAS13:1H,1H,2H,2H-パーフルオロオクチルトリメトキシシラン
(Comparative Example 1)
A coin cell was produced in the same manner as in Example 1 except that FAS13 (manufactured by Shin-Etsu Chemical Co., Ltd.) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
FAS13: 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane
(比較例2)
 正極の製造時にAPTESに代えてFAS17(Gslest社製)をアルミニウム箔上に塗布して被覆層を形成したこと以外は、実施例1と同様にしてコインセルを作製した。
 FAS17:ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリメトキシシラン
(Comparative Example 2)
A coin cell was produced in the same manner as in Example 1 except that FAS17 (manufactured by Gsrest) was applied onto the aluminum foil instead of APTES at the time of producing the positive electrode to form a coating layer.
FAS17: Heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane
[正極のサイクル特性評価]
 実施例1~4および比較例1~2で作製したコインセルを充放電装置(北斗電工社製、製品名「HJ1001SD8」)にセットし、充放電による正極へのLi挿入脱離を行い、正極のサイクル特性を評価した。充放電は、カットオフ電圧2.8V~4.2V、電流密度0.5C、温度50℃、CCCV-CCモードで行った。この充放電を100回繰り返し、その際の放電容量および容量維持率を測定した。結果を表1および図2に示す。
[Evaluation of positive electrode cycle characteristics]
The coin cells produced in Examples 1 to 4 and Comparative Examples 1 and 2 were set in a charging / discharging device (manufactured by Hokuto Denko Co., Ltd., product name "HJ1001SD8"), and Li was inserted / discharged into the positive electrode by charging / discharging to perform Li insertion / discharge of the positive electrode. The cycle characteristics were evaluated. Charging and discharging were performed in a cutoff voltage of 2.8 V to 4.2 V, a current density of 0.5 C, a temperature of 50 ° C., and a CCCV-CC mode. This charge / discharge was repeated 100 times, and the discharge capacity and the capacity retention rate at that time were measured. The results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1および図2の結果から、実施例1~3のいずれも、被覆層が、分子末端にアミノ基を有するアミノシラン化合物を含んでおり、比較例1~2と比べて、初期放電容量からの放電容量低下が小さく、劣化を抑制できることが分かった。また、実施例1~3を比較すると、実施例2~3では、上記アミノシラン化合物が分子末端にアミノ基を有し、且つ1つ又は2つのエチレンイミン基を有しており、実施例1よりも放電容量低下が更に小さくなり、劣化を更に抑制できることが分かった。特に、実施例3では、上記アミノシラン化合物が2つのエチレンイミン基を有しており、放電容量低下が最も小さく、劣化を最も抑制できることが分かった。 From the results of Table 1 and FIG. 2, in each of Examples 1 to 3, the coating layer contains an aminosilane compound having an amino group at the molecular terminal, and the initial discharge capacity is higher than that of Comparative Examples 1 and 2. It was found that the decrease in discharge capacity was small and deterioration could be suppressed. Further, comparing Examples 1 to 3, in Examples 2 to 3, the aminosilane compound has an amino group at the molecular terminal and has one or two ethyleneimine groups, and is more than Example 1. However, it was found that the decrease in discharge capacity became smaller and the deterioration could be further suppressed. In particular, in Example 3, it was found that the aminosilane compound has two ethyleneimine groups, the decrease in discharge capacity is the smallest, and the deterioration can be suppressed most.
 一方、比較例1~2では、初期放電容量からの放電容量低下が大きく、劣化の抑制が不十分であった。 On the other hand, in Comparative Examples 1 and 2, the decrease in discharge capacity from the initial discharge capacity was large, and the suppression of deterioration was insufficient.
 また、被覆層形成時の加熱時間をそれぞれ、1時間、3時間、6時間、9時間、15時間に変えたこと以外は、実施例3と同様にして、電極活物質の表面に被覆層が形成されたリチウムイオン二次電池用正極を得た。そして、上記と同様にしてそれぞれのサイクル特性を評価した。結果を図3に示す。 Further, the coating layer was formed on the surface of the electrode active material in the same manner as in Example 3 except that the heating time at the time of forming the coating layer was changed to 1 hour, 3 hours, 6 hours, 9 hours, and 15 hours, respectively. The formed positive electrode for a lithium ion secondary battery was obtained. Then, each cycle characteristic was evaluated in the same manner as described above. The results are shown in FIG.
 図3に示すように、密閉容器での加熱時間の増大に伴って、電極活物質の表面に被覆層がより効果的に形成され、サイクル特性が更に向上することが分かった。 As shown in FIG. 3, it was found that as the heating time in the closed container increased, the coating layer was more effectively formed on the surface of the electrode active material, and the cycle characteristics were further improved.
[フローティング試験による正極の特性評価]
 被覆層形成時の加熱時間を1時間、3時間、15時間として得られたリチウムイオン二次電池用正極を用い、上記と同様にしてコインセルを作製した。そして、これらのコインセルについてフローティング試験を行った。フローティング試験では、50℃に設定した恒温槽内(エスペック社製、SH222)で、各コインセルの満充電状態での閉回路電圧(北斗電工社製、製品名「HJ1001SD8」)を測定した。
[Characteristic evaluation of positive electrode by floating test]
A coin cell was produced in the same manner as described above using the positive electrode for a lithium ion secondary battery obtained with the heating time at the time of forming the coating layer set to 1 hour, 3 hours, and 15 hours. Then, a floating test was conducted on these coin cells. In the floating test, the closed circuit voltage (manufactured by Hokuto Denko, product name "HJ1001SD8") in a fully charged state of each coin cell was measured in a constant temperature bath (manufactured by ESPEC, SH222) set at 50 ° C.
 図4に示すように、被覆層形成時の加熱時間を3時間あるいは15時間とした場合、被覆層の被覆率がそれぞれ80%、99%であり、電解液の酸化分解が抑制され、閉回路電圧の降下を十分に抑制できることが分かった。 As shown in FIG. 4, when the heating time at the time of forming the coating layer is 3 hours or 15 hours, the coverage of the coating layer is 80% and 99%, respectively, the oxidative decomposition of the electrolytic solution is suppressed, and the circuit is closed. It was found that the voltage drop can be sufficiently suppressed.
 一方、電極活物質に被覆層を形成しない場合、時間経過とともに電圧が降下し、閉回路電圧の降下を抑制できないことが分かった。また、被覆層形成時の加熱時間を1時間とした場合、被膜層がほぼ形成されておらず、時間経過とともに電圧が降下し、閉回路電圧の降下を抑制できないことが分かった。これは、電解液の酸化分解の増大に伴って閉回路における電流(自己放電)が増大し、経時的な電圧降下が生じたためである。 On the other hand, it was found that when the coating layer was not formed on the electrode active material, the voltage dropped with the passage of time, and the drop in the closed circuit voltage could not be suppressed. Further, it was found that when the heating time at the time of forming the coating layer was set to 1 hour, the coating layer was hardly formed, the voltage dropped with the passage of time, and the drop of the closed circuit voltage could not be suppressed. This is because the current (self-discharge) in the closed circuit increases as the oxidative decomposition of the electrolytic solution increases, causing a voltage drop over time.
(実施例4)
 ドライルームにおいて、プラスチック製の容器に平均粒径1μmであるNCM111(Ni:34質量%、Co:33質量%、Mn:33質量%)の一次粒子を5g秤量とエタノール60mLを加えて加え、さらに表面処理剤としてDAEAPTS(シグマアルドリッチ社製)を200μL加え、容器を室温で12時間攪拌した。攪拌後,細孔径1μmのメンブレンフィルターを用いて吸引ろ過したのち、45℃で真空乾燥した。これにより、電極活物質(NCM111)の表面に被覆層が形成された材料Aを得た。また、ドライルームにおいて、プラスチック製の容器に平均粒径10μmであるNCM111(Ni:34質量%、Co:33質量%、Mn:33質量%)の二次粒子を5g秤量とエタノール60mLを加え、さらに表面処理剤としてTPSA(東京化成社製)を加え、容器を室温で12時間攪拌した。これにより、電極活物質の表面に被覆層が形成された材料Bを得た。
 その後、材料Aと材料Bとを質量比1:9で混合し,さらにNCM111の総重量に対して1質量%のAB(導電助剤)を秤量して乳鉢で混合し、専用容器に入れてミキサー(シンキー社製、製品名「あわとり練太郎」)で2分間混練した。十分に撹拌されていることを確認した後、バインダー(PVDF/NMP:10質量%)をNCM111の総重量に対して1質量%で秤量、滴下し、ミキサーで2分間混練した。次にNMPを100μL滴下し、ミキサーで2分間混練し、その後更にミキサーで2分間混練して、30秒間脱泡し、材料Aと材料Bを含む材料Cを作製した。
(Example 4)
In the dry room, 5 g of primary particles of NCM111 (Ni: 34% by mass, Co: 33% by mass, Mn: 33% by mass) having an average particle size of 1 μm are added to a plastic container by adding 5 g weighing and 60 mL of ethanol, and further. 200 μL of DAEAPTS (manufactured by Sigma-Aldrich) was added as a surface treatment agent, and the container was stirred at room temperature for 12 hours. After stirring, suction filtration was performed using a membrane filter having a pore diameter of 1 μm, and then vacuum drying was performed at 45 ° C. As a result, a material A having a coating layer formed on the surface of the electrode active material (NCM111) was obtained. Further, in a dry room, 5 g of secondary particles of NCM111 (Ni: 34% by mass, Co: 33% by mass, Mn: 33% by mass) having an average particle size of 10 μm were weighed in a plastic container, and 60 mL of ethanol was added. Further, TPSA (manufactured by Tokyo Kasei Co., Ltd.) was added as a surface treatment agent, and the container was stirred at room temperature for 12 hours. As a result, a material B having a coating layer formed on the surface of the electrode active material was obtained.
After that, the material A and the material B are mixed at a mass ratio of 1: 9, and 1% by mass of AB (conductive auxiliary agent) with respect to the total weight of NCM111 is weighed, mixed in a mortar, and placed in a special container. Kneaded with a mixer (manufactured by Shinky Co., Ltd., product name "Awatori Rentaro") for 2 minutes. After confirming that the mixture was sufficiently stirred, a binder (PVDF / NMP: 10% by mass) was weighed in 1% by mass based on the total weight of NCM111, added dropwise, and kneaded with a mixer for 2 minutes. Next, 100 μL of NMP was added dropwise, and the mixture was kneaded with a mixer for 2 minutes and then further kneaded with a mixer for 2 minutes to defoam for 30 seconds to prepare a material C containing the material A and the material B.
 得られた材料Cをアルミニウム箔に塗布し、圧力20000パスカル、120℃で乾燥させた。次いで、打抜き機を用いてφ14mmで打ち抜き、120℃、12時間以上で真空乾燥させた。真空乾燥終了後、50kN、3分間でプレス成形し、リチウムイオン二次電池用正極を得た。このとき、正極における電極活物質:導電助剤:バインダーの質量比は、98:1:1、タップ密度は3.0g/cm~3.5g/cmであった。
 得られたリチウムイオン二次電池用正極を用いて、上記と同様にしてコインセルを作製した。
The obtained material C was applied to an aluminum foil and dried at a pressure of 20000 pascals and 120 ° C. Then, it was punched to φ14 mm using a punching machine, and vacuum dried at 120 ° C. for 12 hours or more. After completion of vacuum drying, press molding was performed at 50 kN for 3 minutes to obtain a positive electrode for a lithium ion secondary battery. At this time, the mass ratio of the electrode active material: the conductive auxiliary agent: the binder in the positive electrode was 98: 1: 1, and the tap density was 3.0 g / cm 3 to 3.5 g / cm 3 .
Using the obtained positive electrode for a lithium ion secondary battery, a coin cell was produced in the same manner as described above.
(実施例5)
 電極活物質(NCM111)の表面に被覆層(TPSA)が形成された材料Bに代えて、表面処理剤としてPI(IST社製、製品名「DREAMBOND(登録商標)100」)を加え、電極活物質(NCM111)の表面に被覆層(PI)が形成された材料Dを用いたこと以外は、実施例4と同様にしてコインセルを作製した。
(Example 5)
Instead of the material B in which the coating layer (TPSA) is formed on the surface of the electrode active material (NCM111), PI (manufactured by IST, product name "DREAMBOND (registered trademark) 100") is added as a surface treatment agent to perform the electrode activity. A coin cell was produced in the same manner as in Example 4 except that the material D having the coating layer (PI) formed on the surface of the substance (NCM111) was used.
(比較例3)
 材料A及びBのいずれの作製においても表面処理剤を用いなかったこと以外は、実施例4と同様にしてリチウムイオン二次電池用正極及びコインセルを得た。
(Comparative Example 3)
A positive electrode for a lithium ion secondary battery and a coin cell were obtained in the same manner as in Example 4 except that no surface treatment agent was used in the production of the materials A and B.
 実施例4及び比較例3で得られたコインセルを用い、上記と同様方法にて放電容量および容量維持率を測定した。結果を表2および図5に示す。 Using the coin cells obtained in Example 4 and Comparative Example 3, the discharge capacity and the capacity retention rate were measured by the same method as above. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2の結果から、実施例4では、一次粒子の被覆層が分子末端にアミノ基を有し且つ2つのエチレンイミン基を有するアミノシラン化合物を含み、二次粒子の被覆層が高反応性の酸無水物基を有する酸無水物を含んでいると、初期放電容量からの放電容量低下が小さく、劣化を抑制できることが分かった。また、実施例4で使用した電極活物質の電子顕微鏡画像を確認したところ、図5(a)に示すように、一次粒子が二次粒子間の間隙に均一に入り込み、電極活物質全体で電極活物質粒子が極めて緻密に充てんされていることが分かった。このことから、一次粒子の被覆層のアミノ基が二次粒子の被覆層の酸無水物基と反応することにより、一次粒子が二次粒子間の間隙に選択的に集積し、その結果高い容量維持率が得られたと推察される。 From the results in Table 2, in Example 4, the coating layer of the primary particles contained an aminosilane compound having an amino group at the molecular terminal and two ethyleneimine groups, and the coating layer of the secondary particles was a highly reactive acid. It was found that when an acid anhydride having an anhydride group was contained, the decrease in discharge capacity from the initial discharge capacity was small and deterioration could be suppressed. Further, when the electron microscope image of the electrode active material used in Example 4 was confirmed, as shown in FIG. 5A, the primary particles uniformly entered the gaps between the secondary particles, and the entire electrode active material was used as an electrode. It was found that the active material particles were extremely densely packed. From this, the amino groups in the coating layer of the primary particles react with the acid anhydride groups in the coating layer of the secondary particles, so that the primary particles are selectively accumulated in the gaps between the secondary particles, resulting in a high capacity. It is presumed that the maintenance rate was obtained.
 また、実施例5では、一次粒子の被覆層が分子末端にアミノ基を有し且つ2つのエチレンイミン基を有するアミノシラン化合物を含み、二次粒子の被覆層が高反応性のイミド基を有するイミド化合物を含んでいると、初期放電容量からの放電容量低下が非常に小さく、劣化を大幅に抑制できることが分かった。 Further, in Example 5, the coating layer of the primary particles contains an aminosilane compound having an amino group at the molecular terminal and two ethyleneimine groups, and the coating layer of the secondary particles is an imide having a highly reactive imide group. It was found that when the compound was contained, the decrease in discharge capacity from the initial discharge capacity was very small, and deterioration could be significantly suppressed.
 一方、比較例3では、電極活物質の一次粒子及び二次粒子のいずれにも被覆層が形成されておらず、初期放電容量からの放電容量低下が大きく、劣化の抑制が不十分であった。また、比較例3で使用した電極活物質の電子顕微鏡画像を確認したところ、図5(b)に示すように、一次粒子が二次粒子間の間隙に不規則に入り込み、電極活物質全体で電極活物質粒子が疎に充てんされていることが分かった。 On the other hand, in Comparative Example 3, the coating layer was not formed in either the primary particles or the secondary particles of the electrode active material, the discharge capacity was significantly reduced from the initial discharge capacity, and the deterioration was insufficiently suppressed. .. Further, when the electron microscope image of the electrode active material used in Comparative Example 3 was confirmed, as shown in FIG. 5 (b), the primary particles irregularly entered the gaps between the secondary particles, and the entire electrode active material became It was found that the electrode active material particles were sparsely filled.
1 リチウムイオン二次電池
2 正極
3 負極
4 電解質
5 セパレータ
6 正極側ケース
7 負極側ケース
8 ガスケット
21 集電体
22 電極活物質含有層
31 集電体
32 電極活物質含有層
1 Lithium-ion secondary battery 2 Positive electrode 3 Negative electrode 4 Electrode 5 Separator 6 Positive electrode side case 7 Negative electrode side case 8 Gasket 21 Current collector 22 Electrode active material-containing layer 31 Current collector 32 Electrode active material-containing layer

Claims (11)

  1.  集電体と、前記集電体上に設けられた電極活物質含有層とを備え、
     前記電極活物質含有層は、電極活物質と、前記電極活物質の表面に設けられた被覆層とを有し、
     前記被覆層が、分子末端にアミノ基を有するか、少なくとも1つのエチレンイミン基を有するか又はジアルキルアミノ基を有するアミノシラン化合物を含む、リチウムイオン二次電池用電極。
    A current collector and an electrode active material-containing layer provided on the current collector are provided.
    The electrode active material-containing layer has an electrode active material and a coating layer provided on the surface of the electrode active material.
    An electrode for a lithium ion secondary battery, wherein the coating layer contains an aminosilane compound having an amino group at the molecular terminal, at least one ethyleneimine group, or a dialkylamino group.
  2.  前記アミノシラン化合物が、分子末端にアミノ基を有し且つ少なくとも1つのエチレンイミン基を有する、請求項1に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1, wherein the aminosilane compound has an amino group at the molecular terminal and at least one ethyleneimine group.
  3.  前記アミノシラン化合物が、N-(3-トリメトキシシリルプロピル)ジエチレントリアミンである、請求項2に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 2, wherein the aminosilane compound is N- (3-trimethoxysilylpropyl) diethylenetriamine.
  4.  前記被覆層が、自己組織化単分子膜で構成される、請求項1に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1, wherein the coating layer is composed of a self-assembled monolayer.
  5.  前記電極活物質の表面のうち前記被覆層が覆っている部分の割合を示す被覆率が、80%以上である、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the coating ratio indicating the ratio of the portion of the surface of the electrode active material covered by the coating layer is 80% or more. ..
  6.  前記電極活物質は、第一電極活物質粒子と、前記第一電極活物質粒子よりも粒径の大きい第二電極活物質粒子とを有し、
     前記被覆層は、前記第一電極活物質粒子の表面に設けられた第一被覆部と、前記第二電極活物質粒子の表面に設けられた第二被覆部とを有し、
     前記第一被覆部が、分子末端にアミノ基を有するアミノシラン化合物を含み、
     前記第二被覆部が、カルボン酸、カルボン酸塩、無水カルボン酸、無水コハク酸及びアシルイソ尿素からなる群から選択された官能基を有する化合物を含む、請求項1に記載のリチウムイオン二次電池用電極。
    The electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
    The coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
    The first coating contains an aminosilane compound having an amino group at the end of the molecule.
    The lithium ion secondary battery according to claim 1, wherein the second coating portion contains a compound having a functional group selected from the group consisting of carboxylic acid, carboxylic acid salt, carboxylic acid anhydride, succinic anhydride and acylisourea. For electrodes.
  7.  前記電極活物質は、第一電極活物質粒子と、前記第一電極活物質粒子よりも粒径の大きい第二電極活物質粒子とを有し、
     前記被覆層は、前記第一電極活物質粒子の表面に設けられた第一被覆部と、前記第二電極活物質粒子の表面に設けられた第二被覆部とを有し、
     前記第一被覆部が、分子末端にアミノ基を有するアミノシラン化合物を含み、
     前記第二被覆部が、イミド系化合物を含む、請求項1に記載のリチウムイオン二次電池用電極。
    The electrode active material has a first electrode active material particle and a second electrode active material particle having a particle size larger than that of the first electrode active material particle.
    The coating layer has a first coating portion provided on the surface of the first electrode active material particles and a second coating portion provided on the surface of the second electrode active material particles.
    The first coating contains an aminosilane compound having an amino group at the end of the molecule.
    The electrode for a lithium ion secondary battery according to claim 1, wherein the second coating portion contains an imide compound.
  8.  前記電極活物質は、層状岩塩型構造を有するリチウム複合酸化物を含む、請求項1に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1, wherein the electrode active material contains a lithium composite oxide having a layered rock salt type structure.
  9.  前記層状岩塩型構造を有するリチウム複合酸化物は、LiNiO、LiCoO、LiNiCoMn(k+l+m=1)およびLiNiCoAl(k+l+m=1)のうちのいずれかである、請求項8に記載のリチウムイオン二次電池用電極。 Lithium composite oxide having a layered rock-salt structure, LiNiO 2, LiCoO 2, LiNi k Co l Mn m O 2 (k + l + m = 1) and LiNi k Co l Al m O 2 (k + l + m = 1) any of the The electrode for a lithium ion secondary battery according to claim 8.
  10.  前記層状岩塩型構造を有するリチウム複合酸化物は、コバルト酸リチウム(LCO)、ニッケル-コバルト-マンガン酸リチウム(NCM)およびニッケル-コバルト-アルミニウム酸リチウム(NCA)のうちのいずれかである、請求項9に記載のリチウムイオン二次電池用電極。 The lithium composite oxide having a layered rock salt structure is one of lithium cobalt oxide (LCO), nickel-cobalt-lithium manganate (NCM) and lithium nickel-cobalt-lithium aluminate (NCA). Item 9. The electrode for a lithium ion secondary battery.
  11.  請求項1~10のいずれか1項に記載のリチウムイオン二次電池用電極と、電解質とを備える、リチウムイオン二次電池。 A lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to any one of claims 1 to 10 and an electrolyte.
PCT/JP2021/008654 2020-03-11 2021-03-05 Electrode for lithium ion secondary batteries, and lithium ion secondary battery WO2021182320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022507136A JPWO2021182320A1 (en) 2020-03-11 2021-03-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041660 2020-03-11
JP2020041660 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182320A1 true WO2021182320A1 (en) 2021-09-16

Family

ID=77671687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008654 WO2021182320A1 (en) 2020-03-11 2021-03-05 Electrode for lithium ion secondary batteries, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2021182320A1 (en)
WO (1) WO2021182320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176937A1 (en) * 2022-03-16 2023-09-21 国立大学法人信州大学 Negative electrode active material for secondary battery and method for producing same, negative electrode for secondary battery, and secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146322A (en) * 2014-12-31 2016-08-12 財團法人工業技術研究院Industrial Technology Research Institute Battery electrode paste composition
WO2017061323A1 (en) * 2015-10-05 2017-04-13 東レ株式会社 Positive electrode for lithium ion secondary battery, graphene/positive electrode active material composite particles, and manufacturing methods for same, and positive electrode paste for lithium ion secondary battery
CN108306016A (en) * 2018-02-02 2018-07-20 哈尔滨工业大学 A method of cell positive material surface is modified using coupling agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146322A (en) * 2014-12-31 2016-08-12 財團法人工業技術研究院Industrial Technology Research Institute Battery electrode paste composition
WO2017061323A1 (en) * 2015-10-05 2017-04-13 東レ株式会社 Positive electrode for lithium ion secondary battery, graphene/positive electrode active material composite particles, and manufacturing methods for same, and positive electrode paste for lithium ion secondary battery
CN108306016A (en) * 2018-02-02 2018-07-20 哈尔滨工业大学 A method of cell positive material surface is modified using coupling agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176937A1 (en) * 2022-03-16 2023-09-21 国立大学法人信州大学 Negative electrode active material for secondary battery and method for producing same, negative electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JPWO2021182320A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9843045B2 (en) Negative electrode active material and method for producing the same
US8673490B2 (en) High energy lithium ion batteries with particular negative electrode compositions
JP4623786B2 (en) Non-aqueous secondary battery
JP7159156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111213262A (en) Negative electrode and secondary battery comprising same
JP2010073651A (en) Negative electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
CN113474912A (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP6048407B2 (en) Negative electrode active material and method for producing the same
WO2016136227A1 (en) Nonaqueous electrolyte secondary battery
EP3863084B1 (en) Negative electrode and secondary battery including same
JP2017103058A (en) Cathode active material used for lithium ion secondary battery
WO2021241130A1 (en) Cell and method for manufacturing cell
CN112042034A (en) Lithium secondary battery comprising inorganic electrolyte
JP2012181975A (en) Nonaqueous secondary battery
CN113574696A (en) Negative electrode and lithium secondary battery comprising same
CN113728462A (en) Negative electrode and secondary battery comprising same
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
EP3905390A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7466981B2 (en) Negative electrode and secondary battery including the same
WO2021182320A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN113939930A (en) Composite anode active material, method for preparing same, anode comprising same, and secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
CN116670850A (en) Negative electrode and secondary battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767009

Country of ref document: EP

Kind code of ref document: A1