WO2021182136A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2021182136A1
WO2021182136A1 PCT/JP2021/007383 JP2021007383W WO2021182136A1 WO 2021182136 A1 WO2021182136 A1 WO 2021182136A1 JP 2021007383 W JP2021007383 W JP 2021007383W WO 2021182136 A1 WO2021182136 A1 WO 2021182136A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
drive shaft
vehicle
motor
control unit
Prior art date
Application number
PCT/JP2021/007383
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021182136A1 publication Critical patent/WO2021182136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This disclosure relates to a vehicle control device.
  • This vehicle is a so-called electric vehicle that travels by transmitting the power of an electric motor to the drive wheels.
  • the control device sets a torque command value, which is a target value of the output torque of the electric motor, based on various state quantities of the vehicle.
  • the control device calculates the torque command value after filtering by applying a filtering process to the torque command value to suppress the vibration of the drive shaft connected to the drive wheels. Further, the control device calculates an estimated value of the angular velocity of the electric motor in the process of calculating the torque command value after the filter.
  • the control device calculates the torque correction value based on the difference between the calculated estimated angular velocity of the electric motor and the actual angular velocity of the electric motor, and adds the calculated torque correction value to the filtered torque command value.
  • the final torque command value is obtained by doing so.
  • the control device feedback-controls the output torque of the electric motor based on the obtained final torque command value.
  • An object of the present disclosure is to provide a vehicle control device capable of suppressing vehicle vibration caused by twisting of a drive shaft.
  • the vehicle control device is a control device that controls an electric motor that transmits torque to the drive wheels of the vehicle, and detects torque applied to a drive shaft that transmits torque of the electric motor to the drive wheels. It includes a torque sensor and a motor control unit that controls the electric motor based on the torque detected by the torque sensor and the output torque of the electric motor.
  • the change in the torque is detected by the torque sensor.
  • the twist of the drive shaft can be detected by the change in torque before the drive shaft is completely twisted. Therefore, by controlling the electric motor based on the torque detected by the torque sensor and the output torque of the electric motor, the electric motor is so that the twist is removed from the drive shaft before the drive shaft is completely twisted. Can be controlled. Therefore, since it is possible to prevent the drive shaft from being completely twisted, it is possible to suppress the vibration of the vehicle caused by the twisting of the drive shaft.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to the first embodiment.
  • FIG. 2 is a block diagram showing an electrical configuration of the vehicle of the first embodiment.
  • FIG. 3 is a flowchart showing a procedure of processing executed by the motor control unit of the first embodiment.
  • FIG. 4 is a timing chart showing changes in the torque detection value Td of the drive shaft, the output torque Tm of the motor generator, and the final torque command value T * in the vehicle of the first embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of a vehicle according to a first modification of the first embodiment.
  • FIG. 6 is a flowchart showing a procedure of processing executed by the motor control unit of the second modification of the first embodiment.
  • FIG. 7 is a block diagram showing a procedure for calculating the final torque command value by the motor control unit of the second embodiment.
  • FIG. 8 is a block diagram showing a schematic configuration of a vehicle of another embodiment.
  • the vehicle 10 of the present embodiment includes a motor generator 20, an inverter device 21, a battery 22, and a differential device 23.
  • the vehicle 10 is a so-called electric vehicle that uses the motor generator 20 as a power source for traveling.
  • the inverter device 21 converts the DC power stored in the battery 22 into three-phase AC power, and supplies the converted three-phase AC power to the motor generator 20.
  • the motor generator 20 operates as an electric motor and a generator. When operating as an electric motor, the motor generator 20 is driven based on the three-phase AC power supplied from the inverter device 21. The driving force of the motor generator 20 is transmitted to the right front wheel 11 and the left front wheel 12 of the vehicle 10 via the differential device 23 and the drive shaft 24, so that the right front wheel 11 and the left front wheel 12 rotate, and the vehicle 10 runs. do. In the vehicle 10, the right front wheel 11 and the left front wheel 12 function as driving wheels, and the right rear wheel 13 and the left rear wheel 14 function as driven wheels.
  • the right front wheel 11 is referred to as a "right drive wheel 11”
  • the left front wheel 12 is referred to as a “left drive wheel 12”
  • the right front wheel 11 and the left front wheel 12 are collectively referred to as “drive wheels 11 and 12”.
  • the motor generator 20 corresponds to an electric motor.
  • the motor generator 20 operates as a generator when the vehicle is braked. Specifically, when the vehicle 10 is braked, the braking force applied to the drive wheels 11 and 12 is input to the motor generator 20 via the drive shaft 24 and the differential device 23. The motor generator 20 generates electricity based on the power input back from the drive wheels 11 and 12. The three-phase AC power generated by the motor generator 20 is converted into DC power by the inverter device 21 and charged into the battery 22.
  • the differential device 23 is composed of a combination of a plurality of rotating elements, and absorbs the difference in rotational speed when there is a difference in the rotational speeds of the right drive wheel 11 and the left drive wheel 12. At the same time, the driving force transmitted from the motor generator 20 is distributed and transmitted to the right driving wheel 11 and the left driving wheel 12.
  • Friction braking devices 31 to 34 are provided on the wheels 11 to 14 of the vehicle 10, respectively.
  • the friction braking devices 31 to 34 are devices that apply a braking force to the wheels 11 to 14 by applying a frictional force to the rotating body that rotates integrally with the wheels 11 to 14.
  • the electrical configuration of the vehicle 10 will be described.
  • the vehicle 10 includes wheel speed sensors 41 to 44, an acceleration sensor 45, a yaw rate sensor 46, a brake switch 47, an accelerator opening sensor 48, and torque sensors 51 and 52. ing. Further, the vehicle 10 has an ESC-ECU (Electronic Stability Control-Electronic Control Unit) 61, an EV-ECU (Electric Vehicle-Electronic Control Unit) 62, and an MG-ECU (Motor Generator-Electronic) as parts for performing various controls. It has a Control Unit) 63. Each ECU 61 to 63 is mainly composed of a microcomputer having a CPU, a memory, or the like. In this embodiment, the control device 60 is configured by the ECUs 61 to 63.
  • the wheel speed sensors 41 to 44 are provided on the wheels 11 to 14, respectively.
  • the wheel speed sensors 41 to 44 detect the wheel speeds ⁇ w11 to ⁇ w14, which are the rotational speeds of the wheels 11 to 14, respectively, and the ESC-ECU61 shown in FIG. 2 sends a signal corresponding to the detected wheel speeds ⁇ w11 to ⁇ w14. Output to.
  • the acceleration sensor 45 detects the lateral acceleration of the vehicle 10 and outputs a signal corresponding to the detected lateral acceleration to the ESC-ECU 61.
  • the yaw rate sensor 46 detects the yaw rate, which is the angular velocity around the vertical axis of the vehicle 10, and outputs a signal corresponding to the detected yaw rate to the ESC-ECU 61.
  • the brake switch 47 detects whether or not the brake pedal of the vehicle 10 has been depressed, and outputs a signal according to the detection result to the ESC-ECU 61.
  • the accelerator opening sensor 48 detects the accelerator opening, which is the amount of depression of the accelerator pedal of the vehicle 10, and outputs a signal corresponding to the detected accelerator opening to the EV-ECU 62.
  • torque sensors 51 and 52 are provided at both ends of the drive shaft 24, respectively.
  • One torque sensor 51 is provided in the vicinity of one end 241 of the drive shaft 24 connected to the right drive wheel 11, and detects the torque applied to the one end 241 of the drive shaft 24.
  • the other torque sensor 52 is provided in the vicinity of the other end 242 of the drive shaft 24 connected to the left drive wheel 12, and detects the torque applied to the other end 242 of the drive shaft 24.
  • the torque sensors 51 and 52 shall detect torque by sensors such as a magnetostrictive type, a strain gauge type, and a capacitance type. As shown in FIG. 2, the torque sensors 51 and 52 output a signal corresponding to the detected torque to the MG-ECU 63 of the inverter device 21.
  • the ESC-ECU 61 executes vehicle behavior control for stabilizing the posture of the vehicle 10 by executing a program stored in advance in the memory.
  • the vehicle behavior control is, for example, a sideslip prevention control that suppresses the sideslip of the vehicle 10. Specifically, does the ESC-ECU 61 cause oversteer or understeer in the vehicle 10 based on the lateral acceleration of the vehicle 10 detected by the acceleration sensor 45 and the yaw rate of the vehicle 10 detected by the yaw rate sensor 46? Judge whether or not. When oversteer or understeer is detected, the ESC-ECU 61 automatically adjusts the posture of the vehicle 10 so as to approach the ideal running state by applying a braking force to each of the wheels 11 to 14 by the friction braking devices 31 to 34. Control.
  • the ESC-ECU 61 is a brake that applies a braking force to the wheels 11 to 14 by the friction braking devices 31 to 34 when it detects that the brake pedal of the vehicle 10 is depressed based on the output signal of the brake switch 47. It also executes control and the like.
  • the MG-ECU 63 is provided in the inverter device 21.
  • the MG-ECU 63 controls the operation of the motor generator 20 by executing a program stored in advance in the memory.
  • the MG-ECU 63 has a torque calculation unit 630 and a motor control unit 631.
  • the torque calculation unit 630 calculates the torque of one end 241 of the drive shaft 24 based on the output signal of the torque sensor 51, and calculates the torque of the other end 242 of the drive shaft 24 based on the output signal of the torque sensor 52. do.
  • the motor control unit 631 controls the motor generator 20 by driving the inverter device 21 based on the request from the EV-ECU 62.
  • the MG-ECU 63 receives, for example, a torque command value Tb * which is a command value of the output torque of the motor generator 20 from the EV-ECU 62, the MG-ECU 63 is required to output power corresponding to the torque command value Tb * from the motor generator 20.
  • the energization control value of the motor generator 20 is calculated, and the inverter device 21 is driven based on the calculated energization control value. Further, the MG-ECU 63 drives the inverter device 21 so that the electric power generated by the regenerative power generation of the motor generator 20 is charged to the battery 22 when the vehicle 10 is braked.
  • the motor generator 20 is provided with a rotation sensor 200.
  • the rotation sensor 200 detects the rotation angle ⁇ m of the output shaft of the motor generator 20 and outputs a signal corresponding to the detected rotation angle ⁇ m to the MG-ECU 63.
  • the inverter device 21 is provided with a current sensor 210.
  • the current sensor 210 detects each phase current value Im flowing through each phase of the motor generator 20, and outputs a signal corresponding to the detected phase current value Im to the MG-ECU 63.
  • the MG-ECU 63 can acquire information on the rotation angle ⁇ m of the motor generator 20 based on the output signal of the rotation sensor 200, and each phase current value of the motor generator 20 based on the output signal of the current sensor 210. It is possible to acquire information on Im.
  • the EV-ECU 62 comprehensively controls the running of the vehicle 10 by executing a program stored in advance in its memory. Specifically, the EV-ECU 62 describes the driver's operation information such as the accelerator opening detected by the accelerator opening sensor 48, the state quantity of the vehicle 10 detected by various sensors mounted on the vehicle 10, and the ESC. -While collecting the information that can be acquired from the ECU 61 and the MG-ECU 63, the torque command value Tb * is set based on the information. The EV-ECU 62 transmits the set torque command value Tb * to the MG-ECU 63.
  • the MG-ECU 63 executes the energization control of the motor generator 20 based on the torque command value Tb * as described above, the torque corresponding to the torque command value Tb * is output from the output shaft of the motor generator 20.
  • the vehicle 10 can be driven according to the driver's driving request and the running state of the vehicle 10.
  • the torque command value Tb * transmitted from the EV-ECU 62 to the MG-ECU 63 will be referred to as a “basic torque command value Tb *”.
  • the motor control unit 631 of the MG-ECU 63 of the present embodiment detects a twist of the drive shaft 24, it executes a process of adjusting the output torque of the motor generator 20 in a direction in which the twist is relaxed.
  • the motor control unit 631 repeatedly executes the process shown in FIG. 3 at a predetermined cycle.
  • the motor control unit 631 when the motor control unit 631 first acquires the basic torque command value Tb * transmitted from the EV-ECU 62 as the process of step S10, the motor control unit 631 first obtains the basic torque command value Tb * as the process of the subsequent step S11. Torque control of the motor generator 20 using Tb * is executed. Specifically, the motor control unit 631 determines the motor generator 20 based on the rotation angle ⁇ m of the motor generator 20 detected by the rotation sensor 200 and each phase current value Im of the motor generator 20 detected by the current sensor 210. The estimated value Tm of the output torque of is calculated by using a calculation formula or the like.
  • the motor control unit 631 uses the basic torque command value Tb * acquired in the process of step S10 as it is as the final torque command value T *.
  • the motor control unit 631 calculates the energization control value of the motor generator 20 by executing feedback control for causing the estimated output torque Tm of the motor generator 20 to follow the final torque command value T *, and also to the calculated energization control value.
  • the inverter device 21 is controlled based on the above. Through such feedback control, torque corresponding to the basic torque command value Tb * is output from the motor generator 20.
  • the torque control executed in step S11 will be referred to as "basic torque control”.
  • the basic torque control executed in step S11 is not limited to the feedback control, but may be feedforward control based on the final torque command value T *.
  • the motor control unit 631 determines whether or not the drive shaft 24 is twisted based on the torque detected by the torque sensors 51 and 52 and the estimated output torque Tm of the motor generator 20 as the process of step S12 following step S11. Is determined. Specifically, this determination process is performed as follows.
  • the output torque of the motor generator 20 is distributed to the drive wheels 11 and 12, ideally, the sum of the torques of the drive wheels 11 and 12 is the output torque of the motor generator 20.
  • various devices such as the differential device 23 exist in the torque transmission path from the motor generator 20 to the drive wheels 11 and 12, a loss occurs in the torque transmission path. Therefore, the total torque of the drive wheels 11 and 12 is actually smaller than the output torque of the motor generator 20. Since the torque sensors 51 and 52 are arranged at both ends 241,242 of the drive shaft 24, the torques detected by the torque sensors 51 and 52 are substantially the same as the torques of the drive wheels 11 and 12, respectively.
  • the torque detection value Td of the drive shaft 24 is increased by transmitting the negative torque applied to the drive wheels 11 and 12 to the drive shaft 24. To increase. As a result, the torque detection value Td of the drive shaft 24 reaches the output torque Tm of the motor generator 20 at time t11, and thereafter, the torque detection value Td of the drive shaft 24 shows a value larger than the output torque Tm of the motor generator 20. ..
  • the motor control unit 631 of the present embodiment detects the torques Tda and Tdb of the both end portions 241,242 of the drive shaft 24 based on the output signals of the torque sensors 51 and 52, and sums them.
  • the torque detection value Td of the drive shaft 24 is obtained by calculation.
  • the motor control unit 631 sets the output torque Tm of the motor generator 20 as the twist determination value Ttha, and when the torque detection value Td of the drive shaft 24 is less than the twist determination value Tthe, the drive shaft 24 is set. It is determined that there is no twist, and a negative determination is made in the process of step S12 shown in FIG. In this case, the motor control unit 631 temporarily ends the process shown in FIG. Therefore, when the drive shaft 24 is not twisted, the motor control unit 631 continuously performs the process shown in step S11, that is, the basic torque control using the basic torque command value Tb *.
  • the motor control unit 631 determines that the drive shaft 24 is twisted, and makes a positive determination in the process of step S12. conduct. In this case, the motor control unit 631 obtains the corrected final torque command value T * based on the torque detection value Td of the drive shaft 24 as the process of the subsequent step S13.
  • T * Tb * - ⁇ T (f1)
  • the motor control unit 631 executes feedback control using the corrected final torque command value T * obtained in the process of step S13 as the process of step S14 following step S13. Specifically, the motor control unit 631 calculates the energization control value of the motor generator 20 by executing feedback control that causes the estimated output torque Tm of the motor generator 20 to follow the corrected final torque command value T *. , The inverter device 21 is controlled based on the calculated energization control value. Through such feedback control, torque corresponding to the torque command value (Tb * ⁇ T) is output from the motor generator 20.
  • torque elimination torque control the torque elimination torque control.
  • the motor control unit 631 determines whether or not the twist of the drive shaft 24 has been eliminated as the process of step S15 following step S14. Specifically, when the torque detection value Td of the drive shaft 24 is equal to or higher than the twist elimination determination value Tthb, the motor control unit 631 determines that the twist of the drive shaft 24 has not been eliminated, and in step S15. Make a negative judgment in the process.
  • the twist elimination determination value Tthb can be set, for example, to a value smaller than the output torque Tm of the motor generator 20 by a predetermined value.
  • the motor control unit 631 determines that the twist of the drive shaft 24 has been eliminated, and is positive in the process of step S15. Make a judgment. In this case, the motor control unit 631 ends a series of processes shown in FIG. Therefore, the motor control unit 631 re-executes the process shown in FIG. 3 after the elapse of a predetermined cycle, so that the basic torque control in step S11 is restarted.
  • the torque detection value Td of the drive shaft 24 becomes the output torque Tm of the motor generator 20 at time t11 as shown by the alternate long and short dash line.
  • the motor control unit 631 determines that the drive shaft 24 is twisted. Therefore, after the time t11, the final torque command value T * is set to the corrected torque command value (Tb * ⁇ T), so that the final torque command value T * gradually decreases as shown by the alternate long and short dash line. Since the actual output torque Tm of the motor generator 20 changes so as to follow the change of the final torque command value T *, the actual output torque Tm of the motor generator 20 also gradually decreases as shown by the solid line.
  • the torque that causes the drive shaft 24 to twist is generated from the drive shaft 24 before the drive shaft 24 is completely twisted by the negative torque transmitted from the drive wheels 11 and 12. Will be removed. Therefore, since it is possible to prevent the drive shaft 24 from being completely twisted, it is possible to suppress the vibration of the vehicle 10 due to the twisting of the drive shaft 24.
  • the final torque command value T * changes stepwise toward the basic torque command value Tb * at time t13
  • the final torque command value T * is maintained at the basic torque command value Tb *.
  • the actual output torque Tm of the motor generator 20 changes as shown by the solid line so as to follow the change of the final torque command value T *.
  • the motor control unit 631 obtains the torque detection value Td of the drive shaft 24 from the torque detection values Tda and Tdb of the torque sensors 51 and 52. Further, in the process of step S13 shown in FIG. 3, the motor control unit 631 corrects the basic torque command value Tb * based on the torque detection value Td of the drive shaft 24 as shown in the above equation f1. Calculate the final torque command value T *. Then, in the process of step S14, the control device 60 executes the untwisting torque control that causes the estimated output torque Tm of the motor generator 20 to follow the final torque command value T *.
  • the motor control unit 631 controls the motor generator 20 based on the torque detection values Tda and Tdb and the output torque Tm of the motor generator 20.
  • the motor generator 20 can be controlled so that the torque that causes the twist is removed from the drive shaft 24, so that the drive shaft 24 can be prevented from being completely twisted. As a result, vibration of the vehicle 10 due to the twist of the drive shaft 24 can be suppressed.
  • the motor control unit 631 acquires the information of the torque detection values Tda and Tdb of the torque sensors 51 and 52 from the EV-ECU 62. It will be. In the case of this configuration, there is a time delay from the time when the torque is detected by the torque sensors 51 and 52 until the motor control unit 631 acquires the torque information. In this regard, in the control device 60 of the present embodiment, the output signals of the torque sensors 51 and 52 are directly input to the motor control unit 631.
  • the motor control unit 631 acquires the torque detection values Tda and Tdb of the torque sensors 51 and 52 earlier than the configuration in which the output signals of the torque sensors 51 and 52 are input to the EV-ECU 62. Therefore, the responsiveness of the control can be improved.
  • the torque calculation unit 630 and the motor control unit 631 are mounted on the MG-ECU 63 including one microcomputer. According to this configuration, the configuration can be simplified as compared with the case where the torque calculation unit 630 and the motor control unit 631 are mounted on two different microcomputers.
  • the motor control unit 631 sets the twist determination value Tthe based on the output torque Tm of the motor generator 20, and also sets the drive shaft 24 based on the comparison between the torque detection value Td of the drive shaft 24 and the twist determination value Tthe. Detects twisting. According to this configuration, the twist of the drive shaft 24 can be detected more accurately.
  • the motor control unit 631 corrects the final torque command value T * based on the torque detection value Td of the drive shaft 24. According to this configuration, the output torque Tm of the motor generator 20 can be controlled so that the twist is removed from the drive shaft 24, so that the twist of the drive shaft 24 can be avoided more accurately. As a result, the vibration of the vehicle 10 can be further suppressed.
  • the vehicle 10 of the present embodiment further includes a motor generator 70 for driving the right rear wheel 13 and the left rear wheel 14, a differential device 73, and a drive shaft 74.
  • the motor generator 70 is driven based on the three-phase AC power supplied from the inverter device 21.
  • the driving force of the motor generator 70 is transmitted to the right rear wheel 13 and the left rear wheel 14 via the differential device 73 and the drive shaft 74, so that the right rear wheel 13 and the left rear wheel 14 rotate. Therefore, in the vehicle 10 of this modification, the right rear wheel 13 and the left rear wheel 14 are also driving wheels.
  • the inverter device 21 is separately provided with a circuit for supplying three-phase AC power to the motor generator 20 and a circuit for supplying three-phase AC power to the motor generator 70. Therefore, the motor generator 20 and the motor generator 70 operate independently of each other.
  • the inverter device corresponding to the motor generator 20 and the inverter device corresponding to the motor generator 70 may be provided separately.
  • the vehicle 10 is further provided with a torque sensor 53 for detecting the torque applied to one end 741 of the drive shaft 74 and a torque sensor 54 for detecting the torque applied to the other end 742 of the drive shaft 74. ..
  • the torque sensors 53 and 54 output a signal corresponding to the detected torque to the MG-ECU 63. Therefore, the torque calculation unit 630 of the MG-ECU 63 detects the torque applied to one end 741 of the drive shaft 74 and the torque applied to the other end 742 of the drive shaft 74 based on the output signals of the torque sensors 53 and 54. be able to.
  • the motor control unit 631 sets the basic torque command values Tb1 * and Tb2 * of the motor generator 20 and the motor generator 70, respectively, based on the basic torque command value Tb * in the process of step S11 shown in FIG. ..
  • the motor control unit 631 sets the basic torque command value Tb1 * to the first final torque command value T1 *, and then performs feedback control for causing the estimated output torque Tm1 of the motor generator 20 to follow the first final torque command value T1 *. By executing this, the output torque of the motor generator 20 is controlled.
  • the motor control unit 631 sets the basic torque command value Tb2 * to the second final torque command value T2 *, and then causes the estimated output torque Tm2 of the motor generator 70 to follow the second final torque command value T2 *.
  • the output torque of the motor generator 70 is controlled by executing the feedback control.
  • the motor control unit 631 makes a positive determination in the process of step S12 shown in FIG. 3, the final process after correction is performed as the process of step S13 based on the torque detection value Td of the drive shaft 24.
  • the torque command values T1 * and T2 * are obtained by using the following equations f2 and f3.
  • T1 * Tb1 * - ⁇ T (f2)
  • T2 * Tb2 * + ⁇ T (f3)
  • the motor control unit 631 controls the output torques of the motor generators 20 and 70 by using these final torque command values T1 * and T2 *.
  • the motor control unit 631 of the present embodiment has the wheel speeds ⁇ w11 of the drive wheels 11 and 12 detected by the wheel speed sensors 41 and 42 as the process of the step S16 following the step S14. It is determined whether or not both ⁇ w12 are equal to or higher than the predetermined speed.
  • the predetermined speed is set to a value at which it can be determined whether, for example, the wheel speeds ⁇ w11 and ⁇ w12 are zero or indicate a value near zero.
  • the motor control unit 631 makes a positive judgment in the process of step S16. In this case, the motor control unit 631 determines that the drive wheels 11 and 12 can get over the step, and executes the processes after step S15. As a result, in a situation where the drive wheels 11 and 12 can get over the step, the twist elimination torque control shown in step S14 is continuously executed, so that the vibration of the vehicle 10 can be suppressed.
  • the motor control unit 631 makes a negative judgment in the process of step S16. In this case, the motor control unit 631 determines that the drive wheels 11 and 12 cannot get over the step, and temporarily ends the process shown in FIG. In this case, even when the twist elimination torque control shown in step S14 is executed, the basic torque shown in step S11 is executed by executing the process shown in FIG. 6 again after the elapse of a predetermined cycle. Control is executed. That is, when the drive wheels 11 and 12 cannot get over the step, the control of the motor generator 20 shifts from the untwisting torque control to the basic torque control. As a result, the final torque command value T * returns from the calculated value of the above equation f1 to the basic torque command value Tb *, so that the torque transmitted to the drive wheels 11 and 12 increases. Therefore, the drive wheels 11 and 12 can easily get over the step.
  • the motor control unit 631 finally uses a filtering process so that the output torque Tm of the motor generator 20 does not change stepwise when shifting the control of the motor generator 20 from the untwisting torque control to the basic torque control.
  • the torque command value T * may be changed smoothly.
  • the control device 60 of the vehicle 10 of the second embodiment will be described.
  • the differences of the control device 60 of the first embodiment will be mainly described.
  • the motor control unit 631 of the first embodiment detects the twist of the drive shaft 24, it sets the final torque command value T * to the corrected torque command value (Tb * ⁇ T), and then sets the final torque command value (Tb * ⁇ T).
  • the output torque Tm of the motor generator 20 was controlled based on the value T *.
  • the frequency component of the final torque command value T * includes the resonance frequency of the drive shaft 24, the drive shaft 24 may resonate and the vibration of the vehicle 10 may be amplified. be.
  • the control device 60 of the present embodiment suppresses the resonance of the drive shaft 24 by removing the component of the resonance frequency of the drive shaft 24 from the frequency component of the final torque command value T *.
  • the motor control unit 631 further includes a frequency component extraction unit 631a and a filter unit 631b.
  • the output signals of the torque sensors 51 and 52 are input to the frequency component extraction unit 631a.
  • the frequency component extraction unit 631a extracts the frequency components of the output signals of the torque sensors 51 and 52 when a positive determination is made in step S12 shown in FIG. 3, that is, when a twist of the drive shaft 24 is detected.
  • the information of the extracted frequency component is transmitted to the filter unit 631b.
  • a fast Fourier transform FFT
  • the torque detected by the torque sensors 51 and 52 is the torque applied to the drive shaft 24. Therefore, if the drive shaft 24 vibrates due to twisting, the output signals of the torque sensors 51 and 52 also vibrate.
  • the frequency component of the vibration of the drive shaft 24 can be extracted by extracting the frequency component of the output signals of the torque sensors 51 and 52 by the frequency component extraction unit 631a.
  • the frequency component information transmitted from the frequency component extraction unit 631a is input to the filter unit 631b, and the final torque command value T * is input to the filter unit 631b.
  • the filter unit 631b performs a filtering process based on the notch filter on the final torque command value T * based on the frequency component information transmitted from the frequency component extraction unit 631a.
  • the filter unit 631b determines that the frequency component whose power spectrum is equal to or higher than a predetermined value among the frequency components transmitted from the frequency component extraction unit 631a is the resonance frequency of the drive shaft 24. After specifying the resonance frequency of the drive shaft 24 in this way, the filter unit 631b performs a filtering process based on the notch filter for attenuating the specified resonance frequency on the final torque command value T *.
  • the actions and effects shown in (6) below can be further obtained.
  • each embodiment can also be implemented in the following embodiments.
  • a device for transmitting torque to the drive wheels 11 and 12 for example, as shown in FIG. 8, an integrated device 80 in which a motor generator 20, an inverter device 21, a speed reducer 25, and torque sensors 51 and 52 are modularized. May be used.
  • the twist determination value Tthe used in the process shown in step S12 of FIG. 3 and the twist elimination determination value Tthb obtained in the process of step S15 may be set to the same value.
  • the torque sensors 51 and 52 may be provided in the torque transmission path from the drive shaft 24 to the drive wheels 11 and 12. As such a torque transmission path, for example, there is a hub provided between the drive shaft 24 and the drive wheels 11 and 12.
  • the vehicle 10 shown in FIG. 1 may be provided with only one of the torque sensors 51 and 52. Further, the vehicle 10 shown in FIG. 5 may be provided with only one of the torque sensors 51 and 52 and may be provided with only one of the torque sensors 53 and 54.
  • Each ECU 61-63 and its control method described in the present disclosure is provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. Alternatively, it may be realized by a plurality of dedicated computers. Each ECU 61-63 described in the present disclosure and a control method thereof may be realized by a dedicated computer provided by configuring a processor including one or a plurality of dedicated hardware logic circuits. Each ECU 61-63 and its control method described in the present disclosure comprises a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be realized by one or more dedicated computers. The computer program may be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.

Abstract

A vehicle control device (60) for controlling an electric motor (20) that transmits torque to the drive wheels of a vehicle, said control device being provided with torque sensors (51, 52) for detecting torque applied to a driveshaft that transmits torque from the electric motor to the drive wheels, and a motor control unit (631) for controlling the electric motor on the basis of the output torque of the electric motor and the torque detected by the torque sensors.

Description

車両の制御装置Vehicle control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年3月13日に出願された日本国特許出願2020-044169号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2020-0441669 filed on March 13, 2020, claiming the benefit of its priority, and the entire contents of the patent application Incorporated herein by reference.
 本開示は、車両の制御装置に関する。 This disclosure relates to a vehicle control device.
 従来、下記の特許文献1に記載の車両の制御装置がある。この車両は、電動モータの動力を駆動輪に伝達することにより走行する、いわゆる電動車両である。制御装置は、車両の各種状態量に基づいて電動モータの出力トルクの目標値であるトルク指令値を設定する。制御装置は、駆動輪に連結される駆動軸の振動を抑制するためのフィルタリング処理をトルク指令値に施すことにより、フィルタ後のトルク指令値を演算する。また、制御装置は、フィルタ後のトルク指令値を演算する過程で電動モータの角速度の推定値を演算する。制御装置は、演算された電動モータの角速度の推定値と電動モータの実際の角速度との差分に基づいてトルク補正値を演算するとともに、演算されたトルク補正値をフィルタ後のトルク指令値に加算することにより最終トルク指令値を求める。制御装置は、求められた最終トルク指令値に基づいて電動モータの出力トルクをフィードバック制御する。 Conventionally, there is a vehicle control device described in Patent Document 1 below. This vehicle is a so-called electric vehicle that travels by transmitting the power of an electric motor to the drive wheels. The control device sets a torque command value, which is a target value of the output torque of the electric motor, based on various state quantities of the vehicle. The control device calculates the torque command value after filtering by applying a filtering process to the torque command value to suppress the vibration of the drive shaft connected to the drive wheels. Further, the control device calculates an estimated value of the angular velocity of the electric motor in the process of calculating the torque command value after the filter. The control device calculates the torque correction value based on the difference between the calculated estimated angular velocity of the electric motor and the actual angular velocity of the electric motor, and adds the calculated torque correction value to the filtered torque command value. The final torque command value is obtained by doing so. The control device feedback-controls the output torque of the electric motor based on the obtained final torque command value.
特開2017-225278号公報JP-A-2017-225278
 特許文献1に記載されるような車両では、電動モータが正のトルクを出力している際に、すなわち車両が前進走行している際に、車両の走行路面が路面摩擦係数の低い路面状態から路面摩擦係数の高い路面状態に変化したような場合、駆動輪に負のトルクが加わる。同様に、車両が前進走行している際に駆動輪が段差を乗り越えるような場合や、摩擦ブレーキ装置等により車輪に制動トルクが付与された場合にも、車輪に負のトルクが加わる。このような負のトルクが駆動輪に加わることにより、駆動輪に連結されるドライブシャフトに捩れが生じる可能性がある。ドライブシャフトに捩れが生じる結果、電動モータの角速度に変化を生じる。電動モータの角速度に変化が生じた場合、上記の特許文献1に記載の制御装置では、電動モータの角速度の変化に基づいてトルク指令値が補正されることで電動モータの出力トルクがフィードバック制御されるようになっている。 In a vehicle as described in Patent Document 1, when the electric motor outputs a positive torque, that is, when the vehicle is traveling forward, the traveling road surface of the vehicle starts from a road surface state having a low road friction coefficient. When the road surface condition changes to a high road friction coefficient, a negative torque is applied to the drive wheels. Similarly, when the drive wheels get over a step while the vehicle is traveling forward, or when braking torque is applied to the wheels by a friction braking device or the like, negative torque is applied to the wheels. When such a negative torque is applied to the drive wheels, the drive shaft connected to the drive wheels may be twisted. As a result of the twisting of the drive shaft, the angular velocity of the electric motor changes. When the angular velocity of the electric motor changes, the control device described in Patent Document 1 described above corrects the torque command value based on the change in the angular velocity of the electric motor, so that the output torque of the electric motor is feedback-controlled. It has become so.
 一方、上記のような負のトルクが駆動輪に加わる状況では、ドライブシャフトが完全に捩れた後で無ければ電動モータの角速度に変化が生じない。そのため、特許文献1に記載の制御装置のように電動モータの角速度に基づいて電動モータの出力トルクをフィードバック制御する構成の場合、ドライブシャフトが捩れ始めた時点から、ドライブシャフトが完全に捩れるまでの期間だけ、トルク指令値の補正が開始される時期が遅れることとなる。そのため、特許文献1に記載の制御装置ではドライブシャフトの捩れを回避することは困難である。ドライブシャフトが一旦捩れると、その捩れの開放に伴って振動が生じる。このドライブシャフトの振動が車体等に伝わることにより、車両全体が振動するおそれがある。 On the other hand, in the situation where the above negative torque is applied to the drive wheels, the angular velocity of the electric motor does not change unless the drive shaft is completely twisted. Therefore, in the case of a configuration in which the output torque of the electric motor is feedback-controlled based on the angular velocity of the electric motor as in the control device described in Patent Document 1, from the time when the drive shaft starts to twist until the drive shaft is completely twisted. The timing at which the correction of the torque command value is started will be delayed by the period of. Therefore, it is difficult to avoid twisting of the drive shaft with the control device described in Patent Document 1. Once the drive shaft is twisted, vibration occurs as the twist is released. When the vibration of the drive shaft is transmitted to the vehicle body or the like, the entire vehicle may vibrate.
 本開示の目的は、ドライブシャフトの捩れに起因する車両の振動を抑制することが可能な車両の制御装置を提供することにある。 An object of the present disclosure is to provide a vehicle control device capable of suppressing vehicle vibration caused by twisting of a drive shaft.
 本開示の一態様による車両の制御装置は、車両の駆動輪にトルクを伝達する電動モータを制御する制御装置であって、電動モータのトルクを駆動輪に伝達するドライブシャフトに加わるトルクを検出するトルクセンサと、トルクセンサにより検出されるトルクと電動モータの出力トルクとに基づいて電動モータを制御するモータ制御部と、を備える。 The vehicle control device according to one aspect of the present disclosure is a control device that controls an electric motor that transmits torque to the drive wheels of the vehicle, and detects torque applied to a drive shaft that transmits torque of the electric motor to the drive wheels. It includes a torque sensor and a motor control unit that controls the electric motor based on the torque detected by the torque sensor and the output torque of the electric motor.
 この構成によれば、駆動輪に加わる外乱により、捩れが発生するようなトルクがドライブシャフトに加わると、そのトルクの変化がトルクセンサにより検出される。これにより、ドライブシャフトが完全に捩れるよりも前に、ドライブシャフトの捩れをトルクの変化により検出することができる。よって、トルクセンサにより検出されるトルクと電動モータの出力トルクとに基づいて電動モータを制御することにより、ドライブシャフトが完全に捩れるよりも前に、ドライブシャフトから捩れが取り除かれるように電動モータを制御できる。したがって、ドライブシャフトが完全に捩れることを回避できるため、ドライブシャフトの捩れに起因する車両の振動を抑制することができる。 According to this configuration, when a torque that causes twisting is applied to the drive shaft due to a disturbance applied to the drive wheels, the change in the torque is detected by the torque sensor. As a result, the twist of the drive shaft can be detected by the change in torque before the drive shaft is completely twisted. Therefore, by controlling the electric motor based on the torque detected by the torque sensor and the output torque of the electric motor, the electric motor is so that the twist is removed from the drive shaft before the drive shaft is completely twisted. Can be controlled. Therefore, since it is possible to prevent the drive shaft from being completely twisted, it is possible to suppress the vibration of the vehicle caused by the twisting of the drive shaft.
図1は、第1実施形態の車両の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to the first embodiment. 図2は、第1実施形態の車両の電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the vehicle of the first embodiment. 図3は、第1実施形態のモータ制御部により実行される処理の手順を示すフローチャートである。FIG. 3 is a flowchart showing a procedure of processing executed by the motor control unit of the first embodiment. 図4は、第1実施形態の車両におけるドライブシャフトのトルク検出値Td、モータジェネレータの出力トルクTm、及び最終トルク指令値T*の推移を示すタイミングチャートである。FIG. 4 is a timing chart showing changes in the torque detection value Td of the drive shaft, the output torque Tm of the motor generator, and the final torque command value T * in the vehicle of the first embodiment. 図5は、第1実施形態の第1変形例の車両の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of a vehicle according to a first modification of the first embodiment. 図6は、第1実施形態の第2変形例のモータ制御部により実行される処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure of processing executed by the motor control unit of the second modification of the first embodiment. 図7は、第2実施形態のモータ制御部による最終トルク指令値の演算手順を示すブロック図である。FIG. 7 is a block diagram showing a procedure for calculating the final torque command value by the motor control unit of the second embodiment. 図8は、他の実施形態の車両の概略構成を示すブロック図である。FIG. 8 is a block diagram showing a schematic configuration of a vehicle of another embodiment.
 以下、車両の制御装置の一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 はじめに、本実施形態の制御装置が搭載される車両の概略構成について説明する。
Hereinafter, an embodiment of the vehicle control device will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
First, a schematic configuration of a vehicle on which the control device of the present embodiment is mounted will be described.
 図1に示されるように、本実施形態の車両10は、モータジェネレータ20と、インバータ装置21と、電池22と、差動装置23とを備えている。車両10は、モータジェネレータ20を走行用の動力源として用いる、いわゆる電動車両である。
 インバータ装置21は、電池22に蓄えられている直流電力を三相交流電力に変換するとともに、変換された三相交流電力をモータジェネレータ20に供給する。
As shown in FIG. 1, the vehicle 10 of the present embodiment includes a motor generator 20, an inverter device 21, a battery 22, and a differential device 23. The vehicle 10 is a so-called electric vehicle that uses the motor generator 20 as a power source for traveling.
The inverter device 21 converts the DC power stored in the battery 22 into three-phase AC power, and supplies the converted three-phase AC power to the motor generator 20.
 モータジェネレータ20は電動機及び発電機として動作する。モータジェネレータ20は、電動機として動作する場合、インバータ装置21から供給される三相交流電力に基づいて駆動する。モータジェネレータ20の駆動力が差動装置23及びドライブシャフト24を介して車両10の右前輪11及び左前輪12に伝達されることにより右前輪11及び左前輪12が回転して、車両10が走行する。車両10では、右前輪11及び左前輪12が駆動輪として機能し、右後輪13及び左後輪14が従動輪として機能する。以下では、右前輪11を「右駆動輪11」と称し、左前輪12を「左駆動輪12」と称し、右前輪11及び左前輪12をまとめて「駆動輪11,12」と称する。本実施形態では、モータジェネレータ20が電動モータに相当する。 The motor generator 20 operates as an electric motor and a generator. When operating as an electric motor, the motor generator 20 is driven based on the three-phase AC power supplied from the inverter device 21. The driving force of the motor generator 20 is transmitted to the right front wheel 11 and the left front wheel 12 of the vehicle 10 via the differential device 23 and the drive shaft 24, so that the right front wheel 11 and the left front wheel 12 rotate, and the vehicle 10 runs. do. In the vehicle 10, the right front wheel 11 and the left front wheel 12 function as driving wheels, and the right rear wheel 13 and the left rear wheel 14 function as driven wheels. Hereinafter, the right front wheel 11 is referred to as a "right drive wheel 11", the left front wheel 12 is referred to as a "left drive wheel 12", and the right front wheel 11 and the left front wheel 12 are collectively referred to as " drive wheels 11 and 12". In this embodiment, the motor generator 20 corresponds to an electric motor.
 モータジェネレータ20は、車両の制動時に発電機として動作する。具体的には、車両10の制動時、駆動輪11,12に加わる制動力がドライブシャフト24及び差動装置23を介してモータジェネレータ20に入力される。モータジェネレータ20は、この駆動輪11,12から逆入力される動力に基づいて発電する。モータジェネレータ20により発電される三相交流電力はインバータ装置21により直流電力に変換されて電池22に充電される。 The motor generator 20 operates as a generator when the vehicle is braked. Specifically, when the vehicle 10 is braked, the braking force applied to the drive wheels 11 and 12 is input to the motor generator 20 via the drive shaft 24 and the differential device 23. The motor generator 20 generates electricity based on the power input back from the drive wheels 11 and 12. The three-phase AC power generated by the motor generator 20 is converted into DC power by the inverter device 21 and charged into the battery 22.
 差動装置23は、複数の回転要素の組み合わせにより構成されるものであって、右駆動輪11及び左駆動輪12のそれぞれの回転速度に差が生じた際に、その回転速度差を吸収しつつ、モータジェネレータ20から伝達される駆動力を右駆動輪11及び左駆動輪12に振り分けて伝えるように構成されている。 The differential device 23 is composed of a combination of a plurality of rotating elements, and absorbs the difference in rotational speed when there is a difference in the rotational speeds of the right drive wheel 11 and the left drive wheel 12. At the same time, the driving force transmitted from the motor generator 20 is distributed and transmitted to the right driving wheel 11 and the left driving wheel 12.
 車両10の車輪11~14には摩擦ブレーキ装置31~34がそれぞれ設けられている。摩擦ブレーキ装置31~34は、各車輪11~14と一体となって回転する回転体に摩擦力を付与することにより各車輪11~14に制動力を付与する装置である。
 次に、車両10の電気的な構成について説明する。
Friction braking devices 31 to 34 are provided on the wheels 11 to 14 of the vehicle 10, respectively. The friction braking devices 31 to 34 are devices that apply a braking force to the wheels 11 to 14 by applying a frictional force to the rotating body that rotates integrally with the wheels 11 to 14.
Next, the electrical configuration of the vehicle 10 will be described.
 図2に示されるように、車両10は、車輪速センサ41~44と、加速度センサ45と、ヨーレートセンサ46と、ブレーキスイッチ47と、アクセル開度センサ48と、トルクセンサ51,52とを備えている。また、車両10は、各種制御を行う部分として、ESC-ECU(Electronic Stability Control-Electronic Control Unit)61と、EV-ECU(Electric Vehicle-Electronic Control Unit)62と、MG-ECU(Motor Generator-Electronic Control Unit)63とを備えている。各ECU61~63は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。本実施形態では、ECU61~63により制御装置60が構成されている。 As shown in FIG. 2, the vehicle 10 includes wheel speed sensors 41 to 44, an acceleration sensor 45, a yaw rate sensor 46, a brake switch 47, an accelerator opening sensor 48, and torque sensors 51 and 52. ing. Further, the vehicle 10 has an ESC-ECU (Electronic Stability Control-Electronic Control Unit) 61, an EV-ECU (Electric Vehicle-Electronic Control Unit) 62, and an MG-ECU (Motor Generator-Electronic) as parts for performing various controls. It has a Control Unit) 63. Each ECU 61 to 63 is mainly composed of a microcomputer having a CPU, a memory, or the like. In this embodiment, the control device 60 is configured by the ECUs 61 to 63.
 図1に示されるように、車輪速センサ41~44は車輪11~14にそれぞれ設けられている。車輪速センサ41~44は、車輪11~14のそれぞれの回転速度である車輪速ωw11~ωw14を検出するとともに、検出された車輪速ωw11~ωw14に応じた信号を図2に示されるESC-ECU61に出力する。 As shown in FIG. 1, the wheel speed sensors 41 to 44 are provided on the wheels 11 to 14, respectively. The wheel speed sensors 41 to 44 detect the wheel speeds ωw11 to ωw14, which are the rotational speeds of the wheels 11 to 14, respectively, and the ESC-ECU61 shown in FIG. 2 sends a signal corresponding to the detected wheel speeds ωw11 to ωw14. Output to.
 加速度センサ45は車両10の横加速度を検出するとともに、検出された横加速度に応じた信号をESC-ECU61に出力する。
 ヨーレートセンサ46は、車両10の垂直軸周りの角速度であるヨーレートを検出するとともに、検出されたヨーレートに応じた信号をESC-ECU61に出力する。
The acceleration sensor 45 detects the lateral acceleration of the vehicle 10 and outputs a signal corresponding to the detected lateral acceleration to the ESC-ECU 61.
The yaw rate sensor 46 detects the yaw rate, which is the angular velocity around the vertical axis of the vehicle 10, and outputs a signal corresponding to the detected yaw rate to the ESC-ECU 61.
 ブレーキスイッチ47は、車両10のブレーキペダルが踏み込まれたか否かを検出するとともに、その検出結果に応じた信号をESC-ECU61に出力する。
 アクセル開度センサ48は、車両10のアクセルペダルの踏み込み量であるアクセル開度を検出するとともに、検出されたアクセル開度に応じた信号をEV-ECU62に出力する。
The brake switch 47 detects whether or not the brake pedal of the vehicle 10 has been depressed, and outputs a signal according to the detection result to the ESC-ECU 61.
The accelerator opening sensor 48 detects the accelerator opening, which is the amount of depression of the accelerator pedal of the vehicle 10, and outputs a signal corresponding to the detected accelerator opening to the EV-ECU 62.
 図1に示されるようにトルクセンサ51,52はドライブシャフト24の両端部にそれぞれ設けられている。一方のトルクセンサ51は、右駆動輪11に接続されるドライブシャフト24の一端部241の近傍に設けられており、ドライブシャフト24の一端部241に加わるトルクを検出する。他方のトルクセンサ52は、左駆動輪12に接続されるドライブシャフト24の他端部242の近傍に設けられており、ドライブシャフト24の他端部242に加わるトルクを検出する。トルクセンサ51,52は、磁歪式、ひずみゲージ式、静電容量式などのセンサによりトルクを検出するものとする。図2に示されるように、トルクセンサ51,52は、検出されたトルクに応じた信号をインバータ装置21のMG-ECU63に出力する。 As shown in FIG. 1, torque sensors 51 and 52 are provided at both ends of the drive shaft 24, respectively. One torque sensor 51 is provided in the vicinity of one end 241 of the drive shaft 24 connected to the right drive wheel 11, and detects the torque applied to the one end 241 of the drive shaft 24. The other torque sensor 52 is provided in the vicinity of the other end 242 of the drive shaft 24 connected to the left drive wheel 12, and detects the torque applied to the other end 242 of the drive shaft 24. The torque sensors 51 and 52 shall detect torque by sensors such as a magnetostrictive type, a strain gauge type, and a capacitance type. As shown in FIG. 2, the torque sensors 51 and 52 output a signal corresponding to the detected torque to the MG-ECU 63 of the inverter device 21.
 ESC-ECU61は、そのメモリに予め記憶されたプログラムを実行することにより、車両10の姿勢を安定させるための車両挙動制御を実行する。車両挙動制御とは、例えば車両10の横滑りを抑制する横滑り防止制御である。具体的には、ESC-ECU61は、加速度センサ45により検出される車両10の横加速度、及びヨーレートセンサ46により検出される車両10のヨーレートに基づいて車両10にオーバーステアやアンダーステアが発生しているか否かを判定する。ESC-ECU61は、オーバーステアやアンダーステアが検知された場合、摩擦ブレーキ装置31~34により各車輪11~14に制動力を付与することにより、理想の走行状態に近づけるように車両10の姿勢を自動制御する。 The ESC-ECU 61 executes vehicle behavior control for stabilizing the posture of the vehicle 10 by executing a program stored in advance in the memory. The vehicle behavior control is, for example, a sideslip prevention control that suppresses the sideslip of the vehicle 10. Specifically, does the ESC-ECU 61 cause oversteer or understeer in the vehicle 10 based on the lateral acceleration of the vehicle 10 detected by the acceleration sensor 45 and the yaw rate of the vehicle 10 detected by the yaw rate sensor 46? Judge whether or not. When oversteer or understeer is detected, the ESC-ECU 61 automatically adjusts the posture of the vehicle 10 so as to approach the ideal running state by applying a braking force to each of the wheels 11 to 14 by the friction braking devices 31 to 34. Control.
 また、ESC-ECU61は、ブレーキスイッチ47の出力信号に基づいて車両10のブレーキペダルが踏み込まれたことを検出したときに摩擦ブレーキ装置31~34により各車輪11~14に制動力を付与するブレーキ制御等も実行する。
 MG-ECU63はインバータ装置21に設けられている。MG-ECU63は、そのメモリに予め記憶されたプログラムを実行することにより、モータジェネレータ20の動作を制御する。MG-ECU63はトルク演算部630とモータ制御部631とを有している。
Further, the ESC-ECU 61 is a brake that applies a braking force to the wheels 11 to 14 by the friction braking devices 31 to 34 when it detects that the brake pedal of the vehicle 10 is depressed based on the output signal of the brake switch 47. It also executes control and the like.
The MG-ECU 63 is provided in the inverter device 21. The MG-ECU 63 controls the operation of the motor generator 20 by executing a program stored in advance in the memory. The MG-ECU 63 has a torque calculation unit 630 and a motor control unit 631.
 トルク演算部630は、トルクセンサ51の出力信号に基づいてドライブシャフト24の一端部241のトルクを演算するとともに、トルクセンサ52の出力信号に基づいてドライブシャフト24の他端部242のトルクを演算する。
 モータ制御部631は、EV-ECU62からの要求に基づいてインバータ装置21を駆動させることによりモータジェネレータ20を制御する。MG-ECU63は、例えばモータジェネレータ20の出力トルクの指令値であるトルク指令値Tb*をEV-ECU62から受信すると、そのトルク指令値Tb*に応じた動力をモータジェネレータ20から出力するために必要なモータジェネレータ20の通電制御値を演算するとともに、演算された通電制御値に基づいてインバータ装置21を駆動させる。また、MG-ECU63は、車両10の制動時には、モータジェネレータ20の回生発電により発電される電力が電池22に充電されるようにインバータ装置21を駆動させる。
The torque calculation unit 630 calculates the torque of one end 241 of the drive shaft 24 based on the output signal of the torque sensor 51, and calculates the torque of the other end 242 of the drive shaft 24 based on the output signal of the torque sensor 52. do.
The motor control unit 631 controls the motor generator 20 by driving the inverter device 21 based on the request from the EV-ECU 62. When the MG-ECU 63 receives, for example, a torque command value Tb * which is a command value of the output torque of the motor generator 20 from the EV-ECU 62, the MG-ECU 63 is required to output power corresponding to the torque command value Tb * from the motor generator 20. The energization control value of the motor generator 20 is calculated, and the inverter device 21 is driven based on the calculated energization control value. Further, the MG-ECU 63 drives the inverter device 21 so that the electric power generated by the regenerative power generation of the motor generator 20 is charged to the battery 22 when the vehicle 10 is braked.
 なお、モータジェネレータ20には回転センサ200が設けられている。回転センサ200は、モータジェネレータ20の出力軸の回転角θmを検出するとともに、検出された回転角θmに応じた信号をMG-ECU63に出力する。インバータ装置21には電流センサ210が設けられている。電流センサ210は、モータジェネレータ20の各相を流れる各相電流値Imを検出するとともに、検出された各相電流値Imに応じた信号をMG-ECU63に出力する。MG-ECU63は、回転センサ200の出力信号に基づいてモータジェネレータ20の回転角θmの情報を取得することが可能であるとともに、電流センサ210の出力信号に基づいてモータジェネレータ20の各相電流値Imの情報を取得することが可能である。 The motor generator 20 is provided with a rotation sensor 200. The rotation sensor 200 detects the rotation angle θm of the output shaft of the motor generator 20 and outputs a signal corresponding to the detected rotation angle θm to the MG-ECU 63. The inverter device 21 is provided with a current sensor 210. The current sensor 210 detects each phase current value Im flowing through each phase of the motor generator 20, and outputs a signal corresponding to the detected phase current value Im to the MG-ECU 63. The MG-ECU 63 can acquire information on the rotation angle θm of the motor generator 20 based on the output signal of the rotation sensor 200, and each phase current value of the motor generator 20 based on the output signal of the current sensor 210. It is possible to acquire information on Im.
 EV-ECU62は、そのメモリに予め記憶されたプログラムを実行することにより、車両10の走行を統括的に制御する。具体的には、EV-ECU62は、アクセル開度センサ48により検出されるアクセル開度等の運転者の操作情報、車両10に搭載される各種センサにより検出される車両10の状態量、並びにESC-ECU61及びMG-ECU63から取得可能な情報を集約しつつ、それらの情報に基づいてトルク指令値Tb*を設定する。EV-ECU62は、設定されたトルク指令値Tb*をMG-ECU63に送信する。このトルク指令値Tb*に基づいてMG-ECU63がモータジェネレータ20の通電制御を上述の通り実行することにより、トルク指令値Tb*に応じたトルクがモータジェネレータ20の出力軸から出力される。このようなモータジェネレータ20のトルク制御を通じて運転者の運転要求や車両10の走行状態に応じた車両10の走行が実現される。以下では、便宜上、EV-ECU62からMG-ECU63に送信されるトルク指令値Tb*を「基本トルク指令値Tb*」と称する。 The EV-ECU 62 comprehensively controls the running of the vehicle 10 by executing a program stored in advance in its memory. Specifically, the EV-ECU 62 describes the driver's operation information such as the accelerator opening detected by the accelerator opening sensor 48, the state quantity of the vehicle 10 detected by various sensors mounted on the vehicle 10, and the ESC. -While collecting the information that can be acquired from the ECU 61 and the MG-ECU 63, the torque command value Tb * is set based on the information. The EV-ECU 62 transmits the set torque command value Tb * to the MG-ECU 63. When the MG-ECU 63 executes the energization control of the motor generator 20 based on the torque command value Tb * as described above, the torque corresponding to the torque command value Tb * is output from the output shaft of the motor generator 20. Through such torque control of the motor generator 20, the vehicle 10 can be driven according to the driver's driving request and the running state of the vehicle 10. Hereinafter, for convenience, the torque command value Tb * transmitted from the EV-ECU 62 to the MG-ECU 63 will be referred to as a “basic torque command value Tb *”.
 ところで、このような車両10では、モータジェネレータ20が正のトルクを出力している際に、すなわち車両10が前進走行している際に駆動輪11,12が段差を乗り越えるような場合、駆動輪11,12には、その回転方向と逆方向の負のトルクが加わる。この負のトルクが駆動輪11,12に加わる外乱となる。この駆動輪11,12に加わる負のトルクによりドライブシャフト24が捩れると、モータジェネレータ20から駆動輪11,12までの動力伝達系に振動が発生する可能性がある。このような振動は車両10全体を振動させる要因になるため、車両10の乗員に違和感を与えるおそれがある。 By the way, in such a vehicle 10, when the motor generator 20 outputs a positive torque, that is, when the drive wheels 11 and 12 get over the step when the vehicle 10 is traveling forward, the drive wheels Negative torque is applied to 11 and 12 in the direction opposite to the rotation direction. This negative torque becomes a disturbance applied to the drive wheels 11 and 12. When the drive shaft 24 is twisted by the negative torque applied to the drive wheels 11 and 12, vibration may occur in the power transmission system from the motor generator 20 to the drive wheels 11 and 12. Since such vibration causes the entire vehicle 10 to vibrate, there is a risk of giving a sense of discomfort to the occupants of the vehicle 10.
 そこで、本実施形態のMG-ECU63のモータ制御部631は、ドライブシャフト24の捩れを検出した際に、その捩れが緩和される方向にモータジェネレータ20の出力トルクを調整する処理を実行する。次に、図3を参照して、このモータ制御部631により実行される処理の具体的な手順について説明する。なお、モータ制御部631は、図3に示される処理を所定の周期で繰り返し実行する。 Therefore, when the motor control unit 631 of the MG-ECU 63 of the present embodiment detects a twist of the drive shaft 24, it executes a process of adjusting the output torque of the motor generator 20 in a direction in which the twist is relaxed. Next, with reference to FIG. 3, a specific procedure of the process executed by the motor control unit 631 will be described. The motor control unit 631 repeatedly executes the process shown in FIG. 3 at a predetermined cycle.
 図3に示されるように、モータ制御部631は、まず、ステップS10の処理として、EV-ECU62から送信される基本トルク指令値Tb*を取得すると、続くステップS11の処理として、基本トルク指令値Tb*を用いたモータジェネレータ20のトルク制御を実行する。具体的には、モータ制御部631は、回転センサ200により検出されるモータジェネレータ20の回転角θmと、電流センサ210により検出されるモータジェネレータ20の各相電流値Imに基づいて、モータジェネレータ20の出力トルクの推定値Tmを、演算式等を用いて演算する。また、モータ制御部631は、ステップS10の処理で取得した基本トルク指令値Tb*を最終トルク指令値T*としてそのまま用いる。モータ制御部631は、モータジェネレータ20の推定出力トルクTmを最終トルク指令値T*に追従させるフィードバック制御を実行することによりモータジェネレータ20の通電制御値を演算するとともに、演算された通電制御値に基づいてインバータ装置21を制御する。このようなフィードバック制御を通じてモータジェネレータ20から基本トルク指令値Tb*に応じたトルクが出力される。以下では、ステップS11で実行されるトルク制御を「基本トルク制御」と称する。 As shown in FIG. 3, when the motor control unit 631 first acquires the basic torque command value Tb * transmitted from the EV-ECU 62 as the process of step S10, the motor control unit 631 first obtains the basic torque command value Tb * as the process of the subsequent step S11. Torque control of the motor generator 20 using Tb * is executed. Specifically, the motor control unit 631 determines the motor generator 20 based on the rotation angle θm of the motor generator 20 detected by the rotation sensor 200 and each phase current value Im of the motor generator 20 detected by the current sensor 210. The estimated value Tm of the output torque of is calculated by using a calculation formula or the like. Further, the motor control unit 631 uses the basic torque command value Tb * acquired in the process of step S10 as it is as the final torque command value T *. The motor control unit 631 calculates the energization control value of the motor generator 20 by executing feedback control for causing the estimated output torque Tm of the motor generator 20 to follow the final torque command value T *, and also to the calculated energization control value. The inverter device 21 is controlled based on the above. Through such feedback control, torque corresponding to the basic torque command value Tb * is output from the motor generator 20. Hereinafter, the torque control executed in step S11 will be referred to as "basic torque control".
 なお、ステップS11において実行される基本トルク制御は、フィードバック制御に限らず、最終トルク指令値T*に基づくフィードフォワード制御であってもよい。
 モータ制御部631は、ステップS11に続くステップS12の処理として、トルクセンサ51,52により検出されるトルク、及びモータジェネレータ20の推定出力トルクTmに基づいて、ドライブシャフト24に捩れが生じているか否かを判定する。この判定処理は具体的には以下のようにして行われる。
The basic torque control executed in step S11 is not limited to the feedback control, but may be feedforward control based on the final torque command value T *.
The motor control unit 631 determines whether or not the drive shaft 24 is twisted based on the torque detected by the torque sensors 51 and 52 and the estimated output torque Tm of the motor generator 20 as the process of step S12 following step S11. Is determined. Specifically, this determination process is performed as follows.
 車両10では、モータジェネレータ20の出力トルクが駆動輪11,12に分配されているため、理想的には駆動輪11,12のそれぞれのトルクの総和がモータジェネレータ20の出力トルクとなる。しかしながら、モータジェネレータ20から駆動輪11,12までのトルク伝達経路には差動装置23等の様々な機器が存在するため、そのトルク伝達経路には損失が生じる。そのため、駆動輪11,12のそれぞれのトルクの総和は、実際にはモータジェネレータ20の出力トルクよりも小さい値となる。トルクセンサ51,52はドライブシャフト24の両端部241,242にそれぞれ配置されているため、トルクセンサ51,52によりそれぞれ検出されるトルクは駆動輪11,12のそれぞれのトルクと略同一である。したがって、モータジェネレータ20の実際の出力トルクを「Tm」とし、トルクセンサ51,52によりそれぞれ検出されるドライブシャフト24のトルクTda,Tdbの総和を「Td」とすると、図4に示されるように、ドライブシャフト24のトルク検出値Td(=Tda+Tdb)はモータジェネレータ20の出力トルクTmよりも小さい値となる。 In the vehicle 10, since the output torque of the motor generator 20 is distributed to the drive wheels 11 and 12, ideally, the sum of the torques of the drive wheels 11 and 12 is the output torque of the motor generator 20. However, since various devices such as the differential device 23 exist in the torque transmission path from the motor generator 20 to the drive wheels 11 and 12, a loss occurs in the torque transmission path. Therefore, the total torque of the drive wheels 11 and 12 is actually smaller than the output torque of the motor generator 20. Since the torque sensors 51 and 52 are arranged at both ends 241,242 of the drive shaft 24, the torques detected by the torque sensors 51 and 52 are substantially the same as the torques of the drive wheels 11 and 12, respectively. Therefore, assuming that the actual output torque of the motor generator 20 is "Tm" and the sum of the torques Tda and Tdb of the drive shaft 24 detected by the torque sensors 51 and 52 is "Td", as shown in FIG. , The torque detection value Td (= Tda + Tdb) of the drive shaft 24 is smaller than the output torque Tm of the motor generator 20.
 仮に図4に示される時刻t10で駆動輪11,12が段差に乗り上げたとすると、駆動輪11,12に加わる負のトルクがドライブシャフト24に伝達されることによりドライブシャフト24のトルク検出値Tdが増加する。これによりドライブシャフト24のトルク検出値Tdが時刻t11でモータジェネレータ20の出力トルクTmに達するとともに、それ以降はドライブシャフト24のトルク検出値Tdがモータジェネレータ20の出力トルクTmよりも大きい値を示す。 Assuming that the drive wheels 11 and 12 ride on the step at the time t10 shown in FIG. 4, the torque detection value Td of the drive shaft 24 is increased by transmitting the negative torque applied to the drive wheels 11 and 12 to the drive shaft 24. To increase. As a result, the torque detection value Td of the drive shaft 24 reaches the output torque Tm of the motor generator 20 at time t11, and thereafter, the torque detection value Td of the drive shaft 24 shows a value larger than the output torque Tm of the motor generator 20. ..
 そこで、本実施形態のモータ制御部631は、トルクセンサ51,52のそれぞれの出力信号に基づいてドライブシャフト24の両端部241,242のそれぞれのトルクTda,Tdbを検出するとともに、それらの総和を演算することでドライブシャフト24のトルク検出値Tdを求める。そして、モータ制御部631は、モータジェネレータ20の出力トルクTmを捩れ判定値Tthaとして設定した上で、ドライブシャフト24のトルク検出値Tdが捩れ判定値Ttha未満である場合には、ドライブシャフト24に捩れがないと判断して、図3に示されるステップS12の処理で否定的な判定を行う。この場合、モータ制御部631は、図3に示される処理を一旦終了する。したがって、ドライブシャフト24に捩れがない場合、モータ制御部631は、ステップS11に示される処理、すなわち基本トルク指令値Tb*を用いた基本トルク制御を継続して行う。 Therefore, the motor control unit 631 of the present embodiment detects the torques Tda and Tdb of the both end portions 241,242 of the drive shaft 24 based on the output signals of the torque sensors 51 and 52, and sums them. The torque detection value Td of the drive shaft 24 is obtained by calculation. Then, the motor control unit 631 sets the output torque Tm of the motor generator 20 as the twist determination value Ttha, and when the torque detection value Td of the drive shaft 24 is less than the twist determination value Tthe, the drive shaft 24 is set. It is determined that there is no twist, and a negative determination is made in the process of step S12 shown in FIG. In this case, the motor control unit 631 temporarily ends the process shown in FIG. Therefore, when the drive shaft 24 is not twisted, the motor control unit 631 continuously performs the process shown in step S11, that is, the basic torque control using the basic torque command value Tb *.
 一方、モータ制御部631は、ドライブシャフト24のトルク検出値Tdが捩れ判定値Ttha以上である場合には、ドライブシャフト24に捩れがあると判断して、ステップS12の処理で肯定的な判定を行う。この場合、モータ制御部631は、続くステップS13の処理として、ドライブシャフト24のトルク検出値Tdに基づいて補正後の最終トルク指令値T*を求める。 On the other hand, when the torque detection value Td of the drive shaft 24 is equal to or higher than the twist determination value Ttha, the motor control unit 631 determines that the drive shaft 24 is twisted, and makes a positive determination in the process of step S12. conduct. In this case, the motor control unit 631 obtains the corrected final torque command value T * based on the torque detection value Td of the drive shaft 24 as the process of the subsequent step S13.
 具体的には、モータ制御部631は、ドライブシャフト24のトルク検出値Tdとモータジェネレータ20の出力トルクTmとの偏差ΔT(=|Td-Tm|)を演算する。そして、モータ制御部631は、偏差ΔTを用いて基本トルク指令値Tb*を以下の式f1に基づいて補正することにより、補正後の最終トルク指令値T*を求める。 Specifically, the motor control unit 631 calculates the deviation ΔT (= | Td−Tm |) between the torque detection value Td of the drive shaft 24 and the output torque Tm of the motor generator 20. Then, the motor control unit 631 obtains the corrected final torque command value T * by correcting the basic torque command value Tb * based on the following equation f1 using the deviation ΔT.
 T*=Tb*-ΔT (f1)
 モータ制御部631は、ステップS13に続くステップS14の処理として、ステップS13の処理で求めた補正後の最終トルク指令値T*を用いたフィードバック制御を実行する。具体的には、モータ制御部631は、モータジェネレータ20の推定出力トルクTmを補正後の最終トルク指令値T*に追従させるフィードバック制御を実行することによりモータジェネレータ20の通電制御値を演算するとともに、演算された通電制御値に基づいてインバータ装置21を制御する。このようなフィードバック制御を通じてモータジェネレータ20からトルク指令値(Tb*-ΔT)に応じたトルクが出力される。以下では、このステップS14で実行されるトルク制御を「捩れ解消トルク制御」と称する。
T * = Tb * -ΔT (f1)
The motor control unit 631 executes feedback control using the corrected final torque command value T * obtained in the process of step S13 as the process of step S14 following step S13. Specifically, the motor control unit 631 calculates the energization control value of the motor generator 20 by executing feedback control that causes the estimated output torque Tm of the motor generator 20 to follow the corrected final torque command value T *. , The inverter device 21 is controlled based on the calculated energization control value. Through such feedback control, torque corresponding to the torque command value (Tb * −ΔT) is output from the motor generator 20. Hereinafter, the torque control executed in step S14 will be referred to as "torque elimination torque control".
 モータ制御部631は、ステップS14に続くステップS15の処理として、ドライブシャフト24の捩れが解消されたか否かを判定する。具体的には、モータ制御部631は、ドライブシャフト24のトルク検出値Tdが捩れ解消判定値Tthb以上である場合には、ドライブシャフト24の捩れが解消されていないと判定して、ステップS15の処理で否定的な判定を行う。捩れ解消判定値Tthbは、例えばモータジェネレータ20の出力トルクTmよりも所定値だけ小さい値に設定することができる。モータ制御部631は、ステップS15の処理で否定的な判定を行った場合、ステップS13の処理に戻る。そのため、モータ制御部631は、ステップS14の捩れ解消トルク制御を継続して行う。 The motor control unit 631 determines whether or not the twist of the drive shaft 24 has been eliminated as the process of step S15 following step S14. Specifically, when the torque detection value Td of the drive shaft 24 is equal to or higher than the twist elimination determination value Tthb, the motor control unit 631 determines that the twist of the drive shaft 24 has not been eliminated, and in step S15. Make a negative judgment in the process. The twist elimination determination value Tthb can be set, for example, to a value smaller than the output torque Tm of the motor generator 20 by a predetermined value. When the motor control unit 631 makes a negative determination in the process of step S15, the motor control unit 631 returns to the process of step S13. Therefore, the motor control unit 631 continuously performs the twist elimination torque control in step S14.
 一方、モータ制御部631は、ドライブシャフト24のトルク検出値Tdが捩れ解消判定値Tthb未満である場合には、ドライブシャフト24の捩れが解消されたと判定して、ステップS15の処理で肯定的な判定を行う。この場合、モータ制御部631は、図3に示される一連の処理を終了する。そのため、所定の周期の経過後にモータ制御部631が図3に示される処理を再び実行することにより、ステップS11の基本トルク制御が再開される。 On the other hand, when the torque detection value Td of the drive shaft 24 is less than the twist elimination determination value Tthb, the motor control unit 631 determines that the twist of the drive shaft 24 has been eliminated, and is positive in the process of step S15. Make a judgment. In this case, the motor control unit 631 ends a series of processes shown in FIG. Therefore, the motor control unit 631 re-executes the process shown in FIG. 3 after the elapse of a predetermined cycle, so that the basic torque control in step S11 is restarted.
 次に、図4を参照して、本実施形態の車両10の動作例について説明する。
 図4に示されるように時刻t10で駆動輪11,12が段差に乗り上げた場合、二点鎖線で示されるように時刻t11でドライブシャフト24のトルク検出値Tdがモータジェネレータ20の出力トルクTmに達すると、ドライブシャフト24に捩れがあるとモータ制御部631が判定する。そのため、時刻t11以降、最終トルク指令値T*が補正後のトルク指令値(Tb*-ΔT)に設定されるため、一点鎖線で示されるように最終トルク指令値T*が徐々に減少する。この最終トルク指令値T*の変化に追従するようにモータジェネレータ20の実出力トルクTmが変化するため、実線で示されるようにモータジェネレータ20の実出力トルクTmも徐々に減少する。
Next, an operation example of the vehicle 10 of the present embodiment will be described with reference to FIG.
When the drive wheels 11 and 12 climb on a step at time t10 as shown in FIG. 4, the torque detection value Td of the drive shaft 24 becomes the output torque Tm of the motor generator 20 at time t11 as shown by the alternate long and short dash line. When it reaches, the motor control unit 631 determines that the drive shaft 24 is twisted. Therefore, after the time t11, the final torque command value T * is set to the corrected torque command value (Tb * −ΔT), so that the final torque command value T * gradually decreases as shown by the alternate long and short dash line. Since the actual output torque Tm of the motor generator 20 changes so as to follow the change of the final torque command value T *, the actual output torque Tm of the motor generator 20 also gradually decreases as shown by the solid line.
 モータジェネレータ20の実出力トルクTmが減少することにより、駆動輪11,12から伝達される負のトルクによりドライブシャフト24が完全に捩れるよりも前に、捩れを発生させるトルクがドライブシャフト24から取り除かれる。よって、ドライブシャフト24が完全に捩れることを回避できるため、ドライブシャフト24の捩れに起因する車両10の振動を抑制することができる。 As the actual output torque Tm of the motor generator 20 decreases, the torque that causes the drive shaft 24 to twist is generated from the drive shaft 24 before the drive shaft 24 is completely twisted by the negative torque transmitted from the drive wheels 11 and 12. Will be removed. Therefore, since it is possible to prevent the drive shaft 24 from being completely twisted, it is possible to suppress the vibration of the vehicle 10 due to the twisting of the drive shaft 24.
 その後、時刻t12で駆動輪11,12が段差を乗り越えると、駆動輪11,12に付与されている負のトルクが除去されるため、二点鎖線で示されるようにドライブシャフト24のトルク検出値Tdが元の値に向かって急速に減少する。これにより偏差ΔTが減少するため、補正後のトルク指令値(Tb*-ΔT)に設定されている最終トルク指令値T*が時刻t12以降に増加する。その後、ドライブシャフト24のトルク検出値Tdが時刻t13で捩れ解消判定値Tthbに達すると、ドライブシャフト24の捩れが解消されたとモータ制御部631が判定する。そのため、時刻t13で最終トルク指令値T*が基本トルク指令値Tb*に向かってステップ状に変化した後、最終トルク指令値T*が基本トルク指令値Tb*に維持される。この最終トルク指令値T*の変化に追従するようにモータジェネレータ20の実出力トルクTmが実線で示されるように変化する。 After that, when the drive wheels 11 and 12 get over the step at time t12, the negative torque applied to the drive wheels 11 and 12 is removed, so that the torque detection value of the drive shaft 24 is shown by the alternate long and short dash line. Td decreases rapidly toward the original value. As a result, the deviation ΔT decreases, so that the final torque command value T * set in the corrected torque command value (Tb * −ΔT) increases after the time t12. After that, when the torque detection value Td of the drive shaft 24 reaches the twist elimination determination value Tthb at time t13, the motor control unit 631 determines that the twist of the drive shaft 24 has been eliminated. Therefore, after the final torque command value T * changes stepwise toward the basic torque command value Tb * at time t13, the final torque command value T * is maintained at the basic torque command value Tb *. The actual output torque Tm of the motor generator 20 changes as shown by the solid line so as to follow the change of the final torque command value T *.
 以上説明した本実施形態の車両10の制御装置60によれば、以下の(1)~(5)に示される作用及び効果を得ることができる。
 (1)モータ制御部631は、トルクセンサ51,52のトルク検出値Tda,Tdbからドライブシャフト24のトルク検出値Tdを求める。また、モータ制御部631は、図3に示されるステップS13の処理において、上記の式f1に示されるようにドライブシャフト24のトルク検出値Tdに基づいて基本トルク指令値Tb*を補正することで最終トルク指令値T*を演算する。そして、制御装置60は、ステップS14の処理において、モータジェネレータ20の推定出力トルクTmを最終トルク指令値T*に追従させる捩れ解消トルク制御を実行する。すなわち、モータ制御部631は、トルク検出値Tda,Tdbとモータジェネレータ20の出力トルクTmとに基づいてモータジェネレータ20を制御する。この構成によれば、捩れを発生させるトルクがドライブシャフト24から取り除かれるようにモータジェネレータ20を制御できるため、ドライブシャフト24が完全に捩れることを回避できる。結果として、ドライブシャフト24の捩れに起因する車両10の振動を抑制することができる。
According to the control device 60 of the vehicle 10 of the present embodiment described above, the actions and effects shown in the following (1) to (5) can be obtained.
(1) The motor control unit 631 obtains the torque detection value Td of the drive shaft 24 from the torque detection values Tda and Tdb of the torque sensors 51 and 52. Further, in the process of step S13 shown in FIG. 3, the motor control unit 631 corrects the basic torque command value Tb * based on the torque detection value Td of the drive shaft 24 as shown in the above equation f1. Calculate the final torque command value T *. Then, in the process of step S14, the control device 60 executes the untwisting torque control that causes the estimated output torque Tm of the motor generator 20 to follow the final torque command value T *. That is, the motor control unit 631 controls the motor generator 20 based on the torque detection values Tda and Tdb and the output torque Tm of the motor generator 20. According to this configuration, the motor generator 20 can be controlled so that the torque that causes the twist is removed from the drive shaft 24, so that the drive shaft 24 can be prevented from being completely twisted. As a result, vibration of the vehicle 10 due to the twist of the drive shaft 24 can be suppressed.
 (2)仮にトルクセンサ51,52の出力信号がEV-ECU62に入力されているとすると、モータ制御部631はトルクセンサ51,52のトルク検出値Tda,Tdbの情報をEV-ECU62から取得することとなる。この構成の場合、トルクセンサ51,52によりトルクが検出された時点から、そのトルクの情報をモータ制御部631が取得するまでに時間的な遅れが生じる。この点、本実施形態の制御装置60では、トルクセンサ51,52の出力信号がモータ制御部631に直接入力されている。この構成によれば、トルクセンサ51,52の出力信号がEV-ECU62に入力されている構成と比較すると、より早期にトルクセンサ51,52のトルク検出値Tda,Tdbをモータ制御部631が取得できるため、制御の応答性を向上させることができる。 (2) Assuming that the output signals of the torque sensors 51 and 52 are input to the EV-ECU 62, the motor control unit 631 acquires the information of the torque detection values Tda and Tdb of the torque sensors 51 and 52 from the EV-ECU 62. It will be. In the case of this configuration, there is a time delay from the time when the torque is detected by the torque sensors 51 and 52 until the motor control unit 631 acquires the torque information. In this regard, in the control device 60 of the present embodiment, the output signals of the torque sensors 51 and 52 are directly input to the motor control unit 631. According to this configuration, the motor control unit 631 acquires the torque detection values Tda and Tdb of the torque sensors 51 and 52 earlier than the configuration in which the output signals of the torque sensors 51 and 52 are input to the EV-ECU 62. Therefore, the responsiveness of the control can be improved.
 (3)トルク演算部630及びモータ制御部631が、一つのマイクロコンピュータからなるMG-ECU63に搭載されている。この構成によれば、異なる2つのマイクロコンピュータにトルク演算部630及びモータ制御部631がそれぞれ搭載されている場合と比較すると、構成を簡素化することができる。 (3) The torque calculation unit 630 and the motor control unit 631 are mounted on the MG-ECU 63 including one microcomputer. According to this configuration, the configuration can be simplified as compared with the case where the torque calculation unit 630 and the motor control unit 631 are mounted on two different microcomputers.
 (4)モータ制御部631は、モータジェネレータ20の出力トルクTmに基づいて捩れ判定値Tthaを設定するとともに、ドライブシャフト24のトルク検出値Tdと捩れ判定値Tthaとの比較に基づいてドライブシャフト24の捩れを検出する。この構成によれば、より的確にドライブシャフト24の捩れを検出することができる。 (4) The motor control unit 631 sets the twist determination value Tthe based on the output torque Tm of the motor generator 20, and also sets the drive shaft 24 based on the comparison between the torque detection value Td of the drive shaft 24 and the twist determination value Tthe. Detects twisting. According to this configuration, the twist of the drive shaft 24 can be detected more accurately.
 (5)モータ制御部631は、ドライブシャフト24の捩れを検出した場合、ドライブシャフト24のトルク検出値Tdに基づいて最終トルク指令値T*を補正する。この構成によれば、ドライブシャフト24から捩れが取り除かれるようにモータジェネレータ20の出力トルクTmを制御できるため、より的確にドライブシャフト24の捩れを回避することができる。結果として、車両10の振動を更に抑制することができる。 (5) When the motor control unit 631 detects a twist of the drive shaft 24, the motor control unit 631 corrects the final torque command value T * based on the torque detection value Td of the drive shaft 24. According to this configuration, the output torque Tm of the motor generator 20 can be controlled so that the twist is removed from the drive shaft 24, so that the twist of the drive shaft 24 can be avoided more accurately. As a result, the vibration of the vehicle 10 can be further suppressed.
 (第1変形例)
 次に、第1実施形態の制御装置60の第1変形例について説明する。
 図5に示されるように、本実施形態の車両10では、右後輪13及び左後輪14を駆動させるためのモータジェネレータ70、差動装置73、及びドライブシャフト74を更に備えている。モータジェネレータ70は、インバータ装置21から供給される三相交流電力に基づいて駆動する。モータジェネレータ70の駆動力が差動装置73及びドライブシャフト74を介して右後輪13及び左後輪14に伝達されることにより右後輪13及び左後輪14が回転する。したがって、本変形例の車両10では右後輪13及び左後輪14も駆動輪となっている。
(First modification)
Next, a first modification of the control device 60 of the first embodiment will be described.
As shown in FIG. 5, the vehicle 10 of the present embodiment further includes a motor generator 70 for driving the right rear wheel 13 and the left rear wheel 14, a differential device 73, and a drive shaft 74. The motor generator 70 is driven based on the three-phase AC power supplied from the inverter device 21. The driving force of the motor generator 70 is transmitted to the right rear wheel 13 and the left rear wheel 14 via the differential device 73 and the drive shaft 74, so that the right rear wheel 13 and the left rear wheel 14 rotate. Therefore, in the vehicle 10 of this modification, the right rear wheel 13 and the left rear wheel 14 are also driving wheels.
 インバータ装置21には、モータジェネレータ20に三相交流電力を供給する回路と、モータジェネレータ70に三相交流電力を供給する回路とが別々に設けられている。したがって、モータジェネレータ20及びモータジェネレータ70はそれぞれ独立して動作する。なお、モータジェネレータ20に対応するインバータ装置、及びモータジェネレータ70に対応するインバータ装置は別々に設けられていてもよい。 The inverter device 21 is separately provided with a circuit for supplying three-phase AC power to the motor generator 20 and a circuit for supplying three-phase AC power to the motor generator 70. Therefore, the motor generator 20 and the motor generator 70 operate independently of each other. The inverter device corresponding to the motor generator 20 and the inverter device corresponding to the motor generator 70 may be provided separately.
 また、車両10には、ドライブシャフト74の一端部741に加わるトルクを検出するトルクセンサ53と、及びドライブシャフト74の他端部742に加わるトルクを検出するトルクセンサ54とが更に設けられている。トルクセンサ53,54は、検出されたトルクに応じた信号をMG-ECU63に出力する。よって、MG-ECU63のトルク演算部630は、トルクセンサ53,54の出力信号に基づいて、ドライブシャフト74の一端部741に加わるトルク、及びドライブシャフト74の他端部742に加わるトルクを検出することができる。 Further, the vehicle 10 is further provided with a torque sensor 53 for detecting the torque applied to one end 741 of the drive shaft 74 and a torque sensor 54 for detecting the torque applied to the other end 742 of the drive shaft 74. .. The torque sensors 53 and 54 output a signal corresponding to the detected torque to the MG-ECU 63. Therefore, the torque calculation unit 630 of the MG-ECU 63 detects the torque applied to one end 741 of the drive shaft 74 and the torque applied to the other end 742 of the drive shaft 74 based on the output signals of the torque sensors 53 and 54. be able to.
 さらに、モータ制御部631は、図3に示されるステップS11の処理において、基本トルク指令値Tb*に基づいてモータジェネレータ20及びモータジェネレータ70のそれぞれの基本トルク指令値Tb1*,Tb2*を設定する。モータ制御部631は、基本トルク指令値Tb1*を第1最終トルク指令値T1*に設定した上で、モータジェネレータ20の推定出力トルクTm1を第1最終トルク指令値T1*に追従させるフィードバック制御を実行することによりモータジェネレータ20の出力トルクを制御する。同様に、モータ制御部631は、基本トルク指令値Tb2*を第2最終トルク指令値T2*に設定した上で、モータジェネレータ70の推定出力トルクTm2を第2最終トルク指令値T2*に追従させるフィードバック制御を実行することによりモータジェネレータ70の出力トルクを制御する。 Further, the motor control unit 631 sets the basic torque command values Tb1 * and Tb2 * of the motor generator 20 and the motor generator 70, respectively, based on the basic torque command value Tb * in the process of step S11 shown in FIG. .. The motor control unit 631 sets the basic torque command value Tb1 * to the first final torque command value T1 *, and then performs feedback control for causing the estimated output torque Tm1 of the motor generator 20 to follow the first final torque command value T1 *. By executing this, the output torque of the motor generator 20 is controlled. Similarly, the motor control unit 631 sets the basic torque command value Tb2 * to the second final torque command value T2 *, and then causes the estimated output torque Tm2 of the motor generator 70 to follow the second final torque command value T2 *. The output torque of the motor generator 70 is controlled by executing the feedback control.
 また、モータ制御部631は、図3に示されるステップS12の処理で肯定的な判定を行った場合には、ステップS13の処理として、ドライブシャフト24のトルク検出値Tdに基づいて補正後の最終トルク指令値T1*及びT2*を求める。具体的には、モータ制御部631は、以下の式f2,f3を用いることにより各最終トルク指令値T1*,T2*を求める。 Further, when the motor control unit 631 makes a positive determination in the process of step S12 shown in FIG. 3, the final process after correction is performed as the process of step S13 based on the torque detection value Td of the drive shaft 24. Obtain the torque command values T1 * and T2 *. Specifically, the motor control unit 631 obtains the final torque command values T1 * and T2 * by using the following equations f2 and f3.
 T1*=Tb1*-ΔT (f2)
 T2*=Tb2*+ΔT (f3)
 モータ制御部631は、これらの最終トルク指令値T1*,T2*を用いてモータジェネレータ20,70のそれぞれの出力トルクを制御する。
T1 * = Tb1 * -ΔT (f2)
T2 * = Tb2 * + ΔT (f3)
The motor control unit 631 controls the output torques of the motor generators 20 and 70 by using these final torque command values T1 * and T2 *.
 この構成によれば、ドライブシャフト24の捩れを解消するために一方のモータジェネレータ20の出力トルクを低下させた場合であっても、その低下分のトルクが他方のモータジェネレータ70から出力されるようになる。よって、車両10全体としての走行トルクが減少することがないため、車両10の加速度の変化等を抑制できる。したがって、ドライブシャフト24の捩れに起因する車両10の振動を抑制しつつ、車両10の乗員の違和感を軽減することが可能となる。 According to this configuration, even when the output torque of one motor generator 20 is reduced in order to eliminate the twist of the drive shaft 24, the reduced torque is output from the other motor generator 70. become. Therefore, since the traveling torque of the vehicle 10 as a whole does not decrease, it is possible to suppress changes in the acceleration of the vehicle 10. Therefore, it is possible to reduce the discomfort of the occupants of the vehicle 10 while suppressing the vibration of the vehicle 10 caused by the twist of the drive shaft 24.
 (第2変形例)
 次に、第1実施形態の制御装置60の第2変形例について説明する。
 本実施形態のモータ制御部631は、図6に示されるように、ステップS14に続くステップS16の処理として、車輪速センサ41,42により検出される駆動輪11,12のそれぞれの車輪速ωw11,ωw12が共に所定速度以上であるか否かを判断する。所定速度は、例えば車輪速ωw11,ωw12が零であるか、あるいは零近傍の値を示しているか否かを判断することができる値に設定されている。
(Second modification)
Next, a second modification of the control device 60 of the first embodiment will be described.
As shown in FIG. 6, the motor control unit 631 of the present embodiment has the wheel speeds ωw11 of the drive wheels 11 and 12 detected by the wheel speed sensors 41 and 42 as the process of the step S16 following the step S14. It is determined whether or not both ωw12 are equal to or higher than the predetermined speed. The predetermined speed is set to a value at which it can be determined whether, for example, the wheel speeds ωw11 and ωw12 are zero or indicate a value near zero.
 モータ制御部631は、車輪速ωw11,ωw12が共に所定速度以上である場合には、ステップS16の処理で肯定的な判断を行う。この場合、モータ制御部631は、駆動輪11,12が段差を乗り越えることが可能であると判断して、ステップS15以降の処理を実行する。これにより、駆動輪11,12が段差を乗り越えることが可能な状況では、ステップS14に示される捩れ解消トルク制御が継続して実行されるため、車両10の振動を抑制することができる。 When the wheel speeds ωw11 and ωw12 are both equal to or higher than the predetermined speed, the motor control unit 631 makes a positive judgment in the process of step S16. In this case, the motor control unit 631 determines that the drive wheels 11 and 12 can get over the step, and executes the processes after step S15. As a result, in a situation where the drive wheels 11 and 12 can get over the step, the twist elimination torque control shown in step S14 is continuously executed, so that the vibration of the vehicle 10 can be suppressed.
 一方、モータ制御部631は、車輪速ωw11,ωw12の少なくとも一方が所定速度未満である場合には、ステップS16の処理で否定的な判断を行う。この場合、モータ制御部631は、駆動輪11,12が段差を乗り越えることができないと判断して、図6に示される処理を一旦終了する。この場合、ステップS14に示される捩れ解消トルク制御が実行されている場合であっても、所定の周期の経過後に図6に示される処理が再度実行されることにより、ステップS11に示される基本トルク制御が実行される。すなわち、駆動輪11,12が段差を乗り越えることができない場合には、モータジェネレータ20の制御が捩れ解消トルク制御から基本トルク制御に移行する。これにより、最終トルク指令値T*が上記の式f1の演算値から基本トルク指令値Tb*に戻るため、駆動輪11,12に伝達されるトルクが増加する。よって、駆動輪11,12が段差を乗り越え易くなる。 On the other hand, when at least one of the wheel speeds ωw11 and ωw12 is less than the predetermined speed, the motor control unit 631 makes a negative judgment in the process of step S16. In this case, the motor control unit 631 determines that the drive wheels 11 and 12 cannot get over the step, and temporarily ends the process shown in FIG. In this case, even when the twist elimination torque control shown in step S14 is executed, the basic torque shown in step S11 is executed by executing the process shown in FIG. 6 again after the elapse of a predetermined cycle. Control is executed. That is, when the drive wheels 11 and 12 cannot get over the step, the control of the motor generator 20 shifts from the untwisting torque control to the basic torque control. As a result, the final torque command value T * returns from the calculated value of the above equation f1 to the basic torque command value Tb *, so that the torque transmitted to the drive wheels 11 and 12 increases. Therefore, the drive wheels 11 and 12 can easily get over the step.
 なお、モータ制御部631は、モータジェネレータ20の制御を捩れ解消トルク制御から基本トルク制御に移行させる際に、モータジェネレータ20の出力トルクTmがステップ状に変化しないように、フィルタリング処理を用いて最終トルク指令値T*を滑らかに変化させてもよい。 The motor control unit 631 finally uses a filtering process so that the output torque Tm of the motor generator 20 does not change stepwise when shifting the control of the motor generator 20 from the untwisting torque control to the basic torque control. The torque command value T * may be changed smoothly.
 <第2実施形態>
 次に、第2実施形態の車両10の制御装置60について説明する。以下、第1実施形態の制御装置60の相違点を中心に説明する。
 第1実施形態のモータ制御部631は、ドライブシャフト24の捩れを検出した際に、最終トルク指令値T*を補正後のトルク指令値(Tb*-ΔT)に設定した上で、最終トルク指令値T*に基づいてモータジェネレータ20の出力トルクTmを制御するものであった。このような構成の場合、最終トルク指令値T*の周波数成分に、ドライブシャフト24の共振周波数が含まれていると、ドライブシャフト24が共振して、車両10の振動が増幅される可能性がある。
<Second Embodiment>
Next, the control device 60 of the vehicle 10 of the second embodiment will be described. Hereinafter, the differences of the control device 60 of the first embodiment will be mainly described.
When the motor control unit 631 of the first embodiment detects the twist of the drive shaft 24, it sets the final torque command value T * to the corrected torque command value (Tb * −ΔT), and then sets the final torque command value (Tb * −ΔT). The output torque Tm of the motor generator 20 was controlled based on the value T *. In the case of such a configuration, if the frequency component of the final torque command value T * includes the resonance frequency of the drive shaft 24, the drive shaft 24 may resonate and the vibration of the vehicle 10 may be amplified. be.
 そこで、本実施形態の制御装置60は、最終トルク指令値T*の周波数成分からドライブシャフト24の共振周波数の成分を除去することにより、ドライブシャフト24の共振を抑制する。
 具体的には、図7に示されるように、モータ制御部631は周波数成分抽出部631aとフィルタ部631bとを更に備えている。
Therefore, the control device 60 of the present embodiment suppresses the resonance of the drive shaft 24 by removing the component of the resonance frequency of the drive shaft 24 from the frequency component of the final torque command value T *.
Specifically, as shown in FIG. 7, the motor control unit 631 further includes a frequency component extraction unit 631a and a filter unit 631b.
 周波数成分抽出部631aにはトルクセンサ51,52のそれぞれの出力信号が入力されている。周波数成分抽出部631aは、図3に示されるステップS12で肯定的な判定が行われた場合、すなわちドライブシャフト24の捩れが検出された場合に、トルクセンサ51,52の出力信号の周波数成分を抽出するとともに、抽出された周波数成分の情報をフィルタ部631bに送信する。トルクセンサ51,52の出力信号の周波数成分を抽出する方法としては、例えば高速フーリエ変換(FFT:Fast Fourier Transform)を用いることができる。トルクセンサ51,52により検出されるトルクは、ドライブシャフト24に加わっているトルクである。したがって、仮に捩れによりドライブシャフト24が振動した場合、トルクセンサ51,52の出力信号も振動する。すなわち、ドライブシャフト24の振動の周波数と、トルクセンサ51,52の振動の周波数とには相関関係がある。したがって、周波数成分抽出部631aによりトルクセンサ51,52の出力信号の周波数成分を抽出することで、ドライブシャフト24の振動の周波数成分を抽出することができる。 The output signals of the torque sensors 51 and 52 are input to the frequency component extraction unit 631a. The frequency component extraction unit 631a extracts the frequency components of the output signals of the torque sensors 51 and 52 when a positive determination is made in step S12 shown in FIG. 3, that is, when a twist of the drive shaft 24 is detected. At the same time as extracting, the information of the extracted frequency component is transmitted to the filter unit 631b. As a method for extracting the frequency components of the output signals of the torque sensors 51 and 52, for example, a fast Fourier transform (FFT) can be used. The torque detected by the torque sensors 51 and 52 is the torque applied to the drive shaft 24. Therefore, if the drive shaft 24 vibrates due to twisting, the output signals of the torque sensors 51 and 52 also vibrate. That is, there is a correlation between the vibration frequency of the drive shaft 24 and the vibration frequency of the torque sensors 51 and 52. Therefore, the frequency component of the vibration of the drive shaft 24 can be extracted by extracting the frequency component of the output signals of the torque sensors 51 and 52 by the frequency component extraction unit 631a.
 フィルタ部631bには、周波数成分抽出部631aから送信される周波数成分の情報が入力されるとともに、最終トルク指令値T*が入力されている。フィルタ部631bは、周波数成分抽出部631aから送信される周波数成分の情報に基づいて、最終トルク指令値T*に対してノッチフィルタに基づくフィルタリング処理を施す。 The frequency component information transmitted from the frequency component extraction unit 631a is input to the filter unit 631b, and the final torque command value T * is input to the filter unit 631b. The filter unit 631b performs a filtering process based on the notch filter on the final torque command value T * based on the frequency component information transmitted from the frequency component extraction unit 631a.
 具体的には、フィルタ部631bは、周波数成分抽出部631aから送信される周波数成分のうち、パワースペクトルが所定値以上の周波数成分を、ドライブシャフト24の共振周波数であると判断する。フィルタ部631bは、このようにしてドライブシャフト24の共振周波数を特定した上で、特定された共振周波数を減衰させるようなノッチフィルタに基づくフィルタリング処理を最終トルク指令値T*に対して施す。 Specifically, the filter unit 631b determines that the frequency component whose power spectrum is equal to or higher than a predetermined value among the frequency components transmitted from the frequency component extraction unit 631a is the resonance frequency of the drive shaft 24. After specifying the resonance frequency of the drive shaft 24 in this way, the filter unit 631b performs a filtering process based on the notch filter for attenuating the specified resonance frequency on the final torque command value T *.
 以上説明した本実施形態の車両10の制御装置60によれば、以下の(6)に示される作用及び効果を更に得ることができる。
 (6)最終トルク指令値T*の周波数成分からドライブシャフト24の共振周波数の成分が除去されるため、最終トルク指令値T*に応じたトルクがモータジェネレータ20からドライブシャフト24に伝達された場合であっても、ドライブシャフト24の共振を抑制できる。したがって、ドライブシャフト24の共振に起因する車両10の振動を抑制することができる。
According to the control device 60 of the vehicle 10 of the present embodiment described above, the actions and effects shown in (6) below can be further obtained.
(6) Since the resonance frequency component of the drive shaft 24 is removed from the frequency component of the final torque command value T *, the torque corresponding to the final torque command value T * is transmitted from the motor generator 20 to the drive shaft 24. Even so, the resonance of the drive shaft 24 can be suppressed. Therefore, it is possible to suppress the vibration of the vehicle 10 due to the resonance of the drive shaft 24.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・駆動輪11,12にトルクを伝達する装置としては、例えば図8に示されるように、モータジェネレータ20、インバータ装置21、減速機25、及びトルクセンサ51,52がモジュール化された統合機器80を用いてもよい。
<Other embodiments>
In addition, each embodiment can also be implemented in the following embodiments.
As a device for transmitting torque to the drive wheels 11 and 12, for example, as shown in FIG. 8, an integrated device 80 in which a motor generator 20, an inverter device 21, a speed reducer 25, and torque sensors 51 and 52 are modularized. May be used.
 ・図3のステップS12に示される処理で用いられる捩れ判定値Ttha、及びステップS15の処理で求められる捩れ解消判定値Tthbは同一の値に設定されていてもよい。
 ・トルクセンサ51,52は、ドライブシャフト24から駆動輪11,12までのトルク伝達経路に設けられていてもよい。このようなトルク伝達経路としては、例えばドライブシャフト24と駆動輪11,12との間に設けられるハブがある。
The twist determination value Tthe used in the process shown in step S12 of FIG. 3 and the twist elimination determination value Tthb obtained in the process of step S15 may be set to the same value.
-The torque sensors 51 and 52 may be provided in the torque transmission path from the drive shaft 24 to the drive wheels 11 and 12. As such a torque transmission path, for example, there is a hub provided between the drive shaft 24 and the drive wheels 11 and 12.
 ・図1に示される車両10にはトルクセンサ51,52のうちのいずれか一方のみが設けられていてもよい。また、図5に示される車両10には、トルクセンサ51,52のうちのいずれか一方のみが設けられ、且つトルクセンサ53,54のうちのいずれか一方のみが設けられていてもよい。 -The vehicle 10 shown in FIG. 1 may be provided with only one of the torque sensors 51 and 52. Further, the vehicle 10 shown in FIG. 5 may be provided with only one of the torque sensors 51 and 52 and may be provided with only one of the torque sensors 53 and 54.
 ・本開示に記載の各ECU61~63及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の各ECU61~63及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の各ECU61~63及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。 Each ECU 61-63 and its control method described in the present disclosure is provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. Alternatively, it may be realized by a plurality of dedicated computers. Each ECU 61-63 described in the present disclosure and a control method thereof may be realized by a dedicated computer provided by configuring a processor including one or a plurality of dedicated hardware logic circuits. Each ECU 61-63 and its control method described in the present disclosure comprises a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be realized by one or more dedicated computers. The computer program may be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (8)

  1.  車両(10)の駆動輪(11,12,13,14)にトルクを伝達する電動モータ(20,70)を制御する制御装置であって、
     前記電動モータのトルクを前記駆動輪に伝達するドライブシャフト(24,74)に加わるトルクを検出するトルクセンサ(51,52,53,54)と、
     前記トルクセンサにより検出されるトルクと前記電動モータの出力トルクとに基づいて前記電動モータを制御するモータ制御部(631)と、を備える
     車両の制御装置。
    A control device that controls an electric motor (20, 70) that transmits torque to the drive wheels (11, 12, 13, 14) of the vehicle (10).
    A torque sensor (51, 52, 53, 54) that detects the torque applied to the drive shaft (24, 74) that transmits the torque of the electric motor to the drive wheels, and
    A vehicle control device including a motor control unit (631) that controls the electric motor based on the torque detected by the torque sensor and the output torque of the electric motor.
  2.  前記トルクセンサは、前記ドライブシャフト、又は前記ドライブシャフトから駆動輪までのトルク伝達経路に設けられている
     請求項1に記載の車両の制御装置。
    The vehicle control device according to claim 1, wherein the torque sensor is provided on the drive shaft or a torque transmission path from the drive shaft to the drive wheels.
  3.  前記トルクセンサの出力信号は、前記モータ制御部に直接入力されている
     請求項1又は2に記載の車両の制御装置。
    The vehicle control device according to claim 1 or 2, wherein the output signal of the torque sensor is directly input to the motor control unit.
  4.  前記トルクセンサの出力信号に基づいて前記ドライブシャフトに加わるトルクを演算するトルク演算部(630)を更に備え、
     前記トルク演算部及び前記モータ制御部は一つのマイクロコンピュータ(63)に搭載されている
     請求項3に記載の車両の制御装置。
    Further, a torque calculation unit (630) for calculating the torque applied to the drive shaft based on the output signal of the torque sensor is provided.
    The vehicle control device according to claim 3, wherein the torque calculation unit and the motor control unit are mounted on one microcomputer (63).
  5.  前記電動モータ及び前記トルクセンサは一つの機器(80)としてモジュール化されている
     請求項1~4のいずれか一項に記載の車両の制御装置。
    The vehicle control device according to any one of claims 1 to 4, wherein the electric motor and the torque sensor are modularized as one device (80).
  6.  前記モータ制御部は、前記トルクセンサにより検出されるトルクと前記電動モータの出力トルクとに基づいて前記ドライブシャフトの捩れを検出する
     請求項1~5のいずれか一項に記載の車両の制御装置。
    The vehicle control device according to any one of claims 1 to 5, wherein the motor control unit detects a twist of the drive shaft based on a torque detected by the torque sensor and an output torque of the electric motor. ..
  7.  前記モータ制御部は、
     前記電動モータの出力トルクをトルク指令値に追従させるフィードバック制御を実行するものであって、
     前記ドライブシャフトの捩れを検出した場合、前記トルクセンサにより検出されるトルクに基づいて前記トルク指令値を補正する
     請求項6に記載の車両の制御装置。
    The motor control unit
    It executes feedback control that causes the output torque of the electric motor to follow the torque command value.
    The vehicle control device according to claim 6, wherein when a twist of the drive shaft is detected, the torque command value is corrected based on the torque detected by the torque sensor.
  8.  前記モータ制御部は、
     前記ドライブシャフトの捩れを検出した際に前記トルクセンサの出力信号の周波数成分を抽出する周波数成分抽出部(631a)と、
     前記トルク指令値に対して、前記周波数成分抽出部により抽出された周波数成分を減衰させるフィルタリング処理を施すフィルタ部(631b)と、を有する
     請求項7に記載の車両の制御装置。
    The motor control unit
    A frequency component extraction unit (631a) that extracts a frequency component of the output signal of the torque sensor when a twist of the drive shaft is detected, and a frequency component extraction unit (631a).
    The vehicle control device according to claim 7, further comprising a filter unit (631b) that performs a filtering process for attenuating the frequency component extracted by the frequency component extraction unit with respect to the torque command value.
PCT/JP2021/007383 2020-03-13 2021-02-26 Vehicle control device WO2021182136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020044169A JP7380356B2 (en) 2020-03-13 2020-03-13 Vehicle control device, program
JP2020-044169 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182136A1 true WO2021182136A1 (en) 2021-09-16

Family

ID=77670651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007383 WO2021182136A1 (en) 2020-03-13 2021-02-26 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7380356B2 (en)
WO (1) WO2021182136A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111760A (en) * 2014-12-03 2016-06-20 日産自動車株式会社 Braking force control device and braking force control method
JP2019146446A (en) * 2018-02-23 2019-08-29 本田技研工業株式会社 Electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111760A (en) * 2014-12-03 2016-06-20 日産自動車株式会社 Braking force control device and braking force control method
JP2019146446A (en) * 2018-02-23 2019-08-29 本田技研工業株式会社 Electric vehicle

Also Published As

Publication number Publication date
JP7380356B2 (en) 2023-11-15
JP2021145524A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US10391884B2 (en) Drive power control device for electric vehicle
JP5898724B2 (en) Vehicle control apparatus and vehicle control method
WO2015037616A1 (en) Device for controlling electric vehicle and method for controlling electric vehicle
JP6162762B2 (en) Vehicle control apparatus and vehicle control method
RU2737640C1 (en) Electric vehicle electric motor control method and device
US20160221467A1 (en) Control device for electric vehicle and control method for electric vehicle
WO2018047720A1 (en) Vehicular turning control system
CN107848526B (en) Vehicle turning control device
WO2016021696A1 (en) Control device for rotating electrical machine
EP3184354B1 (en) Rotating electric machine control device
JP7172675B2 (en) electric vehicle controller
BR112019000542B1 (en) CONTROL METHOD AND VEHICLE CONTROL DEVICE
CN111114523A (en) Driving torque instruction generating apparatus and method for operating hybrid electric vehicle
US9533601B2 (en) Apparatus for controlling rotary machine
JP2016111878A (en) Drive torque controller of vehicle
WO2021182136A1 (en) Vehicle control device
KR20210018652A (en) Wheel slip control method for vehicle
JP6329308B2 (en) Vehicle control apparatus and vehicle control method
JP2008278702A (en) Slip suppressing device and slip state estimating method
JP2007331718A (en) Vibration suppression control apparatus
JP7458220B2 (en) Vehicle control device
JP7443977B2 (en) Vehicle control device
JP7453833B2 (en) Vehicle traction control device
JP6202278B2 (en) Electric vehicle slip ratio control device
WO2023074451A1 (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767083

Country of ref document: EP

Kind code of ref document: A1