WO2021182189A1 - Substrate processing method and substrate processing apparatus - Google Patents
Substrate processing method and substrate processing apparatus Download PDFInfo
- Publication number
- WO2021182189A1 WO2021182189A1 PCT/JP2021/007986 JP2021007986W WO2021182189A1 WO 2021182189 A1 WO2021182189 A1 WO 2021182189A1 JP 2021007986 W JP2021007986 W JP 2021007986W WO 2021182189 A1 WO2021182189 A1 WO 2021182189A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- film
- substrate
- plasma
- etching
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 61
- 238000003672 processing method Methods 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 134
- 238000005530 etching Methods 0.000 claims abstract description 53
- 239000012495 reaction gas Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 30
- 229910052710 silicon Inorganic materials 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 27
- 239000010703 silicon Substances 0.000 claims description 27
- 229910052732 germanium Inorganic materials 0.000 claims description 16
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 16
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 10
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 229910000039 hydrogen halide Inorganic materials 0.000 claims 1
- 239000012433 hydrogen halide Substances 0.000 claims 1
- 238000010926 purge Methods 0.000 description 22
- 235000012431 wafers Nutrition 0.000 description 13
- 238000005192 partition Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000001020 plasma etching Methods 0.000 description 10
- 239000010453 quartz Substances 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- -1 hydrogen halides Chemical class 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 150000003376 silicon Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
Definitions
- This disclosure relates to a substrate processing method and a substrate processing apparatus.
- a substrate processing device that etches a silicon-based film formed on a substrate is known.
- Patent Document 1 describes a method for etching a layer on a substrate in a semiconductor processing chamber, which is a step of introducing a first gas into the chamber, wherein the gas etches the layer. A step of retaining the first gas in the chamber and a step of retaining the first gas in the chamber for a period sufficient to adsorb at least some of the first gas into the layer. A method comprising substantially replacing the first gas with an inert gas, generating a semi-stable gas from the inert gas, and etching the layer with the semi-stable gas. It is disclosed.
- the present disclosure provides a substrate processing method and a substrate processing apparatus capable of obtaining good etching characteristics.
- a substrate processing method for etching a substrate to be etched formed on a substrate, a step of preparing the substrate having the film to be etched, and the etching target is a step of supplying an etchant gas and a step of plasma-exciting a reaction gas to expose the substrate, which is repeated a plurality of times.
- a processing method is provided.
- the schematic diagram which shows the structural example of the plasma processing apparatus.
- the flowchart which shows an example of the substrate processing by a plasma processing apparatus.
- a time chart showing an example of etching processing by a plasma processing apparatus.
- An example of a graph showing the relationship between the etching temperature and the etching amount for each type of silicon-based film.
- An example of a graph showing the selection ratio between an amorphous silicon film and another silicon-based film (SiN film, SiO 2 film).
- FIG. 1 is a schematic view showing a configuration example of the plasma processing apparatus 100.
- the plasma processing apparatus 100 has a cylindrical processing container 1 with a ceiling whose lower end is opened.
- the entire processing container 1 is made of, for example, quartz.
- a ceiling plate 2 made of quartz is provided in the vicinity of the upper end of the processing container 1, and a region below the ceiling plate 2 is sealed.
- a metal manifold 3 formed in a cylindrical shape is connected to the opening at the lower end of the processing container 1 via a sealing member 4 such as an O-ring.
- the manifold 3 supports the lower end of the processing container 1, and is a wafer on which a large number (for example, 25 to 150) semiconductor wafers (hereinafter referred to as “board W”) are placed in multiple stages as substrates from below the manifold 3.
- the boat 5 is inserted into the processing container 1. In this way, a large number of substrates W are housed in the processing container 1 substantially horizontally with an interval along the vertical direction.
- the wafer boat 5 is made of, for example, quartz.
- the wafer boat 5 has three rods 6 (two rods are shown in FIG. 1), and a large number of substrates W are supported by grooves (not shown) formed in the rods 6.
- the wafer boat 5 is placed on the table 8 via a heat insulating cylinder 7 made of quartz.
- the table 8 is supported on a rotating shaft 10 penetrating a metal (stainless steel) lid 9 that opens and closes the opening at the lower end of the manifold 3.
- a magnetic fluid seal 11 is provided at the penetrating portion of the rotating shaft 10, and the rotating shaft 10 is hermetically sealed and rotatably supported.
- a sealing member 12 for maintaining the airtightness in the processing container 1 is provided between the peripheral portion of the lid 9 and the lower end of the manifold 3.
- the rotating shaft 10 is attached to the tip of an arm 13 supported by an elevating mechanism (not shown) such as a boat elevator, and the wafer boat 5 and the lid 9 move up and down integrally in the processing container 1. On the other hand, it is inserted and removed.
- the table 8 may be fixedly provided on the lid 9 side so that the substrate W can be processed without rotating the wafer boat 5.
- the plasma processing apparatus 100 has a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
- a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
- the gas supply unit 20 has gas supply pipes 21, 22, and 24.
- the gas supply pipe 21 is made of, for example, quartz, and is made of a quartz pipe that penetrates the side wall of the manifold 3 inward and is bent upward.
- the gas supply pipe 22 is made of, for example, quartz, penetrates the side wall of the manifold 3 inward, is bent upward, and extends vertically. In the vertical portion of the gas supply pipe 22, a plurality of gas holes 22g are formed at predetermined intervals over a length in the vertical direction corresponding to the wafer support range of the wafer boat 5. Each gas hole 22g discharges gas in the horizontal direction.
- the gas supply pipe 24 is made of, for example, quartz, and is composed of a short quartz pipe provided so as to penetrate the side wall of the manifold 3.
- Etchant gas is supplied to the gas supply pipe 21 from the etchant gas supply source 21a via the gas pipe.
- the gas pipe is provided with a flow rate controller 21b and an on-off valve 21c.
- the etchant gas from the etchant gas supply source 21a is supplied into the processing container 1 via the gas pipe and the gas supply pipe 21.
- the etchant gas for example, hydrogen fluoride (HF) can be used.
- the etchant gas is not limited to this, and hydrogen halides and halogens such as F 2 , Cl 2 , Br 2 , I 2 , HCl, BCl 3 , HBr, HI, NF 3 , ClF 3 , CF 4 and the like are used. Compounds are available.
- the gas supply pipe 22 is provided with a vertical portion (a vertical portion in which the gas hole 22g is formed) in a plasma generation space described later.
- a reaction gas containing hydrogen is supplied to the gas supply pipe 22 from the reaction gas supply source 22a via the gas pipe.
- the gas pipe is provided with a flow rate controller 22b and an on-off valve 22c.
- nitrogen gas (N 2 ) is supplied to the gas supply pipe 22 from the reaction gas supply source 23a via the gas pipe.
- the gas pipe is provided with a flow rate controller 23b and an on-off valve 23c.
- the mixed gas of the reaction gas containing hydrogen and the nitrogen gas from the reaction gas supply sources 22a and 23a is supplied to the plasma generation space via the gas pipe and the gas supply pipe 22, and is converted into plasma in the plasma generation space.
- the reaction gas containing hydrogen for example, NH 3 gas and H 2 gas can be used.
- the reaction gas is not limited to this, and a gas containing at least hydrogen (H) or deuterium (D) such as H 2 , N 2 H 4 , C 2 H 4 , NH 3 , D 2 is used. can.
- Purge gas is supplied to the gas supply pipe 24 from a purge gas supply source (not shown) via a gas pipe.
- the gas pipe (not shown) is provided with a flow rate controller (not shown) and an on-off valve (not shown).
- the purge gas from the purge gas supply source is supplied into the processing container 1 via the gas pipe and the gas supply pipe 24.
- an inert gas such as argon (Ar) or nitrogen (N 2) can be used.
- the purge gas is supplied from the purge gas supply source to the processing container 1 via the gas pipe and the gas supply pipe 24 has been described, but the present invention is not limited to this, and the purge gas is supplied from any of the gas supply pipes 21 and 22. May be done.
- a plasma generation mechanism 30 is formed on a part of the side wall of the processing container 1.
- the plasma generation mechanism 30 plasmaizes the NH 3 gas (or H 2 gas) to generate hydrogen (H) radicals, and plasmaizes the N 2 gas to generate active species for nitriding.
- the plasma generation mechanism 30 includes a plasma partition wall 32, a pair of plasma electrodes 33 (one is shown in FIG. 1), a feeding line 34, a high frequency power supply 35, and an insulation protective cover 36.
- the plasma partition wall 32 is airtightly welded to the outer wall of the processing container 1.
- the plasma partition wall 32 is formed of, for example, quartz.
- the plasma partition wall 32 has a concave cross section and covers the opening 31 formed in the side wall of the processing container 1.
- the opening 31 is formed elongated in the vertical direction so as to cover all the substrates W supported by the wafer boat 5 in the vertical direction.
- a gas supply pipe 22 for discharging a mixed gas of NH 3 gas and N 2 gas is arranged in the inner space defined by the plasma partition wall 32 and communicating with the inside of the processing container 1, that is, the plasma generation space. There is.
- the gas supply pipe 21 for discharging the etchant gas is provided at a position close to the substrate W along the inner side wall of the processing container 1 outside the plasma generation space.
- the pair of plasma electrodes 33 (one is shown in FIG. 1) each have an elongated shape, and are arranged to face each other on the outer surfaces of the walls on both sides of the plasma partition wall 32 in the vertical direction.
- Each plasma electrode 33 is held by, for example, a holding portion (not shown) provided on the side surface of the plasma partition wall 32.
- a power feeding line 34 is connected to the lower end of each plasma electrode 33.
- the power supply line 34 electrically connects each plasma electrode 33 and the high frequency power supply 35.
- one end of the feeding line 34 is connected to the lower end of each plasma electrode 33, and the other end is connected to the high frequency power supply 35.
- the high-frequency power supply 35 is connected to the lower end of each plasma electrode 33 via a power supply line 34, and supplies high-frequency power of, for example, 13.56 MHz to the pair of plasma electrodes 33.
- high-frequency power is applied into the plasma generation space defined by the plasma partition wall 32.
- the NH 3 gas (or H 2 gas) discharged from the gas supply pipe 22 is turned into plasma in the plasma generation space to which high frequency power is applied, and the hydrogen radicals generated by this are converted into plasma through the opening 31 in the processing container 1. It is supplied to the inside of.
- the N 2 gas supplied from the gas supply pipe 22 is turned into plasma in the plasma generation space to which high frequency power is applied, and the active species for nitriding generated thereby is processed through the opening 31 in the processing container 1. It is supplied to the inside of.
- the insulation protective cover 36 is attached to the outside of the plasma partition wall 32 so as to cover the plasma partition wall 32.
- a refrigerant passage (not shown) is provided in the inner portion of the insulation protection cover 36, and the plasma electrode 33 is cooled by flowing a cooled refrigerant such as nitrogen (N 2) gas through the refrigerant passage.
- a shield (not shown) may be provided between the plasma electrode 33 and the insulation protective cover 36 so as to cover the plasma electrode 33.
- the shield is formed of a good conductor such as metal and is grounded.
- An exhaust port 40 for vacuum exhausting the inside of the processing container 1 is provided on the side wall portion of the processing container 1 facing the opening 31.
- the exhaust port 40 is vertically elongated so as to correspond to the wafer boat 5.
- An exhaust port cover member 41 formed in a U-shaped cross section is attached to a portion of the processing container 1 corresponding to the exhaust port 40 so as to cover the exhaust port 40.
- the exhaust port cover member 41 extends upward along the side wall of the processing container 1.
- An exhaust pipe 42 for exhausting the processing container 1 via the exhaust port 40 is connected to the lower part of the exhaust port cover member 41.
- An exhaust device 44 including a pressure control valve 43 for controlling the pressure in the processing container 1 and a vacuum pump is connected to the exhaust pipe 42, and the inside of the processing container 1 is exhausted by the exhaust device 44 via the exhaust pipe 42. Will be done.
- a cylindrical heating mechanism 50 for heating the processing container 1 and the substrate W inside the processing container 1 is provided so as to surround the outer periphery of the processing container 1.
- the plasma processing device 100 has a control unit 60.
- the control unit 60 controls the operation of each part of the plasma processing device 100, for example, supply / stop of each gas by opening / closing the on-off valves 21c to 23c, controlling the gas flow rate by the flow rate controllers 21b to 23b, and exhausting by the exhaust device 44. Take control. Further, the control unit 60 controls, for example, on / off of high-frequency power by the high-frequency power supply 35 and control of the temperature of the substrate W by the heating mechanism 50.
- the control unit 60 may be, for example, a computer or the like. Further, the computer program that operates each part of the plasma processing apparatus 100 is stored in the storage medium.
- the storage medium may be, for example, a flexible disk, a compact disk, a hard disk, a flash memory, a DVD, or the like.
- FIG. 2 is a flowchart showing an example of substrate processing by the plasma processing apparatus 100.
- the plasma processing apparatus 100 etches a silicon-based film as an etching target film formed on the substrate W.
- step S101 the substrate W having a silicon-based film is prepared. Specifically, the substrate W having a silicon-based film is set on the wafer boat 5. The arm 13 inserts the wafer boat 5 into the processing container 1 from the lower end of the manifold 3. Then, the processing container 1 is made airtight by the lid body 9.
- step S102 the silicon-based film of the substrate W is etched.
- FIG. 3 is a time chart showing an example of etching processing by the plasma processing apparatus 100.
- the etching process S201 for supplying the etchant gas, S202 for purging, S203 for supplying the reaction gas by applying RF power, and S204 for purging are repeated for a predetermined cycle to obtain the etching process.
- This is a process of alternately supplying reaction gas to etch a silicon-based film formed on the substrate W. Note that FIG. 3 shows only one cycle.
- N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the etching process (continuously) is supplied.
- the step S201 of supplying the etchant gas is a step of supplying the etchant gas into the processing container 1.
- the etchant gas is supplied from the etchant gas supply source 21a through the gas supply pipe 21 into the processing container 1.
- the etchant gas HF gas
- the etchant gas applies a fluoride treatment to the surface of the silicon-based film of the substrate W, and the surface of the silicon-based film is brought into a reaction-saturated state of fluoride.
- the purging step S202 is a step of purging excess etchant gas or the like in the processing container 1.
- the on-off valve 21c is closed to stop the supply of etchant gas.
- the purge gas constantly supplied from the gas supply pipe 24 purges the excess etchant gas and the like in the processing container 1.
- the step S203 of supplying the reaction gas is a step of supplying a mixed gas of NH 3 gas and N 2 gas as the reaction gas.
- the reaction gas is supplied from the reaction gas supply sources 22a and 23a into the plasma partition wall 32 via the gas supply pipe 22. Further, RF is applied to the plasma electrode 33 by the high frequency power supply 35 to generate plasma in the plasma partition wall 32.
- Hydrogen (H) radicals and active species of nitriding are generated and supplied into the processing vessel 1 through the opening 31. As a result, the hydrogen (H) radical and the active species of nitriding react with the surface of the fluorinated silicon-based film, so that the surface layer (one layer) of the fluorinated silicon-based film is etched. ..
- hydrogen (H) radicals and active species of nitriding are supplied to the surface of the fluorinated silicon-based film, and a reaction product containing silicon and fluorine, such as (NH 4 ) 2 SiF 6, is produced. can get.
- the generated (NH 4 ) 2 SiF 6 is sublimated and exhausted from the inside of the processing container 1 by the exhaust device 44. As a result, the surface of the silicon-based film is etched.
- the reaction product has a composition containing Si and F, and is volatilized and removed in the present treatment temperature and pressure range.
- the purging step S204 is a step of purging excess reaction gas, reaction product ((NH 4 ) 2 SiF 6 ), etc. in the processing container 1.
- the on-off valves 22c and 23c are closed to stop the supply of the reaction gas.
- the purge gas constantly supplied from the gas supply pipe 24 purges the excess reaction gas, reaction product, and the like in the processing container 1.
- the silicon-based film formed on the substrate W is etched.
- a reaction product is produced by fluorinated the film surface with etchant gas and reacting the fluorinated film surface with the plasma of the reaction gas.
- the silicon-based film is etched by repeating sublimation of the produced reaction product from the substrate W.
- the silicon-based film can be uniformly (isotropically) etched. That is, even a silicon-based film having a recess having a high aspect ratio can be uniformly etched on the inlet side and the back side of the side wall of the recess.
- the opening side of the recess, or the top and bottom are preferentially etched. Control is also possible.
- etching conditions for the silicon-based film using the etchant gas and the reaction gas in step S102 is shown below.
- RF power 50 to 500 W
- FIG. 4 is an example of a graph showing the relationship between the etching temperature and the etching amount for each type of silicon-based film.
- the horizontal axis represents the etching temperature (° C.), and the vertical axis represents the etching amount (A).
- the result when the etching target is an amorphous silicon film is shown by a solid line
- the result when the SiN film is used is shown by a broken line
- the result when the SiO 2 film is used is shown by a alternate long and short dash line.
- FIG. 5 is an example of a graph showing the selection ratio of etching between an amorphous silicon film and another silicon-based film (SiN film, SiO 2 film).
- the horizontal axis shows the etching temperature (° C.), and the vertical axis shows the selection ratio.
- the selective ratio of the amorphous silicon film to the SiN film is indicated by a broken line
- the selective ratio of the amorphous silicon film to the SiO 2 film is indicated by a dashed line.
- the amorphous silicon film can be suitably etched. Further, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the amorphous silicon film can be selectively etched with respect to the SiN film and the SiO 2 film.
- the silicon film, the polysilicon film, and the crystalline silicon film also have high selectivity for the SiN film and the SiO 2 film. Therefore, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the silicon film, the polysilicon film, and the crystalline silicon film can be selectively etched with respect to the SiN film and the SiO 2 film.
- FIG. 6 is an example of a graph showing the relationship between the process temperature and the etching amount (EPC) per cycle.
- the horizontal axis represents the process temperature (° C.), and the vertical axis represents the etching amount (A / cycle) per cycle.
- the supply pressure and supply time of HF gas in step 201 are different. Specifically, in Graph 301, it was set to 1 Torr and 10 sec. In the graph 302, it was set to 5 Torr and 30 sec. In graph 303, it was set to 9 Torr and 60 sec. In graph 304, it was set to 27 Torr and 60 sec.
- the supply flow rate of HF gas was set to 1 slm in common in graphs 301 to 304.
- the supply flow rate, supply pressure, and supply time of NH 3 gas in step 203 were set to 5 slm, 0.3 Torr, and 10 sec in common with graphs 301 to 304.
- etching in a wide temperature range is possible by controlling the supply pressure and supply time of the HF gas.
- the etching temperature can be determined based on the supply pressure and the supply time of the HF gas. In other words, good etching characteristics can be obtained by appropriately selecting the supply pressure and supply time of the HF gas with respect to the desired etching temperature.
- the etching target film may be a germanium-based film.
- the germanium-based film includes at least one of an amorphous silicon germanium film, a polycrystalline silicon germanium film, a single crystal silicon germanium film, an amorphous germanium film, a polycrystalline germanium film, and a single crystal germanium film.
- FIG. 7 is an example of a graph showing the etching amount of the germanium-based film.
- the horizontal axis shows the ratio of germanium (Ge) in the silicon-germanium-based film (SiGe), and the vertical axis shows the etching amount (A). Further, the result when the process temperature is 75 ° C. is shown by a solid line, and the result when the process temperature is 100 ° C. is shown by a broken line.
- the germanium-based film has a higher etching amount than the SiN film and the SiO 2 film (see FIG. 4). .. That is, in the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the germanium-based film also has high selectivity for the SiN film and the SiO 2 film. Therefore, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the germanium-based film can be selectively etched with respect to the SiN film and the SiO 2 film.
- the present disclosure is not limited to the above-described embodiment and the like, and within the scope of the gist of the present disclosure described in the claims. Various modifications and improvements are possible.
- step S101 the step of preparing the substrate W having the silicon-based film (etching target film) has been described as setting the substrate W having the silicon-based film in the processing container 1, but the process is not limited to this. .. It may be a step of forming a silicon-based film on the substrate W in the processing container 1 by the plasma processing apparatus 100.
- Plasma processing device (board processing device) 1 Processing container 2 Ceiling plate 20 Gas supply section 21, 22, 24 Gas supply pipe 21 Gas supply pipe 22 Gas supply pipe 22 g Gas hole 24 Gas supply pipe 21a Etchant gas supply source 22a, 23a Reaction gas supply source 30 Plasma generation mechanism ( High frequency power supply unit) 44 Exhaust device 50 Heating mechanism 60 Control unit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Provided are a substrate processing method and a substrate processing apparatus with which good etching characteristics can be obtained. A substrate processing method for etching a film to be etched formed on a substrate, the substrate processing method having a step for readying the substrate having the film to be etched, and a step for etching the film to be etched. In the step for etching the film to be etched, a step for feeding an etchant gas and a step for plasma-exciting a reaction gas and exposing the substrate are repeated a plurality of number of times.
Description
本開示は、基板処理方法及び基板処理装置に関する。
This disclosure relates to a substrate processing method and a substrate processing apparatus.
例えば、基板に形成されたシリコン系膜をエッチングする基板処理装置が知られている。
For example, a substrate processing device that etches a silicon-based film formed on a substrate is known.
特許文献1には、半導体処理チャンバ内で基板上の層をエッチングするための方法であって、前記チャンバ内に第1のガスを導入するステップであって、前記ガスが、前記層をエッチングするのに適したエッチャントガスであるステップと、前記第1のガスの少なくともいくらかを前記層内に吸着させるのに十分な期間にわたって、前記第1のガスを前記チャンバ内に留めるステップと、前記チャンバ内の前記第1のガスを不活性ガスで実質的に置き換えるステップと、前記不活性ガスから準安定ガスを発生させるステップと、前記準安定ガスで前記層をエッチングするステップと、を備える、方法が開示されている。
Patent Document 1 describes a method for etching a layer on a substrate in a semiconductor processing chamber, which is a step of introducing a first gas into the chamber, wherein the gas etches the layer. A step of retaining the first gas in the chamber and a step of retaining the first gas in the chamber for a period sufficient to adsorb at least some of the first gas into the layer. A method comprising substantially replacing the first gas with an inert gas, generating a semi-stable gas from the inert gas, and etching the layer with the semi-stable gas. It is disclosed.
一の側面では、本開示は、良好なエッチング特性が得られる基板処理方法及び基板処理装置を提供する。
On the one hand side, the present disclosure provides a substrate processing method and a substrate processing apparatus capable of obtaining good etching characteristics.
上記課題を解決するために、一の態様によれば、基板に形成されたエッチング対象膜をエッチングする基板処理方法であって、前記エッチング対象膜を有する前記基板を準備する工程と、前記エッチング対象膜をエッチングする工程と、を有し、前記エッチング対象膜をエッチングする工程は、エッチャントガスを供給する工程と、反応ガスをプラズマ励起して、前記基板を晒す工程と、を複数回繰り返す、基板処理方法が提供される。
In order to solve the above-mentioned problems, according to one aspect, a substrate processing method for etching a substrate to be etched formed on a substrate, a step of preparing the substrate having the film to be etched, and the etching target. A substrate having a step of etching a film and a step of etching the film to be etched is a step of supplying an etchant gas and a step of plasma-exciting a reaction gas to expose the substrate, which is repeated a plurality of times. A processing method is provided.
一の側面によれば、良好なエッチング特性が得られる基板処理方法及び基板処理装置を提供することができる。
According to one aspect, it is possible to provide a substrate processing method and a substrate processing apparatus capable of obtaining good etching characteristics.
以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
〔基板処理装置〕
本実施形態に係るプラズマ処理装置(基板処理装置)100について、図1を用いて説明する。図1は、プラズマ処理装置100の構成例を示す概略図である。 [Board processing equipment]
The plasma processing apparatus (board processing apparatus) 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a configuration example of theplasma processing apparatus 100.
本実施形態に係るプラズマ処理装置(基板処理装置)100について、図1を用いて説明する。図1は、プラズマ処理装置100の構成例を示す概略図である。 [Board processing equipment]
The plasma processing apparatus (board processing apparatus) 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a configuration example of the
プラズマ処理装置100は、下端が開口された有天井の円筒体状の処理容器1を有する。処理容器1の全体は、例えば石英により形成されている。処理容器1内の上端近傍には、石英により形成された天井板2が設けられており、天井板2の下側の領域が封止されている。処理容器1の下端の開口には、円筒体状に成形された金属製のマニホールド3がOリング等のシール部材4を介して連結されている。
The plasma processing apparatus 100 has a cylindrical processing container 1 with a ceiling whose lower end is opened. The entire processing container 1 is made of, for example, quartz. A ceiling plate 2 made of quartz is provided in the vicinity of the upper end of the processing container 1, and a region below the ceiling plate 2 is sealed. A metal manifold 3 formed in a cylindrical shape is connected to the opening at the lower end of the processing container 1 via a sealing member 4 such as an O-ring.
マニホールド3は、処理容器1の下端を支持しており、マニホールド3の下方から基板として多数枚(例えば25~150枚)の半導体ウエハ(以下「基板W」という。)を多段に載置したウエハボート5が処理容器1内に挿入される。このように処理容器1内には、上下方向に沿って間隔を有して多数枚の基板Wが略水平に収容される。ウエハボート5は、例えば石英により形成されている。ウエハボート5は、3本のロッド6を有し(図1では2本を図示する。)、ロッド6に形成された溝(図示せず)により多数枚の基板Wが支持される。
The manifold 3 supports the lower end of the processing container 1, and is a wafer on which a large number (for example, 25 to 150) semiconductor wafers (hereinafter referred to as “board W”) are placed in multiple stages as substrates from below the manifold 3. The boat 5 is inserted into the processing container 1. In this way, a large number of substrates W are housed in the processing container 1 substantially horizontally with an interval along the vertical direction. The wafer boat 5 is made of, for example, quartz. The wafer boat 5 has three rods 6 (two rods are shown in FIG. 1), and a large number of substrates W are supported by grooves (not shown) formed in the rods 6.
ウエハボート5は、石英により形成された保温筒7を介してテーブル8上に載置されている。テーブル8は、マニホールド3の下端の開口を開閉する金属(ステンレス)製の蓋体9を貫通する回転軸10上に支持される。
The wafer boat 5 is placed on the table 8 via a heat insulating cylinder 7 made of quartz. The table 8 is supported on a rotating shaft 10 penetrating a metal (stainless steel) lid 9 that opens and closes the opening at the lower end of the manifold 3.
回転軸10の貫通部には、磁性流体シール11が設けられており、回転軸10を気密に封止し、且つ回転可能に支持している。蓋体9の周辺部とマニホールド3の下端との間には、処理容器1内の気密性を保持するためのシール部材12が設けられている。
A magnetic fluid seal 11 is provided at the penetrating portion of the rotating shaft 10, and the rotating shaft 10 is hermetically sealed and rotatably supported. A sealing member 12 for maintaining the airtightness in the processing container 1 is provided between the peripheral portion of the lid 9 and the lower end of the manifold 3.
回転軸10は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム13の先端に取り付けられており、ウエハボート5と蓋体9とは一体として昇降し、処理容器1内に対して挿脱される。なお、テーブル8を蓋体9側へ固定して設け、ウエハボート5を回転させることなく基板Wの処理を行うようにしてもよい。
The rotating shaft 10 is attached to the tip of an arm 13 supported by an elevating mechanism (not shown) such as a boat elevator, and the wafer boat 5 and the lid 9 move up and down integrally in the processing container 1. On the other hand, it is inserted and removed. The table 8 may be fixedly provided on the lid 9 side so that the substrate W can be processed without rotating the wafer boat 5.
また、プラズマ処理装置100は、処理容器1内へ処理ガス、パージガス等の所定のガスを供給するガス供給部20を有する。
Further, the plasma processing apparatus 100 has a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
ガス供給部20は、ガス供給管21,22,24を有する。ガス供給管21は、例えば石英により形成されており、マニホールド3の側壁を内側へ貫通して上方へ屈曲された石英管からなる。ガス供給管22は、例えば石英により形成されており、マニホールド3の側壁を内側へ貫通して上方へ屈曲されて垂直に延びる。ガス供給管22の垂直部分には、ウエハボート5のウエハ支持範囲に対応する上下方向の長さに亘って、複数のガス孔22gが所定間隔で形成されている。各ガス孔22gは、水平方向にガスを吐出する。ガス供給管24は、例えば石英により形成されており、マニホールド3の側壁を貫通して設けられた短い石英管からなる。
The gas supply unit 20 has gas supply pipes 21, 22, and 24. The gas supply pipe 21 is made of, for example, quartz, and is made of a quartz pipe that penetrates the side wall of the manifold 3 inward and is bent upward. The gas supply pipe 22 is made of, for example, quartz, penetrates the side wall of the manifold 3 inward, is bent upward, and extends vertically. In the vertical portion of the gas supply pipe 22, a plurality of gas holes 22g are formed at predetermined intervals over a length in the vertical direction corresponding to the wafer support range of the wafer boat 5. Each gas hole 22g discharges gas in the horizontal direction. The gas supply pipe 24 is made of, for example, quartz, and is composed of a short quartz pipe provided so as to penetrate the side wall of the manifold 3.
ガス供給管21には、ガス配管を介してエッチャントガス供給源21aからエッチャントガスが供給される。ガス配管には、流量制御器21b及び開閉弁21cが設けられている。これにより、エッチャントガス供給源21aからのエッチャントガスは、ガス配管及びガス供給管21を介して処理容器1内に供給される。エッチャントガスとしては、例えばフッ化水素(HF)を利用できる。なお、エッチャントガスは、これに限られるものではなく、F2、Cl2、Br2、I2、HCl、BCl3、HBr、HI、NF3、ClF3、CF4等のハロゲン化水素及びハロゲン化合物を利用できる。
Etchant gas is supplied to the gas supply pipe 21 from the etchant gas supply source 21a via the gas pipe. The gas pipe is provided with a flow rate controller 21b and an on-off valve 21c. As a result, the etchant gas from the etchant gas supply source 21a is supplied into the processing container 1 via the gas pipe and the gas supply pipe 21. As the etchant gas, for example, hydrogen fluoride (HF) can be used. The etchant gas is not limited to this, and hydrogen halides and halogens such as F 2 , Cl 2 , Br 2 , I 2 , HCl, BCl 3 , HBr, HI, NF 3 , ClF 3 , CF 4 and the like are used. Compounds are available.
ガス供給管22は、その垂直部分(ガス孔22gが形成される垂直部分)が後述するプラズマ生成空間に設けられている。ガス供給管22には、ガス配管を介して反応ガス供給源22aから水素を含む反応ガスが供給される。ガス配管には、流量制御器22b及び開閉弁22cが設けられている。また、ガス供給管22には、ガス配管を介して反応ガス供給源23aから窒素ガス(N2)が供給される。ガス配管には、流量制御器23b及び開閉弁23cが設けられている。これにより、反応ガス供給源22a,23aからの水素を含む反応ガスと窒素ガスとの混合ガスは、ガス配管及びガス供給管22を介してプラズマ生成空間に供給され、プラズマ生成空間においてプラズマ化されて処理容器1内に供給される。水素を含む反応ガスとしては、例えばNH3ガス、H2ガスを利用できる。なお、反応ガスは、これに限られるものではなく、H2、N2H4、C2H4、NH3、D2等の少なくとも水素(H)もしくは重水素(D)を含むガスを利用できる。
The gas supply pipe 22 is provided with a vertical portion (a vertical portion in which the gas hole 22g is formed) in a plasma generation space described later. A reaction gas containing hydrogen is supplied to the gas supply pipe 22 from the reaction gas supply source 22a via the gas pipe. The gas pipe is provided with a flow rate controller 22b and an on-off valve 22c. Further, nitrogen gas (N 2 ) is supplied to the gas supply pipe 22 from the reaction gas supply source 23a via the gas pipe. The gas pipe is provided with a flow rate controller 23b and an on-off valve 23c. As a result, the mixed gas of the reaction gas containing hydrogen and the nitrogen gas from the reaction gas supply sources 22a and 23a is supplied to the plasma generation space via the gas pipe and the gas supply pipe 22, and is converted into plasma in the plasma generation space. Is supplied into the processing container 1. As the reaction gas containing hydrogen, for example, NH 3 gas and H 2 gas can be used. The reaction gas is not limited to this, and a gas containing at least hydrogen (H) or deuterium (D) such as H 2 , N 2 H 4 , C 2 H 4 , NH 3 , D 2 is used. can.
ガス供給管24には、ガス配管を介してパージガス供給源(図示せず)からパージガスが供給される。ガス配管(図示せず)には、流量制御器(図示せず)及び開閉弁(図示せず)が設けられている。これにより、パージガス供給源からのパージガスは、ガス配管及びガス供給管24を介して処理容器1内に供給される。パージガスとしては、例えばアルゴン(Ar)、窒素(N2)等の不活性ガスを利用できる。なお、パージガスがパージガス供給源からガス配管及びガス供給管24を介して処理容器1内に供給される場合を説明したが、これに限定されず、パージガスはガス供給管21、22のいずれから供給されてもよい。
Purge gas is supplied to the gas supply pipe 24 from a purge gas supply source (not shown) via a gas pipe. The gas pipe (not shown) is provided with a flow rate controller (not shown) and an on-off valve (not shown). As a result, the purge gas from the purge gas supply source is supplied into the processing container 1 via the gas pipe and the gas supply pipe 24. As the purge gas, for example, an inert gas such as argon (Ar) or nitrogen (N 2) can be used. The case where the purge gas is supplied from the purge gas supply source to the processing container 1 via the gas pipe and the gas supply pipe 24 has been described, but the present invention is not limited to this, and the purge gas is supplied from any of the gas supply pipes 21 and 22. May be done.
処理容器1の側壁の一部には、プラズマ生成機構30が形成されている。プラズマ生成機構30は、NH3ガス(またはH2ガス)をプラズマ化して水素(H)ラジカルを生成し、N2ガスをプラズマ化して窒化のための活性種を生成する。
A plasma generation mechanism 30 is formed on a part of the side wall of the processing container 1. The plasma generation mechanism 30 plasmaizes the NH 3 gas (or H 2 gas) to generate hydrogen (H) radicals, and plasmaizes the N 2 gas to generate active species for nitriding.
プラズマ生成機構30は、プラズマ区画壁32と、一対のプラズマ電極33(図1では1つを図示する。)と、給電ライン34と、高周波電源35と、絶縁保護カバー36と、を備える。
The plasma generation mechanism 30 includes a plasma partition wall 32, a pair of plasma electrodes 33 (one is shown in FIG. 1), a feeding line 34, a high frequency power supply 35, and an insulation protective cover 36.
プラズマ区画壁32は、処理容器1の外壁に気密に溶接されている。プラズマ区画壁32は、例えば石英により形成される。プラズマ区画壁32は断面凹状をなし、処理容器1の側壁に形成された開口31を覆う。開口31は、ウエハボート5に支持されている全ての基板Wを上下方向にカバーできるように、上下方向に細長く形成される。プラズマ区画壁32により規定されると共に処理容器1内と連通する内側空間、すなわち、プラズマ生成空間には、NH3ガスとN2ガスの混合ガスを吐出するためのガス供給管22が配置されている。なお、エッチャントガスを吐出するためのガス供給管21は、プラズマ生成空間の外の処理容器1の内側壁に沿った基板Wに近い位置に設けられている。
The plasma partition wall 32 is airtightly welded to the outer wall of the processing container 1. The plasma partition wall 32 is formed of, for example, quartz. The plasma partition wall 32 has a concave cross section and covers the opening 31 formed in the side wall of the processing container 1. The opening 31 is formed elongated in the vertical direction so as to cover all the substrates W supported by the wafer boat 5 in the vertical direction. A gas supply pipe 22 for discharging a mixed gas of NH 3 gas and N 2 gas is arranged in the inner space defined by the plasma partition wall 32 and communicating with the inside of the processing container 1, that is, the plasma generation space. There is. The gas supply pipe 21 for discharging the etchant gas is provided at a position close to the substrate W along the inner side wall of the processing container 1 outside the plasma generation space.
一対のプラズマ電極33(図1では1つを図示する。)は、それぞれ細長い形状を有し、プラズマ区画壁32の両側の壁の外面に、上下方向に沿って対向配置されている。各プラズマ電極33は、例えばプラズマ区画壁32の側面に設けられた保持部(図示せず)によって保持されている。各プラズマ電極33の下端には、給電ライン34が接続されている。
The pair of plasma electrodes 33 (one is shown in FIG. 1) each have an elongated shape, and are arranged to face each other on the outer surfaces of the walls on both sides of the plasma partition wall 32 in the vertical direction. Each plasma electrode 33 is held by, for example, a holding portion (not shown) provided on the side surface of the plasma partition wall 32. A power feeding line 34 is connected to the lower end of each plasma electrode 33.
給電ライン34は、各プラズマ電極33と高周波電源35とを電気的に接続する。図示の例では、給電ライン34は、一端が各プラズマ電極33の下端に接続されており、他端が高周波電源35と接続されている。
The power supply line 34 electrically connects each plasma electrode 33 and the high frequency power supply 35. In the illustrated example, one end of the feeding line 34 is connected to the lower end of each plasma electrode 33, and the other end is connected to the high frequency power supply 35.
高周波電源35は、各プラズマ電極33の下端に給電ライン34を介して接続され、一対のプラズマ電極33に例えば13.56MHzの高周波電力を供給する。これにより、プラズマ区画壁32により規定されたプラズマ生成空間内に、高周波電力が印加される。ガス供給管22から吐出されたNH3ガス(またはH2ガス)は、高周波電力が印加されたプラズマ生成空間内においてプラズマ化され、これにより生成された水素ラジカルが開口31を介して処理容器1の内部へと供給される。また、ガス供給管22から供給されたN2ガスは、高周波電力が印加されたプラズマ生成空間内においてプラズマ化され、これにより生成された窒化のための活性種が開口31を介して処理容器1の内部へと供給される。
The high-frequency power supply 35 is connected to the lower end of each plasma electrode 33 via a power supply line 34, and supplies high-frequency power of, for example, 13.56 MHz to the pair of plasma electrodes 33. As a result, high-frequency power is applied into the plasma generation space defined by the plasma partition wall 32. The NH 3 gas (or H 2 gas) discharged from the gas supply pipe 22 is turned into plasma in the plasma generation space to which high frequency power is applied, and the hydrogen radicals generated by this are converted into plasma through the opening 31 in the processing container 1. It is supplied to the inside of. Further, the N 2 gas supplied from the gas supply pipe 22 is turned into plasma in the plasma generation space to which high frequency power is applied, and the active species for nitriding generated thereby is processed through the opening 31 in the processing container 1. It is supplied to the inside of.
絶縁保護カバー36は、プラズマ区画壁32の外側に、該プラズマ区画壁32を覆うようにして取り付けられている。絶縁保護カバー36の内側部分には、冷媒通路(図示せず)が設けられており、冷媒通路に冷却された窒素(N2)ガス等の冷媒を流すことによりプラズマ電極33が冷却される。また、プラズマ電極33と絶縁保護カバー36との間に、プラズマ電極33を覆うようにシールド(図示せず)が設けられていてもよい。シールドは、例えば金属等の良導体により形成され、接地される。
The insulation protective cover 36 is attached to the outside of the plasma partition wall 32 so as to cover the plasma partition wall 32. A refrigerant passage (not shown) is provided in the inner portion of the insulation protection cover 36, and the plasma electrode 33 is cooled by flowing a cooled refrigerant such as nitrogen (N 2) gas through the refrigerant passage. Further, a shield (not shown) may be provided between the plasma electrode 33 and the insulation protective cover 36 so as to cover the plasma electrode 33. The shield is formed of a good conductor such as metal and is grounded.
開口31に対向する処理容器1の側壁部分には、処理容器1内を真空排気するための排気口40が設けられている。排気口40は、ウエハボート5に対応して上下に細長く形成されている。処理容器1の排気口40に対応する部分には、排気口40を覆うように断面U字状に成形された排気口カバー部材41が取り付けられている。排気口カバー部材41は、処理容器1の側壁に沿って上方に延びている。排気口カバー部材41の下部には、排気口40を介して処理容器1を排気するための排気管42が接続されている。排気管42には、処理容器1内の圧力を制御する圧力制御バルブ43及び真空ポンプ等を含む排気装置44が接続されており、排気装置44により排気管42を介して処理容器1内が排気される。
An exhaust port 40 for vacuum exhausting the inside of the processing container 1 is provided on the side wall portion of the processing container 1 facing the opening 31. The exhaust port 40 is vertically elongated so as to correspond to the wafer boat 5. An exhaust port cover member 41 formed in a U-shaped cross section is attached to a portion of the processing container 1 corresponding to the exhaust port 40 so as to cover the exhaust port 40. The exhaust port cover member 41 extends upward along the side wall of the processing container 1. An exhaust pipe 42 for exhausting the processing container 1 via the exhaust port 40 is connected to the lower part of the exhaust port cover member 41. An exhaust device 44 including a pressure control valve 43 for controlling the pressure in the processing container 1 and a vacuum pump is connected to the exhaust pipe 42, and the inside of the processing container 1 is exhausted by the exhaust device 44 via the exhaust pipe 42. Will be done.
また、処理容器1の外周を囲むようにして処理容器1及びその内部の基板Wを加熱する円筒体状の加熱機構50が設けられている。
Further, a cylindrical heating mechanism 50 for heating the processing container 1 and the substrate W inside the processing container 1 is provided so as to surround the outer periphery of the processing container 1.
また、プラズマ処理装置100は、制御部60を有する。制御部60は、例えばプラズマ処理装置100の各部の動作の制御、例えば開閉弁21c~23cの開閉による各ガスの供給・停止、流量制御器21b~23bによるガス流量の制御、排気装置44による排気制御を行う。また、制御部60は、例えば高周波電源35による高周波電力のオン・オフ制御、加熱機構50による基板Wの温度の制御を行う。
Further, the plasma processing device 100 has a control unit 60. The control unit 60 controls the operation of each part of the plasma processing device 100, for example, supply / stop of each gas by opening / closing the on-off valves 21c to 23c, controlling the gas flow rate by the flow rate controllers 21b to 23b, and exhausting by the exhaust device 44. Take control. Further, the control unit 60 controls, for example, on / off of high-frequency power by the high-frequency power supply 35 and control of the temperature of the substrate W by the heating mechanism 50.
制御部60は、例えばコンピュータ等であってよい。また、プラズマ処理装置100の各部の動作を行うコンピュータのプログラムは、記憶媒体に記憶されている。記憶媒体は、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、フラッシュメモリ、DVD等であってよい。
The control unit 60 may be, for example, a computer or the like. Further, the computer program that operates each part of the plasma processing apparatus 100 is stored in the storage medium. The storage medium may be, for example, a flexible disk, a compact disk, a hard disk, a flash memory, a DVD, or the like.
次に、図1に示すプラズマ処理装置100による基板処理の一例について説明する。図2は、プラズマ処理装置100による基板処理の一例を示すフローチャートである。プラズマ処理装置100は、基板Wに形成されたエッチング対象膜としてのシリコン系膜をエッチングする。
Next, an example of substrate processing by the plasma processing apparatus 100 shown in FIG. 1 will be described. FIG. 2 is a flowchart showing an example of substrate processing by the plasma processing apparatus 100. The plasma processing apparatus 100 etches a silicon-based film as an etching target film formed on the substrate W.
ステップS101において、シリコン系膜を有する基板Wを準備する。具体的には、シリコン系膜を有する基板Wがウエハボート5にセットされる。アーム13は、マニホールド3の下端からウエハボート5を処理容器1内に挿入する。そして、蓋体9によって、処理容器1は気密にされる。
In step S101, the substrate W having a silicon-based film is prepared. Specifically, the substrate W having a silicon-based film is set on the wafer boat 5. The arm 13 inserts the wafer boat 5 into the processing container 1 from the lower end of the manifold 3. Then, the processing container 1 is made airtight by the lid body 9.
ステップS102において、基板Wのシリコン系膜をエッチングする。
In step S102, the silicon-based film of the substrate W is etched.
プラズマ処理装置100によるエッチング処理について、図3を用いて説明する。図3は、プラズマ処理装置100によるエッチング処理の一例を示すタイムチャートである。
The etching process by the plasma processing apparatus 100 will be described with reference to FIG. FIG. 3 is a time chart showing an example of etching processing by the plasma processing apparatus 100.
図3に示されるエッチングプロセスは、エッチャントガスを供給する工程S201、パージする工程S202、RFパワーを印加して反応ガスを供給する工程S203、及び、パージする工程S204を所定サイクル繰り返し、エッチャントガスと反応ガスを交互に供給して基板W上に形成されたシリコン系膜をエッチングするプロセスである。なお、図3では、1サイクルのみを示す。なお、工程S201~S204において、ガス供給管24からパージガスであるN2ガスがエッチングプロセス中に常時(連続して)供給されている。
In the etching process shown in FIG. 3, the etching process S201 for supplying the etchant gas, S202 for purging, S203 for supplying the reaction gas by applying RF power, and S204 for purging are repeated for a predetermined cycle to obtain the etching process. This is a process of alternately supplying reaction gas to etch a silicon-based film formed on the substrate W. Note that FIG. 3 shows only one cycle. In the step S201 ~ S204, N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the etching process (continuously) is supplied.
エッチャントガスを供給する工程S201は、エッチャントガスを処理容器1内に供給する工程である。エッチャントガスを供給する工程S201では、まず、開閉弁21cを開くことにより、エッチャントガス供給源21aからガス供給管21を経てエッチャントガスを処理容器1内に供給する。これにより、エッチャントガス(HFガス)が基板Wのシリコン系膜の表面にフッ化処理を施し、シリコン系膜の表面をフッ化の反応飽和状態とする。
The step S201 of supplying the etchant gas is a step of supplying the etchant gas into the processing container 1. In the step S201 of supplying the etchant gas, first, by opening the on-off valve 21c, the etchant gas is supplied from the etchant gas supply source 21a through the gas supply pipe 21 into the processing container 1. As a result, the etchant gas (HF gas) applies a fluoride treatment to the surface of the silicon-based film of the substrate W, and the surface of the silicon-based film is brought into a reaction-saturated state of fluoride.
パージする工程S202は、処理容器1内の余剰のエッチャントガス等をパージする工程である。パージする工程S202では、開閉弁21cを閉じてエッチャントガスの供給を停止する。これにより、ガス供給管24から常時供給されているパージガスが処理容器1内の余剰のエッチャントガス等をパージする。
The purging step S202 is a step of purging excess etchant gas or the like in the processing container 1. In the purging step S202, the on-off valve 21c is closed to stop the supply of etchant gas. As a result, the purge gas constantly supplied from the gas supply pipe 24 purges the excess etchant gas and the like in the processing container 1.
反応ガスを供給する工程S203は、反応ガスとしてのNH3ガス及びN2ガスの混合ガスを供給する工程である。反応ガスを供給する工程S203では、開閉弁22c,23cを開くことにより、反応ガス供給源22a,23aからガス供給管22を経て反応ガスをプラズマ区画壁32内に供給する。また、高周波電源35により、プラズマ電極33にRFを印加して、プラズマ区画壁32内にプラズマを生成する。水素(H)ラジカル及び窒化の活性種を生成し、開口31から処理容器1内に供給する。これにより、水素(H)ラジカル及び窒化の活性種がフッ化処理されたシリコン系膜の表面と反応することで、フッ化されたシリコン系膜の表面の層(1層分)がエッチングされる。
The step S203 of supplying the reaction gas is a step of supplying a mixed gas of NH 3 gas and N 2 gas as the reaction gas. In the step S203 of supplying the reaction gas, by opening the on-off valves 22c and 23c, the reaction gas is supplied from the reaction gas supply sources 22a and 23a into the plasma partition wall 32 via the gas supply pipe 22. Further, RF is applied to the plasma electrode 33 by the high frequency power supply 35 to generate plasma in the plasma partition wall 32. Hydrogen (H) radicals and active species of nitriding are generated and supplied into the processing vessel 1 through the opening 31. As a result, the hydrogen (H) radical and the active species of nitriding react with the surface of the fluorinated silicon-based film, so that the surface layer (one layer) of the fluorinated silicon-based film is etched. ..
具体的には、フッ化処理されたシリコン系膜の表面に水素(H)ラジカル及び窒化の活性種が供給され、例えば(NH4)2SiF6のようなシリコンとフッ素を含む反応生成物が得られる。生成された(NH4)2SiF6は昇華して、排気装置44により処理容器1内から排気される。これにより、シリコン系膜の表面がエッチングされる。反応生成物はSiとFを含む組成であり、本処理温度・圧力帯においては揮発・除去されるものである。
Specifically, hydrogen (H) radicals and active species of nitriding are supplied to the surface of the fluorinated silicon-based film, and a reaction product containing silicon and fluorine, such as (NH 4 ) 2 SiF 6, is produced. can get. The generated (NH 4 ) 2 SiF 6 is sublimated and exhausted from the inside of the processing container 1 by the exhaust device 44. As a result, the surface of the silicon-based film is etched. The reaction product has a composition containing Si and F, and is volatilized and removed in the present treatment temperature and pressure range.
パージする工程S204は、処理容器1内の余剰の反応ガスや反応生成物((NH4)2SiF6)等をパージする工程である。パージする工程S204では、開閉弁22c,23cを閉じて反応ガスの供給を停止する。これにより、ガス供給管24から常時供給されているパージガスが処理容器1内の余剰の反応ガスや反応生成物等をパージする。
The purging step S204 is a step of purging excess reaction gas, reaction product ((NH 4 ) 2 SiF 6 ), etc. in the processing container 1. In the purging step S204, the on-off valves 22c and 23c are closed to stop the supply of the reaction gas. As a result, the purge gas constantly supplied from the gas supply pipe 24 purges the excess reaction gas, reaction product, and the like in the processing container 1.
以上のサイクルを繰り返すことで、基板Wに形成されたシリコン系膜をエッチングする。
By repeating the above cycle, the silicon-based film formed on the substrate W is etched.
本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理では、エッチャントガスによる膜表面のフッ化処理と、フッ化処理された膜表面と反応ガスのプラズマを反応させることによって反応生成物を生成し、生成された反応生成物を基板Wから昇華させることを繰り返して、シリコン系膜をエッチングする。これにより、シリコン系膜を均一に(等方的に)エッチングすることができる。即ち、高アスペクト比の凹部を有するシリコン系膜であっても、凹部の側壁の入口側と奥側で均一にエッチングすることができる。その一方で、均一なフッ化処理の後、プラズマによる反応ガスの活性度や活性種の引き込みを深さ方向において制御することで、凹部の開口部側、もしくは上部と底部を優先的にエッチングする制御も可能である。
In the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, a reaction product is produced by fluorinated the film surface with etchant gas and reacting the fluorinated film surface with the plasma of the reaction gas. The silicon-based film is etched by repeating sublimation of the produced reaction product from the substrate W. As a result, the silicon-based film can be uniformly (isotropically) etched. That is, even a silicon-based film having a recess having a high aspect ratio can be uniformly etched on the inlet side and the back side of the side wall of the recess. On the other hand, after uniform fluorination treatment, by controlling the activity of the reaction gas by plasma and the attraction of active species in the depth direction, the opening side of the recess, or the top and bottom are preferentially etched. Control is also possible.
ここで、ステップS102におけるエッチャントガスと反応ガスを用いたシリコン系膜のエッチング条件の好ましい範囲を以下に示す。
温度:25~400℃
圧力:0.1~50.0Torr
HFガス流量:100~5000sccm
NH3ガス流量:1000~10000sccm
N2ガス流量:50~10000sccm
工程S201時間:5.0~180秒
工程S202時間:5.0~60秒
工程S203時間:5.0~300秒
工程S204時間:5.0~60秒
RFパワー:50~500W Here, a preferable range of etching conditions for the silicon-based film using the etchant gas and the reaction gas in step S102 is shown below.
Temperature: 25-400 ° C
Pressure: 0.1-50.0 Torr
HF gas flow rate: 100-5000 sccm
NH3 gas flow rate: 1000-10000 sccm
N2 gas flow rate: 50 to 10000 sccm
Process S201 time: 5.0 to 180 seconds Process S202 time: 5.0 to 60 seconds Process S203 time: 5.0 to 300 seconds Process S204 time: 5.0 to 60 seconds RF power: 50 to 500 W
温度:25~400℃
圧力:0.1~50.0Torr
HFガス流量:100~5000sccm
NH3ガス流量:1000~10000sccm
N2ガス流量:50~10000sccm
工程S201時間:5.0~180秒
工程S202時間:5.0~60秒
工程S203時間:5.0~300秒
工程S204時間:5.0~60秒
RFパワー:50~500W Here, a preferable range of etching conditions for the silicon-based film using the etchant gas and the reaction gas in step S102 is shown below.
Temperature: 25-400 ° C
Pressure: 0.1-50.0 Torr
HF gas flow rate: 100-5000 sccm
NH3 gas flow rate: 1000-10000 sccm
N2 gas flow rate: 50 to 10000 sccm
Process S201 time: 5.0 to 180 seconds Process S202 time: 5.0 to 60 seconds Process S203 time: 5.0 to 300 seconds Process S204 time: 5.0 to 60 seconds RF power: 50 to 500 W
図4は、シリコン系膜の膜種ごとにおけるエッチング温度とエッチング量との関係を示すグラフの一例である。横軸は、エッチング温度(℃)を示し、縦軸は、エッチング量(A)を示す。また、エッチング対象をアモルファスシリコン膜とした場合の結果を実線で示し、SiN膜とした場合の結果を破線で示し、SiO2膜とした場合の結果を一点鎖線で示す。
FIG. 4 is an example of a graph showing the relationship between the etching temperature and the etching amount for each type of silicon-based film. The horizontal axis represents the etching temperature (° C.), and the vertical axis represents the etching amount (A). Further, the result when the etching target is an amorphous silicon film is shown by a solid line, the result when the SiN film is used is shown by a broken line, and the result when the SiO 2 film is used is shown by a alternate long and short dash line.
図5は、アモルファスシリコン膜と他のシリコン系膜(SiN膜、SiO2膜)とのエッチングの選択比を示すグラフの一例である。横軸は、エッチング温度(℃)を示し、縦軸は、選択比を示す。また、SiN膜に対するアモルファスシリコン膜の選択比を破線で示し、SiO2膜に対するアモルファスシリコン膜の選択比を一点鎖線で示す。
FIG. 5 is an example of a graph showing the selection ratio of etching between an amorphous silicon film and another silicon-based film (SiN film, SiO 2 film). The horizontal axis shows the etching temperature (° C.), and the vertical axis shows the selection ratio. Further, the selective ratio of the amorphous silicon film to the SiN film is indicated by a broken line, and the selective ratio of the amorphous silicon film to the SiO 2 film is indicated by a dashed line.
図4及び図5に示すように、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理によれば、アモルファスシリコン膜を好適にエッチングすることができる。また、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理によれば、SiN膜やSiO2膜に対してアモルファスシリコン膜を選択的にエッチングすることができる。
As shown in FIGS. 4 and 5, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the amorphous silicon film can be suitably etched. Further, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the amorphous silicon film can be selectively etched with respect to the SiN film and the SiO 2 film.
なお、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理では、シリコン膜、ポリシリコン膜や結晶シリコン膜についても同様に、SiN膜やSiO2膜に対して高い選択性を有している。このため、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理によれば、SiN膜やSiO2膜に対してシリコン膜、ポリシリコン膜や結晶シリコン膜を選択的にエッチングすることができる。
In the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the silicon film, the polysilicon film, and the crystalline silicon film also have high selectivity for the SiN film and the SiO 2 film. Therefore, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the silicon film, the polysilicon film, and the crystalline silicon film can be selectively etched with respect to the SiN film and the SiO 2 film.
図6は、プロセス温度と1サイクル当りのエッチング量(EPC)との関係を示すグラフの一例である。横軸は、プロセス温度(℃)を示し、縦軸は、1サイクル当りのエッチング量(A/cycle)を示す。
FIG. 6 is an example of a graph showing the relationship between the process temperature and the etching amount (EPC) per cycle. The horizontal axis represents the process temperature (° C.), and the vertical axis represents the etching amount (A / cycle) per cycle.
また、グラフ301~304では、工程201(図3参照)におけるHFガスの供給圧力と供給時間が異なっている。具体的には、グラフ301では、1Torr、10secとした。グラフ302では、5Torr、30secとした。グラフ303では、9Torr、60secとした。グラフ304では、27Torr、60secとした。
Further, in graphs 301 to 304, the supply pressure and supply time of HF gas in step 201 (see FIG. 3) are different. Specifically, in Graph 301, it was set to 1 Torr and 10 sec. In the graph 302, it was set to 5 Torr and 30 sec. In graph 303, it was set to 9 Torr and 60 sec. In graph 304, it was set to 27 Torr and 60 sec.
なお、HFガスの供給流量は、グラフ301~304で共通して1slmとした。工程203(図3参照)におけるNH3ガスの供給流量、供給圧力、供給時間は、グラフ301~304で共通して、5slm、0.3Torr、10secとした。
The supply flow rate of HF gas was set to 1 slm in common in graphs 301 to 304. The supply flow rate, supply pressure, and supply time of NH 3 gas in step 203 (see FIG. 3) were set to 5 slm, 0.3 Torr, and 10 sec in common with graphs 301 to 304.
図6に示すように、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理では、HFガスの供給圧力及び供給時間を制御することで、広範囲な温度域でのエッチングが可能となる。
As shown in FIG. 6, in the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, etching in a wide temperature range is possible by controlling the supply pressure and supply time of the HF gas.
この様に、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理では、HFガスの供給圧力と供給時間とに基づいて、エッチング温度を決定することができる。換言すれば、所望のエッチング温度に対して、HFガスの供給圧力と供給時間を適宜選択することにより、良好なエッチング特性が得られる。
As described above, in the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the etching temperature can be determined based on the supply pressure and the supply time of the HF gas. In other words, good etching characteristics can be obtained by appropriately selecting the supply pressure and supply time of the HF gas with respect to the desired etching temperature.
なお、400℃付近では、領域305に示すように、1サイクル当りのエッチング量の増大が見られた。これは、HFの熱的活性が増大したことによるサーマルエッチング成分が重畳したことによる。
At around 400 ° C, an increase in the etching amount per cycle was observed as shown in region 305. This is due to the superposition of thermal etching components due to the increased thermal activity of HF.
また、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理において、エッチング対象膜は、ゲルマニウム系膜であってもよい。ここで、ゲルマニウム系膜は、アモルファスシリコンゲルマニウム膜、多結晶シリコンゲルマニウム膜、単結晶シリコンゲルマニウム膜、アモルファスゲルマニウム膜、多結晶ゲルマニウム膜、単結晶ゲルマニウム膜のうち、少なくとも何れか一つを含む。
Further, in the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the etching target film may be a germanium-based film. Here, the germanium-based film includes at least one of an amorphous silicon germanium film, a polycrystalline silicon germanium film, a single crystal silicon germanium film, an amorphous germanium film, a polycrystalline germanium film, and a single crystal germanium film.
図7は、ゲルマニウム系膜のエッチング量を示すグラフの一例である。横軸は、シリコンゲルマニウム系膜(SiGe)におけるゲルマニウム(Ge)の率を示し、縦軸は、エッチング量(A)を示す。また、プロセス温度を75℃とした場合の結果を実線で示し、100℃とした場合の結果を破線で示す。
FIG. 7 is an example of a graph showing the etching amount of the germanium-based film. The horizontal axis shows the ratio of germanium (Ge) in the silicon-germanium-based film (SiGe), and the vertical axis shows the etching amount (A). Further, the result when the process temperature is 75 ° C. is shown by a solid line, and the result when the process temperature is 100 ° C. is shown by a broken line.
ここで、図4及び図7を対比して示すように、ゲルマニウム系膜(図7参照)は、SiN膜やSiO2膜(図4参照)と比較して、高いエッチング量を有している。即ち、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理では、ゲルマニウム系膜についても同様に、SiN膜やSiO2膜に対して高い選択性を有している。このため、本実施形態に係るプラズマ処理装置100によるプラズマエッチング処理によれば、SiN膜やSiO2膜に対してゲルマニウム系膜を選択的にエッチングすることができる。
Here, as shown in comparison with FIGS. 4 and 7, the germanium-based film (see FIG. 7) has a higher etching amount than the SiN film and the SiO 2 film (see FIG. 4). .. That is, in the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the germanium-based film also has high selectivity for the SiN film and the SiO 2 film. Therefore, according to the plasma etching process by the plasma processing apparatus 100 according to the present embodiment, the germanium-based film can be selectively etched with respect to the SiN film and the SiO 2 film.
以上、プラズマ処理装置100による本実施形態のエッチング方法について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。
Although the etching method of the present embodiment by the plasma processing apparatus 100 has been described above, the present disclosure is not limited to the above-described embodiment and the like, and within the scope of the gist of the present disclosure described in the claims. Various modifications and improvements are possible.
ステップS101において、シリコン系膜(エッチング対象膜)を有する基板Wを準備する工程は、シリコン系膜を有する基板Wを処理容器1内にセットするものとして説明したが、これに限られるものではない。プラズマ処理装置100で処理容器1内の基板Wにシリコン系膜を成膜する工程であってもよい。
In step S101, the step of preparing the substrate W having the silicon-based film (etching target film) has been described as setting the substrate W having the silicon-based film in the processing container 1, but the process is not limited to this. .. It may be a step of forming a silicon-based film on the substrate W in the processing container 1 by the plasma processing apparatus 100.
尚、本願は、2020年3月11日に出願した日本国特許出願2020-42179号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
Note that this application claims priority based on Japanese Patent Application No. 2020-42179 filed on March 11, 2020, and the entire contents of these Japanese patent applications are incorporated herein by reference.
W 基板
100 プラズマ処理装置(基板処理装置)
1 処理容器
2 天井板
20 ガス供給部
21,22,24 ガス供給管
21 ガス供給管
22 ガス供給管
22g ガス孔
24 ガス供給管
21a エッチャントガス供給源
22a,23a 反応ガス供給源
30 プラズマ生成機構(高周波電力供給部)
44 排気装置
50 加熱機構
60 制御部W Substrate 100 Plasma processing device (board processing device)
1 Processingcontainer 2 Ceiling plate 20 Gas supply section 21, 22, 24 Gas supply pipe 21 Gas supply pipe 22 Gas supply pipe 22 g Gas hole 24 Gas supply pipe 21a Etchant gas supply source 22a, 23a Reaction gas supply source 30 Plasma generation mechanism ( High frequency power supply unit)
44Exhaust device 50 Heating mechanism 60 Control unit
100 プラズマ処理装置(基板処理装置)
1 処理容器
2 天井板
20 ガス供給部
21,22,24 ガス供給管
21 ガス供給管
22 ガス供給管
22g ガス孔
24 ガス供給管
21a エッチャントガス供給源
22a,23a 反応ガス供給源
30 プラズマ生成機構(高周波電力供給部)
44 排気装置
50 加熱機構
60 制御部
1 Processing
44
Claims (8)
- 基板に形成されたエッチング対象膜をエッチングする基板処理方法であって、
前記エッチング対象膜を有する前記基板を準備する工程と、
前記エッチング対象膜をエッチングする工程と、を有し、
前記エッチング対象膜をエッチングする工程は、
エッチャントガスを供給する工程と、
反応ガスをプラズマ励起して、前記基板を晒す工程と、を複数回繰り返す、基板処理方法。 A substrate processing method for etching a film to be etched formed on a substrate.
The step of preparing the substrate having the etching target film and
It has a step of etching the film to be etched.
The step of etching the film to be etched is
The process of supplying etchant gas and
A substrate processing method in which a step of plasma-exciting a reaction gas to expose the substrate is repeated a plurality of times. - 前記エッチャントガスは、ハロゲン化水素を含む、
請求項1に記載の基板処理方法。 The etchant gas contains hydrogen halide,
The substrate processing method according to claim 1. - 前記反応ガスは、Hを含むガスである、
請求項1または請求項2に記載の基板処理方法。 The reaction gas is a gas containing H.
The substrate processing method according to claim 1 or 2. - 前記反応ガスは、
アンモニアガスまたは水素ガスと、窒素ガスと、の混合ガスである、
請求項3に記載の基板処理方法。 The reaction gas is
A mixed gas of ammonia gas or hydrogen gas and nitrogen gas,
The substrate processing method according to claim 3. - 前記エッチング対象膜は、シリコン系膜を含み、
シリコン膜、アモルファスシリコン膜、ポリシリコン膜、結晶シリコン膜のうち、少なくとも何れか一つを含む、
請求項1乃至請求項4のいずれか1項に記載の基板処理方法。 The etching target film includes a silicon-based film and contains a silicon-based film.
Includes at least one of a silicon film, an amorphous silicon film, a polysilicon film, and a crystalline silicon film.
The substrate processing method according to any one of claims 1 to 4. - 前記エッチング対象膜は、ゲルマニウム系膜を含み、
アモルファスシリコンゲルマニウム膜、多結晶シリコンゲルマニウム膜、単結晶シリコンゲルマニウム膜、アモルファスゲルマニウム膜、多結晶ゲルマニウム膜、単結晶ゲルマニウム膜のうち、少なくとも何れか一つを含む、
請求項5に記載の基板処理方法。 The etching target film contains a germanium-based film and contains a germanium-based film.
Includes at least one of amorphous silicon germanium film, polycrystalline silicon germanium film, single crystal silicon germanium film, amorphous germanium film, polycrystalline germanium film, and single crystal germanium film.
The substrate processing method according to claim 5. - 前記エッチャントガスを供給する工程における前記エッチャントガスの供給圧力と、前記エッチャントガスの供給時間とに基づいて、エッチング温度を決定する、
請求項1乃至請求項6のいずれか1項に記載の基板処理方法。 The etching temperature is determined based on the supply pressure of the etchant gas in the step of supplying the etchant gas and the supply time of the etchant gas.
The substrate processing method according to any one of claims 1 to 6. - 基板を収容する処理容器と、
前記処理容器にガスを供給するガス供給部と、
高周波電力を印加してプラズマ励起する高周波電力供給部と、
制御部と、を備え、
前記制御部は、
前記ガス供給部から供給されたエッチャントガスを前記処理容器に供給する工程と、
前記ガス供給部から供給された反応ガスをプラズマ励起して、前記基板を晒す工程と、を複数回繰り返す、基板処理装置。 A processing container for accommodating the substrate and
A gas supply unit that supplies gas to the processing container and
A high-frequency power supply unit that applies high-frequency power to perform plasma excitation, and
With a control unit
The control unit
A step of supplying the etchant gas supplied from the gas supply unit to the processing container, and
A substrate processing apparatus that repeats the steps of plasma-exciting the reaction gas supplied from the gas supply unit to expose the substrate a plurality of times.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/905,438 US20230128868A1 (en) | 2020-03-11 | 2021-03-02 | Substrate processing method and substrate processing apparatus |
KR1020227033739A KR20220147661A (en) | 2020-03-11 | 2021-03-02 | Substrate processing method and substrate processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020042179A JP7394665B2 (en) | 2020-03-11 | 2020-03-11 | Substrate processing method and substrate processing apparatus |
JP2020-042179 | 2020-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021182189A1 true WO2021182189A1 (en) | 2021-09-16 |
Family
ID=77670662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007986 WO2021182189A1 (en) | 2020-03-11 | 2021-03-02 | Substrate processing method and substrate processing apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230128868A1 (en) |
JP (1) | JP7394665B2 (en) |
KR (1) | KR20220147661A (en) |
WO (1) | WO2021182189A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05304122A (en) * | 1992-04-28 | 1993-11-16 | Matsushita Electric Ind Co Ltd | Dry etching method and dry etching system |
JP2015523734A (en) * | 2012-07-10 | 2015-08-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method for patterning a low-k dielectric film |
JP2016134623A (en) * | 2015-01-16 | 2016-07-25 | エーエスエム アイピー ホールディング ビー.ブイ. | Plasma-enhanced atomic layer etching method |
JP2017063186A (en) * | 2015-08-19 | 2017-03-30 | ラム リサーチ コーポレーションLam Research Corporation | Atomic layer etching of tungsten and other metal |
JP2018510515A (en) * | 2015-03-30 | 2018-04-12 | 東京エレクトロン株式会社 | Method for etching an atomic layer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8617411B2 (en) | 2011-07-20 | 2013-12-31 | Lam Research Corporation | Methods and apparatus for atomic layer etching |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
-
2020
- 2020-03-11 JP JP2020042179A patent/JP7394665B2/en active Active
-
2021
- 2021-03-02 WO PCT/JP2021/007986 patent/WO2021182189A1/en active Application Filing
- 2021-03-02 US US17/905,438 patent/US20230128868A1/en active Pending
- 2021-03-02 KR KR1020227033739A patent/KR20220147661A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05304122A (en) * | 1992-04-28 | 1993-11-16 | Matsushita Electric Ind Co Ltd | Dry etching method and dry etching system |
JP2015523734A (en) * | 2012-07-10 | 2015-08-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method for patterning a low-k dielectric film |
JP2016134623A (en) * | 2015-01-16 | 2016-07-25 | エーエスエム アイピー ホールディング ビー.ブイ. | Plasma-enhanced atomic layer etching method |
JP2018510515A (en) * | 2015-03-30 | 2018-04-12 | 東京エレクトロン株式会社 | Method for etching an atomic layer |
JP2017063186A (en) * | 2015-08-19 | 2017-03-30 | ラム リサーチ コーポレーションLam Research Corporation | Atomic layer etching of tungsten and other metal |
Also Published As
Publication number | Publication date |
---|---|
JP7394665B2 (en) | 2023-12-08 |
US20230128868A1 (en) | 2023-04-27 |
JP2021145030A (en) | 2021-09-24 |
KR20220147661A (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5346904B2 (en) | Vertical film forming apparatus and method of using the same | |
US7416989B1 (en) | Adsorption based material removal process | |
JP4929811B2 (en) | Plasma processing equipment | |
JP4179311B2 (en) | Film forming method, film forming apparatus, and storage medium | |
JP5250600B2 (en) | Film forming method and film forming apparatus | |
KR100954243B1 (en) | Film formation apparatus and method for semiconductor process and computer-readble medium | |
JP3421329B2 (en) | Cleaning method for thin film forming equipment | |
US8025931B2 (en) | Film formation apparatus for semiconductor process and method for using the same | |
JP4857849B2 (en) | Plasma processing apparatus and plasma processing method | |
WO2015194380A1 (en) | Substrate processing system and substrate processing method | |
JP6807278B2 (en) | Silicon nitride film deposition method and film deposition equipment | |
TWI430364B (en) | Film formation apparatus and method for using same | |
JP2006066884A (en) | Deposition method, deposition device and storage medium | |
JP2012193445A (en) | Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program | |
JP5575299B2 (en) | Film forming method and film forming apparatus | |
JP2024125232A (en) | Substrate processing system and etching device | |
US20230146375A1 (en) | Substrate processing method and substrate processing apparatus | |
JP2018170407A (en) | Etching method and etching equipment | |
JP7321085B2 (en) | Membrane forming method and system | |
WO2021182189A1 (en) | Substrate processing method and substrate processing apparatus | |
JP2016178224A (en) | Method for forming silicon nitride film, and device for forming silicon nitride film | |
JP7515419B2 (en) | Film forming method and plasma processing apparatus | |
WO2022210351A1 (en) | Film forming method and substrate processing apparatus | |
WO2023112423A1 (en) | Gas treatment method and gas treatment device | |
KR20240001666A (en) | Substrate processing apparatus and substrate processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21768559 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227033739 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21768559 Country of ref document: EP Kind code of ref document: A1 |