WO2021182153A1 - Information processing device, information processing system, information processing method, and program - Google Patents

Information processing device, information processing system, information processing method, and program Download PDF

Info

Publication number
WO2021182153A1
WO2021182153A1 PCT/JP2021/007666 JP2021007666W WO2021182153A1 WO 2021182153 A1 WO2021182153 A1 WO 2021182153A1 JP 2021007666 W JP2021007666 W JP 2021007666W WO 2021182153 A1 WO2021182153 A1 WO 2021182153A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
camera
image
fixed
unit
Prior art date
Application number
PCT/JP2021/007666
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 福安
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021182153A1 publication Critical patent/WO2021182153A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the present disclosure relates to information processing devices, information processing systems, information processing methods and programs, and in particular, information processing devices and information processing systems capable of performing high-quality modeling and rendering with a small number of cameras regardless of the subject. , Information processing methods and programs.
  • Patent Document 1 a volumetric technique for reconstructing a three-dimensional shape of a subject by using a plurality of fixed cameras arranged around the subject.
  • Patent Document 1 We want to reduce the number of cameras as much as possible in order to shorten the processing time required to reconstruct the 3D shape.
  • deterioration of modeling accuracy and rendering quality becomes a problem.
  • Patent Document 2 a method of installing a mobile camera different from the fixed camera to eliminate the blind spot in the observation area has been proposed (for example, Patent Document 2).
  • Patent Document 1 since the position of the camera arranged around the subject is fixed, it is difficult to maintain the quality of the volumetric image when the subject changes. There was a problem. Further, the invention of Patent Document 2 has a main purpose of eliminating blind spots, and does not aim at improving the modeling accuracy and rendering accuracy of a subject.
  • This disclosure proposes an information processing device, an information processing system, an information processing method and a program capable of performing high-quality modeling and rendering with a small number of cameras regardless of the subject.
  • the information processing apparatus of one form according to the present disclosure is provided by a plurality of fixed cameras whose installation position and installation direction are fixed, which are installed around the subject with the direction of the subject facing.
  • the first imaging unit that images the subject the second imaging unit that images the subject by a moving camera installed near the fixed camera and whose installation position and direction are variable, and the first imaging unit.
  • the moving camera is installed so that the 3D shape of the subject obtained based on the image of the subject captured by the imaging unit and the image of the subject captured by the second imaging unit has a predetermined accuracy.
  • the second imaging unit is provided by a setting unit that sets the position and installation direction, an image of the subject captured by the first imaging unit, and the moving camera installed in the installation position and installation direction set by the setting unit.
  • An information processing device including an acquisition unit that acquires a 3D shape of the subject based on an image of the subject captured by the camera.
  • First Embodiment 1-1 Explanation of prerequisites-3D model generation 1-2.
  • Functional configuration of the image generator of the second embodiment 2-2 Explanation of how to determine the installation position of the mobile camera 2-3. Flow of processing performed by the image generator of the second embodiment 2-4. Effect of the second embodiment
  • FIG. 1 is a diagram showing an outline of a flow in which an image generator generates a 3D model of a subject.
  • the 3D model 18M of the subject 18 generates a 3D model 18M having 3D information of the subject 18 by imaging the subject 18 by a plurality of fixed cameras 14 (14a, 14b, 14c) and 3D modeling. It is generated through processing.
  • the plurality of fixed cameras 14 are arranged outside the subject 18 so as to surround the subject 18 existing in the real world, facing the direction of the subject 18.
  • FIG. 1 shows an example in which the number of fixed cameras is three, and the fixed cameras 14a, 14b, and 14c are arranged around the subject 18.
  • a person is the subject 18.
  • the number of fixed cameras 14 is not limited to three, and a larger number of fixed cameras may be provided.
  • 3D modeling is performed using a plurality of viewpoint images taken synchronously by three fixed cameras 14a, 14b, 14c, and in units of video frames of the three fixed cameras 14a, 14b, 14c.
  • a 3D model 18M of the subject 18 is generated.
  • the 3D model 18M is a model having 3D information of the subject 18.
  • the 3D model 18M has shape information representing the surface shape of the subject 18 in the form of mesh data called, for example, a polygon mesh, which is expressed by a connection between vertices (Vertex) and vertices. Further, the 3D model 18M has texture information representing the surface state of the subject 18 corresponding to each polygon mesh.
  • the format of the information contained in the 3D model 18M is not limited to these, and may be other formats of information.
  • texture mapping is performed by pasting a texture representing the color, pattern, or texture of the mesh according to the mesh position.
  • VD View Dependent: hereinafter referred to as VD
  • the read content data including the 3D model 18M is transmitted to a mobile terminal which is a playback device and played back.
  • a mobile terminal which is a playback device and played back.
  • an image having a 3D shape is displayed on the viewing device of the user (viewer).
  • Figure 1 shows an example of a mobile terminal such as a smartphone or tablet terminal used as a viewing device. That is, an image including the 3D model 18M is displayed on the display 120 of the mobile terminal.
  • FIG. 2 is an external view showing an example of the configuration of the image generation system of the first embodiment.
  • the image generation system 10a generates a 3D model 18M of the subject 18.
  • the image generation system 10a includes an image generation device 40a and a drone 20.
  • the image generation system 10a is an example of the information processing system in the present disclosure.
  • the image generation device 40a is an example of the information processing device in the present disclosure.
  • the image generation device 40a generates a 3D model 18M of the subject 18 based on the image of the subject 18 captured by the fixed camera 14 and the moving camera 30.
  • a plurality of fixed cameras 14 are arranged so as to surround the subject 18 and capture an image of the subject 18.
  • the drone 20 is equipped with a mobile camera 30 and moves in the position and direction instructed by the image generation device 40a.
  • the drone 20 is an example of the movement control device in the present disclosure. Further, if the moving camera 30 can be moved in the position and direction instructed by the image generator 40a, a moving camera whose direction can be controlled is installed in the probe of a huge three-dimensional digitizer instead of the drone 20. You may use it.
  • the mobile camera 30 captures an image of the subject 18 from a position and direction instructed by the image generation device 40a. Further, the mobile camera 30 transmits the captured image to the image generation device 40a.
  • the image generation system 10a may include a plurality of drones 20 (moving cameras 30), but in the present embodiment, the image generation system 10a includes one drone 20 (moving camera 30). do.
  • FIG. 3 is a hardware block diagram showing an example of the hardware configuration of the image generator of the first embodiment.
  • the image generation device 40a includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a storage unit 44, a camera controller 45, a communication controller 46, and input / output.
  • the controller 47 has a configuration in which it is connected by an internal bus 48.
  • the CPU 41 controls the overall operation of the image generation device 40a by expanding and executing the control program P1 stored in the storage unit 44 and various data files stored in the ROM 42 on the RAM 43. That is, the image generation device 40a has a general computer configuration operated by the control program P1.
  • the control program P1 may be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. Further, the image generation device 40a may execute a series of processes by hardware.
  • the control program P1 executed by the CPU 41 may be a program in which processing is performed in chronological order according to the order described in the present disclosure, or at necessary timings such as in parallel or when calls are made. It may be a program that is processed by.
  • the storage unit 44 is configured by, for example, a flash memory, and stores the control program P1, the camera parameter file C1, the camera image file K, and the 3D model storage file M.
  • the control program P1 is a program executed by the CPU 41.
  • the camera parameter file C1 is a file that stores the internal parameters and external parameters of the fixed camera 14.
  • the camera image file K is a file that temporarily stores the images captured by the fixed camera 14 and the moving camera 30.
  • the 3D model storage file M is a file that stores the 3D model 18M of the subject 18 generated by the image generation device 40a.
  • the camera controller 45 is connected to the fixed camera 14 and controls the imaging operation of the fixed camera 14 based on a command from the CPU 41. Further, the camera controller 45 temporarily stores the image captured by the fixed camera 14 in the camera image file K.
  • the communication controller 46 wirelessly communicates with the drone 20 based on a command from the CPU 41, and instructs the drone 20 of the movement target position and direction. Further, the communication controller 46 acquires an image captured by the mobile camera 30 from the drone 20.
  • the input / output controller 47 is connected to the display 50 and displays various information output by the image generation device 40a on the display 50. Further, the input / output controller 47 is connected to the touch panel 51 and the keyboard 52, and receives various operation instructions for the image generation device 40a.
  • FIG. 4 is a hardware block diagram showing an example of the hardware configuration of the drone.
  • the drone 20 communicates with the CPU 21, the ROM 22, the RAM 23, the storage unit 24, the camera controller 25, the camera control motor driver 26, the propeller control motor driver 27, and the GPS (Global Positioning System) receiver 28.
  • the controller 29 has a configuration in which it is connected by an internal bus 37.
  • the CPU 21 controls the overall operation of the drone 20 by expanding and executing the control program P2 stored in the storage unit 24 and various data files stored in the ROM 22 on the RAM 23. That is, the drone 20 has a general computer configuration operated by the control program P2.
  • the storage unit 24 is configured by, for example, a flash memory, and stores the control program P2 and the camera parameter file C2.
  • the control program P2 is a program executed by the CPU 21.
  • the camera parameter file C2 is a file that stores the internal parameters and external parameters of the moving camera 30.
  • the camera parameter file C2 may be stored in the storage unit 44 of the image generation device 40a.
  • the camera controller 25 is connected to the mobile camera 30 and controls the imaging operation of the mobile camera 30 based on a command from the CPU 21. Further, the camera controller 25 transmits the image captured by the mobile camera 30 to the image generation device 40a via the communication controller 29 based on the command from the CPU 21.
  • the camera control motor driver 26 operates the pan control motor 31, the tilt control motor 32, and the roll control motor 33 by a specified amount, respectively, based on a command from the CPU 21.
  • the pan control motor 31, the tilt control motor 32, and the roll control motor 33 move the directions of the moving camera 30 in the pan direction, the tilt direction, and the roll direction, respectively.
  • the camera control motor driver 26 may further include a zoom control motor (not shown) that changes the angle of view of the moving camera 30.
  • the propeller control motor driver 27 controls the rotation of the propeller drive motor 34 based on a command from the CPU 21.
  • the rotation of the propeller drive motor 34 is transmitted to the propeller 35 to control the moving state of the drone 20.
  • the GPS receiver 28 identifies the current position of the drone 20 based on the radio waves from the GPS satellites received by the GPS antenna 36. If positioning is possible, a means other than the GPS receiver 28 may be used. For example, Wi-Fi positioning (Wi-Fi is a registered trademark) that measures its own position based on signal strength from a plurality of Wi-Fi (registered trademark) routers may be used.
  • Wi-Fi Wi-Fi is a registered trademark
  • Wi-Fi Wi-Fi is a registered trademark
  • the communication controller 29 wirelessly communicates with the image generation device 40a based on the command from the CPU 21 based on the command from the CPU 21, and transmits the image captured by the mobile camera 30 to the image generation device 40a. Further, the communication controller 29 receives an operation instruction for the mobile camera 30 and the drone 20 from the image generation device 40a.
  • FIG. 5 is a functional block diagram showing an example of the functional configuration of the image generator of the first embodiment.
  • the CPU 41 of the image generation device 40a expands the control program P1 into the RAM 43 and executes it to perform calibration processing on the camera image input unit 60, the camera image input unit 61, the camera image storage unit 62, and the camera image storage unit 62 shown in FIG.
  • the unit 63, the 3D shape extraction unit 64, the moving camera position setting unit 65a, the 3D shape calculation unit 66, the camera work designation unit 67, the movement command unit 68, and the position measurement unit 69 are realized as functional units. ..
  • the camera image input unit 60 acquires an image of the subject 18 captured by the fixed camera 14.
  • the camera image input unit 60 is an example of the first image acquisition unit in the present disclosure.
  • the camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 installed in the vicinity of the fixed camera and having a variable installation position and installation direction.
  • the camera image input unit 61 is an example of the second image acquisition unit in the present disclosure.
  • the camera image storage unit 62 temporarily stores the image acquired by the camera image input unit 60 and the image acquired by the camera image input unit 61 in the camera image file K.
  • the calibration processing unit 63 includes internal parameters related to the optical parameters of the fixed camera 14 and the moving camera 30, relative positional relationships of the plurality of fixed cameras 14, and external parameters related to the relative positional relationship between the fixed camera 14 and the moving camera 30. Is calculated. Then, the calibration processing unit 63 corrects the distortion of the images captured by the fixed camera 14 and the moving camera 30.
  • the internal parameters can be acquired in advance when the focal length is not changed by optical zoom or the like. It is also possible to acquire external parameters between fixed cameras in advance. On the other hand, when these parameters cannot be acquired in advance, the calibration processing unit 63 calculates the internal parameters and the external parameters in real time using the feature points in the captured image.
  • the external parameters related to the relative positional relationship between the fixed camera 14 and the moving camera 30 can be acquired by using the position and direction of the moving camera 30 measured by the position measuring unit 69.
  • the internal parameters and external parameters of the fixed camera 14 acquired in advance are stored in the camera parameter file C1. Further, the internal parameters and external parameters of the moving camera 30 are stored in the camera parameter file C2.
  • the image distortion correction performed by the calibration processing unit 63 is performed according to a known image processing method.
  • the 3D shape extraction unit 64 extracts a rough 3D shape of the subject 18 based on a plurality of images of the subject 18 captured by the plurality of fixed cameras 14, respectively.
  • the 3D shape extraction unit 64 specifically extracts the approximate 3D shape of the subject 18 by using the Visual Hull method.
  • the moving camera position setting unit 65a the 3D shape of the subject 18 obtained based on the image of the subject 18 acquired by the camera image input unit 60 and the image of the subject 18 acquired by the camera image input unit 61 has a predetermined accuracy.
  • the installation position and installation direction of the moving camera 30 are set so as to have. More specifically, the moving camera position setting unit 65a moves based on the 3D information of the subject 18 based on the image of the subject 18 acquired by the camera image input unit 60 and the installation position and installation direction of the fixed camera 14.
  • the installation position and installation direction of the camera 30 are set.
  • the moving camera position setting unit 65a is an example of the setting unit in the present disclosure.
  • the 3D shape calculation unit 66 is captured by the image of the subject 18 acquired by the camera image input unit 60 and the moving camera 30 installed at the installation position and the installation direction set by the moving camera position setting unit 65a, and the camera image input unit 61. Acquires the 3D shape of the subject 18 based on the image of the subject 18 acquired by.
  • the 3D shape calculation unit 66 is an example of the 3D shape acquisition unit in the present disclosure.
  • the camera work designation unit 67 designates the camera work that represents the trajectory of the virtual viewpoint for observing the subject 18.
  • the camera work designation unit 67 is an example of the designation unit in the present disclosure.
  • the movement command unit 68 moves the moving camera 30 to a designated position and a designated direction by moving the drone 20.
  • the movement command unit 68 is an example of the command unit in the present disclosure.
  • the position measurement unit 69 measures the position and direction of the moving camera 30.
  • the position measuring unit 69 is an example of the measuring unit in the present disclosure.
  • FIG. 6 is a diagram illustrating an outline of a process of acquiring a 3D shape by a stereo pair of a fixed camera and a moving camera.
  • FIG. 7 is a diagram illustrating a method of setting the installation position of the mobile camera.
  • the 3D shape 130 of the subject 18 is extracted based on the images captured by the plurality of fixed cameras 14 (14a, 14b, ).
  • the 3D shape 130 is extracted by the 3D shape extraction unit 64 (see FIG. 5) using, for example, Visual Hull.
  • Visual Hull is to extract the image (silhouette) of the subject 18 captured by the fixed camera 14 and obtain the intersection region of the silhouette extracted from the images captured by a plurality of fixed cameras 14 whose relative relationships are known.
  • This is a method for extracting the 3D shape of the subject 18. According to this method, a 3D shape can be extracted even in a region having a poor texture.
  • Visual Hull and stereo matching are used together.
  • stereo matching In stereo matching, the same subject 18 is imaged by a plurality of cameras arranged close to each other, and the position of the same point of the subject 18 in the images captured by each camera is analyzed (stereo matching). This is a method of calculating the positional deviation (parallax) between images by (searching for corresponding points by).
  • the parallax is a value corresponding to the distance from the camera to the subject 18. That is, the larger the parallax, the shorter the distance from the camera to the subject 18. The smaller the parallax, the farther the distance from the camera to the subject 18.
  • the distance from the camera to the subject 18, that is, the 3D shape of the subject 18 can be obtained. According to such stereo matching, if a characteristic texture exists on the surface of the subject 18, the 3D shape can be calculated even if the surface of the subject 18 has a dent.
  • the baseline length is long, the resolution of the measured distance will increase, but if the baseline length is too long, the deformation of the image of the subject 18 captured by each camera will increase, making stereo matching difficult. Alternatively, the area where stereo matching can be obtained becomes narrower. In addition, if the baseline length is made too long, the corresponding points disappear in one camera, so-called occlusion occurs, and stereo matching cannot be obtained. For example, when the fixed camera 14a and the fixed camera 14b in the left figure of FIG. 6 are paired and stereo matching is performed, since there is an area where only one fixed camera 14a can be observed, the 3D shape of the subject 18 is covered over a wide range. Cannot be obtained.
  • the shortest baseline length that can secure a predetermined distance measurement accuracy over the entire depth of the subject 18 is set, and the optical axes of the cameras are installed so as to be parallel to each other. It is desirable to do. For example, it is desirable to perform stereo matching by pairing the fixed camera 14a and the moving camera 30 in the right figure of FIG.
  • the image generation system 10a of the present embodiment combines the fixed camera 14 and the moving camera 30 to generate a camera pair for stereo matching.
  • the baseline length W which is the distance between the fixed camera 14a and the moving camera 30, is the farthest point from the fixed camera 14a on the 3D shape 130 of the subject 18 measured by Visual Hull.
  • the distance measurement accuracy obtained by stereo matching is determined to be the shortest length that is equal to or greater than a predetermined distance measurement accuracy threshold value.
  • the optical axis A1 of the fixed camera 14a and the optical axis A2 of the moving camera 30 are set in parallel. This is to facilitate the calculation of parallax when performing stereo matching. Further, it is desirable that the angle of view of the fixed camera 14 (14a, 14b, ...) And the angle of view of the moving camera 30 are set to be substantially equal. When the angle of view of each fixed camera 14 is different, the moving camera 30 makes its own angle of view substantially equal to the angle of view of the fixed camera 14 according to the angle of view of the fixed cameras 14 forming a stereo pair. Adjust to. For example, the angle of view of the lens of the moving camera 30 may be adjusted by the zoom control motor (not shown in FIG. 4).
  • the mobile camera 30 is mounted on the drone 20, and the drone 20 has a positioning function by the GPS receiver 28. Therefore, the image generation system 10a can install the mobile camera 30 at the position and direction instructed by the image generation device 40a with high accuracy.
  • the internal parameters and external parameters (installation position and installation direction) of each fixed camera 14 are measured in advance and stored in the camera parameter file C1. Therefore, the image generation device 40a controls the position and direction of the drone 20 so that the moving camera 30 is in a state where the optical axis is parallel to the arbitrary fixed camera 14 and the baseline length W is high. It shall be possible to install at.
  • the moving camera position setting unit 65a of the image generation device 40a moves the optical axis A1 of the fixed camera 14a and the optical axis of the moving camera 30 from the state in which the moving camera 30 is closest to each fixed camera 14. While maintaining parallelism with A2, the baseline length W is increased by a predetermined value, and the measurement accuracy of the distance from the fixed camera 14 to the subject 18 at the maximum depth position (farthest point) of the 3D shape 130 of the subject 18 is measured each time. calculate. That is, the moving camera position setting unit 65a sets the installation position and the installation direction of the moving camera 30 while moving the moving camera 30 in the direction away from the fixed camera 14.
  • the moving camera position setting unit 65a first sets a position where the distance measurement accuracy is equal to or higher than a preset threshold value at the installation position of the moving camera 30.
  • the distance measurement accuracy p is a value corresponding to the distance D from the fixed camera 14 to the maximum depth position of the 3D shape 130 of the subject 18 and the parallax ⁇ of the farthest point between the fixed camera 14 and the moving camera 30. Become.
  • the moving camera position setting unit 65a for example, when the value of ⁇ / D becomes equal to or higher than a preset threshold value, the entire subject 18 is equal to or higher than the predetermined value by stereo matching between the fixed camera 14 and the moving camera 30. It is judged that the distance can be measured with the accuracy of.
  • the moving camera position setting unit 65a sets the direction in which the moving camera 30 is moved according to the subject 18 when the moving camera 30 is moved to change the baseline length W.
  • the pattern extending vertically is important when searching for a corresponding point in stereo matching. It becomes a feature. It is desirable that the two cameras (fixed camera 14 and moving camera 30) that perform stereo matching are arranged apart from each other in a direction orthogonal to the direction of the pattern, that is, in the Y-axis direction of FIG.
  • this horizontally extending pattern is important when searching for a corresponding point in stereo matching. It becomes a feature. Then, it is desirable that the two cameras (fixed camera 14 and moving camera 30) that perform stereo matching are arranged apart from each other in a direction orthogonal to the direction of the pattern, that is, in the Z-axis direction of FIG.
  • FIG. 8 is a flowchart showing an example of the flow of processing performed by the image generator of the first embodiment.
  • the camera image input unit 60 acquires an image of the subject 18 captured by the fixed cameras 14 (14a, 14b, ...) At the same time (step S10). Although not shown in FIG. 8, the acquired image is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C1 and corrects the distortion of the image acquired from the fixed camera 14.
  • the 3D shape extraction unit 64 extracts an approximate 3D shape 130 of the subject 18 by, for example, a Visual Hull method (step S11).
  • the moving camera position setting unit 65a generates a stereo pair between adjacent fixed cameras 14 (step S12).
  • the fixed cameras 14 generate a stereo pair with the fixed camera 14 if the 3D shape of the subject 18 can be acquired by the stereo pair generated between the adjacent fixed cameras 14. This is because it is not necessary to make a stereo pair with the moving camera 30.
  • the moving camera position setting unit 65a determines the distance measurement accuracy (calculated from the baseline length W, the focal length, and the image resolution) of the stereo pair generated in step S12 at the maximum depth position of the 3D shape 130 of the subject 18. It is determined whether the accuracy set in advance is satisfied (step S13). When it is determined that the accuracy set in advance is satisfied (step S13: Yes), the process proceeds to step S15. On the other hand, if it is not determined that the accuracy set in advance is satisfied (step S13: No), the process proceeds to step S14.
  • the moving camera position setting unit 65a sets the installation position and direction of the moving camera 30 (step S14). The detailed flow of processing performed in step S14 will be described later (see FIG. 9).
  • the 3D shape calculation unit 66 extracts the 3D shape 130 of the subject 18 by, for example, a method of visual Hull and stereo matching (step S15).
  • the moving camera position setting unit 65a determines whether or not the processing after step S12 has been performed on all the fixed cameras 14 (step S16). When it is determined that the processes after step S12 have been performed on all the fixed cameras 14 (step S16: Yes), the image generation device 40a ends the process of FIG. On the other hand, if it is not determined that the processing after step S12 has been performed (step S16: No), the process returns to step S12.
  • a stereo camera pair with the moving camera 30 is formed for all the fixed cameras 14 to generate a 3D model of the subject 18, but the observation direction of the subject 18 can be specified in advance.
  • the fixed camera 14 used to generate the 3D shape may be limited. That is, when the camera work designation unit 67 specifies the observation direction of the subject 18, only the fixed camera 14 close to the observation direction may be selected to form a stereo camera pair with the moving camera 30.
  • the moving camera position setting unit 65a is the fixed camera 14 located in the vicinity of the designated movement locus. Based on the installation position and the installation direction, the installation position and the installation direction of the mobile camera 30 are set so that the fixed camera 14 and the mobile camera 30 form a stereo pair. Then, the 3D shape of the subject 18 is acquired by the stereo pair.
  • FIG. 9 is a flowchart showing an example of the flow of the installation position and direction calculation process of the mobile camera performed by the image generation device of the first embodiment.
  • the moving camera position setting unit 65a installs the moving camera 30 at a predetermined relative position with respect to the fixed camera 14 (step S20).
  • the moving camera position setting unit 65a sets the direction of the optical axis A2 of the moving camera 30 in parallel with the optical axis A1 of the fixed camera 14 (step S21).
  • the camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 (step S22). Although not shown in FIG. 9, the image acquired from the moving camera 30 is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C2 and corrects the distortion of the image acquired from the moving camera 30.
  • the moving camera position setting unit 65a determines whether a predetermined distance accuracy can be obtained with respect to the position of the maximum depth of the subject 18 (step S23). When it is determined that the predetermined distance accuracy can be obtained (step S23: Yes), the process returns to step S15 in FIG. On the other hand, if it is not determined that the predetermined distance accuracy can be obtained (step S23: No), the process proceeds to step S24.
  • step S24 determines whether the moving camera 30 has been moved within a predetermined range. When it is determined that the moving camera 30 has been moved within a predetermined range (step S24: Yes), the process returns to step S15 in FIG. On the other hand, if it is not determined that the moving camera 30 has moved within a predetermined range (step S24: No), the process proceeds to step S25.
  • step S24 If No is determined in step S24, the moving camera position setting unit 65a moves the moving camera 30 in a direction away from the fixed camera 14 by a predetermined amount (step S25). After that, the process returns to step S21 and the above-described processing is repeated.
  • the camera image input unit 60 (first image acquisition unit) is placed around the subject 18 in the direction of the subject 18.
  • the fixed camera 14 (second image acquisition unit) acquires an image of the subject 18 captured by a plurality of fixed cameras 14 having a fixed installation position and installation direction.
  • the image of the subject 18 captured by the moving camera 30 installed in the vicinity of the above and whose installation position and direction are variable is acquired.
  • the moving camera position setting unit 65a (setting unit) obtains a 3D image of the subject 18 based on the image of the subject 18 acquired by the camera image input unit 60 and the image of the subject 18 acquired by the camera image input unit 61.
  • the installation position and installation direction of the moving camera 30 are set so that the shape has a predetermined accuracy.
  • the 3D shape calculation unit 66 (3D shape acquisition unit) has the image of the subject 18 acquired by the camera image input unit 60, and the moving camera 30 installed in the installation position and installation direction set by the moving camera position setting unit 65a.
  • the 3D shape of the subject 18 is acquired based on the image of the subject 18 acquired by the camera image input unit 61 after taking an image.
  • the moving camera position setting unit 65a (setting unit) is the subject 18 acquired by the camera image input unit 60 (first image acquisition unit).
  • the installation position and installation direction of the moving camera 30 are set based on the 3D information of the subject 18 based on the image of the above and the installation position and installation direction of the fixed camera 14.
  • the installation position and the installation direction of the mobile camera 30 can be set based on the approximate 3D shape of the subject 18 obtained by the plurality of fixed cameras 14, so that the installation position and the installation direction of the mobile camera 30 can be set.
  • the setting can be done easily.
  • the image generation device 40a information processing device of the first embodiment
  • the optical axis A1 of the fixed camera 14 and the optical axis A2 of the moving camera 30 are parallel to each other.
  • the distance (base line length W) between the fixed camera 14 and the moving camera 30 is set so that the distance accuracy at the maximum depth position of the subject 18 as seen from the fixed camera 14 is higher than a predetermined value. ..
  • the mobile camera position setting unit 65a (setting unit) is a fixed camera when setting the installation position and installation direction of the mobile camera 30.
  • the installation position and installation direction of the moving camera 30 are set while moving the moving camera 30 in a direction away from the fixed camera 14 in a direction corresponding to the surface state of the subject 18.
  • the camera work designation unit 67 designates the camera work representing the trajectory of the virtual viewpoint for observing the subject 18 and moves.
  • the camera position setting unit 65a sets the installation position and installation direction of the moving camera 30 based on the installation position and installation direction of the fixed camera 14 in the vicinity of the camera work designated by the camera work designation unit 67. do.
  • the moving camera 30 moves to the position designated by the movement command unit 68 (command unit) and the designated direction. Further, the position measuring unit 69 measures the position and direction of the moving camera 30.
  • the installation position and the installation direction of the mobile camera 30 are set.
  • the installation direction can be set with high accuracy.
  • the drone 20 (movement control device) is based on the image of the subject 18 by the fixed camera 14 and the image of the subject 18 by the moving camera 30.
  • the installation position and installation direction of the moving camera 30 are moved so that the 3D shape of the subject 18 thus obtained has a predetermined accuracy.
  • the image generation system 10b of the second embodiment is a system that renders the subject 18 viewed from an arbitrary rendering viewpoint (virtual viewpoint) and reproduces a volumetric image.
  • the image generation system 10b includes an image generation device 40b and a drone 20.
  • the drone 20 includes a mobile camera 30.
  • the camera control motor driver 26 (see FIG. 4) further includes a zoom control motor (not shown) that changes the angle of view of the moving camera 30 in addition to the configuration of the first embodiment.
  • the image generation system 10b is an example of the information processing system in the present disclosure
  • the image generation device 40b is an example of the information processing device in the present disclosure.
  • the image generation system 10b also has a function of modeling the subject 18 to generate a 3D model, that is, a function of the image generation system 10a described in the first embodiment.
  • FIG. 10 is a functional block diagram showing an example of the functional configuration of the image generator of the second embodiment.
  • the image generation device 40b includes a moving camera position setting unit 65b instead of the moving camera position setting unit 65a with respect to the image generation device 40a described in the first embodiment. Further, the image generation device 40b has a functional configuration in which the texture mapping unit 70 is added to the image generation device 40a. Since the other functional configurations are the same as those of the image generator 40a, the description other than the above-mentioned parts will be omitted. Further, in the following description, the same functional parts as those of the image generation device 40a will be described using the same reference numerals.
  • the moving camera position setting unit 65b detects the region of interest of the subject 18.
  • the region of interest is an region that is considered to be of interest to the user observing the subject 18.
  • the region of interest is a facial region or the like.
  • the moving camera position setting unit 65b sets the installation position of the moving camera 30 within the area corresponding to the area of interest.
  • the region corresponding to the region of interest is, for example, a position in the region of interest facing the normal direction N of the subject 18, that is, an region in which the region of interest of the subject 18 can be observed with higher definition.
  • the moving camera position setting unit 65b sets the rendering viewpoint (virtual viewpoint) at a position facing the normal direction N of the subject 18.
  • the image generation device 40b acquires high-definition texture information of the region of interest of the subject 18 by installing the moving camera 30 at the position of the set virtual viewpoint.
  • the moving camera position setting unit 65b controls the angle of view of the moving camera 30 so that the mapping surface E of the subject 18 observed by the moving camera 30 is captured at the full angle of view of the moving camera 30.
  • the angle of view of the moving camera 30 is adjusted by the zoom control motor described above. This is to acquire as high-definition texture information as possible by enlarging the mapping surface E as much as possible and taking an image.
  • the texture mapping unit 70 maps the texture information acquired by the moving camera 30 to the 3D shape of the subject 18 calculated by the 3D shape calculation unit 66 according to the procedure described in the first embodiment.
  • the texture mapping unit 70 is an example of the drawing unit in the present disclosure.
  • FIG. 11 is a diagram illustrating a method of acquiring high-definition texture information by a moving camera.
  • the 3D shape 130 of the subject 18 is extracted based on the images captured by the plurality of fixed cameras 14 (14a, 14b, ). Then, it is assumed that a volumetric image in which the subject 18 is observed from an arbitrary rendering viewpoint Q (virtual viewpoint) is generated. In this case, the fixed camera 14 needs to acquire high-definition texture information of the mapping surface E facing the rendering viewpoint Q of the subject 18.
  • the image captured by the fixed camera 14 may be acquired.
  • the image generation device 40b installs the moving camera 30 at a position close to the rendering viewpoint Q.
  • the texture information of the mapping surface E of the subject 18 is acquired.
  • the moving camera 30 so that the direction of the optical axis A2 of the moving camera 30 faces the normal direction N of the mapping surface E of the subject 18.
  • the image generation device 40b calculates the average normal direction of the region facing the imaging range of the moving camera 30 as the normal direction N. do. Whether the direction of the optical axis A2 of the moving camera 30 faces the normal direction N of the mapping surface E of the subject 18 depends on, for example, the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the movement.
  • a line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and a line segment connecting the fixed camera 14 and the mapping surface E Based on whether the angle formed by the fixed camera 14 is equal to or less than a predetermined threshold value, it is determined whether the optical axis of the fixed camera 14 faces the normal direction N of the mapping surface E, and the image acquired by the fixed camera 14 is used. , The texture information of the subject 18 may be acquired.
  • FIG. 12 is a flowchart showing an example of the flow of processing performed by the image generator of the second embodiment.
  • the camera image input unit 60 acquires an image of the subject 18 captured by the fixed cameras 14 (14a, 14b, ...) At the same time (step S30). Although not shown in FIG. 12, the acquired image is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C1 and corrects the distortion of the image acquired from the fixed camera 14.
  • the 3D shape extraction unit 64 extracts an approximate 3D shape 130 of the subject 18 by, for example, a Visual Hull method (step S31).
  • the moving camera position setting unit 65b sets the rendering viewpoint Q (step S32).
  • the moving camera position setting unit 65b determines whether the angle formed by the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the line segment connecting the fixed camera 14 and the mapping surface E is equal to or less than the threshold value (Ste S33). When it is determined that the condition is satisfied (step S33: Yes), the process proceeds to step S35. On the other hand, if it is not determined that the condition is satisfied (step S33: No), the process proceeds to step S34.
  • the moving camera position setting unit 65b sets the installation position and direction of the moving camera 30 (step S34). The detailed flow of processing performed in step S34 will be described later (see FIG. 13).
  • the 3D shape calculation unit 66 extracts the 3D shape 130 of the subject 18 by, for example, a method of visual Hull and stereo matching (step S35).
  • the texture mapping unit 70 performs a rendering process for drawing a texture on the mapping surface E of the subject 18 (step S36).
  • the moving camera position setting unit 65b determines whether all the rendering viewpoints Q have been processed (step S37). When it is determined that all the rendering viewpoints Q have been processed (step S37: Yes), the image generation device 40b ends the processing of FIG. On the other hand, if it is not determined that all the rendering viewpoints Q have been processed (step S37: No), the process returns to step S32.
  • FIG. 13 is a flowchart showing an example of the flow of the moving camera installation position and direction and the angle of view calculation process performed by the image generation device of the second embodiment.
  • the moving camera position setting unit 65b calculates the normal direction N of the mapping surface E of the subject 18 as seen from the rendering viewpoint Q (step S40).
  • the moving camera position setting unit 65b calculates the size of the subject 18 as seen from the direction N of the normal direction of the mapping surface E (step S41).
  • the mobile camera position setting unit 65b calculates the installation position, installation direction, and angle of view of the mobile camera 30 (step S42). Specifically, as described above, the angle formed by the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the line segment connecting the moving camera 30 and the mapping surface E is equal to or less than a predetermined threshold value. As described above, the installation position and the installation direction of the moving camera 30 are determined. Further, the angle of view of the moving camera 30 is determined so that the subject 18 is captured at the full angle of view of the moving camera 30.
  • the moving camera position setting unit 65b installs the moving camera 30 adjusted to the angle of view calculated in step S42 at the position and direction calculated in step S42 (step S43).
  • the camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 (step S22).
  • the image acquired from the moving camera 30 is temporarily stored in the camera image file K by the action of the camera image storage unit 62.
  • the calibration processing unit 63 refers to the camera parameter file C2 and corrects the distortion of the image acquired from the moving camera 30. After that, the process returns to step S35 of FIG.
  • the moving camera position setting unit 65b sets the set position, setting direction, and angle of view of the moving camera 30.
  • the camera image input unit 61 (second image acquisition unit) is set so that the subject 18 is captured in the entire image captured by the moving camera 30 facing the normal direction N of the region of interest of the subject 18.
  • the texture information of the subject 18 captured by the moving camera 30 installed in the installation position and the installation direction set by the moving camera position setting unit 65b is acquired.
  • the texture mapping unit 70 (drawing unit) maps the texture information of the subject 18 to the 3D shape of the subject 18 acquired by the 3D shape calculation unit 66 (3D shape acquisition unit).
  • the mobile camera position setting unit 65b further detects the region of interest of the subject 18 and sets the installation position of the mobile camera 30 as the region of interest. Set in the area according to.
  • the image generation device 40b (information processing device) of the second embodiment detects the facial area of the subject 18 as the area of interest.
  • the present disclosure can have the following structure.
  • a first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
  • a second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
  • the 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy.
  • a setting unit that sets the installation position and installation direction of the mobile camera, The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit.
  • a 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and Information processing device equipped with.
  • the setting unit The installation position and installation direction of the moving camera are set based on the 3D information of the subject based on the image of the subject acquired by the first image acquisition unit and the installation position and installation direction of the fixed camera. , The information processing device according to (1) above.
  • the information processing device according to (1) or (2) above.
  • the setting unit When setting the installation position and the installation direction of the moving camera, the moving camera is moved with respect to the fixed camera in a direction corresponding to the surface state of the subject and in a direction away from the fixed camera.
  • Set the installation position and direction of the mobile camera The information processing device according to any one of (1) to (3) above.
  • a drawing unit that maps the texture information of the subject to the 3D shape of the subject acquired by the 3D shape acquisition unit is further provided.
  • the setting unit faces the set position, setting direction, and angle of view of the moving camera with the normal direction of the region of interest of the subject so that the subject is captured in the entire image captured by the moving camera.
  • the second image acquisition unit acquires the texture information of the subject captured by the moving camera installed at the installation position and the installation direction set by the setting unit.
  • the information processing device according to any one of (1) to (4). (6) Further provided with a designation unit for designating camera work representing the trajectory of the virtual viewpoint for observing the subject.
  • the setting unit sets the installation position and the installation direction of the moving camera based on the installation position and the installation direction of the fixed camera in the vicinity of the camera work designated by the designated unit.
  • the information processing device according to any one of (1) to (5) above.
  • the setting unit further detects the region of interest of the subject, and then The installation position of the mobile camera is set within the area corresponding to the area of interest.
  • the information processing device according to any one of (1) to (6) above.
  • the feature area is a facial area of the subject.
  • the information processing device according to (7) above.
  • the mobile camera A command unit for moving the moving camera to a designated position and a designated direction, Further provided with a measuring unit for measuring the position and direction of the moving camera.
  • the information processing device according to any one of (1) to (8).
  • (10) A plurality of fixed cameras with fixed installation positions and directions installed around the subject with the subject facing the direction of the subject.
  • a mobile camera with variable installation position and direction, The installation position and installation direction of the moving camera are moved so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. Movement control device to make Information processing system equipped with.
  • An image of the subject taken by a plurality of fixed cameras whose installation position and installation direction are fixed and installed with the direction of the subject facing around the subject is acquired.
  • An image of the subject captured by a moving camera whose installation position and direction are variable, which is installed in the vicinity of the fixed camera, is acquired.
  • the installation position and installation direction of the moving camera are set so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. do it,
  • the 3D shape of the subject is acquired based on the image of the subject by the fixed camera and the image of the subject by the moving camera installed in the set installation position and installation direction.
  • a first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
  • a second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
  • the 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy.
  • a setting unit that sets the installation position and installation direction of the mobile camera, The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit.
  • a 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and A program that works.
  • 10a, 10b ... Image generation system (information processing system), 14, 14a, 14b, 14c ... Fixed camera, 18 ... Subject, 20 ... Drone (movement control device), 30 ... Mobile camera, 40a, 40b ... Image generation device ( Information processing device), 60 ... Camera image input unit (first image acquisition unit), 61 ... Camera image input unit (second image acquisition unit), 62 ... Camera image storage unit, 63 ... Calibration processing unit, 64 ... 3D shape extraction unit, 65a, 65b ... Moving camera position setting unit (setting unit), 66 ... 3D shape calculation unit (3D shape acquisition unit), 67 ... Camera work designation unit (designation unit), 68 ... Movement command unit ( Command unit), 69 ... Position measurement unit (measurement unit), A1, A2 ... Optical axis, E ... Mapping surface, N ... Normal direction, Q ... Rendering viewpoint (virtual viewpoint)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Studio Devices (AREA)

Abstract

An image generating device (40a)(information processing device) comprises: a camera image input unit (60)(first image acquiring unit) which acquires an image of a subject (18) captured by a plurality of fixed cameras (14) installed to face the subject (18) and having a fixed installed position and installed direction; and a camera image input unit (61)(second image acquiring unit) which acquires an image of the subject captured by a moving camera (30) installed in the vicinity of the fixed cameras and having a variable installed position and installed direction. A moving camera position setting unit (65a)(setting unit) sets the installed position and installed direction of the moving camera so that a 3D shape of the subject obtained on the basis of the image of the subject acquired by the camera image input unit (60) and the image of the subject acquired by the camera image input unit (61) has a predetermined accuracy. Then, a 3D shape computing unit (66)(3D shape acquiring unit) acquires the 3D shape of the subject on the basis of the images of the subject captured by the fixed cameras and the moving camera.

Description

情報処理装置、情報処理システム、情報処理方法およびプログラムInformation processing equipment, information processing systems, information processing methods and programs
 本開示は、情報処理装置、情報処理システム、情報処理方法およびプログラムに関し、特に、被写体によらずに、少ないカメラ台数で、品質の高いモデリングとレンダリングを行うことができる情報処理装置、情報処理システム、情報処理方法およびプログラムに関する。 The present disclosure relates to information processing devices, information processing systems, information processing methods and programs, and in particular, information processing devices and information processing systems capable of performing high-quality modeling and rendering with a small number of cameras regardless of the subject. , Information processing methods and programs.
 昨今、被写体の周囲に配置された複数台の固定カメラを用いて、被写体の3次元形状を再構築するボリュメトリック技術が提案されている(例えば、特許文献1)。3次元形状の再構築に要する処理時間を短くするために、カメラ台数はできるだけ減らしたい。しかし、少ないカメラ台数では、モデリング精度とレンダシング品質の低下が問題になる。 Recently, a volumetric technique for reconstructing a three-dimensional shape of a subject by using a plurality of fixed cameras arranged around the subject has been proposed (for example, Patent Document 1). We want to reduce the number of cameras as much as possible in order to shorten the processing time required to reconstruct the 3D shape. However, with a small number of cameras, deterioration of modeling accuracy and rendering quality becomes a problem.
 そのため、従来、Visual Hullにステレオマッチング技術を統合して被写体の3Dモデルを生成し、生成された3DモデルにView Dependentの手法を用いたテクスチャマッピングを行うことによって、少ないカメラ台数でできるだけ品質が高いモデリングとレンダリングを行う方法が提案されている。 Therefore, conventionally, by integrating stereo matching technology with Visual Hull to generate a 3D model of the subject and performing texture mapping using the View Dependent method on the generated 3D model, the quality is as high as possible with a small number of cameras. Methods for modeling and rendering have been proposed.
 また、固定カメラとは別の移動カメラを設置して、観測領域の死角をなくす方法が提案されている(例えば、特許文献2)。 Further, a method of installing a mobile camera different from the fixed camera to eliminate the blind spot in the observation area has been proposed (for example, Patent Document 2).
国際公開第2017/082076号International Publication No. 2017/082076 特開2015-204512号公報Japanese Unexamined Patent Publication No. 2015-204512
 しかしながら、例えば、特許文献1の発明にあっては、被写体の周囲に配置されたカメラの位置が固定されているため、被写体が変わった際に、ボリュメトリック映像の品質を保つのが困難であるという問題があった。また、特許文献2の発明は、死角をなくすことが主目的であって、被写体のモデリング精度やレンダリング精度の向上を狙うものではなかった。 However, for example, in the invention of Patent Document 1, since the position of the camera arranged around the subject is fixed, it is difficult to maintain the quality of the volumetric image when the subject changes. There was a problem. Further, the invention of Patent Document 2 has a main purpose of eliminating blind spots, and does not aim at improving the modeling accuracy and rendering accuracy of a subject.
 本開示では、被写体によらずに、少ないカメラ台数で、品質の高いモデリングとレンダリングを行うことができる情報処理装置、情報処理システム、情報処理方法およびプログラムを提案する。 This disclosure proposes an information processing device, an information processing system, an information processing method and a program capable of performing high-quality modeling and rendering with a small number of cameras regardless of the subject.
 上記の課題を解決するために、本開示に係る一形態の情報処理装置は、被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラによって、前記被写体を撮像する第1の撮像部と、前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラによって前記被写体を撮像する第2の撮像部と、前記第1の撮像部が撮像した前記被写体の画像と、前記第2の撮像部が撮像した前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定する設定部と、前記第1の撮像部が撮像した前記被写体の画像と、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラによって前記第2の撮像部が撮像した前記被写体の画像とに基づいて、前記被写体の3D形状を取得する取得部と、を備える情報処理装置である。 In order to solve the above problems, the information processing apparatus of one form according to the present disclosure is provided by a plurality of fixed cameras whose installation position and installation direction are fixed, which are installed around the subject with the direction of the subject facing. The first imaging unit that images the subject, the second imaging unit that images the subject by a moving camera installed near the fixed camera and whose installation position and direction are variable, and the first imaging unit. The moving camera is installed so that the 3D shape of the subject obtained based on the image of the subject captured by the imaging unit and the image of the subject captured by the second imaging unit has a predetermined accuracy. The second imaging unit is provided by a setting unit that sets the position and installation direction, an image of the subject captured by the first imaging unit, and the moving camera installed in the installation position and installation direction set by the setting unit. An information processing device including an acquisition unit that acquires a 3D shape of the subject based on an image of the subject captured by the camera.
被写体の3Dモデルを生成する流れの概要を示す図である。It is a figure which shows the outline of the flow which generates the 3D model of a subject. 第1の実施形態の画像生成システムの構成の一例を示す外観図である。It is an external view which shows an example of the structure of the image generation system of 1st Embodiment. 第1の実施形態の画像生成装置のハードウエア構成の一例を示すハードウエアブロック図である。It is a hardware block diagram which shows an example of the hardware composition of the image generation apparatus of 1st Embodiment. ドローンのハードウエア構成の一例を示すハードウエアブロック図である。It is a hardware block diagram which shows an example of the hardware configuration of a drone. 第1の実施形態の画像生成装置の機能構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the functional structure of the image generation apparatus of 1st Embodiment. 固定カメラと移動カメラのステレオペアによって3D形状を取得する処理の概要を説明する図である。It is a figure explaining the outline of the process of acquiring a 3D shape by a stereo pair of a fixed camera and a moving camera. 移動カメラの設置位置の設定方法について説明する図である。It is a figure explaining the setting method of the installation position of a moving camera. 第1の実施形態の画像生成装置が行う処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by the image generation apparatus of 1st Embodiment. 第1の実施形態の画像生成装置が行う移動カメラの設置位置と方向算出処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the installation position and direction calculation processing of the moving camera performed by the image generation apparatus of 1st Embodiment. 第2の実施形態の画像生成装置の機能構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the functional structure of the image generation apparatus of 2nd Embodiment. 移動カメラによって高精細なテクスチャ情報を取得する方法を説明する図である。It is a figure explaining the method of acquiring the high-definition texture information by a moving camera. 第2の実施形態の画像生成装置が行う処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by the image generation apparatus of 2nd Embodiment. 第2の実施形態の画像生成装置が行う移動カメラの設置位置と方向と画角算出処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the installation position and direction of the moving camera, and the flow of the angle-of-view calculation process performed by the image generation apparatus of the 2nd Embodiment.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each of the following embodiments, the same parts are designated by the same reference numerals, so that duplicate description will be omitted.
 また、以下に示す項目順序に従って本開示を説明する。
  1.第1の実施形態
   1-1.前提事項の説明-3Dモデルの生成
   1-2.画像生成装置の概略構成
   1-3.画像生成装置のハードウエア構成
   1-4.ドローンのハードウエア構成
   1-5.第1の実施形態の画像生成装置の機能構成
   1-6.移動カメラの設置位置決定方法の説明
   1-7.第1の実施形態の画像生成装置が行う処理の流れ
   1-8.第1の実施形態の効果
  2.第2の実施形態
   2-1.第2の実施形態の画像生成装置の機能構成
   2-2.移動カメラの設置位置決定方法の説明
   2-3.第2の実施形態の画像生成装置が行う処理の流れ
   2-4.第2の実施形態の効果
In addition, the present disclosure will be described according to the order of items shown below.
1. 1. First Embodiment 1-1. Explanation of prerequisites-3D model generation 1-2. Outline configuration of image generator 1-3. Hardware configuration of image generator 1-4. Drone hardware configuration 1-5. Functional configuration of the image generator of the first embodiment 1-6. Explanation of how to determine the installation position of the mobile camera 1-7. Flow of processing performed by the image generator of the first embodiment 1-8. Effect of the first embodiment 2. Second Embodiment 2-1. Functional configuration of the image generator of the second embodiment 2-2. Explanation of how to determine the installation position of the mobile camera 2-3. Flow of processing performed by the image generator of the second embodiment 2-4. Effect of the second embodiment
(1.第1の実施形態)
[1-1.前提事項の説明-3Dモデルの生成]
 図1は、画像生成装置が被写体の3Dモデルを生成する流れの概要を示す図である。
(1. First Embodiment)
[1-1. Explanation of prerequisites-3D model generation]
FIG. 1 is a diagram showing an outline of a flow in which an image generator generates a 3D model of a subject.
 図1に示すように、被写体18の3Dモデル18Mは、複数の固定カメラ14(14a,14b,14c)による被写体18の撮像と、3Dモデリングにより被写体18の3D情報を有する3Dモデル18Mを生成する処理とを経て生成される。 As shown in FIG. 1, the 3D model 18M of the subject 18 generates a 3D model 18M having 3D information of the subject 18 by imaging the subject 18 by a plurality of fixed cameras 14 (14a, 14b, 14c) and 3D modeling. It is generated through processing.
 具体的には、複数の固定カメラ14は、図1に示すように、現実世界に存在する被写体18を取り囲むように、被写体18の外側に、被写体18の方向を向いて配置される。図1は、固定カメラの台数が3台の例を示しており、固定カメラ14a,14b,14cが被写体18の周りに配置されている。なお、図1においては、人物が被写体18とされている。また、固定カメラ14の台数は3台に限定されるものではなく、より多くの台数の固定カメラを備えてもよい。 Specifically, as shown in FIG. 1, the plurality of fixed cameras 14 are arranged outside the subject 18 so as to surround the subject 18 existing in the real world, facing the direction of the subject 18. FIG. 1 shows an example in which the number of fixed cameras is three, and the fixed cameras 14a, 14b, and 14c are arranged around the subject 18. In FIG. 1, a person is the subject 18. Further, the number of fixed cameras 14 is not limited to three, and a larger number of fixed cameras may be provided.
 異なる視点から、3台の固定カメラ14a,14b,14cによって、同期して撮影された複数の視点画像を用いて3Dモデリングが行われ、3台の固定カメラ14a,14b,14cの映像フレーム単位で被写体18の3Dモデル18Mが生成される。 From different viewpoints, 3D modeling is performed using a plurality of viewpoint images taken synchronously by three fixed cameras 14a, 14b, 14c, and in units of video frames of the three fixed cameras 14a, 14b, 14c. A 3D model 18M of the subject 18 is generated.
 3Dモデル18Mは、被写体18の3D情報を有するモデルである。3Dモデル18Mは、被写体18の表面形状を表す形状情報を、例えば、ポリゴンメッシュと呼ばれる、頂点(Vertex)と頂点との繋がりで表現したメッシュデータの形式で有する。また、3Dモデル18Mは、各ポリゴンメッシュに対応した、被写体18の表面状態を表すテクスチャ情報を有する。なお、3Dモデル18Mが有する情報の形式はこれらに限定されるものではなく、その他の形式の情報であってもよい。 The 3D model 18M is a model having 3D information of the subject 18. The 3D model 18M has shape information representing the surface shape of the subject 18 in the form of mesh data called, for example, a polygon mesh, which is expressed by a connection between vertices (Vertex) and vertices. Further, the 3D model 18M has texture information representing the surface state of the subject 18 corresponding to each polygon mesh. The format of the information contained in the 3D model 18M is not limited to these, and may be other formats of information.
 3Dモデル18Mを再構成する際には、メッシュ位置に応じて、当該メッシュの色や模様や質感を表すテクスチャを貼り付ける、いわゆるテクスチャマッピングを行う。テクスチャマッピングは、3Dモデル18Mのリアリティを向上させるために、視点位置に応じた(View Dependent:以下VDと呼ぶ)テクスチャを貼り付けるのが望ましい。これにより、3Dモデル18Mを任意の仮想視点から撮像した際に、視点位置に応じてテクスチャが変化するため、より高画質の仮想画像が得られる。しかし、計算量が増大するため、3Dモデル18Mには、視線位置に依らない(View Independent:以下VIと呼ぶ)テクスチャを貼り付けてもよい。 When reconstructing the 3D model 18M, so-called texture mapping is performed by pasting a texture representing the color, pattern, or texture of the mesh according to the mesh position. For texture mapping, in order to improve the reality of the 3D model 18M, it is desirable to paste a texture according to the viewpoint position (View Dependent: hereinafter referred to as VD). As a result, when the 3D model 18M is imaged from an arbitrary virtual viewpoint, the texture changes according to the viewpoint position, so that a higher quality virtual image can be obtained. However, since the amount of calculation increases, a texture that does not depend on the line-of-sight position (View Independent: hereinafter referred to as VI) may be attached to the 3D model 18M.
 読み出された3Dモデル18Mを含むコンテンツデータは、再生装置である携帯端末に伝送されて再生される。3Dモデル18Mのレンダリングが行われて、3Dモデル18Mを含むコンテンツデータが再生されることにより、ユーザ(視聴者)の視聴デバイスに3D形状を有する映像が表示される。 The read content data including the 3D model 18M is transmitted to a mobile terminal which is a playback device and played back. By rendering the 3D model 18M and reproducing the content data including the 3D model 18M, an image having a 3D shape is displayed on the viewing device of the user (viewer).
 図1に示すのは、スマートフォンやタブレット端末等の携帯端末が視聴デバイスとして用いた例である。即ち、携帯端末のディスプレイ120に、3Dモデル18Mを含む画像が表示される。 Figure 1 shows an example of a mobile terminal such as a smartphone or tablet terminal used as a viewing device. That is, an image including the 3D model 18M is displayed on the display 120 of the mobile terminal.
[1-2.画像生成装置の概略構成]
 次に、図2を用いて、第1の実施形態の画像生成システム10aの概略構成を説明する。図2は、第1の実施形態の画像生成システムの構成の一例を示す外観図である。
[1-2. Outline configuration of image generator]
Next, the schematic configuration of the image generation system 10a of the first embodiment will be described with reference to FIG. FIG. 2 is an external view showing an example of the configuration of the image generation system of the first embodiment.
 画像生成システム10aは、被写体18の3Dモデル18Mを生成する。画像生成システム10aは、画像生成装置40aと、ドローン20とを備える。なお、画像生成システム10aは、本開示における情報処理システムの一例である。また、画像生成装置40aは、本開示における情報処理装置の一例である。 The image generation system 10a generates a 3D model 18M of the subject 18. The image generation system 10a includes an image generation device 40a and a drone 20. The image generation system 10a is an example of the information processing system in the present disclosure. Further, the image generation device 40a is an example of the information processing device in the present disclosure.
 画像生成装置40aは、固定カメラ14と移動カメラ30とで撮像した被写体18の画像に基づいて、被写体18の3Dモデル18Mを生成する。 The image generation device 40a generates a 3D model 18M of the subject 18 based on the image of the subject 18 captured by the fixed camera 14 and the moving camera 30.
 固定カメラ14は、被写体18を取り囲んだ状態になるように、複数配置されて、被写体18の画像を撮像する。 A plurality of fixed cameras 14 are arranged so as to surround the subject 18 and capture an image of the subject 18.
 ドローン20は、移動カメラ30を搭載して、画像生成装置40aから指示された位置、方向に移動する。なお、ドローン20は、本開示における移動制御装置の一例である。また、移動カメラ30を、画像生成装置40aから指示された位置、方向に移動することができれば、ドローン20の代わりに、例えば巨大な3次元デジタイザのプローブに、方向を制御可能な移動カメラを設置して使用してもよい。 The drone 20 is equipped with a mobile camera 30 and moves in the position and direction instructed by the image generation device 40a. The drone 20 is an example of the movement control device in the present disclosure. Further, if the moving camera 30 can be moved in the position and direction instructed by the image generator 40a, a moving camera whose direction can be controlled is installed in the probe of a huge three-dimensional digitizer instead of the drone 20. You may use it.
 移動カメラ30は、画像生成装置40aから指示された位置、方向から、被写体18の画像を撮像する。また、移動カメラ30は、撮像した画像を画像生成装置40aに送信する。 The mobile camera 30 captures an image of the subject 18 from a position and direction instructed by the image generation device 40a. Further, the mobile camera 30 transmits the captured image to the image generation device 40a.
 なお、画像生成システム10aは、複数のドローン20(移動カメラ30)を備えてもよいが、本実施の形態では、画像生成システム10aは、1台のドローン20(移動カメラ30)を備えるものとする。 The image generation system 10a may include a plurality of drones 20 (moving cameras 30), but in the present embodiment, the image generation system 10a includes one drone 20 (moving camera 30). do.
[1-3.画像生成装置のハードウエア構成]
 次に、図3を用いて、画像生成装置40aのハードウエア構成を説明する。図3は、第1の実施形態の画像生成装置のハードウエア構成の一例を示すハードウエアブロック図である。
[1-3. Image generator hardware configuration]
Next, the hardware configuration of the image generation device 40a will be described with reference to FIG. FIG. 3 is a hardware block diagram showing an example of the hardware configuration of the image generator of the first embodiment.
 画像生成装置40aは、CPU(Central Processing Unit)41と、ROM(Read Only Memory)42と、RAM(Random Access Memory)43と、記憶部44と、カメラコントローラ45と、通信コントローラ46と、入出力コントローラ47とが、内部バス48で接続された構成を有する。 The image generation device 40a includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a storage unit 44, a camera controller 45, a communication controller 46, and input / output. The controller 47 has a configuration in which it is connected by an internal bus 48.
 CPU41は、記憶部44に格納されている制御プログラムP1と、ROM42に格納されている各種データファイルとをRAM43上に展開して実行することによって、画像生成装置40aの全体の動作を制御する。即ち、画像生成装置40aは、制御プログラムP1によって動作する一般的なコンピュータの構成を有する。なお、制御プログラムP1は、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供されてもよい。また、画像生成装置40aは、一連の処理をハードウエアによって実行してもよい。なお、CPU41が実行する制御プログラムP1は、本開示で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。 The CPU 41 controls the overall operation of the image generation device 40a by expanding and executing the control program P1 stored in the storage unit 44 and various data files stored in the ROM 42 on the RAM 43. That is, the image generation device 40a has a general computer configuration operated by the control program P1. The control program P1 may be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. Further, the image generation device 40a may execute a series of processes by hardware. The control program P1 executed by the CPU 41 may be a program in which processing is performed in chronological order according to the order described in the present disclosure, or at necessary timings such as in parallel or when calls are made. It may be a program that is processed by.
 記憶部44は、例えばフラッシュメモリにより構成されて、制御プログラムP1と、カメラパラメータファイルC1と、カメラ画像ファイルKと、3Dモデル格納ファイルMとを記憶する。 The storage unit 44 is configured by, for example, a flash memory, and stores the control program P1, the camera parameter file C1, the camera image file K, and the 3D model storage file M.
 制御プログラムP1は、CPU41が実行するプログラムである。 The control program P1 is a program executed by the CPU 41.
 カメラパラメータファイルC1は、固定カメラ14の内部パラメータおよび外部パラメータを格納したファイルである。 The camera parameter file C1 is a file that stores the internal parameters and external parameters of the fixed camera 14.
 カメラ画像ファイルKは、固定カメラ14と移動カメラ30が撮像した画像を、一時的に格納したファイルである。 The camera image file K is a file that temporarily stores the images captured by the fixed camera 14 and the moving camera 30.
 3Dモデル格納ファイルMは、画像生成装置40aが生成した被写体18の3Dモデル18Mを格納したファイルである。 The 3D model storage file M is a file that stores the 3D model 18M of the subject 18 generated by the image generation device 40a.
 カメラコントローラ45は、固定カメラ14と接続されて、CPU41からの指令に基づいて、固定カメラ14の撮像動作を制御する。また、カメラコントローラ45は、固定カメラ14が撮像した画像を、カメラ画像ファイルKに一時的に格納する。 The camera controller 45 is connected to the fixed camera 14 and controls the imaging operation of the fixed camera 14 based on a command from the CPU 41. Further, the camera controller 45 temporarily stores the image captured by the fixed camera 14 in the camera image file K.
 通信コントローラ46は、CPU41からの指令に基づいてドローン20と無線通信を行い、ドローン20に対して、移動目標位置と方向の指示を行う。また、通信コントローラ46は、ドローン20から、移動カメラ30が撮像した画像を取得する。 The communication controller 46 wirelessly communicates with the drone 20 based on a command from the CPU 41, and instructs the drone 20 of the movement target position and direction. Further, the communication controller 46 acquires an image captured by the mobile camera 30 from the drone 20.
 入出力コントローラ47は、ディスプレイ50と接続されて、画像生成装置40aが出力する各種情報をディスプレイ50に表示する。また、入出力コントローラ47は、タッチパネル51とキーボード52と接続されて、画像生成装置40aに対する各種操作指示を受け付ける。 The input / output controller 47 is connected to the display 50 and displays various information output by the image generation device 40a on the display 50. Further, the input / output controller 47 is connected to the touch panel 51 and the keyboard 52, and receives various operation instructions for the image generation device 40a.
[1-4.ドローンのハードウエア構成]
 次に、図4を用いて、ドローン20のハードウエア構成を説明する。図4は、ドローンのハードウエア構成の一例を示すハードウエアブロック図である。
[1-4. Drone hardware configuration]
Next, the hardware configuration of the drone 20 will be described with reference to FIG. FIG. 4 is a hardware block diagram showing an example of the hardware configuration of the drone.
 ドローン20は、CPU21と、ROM22と、RAM23と、記憶部24と、カメラコントローラ25と、カメラ制御用モータドライバ26と、プロペラ制御用モータドライバ27と、GPS(Global Positioning System)レシーバ28と、通信コントローラ29とが、内部バス37で接続された構成を有する。 The drone 20 communicates with the CPU 21, the ROM 22, the RAM 23, the storage unit 24, the camera controller 25, the camera control motor driver 26, the propeller control motor driver 27, and the GPS (Global Positioning System) receiver 28. The controller 29 has a configuration in which it is connected by an internal bus 37.
 CPU21は、記憶部24に格納されている制御プログラムP2と、ROM22に格納されている各種データファイルとをRAM23上に展開して実行することによって、ドローン20の全体の動作を制御する。即ち、ドローン20は、制御プログラムP2によって動作する一般的なコンピュータの構成を有する。 The CPU 21 controls the overall operation of the drone 20 by expanding and executing the control program P2 stored in the storage unit 24 and various data files stored in the ROM 22 on the RAM 23. That is, the drone 20 has a general computer configuration operated by the control program P2.
 記憶部24は、例えばフラッシュメモリにより構成されて、制御プログラムP2と、カメラパラメータファイルC2とを記憶する。 The storage unit 24 is configured by, for example, a flash memory, and stores the control program P2 and the camera parameter file C2.
 制御プログラムP2は、CPU21が実行するプログラムである。 The control program P2 is a program executed by the CPU 21.
 カメラパラメータファイルC2は、移動カメラ30の内部パラメータおよび外部パラメータを格納したファイルである。なお、カメラパラメータファイルC2は、画像生成装置40aの記憶部44が記憶してもよい。 The camera parameter file C2 is a file that stores the internal parameters and external parameters of the moving camera 30. The camera parameter file C2 may be stored in the storage unit 44 of the image generation device 40a.
 カメラコントローラ25は、移動カメラ30と接続されて、CPU21からの指令に基づいて、移動カメラ30の撮像動作を制御する。また、カメラコントローラ25は、CPU21からの指令に基づいて、移動カメラ30が撮像した画像を、通信コントローラ29を介して、画像生成装置40aに送信する。 The camera controller 25 is connected to the mobile camera 30 and controls the imaging operation of the mobile camera 30 based on a command from the CPU 21. Further, the camera controller 25 transmits the image captured by the mobile camera 30 to the image generation device 40a via the communication controller 29 based on the command from the CPU 21.
 カメラ制御用モータドライバ26は、CPU21からの指令に基づいて、パン制御モータ31とチルト制御モータ32とロール制御モータ33とを、それぞれ指定された量だけ動作させる。パン制御モータ31とチルト制御モータ32とロール制御モータ33とは、それぞれ、移動カメラ30の方向をパン方向、チルト方向、ロール方向に移動させる。なお、カメラ制御用モータドライバ26は、更に、移動カメラ30の画角を変更する、非図示のズーム制御モータを備えてもよい。 The camera control motor driver 26 operates the pan control motor 31, the tilt control motor 32, and the roll control motor 33 by a specified amount, respectively, based on a command from the CPU 21. The pan control motor 31, the tilt control motor 32, and the roll control motor 33 move the directions of the moving camera 30 in the pan direction, the tilt direction, and the roll direction, respectively. The camera control motor driver 26 may further include a zoom control motor (not shown) that changes the angle of view of the moving camera 30.
 プロペラ制御用モータドライバ27は、CPU21からの指令に基づいて、プロペラ駆動モータ34の回転制御を行う。プロペラ駆動モータ34の回転はプロペラ35に伝達されて、ドローン20の移動状態を制御する。 The propeller control motor driver 27 controls the rotation of the propeller drive motor 34 based on a command from the CPU 21. The rotation of the propeller drive motor 34 is transmitted to the propeller 35 to control the moving state of the drone 20.
 GPSレシーバ28は、GPSアンテナ36が受信したGPS衛星からの電波に基づいて、ドローン20の現在位置を特定する。なお、測位が可能であれば、GPSレシーバ28以外の手段を用いてもよい。例えば、複数のWi-Fi(登録商標)ルータからの信号強度に基づいて自己位置を測定するWi‐Fi測位(Wi-Fiは登録商標)等を用いてもよい。 The GPS receiver 28 identifies the current position of the drone 20 based on the radio waves from the GPS satellites received by the GPS antenna 36. If positioning is possible, a means other than the GPS receiver 28 may be used. For example, Wi-Fi positioning (Wi-Fi is a registered trademark) that measures its own position based on signal strength from a plurality of Wi-Fi (registered trademark) routers may be used.
 通信コントローラ29は、CPU21からの指令に基づいて、CPU21からの指令に基づいて、画像生成装置40aと無線通信を行って、移動カメラ30が撮像した画像を画像生成装置40aに送信する。また、通信コントローラ29は、画像生成装置40aから、移動カメラ30およびドローン20に対する操作指示を受け取る。 The communication controller 29 wirelessly communicates with the image generation device 40a based on the command from the CPU 21 based on the command from the CPU 21, and transmits the image captured by the mobile camera 30 to the image generation device 40a. Further, the communication controller 29 receives an operation instruction for the mobile camera 30 and the drone 20 from the image generation device 40a.
[1-5.第1の実施形態の画像生成装置の機能構成]
 次に、図5を用いて、第1の実施形態の画像生成装置40aの機能構成を説明する。図5は、第1の実施形態の画像生成装置の機能構成の一例を示す機能ブロック図である。
[1-5. Functional configuration of the image generator of the first embodiment]
Next, the functional configuration of the image generation device 40a of the first embodiment will be described with reference to FIG. FIG. 5 is a functional block diagram showing an example of the functional configuration of the image generator of the first embodiment.
 画像生成装置40aのCPU41は、制御プログラムP1をRAM43に展開して実行することにより、図5に示すカメラ画像入力部60と、カメラ画像入力部61と、カメラ画像保存部62と、キャリブレーション処理部63と、3D形状抽出部64と、移動カメラ位置設定部65aと、3D形状計算部66と、カメラワーク指定部67と、移動指令部68と、位置計測部69とを機能部として実現する。 The CPU 41 of the image generation device 40a expands the control program P1 into the RAM 43 and executes it to perform calibration processing on the camera image input unit 60, the camera image input unit 61, the camera image storage unit 62, and the camera image storage unit 62 shown in FIG. The unit 63, the 3D shape extraction unit 64, the moving camera position setting unit 65a, the 3D shape calculation unit 66, the camera work designation unit 67, the movement command unit 68, and the position measurement unit 69 are realized as functional units. ..
 カメラ画像入力部60は、固定カメラ14が撮像した被写体18の画像を取得する。なお、カメラ画像入力部60は、本開示における第1の画像取得部の一例である。 The camera image input unit 60 acquires an image of the subject 18 captured by the fixed camera 14. The camera image input unit 60 is an example of the first image acquisition unit in the present disclosure.
 カメラ画像入力部61は、固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラ30が撮像した被写体18の画像を取得する。なお、カメラ画像入力部61は、本開示における第2の画像取得部の一例である。 The camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 installed in the vicinity of the fixed camera and having a variable installation position and installation direction. The camera image input unit 61 is an example of the second image acquisition unit in the present disclosure.
 カメラ画像保存部62は、カメラ画像入力部60が取得した画像と、カメラ画像入力部61が取得した画像とを、カメラ画像ファイルKに一時保存する。 The camera image storage unit 62 temporarily stores the image acquired by the camera image input unit 60 and the image acquired by the camera image input unit 61 in the camera image file K.
 キャリブレーション処理部63は、固定カメラ14と移動カメラ30の光学パラメータに係る内部パラメータと、複数の固定カメラ14の相対位置関係、および固定カメラ14と移動カメラ30との相対位置関係に係る外部パラメータを算出する。そして、キャリブレーション処理部63は、固定カメラ14および移動カメラ30が撮像した画像の歪み補正を行う。なお、内部パラメータは、光学ズーム等で焦点距離を変更しない場合は、事前に取得しておくことが可能である。また、固定カメラ同士の外部パラメータも、事前に取得しておくことが可能である。一方、これらのパラメータを事前に取得できない場合には、キャリブレーション処理部63は、撮像した画像の中の特徴点を用いて、リアルタイムで内部パラメータおよび外部パラメータを算出する。更に、固定カメラ14と移動カメラ30との相対位置関係に係る外部パラメータは、位置計測部69が計測した移動カメラ30の位置と方向とを用いて取得可能である。事前に取得した固定カメラ14の内部パラメータと外部パラメータは、カメラパラメータファイルC1に格納される。また、移動カメラ30の内部パラメータと外部パラメータは、カメラパラメータファイルC2に格納される。なお、キャリブレーション処理部63が行う画像の歪み補正は、公知の画像処理手法に従って行われる。 The calibration processing unit 63 includes internal parameters related to the optical parameters of the fixed camera 14 and the moving camera 30, relative positional relationships of the plurality of fixed cameras 14, and external parameters related to the relative positional relationship between the fixed camera 14 and the moving camera 30. Is calculated. Then, the calibration processing unit 63 corrects the distortion of the images captured by the fixed camera 14 and the moving camera 30. The internal parameters can be acquired in advance when the focal length is not changed by optical zoom or the like. It is also possible to acquire external parameters between fixed cameras in advance. On the other hand, when these parameters cannot be acquired in advance, the calibration processing unit 63 calculates the internal parameters and the external parameters in real time using the feature points in the captured image. Further, the external parameters related to the relative positional relationship between the fixed camera 14 and the moving camera 30 can be acquired by using the position and direction of the moving camera 30 measured by the position measuring unit 69. The internal parameters and external parameters of the fixed camera 14 acquired in advance are stored in the camera parameter file C1. Further, the internal parameters and external parameters of the moving camera 30 are stored in the camera parameter file C2. The image distortion correction performed by the calibration processing unit 63 is performed according to a known image processing method.
 3D形状抽出部64は、複数の固定カメラ14がそれぞれ撮像した被写体18の複数の画像に基づいて、被写体18の概略3D形状を抽出する。なお、3D形状抽出部64は、具体的にはVisual Hullの手法を用いて、被写体18の概略3D形状を抽出する。 The 3D shape extraction unit 64 extracts a rough 3D shape of the subject 18 based on a plurality of images of the subject 18 captured by the plurality of fixed cameras 14, respectively. The 3D shape extraction unit 64 specifically extracts the approximate 3D shape of the subject 18 by using the Visual Hull method.
 移動カメラ位置設定部65aは、カメラ画像入力部60が取得した被写体18の画像と、カメラ画像入力部61が取得した被写体18の画像とに基づいて得られる被写体18の3D形状が、所定の精度を有するように、移動カメラ30の設置位置および設置方向を設定する。より具体的には、移動カメラ位置設定部65aは、カメラ画像入力部60が取得した被写体18の画像に基づく被写体18の3D情報と、固定カメラ14の設置位置および設置方向とに基づいて、移動カメラ30の設置位置と設置方向とを設定する。なお、移動カメラ位置設定部65aは、本開示における設定部の一例である。 In the moving camera position setting unit 65a, the 3D shape of the subject 18 obtained based on the image of the subject 18 acquired by the camera image input unit 60 and the image of the subject 18 acquired by the camera image input unit 61 has a predetermined accuracy. The installation position and installation direction of the moving camera 30 are set so as to have. More specifically, the moving camera position setting unit 65a moves based on the 3D information of the subject 18 based on the image of the subject 18 acquired by the camera image input unit 60 and the installation position and installation direction of the fixed camera 14. The installation position and installation direction of the camera 30 are set. The moving camera position setting unit 65a is an example of the setting unit in the present disclosure.
 3D形状計算部66は、カメラ画像入力部60が取得した被写体18の画像と、移動カメラ位置設定部65aが設定した設置位置および設置方向に設置した移動カメラ30が撮像してカメラ画像入力部61が取得した被写体18の画像とに基づいて、被写体18の3D形状を取得する。なお、3D形状計算部66は、本開示における3D形状取得部の一例である。 The 3D shape calculation unit 66 is captured by the image of the subject 18 acquired by the camera image input unit 60 and the moving camera 30 installed at the installation position and the installation direction set by the moving camera position setting unit 65a, and the camera image input unit 61. Acquires the 3D shape of the subject 18 based on the image of the subject 18 acquired by. The 3D shape calculation unit 66 is an example of the 3D shape acquisition unit in the present disclosure.
 カメラワーク指定部67は、被写体18を観測する仮想視点の軌跡を表すカメラワークを指定する。なお、カメラワーク指定部67は、本開示における指定部の一例である。 The camera work designation unit 67 designates the camera work that represents the trajectory of the virtual viewpoint for observing the subject 18. The camera work designation unit 67 is an example of the designation unit in the present disclosure.
 移動指令部68は、ドローン20を移動させることによって、移動カメラ30を指定された位置と指定された方向とに移動させる。なお、移動指令部68は、本開示における指令部の一例である。 The movement command unit 68 moves the moving camera 30 to a designated position and a designated direction by moving the drone 20. The movement command unit 68 is an example of the command unit in the present disclosure.
 位置計測部69は、移動カメラ30の位置と方向とを計測する。なお、位置計測部69は、本開示における計測部の一例である。 The position measurement unit 69 measures the position and direction of the moving camera 30. The position measuring unit 69 is an example of the measuring unit in the present disclosure.
[1-6.移動カメラの設置位置決定方法の説明]
 次に、図6,図7を用いて、移動カメラ30の設置位置の決定方法を説明する。図6は、固定カメラと移動カメラのステレオペアによって3D形状を取得する処理の概要を説明する図である。図7は、移動カメラの設置位置の設定方法について説明する図である。
[1-6. Explanation of how to determine the installation position of the mobile camera]
Next, a method of determining the installation position of the moving camera 30 will be described with reference to FIGS. 6 and 7. FIG. 6 is a diagram illustrating an outline of a process of acquiring a 3D shape by a stereo pair of a fixed camera and a moving camera. FIG. 7 is a diagram illustrating a method of setting the installation position of the mobile camera.
 図6に示すように、複数の固定カメラ14(14a,14b,…)が撮像した画像に基づいて、被写体18の3D形状130が抽出されたとする。なお、3D形状130は、3D形状抽出部64(図5参照)において、例えばVisual Hullを用いて抽出される。Visual Hullとは、固定カメラ14が撮像した被写体18の像(シルエット)を抽出して、相対関係が既知の複数の固定カメラ14で撮像した画像から抽出されたシルエットの交差領域を求めることによって、被写体18の3D形状を抽出する手法である。この手法によると、テクスチャの乏しい領域であっても、3D形状を抽出することができる。但し、原理的に、物体の凹みを抽出することができないため、Visual Hullを単独で用いるのではなく、別の測距手段と併用するのが望ましい。本実施形態では、Visual Hullとステレオマッチングとを併用する。 As shown in FIG. 6, it is assumed that the 3D shape 130 of the subject 18 is extracted based on the images captured by the plurality of fixed cameras 14 (14a, 14b, ...). The 3D shape 130 is extracted by the 3D shape extraction unit 64 (see FIG. 5) using, for example, Visual Hull. Visual Hull is to extract the image (silhouette) of the subject 18 captured by the fixed camera 14 and obtain the intersection region of the silhouette extracted from the images captured by a plurality of fixed cameras 14 whose relative relationships are known. This is a method for extracting the 3D shape of the subject 18. According to this method, a 3D shape can be extracted even in a region having a poor texture. However, in principle, it is not possible to extract the dent of the object, so it is desirable to use Visual Hull in combination with another distance measuring means instead of using it alone. In this embodiment, Visual Hull and stereo matching are used together.
 ステレオマッチングとは、近接して配置された複数のカメラで同じ被写体18を撮像して、被写体18の同じ点が、各カメラで撮像された画像のどの位置に写っているかを分析する(ステレオマッチングによる対応点の探索を行う)ことによって、画像間の位置ずれ(視差)を算出する手法である。視差は、カメラから被写体18までの距離に応じた値になる。即ち、視差が大きいほどカメラから被写体18までの距離が短い。そして、視差が小さいほどカメラから被写体18までの距離が遠い。したがって、同様の分析を画像に写った被写体18の像の複数の点について行うことにより、カメラから被写体18までの距離、即ち被写体18の3D形状を求めることができる。このようなステレオマッチングによると、被写体18の表面に、特徴となるテクスチャが存在していれば、被写体18の表面に凹みがあっても、3D形状を算出することができる。 In stereo matching, the same subject 18 is imaged by a plurality of cameras arranged close to each other, and the position of the same point of the subject 18 in the images captured by each camera is analyzed (stereo matching). This is a method of calculating the positional deviation (parallax) between images by (searching for corresponding points by). The parallax is a value corresponding to the distance from the camera to the subject 18. That is, the larger the parallax, the shorter the distance from the camera to the subject 18. The smaller the parallax, the farther the distance from the camera to the subject 18. Therefore, by performing the same analysis on a plurality of points of the image of the subject 18 captured in the image, the distance from the camera to the subject 18, that is, the 3D shape of the subject 18 can be obtained. According to such stereo matching, if a characteristic texture exists on the surface of the subject 18, the 3D shape can be calculated even if the surface of the subject 18 has a dent.
 ステレオマッチングによって、高い測距精度を得るためには、複数のカメラ間の距離(基線長)を適切に設定するとともに、各カメラの光軸の平行性を維持することが重要である。 In order to obtain high distance measurement accuracy by stereo matching, it is important to appropriately set the distance (baseline length) between multiple cameras and maintain the parallelism of the optical axes of each camera.
 基線長を長く取ると、測定される距離の分解能が上がるが、基線長を長くし過ぎると、各カメラで撮像される被写体18の像の変形が大きくなって、ステレオマッチングがとりにくくなる。あるいは、ステレオマッチングがとれる領域が狭くなる。また、基線長を長くし過ぎると、一方のカメラで対応点が消失する、いわゆるオクル―ジョンが発生して、ステレオマッチングがとれなくなる。例えば、図6の左図における固定カメラ14aと固定カメラ14bとをペアにしてステレオマッチングを行うと、一方の固定カメラ14aのみしか観測できない領域が存在するため、被写体18の3D形状を広範囲に亘って取得することができない。 If the baseline length is long, the resolution of the measured distance will increase, but if the baseline length is too long, the deformation of the image of the subject 18 captured by each camera will increase, making stereo matching difficult. Alternatively, the area where stereo matching can be obtained becomes narrower. In addition, if the baseline length is made too long, the corresponding points disappear in one camera, so-called occlusion occurs, and stereo matching cannot be obtained. For example, when the fixed camera 14a and the fixed camera 14b in the left figure of FIG. 6 are paired and stereo matching is performed, since there is an area where only one fixed camera 14a can be observed, the 3D shape of the subject 18 is covered over a wide range. Cannot be obtained.
 そのため、ステレオマッチングを行うためには、被写体18の奥行全体に亘って所定の測距精度を確保できる、最も短い基線長を設定して、なおかつ、各カメラの光軸が平行になるように設置するのが望ましい。例えば、図6の右図における固定カメラ14aと移動カメラ30とをペアにしてステレオマッチングを行うのが望ましい。 Therefore, in order to perform stereo matching, the shortest baseline length that can secure a predetermined distance measurement accuracy over the entire depth of the subject 18 is set, and the optical axes of the cameras are installed so as to be parallel to each other. It is desirable to do. For example, it is desirable to perform stereo matching by pairing the fixed camera 14a and the moving camera 30 in the right figure of FIG.
 このように、本実施形態の画像生成システム10aは、固定カメラ14と移動カメラ30とを組み合わせて、ステレオマッチングを行うカメラペアを生成する。なお、図6の右図において、固定カメラ14aと移動カメラ30との距離である基線長Wは、Visual Hullで計測された、被写体18の3D形状130上における、固定カメラ14aから最遠点の位置において、ステレオマッチングで得られる測距精度が、予め決められた測距精度の閾値以上になる、最短の長さに決定される。 As described above, the image generation system 10a of the present embodiment combines the fixed camera 14 and the moving camera 30 to generate a camera pair for stereo matching. In the right figure of FIG. 6, the baseline length W, which is the distance between the fixed camera 14a and the moving camera 30, is the farthest point from the fixed camera 14a on the 3D shape 130 of the subject 18 measured by Visual Hull. At the position, the distance measurement accuracy obtained by stereo matching is determined to be the shortest length that is equal to or greater than a predetermined distance measurement accuracy threshold value.
 また、固定カメラ14aの光軸A1と、移動カメラ30の光軸A2とは平行に設定されるのが望ましい。これは、ステレオマッチングを行う際に、視差の算出を容易にするためである。さらに、固定カメラ14(14a,14b,…)の画角と移動カメラ30の画角とは、略等しく設定するのが望ましい。各固定カメラ14の画角が異なる場合には、移動カメラ30は、ステレオペアを形成する固定カメラ14の画角に応じて、自身の画角を、固定カメラ14の画角と略等しくなるように調整する。例えば、図4に非図示の、前記したズーム制御モータによって、移動カメラ30のレンズの画角を調整すればよい。 Further, it is desirable that the optical axis A1 of the fixed camera 14a and the optical axis A2 of the moving camera 30 are set in parallel. This is to facilitate the calculation of parallax when performing stereo matching. Further, it is desirable that the angle of view of the fixed camera 14 (14a, 14b, ...) And the angle of view of the moving camera 30 are set to be substantially equal. When the angle of view of each fixed camera 14 is different, the moving camera 30 makes its own angle of view substantially equal to the angle of view of the fixed camera 14 according to the angle of view of the fixed cameras 14 forming a stereo pair. Adjust to. For example, the angle of view of the lens of the moving camera 30 may be adjusted by the zoom control motor (not shown in FIG. 4).
 なお、本実施形態の画像生成システム10aにおいて、移動カメラ30はドローン20に搭載されており、ドローン20は、GPSレシーバ28による測位機能を備えている。したがって、画像生成システム10aは、移動カメラ30を、画像生成装置40aが指示した位置と方向に、高精度で設置可能である。 In the image generation system 10a of the present embodiment, the mobile camera 30 is mounted on the drone 20, and the drone 20 has a positioning function by the GPS receiver 28. Therefore, the image generation system 10a can install the mobile camera 30 at the position and direction instructed by the image generation device 40a with high accuracy.
 また、各々の固定カメラ14の内部パラメータと外部パラメータ(設置位置と設置方向)は、予め測定されて、カメラパラメータファイルC1に格納されている。したがって、画像生成装置40aは、ドローン20の位置と方向とを制御することによって、移動カメラ30を、任意の固定カメラ14に対して、光軸が平行かつ基線長Wを有する状態に、高精度で設置することができるものとする。 Further, the internal parameters and external parameters (installation position and installation direction) of each fixed camera 14 are measured in advance and stored in the camera parameter file C1. Therefore, the image generation device 40a controls the position and direction of the drone 20 so that the moving camera 30 is in a state where the optical axis is parallel to the arbitrary fixed camera 14 and the baseline length W is high. It shall be possible to install at.
 そして、画像生成装置40aの移動カメラ位置設定部65aは、各々の固定カメラ14に対して、移動カメラ30を最も接近させた状態から、固定カメラ14aの光軸A1と、移動カメラ30の光軸A2との平行性を保ったまま、基線長Wを所定値ずつ増加させて、その都度、固定カメラ14から被写体18の3D形状130の最大奥行の位置(最遠点)における距離の計測精度を算出する。即ち、移動カメラ位置設定部65aは、移動カメラ30を、固定カメラ14から遠ざかる方向に移動させながら、移動カメラ30の設置位置と設置方向とを設定する。そして、移動カメラ位置設定部65aは、距離の計測精度が、最初に、予め設定した閾値以上になった位置を、移動カメラ30の設置位置に設定する。なお、距離の計測精度pは、固定カメラ14から被写体18の3D形状130の最大奥行の位置までの距離Dと、固定カメラ14と移動カメラ30における当該最遠点の視差εと応じた値になる。そして、移動カメラ位置設定部65aは、例えば、ε/Dの値が予め設定した閾値以上になったときに、固定カメラ14と移動カメラ30とのステレオマッチングによって、被写体18の全体が所定値以上の精度で測距できると判定する。 Then, the moving camera position setting unit 65a of the image generation device 40a moves the optical axis A1 of the fixed camera 14a and the optical axis of the moving camera 30 from the state in which the moving camera 30 is closest to each fixed camera 14. While maintaining parallelism with A2, the baseline length W is increased by a predetermined value, and the measurement accuracy of the distance from the fixed camera 14 to the subject 18 at the maximum depth position (farthest point) of the 3D shape 130 of the subject 18 is measured each time. calculate. That is, the moving camera position setting unit 65a sets the installation position and the installation direction of the moving camera 30 while moving the moving camera 30 in the direction away from the fixed camera 14. Then, the moving camera position setting unit 65a first sets a position where the distance measurement accuracy is equal to or higher than a preset threshold value at the installation position of the moving camera 30. The distance measurement accuracy p is a value corresponding to the distance D from the fixed camera 14 to the maximum depth position of the 3D shape 130 of the subject 18 and the parallax ε of the farthest point between the fixed camera 14 and the moving camera 30. Become. Then, in the moving camera position setting unit 65a, for example, when the value of ε / D becomes equal to or higher than a preset threshold value, the entire subject 18 is equal to or higher than the predetermined value by stereo matching between the fixed camera 14 and the moving camera 30. It is judged that the distance can be measured with the accuracy of.
 また、移動カメラ位置設定部65aは、移動カメラ30を移動させて基線長Wを変更する際に、移動カメラ30を移動させる方向を、被写体18に応じて設定する。 Further, the moving camera position setting unit 65a sets the direction in which the moving camera 30 is moved according to the subject 18 when the moving camera 30 is moved to change the baseline length W.
 例えば、図7の左図に示すように、被写体18が上下方向(Z軸方向)に沿う模様(テクスチャ)を有する場合、この上下に伸びる模様は、ステレオマッチングにおいて対応点探索を行う際に重要な特徴となる。そして、ステレオマッチングを行う2台のカメラ(固定カメラ14と移動カメラ30)は、模様の方向と直交する方向、即ち、図7のY軸方向に離間して配置するのが望ましい。 For example, as shown in the left figure of FIG. 7, when the subject 18 has a pattern (texture) along the vertical direction (Z-axis direction), the pattern extending vertically is important when searching for a corresponding point in stereo matching. It becomes a feature. It is desirable that the two cameras (fixed camera 14 and moving camera 30) that perform stereo matching are arranged apart from each other in a direction orthogonal to the direction of the pattern, that is, in the Y-axis direction of FIG.
 一方、図7の右図に示すように、被写体18が水平方向(Y軸方向)に沿う模様(テクスチャ)を有する場合、この水平に伸びる模様は、ステレオマッチングにおいて対応点探索を行う際に重要な特徴となる。そして、ステレオマッチングを行う2台のカメラ(固定カメラ14と移動カメラ30)は、模様の方向と直交する方向、即ち、図7のZ軸方向に離間して配置するのが望ましい。 On the other hand, as shown in the right figure of FIG. 7, when the subject 18 has a pattern (texture) along the horizontal direction (Y-axis direction), this horizontally extending pattern is important when searching for a corresponding point in stereo matching. It becomes a feature. Then, it is desirable that the two cameras (fixed camera 14 and moving camera 30) that perform stereo matching are arranged apart from each other in a direction orthogonal to the direction of the pattern, that is, in the Z-axis direction of FIG.
[1-7.第1の実施形態の画像生成装置が行う処理の流れ]
 次に、図8を用いて、画像生成装置40aが行う処理の流れを説明する。図8は、第1の実施形態の画像生成装置が行う処理の流れの一例を示すフローチャートである。
[1-7. Flow of processing performed by the image generator of the first embodiment]
Next, the flow of processing performed by the image generator 40a will be described with reference to FIG. FIG. 8 is a flowchart showing an example of the flow of processing performed by the image generator of the first embodiment.
 カメラ画像入力部60は、固定カメラ14(14a,14b,…)が同時刻に撮像した被写体18の画像を取得する(ステップS10)。なお、図8には記載しないが、取得された画像は、カメラ画像保存部62の作用でカメラ画像ファイルKに一時保存される。また、キャリブレーション処理部63は、カメラパラメータファイルC1を参照して、固定カメラ14から取得した画像の歪み補正を行う。 The camera image input unit 60 acquires an image of the subject 18 captured by the fixed cameras 14 (14a, 14b, ...) At the same time (step S10). Although not shown in FIG. 8, the acquired image is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C1 and corrects the distortion of the image acquired from the fixed camera 14.
 3D形状抽出部64は、例えばVisual Hullの手法で、被写体18のおおよその3D形状130を抽出する(ステップS11)。 The 3D shape extraction unit 64 extracts an approximate 3D shape 130 of the subject 18 by, for example, a Visual Hull method (step S11).
 移動カメラ位置設定部65aは、隣接する固定カメラ14同士でステレオペアを生成する(ステップS12)。なお、ステップS12において、固定カメラ14同士でステレオペアを生成するのは、隣接する固定カメラ14同士で生成されたステレオペアによって、被写体18の3D形状を取得可能であれば、当該固定カメラ14と移動カメラ30とをステレオペアにする必要がないためである。 The moving camera position setting unit 65a generates a stereo pair between adjacent fixed cameras 14 (step S12). In step S12, the fixed cameras 14 generate a stereo pair with the fixed camera 14 if the 3D shape of the subject 18 can be acquired by the stereo pair generated between the adjacent fixed cameras 14. This is because it is not necessary to make a stereo pair with the moving camera 30.
 移動カメラ位置設定部65aは、ステップS12で生成したステレオペアの、被写体18の3D形状130の最大奥行位置における測距精度(基線長Wと焦点距離と画像の解像度とから算出される)が、事前に設定した精度を満たすかを判定する(ステップS13)。事前に設定した精度を満たすと判定される(ステップS13:Yes)とステップS15に進む。一方、事前に設定した精度を満たすと判定されない(ステップS13:No)とステップS14に進む。 The moving camera position setting unit 65a determines the distance measurement accuracy (calculated from the baseline length W, the focal length, and the image resolution) of the stereo pair generated in step S12 at the maximum depth position of the 3D shape 130 of the subject 18. It is determined whether the accuracy set in advance is satisfied (step S13). When it is determined that the accuracy set in advance is satisfied (step S13: Yes), the process proceeds to step S15. On the other hand, if it is not determined that the accuracy set in advance is satisfied (step S13: No), the process proceeds to step S14.
 移動カメラ位置設定部65aは、移動カメラ30の設置位置と方向を設定する(ステップS14)。なお、ステップS14で行われる詳細な処理の流れは、後述する(図9参照)。 The moving camera position setting unit 65a sets the installation position and direction of the moving camera 30 (step S14). The detailed flow of processing performed in step S14 will be described later (see FIG. 9).
 3D形状計算部66は、例えば、Visual Hullとステレオマッチングの手法で、被写体18の3D形状130を抽出する(ステップS15)。 The 3D shape calculation unit 66 extracts the 3D shape 130 of the subject 18 by, for example, a method of visual Hull and stereo matching (step S15).
 移動カメラ位置設定部65aは、全ての固定カメラ14に対して、ステップS12以降の処理を行ったかを判定する(ステップS16)。全ての固定カメラ14に対して、ステップS12以降の処理を行ったと判定される(ステップS16:Yes)と、画像生成装置40aは図8の処理を終了する。一方、ステップS12以降の処理を行ったと判定されない(ステップS16:No)と、ステップS12に戻る。 The moving camera position setting unit 65a determines whether or not the processing after step S12 has been performed on all the fixed cameras 14 (step S16). When it is determined that the processes after step S12 have been performed on all the fixed cameras 14 (step S16: Yes), the image generation device 40a ends the process of FIG. On the other hand, if it is not determined that the processing after step S12 has been performed (step S16: No), the process returns to step S12.
 なお、図8は、全ての固定カメラ14に対して、移動カメラ30とのステレオカメラペアを形成して、被写体18の3Dモデルを生成するものとしたが、被写体18の観測方向を予め指定できる場合には、3D形状を生成するために使用する固定カメラ14を制限してもよい。即ち、カメラワーク指定部67が、被写体18の観測方向を指定した場合には、当該観測方向に近い固定カメラ14のみを選択して、移動カメラ30とのステレオカメラペアを形成すればよい。 In FIG. 8, a stereo camera pair with the moving camera 30 is formed for all the fixed cameras 14 to generate a 3D model of the subject 18, but the observation direction of the subject 18 can be specified in advance. In some cases, the fixed camera 14 used to generate the 3D shape may be limited. That is, when the camera work designation unit 67 specifies the observation direction of the subject 18, only the fixed camera 14 close to the observation direction may be selected to form a stereo camera pair with the moving camera 30.
 例えば、カメラワーク指定部67が、被写体18を観測する際の仮想視点の移動軌跡を指定した場合には、移動カメラ位置設定部65aは、指定された移動軌跡の近傍に位置する固定カメラ14の設置位置と設置方向とに基づいて、当該固定カメラ14と移動カメラ30とがステレオペアを形成するように、移動カメラ30の設置位置と設置方向とを設定する。そして、当該ステレオペアによって、被写体18の3D形状を取得する。 For example, when the camera work designation unit 67 specifies the movement locus of the virtual viewpoint when observing the subject 18, the moving camera position setting unit 65a is the fixed camera 14 located in the vicinity of the designated movement locus. Based on the installation position and the installation direction, the installation position and the installation direction of the mobile camera 30 are set so that the fixed camera 14 and the mobile camera 30 form a stereo pair. Then, the 3D shape of the subject 18 is acquired by the stereo pair.
 次に、図9を用いて、移動カメラ位置設定部65aがステップS14で行う処理の流れを説明する。図9は、第1の実施形態の画像生成装置が行う移動カメラの設置位置と方向算出処理の流れの一例を示すフローチャートである。 Next, with reference to FIG. 9, the flow of processing performed by the moving camera position setting unit 65a in step S14 will be described. FIG. 9 is a flowchart showing an example of the flow of the installation position and direction calculation process of the mobile camera performed by the image generation device of the first embodiment.
 移動カメラ位置設定部65aは、固定カメラ14に対して、所定の相対位置に移動カメラ30を設置する(ステップS20)。 The moving camera position setting unit 65a installs the moving camera 30 at a predetermined relative position with respect to the fixed camera 14 (step S20).
 移動カメラ位置設定部65aは、移動カメラ30の光軸A2の方向を、固定カメラ14の光軸A1と平行に設定する(ステップS21)。 The moving camera position setting unit 65a sets the direction of the optical axis A2 of the moving camera 30 in parallel with the optical axis A1 of the fixed camera 14 (step S21).
 カメラ画像入力部61は、移動カメラ30が撮像した被写体18の画像を取得する(ステップS22)。なお、図9には記載しないが、移動カメラ30から取得された画像は、カメラ画像保存部62の作用でカメラ画像ファイルKに一時保存される。また、キャリブレーション処理部63は、カメラパラメータファイルC2を参照して、移動カメラ30から取得した画像の歪み補正を行う。 The camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 (step S22). Although not shown in FIG. 9, the image acquired from the moving camera 30 is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C2 and corrects the distortion of the image acquired from the moving camera 30.
 移動カメラ位置設定部65aは、被写体18の最大奥行の位置に対して、所定の距離精度が得られるかを判定する(ステップS23)。所定の距離精度が得られると判定される(ステップS23:Yes)と、図8のステップS15に戻る。一方、所定の距離精度が得られると判定されない(ステップS23:No)と、ステップS24に進む。 The moving camera position setting unit 65a determines whether a predetermined distance accuracy can be obtained with respect to the position of the maximum depth of the subject 18 (step S23). When it is determined that the predetermined distance accuracy can be obtained (step S23: Yes), the process returns to step S15 in FIG. On the other hand, if it is not determined that the predetermined distance accuracy can be obtained (step S23: No), the process proceeds to step S24.
 ステップS23においてNoと判定されると、移動カメラ位置設定部65aは、移動カメラ30を所定の範囲内で移動したかを判定する(ステップS24)。移動カメラ30を所定の範囲内で移動したと判定される(ステップS24:Yes)と、図8のステップS15に戻る。一方、移動カメラ30を所定の範囲内で移動したと判定されない(ステップS24:No)と、ステップS25に進む。 If No is determined in step S23, the moving camera position setting unit 65a determines whether the moving camera 30 has been moved within a predetermined range (step S24). When it is determined that the moving camera 30 has been moved within a predetermined range (step S24: Yes), the process returns to step S15 in FIG. On the other hand, if it is not determined that the moving camera 30 has moved within a predetermined range (step S24: No), the process proceeds to step S25.
 ステップS24においてNoと判定されると、移動カメラ位置設定部65aは、移動カメラ30を、固定カメラ14から遠ざかる方向に所定量移動させる(ステップS25)。その後、ステップS21に戻って、前記した処理を繰り返す。 If No is determined in step S24, the moving camera position setting unit 65a moves the moving camera 30 in a direction away from the fixed camera 14 by a predetermined amount (step S25). After that, the process returns to step S21 and the above-described processing is repeated.
[1-8.第1の実施形態の効果]
 以上説明したように、第1の実施形態の画像生成装置40a(情報処理装置)によると、カメラ画像入力部60(第1の画像取得部)が、被写体18の周囲に、当該被写体18の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラ14が撮像した被写体18の画像を取得して、カメラ画像入力部61(第2の画像取得部)が、固定カメラ14の近傍に設置された、設置位置および設置方向が可変な移動カメラ30が撮像した被写体18の画像を取得する。そして、移動カメラ位置設定部65a(設定部)が、カメラ画像入力部60が取得した被写体18の画像と、カメラ画像入力部61が取得した被写体18の画像とに基づいて得られる被写体18の3D形状が、所定の精度を有するように、移動カメラ30の設置位置および設置方向を設定する。そして、3D形状計算部66(3D形状取得部)が、カメラ画像入力部60が取得した被写体18の画像と、移動カメラ位置設定部65aが設定した設置位置および設置方向に設置した移動カメラ30が撮像してカメラ画像入力部61が取得した被写体18の画像とに基づいて、被写体18の3D形状を取得する。
[1-8. Effect of the first embodiment]
As described above, according to the image generation device 40a (information processing device) of the first embodiment, the camera image input unit 60 (first image acquisition unit) is placed around the subject 18 in the direction of the subject 18. The fixed camera 14 (second image acquisition unit) acquires an image of the subject 18 captured by a plurality of fixed cameras 14 having a fixed installation position and installation direction. The image of the subject 18 captured by the moving camera 30 installed in the vicinity of the above and whose installation position and direction are variable is acquired. Then, the moving camera position setting unit 65a (setting unit) obtains a 3D image of the subject 18 based on the image of the subject 18 acquired by the camera image input unit 60 and the image of the subject 18 acquired by the camera image input unit 61. The installation position and installation direction of the moving camera 30 are set so that the shape has a predetermined accuracy. Then, the 3D shape calculation unit 66 (3D shape acquisition unit) has the image of the subject 18 acquired by the camera image input unit 60, and the moving camera 30 installed in the installation position and installation direction set by the moving camera position setting unit 65a. The 3D shape of the subject 18 is acquired based on the image of the subject 18 acquired by the camera image input unit 61 after taking an image.
 これにより、被写体18によらずに、少ないカメラ台数で、品質の高い被写体18のモデリングを行うことができる。 This makes it possible to model a high-quality subject 18 with a small number of cameras regardless of the subject 18.
 また、第1の実施形態の画像生成装置40a(情報処理装置)によると、移動カメラ位置設定部65a(設定部)は、カメラ画像入力部60(第1の画像取得部)が取得した被写体18の画像に基づく被写体18の3D情報と、固定カメラ14の設置位置および設置方向とに基づいて、移動カメラ30の設置位置と設置方向とを設定する。 Further, according to the image generation device 40a (information processing device) of the first embodiment, the moving camera position setting unit 65a (setting unit) is the subject 18 acquired by the camera image input unit 60 (first image acquisition unit). The installation position and installation direction of the moving camera 30 are set based on the 3D information of the subject 18 based on the image of the above and the installation position and installation direction of the fixed camera 14.
 これにより、複数の固定カメラ14によって得られる被写体18の概略3D形状に基づいて、移動カメラ30の設置位置と設置方向とを設定することができるため、移動カメラ30の設置位置と設置方向との設定を容易に行うことができる。 As a result, the installation position and the installation direction of the mobile camera 30 can be set based on the approximate 3D shape of the subject 18 obtained by the plurality of fixed cameras 14, so that the installation position and the installation direction of the mobile camera 30 can be set. The setting can be done easily.
 また、第1の実施形態の画像生成装置40a(情報処理装置)によると、移動カメラ位置設定部65a(設定部)は、固定カメラ14の光軸A1と移動カメラ30の光軸A2とが平行である状態で、固定カメラ14と移動カメラ30との間隔(基線長W)を、固定カメラ14から見た被写体18の最大奥行の位置における距離精度が所定の値よりも高くなるように設定する。 Further, according to the image generation device 40a (information processing device) of the first embodiment, in the moving camera position setting unit 65a (setting unit), the optical axis A1 of the fixed camera 14 and the optical axis A2 of the moving camera 30 are parallel to each other. In this state, the distance (base line length W) between the fixed camera 14 and the moving camera 30 is set so that the distance accuracy at the maximum depth position of the subject 18 as seen from the fixed camera 14 is higher than a predetermined value. ..
 これにより、簡易な手順で、被写体18の3D形状をモデリングするための移動カメラ30の設置位置と設置方向とを設定することができる。 This makes it possible to set the installation position and installation direction of the moving camera 30 for modeling the 3D shape of the subject 18 with a simple procedure.
 また、第1の実施形態の画像生成装置40a(情報処理装置)によると、移動カメラ位置設定部65a(設定部)は、移動カメラ30の設置位置と設置方向とを設定する際に、固定カメラ14に対して、被写体18の表面状態に応じた方向に、固定カメラ14から遠ざかる方向に移動カメラ30を移動させながら、移動カメラ30の設置位置と設置方向とを設定する。 Further, according to the image generation device 40a (information processing device) of the first embodiment, the mobile camera position setting unit 65a (setting unit) is a fixed camera when setting the installation position and installation direction of the mobile camera 30. The installation position and installation direction of the moving camera 30 are set while moving the moving camera 30 in a direction away from the fixed camera 14 in a direction corresponding to the surface state of the subject 18.
 これにより、移動カメラの設置位置と設置方向とを効率的に設定することができる。 This makes it possible to efficiently set the installation position and installation direction of the mobile camera.
 また、第1の実施形態の画像生成装置40a(情報処理装置)によると、カメラワーク指定部67(指定部)が、被写体18を観測する仮想視点の軌跡を表すカメラワークを指定して、移動カメラ位置設定部65a(設定部)は、カメラワーク指定部67が指定したカメラワークの近傍の固定カメラ14の設置位置と設置方向とに基づいて、移動カメラ30の設置位置と設置方向とを設定する。 Further, according to the image generation device 40a (information processing device) of the first embodiment, the camera work designation unit 67 (designation unit) designates the camera work representing the trajectory of the virtual viewpoint for observing the subject 18 and moves. The camera position setting unit 65a (setting unit) sets the installation position and installation direction of the moving camera 30 based on the installation position and installation direction of the fixed camera 14 in the vicinity of the camera work designated by the camera work designation unit 67. do.
 これにより、指定されたカメラワークの近傍の固定カメラ14に対してのみ、移動カメラ30とのステレオペアを生成して、被写体18の3D形状を取得すればよいため、被写体18のモデリングに必要な処理量を低減することができる。 As a result, it is sufficient to generate a stereo pair with the moving camera 30 and acquire the 3D shape of the subject 18 only for the fixed camera 14 in the vicinity of the designated camera work, which is necessary for modeling the subject 18. The amount of processing can be reduced.
 また、第1の実施形態の画像生成装置40a(情報処理装置)によると、移動カメラ30は、移動指令部68(指令部)によって指定された位置と指定された方向とに移動する。また、位置計測部69は、移動カメラ30の位置と方向とを計測する。 Further, according to the image generation device 40a (information processing device) of the first embodiment, the moving camera 30 moves to the position designated by the movement command unit 68 (command unit) and the designated direction. Further, the position measuring unit 69 measures the position and direction of the moving camera 30.
 これにより、移動カメラ30の設置位置と設置方向とを設定する際に、位置計測部69が計測した移動カメラ30の自己位置を、移動指令部68にフィードバックするため、移動カメラ30の設置位置と設置方向とを高精度で設定することができる。 As a result, when setting the installation position and the installation direction of the mobile camera 30, the self-position of the mobile camera 30 measured by the position measurement unit 69 is fed back to the movement command unit 68, so that the installation position of the mobile camera 30 and the installation position of the mobile camera 30 are set. The installation direction can be set with high accuracy.
 また、第1の実施形態の画像生成システム10a(情報処理システム)によると、ドローン20(移動制御装置)は、固定カメラ14による被写体18の画像と、移動カメラ30による被写体18の画像とに基づいて得られる被写体18の3D形状が、所定の精度を有するように、移動カメラ30の設置位置および設置方向を移動させる。 Further, according to the image generation system 10a (information processing system) of the first embodiment, the drone 20 (movement control device) is based on the image of the subject 18 by the fixed camera 14 and the image of the subject 18 by the moving camera 30. The installation position and installation direction of the moving camera 30 are moved so that the 3D shape of the subject 18 thus obtained has a predetermined accuracy.
 これにより、被写体18によらずに、少ないカメラ台数で、品質の高い被写体18のモデリングを行うことができる。 This makes it possible to model a high-quality subject 18 with a small number of cameras regardless of the subject 18.
(2.第2の実施形態)
[2-1.第2の実施形態の画像生成装置の機能構成]
 第2の実施形態の画像生成システム10bは、任意のレンダリング視点(仮想視点)から見た被写体18のレンダリングを行って、ボリュメトリック映像を再生するシステムである。画像生成システム10bは、画像生成装置40bとドローン20とを備える。ドローン20は、移動カメラ30を備える。そして、カメラ制御用モータドライバ26(図4参照)は、第1の実施形態の構成に加えて、更に、移動カメラ30の画角を変更する、非図示のズーム制御モータを備える。なお、画像生成システム10bは、本開示における情報処理システムの一例であり、画像生成装置40bは、本開示における情報処理装置の一例である。また、画像生成システム10bは、被写体18のモデリングを行って3Dモデルを生成する機能、即ち、第1の実施形態で説明した画像生成システム10aの機能を併せ持つ。
(2. Second embodiment)
[2-1. Functional configuration of the image generator of the second embodiment]
The image generation system 10b of the second embodiment is a system that renders the subject 18 viewed from an arbitrary rendering viewpoint (virtual viewpoint) and reproduces a volumetric image. The image generation system 10b includes an image generation device 40b and a drone 20. The drone 20 includes a mobile camera 30. The camera control motor driver 26 (see FIG. 4) further includes a zoom control motor (not shown) that changes the angle of view of the moving camera 30 in addition to the configuration of the first embodiment. The image generation system 10b is an example of the information processing system in the present disclosure, and the image generation device 40b is an example of the information processing device in the present disclosure. Further, the image generation system 10b also has a function of modeling the subject 18 to generate a 3D model, that is, a function of the image generation system 10a described in the first embodiment.
 まず、図10を用いて、画像生成装置40bの機能構成を説明する。図10は、第2の実施形態の画像生成装置の機能構成の一例を示す機能ブロック図である。 First, the functional configuration of the image generation device 40b will be described with reference to FIG. FIG. 10 is a functional block diagram showing an example of the functional configuration of the image generator of the second embodiment.
 画像生成装置40bは、第1の実施形態で説明した画像生成装置40aに対して、移動カメラ位置設定部65aの代わりに移動カメラ位置設定部65bを備える。また、画像生成装置40bは、画像生成装置40aに対して、テクスチャマッピング部70を付加した機能構成を有する。その他の機能構成は、画像生成装置40aと同じであるため、上記した部位以外の説明は省略する。また、以降の説明において、画像生成装置40aと同じ機能部位は、同じ符号を用いて説明する。 The image generation device 40b includes a moving camera position setting unit 65b instead of the moving camera position setting unit 65a with respect to the image generation device 40a described in the first embodiment. Further, the image generation device 40b has a functional configuration in which the texture mapping unit 70 is added to the image generation device 40a. Since the other functional configurations are the same as those of the image generator 40a, the description other than the above-mentioned parts will be omitted. Further, in the following description, the same functional parts as those of the image generation device 40a will be described using the same reference numerals.
 移動カメラ位置設定部65bは、被写体18の着目領域を検出する。着目領域とは、被写体18を観測するユーザが着目すると考えられる領域である。例えば、被写体18が人物である場合、着目領域は、顔面領域等である。また、移動カメラ位置設定部65bは、移動カメラ30の設置位置を、着目領域に応じた領域内に設定する。着目領域に応じた領域とは、例えば、着目領域における被写体18の法線方向Nと正対する位置、即ち、被写体18の着目領域をより高精細に観測できる領域である。そして、移動カメラ位置設定部65bは、被写体18の法線方向Nと正対する位置に、レンダリング視点(仮想視点)を設定する。このように、画像生成装置40bは、設定された仮想視点の位置に移動カメラ30を設置することによって、被写体18の着目領域の高精細なテクスチャ情報を取得する。なお、このとき、移動カメラ位置設定部65bは、移動カメラ30の画角を制御することによって、移動カメラ30に観測される被写体18のマッピング面Eが、移動カメラ30の画角一杯に写るように、前記したズーム制御モータによって、移動カメラ30の画角を調整する。これは、マッピング面Eをなるべく拡大して撮像することによって、できるだけ高精細なテクスチャ情報を取得するためである。 The moving camera position setting unit 65b detects the region of interest of the subject 18. The region of interest is an region that is considered to be of interest to the user observing the subject 18. For example, when the subject 18 is a person, the region of interest is a facial region or the like. Further, the moving camera position setting unit 65b sets the installation position of the moving camera 30 within the area corresponding to the area of interest. The region corresponding to the region of interest is, for example, a position in the region of interest facing the normal direction N of the subject 18, that is, an region in which the region of interest of the subject 18 can be observed with higher definition. Then, the moving camera position setting unit 65b sets the rendering viewpoint (virtual viewpoint) at a position facing the normal direction N of the subject 18. In this way, the image generation device 40b acquires high-definition texture information of the region of interest of the subject 18 by installing the moving camera 30 at the position of the set virtual viewpoint. At this time, the moving camera position setting unit 65b controls the angle of view of the moving camera 30 so that the mapping surface E of the subject 18 observed by the moving camera 30 is captured at the full angle of view of the moving camera 30. In addition, the angle of view of the moving camera 30 is adjusted by the zoom control motor described above. This is to acquire as high-definition texture information as possible by enlarging the mapping surface E as much as possible and taking an image.
 テクスチャマッピング部70は、第1の実施形態で説明した手順によって3D形状計算部66が計算した被写体18の3D形状に、移動カメラ30が取得したテクスチャ情報をマッピングする。なお、テクスチャマッピング部70は、本開示における描画部の一例である。 The texture mapping unit 70 maps the texture information acquired by the moving camera 30 to the 3D shape of the subject 18 calculated by the 3D shape calculation unit 66 according to the procedure described in the first embodiment. The texture mapping unit 70 is an example of the drawing unit in the present disclosure.
[2-2.移動カメラの設置位置決定方法の説明]
 次に、図11を用いて、第2の実施形態において、画像生成装置40bが、移動カメラ30の設置位置を決定する方法を説明する。図11は、移動カメラによって高精細なテクスチャ情報を取得する方法を説明する図である。
[2-2. Explanation of how to determine the installation position of the mobile camera]
Next, with reference to FIG. 11, a method in which the image generation device 40b determines the installation position of the mobile camera 30 in the second embodiment will be described. FIG. 11 is a diagram illustrating a method of acquiring high-definition texture information by a moving camera.
 図11の左図に示すように、複数の固定カメラ14(14a,14b,…)が撮像した画像に基づいて、被写体18の3D形状130が抽出されたとする。そして、任意のレンダリング視点Q(仮想視点)から被写体18を観測したボリュメトリック映像を生成する場合を想定する。この場合、固定カメラ14は、被写体18のレンダリング視点Qに面するマッピング面Eの高精細なテクスチャ情報を取得する必要がある。 As shown in the left figure of FIG. 11, it is assumed that the 3D shape 130 of the subject 18 is extracted based on the images captured by the plurality of fixed cameras 14 (14a, 14b, ...). Then, it is assumed that a volumetric image in which the subject 18 is observed from an arbitrary rendering viewpoint Q (virtual viewpoint) is generated. In this case, the fixed camera 14 needs to acquire high-definition texture information of the mapping surface E facing the rendering viewpoint Q of the subject 18.
 したがって、レンダリング視点Qの位置と固定カメラ14の設置位置とが近接していている場合には、固定カメラ14が撮像した画像を取得すればよい。 Therefore, when the position of the rendering viewpoint Q and the installation position of the fixed camera 14 are close to each other, the image captured by the fixed camera 14 may be acquired.
 しかしながら、図11の左図の状態にあっては、レンダリング視点Qに近接する固定カメラ14は存在しないため、画像生成装置40bは、レンダリング視点Qと近接した位置に移動カメラ30を設置して、被写体18のマッピング面Eのテクスチャ情報を取得する。 However, in the state shown on the left of FIG. 11, since the fixed camera 14 near the rendering viewpoint Q does not exist, the image generation device 40b installs the moving camera 30 at a position close to the rendering viewpoint Q. The texture information of the mapping surface E of the subject 18 is acquired.
 このとき、画像生成装置40bは、図11の右図に示すように、移動カメラ30の光軸A2の方向が、被写体18のマッピング面Eの法線方向Nと正対するように、移動カメラ30の設置位置および設置方向を設定する。なお、マッピング面Eは一般には平面でなく、曲面である場合もあるため、画像生成装置40bは、移動カメラ30の撮像範囲に面する領域の平均的な法線方向を法線方向Nとして算出する。また、移動カメラ30の光軸A2の方向が、被写体18のマッピング面Eの法線方向Nと正対するかは、例えば、レンダリング視点Qと被写体18のマッピング面Eとを結ぶ線分と、移動カメラ30とマッピング面Eとを結ぶ線分とのなす角度が所定の閾値以下であるかによって判定すればよい。なお、固定カメラ14がレンダリング視点Qの近傍に設置されている場合には、レンダリング視点Qと被写体18のマッピング面Eとを結ぶ線分と、固定カメラ14とマッピング面Eとを結ぶ線分とのなす角度が所定の閾値以下であるかに基づいて、固定カメラ14の光軸がマッピング面Eの法線方向Nと正対しているかを判定して、固定カメラ14で取得した画像を用いて、被写体18のテクスチャ情報を取得すればよい。 At this time, in the image generation device 40b, as shown in the right figure of FIG. 11, the moving camera 30 so that the direction of the optical axis A2 of the moving camera 30 faces the normal direction N of the mapping surface E of the subject 18. Set the installation position and installation direction of. Since the mapping surface E is generally not a flat surface but a curved surface, the image generation device 40b calculates the average normal direction of the region facing the imaging range of the moving camera 30 as the normal direction N. do. Whether the direction of the optical axis A2 of the moving camera 30 faces the normal direction N of the mapping surface E of the subject 18 depends on, for example, the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the movement. It may be determined whether the angle formed by the line segment connecting the camera 30 and the mapping surface E is equal to or less than a predetermined threshold value. When the fixed camera 14 is installed near the rendering viewpoint Q, a line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and a line segment connecting the fixed camera 14 and the mapping surface E Based on whether the angle formed by the fixed camera 14 is equal to or less than a predetermined threshold value, it is determined whether the optical axis of the fixed camera 14 faces the normal direction N of the mapping surface E, and the image acquired by the fixed camera 14 is used. , The texture information of the subject 18 may be acquired.
[2-3.第2の実施形態の画像生成装置が行う処理の流れ]
 次に、図12を用いて、画像生成装置40bが行う処理の流れを説明する。図12は、第2の実施形態の画像生成装置が行う処理の流れの一例を示すフローチャートである。
[2-3. Flow of processing performed by the image generator of the second embodiment]
Next, the flow of processing performed by the image generator 40b will be described with reference to FIG. FIG. 12 is a flowchart showing an example of the flow of processing performed by the image generator of the second embodiment.
 カメラ画像入力部60は、固定カメラ14(14a,14b,…)が同時刻に撮像した被写体18の画像を取得する(ステップS30)。なお、図12には記載しないが、取得された画像は、カメラ画像保存部62の作用でカメラ画像ファイルKに一時保存される。また、キャリブレーション処理部63は、カメラパラメータファイルC1を参照して、固定カメラ14から取得した画像の歪み補正を行う。 The camera image input unit 60 acquires an image of the subject 18 captured by the fixed cameras 14 (14a, 14b, ...) At the same time (step S30). Although not shown in FIG. 12, the acquired image is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C1 and corrects the distortion of the image acquired from the fixed camera 14.
 3D形状抽出部64は、例えばVisual Hullの手法で、被写体18のおおよその3D形状130を抽出する(ステップS31)。 The 3D shape extraction unit 64 extracts an approximate 3D shape 130 of the subject 18 by, for example, a Visual Hull method (step S31).
 移動カメラ位置設定部65bは、レンダリング視点Qを設定する(ステップS32)。 The moving camera position setting unit 65b sets the rendering viewpoint Q (step S32).
 移動カメラ位置設定部65bは、レンダリング視点Qと被写体18のマッピング面Eとを結ぶ線分と、固定カメラ14とマッピング面Eとを結ぶ線分のなす角度が閾値以下であるかを判定する(ステップS33)。条件を満足すると判定される(ステップS33:Yes)とステップS35に進む。一方、条件を満たすと判定されない(ステップS33:No)とステップS34に進む。 The moving camera position setting unit 65b determines whether the angle formed by the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the line segment connecting the fixed camera 14 and the mapping surface E is equal to or less than the threshold value ( Step S33). When it is determined that the condition is satisfied (step S33: Yes), the process proceeds to step S35. On the other hand, if it is not determined that the condition is satisfied (step S33: No), the process proceeds to step S34.
 移動カメラ位置設定部65bは、移動カメラ30の設置位置と方向を設定する(ステップS34)。なお、ステップS34で行われる詳細な処理の流れは、後述する(図13参照)。 The moving camera position setting unit 65b sets the installation position and direction of the moving camera 30 (step S34). The detailed flow of processing performed in step S34 will be described later (see FIG. 13).
 3D形状計算部66は、例えば、Visual Hullとステレオマッチングの手法で、被写体18の3D形状130を抽出する(ステップS35)。 The 3D shape calculation unit 66 extracts the 3D shape 130 of the subject 18 by, for example, a method of visual Hull and stereo matching (step S35).
 テクスチャマッピング部70は、被写体18のマッピング面Eにテクスチャを描画するレンダリング処理を行う(ステップS36)。 The texture mapping unit 70 performs a rendering process for drawing a texture on the mapping surface E of the subject 18 (step S36).
 移動カメラ位置設定部65bは、全てのレンダリング視点Qを処理したかを判定する(ステップS37)。全てのレンダリング視点Qを処理したと判定される(ステップS37:Yes)と、画像生成装置40bは図12の処理を終了する。一方、全てのレンダリング視点Qを処理したと判定されない(ステップS37:No)と、ステップS32に戻る。 The moving camera position setting unit 65b determines whether all the rendering viewpoints Q have been processed (step S37). When it is determined that all the rendering viewpoints Q have been processed (step S37: Yes), the image generation device 40b ends the processing of FIG. On the other hand, if it is not determined that all the rendering viewpoints Q have been processed (step S37: No), the process returns to step S32.
 次に、図13を用いて、移動カメラ位置設定部65bがステップS34で行う処理の流れを説明する。図13は、第2の実施形態の画像生成装置が行う移動カメラの設置位置と方向と画角算出処理の流れの一例を示すフローチャートである。 Next, with reference to FIG. 13, the flow of processing performed by the moving camera position setting unit 65b in step S34 will be described. FIG. 13 is a flowchart showing an example of the flow of the moving camera installation position and direction and the angle of view calculation process performed by the image generation device of the second embodiment.
 移動カメラ位置設定部65bは、レンダリング視点Qから見た被写体18のマッピング面Eの法線方向Nを算出する(ステップS40)。 The moving camera position setting unit 65b calculates the normal direction N of the mapping surface E of the subject 18 as seen from the rendering viewpoint Q (step S40).
 移動カメラ位置設定部65bは、マッピング面Eの法線方向Nの方向から見た被写体18のサイズを算出する(ステップS41)。 The moving camera position setting unit 65b calculates the size of the subject 18 as seen from the direction N of the normal direction of the mapping surface E (step S41).
 移動カメラ位置設定部65bは、移動カメラ30の設置位置と設置方向と画角とを算出する(ステップS42)。具体的には、前記したように、レンダリング視点Qと被写体18のマッピング面Eとを結ぶ線分と、移動カメラ30とマッピング面Eとを結ぶ線分とのなす角度が所定の閾値以下になるように、移動カメラ30の設置位置と設置方向とを決定する。また、被写体18が移動カメラ30の画角一杯に写るように、移動カメラ30の画角を決定する。 The mobile camera position setting unit 65b calculates the installation position, installation direction, and angle of view of the mobile camera 30 (step S42). Specifically, as described above, the angle formed by the line segment connecting the rendering viewpoint Q and the mapping surface E of the subject 18 and the line segment connecting the moving camera 30 and the mapping surface E is equal to or less than a predetermined threshold value. As described above, the installation position and the installation direction of the moving camera 30 are determined. Further, the angle of view of the moving camera 30 is determined so that the subject 18 is captured at the full angle of view of the moving camera 30.
 移動カメラ位置設定部65bは、ステップS42で算出した位置と方向に、ステップS42で算出した画角に調整した移動カメラ30を設置する(ステップS43)。 The moving camera position setting unit 65b installs the moving camera 30 adjusted to the angle of view calculated in step S42 at the position and direction calculated in step S42 (step S43).
 カメラ画像入力部61は、移動カメラ30が撮像した被写体18の画像を取得する(ステップS22)。なお、図13には記載しないが、移動カメラ30から取得された画像は、カメラ画像保存部62の作用でカメラ画像ファイルKに一時保存される。また、キャリブレーション処理部63は、カメラパラメータファイルC2を参照して、移動カメラ30から取得した画像の歪み補正を行う。その後、図12のステップS35に戻る。 The camera image input unit 61 acquires an image of the subject 18 captured by the moving camera 30 (step S22). Although not shown in FIG. 13, the image acquired from the moving camera 30 is temporarily stored in the camera image file K by the action of the camera image storage unit 62. Further, the calibration processing unit 63 refers to the camera parameter file C2 and corrects the distortion of the image acquired from the moving camera 30. After that, the process returns to step S35 of FIG.
[2-4.第2の実施形態の効果]
 以上説明したように、第2の実施形態の画像生成装置40b(情報処理装置)によると、移動カメラ位置設定部65b(設定部)は、移動カメラ30の設定位置と設定方向と画角とを、被写体18の注目領域の法線方向Nと正対して、当該被写体18が、移動カメラ30が撮像した画像全体に写るように設定して、カメラ画像入力部61(第2の画像取得部)が、移動カメラ位置設定部65bが設定した設置位置および設置方向に設置した移動カメラ30が撮像した被写体18のテクスチャ情報を取得する。そして、テクスチャマッピング部70(描画部)が、3D形状計算部66(3D形状取得部)が取得した被写体18の3D形状に、当該被写体18のテクスチャ情報をマッピングする。
[2-4. Effect of the second embodiment]
As described above, according to the image generation device 40b (information processing device) of the second embodiment, the moving camera position setting unit 65b (setting unit) sets the set position, setting direction, and angle of view of the moving camera 30. The camera image input unit 61 (second image acquisition unit) is set so that the subject 18 is captured in the entire image captured by the moving camera 30 facing the normal direction N of the region of interest of the subject 18. However, the texture information of the subject 18 captured by the moving camera 30 installed in the installation position and the installation direction set by the moving camera position setting unit 65b is acquired. Then, the texture mapping unit 70 (drawing unit) maps the texture information of the subject 18 to the 3D shape of the subject 18 acquired by the 3D shape calculation unit 66 (3D shape acquisition unit).
 したがって、被写体18の着目領域が高精細にレンダリングされたボリュメトリック映像を生成することができる。 Therefore, it is possible to generate a volumetric image in which the region of interest of the subject 18 is rendered with high definition.
 また、第2の実施形態の画像生成装置40b(情報処理装置)によると、移動カメラ位置設定部65bは、更に、被写体18の着目領域を検出して、移動カメラ30の設置位置を、着目領域に応じた領域内に設定する。 Further, according to the image generation device 40b (information processing device) of the second embodiment, the mobile camera position setting unit 65b further detects the region of interest of the subject 18 and sets the installation position of the mobile camera 30 as the region of interest. Set in the area according to.
 したがって、移動カメラ30を、着目領域に正対する位置に設置することによって、被写体18のより高精細なテクスチャ情報を取得することができる。 Therefore, by installing the moving camera 30 at a position facing the region of interest, it is possible to acquire higher-definition texture information of the subject 18.
 また、第2の実施形態の画像生成装置40b(情報処理装置)は、着目領域として、被写体18の顔面領域を検出する。 Further, the image generation device 40b (information processing device) of the second embodiment detects the facial area of the subject 18 as the area of interest.
 したがって、被写体18が人物である場合には、当該人物の顔の高精細なテクスチャ情報を取得することができる。 Therefore, when the subject 18 is a person, high-definition texture information of the face of the person can be acquired.
 なお、本明細書に記載された効果は、あくまで例示であって限定されるものではなく、他の効果があってもよい。また、本開示の実施形態は、上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained. Moreover, the embodiment of the present disclosure is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present disclosure.
 例えば、本開示は、以下のような構成もとることができる。 For example, the present disclosure can have the following structure.
 (1)
 被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得する第1の画像取得部と、
 前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得する第2の画像取得部と、
 前記第1の画像取得部が取得した前記被写体の画像と、前記第2の画像取得部が取得した前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定する設定部と、
 前記第1の画像取得部が取得した前記被写体の画像と、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像して前記第2の画像取得部が取得した前記被写体の画像とに基づいて、前記被写体の3D形状を取得する3D形状取得部と、
 を備える情報処理装置。
 (2)
 前記設定部は、
 前記第1の画像取得部が取得した前記被写体の画像に基づく前記被写体の3D情報と、前記固定カメラの設置位置および設置方向とに基づいて、前記移動カメラの設置位置と設置方向とを設定する、
 前記(1)に記載の情報処理装置。
 (3)
 前記設定部は、
 前記固定カメラの光軸と前記移動カメラの光軸とが平行な状態で、
 前記固定カメラと前記移動カメラとの間隔を、前記固定カメラから見た前記被写体の最大奥行の位置における距離精度が所定の値よりも高くなるように設定する、
 前記(1)または(2)に記載の情報処理装置。
 (4)
 前記設定部は、
 前記移動カメラの設置位置と設置方向とを設定する際に、前記固定カメラに対して、前記被写体の表面状態に応じた方向に、前記固定カメラから遠ざかる方向に前記移動カメラを移動させながら、前記移動カメラの設置位置と設置方向とを設定する、
 前記(1)乃至(3)のいずれか一つに記載の情報処理装置。
 (5)
 前記3D形状取得部が取得した前記被写体の3D形状に、当該被写体のテクスチャ情報をマッピングする描画部を更に備えて、
 前記設定部は、前記移動カメラの設定位置と設定方向と画角とを、前記被写体の注目領域の法線方向と正対して、当該被写体が、前記移動カメラが撮像した画像全体に写るように設定して、
 前記第2の画像取得部は、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像した前記被写体の前記テクスチャ情報を取得する、
 前記(1)乃至(4)のいずれか一つに記載の情報処理装置。
 (6)
 前記被写体を観測する仮想視点の軌跡を表すカメラワークを指定する指定部を更に備えて、
 前記設定部は、前記指定部が指定した前記カメラワークの近傍の前記固定カメラの設置位置と設置方向とに基づいて、前記移動カメラの設置位置と設置方向とを設定する、
 前記(1)乃至(5)のいずれか一つに記載の情報処理装置。
 (7)
 前記設定部は、更に、被写体の着目領域を検出して、
 前記移動カメラの設置位置を、前記着目領域に応じた領域内に設定する、
 前記(1)乃至(6)のいずれか一つに記載の情報処理装置。
 (8)
 前記特徴領域は、前記被写体の顔面領域である、
 前記(7)に記載の情報処理装置。
 (9)
 前記移動カメラは、
 前記移動カメラを、指定された位置と指定された方向とに移動させる指令部と、
 当該移動カメラの位置と方向とを計測する計測部と、を更に備える、
 前記(1)乃至(8)のいずれか一つに記載の情報処理装置。
 (10)
 被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラと、
 設置位置および設置方向が可変な移動カメラと、
 前記固定カメラによる前記被写体の画像と、前記移動カメラによる前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を移動させる移動制御装置と、
 を備える情報処理システム。
 (11)
 被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得して、
 前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得して、
 前記固定カメラによる前記被写体の画像と、前記移動カメラによる前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定して、
 前記固定カメラによる前記被写体の画像と、設定された設置位置および設置方向に設置した前記移動カメラによる前記被写体の画像とに基づいて、前記被写体の3D形状を取得する、
 情報処理方法。
 (12)
 コンピュータを、
 被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得する第1の画像取得部と、
 前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得する第2の画像取得部と、
 前記第1の画像取得部が取得した前記被写体の画像と、前記第2の画像取得部が取得した前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定する設定部と、
 前記第1の画像取得部が取得した前記被写体の画像と、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像して前記第2の画像取得部が取得した前記被写体の画像とに基づいて、前記被写体の3D形状を取得する3D形状取得部と、
 して機能させるプログラム。
(1)
A first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
A second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
The 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy. , A setting unit that sets the installation position and installation direction of the mobile camera,
The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit. A 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and
Information processing device equipped with.
(2)
The setting unit
The installation position and installation direction of the moving camera are set based on the 3D information of the subject based on the image of the subject acquired by the first image acquisition unit and the installation position and installation direction of the fixed camera. ,
The information processing device according to (1) above.
(3)
The setting unit
With the optical axis of the fixed camera and the optical axis of the moving camera parallel to each other,
The distance between the fixed camera and the moving camera is set so that the distance accuracy at the position of the maximum depth of the subject as seen from the fixed camera is higher than a predetermined value.
The information processing device according to (1) or (2) above.
(4)
The setting unit
When setting the installation position and the installation direction of the moving camera, the moving camera is moved with respect to the fixed camera in a direction corresponding to the surface state of the subject and in a direction away from the fixed camera. Set the installation position and direction of the mobile camera,
The information processing device according to any one of (1) to (3) above.
(5)
A drawing unit that maps the texture information of the subject to the 3D shape of the subject acquired by the 3D shape acquisition unit is further provided.
The setting unit faces the set position, setting direction, and angle of view of the moving camera with the normal direction of the region of interest of the subject so that the subject is captured in the entire image captured by the moving camera. Set,
The second image acquisition unit acquires the texture information of the subject captured by the moving camera installed at the installation position and the installation direction set by the setting unit.
The information processing device according to any one of (1) to (4).
(6)
Further provided with a designation unit for designating camera work representing the trajectory of the virtual viewpoint for observing the subject.
The setting unit sets the installation position and the installation direction of the moving camera based on the installation position and the installation direction of the fixed camera in the vicinity of the camera work designated by the designated unit.
The information processing device according to any one of (1) to (5) above.
(7)
The setting unit further detects the region of interest of the subject, and then
The installation position of the mobile camera is set within the area corresponding to the area of interest.
The information processing device according to any one of (1) to (6) above.
(8)
The feature area is a facial area of the subject.
The information processing device according to (7) above.
(9)
The mobile camera
A command unit for moving the moving camera to a designated position and a designated direction,
Further provided with a measuring unit for measuring the position and direction of the moving camera.
The information processing device according to any one of (1) to (8).
(10)
A plurality of fixed cameras with fixed installation positions and directions installed around the subject with the subject facing the direction of the subject.
A mobile camera with variable installation position and direction,
The installation position and installation direction of the moving camera are moved so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. Movement control device to make
Information processing system equipped with.
(11)
An image of the subject taken by a plurality of fixed cameras whose installation position and installation direction are fixed and installed with the direction of the subject facing around the subject is acquired.
An image of the subject captured by a moving camera whose installation position and direction are variable, which is installed in the vicinity of the fixed camera, is acquired.
The installation position and installation direction of the moving camera are set so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. do it,
The 3D shape of the subject is acquired based on the image of the subject by the fixed camera and the image of the subject by the moving camera installed in the set installation position and installation direction.
Information processing method.
(12)
Computer,
A first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
A second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
The 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy. , A setting unit that sets the installation position and installation direction of the mobile camera,
The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit. A 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and
A program that works.
 10a,10b…画像生成システム(情報処理システム)、14,14a,14b,14c…固定カメラ、18…被写体、20…ドローン(移動制御装置)、30…移動カメラ、40a,40b…画像生成装置(情報処理装置)、60…カメラ画像入力部(第1の画像取得部)、61…カメラ画像入力部(第2の画像取得部)、62…カメラ画像保存部、63…キャリブレーション処理部、64…3D形状抽出部、65a,65b…移動カメラ位置設定部(設定部)、66…3D形状計算部(3D形状取得部)、67…カメラワーク指定部(指定部)、68…移動指令部(指令部)、69…位置計測部(計測部)、A1,A2…光軸、E…マッピング面、N…法線方向、Q…レンダリング視点(仮想視点) 10a, 10b ... Image generation system (information processing system), 14, 14a, 14b, 14c ... Fixed camera, 18 ... Subject, 20 ... Drone (movement control device), 30 ... Mobile camera, 40a, 40b ... Image generation device ( Information processing device), 60 ... Camera image input unit (first image acquisition unit), 61 ... Camera image input unit (second image acquisition unit), 62 ... Camera image storage unit, 63 ... Calibration processing unit, 64 ... 3D shape extraction unit, 65a, 65b ... Moving camera position setting unit (setting unit), 66 ... 3D shape calculation unit (3D shape acquisition unit), 67 ... Camera work designation unit (designation unit), 68 ... Movement command unit ( Command unit), 69 ... Position measurement unit (measurement unit), A1, A2 ... Optical axis, E ... Mapping surface, N ... Normal direction, Q ... Rendering viewpoint (virtual viewpoint)

Claims (12)

  1.  被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得する第1の画像取得部と、
     前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得する第2の画像取得部と、
     前記第1の画像取得部が取得した前記被写体の画像と、前記第2の画像取得部が取得した前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定する設定部と、
     前記第1の画像取得部が取得した前記被写体の画像と、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像して前記第2の画像取得部が取得した前記被写体の画像とに基づいて、前記被写体の3D形状を取得する3D形状取得部と、
     を備える情報処理装置。
    A first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
    A second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
    The 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy. , A setting unit that sets the installation position and installation direction of the mobile camera,
    The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit. A 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and
    Information processing device equipped with.
  2.  前記設定部は、
     前記第1の画像取得部が取得した前記被写体の画像に基づく前記被写体の3D情報と、前記固定カメラの設置位置および設置方向とに基づいて、前記移動カメラの設置位置と設置方向とを設定する、
     請求項1に記載の情報処理装置。
    The setting unit
    The installation position and installation direction of the moving camera are set based on the 3D information of the subject based on the image of the subject acquired by the first image acquisition unit and the installation position and installation direction of the fixed camera. ,
    The information processing device according to claim 1.
  3.  前記設定部は、
     前記固定カメラの光軸と前記移動カメラの光軸とが平行な状態で、
     前記固定カメラと前記移動カメラとの間隔を、前記固定カメラから見た前記被写体の最大奥行の位置における距離精度が所定の値よりも高くなるように設定する、
     請求項2に記載の情報処理装置。
    The setting unit
    With the optical axis of the fixed camera and the optical axis of the moving camera parallel to each other,
    The distance between the fixed camera and the moving camera is set so that the distance accuracy at the position of the maximum depth of the subject as seen from the fixed camera is higher than a predetermined value.
    The information processing device according to claim 2.
  4.  前記設定部は、
     前記移動カメラの設置位置と設置方向とを設定する際に、前記固定カメラに対して、前記被写体の表面状態に応じた方向に、前記固定カメラから遠ざかる方向に前記移動カメラを移動させながら、前記移動カメラの設置位置と設置方向とを設定する、
     請求項3に記載の情報処理装置。
    The setting unit
    When setting the installation position and the installation direction of the moving camera, the moving camera is moved with respect to the fixed camera in a direction corresponding to the surface state of the subject and in a direction away from the fixed camera. Set the installation position and direction of the mobile camera,
    The information processing device according to claim 3.
  5.  前記3D形状取得部が取得した前記被写体の3D形状に、当該被写体のテクスチャ情報をマッピングする描画部を更に備えて、
     前記設定部は、前記移動カメラの設定位置と設定方向と画角とを、前記被写体の注目領域の法線方向と正対して、当該被写体が、前記移動カメラが撮像した画像全体に写るように設定して、
     前記第2の画像取得部は、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像した前記被写体の前記テクスチャ情報を取得する、
     請求項1に記載の情報処理装置。
    A drawing unit that maps the texture information of the subject to the 3D shape of the subject acquired by the 3D shape acquisition unit is further provided.
    The setting unit faces the set position, setting direction, and angle of view of the moving camera with the normal direction of the region of interest of the subject so that the subject is captured in the entire image captured by the moving camera. Set,
    The second image acquisition unit acquires the texture information of the subject captured by the moving camera installed at the installation position and the installation direction set by the setting unit.
    The information processing device according to claim 1.
  6.  前記被写体を観測する仮想視点の軌跡を表すカメラワークを指定する指定部を更に備えて、
     前記設定部は、前記指定部が指定した前記カメラワークの近傍の前記固定カメラの設置位置と設置方向とに基づいて、前記移動カメラの設置位置と設置方向とを設定する、
     請求項1に記載の情報処理装置。
    Further provided with a designation unit for designating camera work representing the trajectory of the virtual viewpoint for observing the subject.
    The setting unit sets the installation position and the installation direction of the moving camera based on the installation position and the installation direction of the fixed camera in the vicinity of the camera work designated by the designated unit.
    The information processing device according to claim 1.
  7.  前記設定部は、更に、被写体の着目領域を検出して、
     前記移動カメラの設置位置を、前記着目領域に応じた領域内に設定する、
     請求項5に記載の情報処理装置。
    The setting unit further detects the region of interest of the subject, and then
    The installation position of the mobile camera is set within the area corresponding to the area of interest.
    The information processing device according to claim 5.
  8.  前記着目領域は、前記被写体の顔面領域である、
     請求項7に記載の情報処理装置。
    The region of interest is the facial region of the subject.
    The information processing device according to claim 7.
  9.  前記移動カメラを、指定された位置と指定された方向とに移動させる指令部と、
     当該移動カメラの位置と方向とを計測する計測部と、を更に備える、
     請求項1に記載の情報処理装置。
    A command unit for moving the moving camera to a designated position and a designated direction,
    Further provided with a measuring unit for measuring the position and direction of the moving camera.
    The information processing device according to claim 1.
  10.  被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラと、
     設置位置および設置方向が可変な移動カメラと、
     前記固定カメラによる前記被写体の画像と、前記移動カメラによる前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を移動させる移動制御装置と、
     を備える情報処理システム。
    A plurality of fixed cameras with fixed installation positions and directions installed around the subject with the subject facing the direction of the subject.
    A mobile camera with variable installation position and direction,
    The installation position and installation direction of the moving camera are moved so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. Movement control device to make
    Information processing system equipped with.
  11.  被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得して、
     前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得して、
     前記固定カメラによる前記被写体の画像と、前記移動カメラによる前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定して、
     前記固定カメラによる前記被写体の画像と、設定された設置位置および設置方向に設置した前記移動カメラによる前記被写体の画像とに基づいて、前記被写体の3D形状を取得する、
     情報処理方法。
    An image of the subject taken by a plurality of fixed cameras whose installation position and installation direction are fixed and installed with the direction of the subject facing around the subject is acquired.
    An image of the subject captured by a moving camera whose installation position and direction are variable, which is installed in the vicinity of the fixed camera, is acquired.
    The installation position and installation direction of the moving camera are set so that the 3D shape of the subject obtained based on the image of the subject by the fixed camera and the image of the subject by the moving camera has a predetermined accuracy. do it,
    The 3D shape of the subject is acquired based on the image of the subject by the fixed camera and the image of the subject by the moving camera installed in the set installation position and installation direction.
    Information processing method.
  12.  コンピュータを、
     被写体の周囲に、当該被写体の方向を向けて設置した、設置位置および設置方向が固定された複数の固定カメラが撮像した前記被写体の画像を取得する第1の画像取得部と、
     前記固定カメラの近傍に設置された、設置位置および設置方向が可変な移動カメラが撮像した前記被写体の画像を取得する第2の画像取得部と、
     前記第1の画像取得部が取得した前記被写体の画像と、前記第2の画像取得部が取得した前記被写体の画像とに基づいて得られる前記被写体の3D形状が、所定の精度を有するように、前記移動カメラの設置位置および設置方向を設定する設定部と、
     前記第1の画像取得部が取得した前記被写体の画像と、前記設定部が設定した設置位置および設置方向に設置した前記移動カメラが撮像して前記第2の画像取得部が取得した前記被写体の画像とに基づいて、前記被写体の3D形状を取得する3D形状取得部と、
     して機能させるプログラム。
    Computer,
    A first image acquisition unit that acquires an image of the subject captured by a plurality of fixed cameras whose installation position and installation direction are fixed and installed around the subject with the direction of the subject facing the subject.
    A second image acquisition unit that acquires an image of the subject captured by a moving camera that is installed near the fixed camera and has a variable installation position and direction.
    The 3D shape of the subject obtained based on the image of the subject acquired by the first image acquisition unit and the image of the subject acquired by the second image acquisition unit has a predetermined accuracy. , A setting unit that sets the installation position and installation direction of the mobile camera,
    The image of the subject acquired by the first image acquisition unit and the subject acquired by the second image acquisition unit captured by the moving camera installed at the installation position and installation direction set by the setting unit. A 3D shape acquisition unit that acquires the 3D shape of the subject based on the image, and
    A program that works.
PCT/JP2021/007666 2020-03-09 2021-03-01 Information processing device, information processing system, information processing method, and program WO2021182153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039508 2020-03-09
JP2020-039508 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182153A1 true WO2021182153A1 (en) 2021-09-16

Family

ID=77671793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007666 WO2021182153A1 (en) 2020-03-09 2021-03-01 Information processing device, information processing system, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2021182153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230109704A1 (en) * 2021-10-13 2023-04-13 Samsung Electro-Mechanics Co., Ltd. Multistereo camera apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209916A (en) * 2010-03-29 2011-10-20 Secom Co Ltd Face image synthesizing apparatus
JP2015204512A (en) * 2014-04-14 2015-11-16 パナソニックIpマネジメント株式会社 Information processing apparatus, information processing method, camera, reception device, and reception method
WO2017217180A1 (en) * 2016-06-15 2017-12-21 ソニー株式会社 Information processing device, observation system, observation method, and program
JP2018106496A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Image processing apparatus, image processing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209916A (en) * 2010-03-29 2011-10-20 Secom Co Ltd Face image synthesizing apparatus
JP2015204512A (en) * 2014-04-14 2015-11-16 パナソニックIpマネジメント株式会社 Information processing apparatus, information processing method, camera, reception device, and reception method
WO2017217180A1 (en) * 2016-06-15 2017-12-21 ソニー株式会社 Information processing device, observation system, observation method, and program
JP2018106496A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Image processing apparatus, image processing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230109704A1 (en) * 2021-10-13 2023-04-13 Samsung Electro-Mechanics Co., Ltd. Multistereo camera apparatus

Similar Documents

Publication Publication Date Title
CN109348119B (en) Panoramic monitoring system
JP5093053B2 (en) Electronic camera
US20150116502A1 (en) Apparatus and method for dynamically selecting multiple cameras to track target object
US20140218354A1 (en) View image providing device and method using omnidirectional image and 3-dimensional data
CN110574076A (en) Generation device, generation method, and program
JP2003187261A (en) Device and method for generating three-dimensional image, three-dimensional image processing apparatus, three-dimensional image photographing display system, three-dimensional image processing method and storage medium
JP2019036790A (en) Image generation apparatus, image generation method, and program
US20220329770A1 (en) Information processing apparatus, video generation method and program
CN103517060A (en) Method and device for display control of terminal device
JP4162398B2 (en) Video display system and method
WO2021182153A1 (en) Information processing device, information processing system, information processing method, and program
US10757345B2 (en) Image capture apparatus
KR20120102202A (en) Stereo camera appratus and vergence control method thereof
JP2012129768A (en) Document camera, document camera control method, program, and display processing system
CN113763544A (en) Image determination method, image determination device, electronic equipment and computer-readable storage medium
JP2019121945A (en) Imaging apparatus, control method of the same, and program
JP2016171478A (en) Camera control device and program therefor
JP2005063041A (en) Three-dimensional modeling apparatus, method, and program
JP2015115851A (en) Focus control device and focus control method
CN113454685A (en) Cloud-based camera calibration
CN111325790A (en) Target tracking method, device and system
JP2013105002A (en) 3d video photography control system, 3d video photography control method, and program
JP2011146762A (en) Solid model generator
KR101572800B1 (en) System for controlling camera on the 3d virtual modeling
JP2019185475A (en) Specification program, specification method, and information processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP