WO2021182117A1 - Abnormality detection device, substrate processing device, abnormality detection method, and storage medium - Google Patents

Abnormality detection device, substrate processing device, abnormality detection method, and storage medium Download PDF

Info

Publication number
WO2021182117A1
WO2021182117A1 PCT/JP2021/007047 JP2021007047W WO2021182117A1 WO 2021182117 A1 WO2021182117 A1 WO 2021182117A1 JP 2021007047 W JP2021007047 W JP 2021007047W WO 2021182117 A1 WO2021182117 A1 WO 2021182117A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
treatment liquid
flow path
foreign matter
light
Prior art date
Application number
PCT/JP2021/007047
Other languages
French (fr)
Japanese (ja)
Inventor
林 聖人
耕平 野口
広大 東
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202180018605.1A priority Critical patent/CN115244387A/en
Priority to JP2022505904A priority patent/JPWO2021182117A1/ja
Priority to KR1020227034132A priority patent/KR20220150339A/en
Publication of WO2021182117A1 publication Critical patent/WO2021182117A1/en
Priority to JP2024016335A priority patent/JP2024040273A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Definitions

  • the present disclosure relates to a foreign matter detection device, a substrate processing device, a foreign matter detection method, and a storage medium.
  • Patent Document 1 discloses a detection device for submicron particles existing as an insoluble matter in a fluid.
  • This detection device includes an optical system that collects light from a coherent light source, a cell that is located near the focal point of the light beam focused by this optical system, and a cell through which a flow of fluid containing fine particles passes.
  • an optical detector arranged on the optical path of the optical beam and on the opposite side of the cell from the light source of the optical beam, and an electric circuit that measures the number of fine particles in the fluid from the electric signal from the optical detector. It is configured.
  • the present disclosure provides a foreign matter detection device, a substrate processing device, a foreign matter detection method, and a storage medium capable of confirming whether or not the state of the device or the treatment liquid is normal.
  • the flow path forming portion forming the treatment liquid flow path through which the treatment liquid supplied to the substrate flows, and the treatment liquid flow path are irradiated with the irradiation light from the light source.
  • the detection unit having a measuring unit configured to receive the emitted light emitted from the processing liquid flow path and the signal intensity of the emitted light, whether or not the processing liquid contains foreign matter is determined.
  • a foreign matter determination unit for determination and an intensity information acquisition unit for acquiring intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity are provided.
  • a foreign matter detecting device a substrate processing device, a foreign matter detecting method, and a storage medium capable of confirming whether or not the state of the device or the processing liquid is normal are provided.
  • FIG. 1 is a schematic perspective view showing an example of a substrate processing system.
  • FIG. 2 is a schematic view showing an example of a coating and developing apparatus.
  • FIG. 3 is a schematic view showing an example of the liquid treatment unit.
  • FIG. 4 is a schematic view showing an example of the treatment liquid supply unit of the liquid treatment unit.
  • FIG. 5 is a side view schematically showing an example of the foreign matter detection unit.
  • FIG. 6 is a perspective view schematically showing an example of a foreign matter detection unit.
  • FIG. 7 is a side view schematically showing an example of the foreign matter detection unit.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the control unit.
  • FIG. 9 is a graph showing an example of signal intensity according to the detected light.
  • FIG. 10 is a block diagram showing an example of the hardware configuration of the control unit.
  • FIG. 11 is a flowchart showing an example of a foreign matter detecting method.
  • the flow path forming portion forming the treatment liquid flow path through which the treatment liquid supplied to the substrate flows, and the treatment liquid flow path are irradiated with the irradiation light from the light source.
  • the detection unit having a measuring unit configured to receive the emitted light emitted from the processing liquid flow path and the signal intensity of the emitted light, whether or not the processing liquid contains foreign matter is determined.
  • a foreign matter determination unit for determination and an intensity information acquisition unit for acquiring intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity are provided.
  • this foreign matter detecting device in addition to detecting foreign matter based on the emitted light emitted from the processing liquid flow path by the irradiation of the irradiation light, the intensity information of the background light contained in the emitted light is acquired. Since the strength information changes based on the state of the detection unit or the treatment liquid, the foreign matter detection device can confirm whether or not the state of the device or the treatment liquid is normal.
  • the emitted light may be light in which the irradiation light is scattered in the processing liquid flow path. In this case, since the difference in the intensity of the detected light is large depending on the presence or absence of foreign matter in the treatment liquid, foreign matter can be detected more reliably.
  • the intensity information acquisition unit may acquire the time average of the signal intensity obtained in a predetermined period as intensity information. Since the intensity of the background light can fluctuate according to the obtained time, it is possible to more reliably confirm the state of the apparatus or the treatment liquid based on the time average.
  • the foreign matter determination unit may determine whether or not the treatment liquid contains foreign matter during the supply period from the start of supply of the treatment liquid to the substrate to the end of supply.
  • the strength information acquisition unit may acquire strength information based on the signal strength obtained during the supply period. In this case, it is possible to efficiently check the state of the treatment liquid or the detection unit by using the information obtained during the supply period.
  • the strength information acquisition unit acquires strength information based on the signal strength obtained when the treatment liquid is filled in the treatment liquid flow path and the treatment liquid is not supplied to the substrate. good. In this case, since the disturbance component that may be contained in the background light due to the flow of the treatment liquid can be reduced, the state of the apparatus or the treatment liquid can be confirmed more accurately.
  • the foreign matter detection device may further include a condition monitoring unit that monitors the status of at least one of the processing liquid and the detection unit based on the strength information. In this case, it is possible to detect foreign matter after confirming the state of the apparatus or the treatment liquid.
  • the substrate processing apparatus has a processing liquid supply unit having a nozzle for discharging the processing liquid toward the substrate, a supply unit for supplying the processing liquid to the nozzle, and a processing liquid flow through which the processing liquid flows. It has a flow path forming unit that forms a path, and a measuring unit that is configured to receive the emitted light emitted from the processing liquid flow path when the treatment liquid flow path is irradiated with the irradiation light from the light source.
  • the emitted light emitted from the treatment liquid flow path is emitted. Includes determining whether or not foreign matter is contained in the processing liquid based on the signal intensity, and acquiring intensity information indicating the intensity of the background light contained in the emitted light based on the signal intensity. ..
  • this foreign matter detecting method it is possible to confirm whether or not the state of the apparatus or the treatment liquid is normal, similarly to the above-mentioned foreign matter detecting apparatus.
  • the computer-readable storage medium is a storage medium that stores a program for causing the device to execute the above-mentioned foreign matter detection method.
  • the substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film, exposes the photosensitive film, and develops the photosensitive film on the work W.
  • the work W to be processed is, for example, a substrate or a substrate in which a film, a circuit, or the like is formed by performing a predetermined process.
  • the substrate included in the work W is, for example, a wafer containing silicon.
  • the work W (board) may be formed in a circular shape.
  • the work W to be processed may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like, or may be an intermediate obtained by subjecting these substrates or the like to a predetermined treatment.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating / developing device 2 and an exposure device 3.
  • the exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the work W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure.
  • the coating / developing device 2 applies a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure device 3, and develops the resist film after the exposure process.
  • the coating / developing device 2 includes a carrier block 4, a processing block 5, an interface block 6, and a control device 18.
  • the carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2.
  • the carrier block 4 can support a plurality of carriers C for the work W, and includes a transfer device A1 including a delivery arm.
  • the carrier C accommodates, for example, a plurality of circular workpieces W.
  • the transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C.
  • the processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
  • the processing module 11 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 11 forms an underlayer film on the surface of the work W by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 applies a treatment liquid for forming an underlayer film onto the work W.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the underlayer film.
  • the processing module 12 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 12 forms a resist film on the lower layer film by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 applies a treatment liquid (resist) for forming a resist film on the lower film.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
  • the processing module 13 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 13 forms an upper layer film on the resist film by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 applies a treatment liquid for forming an upper layer film onto the resist film.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
  • the processing module 14 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the processing module 14 is subjected to the development treatment of the exposed resist film and the heat treatment associated with the development treatment by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 develops a resist film by applying a developing solution on the surface of the exposed work W and then rinsing it with a rinsing solution.
  • the heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment include heat treatment (PEB: Post Exposure Bake) before development treatment, heat treatment (PB: Post Bake) after development treatment, and the like.
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is divided into a plurality of cells arranged in the vertical direction.
  • a transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
  • the interface block 6 transfers the work W to and from the exposure apparatus 3.
  • the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3.
  • the transport device A8 passes the work W arranged on the shelf unit U11 to the exposure device 3.
  • the transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
  • the control device 18 controls the coating / developing device 2 so as to execute the coating / developing process in the following procedure, for example. First, the control device 18 controls the transfer device A1 so as to transfer the work W in the carrier C to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 11.
  • control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 11. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an underlayer film on the surface of the work W. After that, the control device 18 controls the transfer device A3 so as to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 12. ..
  • control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a resist film on the surface of the work W. After that, the control device 18 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 13.
  • control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 18 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
  • control device 18 controls the transport device A8 so as to send the work W of the shelf unit U11 to the exposure device 3. After that, the control device 18 controls the transfer device A8 so as to receive the exposed work W from the exposure device 3 and arrange it in the cell for the processing module 14 in the shelf unit U11.
  • control device 18 controls the transport device A3 so as to transport the work W of the shelf unit U11 to each unit in the processing module 14, and the liquid processing unit U1 so as to develop the resist film of the work W. And control the heat treatment unit U2.
  • control device 18 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C.
  • the control device 18 causes the coating / developing device 2 to execute the coating / developing process for each of the subsequent plurality of workpieces W.
  • liquid treatment unit U1 (Liquid processing unit) Subsequently, an example of the liquid treatment unit U1 will be described in detail with reference to FIGS. 3 and 4. Here, the liquid treatment unit U1 in the treatment module 12 for forming the resist film will be described as an example. As shown in FIG. 3, the liquid treatment unit U1 has a rotation holding unit 20 and a processing liquid supply unit 30.
  • the rotation holding unit 20 holds and rotates the work W based on the operation instruction of the control device 18.
  • the rotation holding unit 20 has, for example, a holding unit 22 and a rotation driving unit 24.
  • the holding portion 22 supports the central portion of the work W arranged horizontally with the surface Wa facing up, and holds the work W by, for example, vacuum suction.
  • the rotation drive unit 24 is an actuator including a power source such as an electric motor, and rotates the holding unit 22 around the vertical axis Ax. As a result, the work W on the holding portion 22 rotates.
  • the treatment liquid supply unit 30 supplies the treatment liquid to the surface Wa of the work W by discharging the treatment liquid toward the surface Wa of the work W based on the operation instruction of the control device 18.
  • the treatment liquid supplied by the treatment liquid supply unit 30 is a substrate processing solution used for processing the work W.
  • the treatment liquid include a solution (resist) used for forming a resist film and a solution (for example, thinner) used for a pre-wet treatment for enhancing the wettability of the surface Wa with respect to the resist.
  • the processing liquid supply unit 30 has, for example, a plurality of nozzles 32, a holding head 34, and a supply unit 36.
  • the plurality of nozzles 32 each discharge the treatment liquid onto the surface Wa of the work W held by the holding portion 22.
  • the plurality of nozzles 32 are arranged above the work W while being held by the holding head 34, for example, and individually discharge the treatment liquid downward.
  • the holding head 34 may be configured to be movable in a direction along the surface Wa of the work W by a driving unit (not shown).
  • nozzles 32A to 32L the case where the processing liquid supply unit 30 has 12 nozzles 32 (hereinafter, referred to as “nozzles 32A to 32L”) will be described below as an example.
  • the processing liquid is supplied from the supply unit 36 to each of the nozzles 32A to 32L.
  • Different types of treatment liquids may be supplied to the nozzles 32A to 32L from the supply unit 36.
  • different types of resists are supplied to the nozzles 32A to 32J from the supply unit 36, and different types of thinner are supplied to the nozzles 32K and 32L from the supply unit 36, respectively.
  • the supply unit 36 includes a plurality of supply pipes 42A to 42L and a plurality of supply sources 44A to 44L.
  • the supply pipe 42A forms a flow path between the supply source 44A, which is a liquid source of the processing liquid supplied to the nozzle 32A (discharged from the nozzle 32A), and the nozzle 32A.
  • the supply source 44A includes, for example, a bottle in which the treatment liquid is stored and a pump for pumping the treatment liquid from the bottle toward the nozzle 32A.
  • the supply pipes 42B to 42L Similar to the supply pipes 42A, the supply pipes 42B to 42L also form flow paths between the supply sources 44B to 44L, which are the liquid sources of the treatment liquid, and the nozzles 32B to 32L, respectively.
  • the supply unit 36 further includes a plurality of on-off valves V provided in each of the plurality of supply pipes 42A to 42L.
  • the on-off valve V switches to the open state or the closed state based on the operation instruction of the control device 18.
  • the flow paths of the supply pipes 42A to 42L are opened and closed respectively.
  • the on-off valve V is opened, the processing liquid flows into the flow paths of the supply pipes 42A to 42L, and the processing liquid is discharged from the nozzles 32A to 32L to the surface Wa of the work W.
  • the coating / developing device 2 further includes a foreign matter detecting unit 50 (foreign matter detecting device) configured to detect foreign matter (particles) contained in the processing liquid supplied to the work W.
  • the foreign matter detection unit 50 is configured to detect foreign matter in the processing liquid flowing through the flow paths of the plurality of supply pipes 42A to 42L, for example.
  • the foreign matter detection unit 50 may be arranged in the vicinity of the liquid treatment unit U1 or may be arranged in the housing of the liquid treatment unit U1. Some elements of the foreign matter detection unit 50 may be provided between the on-off valve V on the flow path of the supply pipes 42A to 42L and the nozzles 32A to 32L.
  • FIGS. 5 to 10 an example of the foreign matter detection unit 50 will be described with reference to FIGS. 5 to 10.
  • the foreign matter detection unit 50 forms a flow path (hereinafter, referred to as “treatment liquid flow path”) through which the treatment liquid flowing through the supply pipes 42A to 42L is circulated.
  • the foreign matter detection unit 50 detects foreign matter in the processing liquid flowing through the treatment liquid flow path by receiving the light generated by irradiating the treatment liquid flow path with irradiation light (for example, laser light).
  • irradiation light for example, laser light
  • the foreign matter detection unit 50 includes, for example, a housing 52 and a detection unit 53.
  • the housing 52 includes an upper wall 54a, a bottom wall 54b, and side walls 56a to 56d (see also FIG. 7).
  • the upper wall 54a and the bottom wall 54b are arranged horizontally (along the XY plane), respectively.
  • the side walls 56a and 56b are arranged vertically (along the YY plane) along the Y-axis direction, and face each other in the X-axis direction (first direction). Further, the side walls 56c and 56d are arranged vertically (along the XX plane) along the X-axis direction and face each other in the Y-axis direction (second direction).
  • the housing 52 accommodates the detection unit 53.
  • the detection unit 53 includes a flow path forming unit 60 and a measuring unit 70.
  • the flow path forming unit 60 forms a plurality of processing liquid flow paths provided on the flow paths of the supply pipes 42A to 42L, respectively. Each of the plurality of treatment liquid flow paths formed by the flow path forming unit 60 is used for detecting foreign matter contained in the treatment liquid flowing through the treatment liquid flow path.
  • the flow path forming portion 60 has, for example, a plurality of processing liquid flow path forming portions 62A to 62L as shown in FIG.
  • the plurality of processing liquid flow path forming portions 62A to 62L are configured in the same manner as each other.
  • the details of the treatment liquid flow path forming portion will be described by taking the treatment liquid flow path forming portion 62A as an example.
  • the treatment liquid flow path forming unit 62A forms the treatment liquid flow path 64 on the flow path of the supply pipe 42A connecting the supply source 44A and the nozzle 32A (see also FIG. 4).
  • the upstream and downstream ends of the treatment liquid flow path 64 are connected to the supply pipe 42A.
  • the treatment liquid pumped from the supply source 44A is a part of the flow path of the supply pipe 42A, the treatment liquid flow path 64 of the treatment liquid flow path forming portion 62A, and the remaining part of the flow path of the supply pipe 42A. Is discharged from the nozzle 32A to the surface Wa of the work W in this order.
  • the treatment liquid flow path forming unit 62A includes, for example, a block body 66 in which the treatment liquid flow path 64 is formed.
  • the block body 66 is made of a material capable of transmitting laser light used for detecting foreign matter. Examples of the material constituting the block body 66 include quartz and sapphire.
  • the block body 66 may be formed in a rectangular parallelepiped shape, or one surface of the block body 66 may face the side wall 56a.
  • the inflow port 64a and the outflow port 64b of the treatment liquid flow path 64 are formed on the surface of the block body 66 facing the side wall 56a.
  • the inflow port 64a may be located below the outflow port 64b.
  • the treatment liquid flow path 64 includes, for example, a first flow path 68a, a second flow path 68b, and a third flow path 68c.
  • the first flow path 68a is formed so as to extend horizontally (along the X-axis direction in the figure) along the bottom wall 54b.
  • One end of the first flow path 68a near the side wall 56a constitutes an inflow port 64a, and the other end of the first flow path 68a near the side wall 56b is connected to the second flow path 68b.
  • the second flow path 68b is formed so as to extend along the side wall 56a (along the Z-axis direction) in the vertical direction.
  • One end of the second flow path 68b near the bottom wall 54b is connected to the first flow path 68a, and the other end of the second flow path 68b near the upper wall 54a is connected to the third flow path 68c.
  • the third flow path 68c is formed so as to extend horizontally (along the X-axis direction) along the bottom wall 54b.
  • One end of the third flow path 68c near the side wall 56b is connected to the second flow path 68b, and the other end of the third flow path 68c near the side wall 56a constitutes an outlet 64b.
  • a supply pipe (hereinafter referred to as “upstream supply pipe 46") on the upstream side of the treatment liquid flow path forming portion 62A of the supply pipe 42A is connected to the inflow port 64a.
  • a supply pipe (hereinafter, referred to as “downstream side supply pipe 48”) on the downstream side of the treatment liquid flow path forming portion 62A of the supply pipe 42A is connected to the outflow port 64b.
  • the upstream side supply pipe 46 and the downstream side supply pipe 48 penetrate the side wall 56a on which the block main body 66 faces.
  • the processing liquid sent out from the supply source 44A passes through the upstream side supply pipe 46, the first flow path 68a, the second flow path 68b, the third flow path 68c, and the downstream side supply pipe 48 in this order. It is supplied to the work W from the nozzle 32A.
  • the treatment liquid flow path forming portions 62A to 62L shown in FIG. 6 are configured in the same manner as each other. Therefore, the treatment liquid flow path forming portions 62B to 62L each include a block main body 66 in which the treatment liquid flow path 64 is formed, similarly to the treatment liquid flow path forming portion 62A.
  • Each of the treatment liquid flow paths 64 of the treatment liquid flow path forming portions 62B to 62L includes a first flow path 68a, a second flow path 68b, and a third flow path 68c.
  • the upstream supply pipes 46 of the supply pipes 42B to 42L are connected to the inflow ports 64a (first flow paths 68a) of the treatment liquid flow path forming portions 62B to 62L, respectively.
  • the downstream supply pipes 48 of the supply pipes 42B to 42L are connected to the outlets 64b (third flow paths 68c) of the treatment liquid flow path forming portions 62B to 62L, respectively.
  • the treatment liquid flow path forming portions 62A to 62L are arranged side by side (along the Y-axis direction) along the direction from the side wall 56d to the side wall 56c in a state where each of the treatment liquid flow path forming portions 62A to 62L faces the side wall 56a.
  • the treatment liquid flow path forming portions 62A to 62L may be arranged in this order with a distance from each other.
  • the height positions (positions in the Z-axis direction) of the first flow paths 68a of the treatment liquid flow path forming portions 62A to 62L may be substantially coincident with each other.
  • the distances (positions in the X-axis direction) of the second flow paths 68b of the treatment liquid flow path forming portions 62A to 62L from the side wall 56a may be substantially the same as each other.
  • the height positions (distance from the bottom wall 54b) of the third flow path 68c of the treatment liquid flow path forming portions 62A to 62L may be substantially the same as each other.
  • the measuring unit 70 is configured to receive the emitted light emitted from the processing liquid flow path 64 by irradiating the processing liquid flow path 64 with the irradiation light from the light source 72.
  • the measuring unit 70 includes, for example, a light source 72, an irradiation unit 74, a light receiving unit 76, a holding unit 78, and a driving unit 80.
  • the light source 72 generates laser light as irradiation light for detecting foreign matter in the processing liquid.
  • the light source 72 emits, for example, a laser beam having a wavelength of about 400 nm to 600 nm and an output of about 600 mW to 1000 mW.
  • the light source 72 is provided on the bottom wall 54b, for example, as shown in FIG.
  • the light source 72 emits a laser beam in a direction (Y-axis negative direction) from the side wall 56d toward the side wall 56c.
  • the light source 72 is arranged at a position different from that of the processing liquid flow path forming portion 62A in the Y-axis direction.
  • the light source 72 is arranged apart from the processing liquid flow path forming portion 62A in the Y-axis direction. In the Y-axis direction, for example, the light source 72 and the treatment liquid flow path forming portions 62A to 62L are arranged so as to be arranged in this order.
  • the irradiation unit 74 is configured to irradiate the irradiation light from the light source 72 toward the treatment liquid flow path 64 of the treatment liquid flow path forming units 62A to 62L, respectively.
  • the irradiation unit 74 is configured to individually irradiate the irradiation light toward the treatment liquid flow path 64 of the treatment liquid flow path forming units 62A to 62L, for example.
  • the irradiation unit 74 may be arranged below the treatment liquid flow path 64.
  • the irradiation unit 74 has, for example, an optical member 82 configured to irradiate the irradiation light toward the processing liquid flow path 64 by changing the direction of the irradiation light from the light source 72.
  • the optical member 82 includes, for example, a reflection member 82a and a condenser lens 82b.
  • the reflective surface of the reflective member 82a faces the light source 72 in the Y-axis direction.
  • the reflecting surface of the reflecting member 82a reflects the irradiation light emitted substantially horizontally from the light source 72 upward.
  • the condensing lens 82b is arranged above the reflecting member 82a, and condenses the irradiation light reflected by the reflecting member 82a at a measurement position set in the processing liquid flow path 64.
  • the condenser lens 82b is configured so that, for example, the irradiation light is applied to the measurement position set in the first flow path 68a of the treatment liquid flow path 64.
  • the holding portion 78 movably holds the optical member 82.
  • the holding portion 78 has, for example, a guide rail 88 and a slide base 84.
  • the guide rail 88 is provided on the bottom wall 54b and is formed so as to extend in the direction from the side wall 56c toward the side wall 56d (along the Y-axis direction).
  • the guide rail 88 may extend along the Y-axis direction from at least the treatment liquid flow path forming portion 62A to the treatment liquid flow path forming portion 62L.
  • the guide rail 88 movably supports the slide base 84.
  • the slide base 84 is arranged below the processing liquid flow path forming portions 62A to 62L and supports the optical member 82 (reflection member 82a). As shown in FIG. 5, the slide base 84 may be formed so as to extend along a direction (for example, the X-axis direction) intersecting the guide rail 88. For example, in the slide table 84, one end near the side wall 56a is located below the treatment liquid flow path forming portion 62A, and the other end near the side wall 56b is the treatment liquid flow path forming portion 62A. It is located closer to the side wall 56b than the position of. As an example, the optical member 82 is arranged at one end of the slide base 84 near the side wall 56a.
  • the drive unit 80 moves the slide base 84 along the guide rail 88 by a power source such as an electric motor.
  • a power source such as an electric motor.
  • the irradiation unit 74 optical member 82 moves along the Y-axis direction.
  • the light receiving unit 76 is configured to receive the emitted light emitted from the processing liquid flow path 64 of the processing liquid flow path forming units 62A to 62L by irradiating the irradiation light from the irradiation unit 74.
  • the light receiving unit 76 is configured to individually receive, for example, the light emitted from the processing liquid flow path 64 of the processing liquid flow path forming units 62A to 62L.
  • the light receiving portion 76 may be arranged so as to sandwich the treatment liquid flow path forming portions 62A to 62L between the light receiving portion 76 and the side wall 56a.
  • the light receiving unit 76 includes, for example, an optical member 92 and a light receiving element 94.
  • the processing liquid flow path forming portion 62A, the optical member 92, and the light receiving element 94 are arranged in this order in the direction from the side wall 56a to the side wall 56b (X-axis direction).
  • the height positions of the optical member 92 and the light receiving element 94 substantially coincide with the height positions of the first flow path 68a of the processing liquid flow path 64, for example.
  • the optical member 92 includes, for example, a condensing lens that collects light emitted from the processing liquid flow path 64 (hereinafter, referred to as “emitted light”) toward the light receiving element 94.
  • a wavelength filter that allows only light having a specific wavelength to pass through may be provided inside the optical member 92.
  • the light receiving element 94 receives the emitted light collected by the optical member 92 and generates an electric signal corresponding to the received light (detection light).
  • the light receiving element 94 includes, for example, a photodiode that performs photoelectric conversion.
  • the optical member 92 and the light receiving element 94 are attached to a support member 86 extending along the vertical direction.
  • the support member 86 is connected to the slide base 84.
  • the lower end of the support member 86 is connected to the end portion of the slide base 84 opposite to the end portion where the optical member 82 is provided.
  • the optical member 92 and the light receiving element 94 move along the Y-axis direction.
  • the drive unit 80 moves the irradiation unit 74 and the light receiving unit 76 together along the Y-axis direction by moving the slide base 84.
  • the drive unit 80 has, for example, a position where the irradiation unit 74 and the light receiving unit 76 face each other with the processing liquid flow path forming unit 62A, and a position where the irradiation unit 74 and the light receiving unit 76 face each other with the processing liquid flow path forming unit 62L.
  • the irradiation unit 74 and the light receiving unit 76 are moved between the irradiation units 74.
  • the position where the irradiation unit 74 and the light receiving unit 76 face each other of the processing liquid flow path forming portion is referred to as a position corresponding to the processing liquid flow path forming portion.
  • the optical member is placed below any one of the processing liquid flow paths 64 of the processing liquid flow path forming portions 62A to 62L by the driving unit 80.
  • the treatment liquid flow path 64 is irradiated with irradiation light from the irradiation unit 74.
  • the light receiving element 94 receives the light emitted from the processing liquid flow path 64.
  • the irradiation unit 74 is arranged below the measurement position set in the processing liquid flow path 64, and the light receiving unit 76 is arranged on the side of the measurement position. Therefore, when the light receiving unit 76 irradiates any one of the treatment liquid flow paths 64 with the irradiation light, the light receiving unit 76 scatters the emission light (scattering) generated by scattering the irradiation light at the measurement position in the treatment liquid flow path 64. Light) is partly received. When the irradiation light is irradiated into the treatment liquid flow path 64 through which the treatment liquid flows, scattered light is generated. When no foreign matter is contained in the treatment liquid, most of the irradiation light passes through the treatment liquid flow path 64.
  • the degree of scattering of the irradiation light in the treatment liquid flow path 64 becomes large, and the light received by the light receiving unit 76 is higher than that in the case where the treatment liquid does not contain foreign matter.
  • the intensity of (a part of the scattered light toward the light receiving unit 76) is increased.
  • the treatment liquid is a resist
  • the treatment liquid usually contains a base resin (base polymer) as a main component. Since the irradiation light can be scattered by this base polymer as well, the light receiving unit 76 can receive light having a certain amplitude even if the processing liquid does not contain foreign matter.
  • the foreign matter detection unit 50 may further include a control unit 100.
  • the control unit 100 controls each element (detection unit 53) of the foreign matter detection unit 50.
  • the control unit 100 is arranged inside the housing 52, for example.
  • the control unit 100 controls each element of the foreign matter detection unit 50 based on an operation instruction from the control device 18.
  • the control unit 100 has at least the signal intensity of the emitted light emitted from the processing liquid flow path 64 when the treatment liquid flow path 64 through which the treatment liquid supplied to the work W flows is irradiated with the irradiation light from the light source 72. Based on the above, it is determined whether or not the processing liquid contains foreign matter, and based on the signal intensity of the emitted light, the intensity information indicating the intensity of the background light contained in the emitted light is acquired. It is configured to do.
  • the control unit 100 has, as a functional configuration (hereinafter, referred to as “functional module”), for example, a signal acquisition unit 102, a foreign matter determination unit 104, a processing information acquisition unit 106, and the like. It has a drive control unit 108, a strength information acquisition unit 122, a reference information holding unit 112, a condition monitoring unit 124, and an output unit 116.
  • the processing executed by the signal acquisition unit 102, the foreign matter determination unit 104, the processing information acquisition unit 106, the drive control unit 108, the strength information acquisition unit 122, the reference information holding unit 112, the condition monitoring unit 124, and the output unit 116 is the control unit. Corresponds to the process executed by 100.
  • the signal acquisition unit 102 acquires an electric signal corresponding to the intensity of the emitted light from the light receiving unit 76.
  • the signal acquisition unit 102 corresponds to, for example, the intensity of the emitted light emitted from the processing liquid flow path 64 (first flow path 68a) through which the processing liquid to be monitored flows among the processing liquid flow path forming units 62A to 62L.
  • the electric signal is acquired from the light receiving element 94.
  • the signal acquisition unit 102 acquires, for example, an electric signal having an amplitude corresponding to the intensity of the emitted light.
  • the signal acquisition unit 102 may acquire the electric signal at a predetermined sampling cycle.
  • the foreign matter determination unit 104 detects the presence or absence of foreign matter in the processing liquid based on the intensity such as the amplitude of the electric signal according to the emitted light (hereinafter, referred to as “signal intensity”).
  • FIG. 9 shows a graph showing an example of the time change of the signal strength obtained from the signal acquisition unit 102.
  • the electric signal corresponding to the emitted light includes the signal Ib corresponding to the background light in the state where the foreign matter is not contained and the scattered light from the foreign matter in the state where the foreign matter is contained.
  • Corresponding signal Is (more specifically, signal Is corresponding to the background light and the scattered light scattered by the foreign matter) may be included.
  • the signal Ib corresponding to the background light may include a component corresponding to the scattered light from a substance (for example, the above-mentioned base polymer or the like) usually contained in the treatment liquid and a component corresponding to the disturbance.
  • the foreign matter determination unit 104 determines that the treatment liquid contains a foreign matter when the signal strength is larger than a predetermined threshold value Th.
  • the foreign matter determination unit 104 determines that the processing liquid does not contain foreign matter when the signal strength is equal to or less than a predetermined threshold value Th.
  • the threshold value Th is a value set in advance in consideration of the intensity of the scattered light when the irradiation light is scattered by the foreign matter in the treatment liquid.
  • the foreign matter determination unit 104 may determine the presence or absence of foreign matter in the processing liquid at each sampling cycle in which the signal acquisition unit 102 acquires the signal strength.
  • the processing information acquisition unit 106 acquires information on the processing executed by the liquid processing unit U1 (hereinafter, referred to as “processing information”) from the control device 18.
  • the processing information includes, for example, information indicating a nozzle (processing liquid to be detected for foreign matter) to be discharged in the liquid processing unit U1 and information indicating a supply start timing and supply time of the processing liquid.
  • the processing information acquisition unit 106 may acquire processing information from the control device 18 before the start of supply of the processing liquid for each processing using one processing liquid.
  • the drive control unit 108 moves the irradiation unit 74 and the light receiving unit 76 by moving the slide base 84 by the drive unit 80 between the processing liquid flow path forming unit 62A and the processing liquid flow path forming unit 62L.
  • the drive control unit 108 is driven to, for example, a position corresponding to the processing liquid flow path 64 through which the processing liquid passes among the processing liquid flow path forming units 62A to 62L according to the processing liquid to be detected indicated by the processing information.
  • the irradiation unit 74 and the light receiving unit 76 are moved by the unit 80.
  • the drive control unit 108 may move the irradiation unit 74 and the light receiving unit 76 to a position corresponding to the processing liquid flow path 64 by the drive unit 80 before the supply of the processing liquid to be detected is started. ..
  • the intensity information acquisition unit 122 acquires information indicating the intensity of the background light included in the emitted light (hereinafter, referred to as “intensity information”) based on the signal intensity.
  • the intensity information acquisition unit 122 may acquire the time average of the signal intensity included in the predetermined period as intensity information based on the signal intensity acquired by the signal acquisition unit 102 in the predetermined sampling cycle.
  • the intensity information acquisition unit 122 may calculate, for example, the time average of the acquired values of the signal strength included in the predetermined period when the predetermined period has passed.
  • the intensity information acquisition unit 122 may calculate the average value of the acquired values of the signal strength included in the predetermined period as a time average, and may calculate the integrated value obtained by integrating the time change of the signal intensity included in the predetermined period. It may be calculated as a time average.
  • the intensity information acquisition unit 122 may acquire a signal intensity value (instantaneous value) for each sampling cycle as intensity information instead of the time average.
  • the intensity information acquisition unit 122 may acquire the maximum value, the median value, the minimum value, or the most frequent value of the signal intensities obtained in a predetermined period as intensity information.
  • the intensity information acquisition unit 122 may acquire the signal intensity (baseline value) according to the scattered light derived from a substance (for example, the above-mentioned base polymer or the like) normally contained in the treatment liquid as intensity information.
  • the intensity information acquisition unit 122 may acquire the magnitude of a specific frequency component in the frequency distribution obtained by frequency analysis of the signal intensity obtained in a predetermined period as intensity information.
  • the predetermined period may be predetermined by, for example, a worker.
  • the reference information holding unit 112 holds reference information for confirming the state of the discharged processing liquid or the state of the foreign matter detection unit 50 (detection unit 53).
  • the reference information holding unit 112 may hold (store), for example, the intensity of the background light (hereinafter, referred to as “reference intensity”) acquired in the normal state of the treatment liquid and the detection unit 53.
  • the reference strength may be preset in the reference information holding unit 112 by the worker, or the treatment liquid and the detection unit 53 may be subjected to a process of acquiring strength information in a normal state.
  • the condition monitoring unit 124 monitors (determines) whether or not at least one of the treatment liquid and the detection unit 53 is normal by comparing the intensity information acquired by the intensity information acquisition unit 122 with the reference intensity. May be good. If the state of the treatment liquid and the detection unit 53 is constant, it is considered that the intensity of the background light falls within a certain range. However, for example, the intensity of the background light also differs depending on the type of the treatment liquid for which the foreign matter is detected. Further, the intensity of the background light also differs depending on the mixing of another solution with the treatment liquid to be detected for foreign matter or the deterioration of the treatment liquid. Therefore, the condition monitoring unit 124 may monitor whether or not the type of the treatment liquid is appropriate based on the strength information, and the treatment liquid is not deteriorated or another solution is mixed in the treatment liquid. You may monitor if it is not.
  • the state of the optical system included in the detection unit 53 is constant, it is considered that the intensity of the background light falls within a certain range.
  • the intensity of the background light also changes due to a change (deterioration) of the optical system of the detection unit 53 with time.
  • deterioration of the optical system deterioration of the lens performance due to a decrease in the output of the laser light from the light source 72, cloudiness / dirt of the condenser lens, deterioration of the antireflection film, etc., and an optical axis of the optical system due to an external impact or thermal expansion. Misalignment (alignment misalignment) can be mentioned.
  • the condition monitoring unit 124 may monitor the condition of the optical system of the detection unit 53 based on the intensity information.
  • condition monitoring unit 124 may determine that the condition of the treatment liquid and the detection unit 53 is normal when the intensity indicated by the intensity information is included in the range obtained by adding a tolerance to the reference intensity. Frequently, when it is out of the range, it may be determined that at least one of the treatment liquid and the detection unit 53 is not in a normal state.
  • the condition monitoring unit 124 may, for example, perform the above comparison and determination every predetermined period for calculating the time average, or may perform the above comparison and determination for each supply of one treatment liquid. ..
  • the output unit 116 outputs the determination result and the monitoring result to the outside of the foreign matter detection unit 50, respectively.
  • the output unit 116 may output the determination result of foreign matter detection and the monitoring result of at least one of the treatment liquid and the detection unit 53 to the control device 18, respectively, and output to a display or the like that notifies the operator of the result. You may. For example, when the foreign matter determination unit 104 determines that the foreign matter is contained, the output unit 116 outputs an alarm signal indicating that the processing liquid to be monitored contains the foreign matter. Alternatively, when it is determined that at least one of the states of the processing liquid and the detection unit 53 is not normal, the output unit 116 outputs an alarm signal indicating that the state is not normal.
  • the control unit 100 is composed of one or a plurality of control computers.
  • the control unit 100 has a circuit 200 shown in FIG.
  • the circuit 200 includes one or more processors 202, a memory 204, a storage 206, an input / output port 208, and a timer 212.
  • the storage 206 has a computer-readable storage medium, such as a hard disk.
  • the storage medium stores a program for causing the control unit 100 to execute the foreign matter detection method described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 204 temporarily stores the program loaded from the storage medium of the storage 206 and the calculation result by the processor 202.
  • the processor 202 configures each functional module by executing the above program in cooperation with the memory 204.
  • the input / output port 208 inputs / outputs an electric signal to / from the control device 18, the light receiving unit 76, the drive unit 80, and the like in accordance with a command from the processor 202.
  • the timer 212 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle.
  • the hardware configuration of the control unit 100 is not necessarily limited to the one in which each functional module is configured by a program.
  • each functional module of the control unit 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
  • ASIC Application Specific Integrated Circuit
  • FIG. 11 is a flowchart showing an example of a foreign matter detecting method executed in the substrate processing including the supply of the processing liquid once.
  • step S01 for example, the drive control unit 108 moves the slide base 84 by the drive unit 80 to a position corresponding to the processing liquid flow path 64 through which the processing liquid to be detected as a foreign matter indicated by the processing information flows, so that the irradiation unit 74 And the light receiving unit 76 are moved.
  • the processing liquid flow path 64 through which the treatment liquid to be detected as a foreign substance flows is irradiated with irradiation light from the irradiation unit 74, and the light emitted from the treatment liquid flow path 64 is received by the light receiving unit 76.
  • the supply of the processing liquid indicated by the processing information to the work W may be started before the execution of step S01 or at substantially the same timing as step S01.
  • step S02 the signal acquisition unit 102 acquires the signal intensity according to the detection light received by the light receiving unit 76.
  • the foreign matter determination unit 104 determines whether or not the signal strength obtained in step S02 is greater than the threshold value Th. If it is determined in step S03 that the signal strength is greater than the threshold Th (step S03: YES), the control unit 100 executes step S04.
  • step S04 for example, the output unit 116 outputs an alarm signal indicating that the processing liquid to be detected for foreign matter contains foreign matter.
  • step S03: NO the control unit 100 does not execute step S04.
  • step S05 the control unit 100 determines whether or not the supply of the processing liquid to be monitored has been completed.
  • the control unit 100 may determine whether or not the supply of the processing liquid has been completed by measuring the elapsed time from the supply start timing included in the processing information. If it is determined in step S05 that the supply of the processing liquid to be monitored has not been completed (step S05: NO), the control unit 100 repeats the processes of steps S02 and S03. As a result, during the supply period of the processing liquid, monitoring of whether or not foreign matter is contained in the processing liquid is continued, and the signal acquisition unit 102 acquires the signal intensity according to the detected light in a predetermined sampling cycle. do.
  • step S05 If it is determined in step S05 that the supply of the processing liquid to be monitored has been completed (step S05: YES), the control unit 100 executes step S06.
  • step S06 the intensity information acquisition unit 122 acquires intensity information indicating the intensity of the background light included in the light emitted from the processing liquid flow path 64 based on the signal intensity. For example, the intensity information acquisition unit 122 acquires intensity information based on the signal intensity (time change of signal intensity) obtained in the supply period in which step S02 is repeatedly executed. As an example, the intensity information acquisition unit 122 calculates the average value or the integrated value of the signal intensities obtained during the supply period as the intensity information.
  • step S07 the condition monitoring unit 124 compares the intensity information acquired by the intensity information acquisition unit 122 with the reference intensity to determine whether or not at least one of the states of the treatment liquid and the detection unit 53 is normal. You may judge. For example, the condition monitoring unit 124 determines that at least one of the treatment liquid and the detection unit 53 is normal when the intensity indicated by the intensity information is included in the range obtained by adding a tolerance to the reference intensity. Alternatively, if it is out of the range, it may be determined that at least one of the treatment liquid and the detection unit 53 is not in a normal state.
  • step S07 If it is determined in step S07 that at least one of the states of the treatment liquid and the detection unit 53 is not normal (step S07: YES), the control unit 100 executes step S08.
  • step S08 for example, the output unit 116 outputs an alarm signal indicating that the state of at least one of the processing liquid and the detection unit 53 is not normal.
  • step S07: NO the control unit 100 does not execute step S08. This completes a series of foreign matter detection procedures.
  • the control unit 100 may execute the processes of steps S01 to S08 for each substrate process by supplying the process liquid.
  • step S06 the intensity information acquisition unit 122 calculates the average value or the integrated value of the signal strength obtained in the divided period as the intensity information for each divided period obtained by dividing the supply period in chronological order. May be good.
  • the intensity information acquisition unit 122 calculates the average value of the signal intensities obtained in the predetermined period before the period for each one cycle or two or more cycles of the sampling cycle, thereby increasing the intensity of the moving average of the signal intensities. It may be calculated as information.
  • the strength information acquisition unit 122 may repeat the calculation of the strength information at the timing when the step S02 is repeatedly executed instead of the step S06. That is, the intensity information acquisition unit 122 may calculate the intensity information for each sampling cycle. In this case, the condition monitoring unit 124 may determine the state of at least one of the processing liquid and the detection unit 53 for each calculation of the intensity information (for each sampling cycle) instead of step S07. As an example, the intensity information acquisition unit 122 may calculate the moving average of the signal intensity as intensity information by calculating the average value of the signal intensities obtained in the predetermined period before the period for each sampling cycle. .. Alternatively, the intensity information acquisition unit 122 may calculate the average value or the integrated value of the signal intensities obtained from the start of supply of the processing liquid to the period as intensity information for each sampling cycle.
  • the foreign matter detecting unit 50 or the foreign matter detecting method in the foreign matter detecting unit 50 exemplified above in addition to detecting the foreign matter based on the emitted light emitted from the processing liquid flow path 64 by the irradiation of the irradiation light, the background included in the emitted light is included. Light intensity information is acquired. Since the strength information changes based on the state of the detection unit 53 or the treatment liquid, the foreign matter detection unit 50 can confirm whether or not the state of the device or the treatment liquid is normal.
  • the treatment liquid When detecting foreign matter in the treatment liquid based on the light obtained by irradiating the flow path through which the treatment liquid flows with irradiation light, the treatment liquid is detected by detecting whether or not the intensity of the received detection light changes. The presence or absence of foreign matter inside is determined. However, even if the hardware such as the optical system included in the foreign matter detection device is not operating normally or the state of the treatment liquid is different from the normal state, the intensity of the detected light does not change and the inside of the treatment liquid does not change. Can be determined to be free of foreign matter.
  • the state of the processing liquid and the state of the detection unit 53 including the optical system can be confirmed by acquiring the intensity information of the background light, so that the foreign matter detection result is made more reliable. be able to.
  • the signal related to the emitted light emitted from the processing liquid flow path acquired for detecting foreign matter also includes information on the background light. Therefore, the foreign matter detection unit 50 according to the above embodiment can easily check the state of the treatment liquid or the device without providing a configuration for checking the state.
  • the light emitted from the treatment liquid flow path 64 is the light obtained by the irradiation light scattered in the treatment liquid flow path 64.
  • the transmitted light itself transmitted through the processing liquid flow path 64 is not obtained by the detector (light receiving unit 76), and the intensity of the background light is also, for example, when the transmitted light is received (when the detection is performed by forward scattering). Therefore, the change in the intensity of the detected light due to the presence or absence of foreign matter in the treatment liquid can be detected with high accuracy. Therefore, according to the above configuration, it is possible to more reliably detect foreign matter. Further, since the transmitted light itself transmitted through the processing liquid flow path 64 is not obtained, it is easy to detect a minute change in the intensity of the background light.
  • the intensity information acquisition unit 122 acquires the time average of the signal intensity obtained in a predetermined period as intensity information.
  • the intensity of the background light can vary depending on the time of day obtained. Therefore, in this configuration, it is possible to more reliably confirm the state of the apparatus or the treatment liquid based on the time average.
  • the foreign matter determination unit 104 determines whether or not the treatment liquid contains foreign matter during the supply period from the start of supply of the treatment liquid to the work W to the end of supply.
  • the strength information acquisition unit 122 acquires strength information based on the signal strength obtained during the supply period. In this case, the state of the processing liquid or the detection unit 53 can be efficiently confirmed by using the information obtained during the supply period. That is, it is possible to check the state of the treatment liquid or the apparatus without passing the treatment liquid through the treatment liquid for checking the state other than the supply period.
  • the foreign matter detection unit 50 further includes a state monitoring unit 124 that monitors the state of at least one of the processing liquid and the detection unit 53 based on the strength information. In this case, foreign matter can be detected after confirming the state of the detection unit 53 or the treatment liquid. Therefore, the detection result of the foreign matter can be made more reliable.
  • the coating / developing device 2 provided with the foreign matter detecting unit 50, it is possible to confirm the state of the foreign matter detecting unit 50 and whether or not the processing liquid is normal, and the supply unit 36 detects the foreign matter in the processing liquid. Therefore, it is possible to detect a defect of the work W due to a foreign substance at an early stage.
  • the light receiving unit 76 may include a plurality of light receiving elements 94 arranged side by side in the direction (horizontal direction) in which the processing liquid flow path forming units 62A to 62L are arranged or in the vertical direction.
  • the light receiving unit 76 may include a plurality of light receiving elements 94 two-dimensionally arranged in the horizontal direction and the vertical direction.
  • the light receiving unit 76 may include a photodiode array in which photodiodes are arranged one-dimensionally or two-dimensionally.
  • the light receiving unit 76 may output a plurality of electric signals obtained from each of the plurality of light receiving elements 94 to the control unit 100.
  • the signal acquisition unit 102 may acquire the signal strength for each electric signal from each light receiving element 94.
  • the reference information holding unit 112 may acquire intensity information indicating the intensity of the background light for each of the signal intensities obtained from the plurality of light receiving elements 94. That is, the reference information holding unit 112 may acquire intensity information for each light receiving position where the light receiving element 94 is provided.
  • the condition monitoring unit 124 may monitor the deviation of the optical axis of the optical system included in the detection unit 53 based on the intensity information for each light receiving position.
  • condition monitoring unit 124 determines whether or not the difference in intensity indicated by the intensity information is larger than a predetermined value at a plurality of light receiving positions arranged in one direction, thereby shifting the optical axis of the optical system (for example, collecting). The deviation of the focal position of the optical lens) may be monitored.
  • the flow rate (flow velocity) of the treatment liquid changes.
  • the intensity of the background light contained in the emitted light also changes. Therefore, in the supply period from the start of supply of the treatment liquid to the stop of supply, the time change of the intensity of the background light changes according to the time change of the flow rate (flow velocity) in the supply period.
  • the condition monitoring unit 124 monitors whether or not the treatment liquid is normally discharged (whether the flow rate of the treatment liquid is within the set range) according to the time change of the background light intensity during the supply period. May be good.
  • the intensity information acquisition unit 122 may perform a correction process for removing the influence of the signal Is based on the scattered light from the foreign matter. For example, the intensity information acquisition unit 122 may exclude the signal intensity as an abnormal value when the signal intensity is larger than the same value or a different value (another threshold value) from the threshold value Th. Alternatively, the intensity information acquisition unit 122 may exclude the signal intensity as an abnormal value when the difference between the signal intensity and the calculated moving average is larger than a predetermined value.
  • the state of the processing liquid and the detection unit 53 is monitored by the control unit 100, but the state may be monitored by an operator instead of the control unit 100.
  • the control unit 100 may output the acquired (calculated) background light intensity information to the outside, and the worker monitors the state by comparing the output intensity information with the reference information. May be good.
  • At least a part of the processing liquid flow path 64 flowing through the block body 66 may be formed so as to extend in a direction other than the horizontal direction and the vertical direction.
  • the inflow port 64a and the outflow port 64b of the treatment liquid flow path 64 may be formed on different surfaces of the block body.
  • the treatment liquid flow paths 64 of the treatment liquid flow path forming portions 62A to 62L may be configured to be different from each other.
  • the treatment liquid flow path forming portions 62A to 62L may include a liquid passage pipe for supply through which the treatment liquid flows, instead of the block main body 66.
  • the treatment liquid flow path 64 may be a flow path in the liquid passage pipe for supply.
  • the liquid passage tube may be made of a material capable of transmitting irradiation light (for example, quartz or sapphire).
  • the foreign matter detection unit 50 may have one treatment liquid flow path forming portion instead of the treatment liquid flow path forming portions 62A to 62L.
  • the foreign matter detection unit 50 may include a drive unit for irradiation that moves the irradiation unit 74 along the Y-axis direction and a drive unit for light reception that moves the light-receiving unit 76 along the Y-axis direction. These two drive units may be configured to move the irradiation unit 74 and the light receiving unit 76 along the Y-axis direction.
  • the irradiation unit 74 includes the light source 72, and the irradiation light may be applied to the treatment liquid flow paths 64 of the treatment liquid flow path forming units 62A to 62L, respectively, without passing through the optical member 82.
  • the light receiving unit 76 may receive a part of the transmitted light obtained by transmitting the irradiation light from the irradiation unit 74 through the processing liquid flow path 64.
  • the irradiation unit 74 and the light receiving unit 76 may be arranged so as to sandwich the processing liquid flow path forming units 62A to 62L in the vertical direction (Z-axis direction).
  • the intensity information acquisition unit 122 acquires the intensity information of the background light based on the signal intensity of the scattered light obtained during the supply period of the processing liquid, but is obtained in a state where the processing liquid is not supplied.
  • the strength information may be acquired based on the signal strength.
  • the treatment liquid flow path 64 is filled with the treatment liquid (the treatment liquid exists in the treatment liquid flow path 64), and the work W is processed.
  • Intensity information may be acquired based on the signal intensity obtained in the state where the liquid is not supplied. For example, after the on-off valve V shown in FIG.
  • the signal acquisition unit 102 may acquire the signal intensity according to the scattered light from the processing liquid flow path 64 in which the flow of the processing liquid is stopped inside, and the intensity is based on the signal intensity.
  • the information acquisition unit 122 may acquire strength information.
  • the intensity information acquisition unit 122 acquires the intensity information based on the signal intensity in the above-mentioned supply period and the intensity information based on the signal intensity in the non-supply period when the processing liquid is not supplied. Either one of the above may be performed, or both may be performed.
  • the control unit 100 determines that the length between one supply period and the next supply period (the length of the non-supply period) is longer than the predetermined time. In this case, the strength information based on the signal strength in the non-supply period may be acquired.
  • the period during which the treatment liquid or the device is not confirmed based on the strength information depends on the length of the non-supply period determined by the treatment schedule.
  • the length of the unconfirmed time can be adjusted without depending on the length determined by the processing schedule.
  • the strength information acquisition unit 122 is based on the signal strength obtained in a state where the treatment liquid flow path 64 is filled with the treatment liquid and the treatment liquid is not supplied to the work W. Get strength information. In this case, since the component of the disturbance that can be contained in the background light can be reduced due to the treatment liquid flowing in the treatment liquid flow path 64, the state of the apparatus or the treatment liquid can be confirmed more accurately.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the coating / developing apparatus 2 illustrated above.
  • the substrate processing apparatus may be any as long as it includes a foreign matter detecting unit 50 that detects foreign matter in the processing liquid supplied to the substrate.
  • the treatment liquid to be monitored by the foreign matter detection unit 50 may be a solution for forming a film other than the resist film (for example, the above-mentioned lower layer film or upper layer film), or a solution for substrate treatment other than film formation. May be good. All or part of the functional modules included in the control unit 100 of the foreign matter detection unit 50 may be executed by the control device 18. In this case, the foreign matter detection device may be configured by the foreign matter detection unit 50 and the control device 18.
  • Substrate processing system 2 ... Coating / developing device, 30 ... Processing liquid supply unit, 32A to 32L ... Nozzle, 36 ... Supply unit, 50 ... Foreign matter detection unit, 53 ... Detection unit, 60 ... Flow path forming unit, 62A -62L ... Processing liquid flow path forming unit, 64 ... Processing liquid flow path, 72 ... Light source, 74 ... Irradiating unit, 76 ... Light receiving unit, 100 ... Control unit, 122 ... Intensity information acquisition unit, 124 ... Condition monitoring unit, U1 ... Liquid processing unit, W ... Work.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An abnormality detection device comprises: a detection unit having a flow path formation part for forming a treatment-liquid flow path through which flows a treatment liquid supplied to a substrate, and a measurement unit configured so as to receive emitted light that has been emitted from the treatment-liquid flow path due to the treatment-liquid flow path having been irradiated with irradiation light from a light source; an abnormality assessment unit that, on the basis of the signal intensity of the emitted light, assesses whether an abnormality is included in the treatment liquid; and an intensity information acquisition unit that, on the basis of the signal intensity, acquires intensity information indicating the intensity of background light included in the emitted light.

Description

異物検出装置、基板処理装置、異物検出方法、及び記憶媒体Foreign matter detection device, substrate processing device, foreign matter detection method, and storage medium
 本開示は、異物検出装置、基板処理装置、異物検出方法、及び記憶媒体に関する。 The present disclosure relates to a foreign matter detection device, a substrate processing device, a foreign matter detection method, and a storage medium.
 特許文献1には、流体中に不溶解物として存在するサブミクロン粒子の検出装置が開示されている。この検出装置は、コヒーレント光源からの光を集光する光学系と、この光学系で集光された光ビームの焦点の近傍に配置され且つ内部を微粒子を含む流体の流れが通過するセルと、光ビームの光路上で且つセルに対して光ビームの光源とは反対側に配置された光検出器と、この光検出器からの電気信号から流体中の微粒子の個数を計測する電気回路とによって構成されている。 Patent Document 1 discloses a detection device for submicron particles existing as an insoluble matter in a fluid. This detection device includes an optical system that collects light from a coherent light source, a cell that is located near the focal point of the light beam focused by this optical system, and a cell through which a flow of fluid containing fine particles passes. By an optical detector arranged on the optical path of the optical beam and on the opposite side of the cell from the light source of the optical beam, and an electric circuit that measures the number of fine particles in the fluid from the electric signal from the optical detector. It is configured.
特開平5-215664号公報Japanese Unexamined Patent Publication No. 5-215664
 本開示は、装置又は処理液の状態が正常であるかどうかを確認することが可能な異物検出装置、基板処理装置、異物検出方法、及び記憶媒体を提供する。 The present disclosure provides a foreign matter detection device, a substrate processing device, a foreign matter detection method, and a storage medium capable of confirming whether or not the state of the device or the treatment liquid is normal.
 一つの例示的実施形態に係る異物検出装置は、基板に供給される処理液が流れる処理液流路を形成する流路形成部と、処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光を受光するように構成された測定部とを有する検出部と、出射光の信号強度に基づいて、処理液内に異物が含まれているかどうかを判定する異物判定部と、信号強度に基づいて、出射光に含まれる背景光の強度を示す強度情報を取得する強度情報取得部と、を備える。 In the foreign matter detection device according to one exemplary embodiment, the flow path forming portion forming the treatment liquid flow path through which the treatment liquid supplied to the substrate flows, and the treatment liquid flow path are irradiated with the irradiation light from the light source. Based on the detection unit having a measuring unit configured to receive the emitted light emitted from the processing liquid flow path and the signal intensity of the emitted light, whether or not the processing liquid contains foreign matter is determined. A foreign matter determination unit for determination and an intensity information acquisition unit for acquiring intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity are provided.
 本開示によれば、装置又は処理液の状態が正常であるかどうかを確認することが可能な異物検出装置、基板処理装置、異物検出方法、及び記憶媒体が提供される。 According to the present disclosure, a foreign matter detecting device, a substrate processing device, a foreign matter detecting method, and a storage medium capable of confirming whether or not the state of the device or the processing liquid is normal are provided.
図1は、基板処理システムの一例を示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing an example of a substrate processing system. 図2は、塗布現像装置の一例を示す模式図である。FIG. 2 is a schematic view showing an example of a coating and developing apparatus. 図3は、液処理ユニットの一例を示す模式図である。FIG. 3 is a schematic view showing an example of the liquid treatment unit. 図4は、液処理ユニットの処理液供給部の一例を示す模式図である。FIG. 4 is a schematic view showing an example of the treatment liquid supply unit of the liquid treatment unit. 図5は、異物検出ユニットの一例を模式的に示す側面図である。FIG. 5 is a side view schematically showing an example of the foreign matter detection unit. 図6は、異物検出ユニットの一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of a foreign matter detection unit. 図7は、異物検出ユニットの一例を模式的に示す側面図である。FIG. 7 is a side view schematically showing an example of the foreign matter detection unit. 図8は、制御部の機能上の構成の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of the functional configuration of the control unit. 図9は、検出光に応じた信号強度の一例を示すグラフである。FIG. 9 is a graph showing an example of signal intensity according to the detected light. 図10は、制御部のハードウェア構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the hardware configuration of the control unit. 図11は、異物検出方法の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a foreign matter detecting method.
 以下、種々の例示的実施形態について説明する。 Hereinafter, various exemplary embodiments will be described.
 一つの例示的実施形態に係る異物検出装置は、基板に供給される処理液が流れる処理液流路を形成する流路形成部と、処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光を受光するように構成された測定部とを有する検出部と、出射光の信号強度に基づいて、処理液内に異物が含まれているかどうかを判定する異物判定部と、信号強度に基づいて、出射光に含まれる背景光の強度を示す強度情報を取得する強度情報取得部と、を備える。 In the foreign matter detection device according to one exemplary embodiment, the flow path forming portion forming the treatment liquid flow path through which the treatment liquid supplied to the substrate flows, and the treatment liquid flow path are irradiated with the irradiation light from the light source. Based on the detection unit having a measuring unit configured to receive the emitted light emitted from the processing liquid flow path and the signal intensity of the emitted light, whether or not the processing liquid contains foreign matter is determined. A foreign matter determination unit for determination and an intensity information acquisition unit for acquiring intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity are provided.
 この異物検出装置では、照射光の照射によって処理液流路から出射される出射光に基づく異物の検出に加えて、出射光に含まれる背景光の強度情報が取得される。強度情報は、検出部又は処理液の状態に基づき変化するので、上記異物検出装置では、装置又は処理液の状態が正常であるかどうかを確認することが可能となる。 In this foreign matter detecting device, in addition to detecting foreign matter based on the emitted light emitted from the processing liquid flow path by the irradiation of the irradiation light, the intensity information of the background light contained in the emitted light is acquired. Since the strength information changes based on the state of the detection unit or the treatment liquid, the foreign matter detection device can confirm whether or not the state of the device or the treatment liquid is normal.
 出射光は、照射光が処理液流路内で散乱した光であってもよい。この場合、処理液内の異物の有無による検出光の強度差が大きいので、異物検出をより確実に行うことが可能となる。 The emitted light may be light in which the irradiation light is scattered in the processing liquid flow path. In this case, since the difference in the intensity of the detected light is large depending on the presence or absence of foreign matter in the treatment liquid, foreign matter can be detected more reliably.
 強度情報取得部は、所定期間に得られる信号強度の時間平均を強度情報として取得してもよい。背景光の強度は得られた時刻に応じて変動し得るので、時間平均に基づくことで、装置又は処理液の状態をより確実に確認することが可能となる。 The intensity information acquisition unit may acquire the time average of the signal intensity obtained in a predetermined period as intensity information. Since the intensity of the background light can fluctuate according to the obtained time, it is possible to more reliably confirm the state of the apparatus or the treatment liquid based on the time average.
 異物判定部は、基板に対する処理液の供給開始から供給終了までの供給期間において、処理液内に異物が含まれているかどうかを判定してもよい。強度情報取得部は、供給期間において得られた信号強度に基づいて、強度情報を取得してもよい。この場合、供給期間に得られた情報を利用して、処理液又は検出部の状態確認を効率的に行うことが可能となる。 The foreign matter determination unit may determine whether or not the treatment liquid contains foreign matter during the supply period from the start of supply of the treatment liquid to the substrate to the end of supply. The strength information acquisition unit may acquire strength information based on the signal strength obtained during the supply period. In this case, it is possible to efficiently check the state of the treatment liquid or the detection unit by using the information obtained during the supply period.
 強度情報取得部は、処理液流路内に処理液が充填されており、且つ基板に対して処理液が供給されていない状態において得られた信号強度に基づいて、強度情報を取得してもよい。この場合、処理液が流れることに起因して背景光に含まれ得る外乱の成分を低減できるので、装置又は処理液の状態をより精度良く確認することができる。 Even if the strength information acquisition unit acquires strength information based on the signal strength obtained when the treatment liquid is filled in the treatment liquid flow path and the treatment liquid is not supplied to the substrate. good. In this case, since the disturbance component that may be contained in the background light due to the flow of the treatment liquid can be reduced, the state of the apparatus or the treatment liquid can be confirmed more accurately.
 異物検出装置は、強度情報に基づいて、処理液及び検出部の少なくとも一方の状態を監視する状態監視部を更に備えてもよい。この場合、装置又は処理液の状態を確認したうえで異物検出を行うことが可能となる。 The foreign matter detection device may further include a condition monitoring unit that monitors the status of at least one of the processing liquid and the detection unit based on the strength information. In this case, it is possible to detect foreign matter after confirming the state of the apparatus or the treatment liquid.
 一つの例示的実施形態に係る基板処理装置は、基板に向けて処理液を吐出するノズルと、ノズルに処理液を供給する供給部とを有する処理液供給部と、処理液が流れる処理液流路を形成する流路形成部と、処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光を受光するように構成された測定部とを有する検出部と、出射光の信号強度に基づいて、処理液内に異物が含まれているかどうかを判定する異物判定部と、信号強度に基づいて、出射光に含まれる背景光の強度を示す強度情報を取得する強度情報取得部と、を備える。この基板処理装置では、上述した異物検出装置と同様に、装置又は処理液の状態が正常であるかどうかを確認することが可能となる。 The substrate processing apparatus according to one exemplary embodiment has a processing liquid supply unit having a nozzle for discharging the processing liquid toward the substrate, a supply unit for supplying the processing liquid to the nozzle, and a processing liquid flow through which the processing liquid flows. It has a flow path forming unit that forms a path, and a measuring unit that is configured to receive the emitted light emitted from the processing liquid flow path when the treatment liquid flow path is irradiated with the irradiation light from the light source. A detection unit, a foreign matter determination unit that determines whether or not foreign matter is contained in the processing liquid based on the signal intensity of the emitted light, and an intensity indicating the intensity of the background light contained in the emitted light based on the signal intensity. It is provided with a strength information acquisition unit for acquiring information. In this substrate processing apparatus, it is possible to confirm whether or not the state of the apparatus or the processing liquid is normal, as in the case of the foreign matter detecting apparatus described above.
 一つの例示的実施形態に係る異物検出方法は、基板に供給される処理液が流れる処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光の信号強度に基づいて、処理液内に異物が含まれているかどうかを判定することと、信号強度に基づいて、出射光に含まれる背景光の強度を示す強度情報を取得することと、を含む。この異物検出方法では、上述した異物検出装置と同様に、装置又は処理液の状態が正常であるかどうかを確認することが可能となる。 In the foreign matter detection method according to one exemplary embodiment, when the treatment liquid flow path through which the treatment liquid supplied to the substrate flows is irradiated with the irradiation light from the light source, the emitted light emitted from the treatment liquid flow path is emitted. Includes determining whether or not foreign matter is contained in the processing liquid based on the signal intensity, and acquiring intensity information indicating the intensity of the background light contained in the emitted light based on the signal intensity. .. In this foreign matter detecting method, it is possible to confirm whether or not the state of the apparatus or the treatment liquid is normal, similarly to the above-mentioned foreign matter detecting apparatus.
 一つの例示的実施形態に係るコンピュータ読み取り可能な記憶媒体は、上記の異物検出方法を装置に実行させるためのプログラムを記憶した記憶媒体である。 The computer-readable storage medium according to one exemplary embodiment is a storage medium that stores a program for causing the device to execute the above-mentioned foreign matter detection method.
 以下、図面を参照して一実施形態について説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。一部の図面にはX軸、Y軸及びZ軸により規定される直交座標系が示される。以下の実施形態では、Z軸が鉛直方向に対応し、X軸及びY軸が水平方向に対応する。 Hereinafter, one embodiment will be described with reference to the drawings. In the description, the same elements or elements having the same function are designated by the same reference numerals, and duplicate description will be omitted. Some drawings show a Cartesian coordinate system defined by the X, Y and Z axes. In the following embodiments, the Z-axis corresponds to the vertical direction and the X-axis and the Y-axis correspond to the horizontal direction.
[基板処理システム]
 図1に示される基板処理システム1(基板処理装置)は、ワークWに対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象のワークWは、例えば基板、あるいは所定の処理が施されることで膜又は回路等が形成された状態の基板である。ワークWに含まれる基板は、一例として、シリコンを含むウェハである。ワークW(基板)は、円形に形成されていてもよい。処理対象のワークWは、ガラス基板、マスク基板、FPD(Flat Panel Display)などであってもよく、これらの基板等に所定の処理が施されて得られる中間体であってもよい。感光性被膜は、例えばレジスト膜である。
[Board processing system]
The substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film, exposes the photosensitive film, and develops the photosensitive film on the work W. The work W to be processed is, for example, a substrate or a substrate in which a film, a circuit, or the like is formed by performing a predetermined process. The substrate included in the work W is, for example, a wafer containing silicon. The work W (board) may be formed in a circular shape. The work W to be processed may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like, or may be an intermediate obtained by subjecting these substrates or the like to a predetermined treatment. The photosensitive film is, for example, a resist film.
 基板処理システム1は、塗布・現像装置2と、露光装置3とを備える。露光装置3は、ワークW(基板)に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布・現像装置2は、露光装置3による露光処理前に、ワークWの表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行い、露光処理後にレジスト膜の現像処理を行う。 The substrate processing system 1 includes a coating / developing device 2 and an exposure device 3. The exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the work W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure. The coating / developing device 2 applies a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure device 3, and develops the resist film after the exposure process.
(基板処理装置)
 以下、基板処理装置の一例として、塗布・現像装置2の構成を説明する。図1及び図2に示されるように、塗布・現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6と、制御装置18とを備える。
(Board processing equipment)
Hereinafter, the configuration of the coating / developing device 2 will be described as an example of the substrate processing device. As shown in FIGS. 1 and 2, the coating / developing device 2 includes a carrier block 4, a processing block 5, an interface block 6, and a control device 18.
 キャリアブロック4は、塗布・現像装置2内へのワークWの導入及び塗布・現像装置2内からのワークWの導出を行う。例えばキャリアブロック4は、ワークW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のワークWを収容する。搬送装置A1は、キャリアCからワークWを取り出して処理ブロック5に渡し、処理ブロック5からワークWを受け取ってキャリアC内に戻す。処理ブロック5は、複数の処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2. For example, the carrier block 4 can support a plurality of carriers C for the work W, and includes a transfer device A1 including a delivery arm. The carrier C accommodates, for example, a plurality of circular workpieces W. The transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C. The processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
 処理モジュール11は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、液処理ユニットU1及び熱処理ユニットU2によりワークWの表面上に下層膜を形成する。液処理ユニットU1は、下層膜形成用の処理液をワークW上に塗布する。熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。 The processing module 11 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 11 forms an underlayer film on the surface of the work W by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 applies a treatment liquid for forming an underlayer film onto the work W. The heat treatment unit U2 performs various heat treatments accompanying the formation of the underlayer film.
 処理モジュール12は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール12は、液処理ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。液処理ユニットU1は、レジスト膜形成用の処理液(レジスト)を下層膜の上に塗布する。熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。 The processing module 12 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 12 forms a resist film on the lower layer film by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 applies a treatment liquid (resist) for forming a resist film on the lower film. The heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
 処理モジュール13は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、液処理ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。液処理ユニットU1は、上層膜形成用の処理液をレジスト膜の上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 13 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 13 forms an upper layer film on the resist film by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 applies a treatment liquid for forming an upper layer film onto the resist film. The heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
 処理モジュール14は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール14は、液処理ユニットU1及び熱処理ユニットU2により、露光処理が施されたレジスト膜の現像処理及び現像処理に伴う熱処理を行う。液処理ユニットU1は、露光済みのワークWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。熱処理の具体例としては、現像処理前の加熱処理(PEB:Post Exposure Bake)、現像処理後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 14 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The processing module 14 is subjected to the development treatment of the exposed resist film and the heat treatment associated with the development treatment by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 develops a resist film by applying a developing solution on the surface of the exposed work W and then rinsing it with a rinsing solution. The heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment include heat treatment (PEB: Post Exposure Bake) before development treatment, heat treatment (PB: Post Bake) after development treatment, and the like.
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でワークWを昇降させる。 A shelf unit U10 is provided on the carrier block 4 side in the processing block 5. The shelf unit U10 is divided into a plurality of cells arranged in the vertical direction. A transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でワークWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたワークWを露光装置3に渡す。搬送装置A8は、露光装置3からワークWを受け取って棚ユニットU11に戻す。 The interface block 6 transfers the work W to and from the exposure apparatus 3. For example, the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3. The transport device A8 passes the work W arranged on the shelf unit U11 to the exposure device 3. The transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
 制御装置18は、例えば以下の手順で塗布・現像処理を実行するように塗布・現像装置2を制御する。まず制御装置18は、キャリアC内のワークWを棚ユニットU10に搬送するように搬送装置A1を制御し、このワークWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。 The control device 18 controls the coating / developing device 2 so as to execute the coating / developing process in the following procedure, for example. First, the control device 18 controls the transfer device A1 so as to transfer the work W in the carrier C to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 11.
 次に制御装置18は、棚ユニットU10のワークWを処理モジュール11内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置18は、このワークWの表面上に下層膜を形成するように、液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置18は、下層膜が形成されたワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール12用のセルに配置するように搬送装置A7を制御する。 Next, the control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 11. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an underlayer film on the surface of the work W. After that, the control device 18 controls the transfer device A3 so as to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 12. ..
 次に制御装置18は、棚ユニットU10のワークWを処理モジュール12内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置18は、このワークWの表面に対してレジスト膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置18は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール13用のセルに配置するように搬送装置A7を制御する。 Next, the control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a resist film on the surface of the work W. After that, the control device 18 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 13.
 次に制御装置18は、棚ユニットU10のワークWを処理モジュール13内の各ユニットに搬送するように搬送装置A3を制御する。また、制御装置18は、このワークWのレジスト膜上に上層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置18は、ワークWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 18 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 18 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 18 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
 次に制御装置18は、棚ユニットU11のワークWを露光装置3に送り出すように搬送装置A8を制御する。その後制御装置18は、露光処理が施されたワークWを露光装置3から受け入れて、棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 18 controls the transport device A8 so as to send the work W of the shelf unit U11 to the exposure device 3. After that, the control device 18 controls the transfer device A8 so as to receive the exposed work W from the exposure device 3 and arrange it in the cell for the processing module 14 in the shelf unit U11.
 次に制御装置18は、棚ユニットU11のワークWを処理モジュール14内の各ユニットに搬送するように搬送装置A3を制御し、このワークWのレジスト膜に現像処理を施すように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置18は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上で1枚のワークWについての塗布・現像処理が完了する。制御装置18は、後続の複数枚のワークWそれぞれについても、上記塗布・現像処理を塗布・現像装置2に実行させる。 Next, the control device 18 controls the transport device A3 so as to transport the work W of the shelf unit U11 to each unit in the processing module 14, and the liquid processing unit U1 so as to develop the resist film of the work W. And control the heat treatment unit U2. After that, the control device 18 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C. This completes the coating / developing process for one piece of work W. The control device 18 causes the coating / developing device 2 to execute the coating / developing process for each of the subsequent plurality of workpieces W.
(液処理ユニット)
 続いて、図3及び図4を参照して液処理ユニットU1の一例を詳細に説明する。ここでは、レジスト膜を形成する処理モジュール12における液処理ユニットU1を例に説明する。液処理ユニットU1は、図3に示されるように、回転保持部20と、処理液供給部30とを有する。
(Liquid processing unit)
Subsequently, an example of the liquid treatment unit U1 will be described in detail with reference to FIGS. 3 and 4. Here, the liquid treatment unit U1 in the treatment module 12 for forming the resist film will be described as an example. As shown in FIG. 3, the liquid treatment unit U1 has a rotation holding unit 20 and a processing liquid supply unit 30.
 回転保持部20は、制御装置18の動作指示に基づいて、ワークWを保持して回転させる。回転保持部20は、例えば保持部22と、回転駆動部24とを有する。保持部22は、表面Waを上にして水平に配置されたワークWの中心部を支持し、当該ワークWを例えば真空吸着等により保持する。回転駆動部24は、例えば電動モータ等の動力源を含むアクチュエータであり、鉛直な軸線Axまわりに保持部22を回転させる。これにより、保持部22上のワークWが回転する。 The rotation holding unit 20 holds and rotates the work W based on the operation instruction of the control device 18. The rotation holding unit 20 has, for example, a holding unit 22 and a rotation driving unit 24. The holding portion 22 supports the central portion of the work W arranged horizontally with the surface Wa facing up, and holds the work W by, for example, vacuum suction. The rotation drive unit 24 is an actuator including a power source such as an electric motor, and rotates the holding unit 22 around the vertical axis Ax. As a result, the work W on the holding portion 22 rotates.
 処理液供給部30は、制御装置18の動作指示に基づいて、ワークWの表面Waに向けて処理液を吐出することで、当該表面Waに処理液を供給する。処理液供給部30により供給される処理液は、ワークWに対する処理に用いられる基板処理用の溶液である。処理液の一種として、レジスト膜の形成に用いられる溶液(レジスト)、及びレジストに対する表面Waの濡れ性を高めるプリウェット処理に用いられる溶液(例えば、シンナー)が挙げられる。処理液供給部30は、例えば、複数のノズル32と、保持ヘッド34と、供給部36とを有する。 The treatment liquid supply unit 30 supplies the treatment liquid to the surface Wa of the work W by discharging the treatment liquid toward the surface Wa of the work W based on the operation instruction of the control device 18. The treatment liquid supplied by the treatment liquid supply unit 30 is a substrate processing solution used for processing the work W. Examples of the treatment liquid include a solution (resist) used for forming a resist film and a solution (for example, thinner) used for a pre-wet treatment for enhancing the wettability of the surface Wa with respect to the resist. The processing liquid supply unit 30 has, for example, a plurality of nozzles 32, a holding head 34, and a supply unit 36.
 複数のノズル32は、保持部22に保持されたワークWの表面Waに処理液をそれぞれ吐出する。複数のノズル32は、例えば、保持ヘッド34に保持された状態でワークWの上方に配置されており、処理液を下方に向けて個別に吐出する。保持ヘッド34は、不図示の駆動部によって、ワークWの表面Waに沿った方向に移動可能に構成されていてもよい。複数のノズル32の個数は限定されないが、以下では、処理液供給部30が12個のノズル32(以下、「ノズル32A~32L」という。)を有する場合を例に説明する。 The plurality of nozzles 32 each discharge the treatment liquid onto the surface Wa of the work W held by the holding portion 22. The plurality of nozzles 32 are arranged above the work W while being held by the holding head 34, for example, and individually discharge the treatment liquid downward. The holding head 34 may be configured to be movable in a direction along the surface Wa of the work W by a driving unit (not shown). Although the number of the plurality of nozzles 32 is not limited, the case where the processing liquid supply unit 30 has 12 nozzles 32 (hereinafter, referred to as “nozzles 32A to 32L”) will be described below as an example.
 ノズル32A~32Lそれぞれには、供給部36から処理液が供給される。ノズル32A~32Lには、互いに異なる種類の処理液が供給部36から供給されてもよい。一例として、ノズル32A~32Jに互いに異なる種類のレジストが、供給部36からそれぞれ供給され、ノズル32K,32Lに互いに異なる種類のシンナーが、供給部36からそれぞれ供給される。 The processing liquid is supplied from the supply unit 36 to each of the nozzles 32A to 32L. Different types of treatment liquids may be supplied to the nozzles 32A to 32L from the supply unit 36. As an example, different types of resists are supplied to the nozzles 32A to 32J from the supply unit 36, and different types of thinner are supplied to the nozzles 32K and 32L from the supply unit 36, respectively.
 図4に示されるように、供給部36は、複数の供給管42A~42Lと、複数の供給源44A~44Lとを含む。供給管42Aは、ノズル32Aに供給する(ノズル32Aから吐出される)処理液の液源である供給源44Aとノズル32Aとの間の流路を形成する。供給源44Aは、例えば、処理液が貯留されるボトルと、当該ボトルからノズル32Aに向けて処理液を圧送するポンプとを含む。供給管42B~42Lも、供給管42Aと同様に、処理液の液源である供給源44B~44Lとノズル32B~32Lとの間の流路をそれぞれ形成する。 As shown in FIG. 4, the supply unit 36 includes a plurality of supply pipes 42A to 42L and a plurality of supply sources 44A to 44L. The supply pipe 42A forms a flow path between the supply source 44A, which is a liquid source of the processing liquid supplied to the nozzle 32A (discharged from the nozzle 32A), and the nozzle 32A. The supply source 44A includes, for example, a bottle in which the treatment liquid is stored and a pump for pumping the treatment liquid from the bottle toward the nozzle 32A. Similar to the supply pipes 42A, the supply pipes 42B to 42L also form flow paths between the supply sources 44B to 44L, which are the liquid sources of the treatment liquid, and the nozzles 32B to 32L, respectively.
 供給部36は、複数の供給管42A~42Lにそれぞれ設けられる複数の開閉バルブVを更に含む。開閉バルブVは、制御装置18の動作指示に基づいて、開状態又は閉状態に切り替わる。複数の開閉バルブVの開閉状態が切り替わることで、供給管42A~42Lの流路がそれぞれ開閉する。例えば、開閉バルブVが開状態になると、供給管42A~42Lの流路内に処理液が流れ、ノズル32A~32Lから処理液がワークWの表面Waに吐出される。 The supply unit 36 further includes a plurality of on-off valves V provided in each of the plurality of supply pipes 42A to 42L. The on-off valve V switches to the open state or the closed state based on the operation instruction of the control device 18. By switching the open / closed state of the plurality of open / close valves V, the flow paths of the supply pipes 42A to 42L are opened and closed respectively. For example, when the on-off valve V is opened, the processing liquid flows into the flow paths of the supply pipes 42A to 42L, and the processing liquid is discharged from the nozzles 32A to 32L to the surface Wa of the work W.
(異物検出ユニット)
 塗布・現像装置2は、ワークWに供給される処理液に含まれる異物(パーティクル)を検出するように構成された異物検出ユニット50(異物検出装置)を更に備える。異物検出ユニット50は、例えば、複数の供給管42A~42Lの流路を流れる処理液内の異物をそれぞれ検出するように構成されている。異物検出ユニット50は、液処理ユニットU1の近傍に配置されてもよく、液処理ユニットU1の筐体内に配置されてもよい。異物検出ユニット50の一部の要素は、供給管42A~42Lの流路上の開閉バルブVとノズル32A~32Lとの間に設けられてもよい。以下では、図5~図10も参照して、異物検出ユニット50の一例について説明する。
(Foreign matter detection unit)
The coating / developing device 2 further includes a foreign matter detecting unit 50 (foreign matter detecting device) configured to detect foreign matter (particles) contained in the processing liquid supplied to the work W. The foreign matter detection unit 50 is configured to detect foreign matter in the processing liquid flowing through the flow paths of the plurality of supply pipes 42A to 42L, for example. The foreign matter detection unit 50 may be arranged in the vicinity of the liquid treatment unit U1 or may be arranged in the housing of the liquid treatment unit U1. Some elements of the foreign matter detection unit 50 may be provided between the on-off valve V on the flow path of the supply pipes 42A to 42L and the nozzles 32A to 32L. Hereinafter, an example of the foreign matter detection unit 50 will be described with reference to FIGS. 5 to 10.
 異物検出ユニット50は、供給管42A~42Lを流れる処理液をそれぞれ流通させる流路(以下、「処理液流路」という。)を形成する。異物検出ユニット50は、処理液流路に照射光(例えば、レーザ光)を照射することで発生する光を受光することで、処理液流路を流れる処理液内の異物を検出する。図5に示されるように、異物検出ユニット50は、例えば、筐体52と、検出部53とを有する。筐体52は、上壁54aと、底壁54bと、側壁56a~56dとを含んでいる(図7も参照)。一例として、上壁54a及び底壁54bはそれぞれ水平に(X-Y平面に沿って)配置される。また、側壁56a,56bはそれぞれY軸方向に沿って垂直に(Y-Z平面に沿って)配置され、X軸方向(第1方向)において対向する。また、側壁56c,56dはそれぞれX軸方向に沿って垂直に(X-Z平面に沿って)配置され、Y軸方向(第2方向)において対向する。筐体52は、検出部53を収容する。検出部53は、流路形成部60と、測定部70とを有する。 The foreign matter detection unit 50 forms a flow path (hereinafter, referred to as “treatment liquid flow path”) through which the treatment liquid flowing through the supply pipes 42A to 42L is circulated. The foreign matter detection unit 50 detects foreign matter in the processing liquid flowing through the treatment liquid flow path by receiving the light generated by irradiating the treatment liquid flow path with irradiation light (for example, laser light). As shown in FIG. 5, the foreign matter detection unit 50 includes, for example, a housing 52 and a detection unit 53. The housing 52 includes an upper wall 54a, a bottom wall 54b, and side walls 56a to 56d (see also FIG. 7). As an example, the upper wall 54a and the bottom wall 54b are arranged horizontally (along the XY plane), respectively. Further, the side walls 56a and 56b are arranged vertically (along the YY plane) along the Y-axis direction, and face each other in the X-axis direction (first direction). Further, the side walls 56c and 56d are arranged vertically (along the XX plane) along the X-axis direction and face each other in the Y-axis direction (second direction). The housing 52 accommodates the detection unit 53. The detection unit 53 includes a flow path forming unit 60 and a measuring unit 70.
 流路形成部60は、供給管42A~42Lの流路上にそれぞれ設けられる複数の処理液流路を形成する。流路形成部60が形成する複数の処理液流路のそれぞれは、当該処理液流路を流れる処理液に含まれる異物を検出するために用いられる。流路形成部60は、例えば、図6に示されるように、複数の処理液流路形成部62A~62Lを有する。複数の処理液流路形成部62A~62Lは、互いに同様に構成されている。以下では、処理液流路形成部62Aを例に処理液流路形成部の詳細について説明する。 The flow path forming unit 60 forms a plurality of processing liquid flow paths provided on the flow paths of the supply pipes 42A to 42L, respectively. Each of the plurality of treatment liquid flow paths formed by the flow path forming unit 60 is used for detecting foreign matter contained in the treatment liquid flowing through the treatment liquid flow path. The flow path forming portion 60 has, for example, a plurality of processing liquid flow path forming portions 62A to 62L as shown in FIG. The plurality of processing liquid flow path forming portions 62A to 62L are configured in the same manner as each other. Hereinafter, the details of the treatment liquid flow path forming portion will be described by taking the treatment liquid flow path forming portion 62A as an example.
 図5に示されるように、処理液流路形成部62Aは、供給源44Aとノズル32Aとを接続する供給管42Aの流路上に処理液流路64を形成する(図4も参照)。処理液流路64の上流側及び下流側の端部は、供給管42Aに接続されている。これにより、供給源44Aから圧送される処理液は、供給管42Aの流路の一部、処理液流路形成部62Aの処理液流路64、及び供給管42Aの流路の残りの一部をこの順で通り、ノズル32AからワークWの表面Waに吐出される。 As shown in FIG. 5, the treatment liquid flow path forming unit 62A forms the treatment liquid flow path 64 on the flow path of the supply pipe 42A connecting the supply source 44A and the nozzle 32A (see also FIG. 4). The upstream and downstream ends of the treatment liquid flow path 64 are connected to the supply pipe 42A. As a result, the treatment liquid pumped from the supply source 44A is a part of the flow path of the supply pipe 42A, the treatment liquid flow path 64 of the treatment liquid flow path forming portion 62A, and the remaining part of the flow path of the supply pipe 42A. Is discharged from the nozzle 32A to the surface Wa of the work W in this order.
 処理液流路形成部62Aは、例えば、内部に処理液流路64が形成されているブロック本体66を含む。ブロック本体66は、異物検出の際に用いられるレーザ光を透過可能な材料によって構成されている。ブロック本体66を構成する材料として、例えば、石英及びサファイヤが挙げられる。ブロック本体66は、直方体状に形成されていてもよく、ブロック本体66の一面が側壁56aと対向していてもよい。一例として、ブロック本体66のうちの側壁56aと対向する面に、処理液流路64の流入口64a及び流出口64bが形成される。流入口64aは、流出口64bの下方に位置していてもよい。 The treatment liquid flow path forming unit 62A includes, for example, a block body 66 in which the treatment liquid flow path 64 is formed. The block body 66 is made of a material capable of transmitting laser light used for detecting foreign matter. Examples of the material constituting the block body 66 include quartz and sapphire. The block body 66 may be formed in a rectangular parallelepiped shape, or one surface of the block body 66 may face the side wall 56a. As an example, the inflow port 64a and the outflow port 64b of the treatment liquid flow path 64 are formed on the surface of the block body 66 facing the side wall 56a. The inflow port 64a may be located below the outflow port 64b.
 処理液流路64は、例えば、第1流路68aと、第2流路68bと、第3流路68cとを含む。第1流路68aは、底壁54bに沿って水平方向に(図示ではX軸方向に沿って)延びるように形成されている。第1流路68aの側壁56aに近い一端は流入口64aを構成し、第1流路68aの側壁56bに近い他端は第2流路68bに接続されている。第2流路68bは、鉛直方向において側壁56aに沿って(Z軸方向に沿って)延びるように形成されている。第2流路68bの底壁54bに近い一端は第1流路68aに接続され、第2流路68bの上壁54aに近い他端は第3流路68cに接続されている。第3流路68cは、底壁54bに沿って水平方向に(X軸方向に沿って)延びるように形成されている。第3流路68cの側壁56bに近い一端は第2流路68bに接続されており、第3流路68cの側壁56aに近い他端は流出口64bを構成する。 The treatment liquid flow path 64 includes, for example, a first flow path 68a, a second flow path 68b, and a third flow path 68c. The first flow path 68a is formed so as to extend horizontally (along the X-axis direction in the figure) along the bottom wall 54b. One end of the first flow path 68a near the side wall 56a constitutes an inflow port 64a, and the other end of the first flow path 68a near the side wall 56b is connected to the second flow path 68b. The second flow path 68b is formed so as to extend along the side wall 56a (along the Z-axis direction) in the vertical direction. One end of the second flow path 68b near the bottom wall 54b is connected to the first flow path 68a, and the other end of the second flow path 68b near the upper wall 54a is connected to the third flow path 68c. The third flow path 68c is formed so as to extend horizontally (along the X-axis direction) along the bottom wall 54b. One end of the third flow path 68c near the side wall 56b is connected to the second flow path 68b, and the other end of the third flow path 68c near the side wall 56a constitutes an outlet 64b.
 流入口64aには、供給管42Aのうちの処理液流路形成部62Aよりも上流側の供給管(以下、「上流側供給管46」という。)が接続されている。流出口64bには、供給管42Aのうちの処理液流路形成部62Aよりも下流側の供給管(以下、「下流側供給管48」という。)が接続されている。上流側供給管46及び下流側供給管48は、ブロック本体66が対向する側壁56aを貫通している。以上の構成により、供給源44Aから送り出される処理液は、上流側供給管46、第1流路68a、第2流路68b、第3流路68c、及び下流側供給管48をこの順に通り、ノズル32AからワークWに供給される。 A supply pipe (hereinafter referred to as "upstream supply pipe 46") on the upstream side of the treatment liquid flow path forming portion 62A of the supply pipe 42A is connected to the inflow port 64a. A supply pipe (hereinafter, referred to as “downstream side supply pipe 48”) on the downstream side of the treatment liquid flow path forming portion 62A of the supply pipe 42A is connected to the outflow port 64b. The upstream side supply pipe 46 and the downstream side supply pipe 48 penetrate the side wall 56a on which the block main body 66 faces. With the above configuration, the processing liquid sent out from the supply source 44A passes through the upstream side supply pipe 46, the first flow path 68a, the second flow path 68b, the third flow path 68c, and the downstream side supply pipe 48 in this order. It is supplied to the work W from the nozzle 32A.
 上述したように、図6に示される処理液流路形成部62A~62Lは、互いに同様に構成されている。したがって、処理液流路形成部62B~62Lは、処理液流路形成部62Aと同様に、内部に処理液流路64が形成されているブロック本体66をそれぞれ含んでいる。処理液流路形成部62B~62Lそれぞれの処理液流路64は、第1流路68a、第2流路68b、及び第3流路68cを含んでいる。処理液流路形成部62B~62Lの流入口64a(第1流路68a)には、供給管42B~42Lの上流側供給管46がそれぞれ接続される。処理液流路形成部62B~62Lの流出口64b(第3流路68c)には、供給管42B~42Lの下流側供給管48がそれぞれ接続される。 As described above, the treatment liquid flow path forming portions 62A to 62L shown in FIG. 6 are configured in the same manner as each other. Therefore, the treatment liquid flow path forming portions 62B to 62L each include a block main body 66 in which the treatment liquid flow path 64 is formed, similarly to the treatment liquid flow path forming portion 62A. Each of the treatment liquid flow paths 64 of the treatment liquid flow path forming portions 62B to 62L includes a first flow path 68a, a second flow path 68b, and a third flow path 68c. The upstream supply pipes 46 of the supply pipes 42B to 42L are connected to the inflow ports 64a (first flow paths 68a) of the treatment liquid flow path forming portions 62B to 62L, respectively. The downstream supply pipes 48 of the supply pipes 42B to 42L are connected to the outlets 64b (third flow paths 68c) of the treatment liquid flow path forming portions 62B to 62L, respectively.
 処理液流路形成部62A~62Lは、それぞれが側壁56aに対向した状態で、側壁56dから側壁56cに向かう方向に沿って(Y軸方向に沿って)並んで配列されている。処理液流路形成部62A~62Lは、互いに間隔を有した状態でこの順に配列されていてもよい。処理液流路形成部62A~62Lの第1流路68aの高さ位置(Z軸方向における位置)は互いに略一致していてもよい。処理液流路形成部62A~62Lの第2流路68bの側壁56aからの距離(X軸方向における位置)は互いに略一致していてもよい。処理液流路形成部62A~62Lの第3流路68cの高さ位置(底壁54bからの距離)は、互いに略一致していてもよい。 The treatment liquid flow path forming portions 62A to 62L are arranged side by side (along the Y-axis direction) along the direction from the side wall 56d to the side wall 56c in a state where each of the treatment liquid flow path forming portions 62A to 62L faces the side wall 56a. The treatment liquid flow path forming portions 62A to 62L may be arranged in this order with a distance from each other. The height positions (positions in the Z-axis direction) of the first flow paths 68a of the treatment liquid flow path forming portions 62A to 62L may be substantially coincident with each other. The distances (positions in the X-axis direction) of the second flow paths 68b of the treatment liquid flow path forming portions 62A to 62L from the side wall 56a may be substantially the same as each other. The height positions (distance from the bottom wall 54b) of the third flow path 68c of the treatment liquid flow path forming portions 62A to 62L may be substantially the same as each other.
 図5に戻り、測定部70は、処理液流路64に光源72からの照射光が照射されることで当該処理液流路64から出射される出射光を受光するように構成されている。測定部70は、例えば、光源72と、照射部74と、受光部76と、保持部78と、駆動部80とを有する。光源72は、処理液内の異物を検出するための照射光としてレーザ光を生成する。光源72は、例えば、波長400nm~600nm程度、出力600mW~1000mW程度のレーザ光を出射する。光源72は、例えば、図7に示されるように、底壁54b上に設けられ、処理液流路形成部62A~62Lよりも下に配置される。光源72は、一例として、側壁56dから側壁56cに向かう方向(Y軸負方向)にレーザ光を出射する。光源72は、Y軸方向において処理液流路形成部62Aとは異なる位置に配置される。光源72は、Y軸方向において処理液流路形成部62Aと離間して配置される。Y軸方向において、例えば光源72、及び処理液流路形成部62A~62Lがこの順で並ぶように配置される。 Returning to FIG. 5, the measuring unit 70 is configured to receive the emitted light emitted from the processing liquid flow path 64 by irradiating the processing liquid flow path 64 with the irradiation light from the light source 72. The measuring unit 70 includes, for example, a light source 72, an irradiation unit 74, a light receiving unit 76, a holding unit 78, and a driving unit 80. The light source 72 generates laser light as irradiation light for detecting foreign matter in the processing liquid. The light source 72 emits, for example, a laser beam having a wavelength of about 400 nm to 600 nm and an output of about 600 mW to 1000 mW. The light source 72 is provided on the bottom wall 54b, for example, as shown in FIG. 7, and is arranged below the treatment liquid flow path forming portions 62A to 62L. As an example, the light source 72 emits a laser beam in a direction (Y-axis negative direction) from the side wall 56d toward the side wall 56c. The light source 72 is arranged at a position different from that of the processing liquid flow path forming portion 62A in the Y-axis direction. The light source 72 is arranged apart from the processing liquid flow path forming portion 62A in the Y-axis direction. In the Y-axis direction, for example, the light source 72 and the treatment liquid flow path forming portions 62A to 62L are arranged so as to be arranged in this order.
 照射部74は、処理液流路形成部62A~62Lの処理液流路64に向けて光源72からの照射光をそれぞれ照射するように構成されている。照射部74は、例えば、処理液流路形成部62A~62Lの処理液流路64に向けて照射光を個別に照射するように構成されている。照射部74は、処理液流路64の下方に配置されてもよい。照射部74は、例えば、光源72からの照射光の向きを変えることで、処理液流路64に向けて照射光をそれぞれ照射するように構成された光学部材82を有する。 The irradiation unit 74 is configured to irradiate the irradiation light from the light source 72 toward the treatment liquid flow path 64 of the treatment liquid flow path forming units 62A to 62L, respectively. The irradiation unit 74 is configured to individually irradiate the irradiation light toward the treatment liquid flow path 64 of the treatment liquid flow path forming units 62A to 62L, for example. The irradiation unit 74 may be arranged below the treatment liquid flow path 64. The irradiation unit 74 has, for example, an optical member 82 configured to irradiate the irradiation light toward the processing liquid flow path 64 by changing the direction of the irradiation light from the light source 72.
 光学部材82は、例えば、反射部材82aと集光レンズ82bとを含む。反射部材82aの反射面は、Y軸方向において光源72と対向する。反射部材82aの反射面は、光源72から略水平に出射された照射光を上方に向けて反射する。集光レンズ82bは、反射部材82aの上方に配置され、反射部材82aにより反射された照射光を処理液流路64に設定される測定位置に集光する。集光レンズ82bは、例えば、処理液流路64のうちの第1流路68aに設定される測定位置に照射光が照射されるように構成されている。 The optical member 82 includes, for example, a reflection member 82a and a condenser lens 82b. The reflective surface of the reflective member 82a faces the light source 72 in the Y-axis direction. The reflecting surface of the reflecting member 82a reflects the irradiation light emitted substantially horizontally from the light source 72 upward. The condensing lens 82b is arranged above the reflecting member 82a, and condenses the irradiation light reflected by the reflecting member 82a at a measurement position set in the processing liquid flow path 64. The condenser lens 82b is configured so that, for example, the irradiation light is applied to the measurement position set in the first flow path 68a of the treatment liquid flow path 64.
 保持部78は、光学部材82を移動可能に保持する。保持部78は、例えば、ガイドレール88と、スライド台84とを有する。ガイドレール88は、底壁54b上に設けられ、側壁56cから側壁56dに向かう方向に沿って(Y軸方向に沿って)延びるように形成されている。ガイドレール88は、例えば、図7に示すように、Y軸方向に沿って、少なくとも、処理液流路形成部62Aから処理液流路形成部62Lまでの間において延びていてもよい。ガイドレール88は、スライド台84を移動可能に支持している。 The holding portion 78 movably holds the optical member 82. The holding portion 78 has, for example, a guide rail 88 and a slide base 84. The guide rail 88 is provided on the bottom wall 54b and is formed so as to extend in the direction from the side wall 56c toward the side wall 56d (along the Y-axis direction). For example, as shown in FIG. 7, the guide rail 88 may extend along the Y-axis direction from at least the treatment liquid flow path forming portion 62A to the treatment liquid flow path forming portion 62L. The guide rail 88 movably supports the slide base 84.
 スライド台84は、処理液流路形成部62A~62Lよりも下に配置され、光学部材82(反射部材82a)を支持する。スライド台84は、図5に示されるように、ガイドレール88に交差する方向(例えば、X軸方向)に沿って延びるように形成されていてもよい。例えば、スライド台84は、側方から見て、側壁56aに近い一端部が処理液流路形成部62Aの下方に位置し、且つ側壁56bに近い他端部が、処理液流路形成部62Aの位置よりも側壁56b寄りに位置している。一例として、スライド台84の側壁56aに近い一端部に光学部材82が配置されている。 The slide base 84 is arranged below the processing liquid flow path forming portions 62A to 62L and supports the optical member 82 (reflection member 82a). As shown in FIG. 5, the slide base 84 may be formed so as to extend along a direction (for example, the X-axis direction) intersecting the guide rail 88. For example, in the slide table 84, one end near the side wall 56a is located below the treatment liquid flow path forming portion 62A, and the other end near the side wall 56b is the treatment liquid flow path forming portion 62A. It is located closer to the side wall 56b than the position of. As an example, the optical member 82 is arranged at one end of the slide base 84 near the side wall 56a.
 駆動部80は、電動モータ等の動力源により、ガイドレール88に沿ってスライド台84を移動させる。ガイドレール88に沿ってスライド台84が移動することで、Y軸方向に沿って照射部74(光学部材82)が移動する。 The drive unit 80 moves the slide base 84 along the guide rail 88 by a power source such as an electric motor. As the slide base 84 moves along the guide rail 88, the irradiation unit 74 (optical member 82) moves along the Y-axis direction.
 受光部76は、照射部74からの照射光の照射によって、処理液流路形成部62A~62Lの処理液流路64から出射される出射光をそれぞれ受光するように構成されている。受光部76は、例えば、処理液流路形成部62A~62Lの処理液流路64から出射される光を個別に受光するように構成されている。受光部76は、側壁56aとの間に処理液流路形成部62A~62Lを挟むように配置されていてもよい。 The light receiving unit 76 is configured to receive the emitted light emitted from the processing liquid flow path 64 of the processing liquid flow path forming units 62A to 62L by irradiating the irradiation light from the irradiation unit 74. The light receiving unit 76 is configured to individually receive, for example, the light emitted from the processing liquid flow path 64 of the processing liquid flow path forming units 62A to 62L. The light receiving portion 76 may be arranged so as to sandwich the treatment liquid flow path forming portions 62A to 62L between the light receiving portion 76 and the side wall 56a.
 受光部76は、例えば、光学部材92と受光素子94とを含む。側壁56aから側壁56bに向かう方向(X軸方向)において、処理液流路形成部62A、光学部材92、及び受光素子94は、この順で配置されている。光学部材92及び受光素子94の高さ位置は、例えば、処理液流路64の第1流路68aの高さ位置に略一致する。 The light receiving unit 76 includes, for example, an optical member 92 and a light receiving element 94. The processing liquid flow path forming portion 62A, the optical member 92, and the light receiving element 94 are arranged in this order in the direction from the side wall 56a to the side wall 56b (X-axis direction). The height positions of the optical member 92 and the light receiving element 94 substantially coincide with the height positions of the first flow path 68a of the processing liquid flow path 64, for example.
 光学部材92は、例えば、処理液流路64から出射される光(以下、「出射光」という。)を受光素子94に向けて集光する集光レンズを含む。光学部材92の内部には、特定の波長を有する光だけを通過させる波長フィルタが設けられてもよい。受光素子94は、光学部材92により集光された出射光を受光するとともに、受光した光(検出光)に応じた電気信号を生成する。受光素子94は、例えば、光電変換を行うフォトダイオードを含んでいる。 The optical member 92 includes, for example, a condensing lens that collects light emitted from the processing liquid flow path 64 (hereinafter, referred to as “emitted light”) toward the light receiving element 94. A wavelength filter that allows only light having a specific wavelength to pass through may be provided inside the optical member 92. The light receiving element 94 receives the emitted light collected by the optical member 92 and generates an electric signal corresponding to the received light (detection light). The light receiving element 94 includes, for example, a photodiode that performs photoelectric conversion.
 光学部材92及び受光素子94は、鉛直方向に沿って延びる支持部材86に取り付けられている。支持部材86は、スライド台84に接続されている。例えば、支持部材86の下端が、スライド台84の光学部材82が設けられる端部とは反対側の端部に接続されている。駆動部80によるスライド台84の移動に伴って、Y軸方向に沿って光学部材92及び受光素子94が移動する。 The optical member 92 and the light receiving element 94 are attached to a support member 86 extending along the vertical direction. The support member 86 is connected to the slide base 84. For example, the lower end of the support member 86 is connected to the end portion of the slide base 84 opposite to the end portion where the optical member 82 is provided. As the slide base 84 is moved by the drive unit 80, the optical member 92 and the light receiving element 94 move along the Y-axis direction.
 以上の構成により、駆動部80は、スライド台84を移動させることで、Y軸方向に沿って照射部74と受光部76とを共に移動させる。駆動部80は、例えば、照射部74及び受光部76が処理液流路形成部62Aとそれぞれ対向する位置と、照射部74及び受光部76が処理液流路形成部62Lとそれぞれ対向する位置との間で、照射部74及び受光部76とを移動させる。以下では、照射部74及び受光部76がいずれかの処理液流路形成部とそれぞれ対向する位置を、当該処理液流路形成部に対応する位置と称する。 With the above configuration, the drive unit 80 moves the irradiation unit 74 and the light receiving unit 76 together along the Y-axis direction by moving the slide base 84. The drive unit 80 has, for example, a position where the irradiation unit 74 and the light receiving unit 76 face each other with the processing liquid flow path forming unit 62A, and a position where the irradiation unit 74 and the light receiving unit 76 face each other with the processing liquid flow path forming unit 62L. The irradiation unit 74 and the light receiving unit 76 are moved between the irradiation units 74. Hereinafter, the position where the irradiation unit 74 and the light receiving unit 76 face each other of the processing liquid flow path forming portion is referred to as a position corresponding to the processing liquid flow path forming portion.
 一例として、光源72から光学部材82への照射光が継続している状態で、駆動部80により、処理液流路形成部62A~62Lの処理液流路64のいずれか一つの下方に光学部材82が移動することで、当該処理液流路64に照射部74から照射光が照射される。この際、受光素子94は、当該処理液流路64からの出射光を受光する。 As an example, in a state where the irradiation light from the light source 72 to the optical member 82 continues, the optical member is placed below any one of the processing liquid flow paths 64 of the processing liquid flow path forming portions 62A to 62L by the driving unit 80. As the 82 moves, the treatment liquid flow path 64 is irradiated with irradiation light from the irradiation unit 74. At this time, the light receiving element 94 receives the light emitted from the processing liquid flow path 64.
 上述したように、処理液流路64に設定されている測定位置の下方に照射部74が配置され、当該測定位置の側方に受光部76が配置される。したがって、受光部76は、いずれか一つの処理液流路64に照射光が照射される場合、当該処理液流路64内の測定位置にて照射光が散乱することで発生する出射光(散乱光)の一部を受光する。処理液が流れる処理液流路64内に照射光が照射されると散乱光が発生する。処理液内に異物が含まれていない場合、照射光の大部分は処理液流路64を通過する。一方、処理液内に異物が含まれていると、処理液流路64内での照射光の散乱の程度が大きくなり、異物が含まれていない場合に比べて、受光部76が受光する光(受光部76に向かう散乱光の一部)の強度が大きくなる。処理液がレジストである場合、通常、処理液にはベース樹脂(ベースポリマー)が主要な成分として含まれている。このベースポリマーによっても照射光の散乱が生じ得るので、受光部76は、処理液に異物が含まれていなくても、ある程度の振幅を有する光を受光し得る。 As described above, the irradiation unit 74 is arranged below the measurement position set in the processing liquid flow path 64, and the light receiving unit 76 is arranged on the side of the measurement position. Therefore, when the light receiving unit 76 irradiates any one of the treatment liquid flow paths 64 with the irradiation light, the light receiving unit 76 scatters the emission light (scattering) generated by scattering the irradiation light at the measurement position in the treatment liquid flow path 64. Light) is partly received. When the irradiation light is irradiated into the treatment liquid flow path 64 through which the treatment liquid flows, scattered light is generated. When no foreign matter is contained in the treatment liquid, most of the irradiation light passes through the treatment liquid flow path 64. On the other hand, when the processing liquid contains foreign matter, the degree of scattering of the irradiation light in the treatment liquid flow path 64 becomes large, and the light received by the light receiving unit 76 is higher than that in the case where the treatment liquid does not contain foreign matter. The intensity of (a part of the scattered light toward the light receiving unit 76) is increased. When the treatment liquid is a resist, the treatment liquid usually contains a base resin (base polymer) as a main component. Since the irradiation light can be scattered by this base polymer as well, the light receiving unit 76 can receive light having a certain amplitude even if the processing liquid does not contain foreign matter.
 異物検出ユニット50は、制御部100を更に有してもよい。制御部100は、異物検出ユニット50の各要素(検出部53)を制御する。制御部100は、例えば、筐体52の内部に配置される。一例として、制御部100は、制御装置18からの動作指示に基づいて異物検出ユニット50の各要素を制御する。制御部100は、少なくとも、ワークWに供給される処理液が流れる処理液流路64に光源72からの照射光が照射されることで当該処理液流路64から出射される出射光の信号強度に基づいて、処理液内に異物が含まれているかどうかを判定することと、出射光の信号強度に基づいて、出射光に含まれる背景光の強度を示す強度情報を取得することとを実行するように構成されている。 The foreign matter detection unit 50 may further include a control unit 100. The control unit 100 controls each element (detection unit 53) of the foreign matter detection unit 50. The control unit 100 is arranged inside the housing 52, for example. As an example, the control unit 100 controls each element of the foreign matter detection unit 50 based on an operation instruction from the control device 18. The control unit 100 has at least the signal intensity of the emitted light emitted from the processing liquid flow path 64 when the treatment liquid flow path 64 through which the treatment liquid supplied to the work W flows is irradiated with the irradiation light from the light source 72. Based on the above, it is determined whether or not the processing liquid contains foreign matter, and based on the signal intensity of the emitted light, the intensity information indicating the intensity of the background light contained in the emitted light is acquired. It is configured to do.
 制御部100は、図8に示されるように、機能上の構成(以下、「機能モジュール」という。)として、例えば、信号取得部102と、異物判定部104と、処理情報取得部106と、駆動制御部108と、強度情報取得部122と、基準情報保持部112と、状態監視部124と、出力部116とを有する。信号取得部102、異物判定部104、処理情報取得部106、駆動制御部108、強度情報取得部122、基準情報保持部112、状態監視部124、及び出力部116が実行する処理は、制御部100が実行する処理に相当する。 As shown in FIG. 8, the control unit 100 has, as a functional configuration (hereinafter, referred to as “functional module”), for example, a signal acquisition unit 102, a foreign matter determination unit 104, a processing information acquisition unit 106, and the like. It has a drive control unit 108, a strength information acquisition unit 122, a reference information holding unit 112, a condition monitoring unit 124, and an output unit 116. The processing executed by the signal acquisition unit 102, the foreign matter determination unit 104, the processing information acquisition unit 106, the drive control unit 108, the strength information acquisition unit 122, the reference information holding unit 112, the condition monitoring unit 124, and the output unit 116 is the control unit. Corresponds to the process executed by 100.
 信号取得部102は、出射光の強度に応じた電気信号を受光部76から取得する。信号取得部102は、例えば、処理液流路形成部62A~62Lのうちの監視対象の処理液が流れる処理液流路64(第1流路68a)から出射される出射光の強度に応じた電気信号を受光素子94から取得する。信号取得部102は、例えば、出射光の強度に応じた振幅を有する電気信号を取得する。信号取得部102は、所定のサンプリング周期で上記電気信号を取得してもよい。 The signal acquisition unit 102 acquires an electric signal corresponding to the intensity of the emitted light from the light receiving unit 76. The signal acquisition unit 102 corresponds to, for example, the intensity of the emitted light emitted from the processing liquid flow path 64 (first flow path 68a) through which the processing liquid to be monitored flows among the processing liquid flow path forming units 62A to 62L. The electric signal is acquired from the light receiving element 94. The signal acquisition unit 102 acquires, for example, an electric signal having an amplitude corresponding to the intensity of the emitted light. The signal acquisition unit 102 may acquire the electric signal at a predetermined sampling cycle.
 異物判定部104は、出射光に応じた電気信号の振幅等の強度(以下、「信号強度」という。)に基づいて、処理液内の異物の有無を検出する。図9には、信号取得部102から得られる信号強度の時間変化の一例を示すグラフが示されている。上述したように、異物の有無によって処理液流路64内(処理液内)での照射光の散乱の程度が変化するので、異物の有無によって信号強度の大きさも変化する。図9に示されるように、出射光に応じた電気信号には、異物が含まれていない状態での背景光に応じた信号Ibと、異物が含まれる状態での当該異物からの散乱光に応じた信号Is(より詳細には、背景光と異物によって散乱される散乱光とに応じた信号Is)とが含まれ得る。背景光に応じた信号Ibには、処理液内に通常含まれる物質(例えば、上述のベースポリマー等)からの散乱光に応じた成分と外乱に応じた成分とが含まれ得る。 The foreign matter determination unit 104 detects the presence or absence of foreign matter in the processing liquid based on the intensity such as the amplitude of the electric signal according to the emitted light (hereinafter, referred to as “signal intensity”). FIG. 9 shows a graph showing an example of the time change of the signal strength obtained from the signal acquisition unit 102. As described above, since the degree of scattering of the irradiation light in the treatment liquid flow path 64 (inside the treatment liquid) changes depending on the presence or absence of foreign matter, the magnitude of the signal intensity also changes depending on the presence or absence of foreign matter. As shown in FIG. 9, the electric signal corresponding to the emitted light includes the signal Ib corresponding to the background light in the state where the foreign matter is not contained and the scattered light from the foreign matter in the state where the foreign matter is contained. Corresponding signal Is (more specifically, signal Is corresponding to the background light and the scattered light scattered by the foreign matter) may be included. The signal Ib corresponding to the background light may include a component corresponding to the scattered light from a substance (for example, the above-mentioned base polymer or the like) usually contained in the treatment liquid and a component corresponding to the disturbance.
 例えば、異物判定部104は、図9に示されるように、信号強度が所定の閾値Thよりも大きい場合に、処理液内に異物が含まれていると判定する。異物判定部104は、信号強度が所定の閾値Th以下である場合に、処理液内に異物が含まれていないと判定する。閾値Thは、処理液内の異物において照射光が散乱した場合の散乱光の強度を考慮して予め設定される値である。異物判定部104は、信号取得部102が信号強度を取得するサンプリング周期ごとに、処理液内の異物の有無を判定してもよい。 For example, as shown in FIG. 9, the foreign matter determination unit 104 determines that the treatment liquid contains a foreign matter when the signal strength is larger than a predetermined threshold value Th. The foreign matter determination unit 104 determines that the processing liquid does not contain foreign matter when the signal strength is equal to or less than a predetermined threshold value Th. The threshold value Th is a value set in advance in consideration of the intensity of the scattered light when the irradiation light is scattered by the foreign matter in the treatment liquid. The foreign matter determination unit 104 may determine the presence or absence of foreign matter in the processing liquid at each sampling cycle in which the signal acquisition unit 102 acquires the signal strength.
 処理情報取得部106は、制御装置18から液処理ユニットU1で実行される処理の情報(以下、「処理情報」という。)を取得する。処理情報には、例えば、液処理ユニットU1において吐出が行われるノズル(異物検出対象の処理液)を示す情報、及び、処理液の供給開始タイミングと供給時間とを示す情報が含まれる。処理情報取得部106は、一の処理液を用いた処理ごとに、当該処理液の供給開始前までに制御装置18から処理情報を取得してもよい。 The processing information acquisition unit 106 acquires information on the processing executed by the liquid processing unit U1 (hereinafter, referred to as “processing information”) from the control device 18. The processing information includes, for example, information indicating a nozzle (processing liquid to be detected for foreign matter) to be discharged in the liquid processing unit U1 and information indicating a supply start timing and supply time of the processing liquid. The processing information acquisition unit 106 may acquire processing information from the control device 18 before the start of supply of the processing liquid for each processing using one processing liquid.
 駆動制御部108は、処理液流路形成部62Aと処理液流路形成部62Lとの間において、駆動部80によりスライド台84を移動させることで照射部74と受光部76とを移動させる。駆動制御部108は、例えば、処理情報が示す検出対象の処理液に応じて、処理液流路形成部62A~62Lのうちの当該処理液が通る処理液流路64に対応する位置に、駆動部80により照射部74と受光部76とを移動させる。駆動制御部108は、検出対象の処理液の供給が開始される前に、駆動部80により、照射部74と受光部76とを上記処理液流路64に対応する位置に移動させてもよい。 The drive control unit 108 moves the irradiation unit 74 and the light receiving unit 76 by moving the slide base 84 by the drive unit 80 between the processing liquid flow path forming unit 62A and the processing liquid flow path forming unit 62L. The drive control unit 108 is driven to, for example, a position corresponding to the processing liquid flow path 64 through which the processing liquid passes among the processing liquid flow path forming units 62A to 62L according to the processing liquid to be detected indicated by the processing information. The irradiation unit 74 and the light receiving unit 76 are moved by the unit 80. The drive control unit 108 may move the irradiation unit 74 and the light receiving unit 76 to a position corresponding to the processing liquid flow path 64 by the drive unit 80 before the supply of the processing liquid to be detected is started. ..
 強度情報取得部122は、信号強度に基づいて、出射光に含まれる背景光の強度を示す情報(以下、「強度情報」という。)を取得する。強度情報取得部122は、信号取得部102が所定のサンプリング周期で取得した信号強度に基づいて、所定期間に含まれる信号強度の時間平均を強度情報として取得してもよい。強度情報取得部122は、例えば、所定期間が過ぎた時点で当該所定期間に含まれる信号強度の取得値の時間平均を算出してもよい。強度情報取得部122は、所定期間に含まれる信号強度の取得値の平均値を時間平均として算出してもよく、所定期間に含まれる信号強度の時間変化を積分することで得られる積分値を時間平均として算出してもよい。 The intensity information acquisition unit 122 acquires information indicating the intensity of the background light included in the emitted light (hereinafter, referred to as “intensity information”) based on the signal intensity. The intensity information acquisition unit 122 may acquire the time average of the signal intensity included in the predetermined period as intensity information based on the signal intensity acquired by the signal acquisition unit 102 in the predetermined sampling cycle. The intensity information acquisition unit 122 may calculate, for example, the time average of the acquired values of the signal strength included in the predetermined period when the predetermined period has passed. The intensity information acquisition unit 122 may calculate the average value of the acquired values of the signal strength included in the predetermined period as a time average, and may calculate the integrated value obtained by integrating the time change of the signal intensity included in the predetermined period. It may be calculated as a time average.
 なお、強度情報取得部122は、時間平均に代えて、サンプリング周期ごとの信号強度の値(瞬時値)を強度情報として取得してもよい。強度情報取得部122は、所定期間において得られた信号強度のうちの最大値、中央値、最小値、又は最頻値を強度情報として取得してもよい。強度情報取得部122は、処理液内に通常含まれる物質(例えば、上述のベースポリマー等)に由来する散乱光に応じた信号強度(ベースライン値)を強度情報として取得してもよい。強度情報取得部122は、所定期間において得られた信号強度を周波数解析して求められる周波数分布のうちの特定の周波数成分の大きさを強度情報として取得してもよい。所定期間は、例えば作業員によって予め定められていてもよい。 Note that the intensity information acquisition unit 122 may acquire a signal intensity value (instantaneous value) for each sampling cycle as intensity information instead of the time average. The intensity information acquisition unit 122 may acquire the maximum value, the median value, the minimum value, or the most frequent value of the signal intensities obtained in a predetermined period as intensity information. The intensity information acquisition unit 122 may acquire the signal intensity (baseline value) according to the scattered light derived from a substance (for example, the above-mentioned base polymer or the like) normally contained in the treatment liquid as intensity information. The intensity information acquisition unit 122 may acquire the magnitude of a specific frequency component in the frequency distribution obtained by frequency analysis of the signal intensity obtained in a predetermined period as intensity information. The predetermined period may be predetermined by, for example, a worker.
 基準情報保持部112は、吐出される処理液の状態又は異物検出ユニット50(検出部53)の状態を確認するための基準情報を保持する。基準情報保持部112は、例えば、処理液及び検出部53の正常時において取得した背景光の強度(以下、「基準強度」という。)を保持(記憶)していてもよい。基準情報保持部112には、例えば、作業員によって基準強度が予め設定されていてもよく、あるいは、処理液及び検出部53の正常時において強度情報を取得する処理が行われてもよい。 The reference information holding unit 112 holds reference information for confirming the state of the discharged processing liquid or the state of the foreign matter detection unit 50 (detection unit 53). The reference information holding unit 112 may hold (store), for example, the intensity of the background light (hereinafter, referred to as “reference intensity”) acquired in the normal state of the treatment liquid and the detection unit 53. For example, the reference strength may be preset in the reference information holding unit 112 by the worker, or the treatment liquid and the detection unit 53 may be subjected to a process of acquiring strength information in a normal state.
 状態監視部124は、強度情報取得部122が取得した強度情報と基準強度とを比較することで、処理液及び検出部53の少なくとも一方の状態が正常であるかどうかを監視(判定)してもよい。処理液及び検出部53の状態が一定であれば、背景光の強度はある範囲に収まると考えられる。しかしながら、例えば、異物検出対象の処理液の種類が異なると背景光の強度も異なってくる。また、異物検出対象の処理液への他の溶液の混入、あるいは当該処理液の劣化によっても、背景光の強度が異なってくる。そのため、状態監視部124は、強度情報に基づいて、処理液の種類が適切であるかどうかを監視してもよく、処理液が劣化していないか、あるいは処理液に他の溶液が混入されていないかどうかを監視してもよい。 The condition monitoring unit 124 monitors (determines) whether or not at least one of the treatment liquid and the detection unit 53 is normal by comparing the intensity information acquired by the intensity information acquisition unit 122 with the reference intensity. May be good. If the state of the treatment liquid and the detection unit 53 is constant, it is considered that the intensity of the background light falls within a certain range. However, for example, the intensity of the background light also differs depending on the type of the treatment liquid for which the foreign matter is detected. Further, the intensity of the background light also differs depending on the mixing of another solution with the treatment liquid to be detected for foreign matter or the deterioration of the treatment liquid. Therefore, the condition monitoring unit 124 may monitor whether or not the type of the treatment liquid is appropriate based on the strength information, and the treatment liquid is not deteriorated or another solution is mixed in the treatment liquid. You may monitor if it is not.
 検出部53に含まれる光学系の状態が一定であれば、背景光の強度はある範囲に収まると考えられる。しかしながら、例えば、検出部53の光学系の経時変化(劣化)によって背景光の強度も変化する。光学系の劣化の一例として、光源72からのレーザ光の出力低下、集光レンズの曇り・汚れ、又は反射防止膜の劣化等によるレンズ性能の劣化、外部衝撃又は熱膨張による光学系の光軸のずれ(アライメントずれ)が挙げられる。状態監視部124は、強度情報に基づいて、検出部53の光学系の状態を監視してもよい。 If the state of the optical system included in the detection unit 53 is constant, it is considered that the intensity of the background light falls within a certain range. However, for example, the intensity of the background light also changes due to a change (deterioration) of the optical system of the detection unit 53 with time. As an example of deterioration of the optical system, deterioration of the lens performance due to a decrease in the output of the laser light from the light source 72, cloudiness / dirt of the condenser lens, deterioration of the antireflection film, etc., and an optical axis of the optical system due to an external impact or thermal expansion. Misalignment (alignment misalignment) can be mentioned. The condition monitoring unit 124 may monitor the condition of the optical system of the detection unit 53 based on the intensity information.
 例えば、状態監視部124は、強度情報によって示される強度が、基準強度に許容誤差を加えて得られる範囲に含まれる場合に、処理液及び検出部53の状態が正常であると判定してもよく、当該範囲から外れる場合に、処理液及び検出部53の少なくとも一方の状態が正常でないと判定してもよい。状態監視部124は、例えば、時間平均を算出する所定期間ごとに上記の比較と判定とを行ってもよく、あるいは、一の処理液の供給ごとに上記の比較と判定とを行ってもよい。 For example, the condition monitoring unit 124 may determine that the condition of the treatment liquid and the detection unit 53 is normal when the intensity indicated by the intensity information is included in the range obtained by adding a tolerance to the reference intensity. Frequently, when it is out of the range, it may be determined that at least one of the treatment liquid and the detection unit 53 is not in a normal state. The condition monitoring unit 124 may, for example, perform the above comparison and determination every predetermined period for calculating the time average, or may perform the above comparison and determination for each supply of one treatment liquid. ..
 出力部116は、判定結果及び監視結果を異物検出ユニット50の外部にそれぞれ出力する。出力部116は、異物検出の判定結果及び処理液及び検出部53の少なくとも一方の状態の監視結果を制御装置18にそれぞれ出力してもよく、作業員に結果を報知する表示器等にそれぞれ出力してもよい。出力部116は、例えば、異物判定部104により異物が含まれると判定された場合、監視対象の処理液に異物が含まれることを示すアラーム信号を出力する。あるいは出力部116は、処理液及び検出部53の少なくとも一方の状態が正常ではないと判断された場合、当該状態が正常ではないことを示すアラーム信号を出力する。 The output unit 116 outputs the determination result and the monitoring result to the outside of the foreign matter detection unit 50, respectively. The output unit 116 may output the determination result of foreign matter detection and the monitoring result of at least one of the treatment liquid and the detection unit 53 to the control device 18, respectively, and output to a display or the like that notifies the operator of the result. You may. For example, when the foreign matter determination unit 104 determines that the foreign matter is contained, the output unit 116 outputs an alarm signal indicating that the processing liquid to be monitored contains the foreign matter. Alternatively, when it is determined that at least one of the states of the processing liquid and the detection unit 53 is not normal, the output unit 116 outputs an alarm signal indicating that the state is not normal.
 制御部100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御部100は、図10に示される回路200を有する。回路200は、一つ又は複数のプロセッサ202と、メモリ204と、ストレージ206と、入出力ポート208と、タイマ212とを有する。ストレージ206は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述する異物検出方法を制御部100に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ204は、ストレージ206の記憶媒体からロードしたプログラム及びプロセッサ202による演算結果を一時的に記憶する。 The control unit 100 is composed of one or a plurality of control computers. For example, the control unit 100 has a circuit 200 shown in FIG. The circuit 200 includes one or more processors 202, a memory 204, a storage 206, an input / output port 208, and a timer 212. The storage 206 has a computer-readable storage medium, such as a hard disk. The storage medium stores a program for causing the control unit 100 to execute the foreign matter detection method described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk. The memory 204 temporarily stores the program loaded from the storage medium of the storage 206 and the calculation result by the processor 202.
 プロセッサ202は、メモリ204と協働して上記プログラムを実行することで、各機能モジュールを構成する。入出力ポート208は、プロセッサ202からの指令に従って、制御装置18、受光部76、及び駆動部80等との間で電気信号の入出力を行う。タイマ212は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。なお、制御部100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御部100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 The processor 202 configures each functional module by executing the above program in cooperation with the memory 204. The input / output port 208 inputs / outputs an electric signal to / from the control device 18, the light receiving unit 76, the drive unit 80, and the like in accordance with a command from the processor 202. The timer 212 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle. The hardware configuration of the control unit 100 is not necessarily limited to the one in which each functional module is configured by a program. For example, each functional module of the control unit 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
[異物検出方法]
 続いて、図11を参照して、異物検出ユニット50による異物検出方法(異物検出手順)について説明する。図11は、1回の処理液の供給を含む基板処理において実行される異物検出方法の一例を示すフローチャートである。
[Foreign matter detection method]
Subsequently, with reference to FIG. 11, a foreign matter detection method (foreign matter detection procedure) by the foreign matter detection unit 50 will be described. FIG. 11 is a flowchart showing an example of a foreign matter detecting method executed in the substrate processing including the supply of the processing liquid once.
 光源72からの照射光の照射が継続されている状態で、例えば、処理情報取得部106が制御装置18から処理情報を取得すると、制御部100は、ステップS01を実行する。ステップS01では、例えば、駆動制御部108が、処理情報が示す異物検出対象の処理液が流れる処理液流路64に対応する位置に、駆動部80によりスライド台84を移動させることで照射部74と受光部76とを移動させる。これにより、異物検出対象の処理液が流れる処理液流路64に照射部74から照射光が照射され、当該処理液流路64からの出射光が受光部76により受光される。ステップS01の実行前又はステップS01と略同一のタイミングで、処理情報が示す処理液のワークWに対する供給が開始されてもよい。 While the irradiation of the irradiation light from the light source 72 is continued, for example, when the processing information acquisition unit 106 acquires the processing information from the control device 18, the control unit 100 executes step S01. In step S01, for example, the drive control unit 108 moves the slide base 84 by the drive unit 80 to a position corresponding to the processing liquid flow path 64 through which the processing liquid to be detected as a foreign matter indicated by the processing information flows, so that the irradiation unit 74 And the light receiving unit 76 are moved. As a result, the processing liquid flow path 64 through which the treatment liquid to be detected as a foreign substance flows is irradiated with irradiation light from the irradiation unit 74, and the light emitted from the treatment liquid flow path 64 is received by the light receiving unit 76. The supply of the processing liquid indicated by the processing information to the work W may be started before the execution of step S01 or at substantially the same timing as step S01.
 次に、制御部100は、ステップS02,S03を実行する。ステップS02では、例えば、信号取得部102が、受光部76で受光された検出光に応じた信号強度を取得する。ステップS03では、例えば、異物判定部104が、ステップS02で得られた信号強度が閾値Thよりも大きいかどうかを判定する。ステップS03において、信号強度が閾値Thよりも大きいと判断された場合(ステップS03:YES)、制御部100はステップS04を実行する。ステップS04では、例えば、出力部116が、異物検出対象の処理液に異物が含まれていることを示すアラーム信号を出力する。一方、ステップS03において、信号強度が閾値Th以下であると判断された場合(ステップS03:NO)、制御部100はステップS04を実行しない。 Next, the control unit 100 executes steps S02 and S03. In step S02, for example, the signal acquisition unit 102 acquires the signal intensity according to the detection light received by the light receiving unit 76. In step S03, for example, the foreign matter determination unit 104 determines whether or not the signal strength obtained in step S02 is greater than the threshold value Th. If it is determined in step S03 that the signal strength is greater than the threshold Th (step S03: YES), the control unit 100 executes step S04. In step S04, for example, the output unit 116 outputs an alarm signal indicating that the processing liquid to be detected for foreign matter contains foreign matter. On the other hand, if it is determined in step S03 that the signal strength is equal to or less than the threshold value Th (step S03: NO), the control unit 100 does not execute step S04.
 次に、制御部100は、ステップS05を実行する。ステップS05では、例えば、制御部100が、監視対象の処理液の供給が終了したかどうかを判断する。制御部100は、処理情報に含まれる供給開始タイミングからの経過時間を計測することで、処理液の供給が終了したかどうかを判断してもよい。ステップS05において、監視対象の処理液の供給が終了していないと判断された場合(ステップS05:NO)、制御部100は、ステップS02,S03の処理を繰り返す。これにより、処理液の供給期間において、当該処理液内に異物が含まれているかどうかの監視が継続されると共に、信号取得部102が所定のサンプリング周期にて検出光に応じた信号強度を取得する。 Next, the control unit 100 executes step S05. In step S05, for example, the control unit 100 determines whether or not the supply of the processing liquid to be monitored has been completed. The control unit 100 may determine whether or not the supply of the processing liquid has been completed by measuring the elapsed time from the supply start timing included in the processing information. If it is determined in step S05 that the supply of the processing liquid to be monitored has not been completed (step S05: NO), the control unit 100 repeats the processes of steps S02 and S03. As a result, during the supply period of the processing liquid, monitoring of whether or not foreign matter is contained in the processing liquid is continued, and the signal acquisition unit 102 acquires the signal intensity according to the detected light in a predetermined sampling cycle. do.
 ステップS05において、監視対象の処理液の供給が終了したと判断された場合(ステップS05:YES)、制御部100は、ステップS06を実行する。ステップS06では、強度情報取得部122が、信号強度に基づいて、処理液流路64からの出射光に含まれる背景光の強度を示す強度情報を取得する。例えば、強度情報取得部122は、ステップS02が繰り返し実行される上記供給期間において得られた信号強度(信号強度の時間変化)に基づいて強度情報を取得する。一例として、強度情報取得部122は、供給期間において得られた信号強度の平均値又は積分値を、強度情報として算出する。 If it is determined in step S05 that the supply of the processing liquid to be monitored has been completed (step S05: YES), the control unit 100 executes step S06. In step S06, the intensity information acquisition unit 122 acquires intensity information indicating the intensity of the background light included in the light emitted from the processing liquid flow path 64 based on the signal intensity. For example, the intensity information acquisition unit 122 acquires intensity information based on the signal intensity (time change of signal intensity) obtained in the supply period in which step S02 is repeatedly executed. As an example, the intensity information acquisition unit 122 calculates the average value or the integrated value of the signal intensities obtained during the supply period as the intensity information.
 次に、制御部100は、ステップS07を実行する。ステップS07では、例えば、状態監視部124が、強度情報取得部122が取得した強度情報と基準強度とを比較することで、処理液及び検出部53の少なくとも一方の状態が正常ではないかどうかを判定してもよい。例えば、状態監視部124は、強度情報によって示される強度が、基準強度に許容誤差を加えて得られる範囲に含まれる場合に、処理液及び検出部53の少なくとも一方の状態が正常であると判定してもよく、当該範囲から外れる場合に、処理液及び検出部53の少なくとも一方の状態が正常でないと判定してもよい。 Next, the control unit 100 executes step S07. In step S07, for example, the condition monitoring unit 124 compares the intensity information acquired by the intensity information acquisition unit 122 with the reference intensity to determine whether or not at least one of the states of the treatment liquid and the detection unit 53 is normal. You may judge. For example, the condition monitoring unit 124 determines that at least one of the treatment liquid and the detection unit 53 is normal when the intensity indicated by the intensity information is included in the range obtained by adding a tolerance to the reference intensity. Alternatively, if it is out of the range, it may be determined that at least one of the treatment liquid and the detection unit 53 is not in a normal state.
 ステップS07において、処理液及び検出部53の少なくとも一方の状態が正常ではないと判断された場合(ステップS07:YES)、制御部100はステップS08を実行する。ステップS08では、例えば、出力部116が、処理液又は検出部53の少なくとも一方の状態が正常ではないことを示すアラーム信号を出力する。一方、ステップS08において、処理液及び検出部53の状態が正常であると判断された場合(ステップS07:NO)、制御部100はステップS08を実行しない。以上により、一連の異物検出手順が終了する。制御部100は、処理液の供給による基板処理ごとに、ステップS01~S08の処理を実行してもよい。 If it is determined in step S07 that at least one of the states of the treatment liquid and the detection unit 53 is not normal (step S07: YES), the control unit 100 executes step S08. In step S08, for example, the output unit 116 outputs an alarm signal indicating that the state of at least one of the processing liquid and the detection unit 53 is not normal. On the other hand, if it is determined in step S08 that the states of the treatment liquid and the detection unit 53 are normal (step S07: NO), the control unit 100 does not execute step S08. This completes a series of foreign matter detection procedures. The control unit 100 may execute the processes of steps S01 to S08 for each substrate process by supplying the process liquid.
 上述した異物検出手順は一例であって、ステップの順序、実行タイミング、及び実行内容等は適宜変更可能である。例えば、ステップS06において、強度情報取得部122は、供給期間を時間順に分割して得られる分割期間ごとに、当該分割期間において得られた信号強度の平均値又は積分値を強度情報として算出してもよい。あるいは、強度情報取得部122は、サンプリング周期の一周期又は2以上の周期ごとに、当該周期以前の所定期間において得られた信号強度の平均値を算出することで、信号強度の移動平均を強度情報として算出してもよい。 The above-mentioned foreign matter detection procedure is an example, and the step order, execution timing, execution content, etc. can be changed as appropriate. For example, in step S06, the intensity information acquisition unit 122 calculates the average value or the integrated value of the signal strength obtained in the divided period as the intensity information for each divided period obtained by dividing the supply period in chronological order. May be good. Alternatively, the intensity information acquisition unit 122 calculates the average value of the signal intensities obtained in the predetermined period before the period for each one cycle or two or more cycles of the sampling cycle, thereby increasing the intensity of the moving average of the signal intensities. It may be calculated as information.
 強度情報取得部122は、ステップS06に代えて、ステップS02が繰り返し実行されるタイミングで強度情報の算出を繰り返してもよい。つまり、強度情報取得部122は、サンプリング周期ごとに強度情報を算出してもよい。この場合、状態監視部124は、ステップS07に代えて、強度情報の算出ごとに(サンプリング周期ごとに)、処理液及び検出部53の少なくとも一方の状態の判定を行ってもよい。一例として、強度情報取得部122は、サンプリング周期ごとに、当該周期以前の所定期間において得られた信号強度の平均値を算出することで、信号強度の移動平均を強度情報として算出してもよい。あるいは、強度情報取得部122は、サンプリング周期ごとに、処理液の供給開始から当該周期までに得られた信号強度の平均値又は積分値を強度情報として算出してもよい。 The strength information acquisition unit 122 may repeat the calculation of the strength information at the timing when the step S02 is repeatedly executed instead of the step S06. That is, the intensity information acquisition unit 122 may calculate the intensity information for each sampling cycle. In this case, the condition monitoring unit 124 may determine the state of at least one of the processing liquid and the detection unit 53 for each calculation of the intensity information (for each sampling cycle) instead of step S07. As an example, the intensity information acquisition unit 122 may calculate the moving average of the signal intensity as intensity information by calculating the average value of the signal intensities obtained in the predetermined period before the period for each sampling cycle. .. Alternatively, the intensity information acquisition unit 122 may calculate the average value or the integrated value of the signal intensities obtained from the start of supply of the processing liquid to the period as intensity information for each sampling cycle.
[実施形態の効果]
 以上に例示した異物検出ユニット50又は異物検出ユニット50における異物検出方法では、照射光の照射によって処理液流路64から出射される出射光に基づく異物の検出に加えて、出射光に含まれる背景光の強度情報が取得される。強度情報は、検出部53又は処理液の状態に基づき変化するので、異物検出ユニット50では、装置又は処理液の状態が正常であるかどうかを確認することが可能となる。
[Effect of Embodiment]
In the foreign matter detecting unit 50 or the foreign matter detecting method in the foreign matter detecting unit 50 exemplified above, in addition to detecting the foreign matter based on the emitted light emitted from the processing liquid flow path 64 by the irradiation of the irradiation light, the background included in the emitted light is included. Light intensity information is acquired. Since the strength information changes based on the state of the detection unit 53 or the treatment liquid, the foreign matter detection unit 50 can confirm whether or not the state of the device or the treatment liquid is normal.
 処理液が流れる流路に照射光を照射して得られる光に基づいて、処理液内の異物を検出する場合、受光した検出光の強度に変化が生じるかどうかを検出することで、処理液内の異物の有無が判定される。しかしながら、異物検出装置に含まれる光学系等のハードウェアが正常に動作していなかった場合、又は処理液の状態が正常時と異なる場合でも、検出光の強度に変化が起きず、処理液内に異物が含まれていないと判定され得る。上述の異物検出ユニット50では、背景光の強度情報を取得することで、処理液の状態及び光学系等を含む検出部53の状態を確認できるので、異物の検出結果をより確かなものとすることができる。また、異物検出のために取得される処理液流路から出射される出射光に係る信号には背景光に関する情報も含まれている。従って、上記実施形態に係る異物検出ユニット50では、状態確認のための構成を設けずに、処理液又は装置の状態確認を簡便に行うことが可能となる。 When detecting foreign matter in the treatment liquid based on the light obtained by irradiating the flow path through which the treatment liquid flows with irradiation light, the treatment liquid is detected by detecting whether or not the intensity of the received detection light changes. The presence or absence of foreign matter inside is determined. However, even if the hardware such as the optical system included in the foreign matter detection device is not operating normally or the state of the treatment liquid is different from the normal state, the intensity of the detected light does not change and the inside of the treatment liquid does not change. Can be determined to be free of foreign matter. In the above-mentioned foreign matter detection unit 50, the state of the processing liquid and the state of the detection unit 53 including the optical system can be confirmed by acquiring the intensity information of the background light, so that the foreign matter detection result is made more reliable. be able to. In addition, the signal related to the emitted light emitted from the processing liquid flow path acquired for detecting foreign matter also includes information on the background light. Therefore, the foreign matter detection unit 50 according to the above embodiment can easily check the state of the treatment liquid or the device without providing a configuration for checking the state.
 処理液流路64からの出射光は、照射光が処理液流路64内で散乱した光である。この場合、処理液流路64を透過する透過光そのものを検出器(受光部76)で得ることは無く、背景光の強度も、例えば透過光を受光する場合(前方散乱による検出を行う場合)に比べて小さくなるので、処理液内の異物の有無による検出光の強度の変化を精度良く検出することができる。そのため、上記の構成によれば、異物検出をより確実に行うことが可能となる。また、処理液流路64を透過する透過光そのものを得ていないので、背景光の強度の微小な変化を検出することが容易である。 The light emitted from the treatment liquid flow path 64 is the light obtained by the irradiation light scattered in the treatment liquid flow path 64. In this case, the transmitted light itself transmitted through the processing liquid flow path 64 is not obtained by the detector (light receiving unit 76), and the intensity of the background light is also, for example, when the transmitted light is received (when the detection is performed by forward scattering). Therefore, the change in the intensity of the detected light due to the presence or absence of foreign matter in the treatment liquid can be detected with high accuracy. Therefore, according to the above configuration, it is possible to more reliably detect foreign matter. Further, since the transmitted light itself transmitted through the processing liquid flow path 64 is not obtained, it is easy to detect a minute change in the intensity of the background light.
 強度情報取得部122は、所定期間に得られる信号強度の時間平均を強度情報として取得する。背景光の強度は得られた時刻に応じて変動し得る。したがって、この構成では、時間平均に基づくことで、装置又は処理液の状態をより確実に確認することが可能となる。 The intensity information acquisition unit 122 acquires the time average of the signal intensity obtained in a predetermined period as intensity information. The intensity of the background light can vary depending on the time of day obtained. Therefore, in this configuration, it is possible to more reliably confirm the state of the apparatus or the treatment liquid based on the time average.
 異物判定部104は、ワークWに対する処理液の供給開始から供給終了までの供給期間において、処理液内に異物が含まれているかどうかを判定する。強度情報取得部122は、供給期間において得られた信号強度に基づいて、強度情報を取得する。この場合、供給期間に得られた情報を利用して、処理液又は検出部53の状態確認を効率的に行うことが可能となる。すなわち、供給期間以外において、状態確認のために処理液を通液させなくても、処理液又は装置の状態を確認することが可能となる。 The foreign matter determination unit 104 determines whether or not the treatment liquid contains foreign matter during the supply period from the start of supply of the treatment liquid to the work W to the end of supply. The strength information acquisition unit 122 acquires strength information based on the signal strength obtained during the supply period. In this case, the state of the processing liquid or the detection unit 53 can be efficiently confirmed by using the information obtained during the supply period. That is, it is possible to check the state of the treatment liquid or the apparatus without passing the treatment liquid through the treatment liquid for checking the state other than the supply period.
 異物検出ユニット50は、強度情報に基づいて、処理液及び検出部53の少なくとも一方の状態を監視する状態監視部124を更に備える。この場合、検出部53又は処理液の状態を確認したうえで異物検出を行うことが可能となる。したがって、異物の検出結果をより確かなものとすることができる。 The foreign matter detection unit 50 further includes a state monitoring unit 124 that monitors the state of at least one of the processing liquid and the detection unit 53 based on the strength information. In this case, foreign matter can be detected after confirming the state of the detection unit 53 or the treatment liquid. Therefore, the detection result of the foreign matter can be made more reliable.
 異物検出ユニット50を備える塗布・現像装置2では、異物検出ユニット50の状態及び処理液が正常であるかどうか確認することが可能となると共に、供給部36において処理液内の異物を検出することで、異物によるワークWの欠陥を早期に発見することが可能となる。 In the coating / developing device 2 provided with the foreign matter detecting unit 50, it is possible to confirm the state of the foreign matter detecting unit 50 and whether or not the processing liquid is normal, and the supply unit 36 detects the foreign matter in the processing liquid. Therefore, it is possible to detect a defect of the work W due to a foreign substance at an early stage.
[変形例]
 受光部76は、処理液流路形成部62A~62Lが並ぶ方向(水平方向)、又は鉛直方向に沿って並んで配置された複数の受光素子94を含んでいてもよい。あるいは、受光部76は、水平方向と鉛直方向とに2次元配列された複数の受光素子94を含んでいてもよい。例えば、受光部76は、フォトダイオードが一次元又は二次元配列されたフォトダイオードアレイを含んでいてもよい。受光部76は、複数の受光素子94からそれぞれ得られる複数の電気信号を制御部100に出力してもよい。信号取得部102は、各受光素子94からの電気信号ごとに信号強度を取得してもよい。
[Modification example]
The light receiving unit 76 may include a plurality of light receiving elements 94 arranged side by side in the direction (horizontal direction) in which the processing liquid flow path forming units 62A to 62L are arranged or in the vertical direction. Alternatively, the light receiving unit 76 may include a plurality of light receiving elements 94 two-dimensionally arranged in the horizontal direction and the vertical direction. For example, the light receiving unit 76 may include a photodiode array in which photodiodes are arranged one-dimensionally or two-dimensionally. The light receiving unit 76 may output a plurality of electric signals obtained from each of the plurality of light receiving elements 94 to the control unit 100. The signal acquisition unit 102 may acquire the signal strength for each electric signal from each light receiving element 94.
 この場合、基準情報保持部112は、複数の受光素子94から得られる信号強度それぞれについて、背景光の強度を示す強度情報を取得してもよい。つまり、基準情報保持部112は、受光素子94が設けられる受光位置ごとに強度情報を取得してもよい。検出部53に含まれる光学系において光軸のずれが生じている場合、受光部76で受光する光の分布が異なる(例えば、光の分布に偏りが生じる)ことが考えられる。そのため、状態監視部124は、受光位置ごとの強度情報に基づいて、検出部53に含まれる光学系の光軸のずれを監視してもよい。例えば、状態監視部124は、一方向に並ぶ複数の受光位置において、強度情報が示す強度の差分が所定値よりも大きいかどうかを判定することで、光学系の光軸のずれ(例えば、集光レンズの焦点位置のずれ)を監視してもよい。 In this case, the reference information holding unit 112 may acquire intensity information indicating the intensity of the background light for each of the signal intensities obtained from the plurality of light receiving elements 94. That is, the reference information holding unit 112 may acquire intensity information for each light receiving position where the light receiving element 94 is provided. When the optical system included in the detection unit 53 is displaced in the optical axis, it is conceivable that the distribution of the light received by the light receiving unit 76 is different (for example, the distribution of the light is biased). Therefore, the condition monitoring unit 124 may monitor the deviation of the optical axis of the optical system included in the detection unit 53 based on the intensity information for each light receiving position. For example, the condition monitoring unit 124 determines whether or not the difference in intensity indicated by the intensity information is larger than a predetermined value at a plurality of light receiving positions arranged in one direction, thereby shifting the optical axis of the optical system (for example, collecting). The deviation of the focal position of the optical lens) may be monitored.
 処理液の吐出開始直後、及び吐出終了間際では、当該処理液の流量(流速)が変化する。流量の変化に伴い、出射光に含まれる背景光の強度も変化する。そのため、処理液の供給開始から供給停止までの供給期間において、背景光の強度の時間変化は、供給期間における流量(流速)の時間変化に応じて変化する。状態監視部124は、供給期間における背景光の強度の時間変化に応じて、処理液の吐出が正常に行われているか(処理液の流量が設定の範囲内であるか)どうかを監視してもよい。 Immediately after the start of discharge of the treatment liquid and just before the end of discharge, the flow rate (flow velocity) of the treatment liquid changes. As the flow rate changes, the intensity of the background light contained in the emitted light also changes. Therefore, in the supply period from the start of supply of the treatment liquid to the stop of supply, the time change of the intensity of the background light changes according to the time change of the flow rate (flow velocity) in the supply period. The condition monitoring unit 124 monitors whether or not the treatment liquid is normally discharged (whether the flow rate of the treatment liquid is within the set range) according to the time change of the background light intensity during the supply period. May be good.
 強度情報取得部122は、異物からの散乱光に基づく信号Isの影響を除去する補正処理を行ってもよい。例えば、強度情報取得部122は、信号強度が、閾値Thと同じ値又は異なる値(別の閾値)よりも大きいときに、当該信号強度を異常値として除外してもよい。あるいは、強度情報取得部122は、信号強度と算出した移動平均との差分が所定値よりも大きいときに、当該信号強度を異常値として除外してもよい。 The intensity information acquisition unit 122 may perform a correction process for removing the influence of the signal Is based on the scattered light from the foreign matter. For example, the intensity information acquisition unit 122 may exclude the signal intensity as an abnormal value when the signal intensity is larger than the same value or a different value (another threshold value) from the threshold value Th. Alternatively, the intensity information acquisition unit 122 may exclude the signal intensity as an abnormal value when the difference between the signal intensity and the calculated moving average is larger than a predetermined value.
 上述の例では、処理液及び検出部53の状態の監視が、制御部100によって行われるが、制御部100に代えて作業員によって状態監視が行われてもよい。この場合、制御部100は、取得(算出)した背景光の強度情報を外部に出力してもよく、作業員が、出力された強度情報と基準情報とを比較することで状態監視を行ってもよい。 In the above example, the state of the processing liquid and the detection unit 53 is monitored by the control unit 100, but the state may be monitored by an operator instead of the control unit 100. In this case, the control unit 100 may output the acquired (calculated) background light intensity information to the outside, and the worker monitors the state by comparing the output intensity information with the reference information. May be good.
 ブロック本体66を流れる処理液流路64の少なくとも一部は、水平方向及び鉛直方向以外の方向に延びるように形成されていてもよい。処理液流路64の流入口64a及び流出口64bは、ブロック本体のうちの互いに異なる面にそれぞれ形成されていてもよい。処理液流路形成部62A~62Lの処理液流路64が互いに異なるように構成されていてもよい。 At least a part of the processing liquid flow path 64 flowing through the block body 66 may be formed so as to extend in a direction other than the horizontal direction and the vertical direction. The inflow port 64a and the outflow port 64b of the treatment liquid flow path 64 may be formed on different surfaces of the block body. The treatment liquid flow paths 64 of the treatment liquid flow path forming portions 62A to 62L may be configured to be different from each other.
 処理液流路形成部62A~62Lは、ブロック本体66に代えて、処理液が流れる供給用の通液管を含んでいてもよい。処理液流路64は、供給用の通液管内の流路であってもよい。この通液管は、照射光を透過することが可能な材料(例えば、石英又はサファイヤ)で形成されていてもよい。異物検出ユニット50は、処理液流路形成部62A~62Lに代えて、一つの処理液流路形成部を有してもよい。 The treatment liquid flow path forming portions 62A to 62L may include a liquid passage pipe for supply through which the treatment liquid flows, instead of the block main body 66. The treatment liquid flow path 64 may be a flow path in the liquid passage pipe for supply. The liquid passage tube may be made of a material capable of transmitting irradiation light (for example, quartz or sapphire). The foreign matter detection unit 50 may have one treatment liquid flow path forming portion instead of the treatment liquid flow path forming portions 62A to 62L.
 異物検出ユニット50は、Y軸方向に沿って照射部74を移動させる照射用の駆動部と、Y軸方向に沿って受光部76を移動させる受光用の駆動部とを含んでいてもよい。これらの2つの駆動部が、Y軸方向に沿って照射部74と受光部76とを移動させるように構成されていてもよい。照射部74が光源72を含んでおり、光学部材82を介さずに、照射光が処理液流路形成部62A~62Lの処理液流路64にそれぞれ照射されてもよい。 The foreign matter detection unit 50 may include a drive unit for irradiation that moves the irradiation unit 74 along the Y-axis direction and a drive unit for light reception that moves the light-receiving unit 76 along the Y-axis direction. These two drive units may be configured to move the irradiation unit 74 and the light receiving unit 76 along the Y-axis direction. The irradiation unit 74 includes the light source 72, and the irradiation light may be applied to the treatment liquid flow paths 64 of the treatment liquid flow path forming units 62A to 62L, respectively, without passing through the optical member 82.
 受光部76は、照射部74からの照射光が処理液流路64を透過することで得られる透過光の一部を受光してもよい。この場合、照射部74と受光部76とが、鉛直方向(Z軸方向)において処理液流路形成部62A~62Lを間に挟むように配置されていてもよい。 The light receiving unit 76 may receive a part of the transmitted light obtained by transmitting the irradiation light from the irradiation unit 74 through the processing liquid flow path 64. In this case, the irradiation unit 74 and the light receiving unit 76 may be arranged so as to sandwich the processing liquid flow path forming units 62A to 62L in the vertical direction (Z-axis direction).
 上述の例では、強度情報取得部122は、処理液の供給期間において得られた散乱光の信号強度に基づいて背景光の強度情報を取得するが、処理液が供給されていない状態において得られた信号強度に基づいて強度情報を取得してもよい。具体的には、強度情報取得部122は、処理液流路64内に処理液が充填されており(処理液流路64内に処理液が存在しており)、且つワークWに対して処理液が供給されていない状態において得られた信号強度に基づいて強度情報を取得してもよい。例えば、図4に示される開閉バルブVが閉じられてワークWへの処理液の供給が停止した後において、開閉バルブVとノズルとの間の流路(処理液流路64)内にはノズルから吐出されなかった処理液が充填されている。この状態において、信号取得部102は、内部での処理液の流れが止まっている処理液流路64からの散乱光に応じた信号強度を取得してもよく、当該信号強度に基づいて、強度情報取得部122が強度情報を取得してもよい。 In the above example, the intensity information acquisition unit 122 acquires the intensity information of the background light based on the signal intensity of the scattered light obtained during the supply period of the processing liquid, but is obtained in a state where the processing liquid is not supplied. The strength information may be acquired based on the signal strength. Specifically, in the strength information acquisition unit 122, the treatment liquid flow path 64 is filled with the treatment liquid (the treatment liquid exists in the treatment liquid flow path 64), and the work W is processed. Intensity information may be acquired based on the signal intensity obtained in the state where the liquid is not supplied. For example, after the on-off valve V shown in FIG. 4 is closed and the supply of the processing liquid to the work W is stopped, the nozzle is formed in the flow path (treatment liquid flow path 64) between the on-off valve V and the nozzle. It is filled with the treatment liquid that was not discharged from. In this state, the signal acquisition unit 102 may acquire the signal intensity according to the scattered light from the processing liquid flow path 64 in which the flow of the processing liquid is stopped inside, and the intensity is based on the signal intensity. The information acquisition unit 122 may acquire strength information.
 強度情報取得部122(制御部100)は、上述の供給期間での信号強度に基づいた強度情報の取得と、処理液が供給されていない非供給期間での信号強度に基づいた強度情報の取得とのいずれか一方を行ってもよく、両方を行ってもよい。供給期間及び非供給期間の両方で強度情報を取得する場合、制御部100は、一の供給期間と次の供給期間との間の長さ(非供給期間の長さ)が所定時間よりも長くなる場合に、非供給期間での信号強度に基づいた強度情報を取得してもよい。供給期間だけで強度情報を取得する場合、強度情報に基づく処理液又は装置の確認が行われていない期間(未確認時間)が、処理スケジュールによって定まる非供給期間の長さに依存する。これに対して、両方の期間で強度情報を取得する場合には、処理スケジュールで定まる長さに依存せずに、上記未確認時間の長さを調節することが可能となる。 The intensity information acquisition unit 122 (control unit 100) acquires the intensity information based on the signal intensity in the above-mentioned supply period and the intensity information based on the signal intensity in the non-supply period when the processing liquid is not supplied. Either one of the above may be performed, or both may be performed. When acquiring the intensity information in both the supply period and the non-supply period, the control unit 100 determines that the length between one supply period and the next supply period (the length of the non-supply period) is longer than the predetermined time. In this case, the strength information based on the signal strength in the non-supply period may be acquired. When the strength information is acquired only during the supply period, the period during which the treatment liquid or the device is not confirmed based on the strength information (unconfirmed time) depends on the length of the non-supply period determined by the treatment schedule. On the other hand, when the intensity information is acquired in both periods, the length of the unconfirmed time can be adjusted without depending on the length determined by the processing schedule.
 この変形例では、強度情報取得部122は、処理液流路64内に処理液が充填されており、且つワークWに対して処理液が供給されていない状態において得られた信号強度に基づいて強度情報を取得する。この場合、処理液が処理液流路64内を流れることに起因して、背景光に含まれ得る外乱の成分を低減できるので、装置又は処理液の状態をより精度良く確認することができる。 In this modification, the strength information acquisition unit 122 is based on the signal strength obtained in a state where the treatment liquid flow path 64 is filled with the treatment liquid and the treatment liquid is not supplied to the work W. Get strength information. In this case, since the component of the disturbance that can be contained in the background light can be reduced due to the treatment liquid flowing in the treatment liquid flow path 64, the state of the apparatus or the treatment liquid can be confirmed more accurately.
 なお、基板処理装置の具体的な構成は、以上に例示した塗布・現像装置2の構成に限られない。基板処理装置は、基板に供給される処理液内の異物を検出する異物検出ユニット50を備えていればどのようなものであってもよい。異物検出ユニット50による監視対象の処理液は、レジスト膜以外の膜(例えば、上述の下層膜又は上層膜)形成用の溶液であってもよく、膜形成以外の基板処理用の溶液であってもよい。異物検出ユニット50の制御部100が有する機能モジュールの全て又は一部が、制御装置18により実行されてもよい。この場合、異物検出ユニット50と制御装置18とによって異物検出装置が構成されてもよい。 The specific configuration of the substrate processing apparatus is not limited to the configuration of the coating / developing apparatus 2 illustrated above. The substrate processing apparatus may be any as long as it includes a foreign matter detecting unit 50 that detects foreign matter in the processing liquid supplied to the substrate. The treatment liquid to be monitored by the foreign matter detection unit 50 may be a solution for forming a film other than the resist film (for example, the above-mentioned lower layer film or upper layer film), or a solution for substrate treatment other than film formation. May be good. All or part of the functional modules included in the control unit 100 of the foreign matter detection unit 50 may be executed by the control device 18. In this case, the foreign matter detection device may be configured by the foreign matter detection unit 50 and the control device 18.
 1…基板処理システム、2…塗布・現像装置、30…処理液供給部、32A~32L…ノズル、36…供給部、50…異物検出ユニット、53…検出部、60…流路形成部、62A~62L…処理液流路形成部、64…処理液流路、72…光源、74…照射部、76…受光部、100…制御部、122…強度情報取得部、124…状態監視部、U1…液処理ユニット、W…ワーク。 1 ... Substrate processing system, 2 ... Coating / developing device, 30 ... Processing liquid supply unit, 32A to 32L ... Nozzle, 36 ... Supply unit, 50 ... Foreign matter detection unit, 53 ... Detection unit, 60 ... Flow path forming unit, 62A -62L ... Processing liquid flow path forming unit, 64 ... Processing liquid flow path, 72 ... Light source, 74 ... Irradiating unit, 76 ... Light receiving unit, 100 ... Control unit, 122 ... Intensity information acquisition unit, 124 ... Condition monitoring unit, U1 ... Liquid processing unit, W ... Work.

Claims (9)

  1.  基板に供給される処理液が流れる処理液流路を形成する流路形成部と、前記処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光を受光するように構成された測定部とを有する検出部と、
     前記出射光の信号強度に基づいて、前記処理液内に異物が含まれているかどうかを判定する異物判定部と、
     前記信号強度に基づいて、前記出射光に含まれる背景光の強度を示す強度情報を取得する強度情報取得部と、
    を備える、異物検出装置。
    The flow path forming portion that forms the treatment liquid flow path through which the treatment liquid supplied to the substrate flows, and the emission light emitted from the treatment liquid flow path when the treatment liquid flow path is irradiated with the irradiation light from the light source. A detector having a measuring unit configured to receive light,
    A foreign matter determination unit that determines whether or not a foreign matter is contained in the processing liquid based on the signal intensity of the emitted light, and a foreign matter determination unit.
    An intensity information acquisition unit that acquires intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity, and an intensity information acquisition unit.
    A foreign matter detection device.
  2.  前記出射光は、前記照射光が前記処理液流路内で散乱した光である、請求項1に記載の異物検出装置。 The foreign matter detection device according to claim 1, wherein the emitted light is light in which the irradiation light is scattered in the processing liquid flow path.
  3.  前記強度情報取得部は、所定期間に得られる前記信号強度の時間平均を前記強度情報として取得する、請求項1又は2に記載の異物検出装置。 The foreign matter detection device according to claim 1 or 2, wherein the intensity information acquisition unit acquires the time average of the signal intensity obtained in a predetermined period as the intensity information.
  4.  前記異物判定部は、前記基板に対する前記処理液の供給開始から供給終了までの供給期間において、前記処理液内に異物が含まれているかどうかを判定し、
     前記強度情報取得部は、前記供給期間において得られた前記信号強度に基づいて、前記強度情報を取得する、請求項1~3のいずれか一項に記載の異物検出装置。
    The foreign matter determination unit determines whether or not the treatment liquid contains foreign matter during the supply period from the start of supply of the treatment liquid to the end of supply to the substrate.
    The foreign matter detection device according to any one of claims 1 to 3, wherein the intensity information acquisition unit acquires the intensity information based on the signal intensity obtained during the supply period.
  5.  前記強度情報取得部は、前記処理液流路内に前記処理液が充填されており、且つ前記基板に対して前記処理液が供給されていない状態において得られた前記信号強度に基づいて、前記強度情報を取得する、請求項1~3のいずれか一項に記載の異物検出装置。 The strength information acquisition unit is based on the signal strength obtained in a state where the treatment liquid is filled in the treatment liquid flow path and the treatment liquid is not supplied to the substrate. The foreign matter detection device according to any one of claims 1 to 3, which acquires strength information.
  6.  前記強度情報に基づいて、前記処理液及び前記検出部の少なくとも一方の状態を監視する状態監視部を更に備える、請求項1~5のいずれか一項に記載の異物検出装置。 The foreign matter detection device according to any one of claims 1 to 5, further comprising a condition monitoring unit that monitors the state of at least one of the processing liquid and the detection unit based on the strength information.
  7.  基板に向けて処理液を吐出するノズルと、前記ノズルに前記処理液を供給する供給部とを有する処理液供給部と、
     前記処理液が流れる処理液流路を形成する流路形成部と、前記処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光を受光するように構成された測定部とを有する検出部と、
     前記出射光の信号強度に基づいて、前記処理液内に異物が含まれているかどうかを判定する異物判定部と、
     前記信号強度に基づいて、前記出射光に含まれる背景光の強度を示す強度情報を取得する強度情報取得部と、
    を備える、基板処理装置。
    A treatment liquid supply unit having a nozzle for discharging the treatment liquid toward the substrate and a supply unit for supplying the treatment liquid to the nozzle.
    The flow path forming portion forming the treatment liquid flow path through which the treatment liquid flows and the treatment liquid flow path are irradiated with the irradiation light from the light source so as to receive the emission light emitted from the treatment liquid flow path. A detection unit having a measurement unit configured in
    A foreign matter determination unit that determines whether or not a foreign matter is contained in the processing liquid based on the signal intensity of the emitted light, and a foreign matter determination unit.
    An intensity information acquisition unit that acquires intensity information indicating the intensity of the background light included in the emitted light based on the signal intensity, and an intensity information acquisition unit.
    A board processing device.
  8.  基板に供給される処理液が流れる処理液流路に光源からの照射光が照射されることで当該処理液流路から出射される出射光の信号強度に基づいて、前記処理液内に異物が含まれているかどうかを判定することと、
     前記信号強度に基づいて、前記出射光に含まれる背景光の強度を示す強度情報を取得することと、を含む異物検出方法。
    When the treatment liquid flow path through which the treatment liquid supplied to the substrate flows is irradiated with the irradiation light from the light source, foreign matter is generated in the treatment liquid based on the signal intensity of the emitted light emitted from the treatment liquid flow path. Determining if it is included and
    A method for detecting a foreign substance, which comprises acquiring intensity information indicating the intensity of background light included in the emitted light based on the signal intensity.
  9.  請求項8に記載の異物検出方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium that stores a program for causing the device to execute the foreign matter detection method according to claim 8.
PCT/JP2021/007047 2020-03-09 2021-02-25 Abnormality detection device, substrate processing device, abnormality detection method, and storage medium WO2021182117A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180018605.1A CN115244387A (en) 2020-03-09 2021-02-25 Foreign matter detection device, substrate processing apparatus, foreign matter detection method, and storage medium
JP2022505904A JPWO2021182117A1 (en) 2020-03-09 2021-02-25
KR1020227034132A KR20220150339A (en) 2020-03-09 2021-02-25 Foreign material detection apparatus, substrate processing apparatus, foreign material detection method and storage medium
JP2024016335A JP2024040273A (en) 2020-03-09 2024-02-06 Foreign matter detection apparatus, substrate processing apparatus, foreign matter detection method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039918 2020-03-09
JP2020-039918 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182117A1 true WO2021182117A1 (en) 2021-09-16

Family

ID=77670656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007047 WO2021182117A1 (en) 2020-03-09 2021-02-25 Abnormality detection device, substrate processing device, abnormality detection method, and storage medium

Country Status (5)

Country Link
JP (2) JPWO2021182117A1 (en)
KR (1) KR20220150339A (en)
CN (1) CN115244387A (en)
TW (1) TW202200988A (en)
WO (1) WO2021182117A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127488A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Device for detecting foreign matter and method for detecting foreign matter
WO2023127487A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Foreign body detecting device, and foreign body detecting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
JP2016225574A (en) * 2015-06-03 2016-12-28 東京エレクトロン株式会社 Substrate processing device, and substrate processing method
WO2019202962A1 (en) * 2018-04-18 2019-10-24 東京エレクトロン株式会社 Abnormality detection device for chemicals, liquid processing device, substrate processing device, abnormality detection method for chemicals, liquid processing method, and substrate processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151036B2 (en) 1992-02-06 2001-04-03 ミクニキカイ株式会社 Method and apparatus for detecting submicron particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
JP2016225574A (en) * 2015-06-03 2016-12-28 東京エレクトロン株式会社 Substrate processing device, and substrate processing method
WO2019202962A1 (en) * 2018-04-18 2019-10-24 東京エレクトロン株式会社 Abnormality detection device for chemicals, liquid processing device, substrate processing device, abnormality detection method for chemicals, liquid processing method, and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127488A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Device for detecting foreign matter and method for detecting foreign matter
WO2023127487A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Foreign body detecting device, and foreign body detecting method

Also Published As

Publication number Publication date
JPWO2021182117A1 (en) 2021-09-16
TW202200988A (en) 2022-01-01
JP2024040273A (en) 2024-03-25
CN115244387A (en) 2022-10-25
KR20220150339A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP2024040273A (en) Foreign matter detection apparatus, substrate processing apparatus, foreign matter detection method and storage medium
KR102405539B1 (en) Substrate processing apparatus and substrate processing method
JP6773188B2 (en) Coating film forming device and coating film forming system
WO2019202962A1 (en) Abnormality detection device for chemicals, liquid processing device, substrate processing device, abnormality detection method for chemicals, liquid processing method, and substrate processing method
TWI638400B (en) Substrate processing device, substrate processing method, and memory medium
CN212062395U (en) Substrate processing apparatus and substrate processing system
WO2018135487A1 (en) Foreign matter detection device, foreign matter detection method and storage medium
WO2021193198A1 (en) Foreign matter detection device, substrate processing device, and method for checking operation of foreign matter detection device
WO2023127488A1 (en) Device for detecting foreign matter and method for detecting foreign matter
TWI839437B (en) Substrate processing device, substrate processing system, and substrate processing method
WO2018135488A1 (en) Foreign matter detection device, foreign matter detection method and storage medium
WO2023127487A1 (en) Foreign body detecting device, and foreign body detecting method
JP7491126B2 (en) Substrate processing apparatus and substrate processing method.
CN114674234A (en) Film thickness estimation method, storage medium, and film thickness estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505904

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768032

Country of ref document: EP

Kind code of ref document: A1