WO2021182291A1 - Step board - Google Patents

Step board Download PDF

Info

Publication number
WO2021182291A1
WO2021182291A1 PCT/JP2021/008416 JP2021008416W WO2021182291A1 WO 2021182291 A1 WO2021182291 A1 WO 2021182291A1 JP 2021008416 W JP2021008416 W JP 2021008416W WO 2021182291 A1 WO2021182291 A1 WO 2021182291A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
tread
tread plate
foam layer
weight
Prior art date
Application number
PCT/JP2021/008416
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 敏晴
遊佐 敦
水谷 圭
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2021182291A1 publication Critical patent/WO2021182291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • E04G5/08Scaffold boards or planks

Definitions

  • This disclosure relates to treads including scaffolding treads used at building construction sites and the like.
  • Scaffolding treads used at building construction sites are often made of metal such as iron and aluminum.
  • Metal treads are relatively heavy. Therefore, the metal treads increase the cost burden for transportation, installation, removal, etc., and the physical burden on the workers.
  • a tread structure for the purpose of weight reduction is provided.
  • the scaffolding structure can secure the strength by providing the skin member, since the core member is foamed rigid polyurethane, there may still be a problem in strength.
  • the treads according to the present disclosure may include a plurality of tread members arranged side by side in the width direction.
  • Each tread member may include a resin foam layer and a fiber reinforced resin layer laminated on the main surface of the resin foam layer.
  • the breaking load (Wcc) of each tread member may be Wcc> 980 Lc (N), where Lc is the distance between the fulcrums in the length direction of the tread member.
  • FIG. 1 is an external perspective view showing the structure of the tread plate according to the embodiment.
  • FIG. 2 is an external perspective view showing the structure of the tread plate member among the tread plates shown in FIG. 1.
  • the treads may include a plurality of tread members arranged side by side in the width direction.
  • Each tread member may include a resin foam layer and a fiber reinforced resin layer laminated on the main surface of the resin foam layer.
  • the breaking load (Wcc) of each tread member may be Wcc> 980 Lc (N), where Lc is the distance between the fulcrums in the length direction of the tread member.
  • Each tread member can secure the strength of Wcb> 980Lc (N), which is a relatively high breaking load. Further, the weight can be reduced by forming bubbles in the resin foam layer. In this way, the treads in which a plurality of tread members are arranged side by side in the width direction can improve the strength while reducing the weight.
  • the resin foam layer may contain 50% by weight or more of the polycarbonate resin with respect to the resin foam layer.
  • the tread plate member can obtain sufficient strength.
  • the fiber reinforced resin layer may contain 50% by weight or more of the polycarbonate resin with respect to the resin contained in the fiber reinforced resin layer.
  • the resin foam layer and the resin contained in the fiber reinforced resin layer may each have a sea-island structure containing a polycarbonate resin as a sea component.
  • the resin contained together with the polycarbonate resin is formed inside the resin foam layer and the fiber reinforced resin layer as island components, and the surface of the main surface of the resin foam layer and the fiber reinforced resin layer is a sea component polycarbonate resin. Is exposed a lot.
  • the adhesiveness between the resin foam layer and the fiber-reinforced resin layer can be improved due to the compatibility between the polycarbonate resins. As a result, it is possible to suppress the peeling of the fiber reinforced resin layer from the resin foam layer, and it is possible to further improve the strength of the tread member.
  • the fiber reinforced resin layer may be laminated on both sides of the main surface of the resin foam layer.
  • the bending strength can be improved against the stress applied from the vertical direction to the main surface of the tread member.
  • the tread may further include a frame.
  • the frame may include one selected from the group consisting of metals, carbon fibers, inert particles and fiber reinforced plastics.
  • the plurality of tread members may be arranged inside the frame with both ends supported by the frame in the length direction orthogonal to the width direction. Thereby, a plurality of tread plate members can be reinforced.
  • the tread plate 1 for scaffolding used at the construction site of a building can be mentioned as an example.
  • the scaffolding tread plate 1 will be described as the tread plate 1.
  • the tread plate 1 can also be used as a ladder, a stepladder, a foldable scaffold, and a tread plate 1 such as a part of the floor of an automobile, a train, a bus, or the like. That is, in the present specification, the tread plate 1 means not only the tread plate 1 for scaffolding but also a plate material on which a person's foot is pressed from above when walking or the like.
  • each tread member 2 includes a resin foam layer 21 and a fiber reinforced resin layer 22.
  • the resin foam layer 21 contains 50% by weight or more of polycarbonate resin.
  • the resin contained in the resin foam layer 21 may contain 100% by weight of the polycarbonate resin, may be a compound resin of the polycarbonate resin and at least one of the other resin and the inert particles, or may be a copolymerized polycarbonate resin.
  • Other resins include ABS resin, AS resin, acrylic resin, polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethylene terephthalate, polybutylene naphthalate, etc.), PPS resin, polyphenylene ether resin, polyether.
  • the other resins may be used alone or in combination of two or more.
  • the polycarbonate resin since the polycarbonate resin has a high melt viscosity and low fluidity, it is difficult for the physical foaming agent to be mixed and it is difficult to secure a high foaming ratio of the foamed molded product. Further, when the polycarbonate resin is physically foamed, it is plasticized only by adding a foaming agent, so that the melt viscosity tends to decrease, but the viscosity increases when the cooling step after the foaming treatment is started. Therefore, as will be described later, when the polycarbonate resin is extruded from the die of the extruder for molding, air bubbles near the surface of the resin foam layer 21 may be broken and the surface may be roughened. As described above, the polycarbonate resin may have a problem in moldability.
  • a polycarbonate resin having a low viscosity average molecular weight (including a resin obtained by blending a polycarbonate resin having a high viscosity average molecular weight with a polycarbonate resin having a low viscosity average molecular weight) is used, or a resin having good fluidity is used.
  • an additive such as a filler to secure the fluidity.
  • a polycarbonate resin having an excessively low viscosity average molecular weight is used, the strength of the resin foam layer 21 may decrease.
  • the polycarbonate resin is preferably 90% by weight or less, more preferably 80% by weight or less.
  • the other resin having good fluidity is at least one selected from the group consisting of polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), ABS resin, AS resin, polypropylene resin, and acrylic resin. Two resins can be mentioned. From the viewpoint of improving the strength, the content of the polycarbonate resin contained in the resin foam layer 21 is preferably 100% by weight.
  • Aromatic dihydroxy compounds such as 4-hydroxyphenyl) methane, 1,1-bis (p-hydroxyphenyl) ethane, 2,2-bis (p-hydroxyphenyl) butane; ethylene glycol, 1,2-propylene glycol, 3 Examples thereof include aliphatic dihydroxy compounds such as -methyl-1,5-pentanediol, 1,6-hexanediol, 1,3-propanediol, and 1,4-butanediol. These dihydroxy compounds may be used alone or in combination of two or more.
  • the polycarbonate resin may contain a structural unit derived from a monohydroxy compound, a trihydroxy compound, or the like.
  • the polypropylene resin can improve the foaming characteristics of the polycarbonate resin, that is, improve the fluidity and increase the foaming ratio, so that the tread plate can be formed.
  • the weight of the member 2 can be reduced.
  • the foaming ratio can be increased as in the case where the polypropylene resin is contained, so that the tread member 2 should be reduced in weight. Can be done.
  • the tread member 2 can maintain the strength because the polyester resin has the same strength as the polycarbonate resin.
  • the tread plate member 2 can determine the resin to be combined with the polycarbonate resin depending on whether the weight reduction or the strength is emphasized. Even when the weight is reduced, the resin foam layer 21 contains 50% by weight or more of the polycarbonate resin, so that sufficient strength, which will be described later, is ensured.
  • the resin foam layer 21 is foam-molded.
  • the resin foam layer 21 has a foaming ratio of 1.2 to 4 times.
  • the foaming ratio is preferably 1.2 times or more, preferably 1.5 times or more, more preferably 2 times or more. It is preferably fold or less, preferably 3.5 times or less, and more preferably 3 times or less.
  • the viscosity average molecular weight of the polycarbonate resin is 10,000 to 100,000. If the viscosity average molecular weight of the polycarbonate resin is too high, the viscosity increases and the torque required for the extruder described later increases, making extrusion processing difficult. As a result, if the molecular weight of the resin is increased, the strength of the molded product after processing can be improved, but the production itself is hindered. On the other hand, if the viscosity average molecular weight of the polycarbonate resin is too low, the bubbles tend to coalesce and the bubble diameter does not become uniform, so that the strength after curing decreases. In addition, the decrease in melt tension makes it difficult to foam.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 10,000 or more, preferably 15,000 or more, and preferably 100,000 or less, preferably 50,000 or less. That is, by setting the viscosity average molecular weight of the polycarbonate resin to 10,000 to 100,000, it is possible to obtain the effects of improving the strength and reducing the weight of the tread plate member 2 while facilitating molding.
  • the viscosity average molecular weight of the polycarbonate resin may be obtained by mixing a resin having a viscosity average molecular weight of less than 15,000 or more than 50,000.
  • a resin having a viscosity average molecular weight of less than 15,000 or more than 50,000 for example, an aromatic polycarbonate resin having a viscosity average molecular weight of more than 50,000 improves the entropy elasticity of the resin, and thus exhibits good molding processability in foam molding of the resin foam layer 21. Such improvement in molding processability is even better than that of branched polycarbonate.
  • the viscosity average molecular weight in the present disclosure is calculated as follows. First, using an Ostwald viscometer, the specific viscosity ( ⁇ SP ) is calculated from a solution in which 0.7 g of aromatic polycarbonate (resin contained in the resin foam layer 21) is dissolved in 100 ml of methylene chloride at 20 ° C. The specific viscosity can be calculated by the formula ⁇ (t-t 0 ) / t 0 ⁇ . t 0 is the number of seconds for the methylene chloride (solvent) to fall, and t is the falling speed of the sample solution.
  • c in the formula is the concentration of aromatic polycarbonate (0.7%).
  • the fiber reinforced resin layer 22 is a fiber reinforced resin sheet containing fibers, and is laminated on both sides of the main surface of the resin foam layer 21. That is, the resin foam layer 21 is arranged between the two fiber reinforced resin layers 22.
  • the fiber-reinforced resin layer 22 is formed in a shape substantially similar to the shape of the main surface of the resin foam layer 21.
  • the tread plate member 2 can improve the bending strength against the stress applied from the vertical direction to the main surface of the tread plate member 2. That is, the fiber-reinforced resin layer 22 functions as a reinforcing material for the resin foam layer 21.
  • one fiber reinforced resin layer 22 may be laminated on the main surface of one side of the resin foam layer 21.
  • the fibers contained in the fiber reinforced resin layer 22 are carbon fibers, glass fibers, aramid fibers, polyester fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, hollow metal fibers and the like. Hollow metal fibers are stainless steel, steel and the like.
  • the fibers contained in the fiber-reinforced resin layer 22 are not limited to these, and other fiber materials may be used.
  • the texture of the fibers contained in the fiber reinforced resin layer 22 is more preferably 100 g / m 2 or more, preferably 175 g / m 2 or more, more preferably from the viewpoint of balancing the improvement of strength and the weight reduction. Is preferably 250 g / m 2 or more, 500 g / m 2 or less, preferably 425 g / m 2 or less, and more preferably 350 g / m 2 or less.
  • the breaking load (Wcb) of each tread member 2 configured in this way is 980 Lc (N), where Lc is the distance between the fixed ends where both ends of the tread member 2 in the length direction are fixed. (Wcb> 980Lc (N)), and even if the tread member 2 is destroyed near the center, it is considered that the worker can be supported.
  • Wcb> 980Lc can be calculated as follows.
  • 980Lc (N) is referred to as required yield strength.
  • the tread plate member 2 is in a state of both end support beams in which both end portions of the tread plate member 2 are supported by the frame 3 in a state where the tread plate member 2 is not destroyed.
  • the length of the support beams at both ends (distance between fulcrums) is Lc
  • the load applied to the tip of the cantilever is at most 1/2 of the body weight of the worker. That is, assuming that the weight of the worker is 100 kg, which is relatively heavier than the average weight of a Japanese man, the load applied to the tip of the cantilever is 50 kg. Based on these conditions, the relational expression of ⁇ L ⁇ 50 (kg) ⁇ 9.8 ⁇ Wccb ⁇ Lc / 4 ⁇ (Equation 5) is established from (Equation 4).
  • the breaking load Wcc of the both ends support beam with the length Lc of both ends support beam being 1 m can be expressed by ⁇ Wcc> L ⁇ 50 ⁇ 9.8 ⁇ 4 ⁇ (Equation 6). When this is calculated, it becomes ⁇ Wcc> 1960L (N) ⁇ (Equation 7). Further, since the length L of the cantilever beam is Lc / 2, the breaking load Wcc of the support beam at both ends can be expressed by ⁇ Wcc> 980Lc (N) ⁇ (Equation 8).
  • each tread member 2 can secure the strength capable of supporting the worker as described above by obtaining a relatively high breaking load of Wcb> 980 Lc (N), and the resin foam layer 21 Weight reduction can be achieved by forming bubbles.
  • the resin foam layer 21 has an apparent density of 0.3 to 0.8 when it contains 100% by weight of the polycarbonate resin.
  • the polycarbonate resin has an apparent density of 1.2. Therefore, when the apparent density of the foamed polycarbonate resin is 0.3 to 0.8, the foaming ratio of the resin foamed layer 21 is 1.5 to 4 times.
  • Each tread member 2 has a width of 5 to 500 mm.
  • the width of the tread member 2 is about the same as the average shoulder width of a worker (Japanese male), or smaller than the average shoulder width of a worker.
  • the plurality of tread plate members 2 are arranged side by side in the width direction. That is, the tread plate 1 is destroyed even if one tread plate member 2 is destroyed by forming each tread plate member 2 with the above-mentioned width and further arranging the tread plate members 2 side by side in the width direction. Workers can be supported by the tread plate members 2 on both sides of the tread plate member 2. Further, as described above, each tread plate member 2 has excellent strength that can support the worker even in the state of a cantilever.
  • the frame 3 has a substantially rectangular shape in a plan view.
  • the frame 3 has a pair of facing frame members 31 and a pair of facing frame members 32.
  • the frame member 31 has a substantially L-shaped cross section due to the flange portion 31a and the wall portion 31b. Each of the pair of frame members 31 is arranged so that the flange portion 31a is inside the wall portion 31b.
  • the frame member 32 is formed in a flat plate shape.
  • a plurality of partition plates 33 are provided on the upper surface of the flange portion 31a of one of the frame members 31.
  • a partition plate 33 is provided on the upper surface of the flange portion 31a of the other frame member 31 at a position facing the partition plate 33 provided on the one flange portion 31a.
  • Frame 3 contains one selected from the group consisting of metals, carbon fibers, inert particles and fiber reinforced plastics.
  • the frame 3 may contain one of these materials, or may contain two or more of them. With such a configuration, the frame 3 can obtain the strength to support the plurality of tread plate members 2.
  • the tread plate member 2 is fitted in a region surrounded by a wall portion 31b, a partition plate 33, and a flange portion 31a.
  • each of the tread plate members 2 is positioned by partition plates 33 provided at the four corners of the tread plate member 2, except for the tread plate member 2 adjacent to the frame member 32. That is, two partition plates 33 are provided on one frame member 31 side between the tread plate member 2 and the tread plate member 2 adjacent to the tread plate member 2.
  • the tread plate member 2 adjacent to the frame member 32 is fitted in a region surrounded by the frame member 32, the partition plate 33, the flange portion 31a, and the wall portion 31b.
  • the end portion of the tread plate member 2 facing the frame member 31 in the length direction is supported by the flange portion 31a. In this way, a plurality of tread plate members 2 are attached to the inside of one frame 3.
  • the tread plate member 2 can be reinforced and a plurality of tread plate members 2 can be arranged side by side in the width direction.
  • a gap is formed by interposing a partition plate 33 between the tread plate member 2 and the tread plate member 2 adjacent to the tread plate member 2.
  • the tread plate 1 can be reduced in weight. Further, depending on the place where the tread plate 1 is attached, the air permeability can be improved.
  • One tread plate member 2 may be arranged inside the frame 3, or a plurality of tread plate members 2 may be arranged. Further, the frame member 31 may also have a substantially L-shaped cross section. Further, the partition plate 33 may be provided with one partition plate 33 between adjacent tread plate members 2 on one frame member 31 side.
  • the partition plate 33 is not limited to the above-described configuration as long as it can partition the adjacent tread plate members 2 and facilitate the positioning when the tread plate members 2 are fitted. Further, the partition plate 33 may be provided with one or a plurality of partition plates 33 on one of the frame members 31 depending on the number of tread plate members 2 attached to the inside of the frame 3. Further, the tread plate member 2 can be attached without providing the partition plate 33 inside the frame 3.
  • the frame 3 is not particularly limited as long as it can support both ends of the plurality of tread members 2 in the length direction and the plurality of tread members 2 can be arranged in the width direction.
  • the polycarbonate resin When a load is applied, the polycarbonate resin is plastically deformed by yielding and then fractured, but the amount of plastic deformation from yielding to fracture is large. Therefore, the polycarbonate resin does not break immediately after yielding and has a tenacious property. As a result, if the deformation of the tread plate member 2 is detected, the risk caused by the subsequent destruction of the tread plate member 2 can be dealt with with a margin.
  • the resin foam layer 21 contains 50% by weight or more of the polycarbonate resin, so that the sea-island structure is formed by the polycarbonate resin and the resin contained together with the polycarbonate resin. That is, the resin foam layer 21 has a sea-island structure in which the polycarbonate resin is a sea component and the resin contained together with the polycarbonate resin is an island component.
  • the fiber-reinforced resin layer 22 includes a resin (a compound resin of a polycarbonate resin and at least one of another resin and inert particles, a copolymerized polycarbonate resin, or another resin) contained in the fiber-reinforced resin layer 22. 50% by weight or more of the polycarbonate resin may be contained with respect to the blended polycarbonate resin).
  • the resin contained in the fiber-reinforced resin layer 22 is the same as the resin contained in the resin foam layer 21 described above, and thus the description thereof will be omitted.
  • a sea-island structure in which the polycarbonate resin is a sea component and the resin contained together with the polycarbonate resin is an island component is formed as in the resin foam layer 21. Will be done.
  • the fiber-reinforced resin layer 22 is bonded to the main surface of the resin foam layer 21, as will be described later, the resin foam layer 21 and the fiber-reinforced resin layer 22 are adhered to each other due to the compatibility between the polycarbonate resins.
  • the sex can be improved.
  • the fiber-reinforced resin layer 22 can be prevented from peeling from the resin foam layer 21, and the strength of the tread member 2 can be further improved.
  • the amount of the polycarbonate resin contained in each of the resin foam layer 21 and the fiber reinforced resin layer 22 is 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more, as described above. Is good.
  • the resin foam layer 21 of the tread plate member 2 is molded by a deformed extrusion molding method. Specifically, first, in an extruder such as a screw, the pellets of polycarbonate resin and other resins, for example, pellets of polypropylene resin, inert particles, etc. are heated and melted, and the polycarbonate resin is 50% by weight or more. The molten resin material is produced by mixing so as to be. The blending ratio of 50% by weight or more of the polycarbonate resin (pellets) is a ratio to the weight including other resins (pellets) and inert particles charged into the extruder. Further, in the extruder, at least one of the chemical foaming agent and the physical foaming agent is injected into the produced molten resin material, and the molten resin material and the foaming agent are mixed.
  • an extruder such as a screw
  • the pellets of polycarbonate resin and other resins for example, pellets of polypropylene resin, inert particles, etc.
  • the molten resin material mixed with the foaming agent is poured into a die, and the resin foam layer 21 is formed while gradually lowering the temperature by passing the die.
  • the die is open in the direction of extruding the molten resin material.
  • bubbles are generated in the molten resin material mixed with the foaming agent due to the pressure drop when passing through the die.
  • the resin foam layer 21 is foam-molded.
  • the fiber reinforced resin layer 22 can be attached to the main surface of the resin foam layer 21. That is, the fiber reinforced resin layer 22 is attached to the main surface of the resin foam layer 21 before being cured by cooling without using an adhesive.
  • the fiber reinforced resin layer 22 is formed by impregnating the resin with a fiber material woven by plain weave or the like.
  • the method for producing the fiber reinforced resin layer 22 is not particularly limited. In the method of bonding the fiber reinforced resin layer 22 to the main surface of the resin foam layer 21, a solvent capable of dissolving the polycarbonate resin is applied to the surface of either the resin foam layer 21 or the fiber reinforced resin layer 22 or facing each other. An appropriate amount may be applied to both surfaces, and the two may be bonded together and then dried.
  • the shape of the resin foam layer 21 and the fiber reinforced resin layer 22 is adjusted while being cooled in the cooling tank. In this state, the resin foam layer 21 and the fiber reinforced resin layer 22 are formed in a continuous plate shape. Therefore, these are cut to a predetermined size.
  • tread plate members 2 are arranged side by side along the width direction inside the above-mentioned frame 3. In this way, the tread plate 1 can be created.
  • the tread members of Examples 1 to 4 and the tread members of Comparative Examples 1 to 4 are each formed in a rectangular plate shape in a plan view, and the width, length, and thickness are as shown in Table 1. .. Further, in Table 1, PC means a polycarbonate resin, ABS means an ABS resin, PP means a polypropylene resin, CFRTP means a carbon fiber reinforced resin, and GFRTP means a glass fiber. Indicates reinforced resin. The PC resin ratio indicates the ratio of the polycarbonate resin contained in the resin foam layer.
  • the viscosity average molecular weight of the polypropylene resin is 100,000.
  • the viscosity average molecular weight of the polycarbonate resin was adjusted to 25,000 by blending a polycarbonate resin having a viscosity average molecular weight of 10,000 and a polycarbonate resin having a viscosity average molecular weight of 300,000. Further, as CFRTP, a prepreg "TPWF E3163 (manufactured by Teijin Limited)" was used, in which a 200 g / m 2 plain weave woven fabric was impregnated with a polycarbonate resin and the content of the woven fabric was 50% by weight.
  • GFRTP As GFRTP, a 360 g / m 2 plain weave woven fabric (glass cloth WE181D100BS6B manufactured by Nitto Boseki Co., Ltd.) impregnated with an epoxy resin and having a woven fabric content of 30% by weight was used.
  • the expanded polypropylene resin is polypropylene Sumitomo Noblen FS2011DG3 manufactured by Sumitomo Chemical Co., Ltd.
  • Example 4 the alloy of the polycarbonate resin and the ABS resin contained in the resin foam layer is a PC / ABS alloy grade "T2754" manufactured by Teijin Limited. T2754 contains 50 parts of polycarbonate resin, 45 parts of ABS resin, and 5 parts of additives. That is, the resin foam layer of Example 4 contains 50% by weight of the polycarbonate resin.
  • the alloy of the polycarbonate resin and the polypropylene resin contained in the resin foam layer was 77 parts of "Panlite L-1250WQ” manufactured by Teijin Co., Ltd. as the polycarbonate resin and "SunAllomer” manufactured by SunAllomer Ltd. as the polypropylene resin. 23 parts of "PL400A”, 7 parts of Septon 2104, which is a styrene-ethylene / propylene-styrene block copolymer manufactured by Kuraray Co., Ltd., and 130 parts of Tarku HST 0.8 manufactured by Hayashi Kasei Co., Ltd. as inert particles. (“Panlite”, “SunAllomer” and “Septon” are registered trademarks). That is, the resin foam layer of Comparative Example 4 contains about 32.5% by weight of the polycarbonate resin.
  • the fracture load test was carried out by using a full-scale strength tester (AC-2000SIV manufactured by Tokyo Koki Co., Ltd.) and attaching a bending fulcrum manufactured for the tread member to the full-scale strength tester.
  • As the bending fulcrum a round bar having a diameter of 50 mm was divided in half to form a semi-cylindrical shape, and both ends of the tread member in the length direction were placed on the curved surface side to form a fulcrum.
  • the test was carried out by a three-point load method in which the distance between the fulcrums at both ends of the tread member was 100 cm and the displacement was applied to the center at a crosshead speed of 2 cm / min.
  • the breaking load (N) shown in Table 1 above was obtained from the measured value of the load and the measured value of the displacement amount.
  • the required proof stress in Table 1 is calculated based on the above (Equation 8). For example, since the tread member of the first embodiment has a length of 1800 mm, the required proof stress 1764 (N) can be calculated by calculating ⁇ 980 ⁇ 1.8 (m) ⁇ .
  • the tread members of Examples 1 to 4 had a fracture load larger than the required proof stress. Therefore, when a worker comes and goes on the upper surface of the tread member of Examples 1 to 4 and is destroyed at the center in the length direction, even one tread member whose length is halved can withstand the load of the worker. Can be done. Even if the tread member is destroyed near the center in the length direction, it is considered that the tread member is not completely damaged and is only destroyed to the extent that a crack in the width direction is formed in the center of the tread member in the length direction.
  • the tread members of Comparative Examples 1 to 4 had a smaller breaking load than the required proof stress. Therefore, the tread plate members of Comparative Examples 1 to 4 can be destroyed by the traffic of workers. Further, if the tread members of Comparative Examples 1 to 4 are broken near the center in the length direction, the safety of the worker cannot be surely maintained. As described in (Equation 8) above, the required proof stress (980 Lc) varies depending on the length of the tread member. Therefore, in order to improve the breaking load of the tread member, it is necessary to increase the thickness, and the weight increases accordingly. Therefore, the tread plate members of Comparative Examples 1 to 3 increase the cost burden for transportation, installation, removal, and the like.
  • the width, length and thickness of each are the same, and the composition of the fiber reinforced resin layer is different.
  • the weight was smaller and the breaking load was larger when the carbon fiber reinforced resin was used than when the glass fiber reinforced resin was used as the fiber reinforced resin layer. Therefore, it was confirmed that by using the carbon fiber reinforced resin, the weight can be further reduced and the strength can be further improved.
  • the width, length and thickness of each are the same, and the resin contained in the resin foam layer is different.
  • the tread member of Example 1 uses a polycarbonate resin for the resin foam layer, so that the breaking load satisfies the required proof stress.
  • the tread member of Comparative Example 3 uses polypropylene resin for the resin foam layer, and the breaking load is significantly less than the required proof stress. As described above, it was found that the strength can be significantly improved by forming the resin foam layer with the polycarbonate resin.
  • the tread member of Comparative Example 4 cannot withstand the load of the worker when the length of the tread member is halved. It is considered that this is because the proportion of the polycarbonate resin contained in the tread member of Comparative Example 4 was less than 50% by weight, so that the strength was significantly reduced.
  • the resin contained in each of the fiber reinforced resin layers (CFRTP) of Example 4 and Comparative Example 4 is a polycarbonate resin. As described above, when the polycarbonate resin contained in the resin foam layer is 50% by weight or more, a sea-island structure containing the polycarbonate resin as a sea component is formed. Therefore, it is considered that in Example 4, the adhesion between the resin foam layer and the fiber reinforced resin layer was improved and the strength was further improved, while in Comparative Example 4, the strength was significantly reduced.
  • the tread member of Example 1 Comparing the tread member of Example 1 and the tread member of Example 3 from the viewpoint of the adhesion between the resin foam layer and the fiber reinforced resin layer, the tread member of Example 1 has slightly stronger strength. It is considered that this is because the adhesiveness between the resin foam layer and the fiber reinforced resin layer was improved by using the same polycarbonate resin for the resin foam layer and the fiber reinforced resin layer in Example 1. In this way, it was confirmed that the strength can be further improved by allowing the same polycarbonate resin to appear on the surfaces of the resin foam layer and the fiber reinforced resin layer. It is presumed that the same can be said for the tread member of Comparative Example 3 in which the strength is significantly reduced due to the deterioration of the adhesiveness.
  • the tread members of Examples 1 to 4 were lighter than the tread members of Comparative Examples 1 to 2 and 4.
  • the tread member of Comparative Example 3 is relatively light in weight, but its strength is significantly lower than that of the tread members of Examples 1 to 4.
  • the tread members of Comparative Examples 1 to 4 need to be increased in thickness in order to improve the breaking load. Therefore, it is considered that the weight of the tread members of Comparative Examples 1 to 4 becomes even heavier when they are actually used as scaffolding.
  • the tread members of Examples 1 to 4 can withstand the load of the worker even if the length of the tread members is halved due to the relatively high breaking load of Wcb> 980 Lc (N). I was able to obtain the strength that I could. Further, it was confirmed that by setting the content of the polycarbonate resin in the resin foam layer to 50% by weight or more, a high breaking load of Wcb> 980 Lc (N) can be appropriately obtained. Further, the weight of the tread plate member is 1 to 10 kg / m 2, and the weight can be reduced as compared with Comparative Examples 1, 2 and 4.
  • the tread plate 1 is arranged by arranging a plurality of tread plate members configured in this way in the width direction. Therefore, since each tread member has the above-mentioned strength and a plurality of tread members are arranged side by side, even if one tread member is destroyed and falls, it is adjacent to each other. Tread plate members support workers. In this way, not only the strength of the tread plate members, but also by arranging a plurality of tread plate members, it is possible to take double safety measures, and it is possible to more reliably ensure the safety of workers.
  • tread plate 1 tread plate, 2 tread plate member, 21 resin foam layer, 22 fiber reinforced resin layer, 3 frame, 31 frame material, 31a flange part, 31b wall part, 32 frame material, 33 partition plate, 4 hook

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a lightweight step board that has excellent strength. A step board 1 that comprises a plurality of step board members 2 that are aligned in the width direction, making it so that the step board members 2 on either side support a worker even if some of the step board members 2 break. The step board members 2 each include a resin foamed layer 21 that comprises a polycarbonate resin or the like and a fiber-reinforced resin layer 22 that comprises carbon fibers or the like and is layered on a principal surface of the resin foamed layer 21, and, when Lc is the span of the step board members 2 in the longitudinal direction, the breaking weight (Wcb) of the step board members 2 is greater than 980Lc (N). As a result, the step board members 2 are lightweight but have increased strength and therefore make for a safer step board.

Description

踏板Tread board
 本開示は、建物の建築現場等で用いられる足場用踏板等を含む踏板に関する。 This disclosure relates to treads including scaffolding treads used at building construction sites and the like.
 建物の建築現場等で用いられる足場用踏板は、鉄やアルミ等の金属製のものが多用されている。金属製の踏板は、重量が比較的大きい。そのため、金属製の踏板は、運搬、設置及び撤去等に掛かるコスト負担や作業員に対する肉体的負担が増大する。以下、軽量化を目的とした踏板構造体が提供されている。 Scaffolding treads used at building construction sites are often made of metal such as iron and aluminum. Metal treads are relatively heavy. Therefore, the metal treads increase the cost burden for transportation, installation, removal, etc., and the physical burden on the workers. Hereinafter, a tread structure for the purpose of weight reduction is provided.
 特開2012-140782号公報は、軽量化することができる足場構造体を開示している。足場構造体は、踏板の踏み面と底面とをなす繊維強化プラスチック製のスキン部材と、スキン部材内に埋設されて長さ方向に連続して延びる発泡樹脂製のコア部材とを備えている。これにより、足場構造体は、軽量化を図りながら、所定の強度を確保している。 Japanese Unexamined Patent Publication No. 2012-140782 discloses a scaffolding structure that can be reduced in weight. The scaffold structure includes a skin member made of fiber reinforced plastic forming the tread surface and the bottom surface of the tread plate, and a core member made of foamed resin embedded in the skin member and continuously extending in the length direction. As a result, the scaffolding structure secures a predetermined strength while reducing the weight.
特開2012-140782号公報Japanese Unexamined Patent Publication No. 2012-140782
 しかしながら、足場構造体は、スキン部材を設けたことにより強度を確保できているとは言え、コア部材が発泡硬質ポリウレタンであるため、依然として強度上の問題が生じ得る。 However, although the scaffolding structure can secure the strength by providing the skin member, since the core member is foamed rigid polyurethane, there may still be a problem in strength.
 そこで、本開示は、軽量化を図りながら、強度に優れた踏板を提供することを課題とする。 Therefore, it is an object of the present disclosure to provide a tread plate having excellent strength while reducing the weight.
 上記課題を解決するために、本開示は次のような解決手段を講じた。すなわち、本開示に係る踏板は、幅方向に並べて配置された複数の踏板部材を備えてよい。各々の踏板部材は、樹脂発泡層と、樹脂発泡層の主面に積層された繊維強化樹脂層とを含んでよい。各々の踏板部材の破壊荷重(Wcb)は、踏板部材の長さ方向における支点間距離をLcとしたとき、Wcb>980Lc(N)であってよい。 In order to solve the above problems, this disclosure has taken the following solutions. That is, the treads according to the present disclosure may include a plurality of tread members arranged side by side in the width direction. Each tread member may include a resin foam layer and a fiber reinforced resin layer laminated on the main surface of the resin foam layer. The breaking load (Wcc) of each tread member may be Wcc> 980 Lc (N), where Lc is the distance between the fulcrums in the length direction of the tread member.
 本開示に係る踏板によれば、軽量化を図りながら、強度を向上させることができる。 According to the tread plate according to the present disclosure, it is possible to improve the strength while reducing the weight.
図1は、実施形態に係る踏板の構造を示す外観斜視図である。FIG. 1 is an external perspective view showing the structure of the tread plate according to the embodiment. 図2は、図1に示す踏板のうち踏板部材の構造を示す外観斜視図である。FIG. 2 is an external perspective view showing the structure of the tread plate member among the tread plates shown in FIG. 1.
 踏板は、幅方向に並べて配置された複数の踏板部材を備えてよい。各々の踏板部材は、樹脂発泡層と、樹脂発泡層の主面に積層された繊維強化樹脂層とを含んでよい。各々の踏板部材の破壊荷重(Wcb)は、踏板部材の長さ方向における支点間距離をLcとしたとき、Wcb>980Lc(N)であってよい。 The treads may include a plurality of tread members arranged side by side in the width direction. Each tread member may include a resin foam layer and a fiber reinforced resin layer laminated on the main surface of the resin foam layer. The breaking load (Wcc) of each tread member may be Wcc> 980 Lc (N), where Lc is the distance between the fulcrums in the length direction of the tread member.
 各々の踏板部材は、Wcb>980Lc(N)という比較的高い破壊荷重となる強度を確保できる。また、樹脂発泡層における気泡の形成により軽量化を図ることができる。このように、複数の踏板部材を幅方向に並べて配置した踏板は、軽量化を図りながら強度を向上させることができる。 Each tread member can secure the strength of Wcb> 980Lc (N), which is a relatively high breaking load. Further, the weight can be reduced by forming bubbles in the resin foam layer. In this way, the treads in which a plurality of tread members are arranged side by side in the width direction can improve the strength while reducing the weight.
 好ましくは、樹脂発泡層は、樹脂発泡層に対して50重量%以上のポリカーボネート樹脂を含んでよい。これにより、踏板部材は、十分な強度を得ることができる。 Preferably, the resin foam layer may contain 50% by weight or more of the polycarbonate resin with respect to the resin foam layer. As a result, the tread plate member can obtain sufficient strength.
 好ましくは、繊維強化樹脂層は、繊維強化樹脂層に含まれる樹脂に対して50重量%以上のポリカーボネート樹脂を含んでよい。樹脂発泡層と繊維強化樹脂層に含まれる樹脂とは各々、ポリカーボネート樹脂を海成分とする海島構造であってよい。これにより、ポリカーボネート樹脂とともに含まれる樹脂は、島成分として樹脂発泡層及び繊維強化樹脂層の内方に形成され、樹脂発泡層及び繊維強化樹脂層の主面の表面には、海成分のポリカーボネート樹脂が多く露出する。すなわち、繊維強化樹脂層が樹脂発泡層の主面に貼り合わされる際、ポリカーボネート樹脂同士の相溶性により、樹脂発泡層と繊維強化樹脂層との貼り合わせの密着性を向上させることができる。その結果、樹脂発泡層から繊維強化樹脂層が剥離することを抑制でき、踏板部材の強度をさらに向上させることができる。 Preferably, the fiber reinforced resin layer may contain 50% by weight or more of the polycarbonate resin with respect to the resin contained in the fiber reinforced resin layer. The resin foam layer and the resin contained in the fiber reinforced resin layer may each have a sea-island structure containing a polycarbonate resin as a sea component. As a result, the resin contained together with the polycarbonate resin is formed inside the resin foam layer and the fiber reinforced resin layer as island components, and the surface of the main surface of the resin foam layer and the fiber reinforced resin layer is a sea component polycarbonate resin. Is exposed a lot. That is, when the fiber-reinforced resin layer is bonded to the main surface of the resin foam layer, the adhesiveness between the resin foam layer and the fiber-reinforced resin layer can be improved due to the compatibility between the polycarbonate resins. As a result, it is possible to suppress the peeling of the fiber reinforced resin layer from the resin foam layer, and it is possible to further improve the strength of the tread member.
 好ましくは、繊維強化樹脂層は、樹脂発泡層の主面の両側に積層されてよい。これにより、踏板部材の主面に対して鉛直方向からかかる応力に対し、曲げ強度を向上させることができる。 Preferably, the fiber reinforced resin layer may be laminated on both sides of the main surface of the resin foam layer. Thereby, the bending strength can be improved against the stress applied from the vertical direction to the main surface of the tread member.
 好ましくは、踏板は、さらに、枠を備えてよい。枠は、金属、炭素繊維、不活性粒子及び繊維強化樹脂からなる群から選択される1つを含んでよい。複数の踏板部材は、幅方向に直交する長さ方向における両端部が前記枠に支持されて、前記枠の内側に配置されてよい。これにより、複数の踏板部材を補強することができる。 Preferably, the tread may further include a frame. The frame may include one selected from the group consisting of metals, carbon fibers, inert particles and fiber reinforced plastics. The plurality of tread members may be arranged inside the frame with both ends supported by the frame in the length direction orthogonal to the width direction. Thereby, a plurality of tread plate members can be reinforced.
 以下、本開示の踏板1の実施形態について、図1及び2を用いて具体的に説明する。なお、踏板1としては、建物の建築現場で用いられる足場用の踏板1を一例として挙げることができる。ここでは、踏板1として足場用の踏板1について説明する。ただし、踏板1は、はしご、脚立、折り畳み式の足場、並びに、自動車、電車及びバス等の床の一部等の踏板1としても用いることができる。すなわち、本明細書において、踏板1とは、足場用の踏板1のみならず、歩行時等において上方から人の足が押付けられる板材をいう。まず、図1に示すように、踏板1は、複数の踏板部材2と、枠3と、フック4とを備えている。複数の踏板部材2は、長さ方向の両端部が枠3に支持されている。複数の踏板部材2は、枠3の内側に幅方向に並べて配置されている。なお、フック4は、足場の支柱等に係止されて枠3を支持する。 Hereinafter, the embodiment of the tread plate 1 of the present disclosure will be specifically described with reference to FIGS. 1 and 2. As the tread plate 1, the tread plate 1 for scaffolding used at the construction site of a building can be mentioned as an example. Here, the scaffolding tread plate 1 will be described as the tread plate 1. However, the tread plate 1 can also be used as a ladder, a stepladder, a foldable scaffold, and a tread plate 1 such as a part of the floor of an automobile, a train, a bus, or the like. That is, in the present specification, the tread plate 1 means not only the tread plate 1 for scaffolding but also a plate material on which a person's foot is pressed from above when walking or the like. First, as shown in FIG. 1, the tread plate 1 includes a plurality of tread plate members 2, a frame 3, and a hook 4. Both ends of the plurality of tread members 2 in the length direction are supported by the frame 3. The plurality of tread plate members 2 are arranged side by side in the width direction inside the frame 3. The hook 4 is locked to a scaffolding support or the like to support the frame 3.
 図2に示すように、各々の踏板部材2は、樹脂発泡層21と、繊維強化樹脂層22とを備えている。 As shown in FIG. 2, each tread member 2 includes a resin foam layer 21 and a fiber reinforced resin layer 22.
 樹脂発泡層21は、50重量%以上のポリカーボネート樹脂を含んでいる。樹脂発泡層21に含まれる樹脂は、ポリカーボネート樹脂を100重量%含んでもよいし、ポリカーボネート樹脂と他の樹脂及び不活性粒子の少なくともいずれか一方とのコンパウンド樹脂、或いは、共重合ポリカーボネート樹脂でもよい。他の樹脂は、ABS樹脂、AS樹脂、アクリル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート及びポリブチレンナフタレート等)、PPS樹脂、ポリフェニレンエーテル樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、フッ素樹脂(例えば、ポリテトラフルオロエチレン)、ポリアミド樹脂、ポリイミド樹脂、シクロオレフィン樹脂、エチレンテトラフルオロエチレン樹脂、ポリフッ化ビリニデン樹脂、ポリラクチド樹脂、ポリブチレンサクシネート樹脂、ポリブチレンサクシネートアジペート樹脂、ポリカブロラクトン樹脂及びヒドロキシ酪酸-ヒドロキシヘキサン酸コポリマー等である。他の樹脂は、単独でもよく2種類以上を併用してもよい。ポリカーボネート樹脂は、樹脂発泡層21の強度を向上させる観点から、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上とするのがよい。不活性粒子は、タルク、クレイ、シリカ、ガラスファイバー、炭素繊維、セルロース、炭酸カルシウム及び酸化チタン等である。不活性粒子は、単独でもよく2種類以上を併用してもよい。不活性粒子は、軽量化の観点から40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下とするのがよい。 The resin foam layer 21 contains 50% by weight or more of polycarbonate resin. The resin contained in the resin foam layer 21 may contain 100% by weight of the polycarbonate resin, may be a compound resin of the polycarbonate resin and at least one of the other resin and the inert particles, or may be a copolymerized polycarbonate resin. Other resins include ABS resin, AS resin, acrylic resin, polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethylene terephthalate, polybutylene naphthalate, etc.), PPS resin, polyphenylene ether resin, polyether. Sulfone resin, polysulfone resin, polypropylene resin, polyethylene resin, polystyrene resin, fluororesin (for example, polytetrafluoroethylene), polyamide resin, polyimide resin, cycloolefin resin, ethylenetetrafluoroethylene resin, polyvinylidene fluoride resin, polylactide resin , Polybutylene succinate resin, polybutylene succinate adipate resin, polycabrolactone resin, hydroxybutyric acid-hydroxyhexanoic acid copolymer and the like. The other resins may be used alone or in combination of two or more. From the viewpoint of improving the strength of the resin foam layer 21, the polycarbonate resin is preferably 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more. The inert particles are talc, clay, silica, glass fiber, carbon fiber, cellulose, calcium carbonate, titanium oxide and the like. The inert particles may be used alone or in combination of two or more. From the viewpoint of weight reduction, the inert particles are preferably 40% by weight or less, preferably 30% by weight or less, and more preferably 20% by weight or less.
 一方、ポリカーボネート樹脂は、溶融粘度が高く流動性が低いため、物理発泡剤が混ざりにくく発泡成形体の高い発泡倍率を確保しにくい。また、ポリカーボネート樹脂は、物理発泡する際、発泡剤が添加されるだけで可塑化するので溶融粘度が低下する傾向にあるものの、発泡処理後の冷却工程に入ると粘度が上昇する。そのため、後述するように、ポリカーボネート樹脂を押出機のダイスから押し出して成形する際、樹脂発泡層21の表面付近の気泡が破れ、その表面が粗くなる場合がある。このように、ポリカーボネート樹脂は、成形性に問題が生じ得る。このような問題に対し、粘度平均分子量の低いポリカーボネート樹脂(粘度平均分子量の高いポリカーボネート樹脂に粘度平均分子量の低いポリカーボネート樹脂をブレンドした樹脂を含む。)を利用するか、或いは、流動性の良い樹脂又はフィラー等の添加剤を加えて流動性を確保することが考えられる。ただ、粘度平均分
子量が低すぎるポリカーボネート樹脂を用いると、樹脂発泡層21の強度が低下し得る。したがって、樹脂発泡層21の強度と成形性との双方をバランスよく維持することを鑑みれば、ポリカーボネート樹脂と流動性の良い他の樹脂をアロイ化するのがよい。このような観点から、ポリカーボネート樹脂は、好ましくは90重量%以下、より好ましくは80重量%以下とするのがよい。なお、流動性のよい他の樹脂としては、特に、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等)、ABS樹脂、AS樹脂、ポリプロピレン樹脂及びアクリル樹脂からなる群より選択される少なくとも1つの樹脂を挙げることができる。また、強度を向上させるという観点からすれば、樹脂発泡層21に含まれるポリカーボネート樹脂の含有量は、100重量%とするのがよい。
On the other hand, since the polycarbonate resin has a high melt viscosity and low fluidity, it is difficult for the physical foaming agent to be mixed and it is difficult to secure a high foaming ratio of the foamed molded product. Further, when the polycarbonate resin is physically foamed, it is plasticized only by adding a foaming agent, so that the melt viscosity tends to decrease, but the viscosity increases when the cooling step after the foaming treatment is started. Therefore, as will be described later, when the polycarbonate resin is extruded from the die of the extruder for molding, air bubbles near the surface of the resin foam layer 21 may be broken and the surface may be roughened. As described above, the polycarbonate resin may have a problem in moldability. To solve such problems, a polycarbonate resin having a low viscosity average molecular weight (including a resin obtained by blending a polycarbonate resin having a high viscosity average molecular weight with a polycarbonate resin having a low viscosity average molecular weight) is used, or a resin having good fluidity is used. Alternatively, it is conceivable to add an additive such as a filler to secure the fluidity. However, if a polycarbonate resin having an excessively low viscosity average molecular weight is used, the strength of the resin foam layer 21 may decrease. Therefore, in view of maintaining both the strength and moldability of the resin foam layer 21 in a well-balanced manner, it is preferable to alloy the polycarbonate resin and another resin having good fluidity. From such a viewpoint, the polycarbonate resin is preferably 90% by weight or less, more preferably 80% by weight or less. The other resin having good fluidity is at least one selected from the group consisting of polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), ABS resin, AS resin, polypropylene resin, and acrylic resin. Two resins can be mentioned. From the viewpoint of improving the strength, the content of the polycarbonate resin contained in the resin foam layer 21 is preferably 100% by weight.
 また、ポリカーボネート樹脂としては、主鎖にカーボネート結合を有するものであれば特に限定されず、芳香族ポリカーボネート、脂肪族ポリカーボネート及び芳香族-脂肪族ポリカーボネート等が挙げられる。ポリカーボネート樹脂は、例えば、ジヒドロキシ化合物と炭酸ジエステルとをエステル交換する方法、ジヒドロキシ化合物とホスゲンとをアルカリ触媒存在下に界面重縮合させる方法で得られるものである。ジヒドロキシ化合物としては、分子内にヒドロキシ基を2つ有する化合物であればよく、ビスフェノールA、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル-3-メチルフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3、5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(p-ヒドロキシフェニル)エタン、2,2-ビス(p-ヒドロキシフェニル)ブタン等の芳香族ジヒドロキシ化合物;エチレングリコール、1,2-プロピレングリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,3-プロパンジオール、1,4-ブタンジオール等の脂肪族ジヒドロキシ化合物等が挙げられる。これらのジヒドロキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。また、ポリカーボネート樹脂は、ジヒドロキシ化合物以外にも、モノヒドロキシ化合物、トリヒドロキシ化合物等に由来する構造単位を含有していてもよい。 The polycarbonate resin is not particularly limited as long as it has a carbonate bond in the main chain, and examples thereof include aromatic polycarbonate, aliphatic polycarbonate, and aromatic-aliphatic polycarbonate. The polycarbonate resin can be obtained, for example, by a method of transesterifying a dihydroxy compound and a carbonic acid diester, or a method of intercondensing the dihydroxy compound and phosgene in the presence of an alkaline catalyst. The dihydroxy compound may be a compound having two hydroxy groups in the molecule, and may be bisphenol A, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, or 2,2-bis (4-). Hydroxyphenyl-3-methylphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis ( Aromatic dihydroxy compounds such as 4-hydroxyphenyl) methane, 1,1-bis (p-hydroxyphenyl) ethane, 2,2-bis (p-hydroxyphenyl) butane; ethylene glycol, 1,2-propylene glycol, 3 Examples thereof include aliphatic dihydroxy compounds such as -methyl-1,5-pentanediol, 1,6-hexanediol, 1,3-propanediol, and 1,4-butanediol. These dihydroxy compounds may be used alone or in combination of two or more. In addition to the dihydroxy compound, the polycarbonate resin may contain a structural unit derived from a monohydroxy compound, a trihydroxy compound, or the like.
 樹脂発泡層21をポリカーボネート樹脂とポリプロピレン樹脂とを含ませて形成した場合、ポリプロピレン樹脂によってポリカーボネート樹脂の発泡特性を改善して、すなわち流動性を良くして発泡倍率を高くすることができるので、踏板部材2は、軽量化を図ることができる。また、樹脂発泡層21をポリカーボネート樹脂とABS樹脂とを含ませて形成した場合もポリプロピレン樹脂を含ませる場合と同様に発泡倍率を高くすることができるので、踏板部材2は、軽量化を図ることができる。一方で、樹脂発泡層21をポリカーボネート樹脂とポリエステル樹脂とを含ませて形成した場合、ポリエステル樹脂がポリカーボネート樹脂と同等の強度を有するため、踏板部材2は、強度を保持することができる。このように、踏板部材2は、軽量化か強度かのいずれに重点を置くかによって、ポリカーボネート樹脂と組み合わせる樹脂を決定することができる。なお、軽量化を図る場合であっても、樹脂発泡層21は50重量%以上のポリカーボネート樹脂を含むため、後述する十分な強度を確保している。 When the resin foam layer 21 is formed by including the polycarbonate resin and the polypropylene resin, the polypropylene resin can improve the foaming characteristics of the polycarbonate resin, that is, improve the fluidity and increase the foaming ratio, so that the tread plate can be formed. The weight of the member 2 can be reduced. Further, when the resin foam layer 21 is formed by including the polycarbonate resin and the ABS resin, the foaming ratio can be increased as in the case where the polypropylene resin is contained, so that the tread member 2 should be reduced in weight. Can be done. On the other hand, when the resin foam layer 21 is formed by including the polycarbonate resin and the polyester resin, the tread member 2 can maintain the strength because the polyester resin has the same strength as the polycarbonate resin. As described above, the tread plate member 2 can determine the resin to be combined with the polycarbonate resin depending on whether the weight reduction or the strength is emphasized. Even when the weight is reduced, the resin foam layer 21 contains 50% by weight or more of the polycarbonate resin, so that sufficient strength, which will be described later, is ensured.
 また、樹脂発泡層21は、発泡成形されている。樹脂発泡層21は、1.2~4倍の発泡倍率を有する。発泡倍率が低い場合、踏板部材2の強度は高くなるが、耐熱性及び軽量化の効果は低下する。一方、発泡倍率が高い場合、樹脂発泡層21の強度は低下するが耐熱性及び軽量性は向上する。そのため、踏板部材2の強度、耐熱性及び軽量性のバランスを考慮し、発泡倍率は、1.2倍以上、好ましくは1.5倍以上、より好ましくは2倍以上とするのがよく、4倍以下、好ましくは3.5倍以下、より好ましくは3倍以下とするのがよい。 Further, the resin foam layer 21 is foam-molded. The resin foam layer 21 has a foaming ratio of 1.2 to 4 times. When the foaming ratio is low, the strength of the tread plate member 2 is high, but the effects of heat resistance and weight reduction are lowered. On the other hand, when the foaming ratio is high, the strength of the resin foam layer 21 is reduced, but the heat resistance and lightness are improved. Therefore, in consideration of the balance between the strength, heat resistance and light weight of the tread plate member 2, the foaming ratio is preferably 1.2 times or more, preferably 1.5 times or more, more preferably 2 times or more. It is preferably fold or less, preferably 3.5 times or less, and more preferably 3 times or less.
 樹脂発泡層21は、化学発泡剤又は物理発泡剤の少なくとも一方により発泡成形されている。物理発泡剤は、例えば、炭酸ガス、窒素、空気、アルゴン及びヘリウムなどである。また、化学発泡剤は、例えば、炭酸亜鉛、重曹及びアゾジカルボンアミドなどである。樹脂発泡層21は、化学発泡剤を用いて発泡成形されることにより、発泡倍率が高くなりやすいため樹脂発泡層21の比重をより軽くすることができる。ただし、化学発泡剤を用いると水やアンモニアなど副生成物も発生し、粘度平均分子量が低下して樹脂発泡層21の強度が低下してしまう。そのため、化学発泡剤による発泡成形において、ポリカーボネート樹脂の粘度平均分子量は、30000以上とするのがよい。また、樹脂発泡層21は、物理発泡剤を用いて発泡成形されることにより、環境を汚染することなくクリーンな製品を得られるだけでなく、特に空気・窒素・炭酸ガスは大気ガスを利用するため、コストの面でも有利である。また、化学発泡剤と物理発泡剤とを併用して樹脂発泡層21を発泡成形する場合、化学発泡剤は、発泡成形に用いる樹脂と添加材との総和(全重量)に対して1重量%未満とするのがよい。このように化学発泡剤を物理発泡剤に比べて少なくして発泡成形することにより、加水分解によって強度が低下するリスクを低減でき、また、環境を汚染しにくくなり、コストの低減も図ることができる。すなわち、コスト、強度及び軽量化のバランスをとることができる。 The resin foam layer 21 is foam-molded with at least one of a chemical foaming agent and a physical foaming agent. Physical foaming agents include, for example, carbon dioxide, nitrogen, air, argon and helium. The chemical foaming agent is, for example, zinc carbonate, baking soda, azodicarbonamide and the like. Since the resin foam layer 21 is foam-molded using a chemical foaming agent, the foaming ratio tends to be high, so that the specific gravity of the resin foam layer 21 can be further reduced. However, when a chemical foaming agent is used, by-products such as water and ammonia are also generated, the viscosity average molecular weight is lowered, and the strength of the resin foam layer 21 is lowered. Therefore, in foam molding with a chemical foaming agent, the viscosity average molecular weight of the polycarbonate resin is preferably 30,000 or more. Further, the resin foam layer 21 is foam-molded using a physical foaming agent, so that not only a clean product can be obtained without polluting the environment, but also air, nitrogen, and carbon dioxide gas use air gas. Therefore, it is also advantageous in terms of cost. When the resin foam layer 21 is foam-molded by using a chemical foaming agent and a physical foaming agent in combination, the chemical foaming agent is 1% by weight based on the total weight (total weight) of the resin and the additive used for the foam molding. It should be less than. By foaming and molding with less chemical foaming agent than physical foaming agent in this way, the risk of a decrease in strength due to hydrolysis can be reduced, the environment is less likely to be polluted, and costs can be reduced. can. That is, it is possible to balance cost, strength and weight reduction.
 ポリカーボネート樹脂の粘度平均分子量は、10000~100000である。ポリカーボネート樹脂の粘度平均分子量が高すぎると、粘度が上がって後述する押出機に要求されるトルクが大きくなって押出加工が困難になる。その結果、樹脂を高分子量化すれば加工後の成形品の強度向上は図れるものの製造そのものに支障が生じる。一方、ポリカーボネート樹脂の粘度平均分子量が低すぎると、気泡が合一しやすくなって気泡径が均一にならないため硬化後の強度が低下する。また溶融張力が低下することで発泡しにくくなる。そのため、ポリカーボネート樹脂の粘度平均分子量は、10000以上、好ましくは15000以上とするのがよく、100000以下、好ましくは50000以下とするのがよい。すなわち、ポリカーボネート樹脂の粘度平均分子量を10000~100000とすることにより、成形を容易にしながら、踏板部材2の強度の向上及び軽量化の効果を得ることができる。 The viscosity average molecular weight of the polycarbonate resin is 10,000 to 100,000. If the viscosity average molecular weight of the polycarbonate resin is too high, the viscosity increases and the torque required for the extruder described later increases, making extrusion processing difficult. As a result, if the molecular weight of the resin is increased, the strength of the molded product after processing can be improved, but the production itself is hindered. On the other hand, if the viscosity average molecular weight of the polycarbonate resin is too low, the bubbles tend to coalesce and the bubble diameter does not become uniform, so that the strength after curing decreases. In addition, the decrease in melt tension makes it difficult to foam. Therefore, the viscosity average molecular weight of the polycarbonate resin is preferably 10,000 or more, preferably 15,000 or more, and preferably 100,000 or less, preferably 50,000 or less. That is, by setting the viscosity average molecular weight of the polycarbonate resin to 10,000 to 100,000, it is possible to obtain the effects of improving the strength and reducing the weight of the tread plate member 2 while facilitating molding.
 なお、ポリカーボネート樹脂の粘度平均分子量は、15000未満又は50000よりも大きい樹脂を混合して得られたものであってもよい。例えば、50000よりも大きい粘度平均分子量を有する芳香族ポリカーボネート樹脂は、樹脂のエントロピー弾性が向上するので、樹脂発泡層21の発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は、分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、粘度平均分子量が70000~300000の芳香族ポリカーボネート樹脂及び粘度平均分子量10000~30000の芳香族ポリカーボネート樹脂からなり、これらを混合または混合せずに配合したポリカーボネート樹脂の粘度平均分子量が16000~35000である芳香族ポリカーボネート樹脂も使用できる。また、ポリカーボネート樹脂とともに含まれる他の樹脂の含有量が樹脂発泡層21に対して30~50重量%となる場合、比較的に粘度平均分子量が高い25000以上のポリカーボネート樹脂を用いるのがよい。 The viscosity average molecular weight of the polycarbonate resin may be obtained by mixing a resin having a viscosity average molecular weight of less than 15,000 or more than 50,000. For example, an aromatic polycarbonate resin having a viscosity average molecular weight of more than 50,000 improves the entropy elasticity of the resin, and thus exhibits good molding processability in foam molding of the resin foam layer 21. Such improvement in molding processability is even better than that of branched polycarbonate. In a more preferred embodiment, the polycarbonate resin comprises an aromatic polycarbonate resin having a viscosity average molecular weight of 70,000 to 300,000 and an aromatic polycarbonate resin having a viscosity average molecular weight of 10,000 to 30,000, and the polycarbonate resin blended with or without mixing these has a viscosity average molecular weight. An aromatic polycarbonate resin having a value of 16000 to 35000 can also be used. When the content of the other resin contained together with the polycarbonate resin is 30 to 50% by weight with respect to the resin foam layer 21, it is preferable to use a polycarbonate resin having a relatively high viscosity average molecular weight of 25,000 or more.
 本開示における粘度平均分子量は、次のように算出される。まず、オストワルド粘度計を用い、20℃で100mlの塩化メチレンに0.7gの芳香族ポリカーボネート(樹脂発泡層21に含まれる樹脂)を溶解した溶液から比粘度(ηSP)を算出する。比粘度は、{(t-t)/t}の式により算出できる。tは、塩化メチレン(溶媒)の落下秒数であり、tは、試料溶液の落下速度である。算出した比粘度を用い、{ηSP/c=[η]+0.45×[η]c}の式により、粘度平均分子量Mを算出する。式中の[η]は、極限粘度である{[η]=1.23×10-40.83}。また、式中のcは、芳香族ポリカーボネートの濃度(0.7%)である。 The viscosity average molecular weight in the present disclosure is calculated as follows. First, using an Ostwald viscometer, the specific viscosity (η SP ) is calculated from a solution in which 0.7 g of aromatic polycarbonate (resin contained in the resin foam layer 21) is dissolved in 100 ml of methylene chloride at 20 ° C. The specific viscosity can be calculated by the formula {(t-t 0 ) / t 0}. t 0 is the number of seconds for the methylene chloride (solvent) to fall, and t is the falling speed of the sample solution. Using the calculated specific viscosity, the viscosity average molecular weight M is calculated by the formula {η SP / c = [η] + 0.45 × [ η] 2 c}. [Η] in the formula is the ultimate viscosity {[η] = 1.23 × 10 -4 M 0.83 }. Further, c in the formula is the concentration of aromatic polycarbonate (0.7%).
 繊維強化樹脂層22は、繊維を含む繊維強化樹脂シートであり、樹脂発泡層21の主面の両側に積層されている。すなわち、樹脂発泡層21は、2つの繊維強化樹脂層22の間に配置されている。繊維強化樹脂層22は、樹脂発泡層21の主面の形状と略相似形に形成されている。これにより、踏板部材2は、踏板部材2の主面に対して鉛直方向からかかる応力に対し、曲げ強度を向上させることができる。すなわち、繊維強化樹脂層22は、樹脂発泡層21の補強材として機能している。なお、樹脂発泡層21の片側の主面に1つの繊維強化樹脂層22が積層されてもよい。 The fiber reinforced resin layer 22 is a fiber reinforced resin sheet containing fibers, and is laminated on both sides of the main surface of the resin foam layer 21. That is, the resin foam layer 21 is arranged between the two fiber reinforced resin layers 22. The fiber-reinforced resin layer 22 is formed in a shape substantially similar to the shape of the main surface of the resin foam layer 21. As a result, the tread plate member 2 can improve the bending strength against the stress applied from the vertical direction to the main surface of the tread plate member 2. That is, the fiber-reinforced resin layer 22 functions as a reinforcing material for the resin foam layer 21. In addition, one fiber reinforced resin layer 22 may be laminated on the main surface of one side of the resin foam layer 21.
 繊維強化樹脂層22は、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルサルフォン樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ乳酸樹脂、フェノール樹脂及びポリブチレンサクシネート樹脂などである。繊維強化樹脂層22に含まれる樹脂は、これらに限られるものではなく、その他樹脂材料を用いてもよい。 The fiber reinforced resin layer 22 is a polyester resin, an epoxy resin, an acrylic resin, a polycarbonate resin, a polyether sulfone resin, a polyamide resin, a polyethylene resin, a polypropylene resin, a polylactic acid resin, a phenol resin, a polybutylene succinate resin, or the like. The resin contained in the fiber-reinforced resin layer 22 is not limited to these, and other resin materials may be used.
 繊維強化樹脂層22に含まれる繊維は、炭素繊維、ガラス繊維、アラミド繊維、ポリエステル繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、中空金属繊維などである。中空金属繊維は、ステンレス及びスチールなどである。繊維強化樹脂層22に含まれる繊維は、これらに限られるものではなく、その他繊維材料を用いてもよい。 The fibers contained in the fiber reinforced resin layer 22 are carbon fibers, glass fibers, aramid fibers, polyester fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, hollow metal fibers and the like. Hollow metal fibers are stainless steel, steel and the like. The fibers contained in the fiber-reinforced resin layer 22 are not limited to these, and other fiber materials may be used.
 繊維強化樹脂層22に含まれる繊維の目付は、100~500g/mである。繊維強化樹脂層22に含まれる繊維は、平織り、綾織り及び二重織等の織物、縦横斜めに引き揃えて固めたもの及び不織布等の群から選ばれる少なくとも1つ、或いは、これらを重ね合わせたものである。繊維強化樹脂層22に含まれる繊維は、市場での供給が十分にあって取り扱いの容易な織物が好ましい。繊維の目付が低すぎると、踏板部材2は、繊維強化樹脂層22による補強が不十分となり、結果として強度を確保しにくくなる。一方、繊維の目付が高すぎると、踏板部材2の重量が比較的大きくなり、軽量化を図りにくくなる。また、500g/mより重いクロスの場合、切断しにくくなりかつクロスの剛性が高くなりすぎて張り合わせる際の作業性が低下し得る。このように、繊維強化樹脂層22に含まれる繊維の目付は、より好ましく強度の向上と軽量化とのバランスをとるという観点から、100g/m以上、好ましくは175g/m以上、より好ましくは250g/m以上とするのがよく、500g/m以下、好ましくは425g/m以下、より好ましくは350g/m以下とするのがよい。 The basis weight of the fibers contained in the fiber reinforced resin layer 22 is 100 to 500 g / m 2 . The fiber contained in the fiber reinforced resin layer 22 is at least one selected from the group of woven fabrics such as plain weave, twill weave and double weave, those which are aligned vertically, horizontally and diagonally and hardened, and non-woven fabrics, or these are superposed. It is a thing. The fiber contained in the fiber reinforced resin layer 22 is preferably a woven fabric that is sufficiently supplied in the market and easy to handle. If the basis weight of the fibers is too low, the tread plate member 2 is insufficiently reinforced by the fiber reinforced resin layer 22, and as a result, it becomes difficult to secure the strength. On the other hand, if the basis weight of the fibers is too high, the weight of the tread plate member 2 becomes relatively large, and it becomes difficult to reduce the weight. Further, in the case of a cloth heavier than 500 g / m 2 , it becomes difficult to cut and the rigidity of the cloth becomes too high, which may reduce the workability when laminating. As described above, the texture of the fibers contained in the fiber reinforced resin layer 22 is more preferably 100 g / m 2 or more, preferably 175 g / m 2 or more, more preferably from the viewpoint of balancing the improvement of strength and the weight reduction. Is preferably 250 g / m 2 or more, 500 g / m 2 or less, preferably 425 g / m 2 or less, and more preferably 350 g / m 2 or less.
 このように構成される各々の踏板部材2の破壊荷重(Wcb)は、踏板部材2の長さ方向の両端部が固定された固定端部間の距離をLcとしたとき、980Lc(N)よりも大きくすることができ(Wcb>980Lc(N))、仮に踏板部材2が中央近傍で破壊されたとしても作業員を支えることができると考えられる。詳細に、Wcb>980Lcは、以下のように算出できる。なお、980Lc(N)を要求耐力と称す。 The breaking load (Wcb) of each tread member 2 configured in this way is 980 Lc (N), where Lc is the distance between the fixed ends where both ends of the tread member 2 in the length direction are fixed. (Wcb> 980Lc (N)), and even if the tread member 2 is destroyed near the center, it is considered that the worker can be supported. In detail, Wcb> 980Lc can be calculated as follows. In addition, 980Lc (N) is referred to as required yield strength.
 踏板1において、踏板部材2は、仮に破壊されるとすれば、作業員が往来する頻度の高い部分、すなわち、踏板部材2の長さ方向の中央近傍で破壊されると考えられる。踏板部材2は、長さ方向の中央近傍で破壊された場合、両端部のうちの一方の端部で枠3に支持された片持ち梁の状態となる。片持ち梁が長さLを有し、片持ち梁の先端に荷重Wが加わるとき、曲げモーメントMは、{M=L×W}(式1)で算出できる。 In the tread plate 1, if the tread plate member 2 is to be destroyed, it is considered that the tread plate member 2 is destroyed in a portion where workers frequently come and go, that is, in the vicinity of the center in the length direction of the tread plate member 2. When the tread plate member 2 is broken near the center in the length direction, it becomes a cantilever beam supported by the frame 3 at one end of both ends. When the cantilever has a length L and a load W is applied to the tip of the cantilever, the bending moment M can be calculated by {M = L × W} (Equation 1).
 一方、踏板部材2は、踏板部材2が破壊されていない状態では、踏板部材2の両端部が枠3に支持された両端支持梁の状態となっている。3点曲げ試験において、両端支持梁の長さ(支点間距離)をLcとし、両端支持梁の長さLc方向の中央に荷重Wcが加わるとき、曲げモーメントMcは、{Mc=Lc/4×Wc}(式2)で算出できる。 On the other hand, the tread plate member 2 is in a state of both end support beams in which both end portions of the tread plate member 2 are supported by the frame 3 in a state where the tread plate member 2 is not destroyed. In the 3-point bending test, the length of the support beams at both ends (distance between fulcrums) is Lc, and when the load Wc is applied to the center of the length Lc direction of the support beams at both ends, the bending moment Mc is {Mc = Lc / 4 × It can be calculated by Wc} (Equation 2).
 また、材料に加わる応力は、曲げモーメントM又は曲げモーメントMcを断面係数Zで割る、すなわち、{σ=M/Z}又は{σ=Mc/Z}(式3)により算出できる。 Further, the stress applied to the material can be calculated by dividing the bending moment M or the bending moment Mc by the section modulus Z, that is, {σ = M / Z} or {σ = Mc / Z} (Equation 3).
 ここで、長さLを有する片持ち梁でも長さLcを有する両端支持梁でも材料が破壊に至る応力は等しいと考える。長さLを有する片持ち梁が破壊に至る荷重をWbとし、長さLcを有する両端支持梁(踏板部材2)が3点曲げで破壊に至る荷重をWcbとしたとき、上述の(式1)~(式3)から{L×Wb/Z=Lc/4×Wcb/Z}(式4)の関係が成り立つ。 Here, it is considered that the stress at which the material breaks is the same regardless of whether the cantilever has a length L or a double-ended support beam having a length Lc. When the load leading to the fracture of the cantilever having the length L is Wb and the load leading to the fracture of the both end support beams (tread plate member 2) having the length Lc is Wcb, the above-mentioned (Equation 1) )-(Equation 3), the relationship {L × Wb / Z = Lc / 4 × Wcb / Z} (Equation 4) is established.
 この(式4)の関係において、両端支持梁は、長さLc方向の中央で破壊され片持ち梁の状態になっても作業員を支えることのできる機械特性を確保できれば、仮に両端支持梁が長さ方向の中央近傍で破壊されたとしても、作業員の安全をより確実に確保できる。踏板部材2は、変形しにくい繊維と発泡樹脂との複合体になっている。そのため、踏板部材2は、中央で割れた場合に変形せず、足が完全にはまるような穴はできず、数ミリ以下の細い割れ目が形成されると予想される。そのため、万が一誤って割れた部分に人が立った場合、割れた踏板部材2の両側にわたって荷重がかかると予想される。そこで、片持ち梁の先端に加わる荷重は、最大でも作業員の体重の1/2であると考える。すなわち、作業員の体重を日本人男性の平均体重よりも比較的重い100kgであるとした場合、片持ち梁の先端に加わる荷重は、50kgとなる。これらの条件に基づき、(式4)から{L×50(kg)×9.8<Wcb×Lc/4}(式5)の関係式が成り立つ。 In this relation of (Equation 4), if the both-end support beam can secure the mechanical characteristics that can support the worker even if it is broken at the center in the length Lc direction and becomes a cantilever, the both-end support beam can be used. Even if it is destroyed near the center in the length direction, the safety of workers can be ensured more reliably. The tread plate member 2 is a composite of fibers that are not easily deformed and foamed resin. Therefore, it is expected that the tread plate member 2 will not be deformed when cracked at the center, a hole for completely fitting the foot cannot be formed, and a fine crack of several millimeters or less will be formed. Therefore, in the unlikely event that a person stands on the cracked portion, it is expected that a load will be applied to both sides of the cracked tread member 2. Therefore, it is considered that the load applied to the tip of the cantilever is at most 1/2 of the body weight of the worker. That is, assuming that the weight of the worker is 100 kg, which is relatively heavier than the average weight of a Japanese man, the load applied to the tip of the cantilever is 50 kg. Based on these conditions, the relational expression of {L × 50 (kg) × 9.8 <Wccb × Lc / 4} (Equation 5) is established from (Equation 4).
 この(式5)から、両端支持梁の長さLcを1mとした両端支持梁の破壊荷重Wcbは、{Wcb>L×50×9.8×4}(式6)で表すことができ、これを計算すると、{Wcb>1960L(N)}(式7)になる。さらに、片持ち梁の長さLはLc/2であるから、両端支持梁の破壊荷重Wcbは、{Wcb>980Lc(N)}(式8)で表すことができる。すなわち、両端支持梁の破壊荷重Wcbが要求耐力980Lcよりも大きければ、仮に両端支持梁が長さ方向の中央近傍で破壊されて片持ち梁の状態になったとしても、作業員を支えることができると考えられる。 From this (Equation 5), the breaking load Wcc of the both ends support beam with the length Lc of both ends support beam being 1 m can be expressed by {Wcc> L × 50 × 9.8 × 4} (Equation 6). When this is calculated, it becomes {Wcc> 1960L (N)} (Equation 7). Further, since the length L of the cantilever beam is Lc / 2, the breaking load Wcc of the support beam at both ends can be expressed by {Wcc> 980Lc (N)} (Equation 8). That is, if the breaking load Wcb of the supporting beams at both ends is larger than the required yield strength of 980Lc, even if the supporting beams at both ends are broken near the center in the length direction and become a cantilever, the worker can be supported. It is thought that it can be done.
 このように、各々の踏板部材2は、Wcb>980Lc(N)となる比較的高い破壊荷重を得ることで上述の通り作業員を支えることができる強度を確保でき、また、樹脂発泡層21における気泡の形成により軽量化を図ることができる。このように、踏板部材2によれば、軽量化を図りながら、強度の向上を図ることができる。なお、樹脂発泡層21は、ポリカーボネート樹脂を100重量%含む場合、0.3~0.8の見かけ密度を有している。ポリカーボネート樹脂は、1.2の見かけ密度を有している。そのため、発泡ポリカーボネート樹脂の見かけ密度が0.3~0.8である場合、樹脂発泡層21の発泡倍率は、1.5~4倍となる。 As described above, each tread member 2 can secure the strength capable of supporting the worker as described above by obtaining a relatively high breaking load of Wcb> 980 Lc (N), and the resin foam layer 21 Weight reduction can be achieved by forming bubbles. As described above, according to the tread plate member 2, it is possible to improve the strength while reducing the weight. The resin foam layer 21 has an apparent density of 0.3 to 0.8 when it contains 100% by weight of the polycarbonate resin. The polycarbonate resin has an apparent density of 1.2. Therefore, when the apparent density of the foamed polycarbonate resin is 0.3 to 0.8, the foaming ratio of the resin foamed layer 21 is 1.5 to 4 times.
 各々の踏板部材2は、5~500mmの幅を有している。踏板部材2の幅は、作業員(日本人男性)の平均的な肩幅と同程度であり、或いは、作業員の平均的な肩幅よりも小さい。上述の通り、複数の踏板部材2は、幅方向に並べて配置されている。すなわち、踏板1は、各々の踏板部材2を上述の幅で形成し、さらに、各々の踏板部材2を幅方向に並べて配置したことにより、仮に1つの踏板部材2が破壊されたとしても、破壊された踏板部材2の両隣りの踏板部材2によって作業員を支えることができる。また、各々の踏板部材2は、上述の通り、片持ち梁の状態になっても作業員を支えることができる優れた強度を有している。 Each tread member 2 has a width of 5 to 500 mm. The width of the tread member 2 is about the same as the average shoulder width of a worker (Japanese male), or smaller than the average shoulder width of a worker. As described above, the plurality of tread plate members 2 are arranged side by side in the width direction. That is, the tread plate 1 is destroyed even if one tread plate member 2 is destroyed by forming each tread plate member 2 with the above-mentioned width and further arranging the tread plate members 2 side by side in the width direction. Workers can be supported by the tread plate members 2 on both sides of the tread plate member 2. Further, as described above, each tread plate member 2 has excellent strength that can support the worker even in the state of a cantilever.
 図1に示すように、枠3は、平面視において略長方形状である。枠3は、対向する一対の枠材31と、対向する一対の枠材32と有している。枠材31は、フランジ部31aと壁部31bとにより略L字状の断面を有している。一対の枠材31は各々、壁部31bよりもフランジ部31aが内側となるように配置されている。枠材32は、平板状に形成されている。一方の枠材31のフランジ部31aの上面には、複数の仕切り板33が設けられている。他方の枠材31のフランジ部31aの上面には、一方のフランジ部31aに設けられた仕切り板33に対向する位置に仕切り板33が設けられている。 As shown in FIG. 1, the frame 3 has a substantially rectangular shape in a plan view. The frame 3 has a pair of facing frame members 31 and a pair of facing frame members 32. The frame member 31 has a substantially L-shaped cross section due to the flange portion 31a and the wall portion 31b. Each of the pair of frame members 31 is arranged so that the flange portion 31a is inside the wall portion 31b. The frame member 32 is formed in a flat plate shape. A plurality of partition plates 33 are provided on the upper surface of the flange portion 31a of one of the frame members 31. A partition plate 33 is provided on the upper surface of the flange portion 31a of the other frame member 31 at a position facing the partition plate 33 provided on the one flange portion 31a.
 枠3は、金属、炭素繊維、不活性粒子及び繊維強化樹脂からなる群から選択される1つを含んでいる。枠3は、これらの素材のうち1つを含んでいてもよく、2つ以上を含んでいてもよい。かかる構成により、枠3は、複数の踏板部材2を支持する強度を得ることができる。 Frame 3 contains one selected from the group consisting of metals, carbon fibers, inert particles and fiber reinforced plastics. The frame 3 may contain one of these materials, or may contain two or more of them. With such a configuration, the frame 3 can obtain the strength to support the plurality of tread plate members 2.
 踏板部材2は、壁部31b、仕切り板33及びフランジ部31aに囲まれた領域に嵌め込まれている。図1に示すように、踏板部材2は各々、枠材32と隣り合う踏板部材2を除いて、踏板部材2の四隅に設けられた仕切り板33によって位置決めされている。すなわち、踏板部材2と、この踏板部材2と隣り合う踏板部材2との間には、一方の枠材31側で2つの仕切り板33が設けられている。枠材32と隣り合う踏板部材2は、枠材32、仕切り板33、フランジ部31a及び壁部31bに囲まれた領域に嵌め込まれている。枠材31に対向する踏板部材2の長さ方向の端部は、フランジ部31aによって支持されている。このようにして、1つの枠3の内側に複数の踏板部材2が取付けられている。 The tread plate member 2 is fitted in a region surrounded by a wall portion 31b, a partition plate 33, and a flange portion 31a. As shown in FIG. 1, each of the tread plate members 2 is positioned by partition plates 33 provided at the four corners of the tread plate member 2, except for the tread plate member 2 adjacent to the frame member 32. That is, two partition plates 33 are provided on one frame member 31 side between the tread plate member 2 and the tread plate member 2 adjacent to the tread plate member 2. The tread plate member 2 adjacent to the frame member 32 is fitted in a region surrounded by the frame member 32, the partition plate 33, the flange portion 31a, and the wall portion 31b. The end portion of the tread plate member 2 facing the frame member 31 in the length direction is supported by the flange portion 31a. In this way, a plurality of tread plate members 2 are attached to the inside of one frame 3.
 このように枠3を踏板部材2の側面に設けたことにより、踏板部材2を補強できるとともに、複数の踏板部材2を幅方向に並べて配置することができる。これにより、例えば、踏板1の上面で作業員を支持している場合、仮に1つの踏板部材2が破壊されたとしても、破壊された踏板部材2の両隣りの踏板部材2によって作業員を支持することができる。また、踏板部材2とこの踏板部材2と隣り合う踏板部材2との間には仕切り板33が介在することによって隙間が形成されている。これにより、踏板1は、軽量化を図ることができる。また、踏板1が取り付けられる場所によっては、通気性の向上を図ることができる。 By providing the frame 3 on the side surface of the tread plate member 2 in this way, the tread plate member 2 can be reinforced and a plurality of tread plate members 2 can be arranged side by side in the width direction. As a result, for example, when the worker is supported by the upper surface of the tread plate 1, even if one tread plate member 2 is destroyed, the worker is supported by the tread plate members 2 on both sides of the destroyed tread plate member 2. can do. Further, a gap is formed by interposing a partition plate 33 between the tread plate member 2 and the tread plate member 2 adjacent to the tread plate member 2. As a result, the tread plate 1 can be reduced in weight. Further, depending on the place where the tread plate 1 is attached, the air permeability can be improved.
 踏板部材2は、枠3の内側に1つ配置してもよく、複数配置してもよい。また、枠材31も略L字状の断面を有してもよい。また、仕切り板33は、一方の枠材31側で、隣り合う踏板部材2の間に1つの仕切り板33を設けてもよい。仕切り板33は、隣り合う踏板部材2を仕切るとともに、踏板部材2を嵌め込む際の位置決めを容易にすることができれば、上述の構成に限られるものではない。また、仕切り板33は、枠3の内側に取付けられる踏板部材2の枚数など応じて、一方の枠材31に1又は複数の仕切り板33を設けてもよい。また、踏板部材2は、枠3の内側に仕切り板33を設けずに取付けることもできる。枠3は、複数の踏板部材2の長さ方向の両端部を支持でき、複数の踏板部材2を幅方向に並べることができれば、特に限定されるものではない。 One tread plate member 2 may be arranged inside the frame 3, or a plurality of tread plate members 2 may be arranged. Further, the frame member 31 may also have a substantially L-shaped cross section. Further, the partition plate 33 may be provided with one partition plate 33 between adjacent tread plate members 2 on one frame member 31 side. The partition plate 33 is not limited to the above-described configuration as long as it can partition the adjacent tread plate members 2 and facilitate the positioning when the tread plate members 2 are fitted. Further, the partition plate 33 may be provided with one or a plurality of partition plates 33 on one of the frame members 31 depending on the number of tread plate members 2 attached to the inside of the frame 3. Further, the tread plate member 2 can be attached without providing the partition plate 33 inside the frame 3. The frame 3 is not particularly limited as long as it can support both ends of the plurality of tread members 2 in the length direction and the plurality of tread members 2 can be arranged in the width direction.
 なお、ポリカーボネート樹脂は、荷重を加えていくと、降伏によって塑性変形し、その後破壊されるが、降伏してから破壊されるまでの塑性変形量が多い。そのため、ポリカーボネート樹脂は、降伏してもからもすぐには破壊されず、粘り強い性質を有する。これにより、踏板部材2の変形を察知すれば、その後踏板部材2が破壊されることによって生じるリスクに対し、余裕をもって対処することができる。 When a load is applied, the polycarbonate resin is plastically deformed by yielding and then fractured, but the amount of plastic deformation from yielding to fracture is large. Therefore, the polycarbonate resin does not break immediately after yielding and has a tenacious property. As a result, if the deformation of the tread plate member 2 is detected, the risk caused by the subsequent destruction of the tread plate member 2 can be dealt with with a margin.
 また、樹脂発泡層21は、ポリカーボネート樹脂を50重量%以上含ませることにより、ポリカーボネート樹脂とポリカーボネート樹脂とともに含まれる樹脂とによって海島構造が形成される。すなわち、樹脂発泡層21は、ポリカーボネート樹脂を海成分とし、ポリカーボネート樹脂とともに含まれる樹脂を島成分とする、海島構造が形成される。 Further, the resin foam layer 21 contains 50% by weight or more of the polycarbonate resin, so that the sea-island structure is formed by the polycarbonate resin and the resin contained together with the polycarbonate resin. That is, the resin foam layer 21 has a sea-island structure in which the polycarbonate resin is a sea component and the resin contained together with the polycarbonate resin is an island component.
 その際、繊維強化樹脂層22には、繊維強化樹脂層22に含まれる樹脂(ポリカーボネート樹脂と他の樹脂及び不活性粒子の少なくともいずれか一方とのコンパウンド樹脂、共重合ポリカーボネート樹脂、或いは、その他樹脂をブレンドしたポリカーボネート樹脂)に対して50重量%以上のポリカーボネート樹脂を含めてよい。なお、この場合、繊維強化樹脂層22に含まれる樹脂は、上述の樹脂発泡層21に含まれる樹脂と同様であるため、説明を省略する。繊維強化樹脂層22においても、50重量%以上のポリカーボネート樹脂を含めることにより、樹脂発泡層21と同様に、ポリカーボネート樹脂を海成分とし、ポリカーボネート樹脂とともに含まれる樹脂を島成分とする海島構造が形成される。 At that time, the fiber-reinforced resin layer 22 includes a resin (a compound resin of a polycarbonate resin and at least one of another resin and inert particles, a copolymerized polycarbonate resin, or another resin) contained in the fiber-reinforced resin layer 22. 50% by weight or more of the polycarbonate resin may be contained with respect to the blended polycarbonate resin). In this case, the resin contained in the fiber-reinforced resin layer 22 is the same as the resin contained in the resin foam layer 21 described above, and thus the description thereof will be omitted. By including 50% by weight or more of the polycarbonate resin in the fiber-reinforced resin layer 22, a sea-island structure in which the polycarbonate resin is a sea component and the resin contained together with the polycarbonate resin is an island component is formed as in the resin foam layer 21. Will be done.
 このように、樹脂発泡層21及び繊維強化樹脂層22は各々、50重量%以上のポリカーボネート樹脂を含むことにより、ポリカーボネート樹脂を海成分とし、ポリカーボネート樹脂とともに含まれる樹脂を島成分とする、海島構造が形成される。すなわち、ポリカーボネート樹脂とともに含まれる樹脂は、島成分として樹脂発泡層21及び繊維強化樹脂層22の内方に形成され、樹脂発泡層21及び繊維強化樹脂層22の主面の表面には、海成分のポリカーボネート樹脂が多く露出することになる。これにより、後述するように繊維強化樹脂層22が樹脂発泡層21の主面に貼り合わされる際、ポリカーボネート樹脂同士の相溶性により、樹脂発泡層21と繊維強化樹脂層22との貼り合わせの密着性を向上させることができる。その結果、樹脂発泡層21から繊維強化樹脂層22が剥離することを抑制でき、踏板部材2の強度をさらに向上させることができる。なお、樹脂発泡層21及び繊維強化樹脂層22の各々に含まれるポリカーボネート樹脂の量は、上述と同様に、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上とするのがよい。 As described above, the resin foam layer 21 and the fiber-reinforced resin layer 22 each contain 50% by weight or more of the polycarbonate resin, so that the polycarbonate resin is a sea component and the resin contained together with the polycarbonate resin is an island component. Is formed. That is, the resin contained together with the polycarbonate resin is formed as an island component inside the resin foam layer 21 and the fiber reinforced resin layer 22, and the surface of the main surface of the resin foam layer 21 and the fiber reinforced resin layer 22 is a sea component. A lot of polycarbonate resin will be exposed. As a result, when the fiber-reinforced resin layer 22 is bonded to the main surface of the resin foam layer 21, as will be described later, the resin foam layer 21 and the fiber-reinforced resin layer 22 are adhered to each other due to the compatibility between the polycarbonate resins. The sex can be improved. As a result, the fiber-reinforced resin layer 22 can be prevented from peeling from the resin foam layer 21, and the strength of the tread member 2 can be further improved. The amount of the polycarbonate resin contained in each of the resin foam layer 21 and the fiber reinforced resin layer 22 is 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more, as described above. Is good.
 以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made as long as the purpose is not deviated.
(踏板1の製造方法)
 次に、踏板1の製造方法について、具体的に説明する。
(Manufacturing method of tread plate 1)
Next, the manufacturing method of the tread plate 1 will be specifically described.
 まず、各々の踏板部材2の製造方法について説明する。 First, the manufacturing method of each tread member 2 will be described.
 踏板部材2のうち樹脂発泡層21は、異形押出成形法によって成形される。具体的には、まず、スクリュー等の押出機において、ポリカーボネート樹脂のペレットと他の樹脂、例えば、ポリプロピレン樹脂などのペレットや不活性粒子等を加熱して溶融し、ポリカーボネート樹脂が50重量%以上となるように混合して溶融樹脂材料を生成する。なお、ポリカーボネート樹脂(ペレット)の50重量%以上という配合率は、押出機へ投入される他の樹脂(ペレット)及び不活性粒子等を含めた重量に対する割合である。さらに、押出機において、生成した溶融樹脂材料に化学発泡剤及び物理発泡剤の少なくとも一方の発泡剤を注入し、溶融樹脂材料と発泡剤とを混合する。 The resin foam layer 21 of the tread plate member 2 is molded by a deformed extrusion molding method. Specifically, first, in an extruder such as a screw, the pellets of polycarbonate resin and other resins, for example, pellets of polypropylene resin, inert particles, etc. are heated and melted, and the polycarbonate resin is 50% by weight or more. The molten resin material is produced by mixing so as to be. The blending ratio of 50% by weight or more of the polycarbonate resin (pellets) is a ratio to the weight including other resins (pellets) and inert particles charged into the extruder. Further, in the extruder, at least one of the chemical foaming agent and the physical foaming agent is injected into the produced molten resin material, and the molten resin material and the foaming agent are mixed.
 次に、発泡剤を混合した溶融樹脂材料をダイスに流し込み、ダイスを通過させることにより徐々に温度を低下させながら樹脂発泡層21を成形する。ダイスは、溶融樹脂材料を押し出す方向に開口している。同時に、発泡剤を混合した溶融樹脂材料には、ダイスを通過した際の圧力低下によって気泡が生成される。これにより、樹脂発泡層21は、発泡成形される。 Next, the molten resin material mixed with the foaming agent is poured into a die, and the resin foam layer 21 is formed while gradually lowering the temperature by passing the die. The die is open in the direction of extruding the molten resin material. At the same time, bubbles are generated in the molten resin material mixed with the foaming agent due to the pressure drop when passing through the die. As a result, the resin foam layer 21 is foam-molded.
 この際、樹脂発泡層21の主面に繊維強化樹脂層22を貼り合わせることができる。すなわち、冷却によって硬化する前の樹脂発泡層21の主面に対し、接着剤を用いることなく、繊維強化樹脂層22を貼り合わせる。繊維強化樹脂層22は、上述の通り、平織り等で編み込まれた繊維材を樹脂に含侵させて形成される。繊維強化樹脂層22の作製方法は、特に限定されるものではない。なお、樹脂発泡層21の主面に繊維強化樹脂層22を貼り合わせる方法は、ポリカーボネート樹脂を溶解できる溶剤を樹脂発泡層21又は繊維強化樹脂層22のいずれか一方の表面、或いは、互いに対向する両方の表面に適量塗布し、両者を貼り合わせてから乾燥する方法等であってもよい。 At this time, the fiber reinforced resin layer 22 can be attached to the main surface of the resin foam layer 21. That is, the fiber reinforced resin layer 22 is attached to the main surface of the resin foam layer 21 before being cured by cooling without using an adhesive. As described above, the fiber reinforced resin layer 22 is formed by impregnating the resin with a fiber material woven by plain weave or the like. The method for producing the fiber reinforced resin layer 22 is not particularly limited. In the method of bonding the fiber reinforced resin layer 22 to the main surface of the resin foam layer 21, a solvent capable of dissolving the polycarbonate resin is applied to the surface of either the resin foam layer 21 or the fiber reinforced resin layer 22 or facing each other. An appropriate amount may be applied to both surfaces, and the two may be bonded together and then dried.
 次に、樹脂発泡層21と繊維強化樹脂層22とを冷却槽で冷却させながら形状を整える。この状態で、樹脂発泡層21と繊維強化樹脂層22とは、連続した板状に形成されている。そのため、これらを所定の寸法に切断する。 Next, the shape of the resin foam layer 21 and the fiber reinforced resin layer 22 is adjusted while being cooled in the cooling tank. In this state, the resin foam layer 21 and the fiber reinforced resin layer 22 are formed in a continuous plate shape. Therefore, these are cut to a predetermined size.
 樹脂発泡層21を成形する方法は、異形押出成形法に限られず、射出成形などその他の成形方法であってもよい。また、樹脂発泡層21を発泡成形する方法は、樹脂発泡層21の成形方法に応じて適宜変更すればよい。また、上述の製造方法では、樹脂発泡層21と繊維強化樹脂層22とをまとめて切断したが、連続した板状の樹脂発泡層21を切断してから繊維強化樹脂層22を積層してもよい。 The method for molding the resin foam layer 21 is not limited to the deformed extrusion molding method, and may be another molding method such as injection molding. Further, the method for foam-molding the resin foam layer 21 may be appropriately changed according to the molding method for the resin foam layer 21. Further, in the above-mentioned manufacturing method, the resin foam layer 21 and the fiber reinforced resin layer 22 are cut together, but even if the continuous plate-shaped resin foam layer 21 is cut and then the fiber reinforced resin layer 22 is laminated. good.
 次に、上述の枠3の内側に、複数の踏板部材2を幅方向に沿って並べて配置する。このようにして、踏板1を作成することができる。 Next, a plurality of tread plate members 2 are arranged side by side along the width direction inside the above-mentioned frame 3. In this way, the tread plate 1 can be created.
(実施例)
 下記の表1に示す通り、実施例1~4の踏板部材と比較例1~4の踏板部材とを作成し、各々の踏板部材の破壊荷重と重量を測定した。
(Example)
As shown in Table 1 below, the tread members of Examples 1 to 4 and the tread members of Comparative Examples 1 to 4 were prepared, and the breaking load and weight of each tread member were measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の踏板部材及び比較例1~4の踏板部材は各々、平面視四角形の板状に形成されており、幅、長さ及び厚みの各寸法は、表1に示す通りである。また、表1において、PCとは、ポリカーボネート樹脂を示し、ABSとは、ABS樹脂を示し、PPとは、ポリプロピレン樹脂を示し、CFRTPとは、カーボン繊維強化樹脂を示し、GFRTPとは、ガラス繊維強化樹脂を示す。また、PC樹脂比率とは、樹脂発泡層に含まれるポリカーボネート樹脂の割合を示す。 The tread members of Examples 1 to 4 and the tread members of Comparative Examples 1 to 4 are each formed in a rectangular plate shape in a plan view, and the width, length, and thickness are as shown in Table 1. .. Further, in Table 1, PC means a polycarbonate resin, ABS means an ABS resin, PP means a polypropylene resin, CFRTP means a carbon fiber reinforced resin, and GFRTP means a glass fiber. Indicates reinforced resin. The PC resin ratio indicates the ratio of the polycarbonate resin contained in the resin foam layer.
 本実施例において、ポリプロピレン樹脂の粘度平均分子量は、100000である。ポリカーボネート樹脂の粘度平均分子量は、粘度平均分子量が10000であるポリカーボネート樹脂と粘度平均分子量が300000であるポリカーボネート樹脂とをブレンドし、25000に調整した。また、CFRTPとして、200g/mの平織りの織物にポリカーボネート樹脂を含侵し、織物の含有率を50重量%としたプリプレグ「TPWF E3163(帝人株式会社製)」を用いた。GFRTPとして、360g/mの平織りの織物(日東紡績株式会社製のガラスクロスWE181D100BS6B)にエポキシ樹脂を含侵し、織物の含有率を30重量%としたものを用いた。また、発泡ポリプロピレン樹脂は、住友化学株式会社製のポリプロピレン住友ノーブレンFS2011DG3である。 In this example, the viscosity average molecular weight of the polypropylene resin is 100,000. The viscosity average molecular weight of the polycarbonate resin was adjusted to 25,000 by blending a polycarbonate resin having a viscosity average molecular weight of 10,000 and a polycarbonate resin having a viscosity average molecular weight of 300,000. Further, as CFRTP, a prepreg "TPWF E3163 (manufactured by Teijin Limited)" was used, in which a 200 g / m 2 plain weave woven fabric was impregnated with a polycarbonate resin and the content of the woven fabric was 50% by weight. As GFRTP, a 360 g / m 2 plain weave woven fabric (glass cloth WE181D100BS6B manufactured by Nitto Boseki Co., Ltd.) impregnated with an epoxy resin and having a woven fabric content of 30% by weight was used. The expanded polypropylene resin is polypropylene Sumitomo Noblen FS2011DG3 manufactured by Sumitomo Chemical Co., Ltd.
 実施例4において、樹脂発泡層に含まれるポリカーボネート樹脂とABS樹脂とのアロイは、帝人株式会社製のPC/ABSアロイグレード「T2754」である。T2754は、ポリカーボネート樹脂を50部、ABS樹脂を45部、添加剤を5部含んでいる。すなわち、実施例4の樹脂発泡層は、50重量%のポリカーボネート樹脂を含んでいる。 In Example 4, the alloy of the polycarbonate resin and the ABS resin contained in the resin foam layer is a PC / ABS alloy grade "T2754" manufactured by Teijin Limited. T2754 contains 50 parts of polycarbonate resin, 45 parts of ABS resin, and 5 parts of additives. That is, the resin foam layer of Example 4 contains 50% by weight of the polycarbonate resin.
 比較例4において、樹脂発泡層に含まれるポリカーボネート樹脂とポリプロピレン樹脂とのアロイは、ポリカーボネート樹脂として帝人株式会社製の「パンライトL-1250WQ」を77部、ポリプロピレン樹脂として株式会社サンアロマー製の「サンアロマーPL400A」を23部、株式会社クラレ製のスチレン-エチレン・プロピレン-スチレンブロック共重合体であるセプトン2104を7部、不活性粒子として林化成株式会社製のタルクHST0.8を130部、配合したものである(「パンライト」、「サンアロマー」及び「セプトン」は登録商標。)。すなわち、比較例4の樹脂発泡層は、約32.5重量%のポリカーボネート樹脂を含んでいる。 In Comparative Example 4, the alloy of the polycarbonate resin and the polypropylene resin contained in the resin foam layer was 77 parts of "Panlite L-1250WQ" manufactured by Teijin Co., Ltd. as the polycarbonate resin and "SunAllomer" manufactured by SunAllomer Ltd. as the polypropylene resin. 23 parts of "PL400A", 7 parts of Septon 2104, which is a styrene-ethylene / propylene-styrene block copolymer manufactured by Kuraray Co., Ltd., and 130 parts of Tarku HST 0.8 manufactured by Hayashi Kasei Co., Ltd. as inert particles. ("Panlite", "SunAllomer" and "Septon" are registered trademarks). That is, the resin foam layer of Comparative Example 4 contains about 32.5% by weight of the polycarbonate resin.
 実施例1、実施例3、実施例4、比較例1、比較例3、比較例4の各々の踏板部材は、は、樹脂発泡層の主面の両側に繊維強化樹脂層を貼り合わせた厚さ5mmの踏板部材を3枚積層し、厚さ15mmとしたものである。実施例2及び比較例2の踏板部材は、樹脂発泡層の主面の両側に繊維強化樹脂層を貼り合わせて厚さ5mmとしたものである。 Each of the tread plate members of Example 1, Example 3, Example 4, Comparative Example 1, Comparative Example 3, and Comparative Example 4 has a thickness in which fiber-reinforced resin layers are bonded to both sides of the main surface of the resin foam layer. Three tread plate members having a thickness of 5 mm are laminated to form a thickness of 15 mm. The tread member of Example 2 and Comparative Example 2 has a thickness of 5 mm by laminating fiber reinforced resin layers on both sides of the main surface of the resin foam layer.
 破壊荷重試験は、実大強度試験機(株式会社東京衡機製、AC-2000SIV)を用い、踏板部材用に製作した曲げ支点を実大強度試験機に取り付けて行った。曲げ支点は、直径50mmの丸棒を半割にして半円柱状に形成したものを用い、その曲面側に踏板部材の長さ方向の両端側を載置して支点とした。試験は、踏板部材の両端の支点間距離を100cmとし、2cm/minのクロスヘッドスピードで中央に変位を加える3点荷重方式で行った。荷重の測定値及び変位量の測定値から、上記表1に示す破壊荷重(N)を求めた。 The fracture load test was carried out by using a full-scale strength tester (AC-2000SIV manufactured by Tokyo Koki Co., Ltd.) and attaching a bending fulcrum manufactured for the tread member to the full-scale strength tester. As the bending fulcrum, a round bar having a diameter of 50 mm was divided in half to form a semi-cylindrical shape, and both ends of the tread member in the length direction were placed on the curved surface side to form a fulcrum. The test was carried out by a three-point load method in which the distance between the fulcrums at both ends of the tread member was 100 cm and the displacement was applied to the center at a crosshead speed of 2 cm / min. The breaking load (N) shown in Table 1 above was obtained from the measured value of the load and the measured value of the displacement amount.
 表1の要求耐力は、上述の(式8)に基づき算出される。例えば、実施例1の踏板部材では、長さが1800mmであるため、{980×1.8(m)}を計算することにより、要求耐力1764(N)を算出することができる。 The required proof stress in Table 1 is calculated based on the above (Equation 8). For example, since the tread member of the first embodiment has a length of 1800 mm, the required proof stress 1764 (N) can be calculated by calculating {980 × 1.8 (m)}.
 表1に示すように、実施例1~4の踏板部材は、要求耐力よりも破壊荷重が大きかった。そのため、実施例1~4の踏板部材の上面を作業員が往来して長さ方向中央で破壊された場合、長さが1/2になった一方の踏板部材でも作業員の荷重に耐えることができる。なお、踏板部材は、仮に長さ方向中央近傍で破壊されたとしても、完全には欠損せず、踏板部材の長さ方向中央に幅方向のヒビが入る程度の破壊に留まると考えられる。 As shown in Table 1, the tread members of Examples 1 to 4 had a fracture load larger than the required proof stress. Therefore, when a worker comes and goes on the upper surface of the tread member of Examples 1 to 4 and is destroyed at the center in the length direction, even one tread member whose length is halved can withstand the load of the worker. Can be done. Even if the tread member is destroyed near the center in the length direction, it is considered that the tread member is not completely damaged and is only destroyed to the extent that a crack in the width direction is formed in the center of the tread member in the length direction.
 一方で、比較例1~4の踏板部材は、要求耐力よりも破壊荷重が小さかった。そのため、比較例1~4の踏板部材は、作業員の往来によって破壊され得る。また、比較例1~4の踏板部材は、仮に長さ方向の中央近傍で破壊された場合、作業員の安全を確実には維持し得ない。上述の(式8)の通り、要求耐力(980Lc)は、踏板部材の長さによって変化する。そのため、踏板部材の破壊荷重を向上させるには、厚みを大きくする必要があり、その分重さが増す。したがって、比較例1~3の踏板部材は運搬、設置及び撤去等に掛かるコスト負担が増大してしまう。 On the other hand, the tread members of Comparative Examples 1 to 4 had a smaller breaking load than the required proof stress. Therefore, the tread plate members of Comparative Examples 1 to 4 can be destroyed by the traffic of workers. Further, if the tread members of Comparative Examples 1 to 4 are broken near the center in the length direction, the safety of the worker cannot be surely maintained. As described in (Equation 8) above, the required proof stress (980 Lc) varies depending on the length of the tread member. Therefore, in order to improve the breaking load of the tread member, it is necessary to increase the thickness, and the weight increases accordingly. Therefore, the tread plate members of Comparative Examples 1 to 3 increase the cost burden for transportation, installation, removal, and the like.
 実施例1の踏板部材と実施例3の踏板部材とを比較すると、各々の幅、長さ及び厚みは同じであり、繊維強化樹脂層の構成が異なる。そして、繊維強化樹脂層としてガラス繊維強化樹脂を用いた場合よりもカーボン繊維強化樹脂を用いた場合の方が重量が小さく、且つ、破壊荷重が大きかった。そのため、カーボン繊維強化樹脂を用いることにより、より軽量化を図ることができ、より強度の向上を図れることを確認できた。 Comparing the tread member of Example 1 and the tread member of Example 3, the width, length and thickness of each are the same, and the composition of the fiber reinforced resin layer is different. The weight was smaller and the breaking load was larger when the carbon fiber reinforced resin was used than when the glass fiber reinforced resin was used as the fiber reinforced resin layer. Therefore, it was confirmed that by using the carbon fiber reinforced resin, the weight can be further reduced and the strength can be further improved.
 実施例1の踏板部材と比較例3の踏板部材とを比較すると、各々の幅、長さ及び厚みは同じであり、樹脂発泡層に含まれる樹脂が異なる。実施例1の踏板部材は、樹脂発泡層にポリカーボネート樹脂を用いたことにより、破壊荷重が要求耐力を満たしている。一方、比較例3の踏板部材は、樹脂発泡層にポリプロピレン樹脂を用いており、破壊荷重が要求耐力を大幅に下回っている。このように、樹脂発泡層をポリカーボネート樹脂で形成することにより、強度を大幅に向上できることが分かった。 Comparing the tread member of Example 1 and the tread member of Comparative Example 3, the width, length and thickness of each are the same, and the resin contained in the resin foam layer is different. The tread member of Example 1 uses a polycarbonate resin for the resin foam layer, so that the breaking load satisfies the required proof stress. On the other hand, the tread member of Comparative Example 3 uses polypropylene resin for the resin foam layer, and the breaking load is significantly less than the required proof stress. As described above, it was found that the strength can be significantly improved by forming the resin foam layer with the polycarbonate resin.
 実施例4の踏板部材と比較例4の踏板部材とを比較すると、各々の幅、長さ及び厚みは同じであり、樹脂発泡層に含まれるポリカーボネート樹脂の配合率が異なる。ポリカーボネート樹脂を50重量%含む実施例4の踏板部材は、ポリカーボネート樹脂を100%含む実施例1の踏板部材と同じように、破壊荷重が要求耐力を満たしている。したがって、樹脂発泡層に50重量%以上のポリカーボネート樹脂を含有させることにより、十分な強度を得ることができると考えられる。一方で、比較例4の踏板部材は、ポリカーボネートを32.5重量%含んでいるものの、破壊荷重が要求耐力を大幅に下回っている。すなわち、比較例4の踏板部材は、踏板部材の長さが1/2になった場合に作業員の荷重に耐えることができないと考えられる。これは、比較例4の踏板部材に含まれるポリカーボネート樹脂の割合が50重量%を下回ったために強度が著しく低下したものと考えられる。或いは、実施例4及び比較例4の繊維強化樹脂層(CFRTP)の各々に含まれる樹脂は、ポリカーボネート樹脂である。上述の通り、樹脂発泡層に含まれるポリカーボネート樹脂が50重量%以上になるとポリカーボネート樹脂を海成分とする海島構造が形成される。そのため、実施例4では、樹脂発泡層と繊維強化樹脂層との密着性が向上し、より強度が向上し、一方で比較例4では著しく強度が低下したとも考えられる。 Comparing the tread member of Example 4 and the tread member of Comparative Example 4, the width, length and thickness of each are the same, and the compounding ratio of the polycarbonate resin contained in the resin foam layer is different. The tread member of Example 4 containing 50% by weight of the polycarbonate resin has a breaking load satisfying the required proof stress, similarly to the tread member of Example 1 containing 100% of the polycarbonate resin. Therefore, it is considered that sufficient strength can be obtained by containing 50% by weight or more of the polycarbonate resin in the resin foam layer. On the other hand, although the tread member of Comparative Example 4 contains 32.5% by weight of polycarbonate, the breaking load is significantly lower than the required proof stress. That is, it is considered that the tread member of Comparative Example 4 cannot withstand the load of the worker when the length of the tread member is halved. It is considered that this is because the proportion of the polycarbonate resin contained in the tread member of Comparative Example 4 was less than 50% by weight, so that the strength was significantly reduced. Alternatively, the resin contained in each of the fiber reinforced resin layers (CFRTP) of Example 4 and Comparative Example 4 is a polycarbonate resin. As described above, when the polycarbonate resin contained in the resin foam layer is 50% by weight or more, a sea-island structure containing the polycarbonate resin as a sea component is formed. Therefore, it is considered that in Example 4, the adhesion between the resin foam layer and the fiber reinforced resin layer was improved and the strength was further improved, while in Comparative Example 4, the strength was significantly reduced.
 この樹脂発泡層と繊維強化樹脂層との密着性という観点において、実施例1の踏板部材と実施例3の踏板部材とを比較すると、やや実施例1の踏板部材の方が強度を有する。これは、実施例1では樹脂発泡層と繊維強化樹脂層とで同じポリカーボネート樹脂を用いたことにより、樹脂発泡層と繊維強化樹脂層との密着性が向上したためと考えられる。このように、樹脂発泡層と繊維強化樹脂層の各々の表面に同じポリカーボネート樹脂が表れるようにすることで、より強度の向上を図れることが確認できた。この密着性の悪化による強度の低下は、著しく強度が低下した比較例3の踏板部材にも同様のことが言えるものと推察される。 Comparing the tread member of Example 1 and the tread member of Example 3 from the viewpoint of the adhesion between the resin foam layer and the fiber reinforced resin layer, the tread member of Example 1 has slightly stronger strength. It is considered that this is because the adhesiveness between the resin foam layer and the fiber reinforced resin layer was improved by using the same polycarbonate resin for the resin foam layer and the fiber reinforced resin layer in Example 1. In this way, it was confirmed that the strength can be further improved by allowing the same polycarbonate resin to appear on the surfaces of the resin foam layer and the fiber reinforced resin layer. It is presumed that the same can be said for the tread member of Comparative Example 3 in which the strength is significantly reduced due to the deterioration of the adhesiveness.
 また、実施例1~4の踏板部材は、比較例1~2及び4の踏板部材よりも軽かった。比較例3の踏板部材は、比較的重量が軽いが、実施例1~4の踏板部材に比べると著しく強度が低い。このような比較例1~4の踏板部材は、上述の通り、破壊荷重を向上させるためには厚みを大きくする必要がある。そのため、これら比較例1~4の踏板部材は、実際に足場として用いるとなると、その重量はさらに重くなるものと考えられる。 Further, the tread members of Examples 1 to 4 were lighter than the tread members of Comparative Examples 1 to 2 and 4. The tread member of Comparative Example 3 is relatively light in weight, but its strength is significantly lower than that of the tread members of Examples 1 to 4. As described above, the tread members of Comparative Examples 1 to 4 need to be increased in thickness in order to improve the breaking load. Therefore, it is considered that the weight of the tread members of Comparative Examples 1 to 4 becomes even heavier when they are actually used as scaffolding.
 このように、実施例1~4の踏板部材は、Wcb>980Lc(N)となる比較的高い破壊荷重により、踏板部材の長さが1/2になっても作業員の荷重に耐えることのできる強度を得ることができた。また、樹脂発泡層におけるポリカーボネート樹脂の含有量を50重量%以上とすることにより、Wcb>980Lc(N)となる高い破壊荷重を適切に得ることができることを確認することができた。また、踏板部材の重量が1~10kg/mとなっており、比較例1、2及び4に比べて軽量化を図ることができた。 As described above, the tread members of Examples 1 to 4 can withstand the load of the worker even if the length of the tread members is halved due to the relatively high breaking load of Wcb> 980 Lc (N). I was able to obtain the strength that I could. Further, it was confirmed that by setting the content of the polycarbonate resin in the resin foam layer to 50% by weight or more, a high breaking load of Wcb> 980 Lc (N) can be appropriately obtained. Further, the weight of the tread plate member is 1 to 10 kg / m 2, and the weight can be reduced as compared with Comparative Examples 1, 2 and 4.
 踏板1は、このように構成された踏板部材を幅方向に複数並べて配置される。したがって、各々の踏板部材が上述の強度を有する上、さらに、その踏板部材が複数並べて配置されているため、万が一にも1つの踏板部材が破壊されて落下した場合であっても、その両隣りの踏板部材が作業員を支える。このように、踏板部材の強度だけでなく、この踏板部材を複数並べたことにより、二重の安全策を講じることができ、より確実に作業員の安全を確保することができる。 The tread plate 1 is arranged by arranging a plurality of tread plate members configured in this way in the width direction. Therefore, since each tread member has the above-mentioned strength and a plurality of tread members are arranged side by side, even if one tread member is destroyed and falls, it is adjacent to each other. Tread plate members support workers. In this way, not only the strength of the tread plate members, but also by arranging a plurality of tread plate members, it is possible to take double safety measures, and it is possible to more reliably ensure the safety of workers.
  1 踏板、2 踏板部材、21 樹脂発泡層、22 繊維強化樹脂層、3 枠、31 枠材、31a フランジ部、31b 壁部、32 枠材、33 仕切り板、4 フック 1 tread plate, 2 tread plate member, 21 resin foam layer, 22 fiber reinforced resin layer, 3 frame, 31 frame material, 31a flange part, 31b wall part, 32 frame material, 33 partition plate, 4 hook

Claims (5)

  1.  幅方向に並べて配置された複数の踏板部材を備え、
     前記各々の踏板部材は、樹脂発泡層と、該樹脂発泡層の主面に積層された繊維強化樹脂層とを含み、
     前記各々の踏板部材の破壊荷重(Wcb)は、前記踏板部材の長さ方向における支点間距離をLcとしたとき、Wcb>980Lc(N)である、踏板。
    Equipped with multiple tread members arranged side by side in the width direction,
    Each of the tread plate members includes a resin foam layer and a fiber reinforced resin layer laminated on the main surface of the resin foam layer.
    The breaking load (Wcb) of each of the tread members is Wcc> 980 Lc (N), where Lc is the distance between the fulcrums in the length direction of the tread members.
  2.  請求項1に記載の踏板であって、
     前記樹脂発泡層は、樹脂発泡層に対して50重量%以上のポリカーボネート樹脂を含む、踏板。
    The tread plate according to claim 1.
    The resin foam layer is a tread plate containing 50% by weight or more of a polycarbonate resin with respect to the resin foam layer.
  3.  請求項2に記載の踏板であって、
     前記繊維強化樹脂層は、該繊維強化樹脂層に含まれる樹脂に対して50重量%以上のポリカーボネート樹脂を含み、
     前記樹脂発泡層と前記繊維強化樹脂層に含まれる樹脂とは各々、ポリカーボネート樹脂を海成分とする海島構造である、踏板。
    The tread plate according to claim 2.
    The fiber-reinforced resin layer contains 50% by weight or more of a polycarbonate resin with respect to the resin contained in the fiber-reinforced resin layer.
    A tread plate having a sea-island structure in which the resin foam layer and the resin contained in the fiber reinforced resin layer each contain a polycarbonate resin as a sea component.
  4.  請求項1~3のいずれか1項に記載の踏板であって、
     前記繊維強化樹脂層は、前記樹脂発泡層の両側の主面に積層されている踏板。
    The tread plate according to any one of claims 1 to 3.
    The fiber-reinforced resin layer is a tread plate laminated on both main surfaces of the resin foam layer.
  5.  請求項1~4のいずれか1項に記載の踏板であって、さらに、
     前記踏板は、枠を備え、
     前記枠は、金属、炭素繊維、不活性粒子及び繊維強化樹脂からなる群から選択される1つを含み、
     前記複数の踏板部材は、前記幅方向に直交する長さ方向における両端部が前記枠に支持されて、前記枠の内側に配置されている、踏板。
    The tread plate according to any one of claims 1 to 4, and further
    The tread has a frame and
    The frame comprises one selected from the group consisting of metals, carbon fibers, inert particles and fiber reinforced plastics.
    The plurality of tread plate members are arranged inside the frame so that both ends in a length direction orthogonal to the width direction are supported by the frame.
PCT/JP2021/008416 2020-03-13 2021-03-04 Step board WO2021182291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-043610 2020-03-13
JP2020043610A JP2023057183A (en) 2020-03-13 2020-03-13 Step board for scaffolding

Publications (1)

Publication Number Publication Date
WO2021182291A1 true WO2021182291A1 (en) 2021-09-16

Family

ID=77672073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008416 WO2021182291A1 (en) 2020-03-13 2021-03-04 Step board

Country Status (2)

Country Link
JP (1) JP2023057183A (en)
WO (1) WO2021182291A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146734U (en) * 1973-04-16 1974-12-18
JPS5123228U (en) * 1974-08-06 1976-02-20
JP2012140782A (en) * 2010-12-28 2012-07-26 Sumitomo Rubber Ind Ltd Scaffold structure
JP2013209830A (en) * 2012-03-30 2013-10-10 East Japan Railway Co Floor plate for work in ceiling, and method for movement in ceiling
JP2014208417A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146734U (en) * 1973-04-16 1974-12-18
JPS5123228U (en) * 1974-08-06 1976-02-20
JP2012140782A (en) * 2010-12-28 2012-07-26 Sumitomo Rubber Ind Ltd Scaffold structure
JP2013209830A (en) * 2012-03-30 2013-10-10 East Japan Railway Co Floor plate for work in ceiling, and method for movement in ceiling
JP2014208417A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite

Also Published As

Publication number Publication date
JP2023057183A (en) 2023-04-21

Similar Documents

Publication Publication Date Title
KR101881006B1 (en) Automotive interior/exterior material comprising low melting polyester resin, preparation method thereof
US10946626B2 (en) Composite comprising polyester foam sheet and polyester resin layer, and vehicle interior and exterior materials comprising same
US11993061B2 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material
ES2942713T3 (en) Fiber reinforcement of reactive foams from a double tape foam method or from a block foam method
US10196494B2 (en) Polymeric sheets, methods for making and using the same, and articles comprising polymeric sheets
RU2665390C2 (en) Composition of reinforced polyalkylene terephthalate, preparation and use thereof
CN101171299A (en) Polyphenylene-poly(aryl ether sulfone) blends, articles and method
WO2021182291A1 (en) Step board
US20150158989A1 (en) Method for chemical foaming in the presence of reinforcing fillers
WO2021182376A1 (en) Lightweight board and lightweight panel comprising lightweight board
US20070166526A1 (en) Composite structure
WO2000036000A1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP2020152051A (en) Fiber-reinforced hollow material and method for producing fiber-reinforced hollow material
WO2021182461A1 (en) Laminate
US20200331247A1 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material
US20220371492A1 (en) Vehicle seat containing fiber composite material and expanded thermoplastics
CN110114205A (en) The manufacturing method and processed goods of processed goods
US11505665B2 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material
EP3209727A1 (en) Laterally-coalesced foam slab
TWI836664B (en) Resin sheets and resin molded articles
US20230405980A1 (en) Low-Density Foam at Least Partially Covered with a Skin Material
WO2018131601A1 (en) Polypropylene foamed sheet and article
JP2013129756A (en) Method for producing modified polypropylene-based resin composition, method for producing polypropylene-based resin molded article, and polypropylene-based resin molded article obtained by the same
KR100915949B1 (en) Shock-absorbing sheet including polyethylene-based mesh, and use thereof
EP3390018B1 (en) Device comprising a plurality of connecting devices for producing semi-finished product webs, and method for producing such semi-finished product webs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP