WO2021182114A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021182114A1
WO2021182114A1 PCT/JP2021/007015 JP2021007015W WO2021182114A1 WO 2021182114 A1 WO2021182114 A1 WO 2021182114A1 JP 2021007015 W JP2021007015 W JP 2021007015W WO 2021182114 A1 WO2021182114 A1 WO 2021182114A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
value
unit
power conversion
Prior art date
Application number
PCT/JP2021/007015
Other languages
French (fr)
Japanese (ja)
Inventor
宗克 藪田
匠 植村
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2021182114A1 publication Critical patent/WO2021182114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • This disclosure relates to a power conversion device.
  • the inventor of the present application envisioned a power supply system in which a first power supply that outputs a constant voltage and a second power supply that outputs a constant current are connected in parallel as a power supply system in which a plurality of power supplies are connected in parallel.
  • this power supply system it may be desirable to quickly increase the output current of the second power supply when the load current suddenly rises, and for that purpose, the current limit value for constant current control is changed to a larger value.
  • the current limit value for constant current control is changed to a larger value.
  • the second power supply in a power supply system in which a second power supply is connected in parallel to a first power supply that outputs a constant voltage, the second power supply can perform a constant current operation, and the output of the power supply system during the constant current operation.
  • One of the purposes is to quickly increase the output current of the second power supply when the current is insufficient.
  • the power conversion device which is one of the present disclosures, is It is used in a power supply system provided between a first conductive path and a second conductive path and provided with a first power source that outputs a constant voltage to the second conductive path, and is used for the first conductive path and the second conductive path. It is a power conversion device that converts power between and A second power supply connected in parallel to the first power supply is provided.
  • the second power source includes a power conversion unit that performs power conversion between the first conductive path and the second conductive path, and a drive unit that drives the power conversion unit.
  • the drive unit provides constant current control for operating the power conversion unit in a constant current mode based on a current limit value, and current increase control for causing the power conversion unit to output an output current larger than the current limit value. Do, The drive unit switches from the constant current control to the current increase control when the output voltage of the power conversion unit falls into a predetermined drop state during the constant current control.
  • the power conversion device which is one of the present disclosures, allows the second power supply to perform constant current operation, and quickly increases the output current of the second power supply when the output current of the power supply system is insufficient during the constant current operation. Can be made to.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle power supply system including the power conversion device of the first embodiment of the present disclosure.
  • FIG. 2 is a block diagram schematically illustrating the electrical configuration of the power conversion device of the first embodiment.
  • FIG. 3 is a circuit diagram illustrating a specific configuration of a first power conversion unit in the power conversion device of the first embodiment.
  • FIG. 4 is a circuit diagram illustrating a specific configuration of a second power conversion unit in the power conversion device of the first embodiment.
  • FIG. 5 is a functional block diagram showing the functions executed by the power supply control unit by blocks.
  • FIG. 6 is a block diagram schematically illustrating the configuration of the control unit in the power conversion device of the first embodiment.
  • FIG. 7 is a flowchart illustrating the flow of control performed by the in-power supply control unit (drive unit) of the second power supply in the power conversion device of the first embodiment.
  • FIG. 8 shows the output current value of the first power supply when the control unit in the power supply of the second power supply does not perform the current increase control with respect to the case where the load current suddenly increases during the constant current control in the power conversion device of FIG. It is a graph which shows the relationship between the output current value I2 of I1 and the 2nd power source, and the total current value Is.
  • FIG. 9 is a graph relating to the operation of the power conversion device of the first embodiment under the same conditions as in FIG. FIG.
  • FIG. 9 shows the output current value I1 of the first power supply and the output of the second power supply when the control unit in the power supply of the second power supply can perform the current increase control in the case where the load current suddenly increases during the constant current control. It is a graph which shows the relationship between the current value I2 and the total current value Is.
  • FIG. 10 is a graph showing the relationship between the output current value I1 of the first power supply, the output current value I2 of the second power supply, and the total current value Is when the in-power supply control unit of the second power supply does not perform current increase control. It is a graph in the case where the output current value I1 of the first power supply reaches the rated current value in response to a rapid increase in the load current.
  • FIG. 11 is a graph relating to the operation of the power conversion device of the first embodiment under the same conditions as in FIG. 10, and is the output of the first power supply when the in-power supply control unit of the second power supply can perform current increase control. It is a graph which shows the relationship between the current value I1 and the output current value I2 of a 2nd power source, and the total current value Is.
  • a power conversion device that converts power to and from a conductive path.
  • a second power supply connected in parallel to the first power supply is provided.
  • the second power source includes a power conversion unit that performs power conversion between the first conductive path and the second conductive path, and a drive unit that drives the power conversion unit.
  • the drive unit provides constant current control for operating the power conversion unit in a constant current mode based on a current limit value, and current increase control for causing the power conversion unit to output an output current larger than the current limit value.
  • the drive unit is a power conversion device that switches from the constant current control to the current increase control when the output voltage of the power conversion unit falls into a predetermined drop state during the constant current control.
  • the power conversion device of the above [1] enables the second power supply to perform a constant current operation in a power supply system in which the second power supply is connected in parallel to the first power supply that outputs a constant voltage. Further, in the above power conversion device, even if the output current of the power supply system becomes insufficient and the output voltage starts to drop during the constant current control of the second power supply, the second power supply itself quickly based on the "predetermined drop state". Can be switched to current increase control. Therefore, this power conversion device can rapidly increase the output current of the second power supply when the output current is insufficient during the constant current control of the second power supply.
  • the power conversion device of the above [2] can rapidly increase the output current of the second power supply according to a predetermined drop state, and then continue the current increase control until the output voltage of the second power supply reaches the threshold value. .. Then, this power conversion device can return the second power supply to the constant current control after confirming that the output voltage of the second power supply has recovered to the threshold value.
  • the power conversion device of the above [3] quickly recovers the voltage to a value equal to or higher than the above constant voltage by the current increase control even if the output current of the power supply system is insufficient and the constant voltage control of the first power supply is not maintained. can do.
  • the power conversion device of the above [4] can suppress the output voltage of the power supply system from dropping significantly beyond the above determination value, and can recover to a threshold value larger than the above determination value. Further, since this power conversion device sets the threshold value larger than the determination value, it is possible to suppress the number of times that the constant current control and the current increase control are repeated after switching to the current increase control.
  • the second power supply has a receiving unit that receives a command value from an external device of the second power supply, and the driving unit receives the command received by the receiving unit when performing the constant current control.
  • the power conversion device according to any one of [1] to [4], which sets the current limit value based on the value.
  • the power conversion device of the above [5] sets a current limit value based on a command value received by the receiving unit when performing constant current control.
  • a transient "predetermined descent state” occurs, only the method of updating the current limit value based on the command value issued from the outside according to the descent state is adopted.
  • the second power supply itself since the second power supply itself can switch to the current increase control according to the "predetermined drop state", the delay of switching due to the delay of communication or the like is less likely to occur.
  • the command value is a value corresponding to the total current value supplied by the power supply system or the value of the first current supplied by the first power supply, and the drive unit performs the constant current control.
  • the second power supply can set a current limit value according to the total current value or the value of the first current based on communication with the outside when performing constant current control. .. That is, the power conversion device can adjust the output current of the second power supply by more accurately reflecting the total current value or the value of the first current during the constant current control.
  • the previous "total current value or first current” is used until a new command value is received by communication and the current set value is updated. There is a concern that it will take time to increase the current because the "current limit value according to the value of" is maintained.
  • the second power supply itself can switch to the current increase control according to the "predetermined drop state"
  • the update of the current limit value is delayed due to the communication delay or the like. It is possible to prevent a shortage of output current from occurring. That is, in the above-mentioned power conversion device, when the load current is transiently increased, the output current can be rapidly increased by the rapid control performed by the second power supply itself.
  • the drive unit sets the ratio between the value of the first current and the current limit value to a predetermined ratio based on the total current value or the value of the first current during the constant current control.
  • the power conversion device according to [6] which sets a current limit value.
  • the power conversion device of the above [7] can easily keep the value of the output current from the first power supply and the value of the output current from the second power supply at a predetermined ratio during the constant current control. Then, when a "predetermined drop state" occurs during constant current control, the power conversion device can quickly prioritize increasing the output current rather than keeping it at the predetermined ratio.
  • the first power supply, the control unit that controls the first power supply and the second power supply, and the first power supply or the control unit transmits the command value [5] to [7].
  • the power conversion device according to any one of the above.
  • the second power supply can set the current limit value by communicating with the control unit or the first power supply during the constant current control. Then, when a "predetermined drop state" occurs during the constant current control, the second power supply can be quickly switched to the current increase control by the determination and drive of the second power supply itself.
  • the first power supply includes the first power supply, and the first power supply drives a first power conversion unit that performs power conversion between the first conductive path and the second conductive path, and the first power conversion unit.
  • the second drive unit includes a first drive unit, a detection unit that detects an output current value output from the first power conversion unit, and a transmission unit that transmits information that specifies the output current value.
  • the power supply includes the power conversion unit which is the second power conversion unit and the drive unit which is the second drive unit, and the reception unit receives at least information specifying the value of the output current and drives the drive unit.
  • the unit describes in [7] that the current limit value is set so that the ratio between the value of the first current and the current limit value becomes the predetermined ratio based on the specified information during the constant current control. Power converter.
  • the power conversion device of the above [9] has a value of the output current from the first power supply and a value of the output current from the second power supply based on the detected value actually detected by the first power supply during the constant current control. Is easier to keep at a predetermined ratio more accurately.
  • the power conversion device of the above [10] can relatively suppress the rated current value of the second power supply, and can perform a characteristic operation by the second power supply whose rated current value is suppressed.
  • the vehicle-mounted power supply system 100 can function as a vehicle-mounted DC voltage supply system mounted on a vehicle such as an electric vehicle.
  • the power supply system 100 may supply a DC voltage to the load 110.
  • the power supply system 100 includes a power conversion device 101 and a battery 102.
  • the load 110 may be any electric device mounted on the vehicle, and may be, for example, an accessory device (cell motor, alternator, radiator cooling fan, etc.) necessary for operating the engine or motor.
  • the type of load 110 is not limited, and may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like.
  • the battery 102 is, for example, a battery (for example, a secondary battery) that supplies a high voltage (for example, 300 V).
  • the positive electrode terminal on the high potential side of the battery 102 is electrically connected to the first conductive path 11.
  • the negative electrode terminal on the low potential side of the battery 102 is electrically connected to a ground (not shown).
  • the power conversion device 101 is a device that performs power conversion between the first conductive path 11 and the second conductive path 12.
  • the power conversion device 101 mainly includes a first power supply 104, a second power supply 106, and a control unit 108.
  • the first power supply 104 and the second power supply 106 are connected in parallel between the first conductive path 11 and the second conductive path 12.
  • the first power conversion unit 21 and the second power conversion unit 22 are connected in parallel between the first conductive path 11 and the second conductive path 12.
  • the power conversion device 101 steps down the input voltage input from the battery 102 via the first conductive path 11 and applies an output voltage lower than the voltage of the first conductive path 11 to the second conductive path 12. Can be done.
  • voltage means a potential difference from ground.
  • the voltage of the first conductive path 11 means the potential difference between the first conductive path 11 and the ground
  • the voltage of the second conductive path 12 means the potential difference between the second conductive path 12 and the ground.
  • Both the first power supply 104 and the second power supply 106 function as DC-DC converters.
  • the first power supply 104 and the second power supply 106 convert the DC voltage VH input from the battery 102 into predetermined output voltages V1 and V2, respectively, and output the DC voltage VH from their respective output terminals.
  • the first power supply 104 is a device provided between the first conductive path 11 and the second conductive path 12 and capable of performing power conversion so as to output a constant voltage to the second conductive path.
  • the first power supply 104 includes a first power conversion unit 21 that performs power conversion, an in-power supply control unit 31 that drives the first power conversion unit 21, an interface unit 61, and a first voltage. It has a value detection unit 41 and a first current value detection unit 51.
  • the in-power supply control unit 31 corresponds to an example of a first drive unit that drives the first power conversion unit 21.
  • the interface unit 61 is also referred to as an IF unit 61.
  • the first power conversion unit 21 is a device that performs power conversion between the first conductive path 11 and the second conductive path 12, and specifically, from the first conductive path 11 via the first input path 71. The operation of converting the input electric power and outputting the electric power to the second conductive path 12 via the first output path 81 is performed.
  • the first input path 71 is a conductive path branched from the first conductive path 11, one end of which is electrically connected to the first conductive path 11 and the other end of which is electrically connected to the first power conversion unit 21. ..
  • One end of the first output path 81 is electrically connected to the first power conversion unit 21, and the other end is electrically connected to the second conductive path 12.
  • the first power conversion unit 21 is configured as, for example, a full-bridge type isolated DCDC converter as shown in FIG. In FIG. 3, the first voltage value detection unit 41, the first current value detection unit 51, and the like are omitted.
  • the first power conversion unit 21 includes an input circuit unit 21X, a transformer unit 21Y, and an output circuit unit 21Z.
  • the input circuit unit 21X includes a plurality of semiconductor switch elements 21A, 21B, 21C, 21D and a capacitor 21E, and is electrically connected to the primary coil 21F of the transformer unit 21Y.
  • the input circuit unit 21X generates an AC voltage in the primary coil 21F according to the switching operation of the plurality of semiconductor switch elements 21A, 21B, 21C, 21D.
  • the switching operation of the plurality of semiconductor switch elements 21A, 21B, 21C, and 21D is controlled by the in-power supply control unit 31, and specifically, CV (Constant Voltage) control described later is performed.
  • the output circuit section 21Z includes diodes 21J and 21K, an inductor 21L, and a capacitor 21M, is electrically connected to the secondary coil 21G and 21H of the transformer section 21Y, and is an AC voltage applied to the secondary coil 21G and 21H. Is rectified and a DC voltage is output.
  • the first power conversion unit 21 performs voltage conversion by switching operations of the semiconductor switch elements 21A, 21B, 21C, and 21D.
  • the first power conversion unit 21 steps down the input voltage VH (potential difference between the first conductive path 11 and the conductive path 13A on the ground side) applied to the first conductive path 11 and outputs the voltage to the first output path 81.
  • a voltage (potential difference between the first output path 81 and the ground-side conductive path 13B) is generated.
  • the conductive paths 13A and 13B are reference conductive paths maintained at, for example, about 0 V.
  • the first current value detection unit 51 is interposed in the middle of the first output path 81.
  • the first current value detection unit 51 detects the value of the current flowing through the first output path 81 (first current value I1), and inputs a signal indicating the first current value I1 to the in-power supply control unit 31.
  • the first power conversion unit 21 performs a power conversion operation (specifically, a step-down operation)
  • the first current value detection unit 51 outputs the output current output by the first power conversion unit 21 via the first output path 81. Is detected as the first current value I1.
  • the first current value detection unit 51 corresponds to an example of the detection unit, and detects the value of the output current (first current value I1) output from the first power conversion unit 21.
  • the first voltage value detection unit 41 detects the voltage value (first voltage value V1) of the first output path 81, and inputs a signal indicating the first voltage value V1 to the in-power supply control unit 31.
  • the first voltage value detection unit 41 detects the value of the output voltage applied by the first power conversion unit 21 to the first output path 81 as the first voltage value V1. Then, a signal indicating this output voltage is input to the power supply internal control unit 31.
  • the IF unit 61 receives the data transmitted from the control unit 108 and inputs it to the power supply in-power control unit 31. Further, the IF unit 61 can cooperate with the in-power supply control unit 31 to transmit the first current value I1 and the first voltage value V1 acquired by the in-power supply control unit 31 to the control unit 108.
  • the IF unit 61 corresponds to an example of a transmission unit, and has a function of transmitting information for specifying an output current value (first current value I1) output by the first power conversion unit 21. In this example, the information for specifying the output current value (first current value I1) corresponds to an example of the command value.
  • the information for specifying the output current value (first current value I1) may be the output current value (first current value I1) itself, and a constant value is set for the output current value (first current value I1). It may be an added value, or it may be a value obtained by multiplying the output current value (first current value I1) by a constant coefficient.
  • the in-power supply control unit 31 is configured as a control device having an information processing function, and is configured by, for example, a microcomputer including an internal memory.
  • the internal memory stores a program to be executed by the in-power supply control unit 31 and necessary parameters.
  • the in-power supply control unit 31 can control the first power conversion unit 21 based on the data received from the IF unit 61. For example, the in-power supply control unit 31 calculates a set value required for the operation of the first power conversion unit 21 and sets it in the first power conversion unit 21.
  • control unit 108 operates so as to give a constant output voltage target value to the first power supply 104.
  • the output voltage target value given to the first power supply 104 by the control unit 108 is also referred to as a “first target voltage”.
  • the mode in which a constant target voltage is output by the above CV control is also referred to as a constant voltage mode.
  • the first power supply 104 can perform a voltage conversion operation (step-down operation) so that the voltage of the first output path 81 becomes the first target voltage.
  • the in-power supply control unit 31 drives the first power conversion unit 21 so as to output the first target voltage to the first output path 81.
  • the first power conversion unit 21 operates in a constant voltage mode by being driven by the in-power supply control unit 31 (the above-mentioned CV control), steps down the DC voltage VH input from the battery 102, and sets the voltage of the first output path 81 to the above.
  • the voltage conversion operation can be performed so as to be the first target voltage.
  • the in-power supply control unit 31 periodically performs a feedback calculation to update the duty of the PWM signal given to the semiconductor switch elements 21A, 21B, 21C, 21D.
  • the in-power supply control unit 31 calculates the deviation between the first target voltage and the first voltage value V1 (voltage of the first output path 81) detected by the first voltage value detection unit 41 in the feedback calculation of each cycle. do.
  • the in-power supply control unit 31 brings the voltage of the first output path 81 closer to the first target voltage by the PI calculation formula or the PID calculation formula based on the deviation and the predetermined gain. Determine the amount of operation (duty increase / decrease).
  • the in-power supply control unit 31 calculates a new duty by adding the operation amount (duty increase / decrease amount) determined in this way to the current control amount (duty before change). In this way, the in-power supply control unit 31 can update the duty of the PWM signal in each cycle by the feedback calculation in each cycle.
  • the second power source 106 is a device capable of performing power conversion between the first conductive path 11 and the second conductive path 12.
  • the second power supply 106 includes a second power conversion unit 22 that performs power conversion, an in-power supply control unit 32 that drives the second power conversion unit 22, an interface unit 62, and a second voltage. It has a value detecting unit 42 and a second current value detecting unit 52.
  • the second power conversion unit 22 corresponds to an example of the power conversion unit.
  • the in-power supply control unit 32 corresponds to an example of a drive unit and corresponds to an example of a second drive unit.
  • the interface unit 62 is also referred to as an IF unit 62.
  • the second power conversion unit 22 is connected in parallel to the first power conversion unit 21, converts the power input from the first conductive path 11 via the second input path 72, and forms the second output path 82.
  • the operation of outputting electric power to the second conductive path 12 is performed.
  • the second input path 72 is a conductive path branched from the first conductive path 11, one end of which is electrically connected to the first conductive path 11 and the other end of which is electrically connected to the second power conversion unit 22. ..
  • One end of the second output path 82 is electrically connected to the second power conversion unit 22, and the other end is electrically connected to the second conductive path 12.
  • the second power conversion unit 22 is configured as a full-bridge type isolated DCDC converter similar to the first power conversion unit 21 shown in FIG. In FIG. 4, the second voltage value detecting unit 42, the second current value detecting unit 52, and the like are not shown.
  • the second power conversion unit 22 includes an input circuit unit 22X, a transformer unit 22Y, and an output circuit unit 22Z.
  • the input circuit unit 22X includes a plurality of semiconductor switch elements 22A, 22B, 22C, 22D and a capacitor 22E, and is electrically connected to the primary coil 22F of the transformer unit 22Y.
  • the input circuit unit 22X generates an AC voltage in the primary coil 22F according to the switching operation of the plurality of semiconductor switch elements 22A, 22B, 22C, 22D.
  • the switching operation of the plurality of semiconductor switch elements 22A, 22B, 22C, and 22D is controlled by the in-power supply control unit 32, and specifically, CVCC (Constant Voltage Constant Curent) control is performed.
  • the output circuit section 22Z includes diodes 22J and 22K, an inductor 22L, and a capacitor 22M, is electrically connected to the secondary coil 22G and 22H of the transformer section 22Y, and is an AC voltage applied to the secondary coil 22G and 22H. Is rectified and a DC voltage is output.
  • the second power conversion unit 22 performs voltage conversion by switching operations of the semiconductor switch elements 22A, 22B, 22C, and 22D.
  • the second power conversion unit 22 steps down the input voltage VH (potential difference between the first conductive path 11 and the conductive path 13C on the ground side) applied to the first conductive path 11 and outputs the voltage to the second output path 82.
  • a voltage (potential difference between the second output path 82 and the ground-side conductive path 13D) is generated.
  • the conductive paths 13C and 13D are reference conductive paths maintained at, for example, about 0 V.
  • the second current value detection unit 52 is interposed in the middle of the second output path 82.
  • the second current value detection unit 52 detects the value of the current flowing through the second output path 82 (second current value I2), and inputs a signal indicating the second current value I2 to the in-power supply control unit 32.
  • the second power conversion unit 22 performs a power conversion operation (specifically, a step-down operation)
  • the second current value detection unit 52 outputs the output current output by the second power conversion unit 22 via the second output path 82. Is detected as the second current value I2.
  • the second voltage value detection unit 42 detects the voltage value (second voltage value V2) of the second output path 82, and inputs a signal indicating the second voltage value V2 to the in-power supply control unit 32.
  • the second voltage value detection unit 42 detects the value of the output voltage applied by the second power conversion unit 22 to the second output path 82 as the second voltage value V2. Then, a signal indicating this output voltage is input to the power supply internal control unit 32.
  • the IF unit 62 receives the data transmitted from the control unit 108 and inputs it to the power supply in-power control unit 32. Further, the IF unit 62 may cooperate with the in-power supply control unit 32 to transmit the second current value I2 and the second voltage value V2 acquired by the in-power supply control unit 32 to the control unit 108.
  • the IF unit 62 corresponds to an example of a receiving unit, and functions to receive a command value from an external device of the second power supply 106. Specifically, the IF 62 has a function of receiving information transmitted by the IF 61 (for example, information for specifying an output current value (first current value I1) output by the first power conversion unit 21).
  • the in-power supply control unit 32 is configured as a control device having an information processing function, and is configured by, for example, a microcomputer including an internal memory.
  • the internal memory stores a program to be executed by the in-power supply control unit 32, necessary parameters, and the like.
  • the in-power supply control unit 32 can control the second power conversion unit 22 based on the data received from the IF unit 62. For example, the power supply in-power control unit 32 calculates a set value required for the operation of the second power conversion unit 22 and sets it in the second power conversion unit 22.
  • the control unit 108 or the first power supply 104 operates so as to give the second power supply 106 a value for determining an output voltage target value or an output voltage target value.
  • the output voltage target value of the second power supply 106 is also referred to as a “second target voltage”.
  • the second target voltage is, for example, a value slightly higher than the first target voltage.
  • the second target voltage may be directly applied to the second power source 106 from the control unit 108 or the first power source 104, and the first target voltage is applied to the second power source 106 from the control unit 108 or the first power source 104, and the second target voltage is given to the second power source 106.
  • the second target voltage may set a voltage at which the two power sources 106 are higher than the first target voltage by a certain level.
  • control unit 108 or the first power supply 104 operates so as to give a current limit value or a value for determining the current limit value to the second power supply 106.
  • the current limit value may be directly given from the control unit 108 or the first power supply 104 to the second power supply 106, the load current value is given from the control unit 108 to the second power supply 106, and the second power supply 106 is given the load current value.
  • the current value of a certain ratio of the above may be used as the current limit value.
  • the load current value in this case is the current value supplied from the power supply system 100 to the load 110.
  • the first power supply 104 may give the first current value I1 to the second power supply 106, and the second power supply 106 may set the current limit value based on the first current value I1.
  • the current limit value is set according to the command value based on the command value received by the IF unit 62 (reception unit) (for example,). Set to a value corresponding to the first current value I1).
  • the first current value I1 is given to the second power supply 106 from the first power supply 104, and the second power supply 106 has the first current value based on the first current value I1. This is an example of setting the current limit value so that the ratio between I1 and the current limit value becomes a predetermined ratio.
  • the current limit value is set so as to have a predetermined ratio based on the information that identifies the first current value I1).
  • the second power supply 106 operates by CVCC control based on the second target voltage and the current limit value.
  • the second power supply 106 can also operate in a constant voltage mode that outputs a designated constant voltage (second target voltage) by the above-mentioned CV control. Further, the second power supply 106 can also operate so as to output a designated constant current value (the above current limit value) by CC (Constant Current) control.
  • the CC control performed by the second power supply 106 corresponds to an example of constant current control.
  • the mode that outputs the specified constant current value is also referred to as the constant current mode. That is, the second power supply 106 can operate by switching between the operation in the constant voltage mode and the constant current mode.
  • FIG. 5 is a functional block diagram conceptually showing the functions executed by the power supply in-power control unit 32 by blocks.
  • Each function of the target value setting unit 32A, the constant current mode calculation unit 32B, the constant voltage mode calculation unit 32C, the arbitration unit 32D, and the PWM signal generation unit 32E in FIG. 5 may be realized by software by a microcomputer or the like. , May be implemented by a hardware circuit.
  • the target value setting unit 32A gives the current limit value Itb to the constant current mode calculation unit 32B and gives the second target voltage Vtb to the constant voltage mode calculation unit 32C based on the information from the interface unit 62.
  • the second power conversion unit 22 When operating in the constant current mode, the second power conversion unit 22 performs a voltage conversion operation in which the DC voltage VH input from the battery 102 is stepped down and the current in the second output path 82 is set as the current limit value.
  • the in-power supply control unit 32 can periodically perform a feedback calculation for operating the second power conversion unit 22 in the constant current mode at a predetermined calculation cycle. Specifically, the constant current mode calculation unit 32B periodically performs a feedback calculation in the above calculation cycle to calculate an operation amount (a new duty for bringing the current value of the second output path 82 closer to the current limit value). ..
  • the constant current mode calculation unit 32B has the current limit value Itb in the calculation cycle and the second current value I2 (current in the second output path 82) detected by the second current value detection unit 52. Calculate the deviation from the value). Then, in the cycle of performing the calculation, the constant current mode calculation unit 32B sets the current value of the second output path 82 to the current limit value by the calculation formula predetermined for the deviation of the cycle and the predetermined gain. The amount of operation (new duty) for approaching Itb is determined.
  • the above-mentioned calculation formula may be a PI (Proportional-Integral) calculation formula or a PID (Proportional-Integral-Differential) calculation formula.
  • the manipulated variable (new duty) is calculated by the PI calculated formula based on the above deviation and the predetermined proportional gain and integral gain. Duty) is calculated.
  • This manipulated variable is the result of the feedback calculation of the cycle in which the calculation is performed, and is a new duty to be changed from the current duty in the case of the constant current mode.
  • the second power conversion unit 22 When operating in the constant voltage mode, the second power conversion unit 22 performs a voltage conversion operation in which the DC voltage VH input from the battery 102 is stepped down and the voltage of the second output path 82 is set as the second target voltage.
  • the in-power supply control unit 32 periodically performs a feedback calculation for operating the second power conversion unit 22 in the constant voltage mode in the above calculation cycle.
  • the constant voltage mode calculation unit 32C periodically performs a feedback calculation in the above calculation cycle to calculate an operation amount (a new duty for bringing the voltage value of the second output path closer to the second target voltage). ..
  • the constant voltage mode calculation unit 32C has the second target voltage Vtb and the second voltage value V2 (of the second output path 82) detected by the second voltage value detection unit 42 in the calculation cycle. Calculate the deviation from the voltage). Then, in the cycle of performing the calculation, the constant voltage mode calculation unit 32C sets the voltage of the second output path 82 as the second target by the PI calculation formula or the PID calculation formula based on the deviation of the cycle and the predetermined gain. The amount of operation for approaching the voltage Vtb is determined.
  • the manipulated variable (new duty) is calculated by the PI calculation formula based on the above deviation and the predetermined proportional gain and integral gain. Duty) is calculated.
  • This manipulated variable is the result of the feedback calculation of the cycle in which the calculation is performed, and is a new duty to be changed from the current duty in the case of the constant voltage mode.
  • the arbitration unit 32D determines in advance whether to select between the operation amount (duty) calculated by the constant current mode calculation unit 32B and the operation amount (duty) calculated by the constant voltage mode calculation unit 32C. Determined by selection method. In the typical example described below, a method of selecting a smaller operation amount (calculation result in which the duty ratio becomes smaller) from both the operation amounts calculated by the constant current mode calculation unit 32B and the constant voltage mode calculation unit 32C is adopted. NS.
  • the arbitration method is not limited to this determination method, and other determination methods may be adopted.
  • the arbitration unit 32D selects a smaller operation amount from the operation amount (duty) calculated by the constant current mode calculation unit 32B and the operation amount (duty) calculated by the constant voltage mode calculation unit 32C. Then, the PWM signal generation unit 32E outputs the PWM signal of the operation amount (duty) selected by the arbitration unit 32D as, for example, the PWM signal of the cycle next to the calculation cycle in which the operation amount is determined.
  • the in-power supply control unit 32 operates the second power conversion unit 22 in the constant current mode during the period when the operation amount calculated by the constant current mode calculation unit 32B is adopted by the arbitration unit 32D.
  • the constant current control is continued.
  • the constant voltage control for operating the second power conversion unit 22 in the constant voltage mode continues during the period when the operation amount calculated by the constant voltage mode calculation unit 32C is adopted by the arbitration unit 32D. ..
  • the control unit 108 includes a CPU (Central Processing Unit) 120, a memory 122, an interface unit (hereinafter referred to as an IF unit) 124, and a bus 126. Data transmission between each unit in the control unit 108 is performed via the bus 126.
  • the memory 122 has one or more storage media, and includes, for example, a rewritable semiconductor non-volatile memory.
  • the memory 122 stores a program executed by the CPU 120, predetermined parameters, and the like. A part of the memory 122 is used as a work area when the CPU 120 executes a program.
  • the control unit 108 is, for example, an ECU (Electronic Control Unit) of an electric vehicle or the like.
  • the CPU 120 has a function of controlling the operations of the first power source 104 and the second power source 106, controls the first power conversion unit 21 by giving an instruction to the first power source 104, and gives an instruction to the second power source 106. This controls the second power conversion unit 22. Specifically, the CPU 120 transmits the first target voltage to the first power supply 104 via the IF unit 124. The first power supply 104 can operate in the constant voltage mode based on the first target voltage, and operates so as to output a voltage equal to the first target voltage. Further, the CPU 120 may transmit the first target voltage or the second target voltage and the load current value or the current limit value to the second power supply 106 via the IF unit 124. The second power supply 106 operates to output a current equal to the current limit value when operating in the constant current mode, and operates to output a voltage equal to the second target voltage when operating in the constant voltage mode. ..
  • the control of FIG. 7 is a control that the second power supply 106 (specifically, the control unit 32 in the power supply) repeatedly executes after the predetermined start condition is satisfied.
  • the predetermined start condition is, for example, when the vehicle is in the starting state, when the power supply to the in-power supply control unit 32 is started, when other start conditions are satisfied, and the like.
  • the second power supply 106 starts normal control based on communication as an initial operation immediately after the above start condition is satisfied.
  • the constant current mode calculation unit 32B and the constant voltage mode calculation unit 32C calculate after setting the current limit value Itb based on the above-mentioned command value (for example, the first current value I1) obtained by communication.
  • the arbitration unit 32D is a control that determines the operation amount by the above-mentioned arbitration.
  • the PWM signal generation unit 32E outputs the PWM signal of the operation amount (duty) determined by the arbitration unit 32D.
  • the second power conversion unit 22 is operated in the constant current mode during the period in which the arbitration unit 32D continues to adopt the operation amount calculated by the constant current mode calculation unit 32B.
  • Current control continues.
  • the in-power supply control unit 32 controls the above-mentioned constant current as normal control based on communication as long as the output voltage of the first power supply 104 is the first target voltage and the output current of the second power supply 106 is the current limit value. I do.
  • the in-power supply control unit 32 starts the control of FIG. 7 and performs the process of step S1 when the above start condition is satisfied or the control of FIG. 7 is completed.
  • step S1 the power supply control unit 32 determines whether or not the control of the second power supply 106 is communication-based control (normal control), and if it is communication-based normal control, the process proceeds to step S2. Proceed.
  • step S5 the in-power supply control unit 32 determines in step S1 that the control of the second power supply 106 is the current increase control, the process proceeds to step S5.
  • the in-power supply control unit 32 performs normal control based on communication as the default control, and therefore determines Yes in step S1.
  • step S1 when the control of FIG. 7 is restarted after the processing of steps S3 and S6, the in-power supply control unit 32 performs normal control based on communication, so that in step S1. Judge Yes. Further, in the next step S1 when the control of FIG. 7 is started again after the processing of steps S4 and S7, since the in-power supply control unit 32 performs the current increase control, it is determined to be Yes in step S1. ..
  • step S2 determines in step S2 that the output voltage value of the second power supply 106 is predetermined. It is determined whether or not the value is Vj or more.
  • the determination value Vj is a value lower than the constant voltage (first target voltage) of the first power supply 104.
  • step S2 determines in step S2 that the output voltage value of the second power supply 106 (that is, the output voltage value of the second power conversion unit 22) is equal to or higher than the determination value Vj, it is based on communication in step S3. Normal control is continued.
  • step S4 When the in-power supply control unit 32 determines in step S2 that the output voltage value of the second power supply 106 is less than the determination value Vj, the current increase control is performed in step S4.
  • This current increase control is a control that gradually increases the target current value of the second power supply 106 from the current current limit value (value determined based on the command value acquired by communication).
  • the in-power supply control unit 32 sets the target current value by gradually increasing it from the current current limit value while the current increase control continues, and targets the output current value I2 of the second power conversion unit 22.
  • the second power conversion unit 22 is operated so as to have a current value.
  • the speed at which the target current value is increased is predetermined by the in-power supply control unit 32.
  • the in-power supply control unit 32 (drive unit) has constant current control for operating the second power conversion unit 22 (power conversion unit) in the constant current mode based on the current limit value, and the second power conversion unit 22. It is possible to perform current increase control for outputting an output current larger than the current limit value. Then, the in-power supply control unit 32 becomes less than the determination value Vj when the output voltage of the second power conversion unit 22 (power conversion unit) is in a predetermined drop state during constant current control (specifically, the determination value is less than Vj). In the case), it may operate to switch from constant current control to current increase control.
  • the in-power supply control unit 32 determines in step S1 that the control of the second power supply 106 is not communication-based control (normal control) (that is, when it is determined to be current increase control), the second power supply in step S5. It is determined whether or not the output voltage value of 106 is equal to or higher than the threshold value Vth.
  • the threshold value Vth is a value larger than the determination value Vj. Further, the threshold value Vth is a value larger than the constant voltage (first target voltage) output by the first power supply 104 and smaller than the target voltage (second target voltage) in the constant voltage mode of the second power supply 106. be.
  • step S5 When the power supply in-power supply control unit 32 determines in step S5 that the output voltage value of the second power supply 106 is equal to or higher than the threshold value Vth, the power supply control unit 32 continues normal control based on communication in step S6.
  • the in-power supply control unit 32 performs the above-mentioned constant current control as normal control based on communication as long as the output voltage of the first power supply 104 is the first target voltage and the output current of the second power supply 106 is the current limit value. It has become like.
  • step S7 When the in-power supply control unit 32 determines in step S5 that the output voltage value of the second power supply 106 is less than the threshold value Vth, the current increase control is performed in step S7.
  • the output voltage value of the second power supply 106 (that is, the output voltage value of the second power conversion unit 22 (power conversion unit)) is set to the threshold value Vth during the current increase control.
  • Vth the threshold value
  • the in-power supply control unit 32 switches from the constant current control to the current increase control, and the second power supply 106 during the current increase control.
  • the control is switched to the constant current control.
  • the power conversion device 101 enables the second power supply 106 to perform a constant current operation in the power supply system 100 in which the second power supply 106 is connected in parallel to the first power supply 104 that outputs a constant voltage.
  • the second power supply 106 simply performs a constant current operation, there is a problem as shown in FIG. 8, and the power conversion device 101 can solve this problem as shown in FIG.
  • the example of FIG. 8 is an example in which the above-mentioned current increase control is not performed in the configuration shown in FIGS. 1 to 6.
  • the load current suddenly rises in the period T4 from the time ta, and the total current value (the sum of the current value I1 of the first power supply 104 and the current value I2 of the second power supply 106) rises. ..
  • the thirth is as shown in the period T12. 2
  • the output current value I2 of the power supply 106 continues to be limited.
  • the current limit value is updated at the time td, and the output current value I2 of the second power supply 106 rises in the subsequent period T13, but the period T12 up to that point is that of the first power supply 104. It is not possible to suppress an excessive output current, which causes a drop in the output voltage of the first power supply 104, which in turn causes a drop in the output voltage of the power supply system 100. However, as shown in FIG. 9, the power conversion device 101 can rapidly increase the output current by controlling the current increase, so that such a decrease in the output voltage can be reliably suppressed.
  • the load current suddenly rises in the period T4 from the time ta, and the total current value (current value I1 of the first power supply 104 and current value I2 of the second power supply 106) occurs. The sum with and) is rising.
  • the power conversion device 101 even if the load current suddenly increases like the period T4 during the constant current control of the second power supply 106 (period T21) and the output voltage drops due to the shortage of the output current of the entire power supply system 100, the power conversion device 101 is the first. 2
  • the power supply 106 itself can quickly detect a “predetermined descent state”.
  • the second power supply 106 can switch from the constant current control to the current increase control in response to the detection of the “predetermined drop state”.
  • the output voltage of the second power supply 106 is equal to or higher than the judgment value Vj before the time tb, and the output voltage of the second power supply 106 is less than the judgment value Vj at the time tb due to the rapid increase in the load during the period T4. It has become.
  • the in-power supply control unit 32 determines the control of the second power conversion unit 22 as in the period T22 of FIG.
  • the current control is switched to the current increase control to increase the output current value I2 of the second power conversion unit 22.
  • the power conversion device 101 rapidly increases the output current of the second power supply 106 even if the output current is insufficient during the constant current control of the second power supply 106 and the output voltage is lowered accordingly.
  • the output voltage can be recovered.
  • the in-power supply control unit 32 (drive unit) is the second power conversion unit 22.
  • the control for is switched from the current increase control to the constant current control.
  • the output voltage of the second power conversion unit 22 reaches the threshold Vth at the time ct during the current increase control, and the in-power supply control unit 32 (drive unit) immediately after the time ct.
  • the control for the second power conversion unit 22 is switched from the current increase control to the constant current control. Then, the in-power supply control unit 32 (drive unit) performs constant current control during the period T23.
  • the power conversion device 101 rapidly increases the output current of the second power supply 106 in response to the above-mentioned "predetermined drop state", and then waits until the output voltage of the second power supply 106 reaches the threshold value Vth.
  • the current increase control can be continued during the period T22.
  • the power conversion device 101 can return the second power supply 106 to the constant current control after confirming that the output voltage of the second power supply 106 has recovered to the threshold value Vth.
  • the threshold value Vth is a value larger than the determination value Vj.
  • the power conversion device 101 suppresses the output voltage of the power supply system 100 from dropping significantly beyond the above-mentioned determination value Vj by the current increase control, and recovers the output voltage to a threshold value Vth larger than the above-mentioned determination value Vj. can. Further, since the power conversion device 101 sets the threshold value Vth larger than the determination value Vj, it is possible to suppress the number of times that the constant current control and the current increase control are repeated after switching to the current increase control. ..
  • the threshold value Vth is set to a value equal to or higher than the constant voltage (first target voltage) output by the first power supply 104. Even if the output current of the power supply system 100 is insufficient and the constant voltage control of the first power supply 104 is not maintained, the power conversion device 101 quickly recovers the voltage to a value equal to or higher than the constant voltage by the current increase control. be able to.
  • the power conversion device 101 of the present disclosure can solve this problem as shown in FIG. The alternate long and short dash line Ix in FIG.
  • FIG. 9 is a change in the output current value of the first power supply 104 when it is operated as shown in FIG. 8, and the alternate long and short dash line Iy in FIG. 9 is a change in the output current value when it is operated as shown in FIG. 2 It is a change in the output current value of the power supply 106.
  • FIG. 10 and 11 are graphs when the current value I1 of the first power supply 104 reaches the rated current value Im due to a rapid increase in the load current.
  • FIG. 10 is a graph relating to the same apparatus as in FIG. 8, and is an example in which the current increase control is not performed in the configuration shown in FIGS. 1 to 6.
  • the load current suddenly rises from the time ta, and the total current value (the sum of the current value I1 of the first power supply 104 and the current value I2 of the second power supply 106) rises.
  • the current limit value is changed from the time td according to the communication performed after the time ta, and the current value I2 of the second power supply 106 is increased.
  • the current value I1 of the first power supply 104 is limited to the rated current value Im from the time te after rising to the rated current value Im with the rapid increase in the load current.
  • a transient voltage drop occurs during the period T14 in which the output current of the first power supply 104 suddenly increases due to the rapid increase in the load current.
  • the current value I1 of the first power supply 104 is limited to the rated current value Im, and the total current value Is is lower than the current value Iz required by the load, so that the output voltage is constantly lowered. ..
  • the power conversion device 101 of the present disclosure has a “predetermined drop state” as shown in FIG. 11 even if the load current suddenly increases during the constant current control of the second power supply 106 (period T21) as in FIG.
  • the output current value I2 can be increased by controlling the current increase from the time tb at which the above occurs. Therefore, the power converter 101 can suppress the transient voltage drop which is a concern in the period T4.
  • the power conversion device 101 can suppress or prevent the current value I1 of the first power supply 104 from reaching the rated current value Im, the above-mentioned steady decrease in output voltage can also be suppressed.
  • the power conversion device 101 sets a current limit value based on a command value received by the IF unit 62 (reception unit) when performing constant current control.
  • a transient "predetermined descent state” occurs, only the method of updating the current limit value based on the command value issued from the outside according to the descent state is adopted.
  • the power conversion device 101 itself can switch to the current increase control according to the "predetermined drop state"
  • the delay in switching due to the delay in communication or the like is less likely to occur.
  • the second power supply 106 can set a current limit value according to the value I1 of the first current based on communication with the outside when performing constant current control. That is, the power conversion device 101 can adjust the output current of the second power supply 106 by more accurately reflecting the value I1 of the first current during the constant current control.
  • a "predetermined drop state” when a "predetermined drop state" occurs, it corresponds to the previous "first current value I1" until a new command value is received by communication and the current set value is updated. There is a concern that the "current limit value" will be maintained and it will take time to increase the current.
  • the second power supply 106 since the second power supply 106 itself can switch to the current increase control according to the "predetermined drop state", the update of the current limit value is delayed due to the communication delay or the like. It is possible to prevent a shortage of output current from occurring. That is, in the situation where the load current transiently increases, the power conversion device 101 can rapidly increase the output current by the rapid control performed by the second power supply 106 itself.
  • the in-power supply control unit 32 (driving unit) sets the ratio between the first current value I1 and the current limit value Itb to a predetermined ratio based on the first current value I1 during constant current control. To set.
  • the power conversion device 101 can easily keep the value I1 of the output current from the first power supply 104 and the value I2 of the output current from the second power supply 106 at a predetermined ratio during the constant current control. Then, when a "predetermined drop state" occurs during constant current control, the power conversion device 101 can quickly prioritize increasing the output current rather than maintaining the predetermined ratio.
  • the second power supply 106 can set the current limit value Itb by communicating with the first power supply 104 during the constant current control. Then, when a "predetermined drop state" occurs during the constant current control, the second power supply 106 can quickly switch to the current increase control by its own determination and drive.
  • the power conversion device 101 has an output current value I1 from the first power supply 104 and a second power supply based on the detection value (first current value I1) actually detected by the first power supply 104 during constant current control. It becomes easier to keep the value I2 of the output current from 106 more accurately at a predetermined ratio.
  • the rated current value of the second power supply 106 is smaller than the rated current value of the first power supply 104.
  • the power conversion device 101 can relatively suppress the rated current value of the second power supply 106, and can perform a characteristic operation by the second power supply 106 in which the rated current value is suppressed.
  • the first power supply 104 transmits the current value I1 of the first power supply 104 to the second power supply 106 as a command value, and the second power supply 106 sets the current limit value based on this command value.
  • the first power supply 104 calculates the current limit value Itb so that the current value I1 and the current limit value Itb are in a predetermined ratio based on its own current value I1, and the second power supply 104 uses this current limit value Itb as a command value. It may be transmitted to the power source 106.
  • the control unit 108 may transmit the current value I1 of the first power supply 104 acquired from the first power supply 104 to the second power supply 106 as a command value.
  • the control unit 108 calculates the current limit value Itb so that the current value I1 and the current limit value Itb become a predetermined ratio based on the current value I1, and transmits this current limit value Itb as a command value to the second power source. You may.
  • the control unit 108 seconds the sum (total current value Is) of the current value I1 of the first power supply 104 acquired from the first power supply 104 and the current value I2 of the second power supply 106 acquired from the second power supply 106. It may be transmitted to the power source 106.
  • the control unit 108 may transmit the value of a predetermined ratio of the total current value Is as the current limit value Itb to the second power supply 106.
  • the in-power supply control unit 32 (driving unit) sets the ratio of the first current value I1 and the current limit value Itb to a predetermined ratio based on the first current value I1 during constant current control.
  • a limit value Itb is set, but the present invention is not limited to this example.
  • the in-power supply control unit 32 (drive unit) obtains the ratio of the first current value I1 and the current limit value Itb from the control unit 108 during constant current control, and the total current value Is (I1 + I2).
  • the current limit value Itb may be set so as to have a predetermined ratio of. In this case, the total current value Is corresponds to an example of the command value.
  • the control unit 108 continuously monitors the total current value Is (the sum of the first current value I1 and the second current value I2), and updates the latest total current value Is at short time intervals in the second power supply 106. You can send it to.
  • the control unit 32 (driving unit) in the power supply is not limited to these examples, and the first current value I1 is used as a command value and the first current value I1 and the current limit value Itb are used as variables.
  • the current limit value Itb may be determined according to the first current value I1 by using a predetermined calculation formula.
  • the in-power supply control unit 32 uses a predetermined arithmetic expression in which the total current value Is is a command value and the total current value Is and the current limit value Itb are variables, and the total current value Is is.
  • the current limit value Itb may be determined accordingly.
  • the "predetermined drop state" is a case where the output voltage of the second power supply is less than the determination value.
  • the rate of decrease of the output voltage of the second power supply (output voltage per unit time). It may be the case that the voltage drop of) exceeds a predetermined value.
  • the power conversion device 101 is a device including the control unit 108, but a device such as the control unit 108 that does not include control may be used as the power conversion device.
  • the portion of the power conversion device 101 excluding the control unit 108 may be the power conversion device.
  • the power conversion device 101 is a device including the first power supply 104, but a device not including the first power supply may be a power conversion device.
  • the portion of the power converter 101 excluding the first power supply 104 may be the power converter, or the portion of the power converter 101 excluding the first power supply 104 and the control unit 108 may be the power converter. good.
  • the isolated DCDC converter as shown in FIGS. 3 and 4 is exemplified as a specific configuration of the first power conversion unit 21 and the second power conversion unit 22, but the configurations other than those shown in FIGS. DCDC converter may be used.
  • the power supply system 100 is mounted on a vehicle such as an electric vehicle, but the present invention is not limited to this.
  • the power supply system 100 may be mounted on a vehicle of a type other than these, for example, a PHEV (Plug-in Hybrid Electric Vehicle) or a HEV (Hybrid Electric Vehicle), or may be mounted on a device other than the vehicle.
  • a PHEV Plug-in Hybrid Electric Vehicle
  • HEV Hybrid Electric Vehicle

Abstract

A power conversion device (101) carries out a constant-current control, in which a drive unit of a second power supply (106) causes a power conversion unit of the second power supply (106) to operate in a constant-current mode on the basis of a current limitation value, and an increased-current control, in which the power conversion unit of the second power supply (106) is caused to output an output current larger than the current limitation value. When the output voltage of the power conversion unit of the second power supply (106) reaches a prescribed reduced state during constant-current control, the drive unit of the second power supply (106) switches from the constant-current control to the increased-current control.

Description

電力変換装置Power converter
 本開示は、電力変換装置に関する。 This disclosure relates to a power conversion device.
 電気自動車等においては、高電圧バッテリ(例えば、直流300V)の電圧をDC-DCコンバータにより低電圧(例えば、直流14V)に変換して負荷に供給する技術が採用されている。この種の電力変換装置では、電力供給先の負荷の必要電流が大きい場合、1つのDC-DCコンバータでは電流容量が不足してしまうことがある。その対策として、例えば、複数のDC-DCコンバータを並列接続して使用することが考えられる。特許文献1には、その一例が開示されている。 In electric vehicles and the like, a technique is adopted in which the voltage of a high-voltage battery (for example, DC 300V) is converted into a low voltage (for example, DC 14V) by a DC-DC converter and supplied to a load. In this type of power conversion device, when the required current of the load of the power supply destination is large, the current capacity of one DC-DC converter may be insufficient. As a countermeasure, for example, it is conceivable to use a plurality of DC-DC converters connected in parallel. Patent Document 1 discloses an example thereof.
特開2015-144534号公報Japanese Unexamined Patent Publication No. 2015-144534
 本願の発明者は、複数の電源を並列に接続した電源システムとして、定電圧を出力する第1電源と定電流を出力する第2電源とを並列に接続した電源システムを想定した。この電源システムは、負荷電流が急上昇したときに第2電源の出力電流を速やかに上昇させることが望ましい場合があり、そのためには、定電流制御を行うための電流制限値をより大きな値に変更する必要がある。しかし、通信などによって電流制限値を変更する指令を与える方法では、指令の送信、指令の受信、電流制限値の演算、電流制限値の再設定などを全て行う過程で時間がかかるため、第2電源の出力電流を迅速に上昇させることはできない。 The inventor of the present application envisioned a power supply system in which a first power supply that outputs a constant voltage and a second power supply that outputs a constant current are connected in parallel as a power supply system in which a plurality of power supplies are connected in parallel. In this power supply system, it may be desirable to quickly increase the output current of the second power supply when the load current suddenly rises, and for that purpose, the current limit value for constant current control is changed to a larger value. There is a need to. However, in the method of giving a command to change the current limit value by communication or the like, it takes time in the process of transmitting the command, receiving the command, calculating the current limit value, resetting the current limit value, and so on. The output current of the power supply cannot be increased quickly.
 本開示は、定電圧を出力する第1電源に対して第2電源が並列に接続された電源システムにおいて、第2電源が定電流動作を行うことができ、定電流動作中に電源システムの出力電流が不足した場合に第2電源の出力電流を迅速に上昇させることを目的の一つとする。 According to the present disclosure, in a power supply system in which a second power supply is connected in parallel to a first power supply that outputs a constant voltage, the second power supply can perform a constant current operation, and the output of the power supply system during the constant current operation. One of the purposes is to quickly increase the output current of the second power supply when the current is insufficient.
 本開示の一つである電力変換装置は、
 第1導電路と第2導電路との間に設けられるとともに前記第2導電路に定電圧を出力する第1電源を備えた電源システムに用いられ、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換装置であって、
 前記第1電源に対して並列に接続される第2電源を備え、
 前記第2電源は、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換部と、前記電力変換部を駆動する駆動部と、を有し、
 前記駆動部は、前記電力変換部を電流制限値に基づいて定電流モードで動作させる定電流制御と、前記電力変換部に前記電流制限値よりも大きい出力電流を出力させる電流増加制御と、を行い、
 前記駆動部は、前記定電流制御中に前記電力変換部の出力電圧が所定の降下状態となった場合に前記定電流制御から前記電流増加制御に切り替える。
The power conversion device, which is one of the present disclosures, is
It is used in a power supply system provided between a first conductive path and a second conductive path and provided with a first power source that outputs a constant voltage to the second conductive path, and is used for the first conductive path and the second conductive path. It is a power conversion device that converts power between and
A second power supply connected in parallel to the first power supply is provided.
The second power source includes a power conversion unit that performs power conversion between the first conductive path and the second conductive path, and a drive unit that drives the power conversion unit.
The drive unit provides constant current control for operating the power conversion unit in a constant current mode based on a current limit value, and current increase control for causing the power conversion unit to output an output current larger than the current limit value. Do,
The drive unit switches from the constant current control to the current increase control when the output voltage of the power conversion unit falls into a predetermined drop state during the constant current control.
 本開示の一つである電力変換装置は、第2電源が定電流動作を行うことができ、定電流動作中に電源システムの出力電流が不足した場合に第2電源の出力電流を迅速に上昇させることができる。 The power conversion device, which is one of the present disclosures, allows the second power supply to perform constant current operation, and quickly increases the output current of the second power supply when the output current of the power supply system is insufficient during the constant current operation. Can be made to.
図1は、本開示の第1実施形態の電力変換装置を含む車載用の電源システムを概略的に例示するブロック図である。FIG. 1 is a block diagram schematically illustrating an in-vehicle power supply system including the power conversion device of the first embodiment of the present disclosure. 図2は、第1実施形態の電力変換装置の電気的構成を模式的に例示するブロック図である。FIG. 2 is a block diagram schematically illustrating the electrical configuration of the power conversion device of the first embodiment. 図3は、第1実施形態の電力変換装置における第1電力変換部の具体的構成を例示する回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration of a first power conversion unit in the power conversion device of the first embodiment. 図4は、第1実施形態の電力変換装置における第2電力変換部の具体的構成を例示する回路図である。FIG. 4 is a circuit diagram illustrating a specific configuration of a second power conversion unit in the power conversion device of the first embodiment. 図5は、電源内制御部が実行する機能をブロックによって示す機能ブロック図である。FIG. 5 is a functional block diagram showing the functions executed by the power supply control unit by blocks. 図6は、第1実施形態の電力変換装置における制御部の構成を模式的に例示するブロック図である。FIG. 6 is a block diagram schematically illustrating the configuration of the control unit in the power conversion device of the first embodiment. 図7は、第1実施形態の電力変換装置における第2電源の電源内制御部(駆動部)で行われる制御の流れを例示するフローチャートである。FIG. 7 is a flowchart illustrating the flow of control performed by the in-power supply control unit (drive unit) of the second power supply in the power conversion device of the first embodiment. 図8は、図1の電力変換装置において定電流制御中に負荷電流の急増が生じた場合に関し、第2電源の電源内制御部が電流増加制御を行わない場合の第1電源の出力電流値I1と第2電源の出力電流値I2と総電流値Isとの関係を示すグラフである。FIG. 8 shows the output current value of the first power supply when the control unit in the power supply of the second power supply does not perform the current increase control with respect to the case where the load current suddenly increases during the constant current control in the power conversion device of FIG. It is a graph which shows the relationship between the output current value I2 of I1 and the 2nd power source, and the total current value Is. 図9は、図8と同様の状況下での第1実施形態の電力変換装置の動作に関するグラフである。図9は、定電流制御中に負荷電流の急増が生じた場合に関し、第2電源の電源内制御部が電流増加制御を行い得る場合の第1電源の出力電流値I1と第2電源の出力電流値I2と総電流値Isとの関係を示すグラフである。FIG. 9 is a graph relating to the operation of the power conversion device of the first embodiment under the same conditions as in FIG. FIG. 9 shows the output current value I1 of the first power supply and the output of the second power supply when the control unit in the power supply of the second power supply can perform the current increase control in the case where the load current suddenly increases during the constant current control. It is a graph which shows the relationship between the current value I2 and the total current value Is. 図10は、第2電源の電源内制御部が電流増加制御を行わない場合の第1電源の出力電流値I1と第2電源の出力電流値I2と総電流値Isとの関係を示すグラフであり、負荷電流の急増に応じて第1電源の出力電流値I1が定格電流値に達する場合のグラフである。FIG. 10 is a graph showing the relationship between the output current value I1 of the first power supply, the output current value I2 of the second power supply, and the total current value Is when the in-power supply control unit of the second power supply does not perform current increase control. It is a graph in the case where the output current value I1 of the first power supply reaches the rated current value in response to a rapid increase in the load current. 図11は、図10と同様の状況下での第1実施形態の電力変換装置の動作に関するグラフであり、第2電源の電源内制御部が電流増加制御を行い得る場合の第1電源の出力電流値I1と第2電源の出力電流値I2と総電流値Isとの関係を示すグラフである。FIG. 11 is a graph relating to the operation of the power conversion device of the first embodiment under the same conditions as in FIG. 10, and is the output of the first power supply when the in-power supply control unit of the second power supply can perform current increase control. It is a graph which shows the relationship between the current value I1 and the output current value I2 of a 2nd power source, and the total current value Is.
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔10〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。 In the following, the embodiments of the present disclosure are listed and exemplified. The features [1] to [10] exemplified below may be combined in any way within a consistent range.
 〔1〕第1導電路と第2導電路との間に設けられるとともに前記第2導電路に定電圧を出力する第1電源を備えた電源システムに用いられ、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換装置であって、
 前記第1電源に対して並列に接続される第2電源を備え、
 前記第2電源は、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換部と、前記電力変換部を駆動する駆動部と、を有し、
 前記駆動部は、前記電力変換部を電流制限値に基づいて定電流モードで動作させる定電流制御と、前記電力変換部に前記電流制限値よりも大きい出力電流を出力させる電流増加制御と、を行い、
 前記駆動部は、前記定電流制御中に前記電力変換部の出力電圧が所定の降下状態となった場合に前記定電流制御から前記電流増加制御に切り替える電力変換装置。
[1] Used in a power supply system provided between a first conductive path and a second conductive path and provided with a first power source that outputs a constant voltage to the second conductive path, the first conductive path and the first conductive path. 2 A power conversion device that converts power to and from a conductive path.
A second power supply connected in parallel to the first power supply is provided.
The second power source includes a power conversion unit that performs power conversion between the first conductive path and the second conductive path, and a drive unit that drives the power conversion unit.
The drive unit provides constant current control for operating the power conversion unit in a constant current mode based on a current limit value, and current increase control for causing the power conversion unit to output an output current larger than the current limit value. Do,
The drive unit is a power conversion device that switches from the constant current control to the current increase control when the output voltage of the power conversion unit falls into a predetermined drop state during the constant current control.
 上記〔1〕の電力変換装置は、定電圧を出力する第1電源に対して第2電源が並列に接続された電源システムにおいて、第2電源が定電流動作を行うことを可能とする。更に、上記の電力変換装置は、第2電源の定電流制御中に電源システムの出力電流が不足して出力電圧が降下し始めても、第2電源自身が「所定の降下状態」に基づいて迅速に電流増加制御に切り替わり得る。よって、この電力変換装置は、第2電源の定電流制御中に出力電流が不足した場合に第2電源の出力電流を迅速に上昇させ得る。 The power conversion device of the above [1] enables the second power supply to perform a constant current operation in a power supply system in which the second power supply is connected in parallel to the first power supply that outputs a constant voltage. Further, in the above power conversion device, even if the output current of the power supply system becomes insufficient and the output voltage starts to drop during the constant current control of the second power supply, the second power supply itself quickly based on the "predetermined drop state". Can be switched to current increase control. Therefore, this power conversion device can rapidly increase the output current of the second power supply when the output current is insufficient during the constant current control of the second power supply.
 〔2〕前記駆動部は、前記電流増加制御中に前記出力電圧が閾値に達した場合に前記定電流制御に切り替える〔1〕に記載の電力変換装置。 [2] The power conversion device according to [1], wherein the drive unit switches to the constant current control when the output voltage reaches a threshold value during the current increase control.
 上記〔2〕の電力変換装置は、所定の降下状態に応じて第2電源の出力電流を迅速に上昇させた後、第2電源の出力電圧が閾値に達するまで電流増加制御を続けることができる。そして、この電力変換装置は、第2電源の出力電圧が閾値まで回復したことを確認してから、第2電源を定電流制御に戻すことができる。 The power conversion device of the above [2] can rapidly increase the output current of the second power supply according to a predetermined drop state, and then continue the current increase control until the output voltage of the second power supply reaches the threshold value. .. Then, this power conversion device can return the second power supply to the constant current control after confirming that the output voltage of the second power supply has recovered to the threshold value.
 〔3〕前記閾値は、前記第1電源が出力する前記定電圧以上の値である〔2〕に記載の電力変換装置。 [3] The power conversion device according to [2], wherein the threshold value is a value equal to or higher than the constant voltage output by the first power supply.
 上記〔3〕の電力変換装置は、電源システムの出力電流が不足して第1電源の定電圧制御が維持されなくなったとしても、電流増加制御によって上記定電圧以上の値まで迅速に電圧を回復することができる。 The power conversion device of the above [3] quickly recovers the voltage to a value equal to or higher than the above constant voltage by the current increase control even if the output current of the power supply system is insufficient and the constant voltage control of the first power supply is not maintained. can do.
 〔4〕前記駆動部は、前記定電流制御中に前記電力変換部の前記出力電圧が判定値未満となった場合に前記定電流制御から前記電流増加制御に切り替え、前記電流増加制御中に前記出力電圧が前記判定値よりも大きい前記閾値に達した場合に前記定電流制御に切り替える〔2〕又は〔3〕に記載の電力変換装置。 [4] When the output voltage of the power conversion unit becomes less than the determination value during the constant current control, the drive unit switches from the constant current control to the current increase control, and during the current increase control, the drive unit switches to the current increase control. The power conversion device according to [2] or [3], which switches to the constant current control when the output voltage reaches the threshold value larger than the determination value.
 上記〔4〕の電力変換装置は、電源システムの出力電圧が上記判定値を超えて大きく低下することを抑制し、上記判定値よりも大きい閾値まで回復することができる。また、この電力変換装置は、上記判定値よりも上記閾値を大きく設定しているため、電流増加制御に切り替えた後に定電流制御と電流増加制御とが繰り返される回数を抑えることができる。 The power conversion device of the above [4] can suppress the output voltage of the power supply system from dropping significantly beyond the above determination value, and can recover to a threshold value larger than the above determination value. Further, since this power conversion device sets the threshold value larger than the determination value, it is possible to suppress the number of times that the constant current control and the current increase control are repeated after switching to the current increase control.
 〔5〕前記第2電源は、前記第2電源の外部の装置から指令値を受信する受信部を有し、前記駆動部は、前記定電流制御を行う場合に前記受信部が受信した前記指令値に基づいて前記電流制限値を設定する〔1〕から〔4〕のいずれか一つに記載の電力変換装置。 [5] The second power supply has a receiving unit that receives a command value from an external device of the second power supply, and the driving unit receives the command received by the receiving unit when performing the constant current control. The power conversion device according to any one of [1] to [4], which sets the current limit value based on the value.
 上記〔5〕の電力変換装置は、定電流制御を行う場合に受信部が受信した指令値に基づいて電流制限値を設定する。このような構成のものでは、仮に、過渡的な「所定の降下状態」が生じた場合にその降下状態に応じて外部から発せられる指令値に基づいて電流制限値を更新する方法のみを採用すると、降下状態に応じた電流制限値に設定されるまでに時間がかかる懸念がある。しかし、上記の電力変換装置は、第2電源自身が「所定の降下状態」に応じて電流増加制御に切り替えることができるため、通信の遅延等に起因する切り替わりの遅れが生じにくくなる。 The power conversion device of the above [5] sets a current limit value based on a command value received by the receiving unit when performing constant current control. In such a configuration, if a transient "predetermined descent state" occurs, only the method of updating the current limit value based on the command value issued from the outside according to the descent state is adopted. , There is a concern that it will take time to set the current limit value according to the drop state. However, in the above-mentioned power conversion device, since the second power supply itself can switch to the current increase control according to the "predetermined drop state", the delay of switching due to the delay of communication or the like is less likely to occur.
 〔6〕前記指令値は、前記電源システムが供給する総電流値又は前記第1電源が供給する第1電流の値に応じた値であり、前記駆動部は、前記定電流制御を行う場合に前記指令値に基づいて前記総電流値又は前記第1電流の値に応じた前記電流制限値を設定する〔5〕に記載の電力変換装置。 [6] The command value is a value corresponding to the total current value supplied by the power supply system or the value of the first current supplied by the first power supply, and the drive unit performs the constant current control. The power conversion device according to [5], wherein the current limit value is set according to the total current value or the value of the first current based on the command value.
 上記〔6〕の電力変換装置では、第2電源は、定電流制御を行う場合に外部との通信に基づいて総電流値又は第1電流の値に応じた電流制限値を設定することができる。つまり、上記の電力変換装置は、定電流制御中には上記総電流値又は上記第1電流の値をより正確に反映して第2電源の出力電流を調整することができる。但し、このような電力変換装置では、「所定の降下状態」が生じた場合、通信によって新たな指令値を受信して電流設定値を更新するまでは、前回の「総電流値又は第1電流の値に応じた電流制限値」が維持されてしまい、電流を増加させるまでに時間がかかってしまう懸念がある。しかし、上記の電力変換装置では、第2電源自身が「所定の降下状態」に応じて電流増加制御に切り替えることができるため、通信の遅延等に起因して電流制限値の更新が遅れることによる出力電流の不足状態を生じにくくすることができる。つまり、上記の電力変換装置は、負荷電流が過渡的に増大する場面では、第2電源自身が行う迅速な制御によって出力電流を迅速に上昇させ得る。 In the power conversion device of the above [6], the second power supply can set a current limit value according to the total current value or the value of the first current based on communication with the outside when performing constant current control. .. That is, the power conversion device can adjust the output current of the second power supply by more accurately reflecting the total current value or the value of the first current during the constant current control. However, in such a power conversion device, when a "predetermined drop state" occurs, the previous "total current value or first current" is used until a new command value is received by communication and the current set value is updated. There is a concern that it will take time to increase the current because the "current limit value according to the value of" is maintained. However, in the above power conversion device, since the second power supply itself can switch to the current increase control according to the "predetermined drop state", the update of the current limit value is delayed due to the communication delay or the like. It is possible to prevent a shortage of output current from occurring. That is, in the above-mentioned power conversion device, when the load current is transiently increased, the output current can be rapidly increased by the rapid control performed by the second power supply itself.
 〔7〕前記駆動部は、前記定電流制御中に前記第1電流の値と前記電流制限値との割合を前記総電流値又は前記第1電流の値に基づいて所定割合にするように前記電流制限値を設定する〔6〕に記載の電力変換装置。 [7] The drive unit sets the ratio between the value of the first current and the current limit value to a predetermined ratio based on the total current value or the value of the first current during the constant current control. The power conversion device according to [6], which sets a current limit value.
 上記〔7〕の電力変換装置は、定電流制御中には第1電源からの出力電流の値と第2電源からの出力電流の値とを所定割合に保ちやすくなる。そして、定電流制御中に「所定の降下状態」が生じた場合には、上記電力変換装置は、上記所定割合に保ち続けることよりも出力電流を増加させることを迅速に優先させることができる。 The power conversion device of the above [7] can easily keep the value of the output current from the first power supply and the value of the output current from the second power supply at a predetermined ratio during the constant current control. Then, when a "predetermined drop state" occurs during constant current control, the power conversion device can quickly prioritize increasing the output current rather than keeping it at the predetermined ratio.
 〔8〕前記第1電源と、前記第1電源及び前記第2電源を制御する制御部と、を含み、前記第1電源又は前記制御部が前記指令値を送信する〔5〕から〔7〕のいずれか一つに記載の電力変換装置。 [8] The first power supply, the control unit that controls the first power supply and the second power supply, and the first power supply or the control unit transmits the command value [5] to [7]. The power conversion device according to any one of the above.
 上記〔8〕の電力変換装置では、第2電源は、定電流制御中には制御部又は第1電源との通信によって電流制限値を設定することができる。そして、定電流制御中に「所定の降下状態」が生じた場合には、第2電源は、第2電源自身の判定及び駆動によって電流増加制御に迅速に切り替えることができる。 In the power conversion device of the above [8], the second power supply can set the current limit value by communicating with the control unit or the first power supply during the constant current control. Then, when a "predetermined drop state" occurs during the constant current control, the second power supply can be quickly switched to the current increase control by the determination and drive of the second power supply itself.
 〔9〕前記第1電源を含み、前記第1電源は、前記第1導電路と前記第2導電路との間で電力変換を行う第1電力変換部と、前記第1電力変換部を駆動する第1駆動部と、前記第1電力変換部から出力される出力電流の値を検出する検出部と、前記出力電流の値を特定する情報を送信する送信部と、を含み、前記第2電源は、第2電力変換部である前記電力変換部と、第2駆動部である前記駆動部と、を含み、前記受信部は少なくとも前記出力電流の値を特定する情報を受信し、前記駆動部は、前記定電流制御中に前記第1電流の値と前記電流制限値との割合を前記特定する情報に基づいて前記所定割合にするように前記電流制限値を設定する〔7〕に記載の電力変換装置。 [9] The first power supply includes the first power supply, and the first power supply drives a first power conversion unit that performs power conversion between the first conductive path and the second conductive path, and the first power conversion unit. The second drive unit includes a first drive unit, a detection unit that detects an output current value output from the first power conversion unit, and a transmission unit that transmits information that specifies the output current value. The power supply includes the power conversion unit which is the second power conversion unit and the drive unit which is the second drive unit, and the reception unit receives at least information specifying the value of the output current and drives the drive unit. The unit describes in [7] that the current limit value is set so that the ratio between the value of the first current and the current limit value becomes the predetermined ratio based on the specified information during the constant current control. Power converter.
 上記〔9〕の電力変換装置は、定電流制御中には第1電源で実際に検出された検出値に基づき、第1電源からの出力電流の値と第2電源からの出力電流の値とをより正確に所定割合に保ちやすくなる。 The power conversion device of the above [9] has a value of the output current from the first power supply and a value of the output current from the second power supply based on the detected value actually detected by the first power supply during the constant current control. Is easier to keep at a predetermined ratio more accurately.
 〔10〕前記第1電源の定格電流値よりも前記第2電源の定格電流値のほうが小さい〔1〕から〔9〕のいずれか一つに記載の電力変換装置。 [10] The power conversion device according to any one of [1] to [9], wherein the rated current value of the second power supply is smaller than the rated current value of the first power supply.
 上記〔10〕の電力変換装置は、第2電源の定格電流値を相対的に抑えることができ、定格電流値の抑えられた第2電源によって特徴的な動作を行うことができる。 The power conversion device of the above [10] can relatively suppress the rated current value of the second power supply, and can perform a characteristic operation by the second power supply whose rated current value is suppressed.
 <第1実施形態>
 1.全体構成
 図1で示される第1実施形態に係る車載用の電源システム100は、例えば電気自動車等の車両に搭載される車載用の直流電圧供給システムとして機能し得る。電源システム100は、負荷110に直流電圧を供給し得る。電源システム100は、電力変換装置101とバッテリ102とを備える。
<First Embodiment>
1. 1. Overall Configuration The vehicle-mounted power supply system 100 according to the first embodiment shown in FIG. 1 can function as a vehicle-mounted DC voltage supply system mounted on a vehicle such as an electric vehicle. The power supply system 100 may supply a DC voltage to the load 110. The power supply system 100 includes a power conversion device 101 and a battery 102.
 負荷110は、車両に搭載される電気機器であればよく、例えば、エンジンやモータを稼動するのに必要な付属機器(セルモータ、オルタネータ及びラジエータクーリングファン等)であってもよい。負荷110の種類は限定されず、電動パワーステアリングシステム、電動パーキングブレーキ、照明、ワイパー駆動部、ナビゲーション装置等を含んでいてもよい。 The load 110 may be any electric device mounted on the vehicle, and may be, for example, an accessory device (cell motor, alternator, radiator cooling fan, etc.) necessary for operating the engine or motor. The type of load 110 is not limited, and may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like.
 バッテリ102は、例えば高電圧(例えば300V)を供給するバッテリ(例えば2次電池)である。バッテリ102における高電位側の正極端子は、第1導電路11に電気的に接続されている。バッテリ102における低電位側の負極端子は、図示されていないグラウンドに電気的に接続されている。 The battery 102 is, for example, a battery (for example, a secondary battery) that supplies a high voltage (for example, 300 V). The positive electrode terminal on the high potential side of the battery 102 is electrically connected to the first conductive path 11. The negative electrode terminal on the low potential side of the battery 102 is electrically connected to a ground (not shown).
 電力変換装置101は、第1導電路11と第2導電路12との間で電力変換を行う装置である。電力変換装置101は、主に、第1電源104と第2電源106と制御部108とを備える。第1電源104及び第2電源106は、第1導電路11と第2導電路12との間に並列に接続されている。図2のように、第1電力変換部21及び第2電力変換部22が第1導電路11と第2導電路12との間に並列に接続されている。電力変換装置101は、バッテリ102から第1導電路11を介して入力される入力電圧を降圧し、第2導電路12に対して第1導電路11の電圧よりも低い出力電圧を印加する動作を行い得る。 The power conversion device 101 is a device that performs power conversion between the first conductive path 11 and the second conductive path 12. The power conversion device 101 mainly includes a first power supply 104, a second power supply 106, and a control unit 108. The first power supply 104 and the second power supply 106 are connected in parallel between the first conductive path 11 and the second conductive path 12. As shown in FIG. 2, the first power conversion unit 21 and the second power conversion unit 22 are connected in parallel between the first conductive path 11 and the second conductive path 12. The power conversion device 101 steps down the input voltage input from the battery 102 via the first conductive path 11 and applies an output voltage lower than the voltage of the first conductive path 11 to the second conductive path 12. Can be done.
 なお、本明細書において、特別な説明が無い限り、電圧とはグラウンドとの電位差を意味する。例えば、第1導電路11の電圧は、第1導電路11とグラウンドとの電位差を意味し、第2導電路12の電圧は、第2導電路12とグラウンドとの電位差を意味する。 In this specification, unless otherwise specified, voltage means a potential difference from ground. For example, the voltage of the first conductive path 11 means the potential difference between the first conductive path 11 and the ground, and the voltage of the second conductive path 12 means the potential difference between the second conductive path 12 and the ground.
 第1電源104及び第2電源106は、いずれもDC-DCコンバータとして機能する。第1電源104及び第2電源106はそれぞれ、バッテリ102から入力される直流電圧VHを所定の出力電圧V1及びV2にそれぞれ変換して、各々の出力端子から出力する。 Both the first power supply 104 and the second power supply 106 function as DC-DC converters. The first power supply 104 and the second power supply 106 convert the DC voltage VH input from the battery 102 into predetermined output voltages V1 and V2, respectively, and output the DC voltage VH from their respective output terminals.
 第1電源104は、第1導電路11と第2導電路12との間に設けられ、第2導電路に定電圧を出力するように電力変換を行い得る装置である。図2に示されるように、第1電源104は、電力変換を行う第1電力変換部21と、第1電力変換部21を駆動する電源内制御部31と、インタフェース部61と、第1電圧値検出部41と、第1電流値検出部51と、を有する。電源内制御部31は、第1電力変換部21を駆動する第1駆動部の一例に相当する。以下の説明では、インタフェース部61は、IF部61とも称される。 The first power supply 104 is a device provided between the first conductive path 11 and the second conductive path 12 and capable of performing power conversion so as to output a constant voltage to the second conductive path. As shown in FIG. 2, the first power supply 104 includes a first power conversion unit 21 that performs power conversion, an in-power supply control unit 31 that drives the first power conversion unit 21, an interface unit 61, and a first voltage. It has a value detection unit 41 and a first current value detection unit 51. The in-power supply control unit 31 corresponds to an example of a first drive unit that drives the first power conversion unit 21. In the following description, the interface unit 61 is also referred to as an IF unit 61.
 第1電力変換部21は、第1導電路11と第2導電路12との間で電力変換を行う装置であり、具体的には、第1導電路11から第1入力路71を介して入力される電力を変換し、第1出力路81を介して第2導電路12に電力を出力する動作を行う。第1入力路71は、第1導電路11から分岐した導電路であり、一端が第1導電路11に電気的に接続され、他端が第1電力変換部21に電気的に接続される。第1出力路81は、一端が第1電力変換部21に電気的に接続され、他端が第2導電路12に電気的に接続される。 The first power conversion unit 21 is a device that performs power conversion between the first conductive path 11 and the second conductive path 12, and specifically, from the first conductive path 11 via the first input path 71. The operation of converting the input electric power and outputting the electric power to the second conductive path 12 via the first output path 81 is performed. The first input path 71 is a conductive path branched from the first conductive path 11, one end of which is electrically connected to the first conductive path 11 and the other end of which is electrically connected to the first power conversion unit 21. .. One end of the first output path 81 is electrically connected to the first power conversion unit 21, and the other end is electrically connected to the second conductive path 12.
 第1電力変換部21は、例えば、図3のようなフルブリッジ方式の絶縁型のDCDCコンバータとして構成されている。図3では、第1電圧値検出部41や第1電流値検出部51などは省略されている。第1電力変換部21は、入力回路部21X、トランス部21Y、出力回路部21Zを有する。入力回路部21Xは、複数の半導体スイッチ素子21A,21B,21C,21Dと、コンデンサ21Eとを備え、トランス部21Yの一次側コイル21Fに電気的に接続される。入力回路部21Xは、複数の半導体スイッチ素子21A,21B,21C,21Dのスイッチング動作に応じて一次側コイル21Fに交流電圧を生じさせる。複数の半導体スイッチ素子21A,21B,21C,21Dのスイッチング動作の制御は電源内制御部31によって行われ、具体的には後述のCV(Constant Voltage)制御が行われる。出力回路部21Zは、ダイオード21J,21K、インダクタ21L、コンデンサ21Mを備え、トランス部21Yの二次側コイル21G,21Hに電気的に接続され、二次側コイル21G,21Hに印加される交流電圧を整流して直流電圧を出力する。第1電力変換部21は、半導体スイッチ素子21A,21B,21C,21Dのスイッチング動作によって電圧変換を行う。第1電力変換部21は、第1導電路11に印加された入力電圧VH(第1導電路11とグラウンド側の導電路13Aとの間の電位差)を降圧し、第1出力路81に出力電圧(第1出力路81とグラウンド側の導電路13Bとの間の電位差)を生じさせる。導電路13A,13Bは、例えば0V程度に維持される基準導電路である。 The first power conversion unit 21 is configured as, for example, a full-bridge type isolated DCDC converter as shown in FIG. In FIG. 3, the first voltage value detection unit 41, the first current value detection unit 51, and the like are omitted. The first power conversion unit 21 includes an input circuit unit 21X, a transformer unit 21Y, and an output circuit unit 21Z. The input circuit unit 21X includes a plurality of semiconductor switch elements 21A, 21B, 21C, 21D and a capacitor 21E, and is electrically connected to the primary coil 21F of the transformer unit 21Y. The input circuit unit 21X generates an AC voltage in the primary coil 21F according to the switching operation of the plurality of semiconductor switch elements 21A, 21B, 21C, 21D. The switching operation of the plurality of semiconductor switch elements 21A, 21B, 21C, and 21D is controlled by the in-power supply control unit 31, and specifically, CV (Constant Voltage) control described later is performed. The output circuit section 21Z includes diodes 21J and 21K, an inductor 21L, and a capacitor 21M, is electrically connected to the secondary coil 21G and 21H of the transformer section 21Y, and is an AC voltage applied to the secondary coil 21G and 21H. Is rectified and a DC voltage is output. The first power conversion unit 21 performs voltage conversion by switching operations of the semiconductor switch elements 21A, 21B, 21C, and 21D. The first power conversion unit 21 steps down the input voltage VH (potential difference between the first conductive path 11 and the conductive path 13A on the ground side) applied to the first conductive path 11 and outputs the voltage to the first output path 81. A voltage (potential difference between the first output path 81 and the ground-side conductive path 13B) is generated. The conductive paths 13A and 13B are reference conductive paths maintained at, for example, about 0 V.
 図2のように、第1電流値検出部51は、第1出力路81の途中に介在する。第1電流値検出部51は、第1出力路81を流れる電流の値(第1電流値I1)を検出し、第1電流値I1を示す信号を電源内制御部31に入力する。第1電力変換部21が電力変換動作(具体的には降圧動作)を行う場合、第1電流値検出部51は、第1電力変換部21が第1出力路81を介して出力する出力電流の値を第1電流値I1として検出する。この例では、第1電流値検出部51が検出部の一例に相当し、第1電力変換部21から出力される出力電流の値(第1電流値I1)を検出する。 As shown in FIG. 2, the first current value detection unit 51 is interposed in the middle of the first output path 81. The first current value detection unit 51 detects the value of the current flowing through the first output path 81 (first current value I1), and inputs a signal indicating the first current value I1 to the in-power supply control unit 31. When the first power conversion unit 21 performs a power conversion operation (specifically, a step-down operation), the first current value detection unit 51 outputs the output current output by the first power conversion unit 21 via the first output path 81. Is detected as the first current value I1. In this example, the first current value detection unit 51 corresponds to an example of the detection unit, and detects the value of the output current (first current value I1) output from the first power conversion unit 21.
 第1電圧値検出部41は、第1出力路81の電圧値(第1電圧値V1)を検出し、電源内制御部31に第1電圧値V1を示す信号を入力する。第1電力変換部21が電力変換動作を行う場合、第1電圧値検出部41は、第1電力変換部21が第1出力路81に印加する出力電圧の値を第1電圧値V1として検出し、この出力電圧を示す信号を電源内制御部31に入力する。 The first voltage value detection unit 41 detects the voltage value (first voltage value V1) of the first output path 81, and inputs a signal indicating the first voltage value V1 to the in-power supply control unit 31. When the first power conversion unit 21 performs the power conversion operation, the first voltage value detection unit 41 detects the value of the output voltage applied by the first power conversion unit 21 to the first output path 81 as the first voltage value V1. Then, a signal indicating this output voltage is input to the power supply internal control unit 31.
 IF部61は、制御部108から伝送されるデータを受信し、電源内制御部31に入力する。更に、IF部61は、電源内制御部31と協働し、電源内制御部31が取得した第1電流値I1、第1電圧値V1を制御部108に送信し得る。IF部61は、送信部の一例に相当し、第1電力変換部21が出力する出力電流の値(第1電流値I1)を特定する情報を送信する機能を有する。この例では、出力電流の値(第1電流値I1)を特定する情報が指令値の一例に相当する。出力電流の値(第1電流値I1)を特定する情報は、出力電流の値(第1電流値I1)そのものであってもよく、出力電流の値(第1電流値I1)に一定値を加算した値であってもよく、出力電流の値(第1電流値I1)に一定係数を乗算した値であってもよい。 The IF unit 61 receives the data transmitted from the control unit 108 and inputs it to the power supply in-power control unit 31. Further, the IF unit 61 can cooperate with the in-power supply control unit 31 to transmit the first current value I1 and the first voltage value V1 acquired by the in-power supply control unit 31 to the control unit 108. The IF unit 61 corresponds to an example of a transmission unit, and has a function of transmitting information for specifying an output current value (first current value I1) output by the first power conversion unit 21. In this example, the information for specifying the output current value (first current value I1) corresponds to an example of the command value. The information for specifying the output current value (first current value I1) may be the output current value (first current value I1) itself, and a constant value is set for the output current value (first current value I1). It may be an added value, or it may be a value obtained by multiplying the output current value (first current value I1) by a constant coefficient.
 電源内制御部31は、情報処理機能を有する制御装置として構成され、例えば、内部メモリを含むマイクロコンピュータによって構成されている。内部メモリには、電源内制御部31が実行すべきプログラム及び必要なパラメータ等が記憶されている。電源内制御部31は、IF部61から受信したデータに基づき、第1電力変換部21を制御し得る。例えば、電源内制御部31は、第1電力変換部21の動作に必要な設定値を算出し、第1電力変換部21に設定する。 The in-power supply control unit 31 is configured as a control device having an information processing function, and is configured by, for example, a microcomputer including an internal memory. The internal memory stores a program to be executed by the in-power supply control unit 31 and necessary parameters. The in-power supply control unit 31 can control the first power conversion unit 21 based on the data received from the IF unit 61. For example, the in-power supply control unit 31 calculates a set value required for the operation of the first power conversion unit 21 and sets it in the first power conversion unit 21.
 本構成では、制御部108は、第1電源104に対して一定の出力電圧目標値を与えるように動作する。以下の説明では、制御部108が第1電源104に与える出力電圧目標値は「第1目標電圧」とも称される。また、以下の説明では、上記のCV制御によって一定の目標電圧を出力するモードは、定電圧モードとも称される。 In this configuration, the control unit 108 operates so as to give a constant output voltage target value to the first power supply 104. In the following description, the output voltage target value given to the first power supply 104 by the control unit 108 is also referred to as a “first target voltage”. Further, in the following description, the mode in which a constant target voltage is output by the above CV control is also referred to as a constant voltage mode.
 第1電源104は、制御部108から上記第1目標電圧が与えられた場合、第1出力路81の電圧を上記第1目標電圧とするように電圧変換動作(降圧動作)を行い得る。具体的には、電源内制御部31は、第1出力路81に上記第1目標電圧を出力させるように第1電力変換部21を駆動する。第1電力変換部21は、電源内制御部31による駆動(上記CV制御)によって定電圧モードで動作し、バッテリ102から入力される直流電圧VHを降圧し、第1出力路81の電圧を上記第1目標電圧とするように電圧変換動作を行い得る。 When the first target voltage is given by the control unit 108, the first power supply 104 can perform a voltage conversion operation (step-down operation) so that the voltage of the first output path 81 becomes the first target voltage. Specifically, the in-power supply control unit 31 drives the first power conversion unit 21 so as to output the first target voltage to the first output path 81. The first power conversion unit 21 operates in a constant voltage mode by being driven by the in-power supply control unit 31 (the above-mentioned CV control), steps down the DC voltage VH input from the battery 102, and sets the voltage of the first output path 81 to the above. The voltage conversion operation can be performed so as to be the first target voltage.
 具体的には、電源内制御部31が周期的にフィードバック演算を行い、半導体スイッチ素子21A,21B,21C,21Dに与えるPWM信号のデューティを更新する。電源内制御部31は、各周期のフィードバック演算において、上記第1目標電圧と第1電圧値検出部41によって検出される第1電圧値V1(第1出力路81の電圧)との偏差を算出する。そして、電源内制御部31は、各周期のフィードバック演算において、その偏差と予め定められたゲインとに基づいてPI演算式又はPID演算式によって第1出力路81の電圧を第1目標電圧に近づけるための操作量(デューティの増減量)を決定する。そして、電源内制御部31は、このように決定された操作量(デューティの増減量)を現在の制御量(変更前のデューティ)に加えて新たなデューティを算出する。このように、電源内制御部31は、各周期のフィードバック演算により各周期においてPWM信号のデューティを更新し得る。 Specifically, the in-power supply control unit 31 periodically performs a feedback calculation to update the duty of the PWM signal given to the semiconductor switch elements 21A, 21B, 21C, 21D. The in-power supply control unit 31 calculates the deviation between the first target voltage and the first voltage value V1 (voltage of the first output path 81) detected by the first voltage value detection unit 41 in the feedback calculation of each cycle. do. Then, in the feedback calculation of each cycle, the in-power supply control unit 31 brings the voltage of the first output path 81 closer to the first target voltage by the PI calculation formula or the PID calculation formula based on the deviation and the predetermined gain. Determine the amount of operation (duty increase / decrease). Then, the in-power supply control unit 31 calculates a new duty by adding the operation amount (duty increase / decrease amount) determined in this way to the current control amount (duty before change). In this way, the in-power supply control unit 31 can update the duty of the PWM signal in each cycle by the feedback calculation in each cycle.
 第2電源106は、第1導電路11と第2導電路12との間で電力変換を行い得る装置である。図2に示されるように、第2電源106は、電力変換を行う第2電力変換部22と、第2電力変換部22を駆動する電源内制御部32と、インタフェース部62と、第2電圧値検出部42と、第2電流値検出部52と、を有する。第2電力変換部22は、電力変換部の一例に相当する。電源内制御部32は、駆動部の一例に相当し、第2駆動部の一例に相当する。以下の説明では、インタフェース部62は、IF部62とも称される。 The second power source 106 is a device capable of performing power conversion between the first conductive path 11 and the second conductive path 12. As shown in FIG. 2, the second power supply 106 includes a second power conversion unit 22 that performs power conversion, an in-power supply control unit 32 that drives the second power conversion unit 22, an interface unit 62, and a second voltage. It has a value detecting unit 42 and a second current value detecting unit 52. The second power conversion unit 22 corresponds to an example of the power conversion unit. The in-power supply control unit 32 corresponds to an example of a drive unit and corresponds to an example of a second drive unit. In the following description, the interface unit 62 is also referred to as an IF unit 62.
 第2電力変換部22は、第1電力変換部21に対して並列に接続され、第1導電路11から第2入力路72を介して入力される電力を変換し、第2出力路82を介して第2導電路12に電力を出力する動作を行う。第2入力路72は、第1導電路11から分岐した導電路であり、一端が第1導電路11に電気的に接続され、他端が第2電力変換部22に電気的に接続される。第2出力路82は、一端が第2電力変換部22に電気的に接続され、他端が第2導電路12に電気的に接続される。 The second power conversion unit 22 is connected in parallel to the first power conversion unit 21, converts the power input from the first conductive path 11 via the second input path 72, and forms the second output path 82. The operation of outputting electric power to the second conductive path 12 is performed. The second input path 72 is a conductive path branched from the first conductive path 11, one end of which is electrically connected to the first conductive path 11 and the other end of which is electrically connected to the second power conversion unit 22. .. One end of the second output path 82 is electrically connected to the second power conversion unit 22, and the other end is electrically connected to the second conductive path 12.
 図4で示されるように、第2電力変換部22は、図3で示される第1電力変換部21と同様のフルブリッジ方式の絶縁型のDCDCコンバータとして構成されている。図4では、第2電圧値検出部42や第2電流値検出部52などは図示が省略されている。第2電力変換部22は、入力回路部22X、トランス部22Y、出力回路部22Zを有する。入力回路部22Xは、複数の半導体スイッチ素子22A,22B,22C,22Dと、コンデンサ22Eとを備え、トランス部22Yの一次側コイル22Fに電気的に接続される。入力回路部22Xは、複数の半導体スイッチ素子22A,22B,22C,22Dのスイッチング動作に応じて一次側コイル22Fに交流電圧を生じさせる。複数の半導体スイッチ素子22A,22B,22C,22Dのスイッチング動作の制御は電源内制御部32によって行われ、具体的にはCVCC(Constant Voltage Constant Current)制御が行われる。出力回路部22Zは、ダイオード22J,22K、インダクタ22L、コンデンサ22Mを備え、トランス部22Yの二次側コイル22G,22Hに電気的に接続され、二次側コイル22G,22Hに印加される交流電圧を整流して直流電圧を出力する。第2電力変換部22は、半導体スイッチ素子22A,22B,22C,22Dのスイッチング動作によって電圧変換を行う。第2電力変換部22は、第1導電路11に印加された入力電圧VH(第1導電路11とグラウンド側の導電路13Cとの間の電位差)を降圧し、第2出力路82に出力電圧(第2出力路82とグラウンド側の導電路13Dとの間の電位差)を生じさせる。導電路13C,13Dは、例えば0V程度に維持される基準導電路である。 As shown in FIG. 4, the second power conversion unit 22 is configured as a full-bridge type isolated DCDC converter similar to the first power conversion unit 21 shown in FIG. In FIG. 4, the second voltage value detecting unit 42, the second current value detecting unit 52, and the like are not shown. The second power conversion unit 22 includes an input circuit unit 22X, a transformer unit 22Y, and an output circuit unit 22Z. The input circuit unit 22X includes a plurality of semiconductor switch elements 22A, 22B, 22C, 22D and a capacitor 22E, and is electrically connected to the primary coil 22F of the transformer unit 22Y. The input circuit unit 22X generates an AC voltage in the primary coil 22F according to the switching operation of the plurality of semiconductor switch elements 22A, 22B, 22C, 22D. The switching operation of the plurality of semiconductor switch elements 22A, 22B, 22C, and 22D is controlled by the in-power supply control unit 32, and specifically, CVCC (Constant Voltage Constant Curent) control is performed. The output circuit section 22Z includes diodes 22J and 22K, an inductor 22L, and a capacitor 22M, is electrically connected to the secondary coil 22G and 22H of the transformer section 22Y, and is an AC voltage applied to the secondary coil 22G and 22H. Is rectified and a DC voltage is output. The second power conversion unit 22 performs voltage conversion by switching operations of the semiconductor switch elements 22A, 22B, 22C, and 22D. The second power conversion unit 22 steps down the input voltage VH (potential difference between the first conductive path 11 and the conductive path 13C on the ground side) applied to the first conductive path 11 and outputs the voltage to the second output path 82. A voltage (potential difference between the second output path 82 and the ground-side conductive path 13D) is generated. The conductive paths 13C and 13D are reference conductive paths maintained at, for example, about 0 V.
 図2のように、第2電流値検出部52は、第2出力路82の途中に介在する。第2電流値検出部52は、第2出力路82を流れる電流の値(第2電流値I2)を検出し、第2電流値I2を示す信号を電源内制御部32に入力する。第2電力変換部22が電力変換動作(具体的には降圧動作)を行う場合、第2電流値検出部52は、第2電力変換部22が第2出力路82を介して出力する出力電流の値を第2電流値I2として検出する。 As shown in FIG. 2, the second current value detection unit 52 is interposed in the middle of the second output path 82. The second current value detection unit 52 detects the value of the current flowing through the second output path 82 (second current value I2), and inputs a signal indicating the second current value I2 to the in-power supply control unit 32. When the second power conversion unit 22 performs a power conversion operation (specifically, a step-down operation), the second current value detection unit 52 outputs the output current output by the second power conversion unit 22 via the second output path 82. Is detected as the second current value I2.
 第2電圧値検出部42は、第2出力路82の電圧値(第2電圧値V2)を検出し、電源内制御部32に第2電圧値V2を示す信号を入力する。第2電力変換部22が電力変換動作を行う場合、第2電圧値検出部42は、第2電力変換部22が第2出力路82に印加する出力電圧の値を第2電圧値V2として検出し、この出力電圧を示す信号を電源内制御部32に入力する。 The second voltage value detection unit 42 detects the voltage value (second voltage value V2) of the second output path 82, and inputs a signal indicating the second voltage value V2 to the in-power supply control unit 32. When the second power conversion unit 22 performs the power conversion operation, the second voltage value detection unit 42 detects the value of the output voltage applied by the second power conversion unit 22 to the second output path 82 as the second voltage value V2. Then, a signal indicating this output voltage is input to the power supply internal control unit 32.
 IF部62は、制御部108から伝送されるデータを受信し、電源内制御部32に入力する。更に、IF部62は、電源内制御部32と協働し、電源内制御部32が取得した第2電流値I2、第2電圧値V2を制御部108に送信し得る。IF部62は、受信部の一例に相当し、第2電源106の外部の装置から指令値を受信するように機能する。具体的には、IF62は、IF61が送信した情報(例えば、第1電力変換部21が出力する出力電流の値(第1電流値I1)を特定する情報)を受信する機能を有する。 The IF unit 62 receives the data transmitted from the control unit 108 and inputs it to the power supply in-power control unit 32. Further, the IF unit 62 may cooperate with the in-power supply control unit 32 to transmit the second current value I2 and the second voltage value V2 acquired by the in-power supply control unit 32 to the control unit 108. The IF unit 62 corresponds to an example of a receiving unit, and functions to receive a command value from an external device of the second power supply 106. Specifically, the IF 62 has a function of receiving information transmitted by the IF 61 (for example, information for specifying an output current value (first current value I1) output by the first power conversion unit 21).
 電源内制御部32は、情報処理機能を有する制御装置として構成され、例えば、内部メモリを含むマイクロコンピュータによって構成されている。内部メモリには、電源内制御部32が実行すべきプログラム及び必要なパラメータ等が記憶されている。電源内制御部32は、IF部62から受信したデータに基づき、第2電力変換部22を制御し得る。例えば、電源内制御部32は、第2電力変換部22の動作に必要な設定値を算出し、第2電力変換部22に設定する。 The in-power supply control unit 32 is configured as a control device having an information processing function, and is configured by, for example, a microcomputer including an internal memory. The internal memory stores a program to be executed by the in-power supply control unit 32, necessary parameters, and the like. The in-power supply control unit 32 can control the second power conversion unit 22 based on the data received from the IF unit 62. For example, the power supply in-power control unit 32 calculates a set value required for the operation of the second power conversion unit 22 and sets it in the second power conversion unit 22.
 本構成では、制御部108又は第1電源104は、第2電源106に対して出力電圧目標値又は出力電圧目標値を決定するための値を与えるように動作する。以下の説明では、第2電源106の出力電圧目標値は「第2目標電圧」とも称される。第2目標電圧は、例えば、第1目標電圧よりも少し高い値とされる。第2目標電圧は、制御部108又は第1電源104から第2電源106に直接与えられてもよく、制御部108又は第1電源104から第2電源106に第1目標電圧が与えられ、第2電源106が第1目標電圧よりも一定レベル高い電圧を第2目標電圧が設定してもよい。 In this configuration, the control unit 108 or the first power supply 104 operates so as to give the second power supply 106 a value for determining an output voltage target value or an output voltage target value. In the following description, the output voltage target value of the second power supply 106 is also referred to as a “second target voltage”. The second target voltage is, for example, a value slightly higher than the first target voltage. The second target voltage may be directly applied to the second power source 106 from the control unit 108 or the first power source 104, and the first target voltage is applied to the second power source 106 from the control unit 108 or the first power source 104, and the second target voltage is given to the second power source 106. The second target voltage may set a voltage at which the two power sources 106 are higher than the first target voltage by a certain level.
 更に、制御部108又は第1電源104は、第2電源106に対して電流制限値又は電流制限値を決定するための値を与えるように動作する。電流制限値は、制御部108又は第1電源104から第2電源106に直接与えられてもよく、制御部108から第2電源106に負荷電流値が与えられ、第2電源106が負荷電流値の一定割合の電流値を電流制限値としてもよい。この場合の負荷電流値は、電源システム100から負荷110に供給する電流値である。或いは、第1電源104から第2電源106に対して第1電流値I1が与えられ、第2電源106が第1電流値I1に基づいて電流制限値を設定してもよい。 Further, the control unit 108 or the first power supply 104 operates so as to give a current limit value or a value for determining the current limit value to the second power supply 106. The current limit value may be directly given from the control unit 108 or the first power supply 104 to the second power supply 106, the load current value is given from the control unit 108 to the second power supply 106, and the second power supply 106 is given the load current value. The current value of a certain ratio of the above may be used as the current limit value. The load current value in this case is the current value supplied from the power supply system 100 to the load 110. Alternatively, the first power supply 104 may give the first current value I1 to the second power supply 106, and the second power supply 106 may set the current limit value based on the first current value I1.
 本構成では、電源内制御部32(駆動部)が、定電流制御を行う場合にIF部62(受信部)が受信した指令値に基づいて電流制限値を指令値に応じた値(例えば、第1電流値I1に応じた値)に設定する。なお、以下で説明される代表例は、第1電源104から第2電源106に対して第1電流値I1が与えられ、第2電源106がこの第1電流値I1に基づいて第1電流値I1と電流制限値との割合を所定割合にするように電流制限値を設定する例である。具体的には、電源内制御部32(駆動部)が、定電流制御中に第1電流値I1と電流制限値との割合をIF部62(受信部)がIF部61から受信した情報(第1電流値I1を特定する情報)に基づいて所定割合にするように電流制限値を設定する。 In this configuration, when the in-power supply control unit 32 (drive unit) performs constant current control, the current limit value is set according to the command value based on the command value received by the IF unit 62 (reception unit) (for example,). Set to a value corresponding to the first current value I1). In the typical example described below, the first current value I1 is given to the second power supply 106 from the first power supply 104, and the second power supply 106 has the first current value based on the first current value I1. This is an example of setting the current limit value so that the ratio between I1 and the current limit value becomes a predetermined ratio. Specifically, the information (information) that the IF unit 62 (reception unit) receives the ratio between the first current value I1 and the current limit value from the IF unit 61 during constant current control by the power supply control unit 32 (drive unit). The current limit value is set so as to have a predetermined ratio based on the information that identifies the first current value I1).
 第2電源106は、上記第2目標電圧及び上記電流制限値に基づき、CVCC制御により動作する。第2電源106は、上述のCV制御により、指定された一定電圧(第2目標電圧)を出力する定電圧モードでも動作することができる。また、第2電源106は、CC(Constant Current)制御により、指定された一定電流値(上記電流制限値)を出力するように動作することもできる。第2電源106が行うCC制御は定電流制御の一例に相当する。以下の説明では、指定された一定電流値を出力するモードは定電流モードとも称される。つまり、第2電源106は、定電圧モードでの動作と定電流モードとを切り替えて動作し得る。 The second power supply 106 operates by CVCC control based on the second target voltage and the current limit value. The second power supply 106 can also operate in a constant voltage mode that outputs a designated constant voltage (second target voltage) by the above-mentioned CV control. Further, the second power supply 106 can also operate so as to output a designated constant current value (the above current limit value) by CC (Constant Current) control. The CC control performed by the second power supply 106 corresponds to an example of constant current control. In the following description, the mode that outputs the specified constant current value is also referred to as the constant current mode. That is, the second power supply 106 can operate by switching between the operation in the constant voltage mode and the constant current mode.
 図5は、電源内制御部32が実行する機能をブロックによって概念的に示す機能ブロック図である。図5における目標値設定部32A、定電流モード演算部32B、定電圧モード演算部32C、調停部32D、PWM信号生成部32Eの各機能は、マイクロコンピュータ等によってソフトウエア的に実現されてもよく、ハードウェア回路によって実現されてもよい。目標値設定部32Aは、インタフェース部62からの情報に基づき、電流制限値Itbを定電流モード演算部32Bに与え、第2目標電圧Vtbを定電圧モード演算部32Cに与える。 FIG. 5 is a functional block diagram conceptually showing the functions executed by the power supply in-power control unit 32 by blocks. Each function of the target value setting unit 32A, the constant current mode calculation unit 32B, the constant voltage mode calculation unit 32C, the arbitration unit 32D, and the PWM signal generation unit 32E in FIG. 5 may be realized by software by a microcomputer or the like. , May be implemented by a hardware circuit. The target value setting unit 32A gives the current limit value Itb to the constant current mode calculation unit 32B and gives the second target voltage Vtb to the constant voltage mode calculation unit 32C based on the information from the interface unit 62.
 第2電力変換部22は、定電流モードで動作する場合、バッテリ102から入力される直流電圧VHを降圧し、第2出力路82の電流を上記電流制限値とする電圧変換動作を行う。電源内制御部32は、第2電力変換部22を定電流モードで動作させるためのフィードバック演算を所定の演算周期で周期的に行い得る。具体的には、定電流モード演算部32Bが上記演算周期で周期的にフィードバック演算を行い、操作量(第2出力路82の電流値を電流制限値に近づけるための新たなデューティ)を算出する。定電流モード演算部32Bは、各周期のフィードバック演算において、演算を行う周期における上記電流制限値Itbと第2電流値検出部52によって検出される第2電流値I2(第2出力路82の電流値)との偏差を算出する。そして、定電流モード演算部32Bは、演算を行う周期において、当該周期の上記偏差と予め定められたゲインとに予め定められた演算式とによって第2出力路82の電流値を上記電流制限値Itbに近づけるための操作量(新たなデューティ)を決定する。上記演算式は、PI(Proportional-Integral)演算式であってもよく、PID(Proportional-Integral-Differential)演算式であってもよい。例えば、定電流モード演算部32Bは、PI演算式によって操作量(新たなデューティ)を算出する場合、上記偏差と予め定められた比例ゲイン及び積分ゲインとに基づいてPI演算式によって操作量(新たなデューティ)を算出する。この操作量は、演算を行った周期のフィードバック演算結果であり、定電流モードの場合に現在のデューティから変化させるべき新たなデューティである。 When operating in the constant current mode, the second power conversion unit 22 performs a voltage conversion operation in which the DC voltage VH input from the battery 102 is stepped down and the current in the second output path 82 is set as the current limit value. The in-power supply control unit 32 can periodically perform a feedback calculation for operating the second power conversion unit 22 in the constant current mode at a predetermined calculation cycle. Specifically, the constant current mode calculation unit 32B periodically performs a feedback calculation in the above calculation cycle to calculate an operation amount (a new duty for bringing the current value of the second output path 82 closer to the current limit value). .. In the feedback calculation of each cycle, the constant current mode calculation unit 32B has the current limit value Itb in the calculation cycle and the second current value I2 (current in the second output path 82) detected by the second current value detection unit 52. Calculate the deviation from the value). Then, in the cycle of performing the calculation, the constant current mode calculation unit 32B sets the current value of the second output path 82 to the current limit value by the calculation formula predetermined for the deviation of the cycle and the predetermined gain. The amount of operation (new duty) for approaching Itb is determined. The above-mentioned calculation formula may be a PI (Proportional-Integral) calculation formula or a PID (Proportional-Integral-Differential) calculation formula. For example, when the constant current mode calculation unit 32B calculates the manipulated variable (new duty) by the PI calculated formula, the manipulated variable (new) is calculated by the PI calculated formula based on the above deviation and the predetermined proportional gain and integral gain. Duty) is calculated. This manipulated variable is the result of the feedback calculation of the cycle in which the calculation is performed, and is a new duty to be changed from the current duty in the case of the constant current mode.
 第2電力変換部22は、定電圧モードで動作する場合、バッテリ102から入力される直流電圧VHを降圧し、第2出力路82の電圧を上記第2目標電圧とする電圧変換動作を行う。電源内制御部32は、第2電力変換部22を定電圧モードで動作させるためのフィードバック演算を上記演算周期で周期的に行う。具体的には、定電圧モード演算部32Cが上記演算周期で周期的にフィードバック演算を行い、操作量(第2出力路の電圧値を第2目標電圧に近づけるための新たなデューティ)を算出する。定電圧モード演算部32Cは、各周期のフィードバック演算において、演算を行う周期における上記第2目標電圧Vtbと第2電圧値検出部42によって検出される第2電圧値V2(第2出力路82の電圧)との偏差を算出する。そして、定電圧モード演算部32Cは、演算を行う周期において、当該周期の上記偏差と予め定められたゲインとに基づいてPI演算式又はPID演算式によって第2出力路82の電圧を第2目標電圧Vtbに近づけるための操作量を決定する。例えば、定電圧モード演算部32Cは、PI演算式によって操作量(新たなデューティ)を算出する場合、上記偏差と予め定められた比例ゲイン及び積分ゲインとに基づいてPI演算式によって操作量(新たなデューティ)を算出する。この操作量は、演算を行った周期のフィードバック演算結果であり、定電圧モードの場合に現在のデューティから変化させるべき新たなデューティである。 When operating in the constant voltage mode, the second power conversion unit 22 performs a voltage conversion operation in which the DC voltage VH input from the battery 102 is stepped down and the voltage of the second output path 82 is set as the second target voltage. The in-power supply control unit 32 periodically performs a feedback calculation for operating the second power conversion unit 22 in the constant voltage mode in the above calculation cycle. Specifically, the constant voltage mode calculation unit 32C periodically performs a feedback calculation in the above calculation cycle to calculate an operation amount (a new duty for bringing the voltage value of the second output path closer to the second target voltage). .. In the feedback calculation of each cycle, the constant voltage mode calculation unit 32C has the second target voltage Vtb and the second voltage value V2 (of the second output path 82) detected by the second voltage value detection unit 42 in the calculation cycle. Calculate the deviation from the voltage). Then, in the cycle of performing the calculation, the constant voltage mode calculation unit 32C sets the voltage of the second output path 82 as the second target by the PI calculation formula or the PID calculation formula based on the deviation of the cycle and the predetermined gain. The amount of operation for approaching the voltage Vtb is determined. For example, when the constant voltage mode calculation unit 32C calculates the manipulated variable (new duty) by the PI calculation formula, the manipulated variable (new duty) is calculated by the PI calculation formula based on the above deviation and the predetermined proportional gain and integral gain. Duty) is calculated. This manipulated variable is the result of the feedback calculation of the cycle in which the calculation is performed, and is a new duty to be changed from the current duty in the case of the constant voltage mode.
 調停部32Dは、定電流モード演算部32Bによって算出された操作量(デューティ)と定電圧モード演算部32Cによって算出された操作量(デューティ)のうちのいずれを選択するかを、予め定められた選択方式によって決定する。以下で説明される代表例では、定電流モード演算部32B及び定電圧モード演算部32Cによって算出された両操作量のうち小さい操作量(デューティ比が小さくなる演算結果)を選択する方法が採用される。なお、調停方法はこの決定方法に限定されず、他の決定方法が採用されてもよい。 The arbitration unit 32D determines in advance whether to select between the operation amount (duty) calculated by the constant current mode calculation unit 32B and the operation amount (duty) calculated by the constant voltage mode calculation unit 32C. Determined by selection method. In the typical example described below, a method of selecting a smaller operation amount (calculation result in which the duty ratio becomes smaller) from both the operation amounts calculated by the constant current mode calculation unit 32B and the constant voltage mode calculation unit 32C is adopted. NS. The arbitration method is not limited to this determination method, and other determination methods may be adopted.
 調停部32Dは、定電流モード演算部32Bによって算出された操作量(デューティ)と定電圧モード演算部32Cによって算出された操作量(デューティ)のうちの小さい操作量を選択する。そして、PWM信号生成部32Eは、調停部32Dで選択された操作量(デューティ)のPWM信号を、例えば、この操作量が決定された演算周期の次の周期のPWM信号として出力する。 The arbitration unit 32D selects a smaller operation amount from the operation amount (duty) calculated by the constant current mode calculation unit 32B and the operation amount (duty) calculated by the constant voltage mode calculation unit 32C. Then, the PWM signal generation unit 32E outputs the PWM signal of the operation amount (duty) selected by the arbitration unit 32D as, for example, the PWM signal of the cycle next to the calculation cycle in which the operation amount is determined.
 このような動作がなされるため、電源内制御部32では、定電流モード演算部32Bが算出した操作量が調停部32Dによって採用される期間は、第2電力変換部22を定電流モードで動作させる定電流制御が継続する。また、電源内制御部32では、定電圧モード演算部32Cが算出する操作量が調停部32Dによって採用される期間は、第2電力変換部22を定電圧モードで動作させる定電圧制御が継続する。 Since such an operation is performed, the in-power supply control unit 32 operates the second power conversion unit 22 in the constant current mode during the period when the operation amount calculated by the constant current mode calculation unit 32B is adopted by the arbitration unit 32D. The constant current control is continued. Further, in the power supply in-power supply control unit 32, the constant voltage control for operating the second power conversion unit 22 in the constant voltage mode continues during the period when the operation amount calculated by the constant voltage mode calculation unit 32C is adopted by the arbitration unit 32D. ..
 図6に示されるように、制御部108は、CPU(Central Processing Unit)120、メモリ122、インタフェース部(以下、IF部という)124及びバス126を含む。制御部108における各部の間のデータ伝送は、バス126を介して行われる。メモリ122は、1以上の記憶媒体を有し、例えば、書換可能な半導体不揮発性メモリ等を含む。メモリ122には、CPU120が実行するプログラム及び所定のパラメータ等が記憶されている。メモリ122の一部の領域は、CPU120がプログラムを実行するときにワークエリアとして使用される。制御部108は、例えば、電気自動車等のECU(Electronic Control Unit)である。 As shown in FIG. 6, the control unit 108 includes a CPU (Central Processing Unit) 120, a memory 122, an interface unit (hereinafter referred to as an IF unit) 124, and a bus 126. Data transmission between each unit in the control unit 108 is performed via the bus 126. The memory 122 has one or more storage media, and includes, for example, a rewritable semiconductor non-volatile memory. The memory 122 stores a program executed by the CPU 120, predetermined parameters, and the like. A part of the memory 122 is used as a work area when the CPU 120 executes a program. The control unit 108 is, for example, an ECU (Electronic Control Unit) of an electric vehicle or the like.
 CPU120は、第1電源104及び第2電源106の動作を制御する機能を有し、第1電源104に指示を与えることで第1電力変換部21を制御し、第2電源106に指示を与えることで第2電力変換部22を制御する。具体的には、CPU120は、IF部124を介して第1電源104に対して、第1目標電圧を伝送する。第1電源104は、上記第1目標電圧に基づいて定電圧モードで動作しうるようになっており、第1目標電圧に等しい電圧を出力するように動作する。また、CPU120は、IF部124を介して第2電源106に対して、第1目標電圧又は第2目標電圧、及び、負荷電流値又は電流制限値を伝送してもよい。第2電源106は、定電流モードで動作するときには上記電流制限値に等しい電流を出力するように動作し、定電圧モードで動作するときには上記第2目標電圧に等しい電圧を出力するように動作する。 The CPU 120 has a function of controlling the operations of the first power source 104 and the second power source 106, controls the first power conversion unit 21 by giving an instruction to the first power source 104, and gives an instruction to the second power source 106. This controls the second power conversion unit 22. Specifically, the CPU 120 transmits the first target voltage to the first power supply 104 via the IF unit 124. The first power supply 104 can operate in the constant voltage mode based on the first target voltage, and operates so as to output a voltage equal to the first target voltage. Further, the CPU 120 may transmit the first target voltage or the second target voltage and the load current value or the current limit value to the second power supply 106 via the IF unit 124. The second power supply 106 operates to output a current equal to the current limit value when operating in the constant current mode, and operates to output a voltage equal to the second target voltage when operating in the constant voltage mode. ..
 次の説明は、第2電源106が行う電力変換制御に関する。
 図7の制御は、所定の開始条件が成立した後に第2電源106(具体的には電源内制御部32)が繰り返し実行する制御である。所定の開始条件は、例えば、車両が始動状態となった場合、電源内制御部32に対して電力供給が開始された場合、その他の開始条件が成立した場合などである。なお、第2電源106は、上記開始条件が成立した直後の初期動作として通信に基づく通常制御を開始するようになっている。通信に基づく通常制御は、通信で得られる上述の指令値(例えば第1電流値I1)に基づいて電流制限値Itbを設定した上で定電流モード演算部32B及び定電圧モード演算部32Cが演算を行い、調停部32Dが上述の調停によって操作量を決定する制御である。この制御では、調停部32Dが決定した操作量(デューティ)のPWM信号をPWM信号生成部32Eが出力する。なお、通信に基づく通常制御が行われている場合、定電流モード演算部32Bが算出した操作量を調停部32Dが採用し続ける期間は、第2電力変換部22を定電流モードで動作させる定電流制御が継続する。なお、電源内制御部32は、第1電源104の出力電圧が第1目標電圧であり且つ第2電源106の出力電流が電流制限値である限り、通信に基づく通常制御として上述の定電流制御を行う。
The following description relates to the power conversion control performed by the second power source 106.
The control of FIG. 7 is a control that the second power supply 106 (specifically, the control unit 32 in the power supply) repeatedly executes after the predetermined start condition is satisfied. The predetermined start condition is, for example, when the vehicle is in the starting state, when the power supply to the in-power supply control unit 32 is started, when other start conditions are satisfied, and the like. The second power supply 106 starts normal control based on communication as an initial operation immediately after the above start condition is satisfied. In the normal control based on communication, the constant current mode calculation unit 32B and the constant voltage mode calculation unit 32C calculate after setting the current limit value Itb based on the above-mentioned command value (for example, the first current value I1) obtained by communication. Is performed, and the arbitration unit 32D is a control that determines the operation amount by the above-mentioned arbitration. In this control, the PWM signal generation unit 32E outputs the PWM signal of the operation amount (duty) determined by the arbitration unit 32D. When normal control based on communication is performed, the second power conversion unit 22 is operated in the constant current mode during the period in which the arbitration unit 32D continues to adopt the operation amount calculated by the constant current mode calculation unit 32B. Current control continues. The in-power supply control unit 32 controls the above-mentioned constant current as normal control based on communication as long as the output voltage of the first power supply 104 is the first target voltage and the output current of the second power supply 106 is the current limit value. I do.
 電源内制御部32は、上記開始条件が成立した場合又は図7の制御が終了した場合に、図7の制御を開始し、ステップS1の処理を行う。電源内制御部32は、ステップS1では、第2電源106の制御が通信に基づく制御(通常制御)であるか否かを判断し、通信に基づく通常制御である場合には処理をステップS2に進める。電源内制御部32は、ステップS1において第2電源106の制御が電流増加制御であると判断した場合には処理をステップS5に進める。なお、上記開始条件が成立した後の初回のステップS1の時点では、電源内制御部32は、デフォルトの制御として通信に基づく通常制御を行っているため、ステップS1においてYesと判断する。また、ステップS3、S6の処理の後に図7の制御が再び開始された場合の次のステップS1の時点では、電源内制御部32は、通信に基づく通常制御を行っているため、ステップS1においてYesと判断する。また、ステップS4、S7の処理の後に再び図7の制御が開始された場合の次のステップS1では、電源内制御部32は、電流増加制御を行っているため、ステップS1においてYesと判断する。 The in-power supply control unit 32 starts the control of FIG. 7 and performs the process of step S1 when the above start condition is satisfied or the control of FIG. 7 is completed. In step S1, the power supply control unit 32 determines whether or not the control of the second power supply 106 is communication-based control (normal control), and if it is communication-based normal control, the process proceeds to step S2. Proceed. When the in-power supply control unit 32 determines in step S1 that the control of the second power supply 106 is the current increase control, the process proceeds to step S5. At the time of the first step S1 after the above start condition is satisfied, the in-power supply control unit 32 performs normal control based on communication as the default control, and therefore determines Yes in step S1. Further, at the time of the next step S1 when the control of FIG. 7 is restarted after the processing of steps S3 and S6, the in-power supply control unit 32 performs normal control based on communication, so that in step S1. Judge Yes. Further, in the next step S1 when the control of FIG. 7 is started again after the processing of steps S4 and S7, since the in-power supply control unit 32 performs the current increase control, it is determined to be Yes in step S1. ..
 電源内制御部32は、ステップS1において、第2電源106が通信に基づく制御(通常制御)を行っていると判断した場合、ステップS2において第2電源106の出力電圧値が予め定められた判定値Vj以上であるか否かを判断する。判定値Vjは、第1電源104の定電圧(第1目標電圧)よりも低い値である。電源内制御部32は、ステップS2において第2電源106の出力電圧値(即ち、第2電力変換部22の出力電圧値)が判定値Vj以上であると判断した場合、ステップS3において通信に基づく通常制御を継続する。 When the power supply control unit 32 determines in step S1 that the second power supply 106 is performing control based on communication (normal control), the power supply control unit 32 determines in step S2 that the output voltage value of the second power supply 106 is predetermined. It is determined whether or not the value is Vj or more. The determination value Vj is a value lower than the constant voltage (first target voltage) of the first power supply 104. When the power supply control unit 32 determines in step S2 that the output voltage value of the second power supply 106 (that is, the output voltage value of the second power conversion unit 22) is equal to or higher than the determination value Vj, it is based on communication in step S3. Normal control is continued.
 電源内制御部32は、ステップS2において第2電源106の出力電圧値が判定値Vj未満であると判断した場合、ステップS4において電流増加制御を行う。この電流増加制御は、第2電源106の目標電流値を現在の電流制限値(通信によって取得された指令値に基づいて決定された値)から徐々に増加させる制御である。電源内制御部32は、電流増加制御が継続している間は、目標電流値を現在の電流制限値から徐々に増加させて設定するとともに、第2電力変換部22の出力電流値I2を目標電流値にするように第2電力変換部22を動作させる。目標電流値を増加させる速度は、電源内制御部32において予め定められている。 When the in-power supply control unit 32 determines in step S2 that the output voltage value of the second power supply 106 is less than the determination value Vj, the current increase control is performed in step S4. This current increase control is a control that gradually increases the target current value of the second power supply 106 from the current current limit value (value determined based on the command value acquired by communication). The in-power supply control unit 32 sets the target current value by gradually increasing it from the current current limit value while the current increase control continues, and targets the output current value I2 of the second power conversion unit 22. The second power conversion unit 22 is operated so as to have a current value. The speed at which the target current value is increased is predetermined by the in-power supply control unit 32.
 このように、電源内制御部32(駆動部)は、第2電力変換部22(電力変換部)を電流制限値に基づいて定電流モードで動作させる定電流制御と、第2電力変換部22に電流制限値よりも大きい出力電流を出力させる電流増加制御と、を行い得る。そして、電源内制御部32は、定電流制御中に第2電力変換部22(電力変換部)の出力電圧が所定の降下状態となった場合(具体的には、判定値Vj未満となった場合)に定電流制御から電流増加制御に切り替えるように動作し得る。 In this way, the in-power supply control unit 32 (drive unit) has constant current control for operating the second power conversion unit 22 (power conversion unit) in the constant current mode based on the current limit value, and the second power conversion unit 22. It is possible to perform current increase control for outputting an output current larger than the current limit value. Then, the in-power supply control unit 32 becomes less than the determination value Vj when the output voltage of the second power conversion unit 22 (power conversion unit) is in a predetermined drop state during constant current control (specifically, the determination value is less than Vj). In the case), it may operate to switch from constant current control to current increase control.
 電源内制御部32は、ステップS1において第2電源106の制御が通信に基づく制御(通常制御)でないと判断した場合(即ち、電流増加制御であると判定した場合)、ステップS5において第2電源106の出力電圧値が閾値Vth以上であるか否かを判断する。閾値Vthは、判定値Vjよりも大きい値である。更に、閾値Vthは、第1電源104が出力する定電圧(第1目標電圧)よりも大きい値であり、第2電源106の定電圧モードの目標電圧(第2目標電圧)よりも小さい値である。 When the in-power supply control unit 32 determines in step S1 that the control of the second power supply 106 is not communication-based control (normal control) (that is, when it is determined to be current increase control), the second power supply in step S5. It is determined whether or not the output voltage value of 106 is equal to or higher than the threshold value Vth. The threshold value Vth is a value larger than the determination value Vj. Further, the threshold value Vth is a value larger than the constant voltage (first target voltage) output by the first power supply 104 and smaller than the target voltage (second target voltage) in the constant voltage mode of the second power supply 106. be.
 電源内制御部32は、ステップS5において第2電源106の出力電圧値が閾値Vth以上であると判断した場合、ステップS6において通信に基づく通常制御を継続する。電源内制御部32は、第1電源104の出力電圧が第1目標電圧であり且つ第2電源106の出力電流が電流制限値である限り、通信に基づく通常制御として上述の定電流制御を行うようになっている。電源内制御部32は、ステップS5において第2電源106の出力電圧値が閾値Vth未満であると判断した場合、ステップS7において電流増加制御を行う。 When the power supply in-power supply control unit 32 determines in step S5 that the output voltage value of the second power supply 106 is equal to or higher than the threshold value Vth, the power supply control unit 32 continues normal control based on communication in step S6. The in-power supply control unit 32 performs the above-mentioned constant current control as normal control based on communication as long as the output voltage of the first power supply 104 is the first target voltage and the output current of the second power supply 106 is the current limit value. It has become like. When the in-power supply control unit 32 determines in step S5 that the output voltage value of the second power supply 106 is less than the threshold value Vth, the current increase control is performed in step S7.
 このように、電源内制御部32(駆動部)は、電流増加制御中に第2電源106の出力電圧値(即ち、第2電力変換部22(電力変換部)の出力電圧値)が閾値Vthに達した場合に定電流制御に切り替えるように動作する。即ち、電源内制御部32は、定電流制御中に第2電源106の出力電圧が判定値Vj未満となった場合に定電流制御から電流増加制御に切り替え、電流増加制御中に第2電源106の出力電圧が閾値Vthに達した場合に定電流制御に切り替える。 As described above, in the power supply internal control unit 32 (drive unit), the output voltage value of the second power supply 106 (that is, the output voltage value of the second power conversion unit 22 (power conversion unit)) is set to the threshold value Vth during the current increase control. When it reaches, it operates to switch to constant current control. That is, when the output voltage of the second power supply 106 becomes less than the determination value Vj during the constant current control, the in-power supply control unit 32 switches from the constant current control to the current increase control, and the second power supply 106 during the current increase control. When the output voltage of the above reaches the threshold value Vth, the control is switched to the constant current control.
 本開示の効果の例は、以下の通りである。
 電力変換装置101は、定電圧を出力する第1電源104に対して第2電源106が並列に接続された電源システム100において、第2電源106が定電流動作を行うことを可能とする。但し、単に第2電源106が定電流動作を行う構成では、図8のような問題があるため、電力変換装置101はこの問題を図9のように解消し得る。
Examples of the effects of the present disclosure are as follows.
The power conversion device 101 enables the second power supply 106 to perform a constant current operation in the power supply system 100 in which the second power supply 106 is connected in parallel to the first power supply 104 that outputs a constant voltage. However, in the configuration in which the second power supply 106 simply performs a constant current operation, there is a problem as shown in FIG. 8, and the power conversion device 101 can solve this problem as shown in FIG.
 図8の例は、図1~図6のような構成のものにおいて上記電流増加制御を行わない例である。図8の例では、時間taからの期間T4において負荷電流の急上昇が生じ、総電流値(第1電源104の電流値I1と第2電源106の電流値I2との和)が上昇している。図8の例では、負荷電流の急増によって第1電源104の出力電流が急増しても、通信によって第2電源106の電流制限値が時間tdで更新されるまでは、期間T12のように第2電源106の出力電流値I2が制限され続けてしまう。図8の例では、時間tdにて電流制限値が更新され、その後の期間T13に第2電源106の出力電流値I2が上昇しているが、それまでの期間T12は、第1電源104の過大な出力電流を抑えることができず、これによって第1電源104の出力電圧の低下、ひいては電源システム100の出力電圧の低下が生じてしまうことになる。しかし、上記電力変換装置101は、図9のように、電流増加制御によって出力電流を迅速に上昇させることができるため、このような出力電圧の低下を確実に抑えることができる。 The example of FIG. 8 is an example in which the above-mentioned current increase control is not performed in the configuration shown in FIGS. 1 to 6. In the example of FIG. 8, the load current suddenly rises in the period T4 from the time ta, and the total current value (the sum of the current value I1 of the first power supply 104 and the current value I2 of the second power supply 106) rises. .. In the example of FIG. 8, even if the output current of the first power supply 104 suddenly increases due to the sudden increase of the load current, until the current limit value of the second power supply 106 is updated in the time td by communication, the thirth is as shown in the period T12. 2 The output current value I2 of the power supply 106 continues to be limited. In the example of FIG. 8, the current limit value is updated at the time td, and the output current value I2 of the second power supply 106 rises in the subsequent period T13, but the period T12 up to that point is that of the first power supply 104. It is not possible to suppress an excessive output current, which causes a drop in the output voltage of the first power supply 104, which in turn causes a drop in the output voltage of the power supply system 100. However, as shown in FIG. 9, the power conversion device 101 can rapidly increase the output current by controlling the current increase, so that such a decrease in the output voltage can be reliably suppressed.
 図9の例では、図8の例と同様に、時間taからの期間T4において負荷電流の急上昇が生じて、総電流値(第1電源104の電流値I1と第2電源106の電流値I2との和)が上昇している。電力変換装置101は、第2電源106の定電流制御中(期間T21)に期間T4のように負荷電流が急増し、電源システム100全体の出力電流の不足によって出力電圧が降下しても、第2電源106自身が「所定の降下状態」を迅速に検出し得る。そして、第2電源106は、「所定の降下状態」の検出に応じて定電流制御から電流増加制御に切り替わり得る。図9の例では、時間tbよりも前は、第2電源106の出力電圧が判定値Vj以上であり、期間T4の負荷急増によって時間tbに第2電源106の出力電圧が判定値Vj未満となっている。電源内制御部32(駆動部)は、このように第2電源106の出力電圧が判定値Vj未満となった場合に、図9の期間T22のように第2電力変換部22に対する制御を定電流制御から電流増加制御に切り替え、第2電力変換部22の出力電流値I2を増大させる。 In the example of FIG. 9, similarly to the example of FIG. 8, the load current suddenly rises in the period T4 from the time ta, and the total current value (current value I1 of the first power supply 104 and current value I2 of the second power supply 106) occurs. The sum with and) is rising. In the power conversion device 101, even if the load current suddenly increases like the period T4 during the constant current control of the second power supply 106 (period T21) and the output voltage drops due to the shortage of the output current of the entire power supply system 100, the power conversion device 101 is the first. 2 The power supply 106 itself can quickly detect a “predetermined descent state”. Then, the second power supply 106 can switch from the constant current control to the current increase control in response to the detection of the “predetermined drop state”. In the example of FIG. 9, the output voltage of the second power supply 106 is equal to or higher than the judgment value Vj before the time tb, and the output voltage of the second power supply 106 is less than the judgment value Vj at the time tb due to the rapid increase in the load during the period T4. It has become. When the output voltage of the second power supply 106 becomes less than the determination value Vj in this way, the in-power supply control unit 32 (drive unit) determines the control of the second power conversion unit 22 as in the period T22 of FIG. The current control is switched to the current increase control to increase the output current value I2 of the second power conversion unit 22.
 このように、電力変換装置101は、第2電源106の定電流制御中に出力電流の不足が生じ、それに伴う出力電圧の低下が生じても、第2電源106の出力電流を迅速に上昇させて出力電圧を回復し得る。 As described above, the power conversion device 101 rapidly increases the output current of the second power supply 106 even if the output current is insufficient during the constant current control of the second power supply 106 and the output voltage is lowered accordingly. The output voltage can be recovered.
 電源内制御部32(駆動部)は、図9の期間T22のように電流増加制御を行っているときに第2電源106の出力電圧が閾値Vthに達した場合には第2電力変換部22に対する制御を電流増加制御から定電流制御に切り替える。図9の例では、電流増加制御中の時間tcにおいて第2電力変換部22(電力変換部)の出力電圧が閾値Vthに達しており、電源内制御部32(駆動部)は、時間tc直後に、第2電力変換部22に対する制御を電流増加制御から定電流制御に切り替えている。そして、電源内制御部32(駆動部)は、期間T23において定電流制御を行っている。 When the output voltage of the second power supply 106 reaches the threshold value Vth while the current increase control is performed as in the period T22 of FIG. 9, the in-power supply control unit 32 (drive unit) is the second power conversion unit 22. The control for is switched from the current increase control to the constant current control. In the example of FIG. 9, the output voltage of the second power conversion unit 22 (power conversion unit) reaches the threshold Vth at the time ct during the current increase control, and the in-power supply control unit 32 (drive unit) immediately after the time ct. In addition, the control for the second power conversion unit 22 is switched from the current increase control to the constant current control. Then, the in-power supply control unit 32 (drive unit) performs constant current control during the period T23.
 このように、電力変換装置101は、上述の「所定の降下状態」に応じて第2電源106の出力電流を迅速に上昇させた後、第2電源106の出力電圧が閾値Vthに達するまでの期間T22において電流増加制御を続けることができる。そして、電力変換装置101は、第2電源106の出力電圧が閾値Vthまで回復したことを確認してから、第2電源106を定電流制御に戻すことができる。 In this way, the power conversion device 101 rapidly increases the output current of the second power supply 106 in response to the above-mentioned "predetermined drop state", and then waits until the output voltage of the second power supply 106 reaches the threshold value Vth. The current increase control can be continued during the period T22. Then, the power conversion device 101 can return the second power supply 106 to the constant current control after confirming that the output voltage of the second power supply 106 has recovered to the threshold value Vth.
 具体的には、上記閾値Vthは上記判定値Vjよりも大きい値である。この電力変換装置101は、電源システム100の出力電圧が上記判定値Vjを超えて大きく低下することを電流増加制御によって抑制し、上記判定値Vjよりも大きい閾値Vthまで出力電圧を回復することができる。更に、この電力変換装置101は、上記判定値Vjよりも上記閾値Vthを大きく設定しているため、電流増加制御に切り替えた後に定電流制御と電流増加制御とが繰り返される回数を抑えることができる。 Specifically, the threshold value Vth is a value larger than the determination value Vj. The power conversion device 101 suppresses the output voltage of the power supply system 100 from dropping significantly beyond the above-mentioned determination value Vj by the current increase control, and recovers the output voltage to a threshold value Vth larger than the above-mentioned determination value Vj. can. Further, since the power conversion device 101 sets the threshold value Vth larger than the determination value Vj, it is possible to suppress the number of times that the constant current control and the current increase control are repeated after switching to the current increase control. ..
 より具体的には、上記閾値Vthは、第1電源104が出力する定電圧(第1目標電圧)以上の値とされている。この電力変換装置101は、電源システム100の出力電流が不足して第1電源104の定電圧制御が維持されなくなったとしても、電流増加制御によって上記定電圧以上の値まで迅速に電圧を回復することができる。 More specifically, the threshold value Vth is set to a value equal to or higher than the constant voltage (first target voltage) output by the first power supply 104. Even if the output current of the power supply system 100 is insufficient and the constant voltage control of the first power supply 104 is not maintained, the power conversion device 101 quickly recovers the voltage to a value equal to or higher than the constant voltage by the current increase control. be able to.
 一方、図8の例では、期間T4での負荷電流の急増によって第1電源104の出力電流が急増しても、通信結果に応じて第2電源106の電流制限値が時間tdで更新されるまでは第2電源106の出力電流が制限されてしまう。つまり、図8の例では、時間td後の期間T13までは第1電源104の過大な出力電流を抑えることができず、第1電源104の出力電圧の低下、ひいては電源システム100の出力電圧の低下が生じてしまうことになる。これに対し、本開示の電力変換装置101は、図9のようにこの問題を解消することができる。なお、図9における一点鎖線Ixは、図8のように動作させる場合の第1電源104の出力電流値の変化であり、図9における一点鎖線Iyは、図8のように動作させる場合の第2電源106の出力電流値の変化である。 On the other hand, in the example of FIG. 8, even if the output current of the first power supply 104 suddenly increases due to the sudden increase of the load current in the period T4, the current limit value of the second power supply 106 is updated in the time td according to the communication result. Until then, the output current of the second power supply 106 is limited. That is, in the example of FIG. 8, the excessive output current of the first power supply 104 cannot be suppressed until the period T13 after the time td, and the output voltage of the first power supply 104 drops, and eventually the output voltage of the power supply system 100. A drop will occur. On the other hand, the power conversion device 101 of the present disclosure can solve this problem as shown in FIG. The alternate long and short dash line Ix in FIG. 9 is a change in the output current value of the first power supply 104 when it is operated as shown in FIG. 8, and the alternate long and short dash line Iy in FIG. 9 is a change in the output current value when it is operated as shown in FIG. 2 It is a change in the output current value of the power supply 106.
 図10、図11は、負荷電流の急増によって第1電源104の電流値I1が定格電流値Imまで達する場合のグラフである。図10は、図8と同様の装置に関するグラフであり、図1~図6のような構成のものにおいて上記電流増加制御を行わない例である。図10の例では、時間taから負荷電流の急上昇が生じ、総電流値(第1電源104の電流値I1と第2電源106の電流値I2との和)が上昇している。そして、図10の例では、時間taの後に行われる通信に応じて時間tdから電流制限値が変更され、第2電源106の電流値I2が上昇している。但し、図10の例では、第1電源104の電流値I1は、負荷電流の急増に伴って定格電流値Imまで上昇した後、時間teから定格電流値Imに制限されている。この図10の例では、負荷電流の急増によって第1電源104の出力電流が急増する期間T14は、過渡的な電圧降下が生じてしまう。更に、その後の期間T15では、第1電源104の電流値I1が定格電流値Imに制限され、負荷が求める電流値Izを総電流値Isが下回るため、定常的に出力電圧が低くなってしまう。 10 and 11 are graphs when the current value I1 of the first power supply 104 reaches the rated current value Im due to a rapid increase in the load current. FIG. 10 is a graph relating to the same apparatus as in FIG. 8, and is an example in which the current increase control is not performed in the configuration shown in FIGS. 1 to 6. In the example of FIG. 10, the load current suddenly rises from the time ta, and the total current value (the sum of the current value I1 of the first power supply 104 and the current value I2 of the second power supply 106) rises. Then, in the example of FIG. 10, the current limit value is changed from the time td according to the communication performed after the time ta, and the current value I2 of the second power supply 106 is increased. However, in the example of FIG. 10, the current value I1 of the first power supply 104 is limited to the rated current value Im from the time te after rising to the rated current value Im with the rapid increase in the load current. In the example of FIG. 10, a transient voltage drop occurs during the period T14 in which the output current of the first power supply 104 suddenly increases due to the rapid increase in the load current. Further, in the subsequent period T15, the current value I1 of the first power supply 104 is limited to the rated current value Im, and the total current value Is is lower than the current value Iz required by the load, so that the output voltage is constantly lowered. ..
 これに対し、本開示の電力変換装置101は、第2電源106の定電流制御中(期間T21)に図10と同様に負荷電流が急増しても、図11のように「所定の降下状態」が生じた時間tbから電流増加制御を行い、出力電流値I2を増大させることができる。従って、電力変換装置101は、期間T4で懸念される過渡的な電圧降下を抑えることができる。しかも、電力変換装置101は、第1電源104の電流値I1が定格電流値Imまで到達することを抑制又は防止することができるため、上述の定常的な出力電圧の低下も抑えることができる。なお、図11における一点鎖線Ixは、図10のように動作させる場合の第1電源104の出力電流値の変化であり、図11における一点鎖線Iyは、図10のように動作させる場合の第2電源106の出力電流値の変化である。 On the other hand, the power conversion device 101 of the present disclosure has a “predetermined drop state” as shown in FIG. 11 even if the load current suddenly increases during the constant current control of the second power supply 106 (period T21) as in FIG. The output current value I2 can be increased by controlling the current increase from the time tb at which the above occurs. Therefore, the power converter 101 can suppress the transient voltage drop which is a concern in the period T4. Moreover, since the power conversion device 101 can suppress or prevent the current value I1 of the first power supply 104 from reaching the rated current value Im, the above-mentioned steady decrease in output voltage can also be suppressed. The alternate long and short dash line Ix in FIG. 11 is a change in the output current value of the first power supply 104 when it is operated as shown in FIG. 10, and the alternate long and short dash line Iy in FIG. 11 is the change in the output current value when it is operated as shown in FIG. 2 It is a change in the output current value of the power supply 106.
 電力変換装置101は、定電流制御を行う場合にIF部62(受信部)が受信した指令値に基づいて電流制限値を設定する。このような構成のものでは、仮に、過渡的な「所定の降下状態」が生じた場合にその降下状態に応じて外部から発せられる指令値に基づいて電流制限値を更新する方法のみを採用すると、降下状態に応じた電流制限値に設定されるまでに時間がかかる懸念がある。しかし、電力変換装置101は、第2電源106自身が「所定の降下状態」に応じて電流増加制御に切り替えることができるため、通信の遅延等に起因する切り替わりの遅れが生じにくくなる。 The power conversion device 101 sets a current limit value based on a command value received by the IF unit 62 (reception unit) when performing constant current control. In such a configuration, if a transient "predetermined descent state" occurs, only the method of updating the current limit value based on the command value issued from the outside according to the descent state is adopted. , There is a concern that it will take time to set the current limit value according to the drop state. However, since the power conversion device 101 itself can switch to the current increase control according to the "predetermined drop state", the delay in switching due to the delay in communication or the like is less likely to occur.
 電力変換装置101では、第2電源106は、定電流制御を行う場合に外部との通信に基づいて第1電流の値I1に応じた電流制限値を設定することができる。つまり、電力変換装置101は、定電流制御中には第1電流の値I1をより正確に反映して第2電源106の出力電流を調整することができる。但し、このような装置では、「所定の降下状態」が生じた場合、通信によって新たな指令値を受信して電流設定値を更新するまでは、前回の「第1電流の値I1に応じた電流制限値」が維持されてしまい、電流を増加させるまでに時間がかかってしまう懸念がある。しかし、電力変換装置101では、第2電源106自身が「所定の降下状態」に応じて電流増加制御に切り替えることができるため、通信の遅延等に起因して電流制限値の更新が遅れることによる出力電流の不足状態を生じにくくすることができる。つまり、電力変換装置101は、負荷電流が過渡的に増大する場面では、第2電源106自身が行う迅速な制御によって出力電流を迅速に上昇させ得る。 In the power conversion device 101, the second power supply 106 can set a current limit value according to the value I1 of the first current based on communication with the outside when performing constant current control. That is, the power conversion device 101 can adjust the output current of the second power supply 106 by more accurately reflecting the value I1 of the first current during the constant current control. However, in such a device, when a "predetermined drop state" occurs, it corresponds to the previous "first current value I1" until a new command value is received by communication and the current set value is updated. There is a concern that the "current limit value" will be maintained and it will take time to increase the current. However, in the power conversion device 101, since the second power supply 106 itself can switch to the current increase control according to the "predetermined drop state", the update of the current limit value is delayed due to the communication delay or the like. It is possible to prevent a shortage of output current from occurring. That is, in the situation where the load current transiently increases, the power conversion device 101 can rapidly increase the output current by the rapid control performed by the second power supply 106 itself.
 電源内制御部32(駆動部)は、定電流制御中に第1電流の値I1と電流制限値Itbとの割合を第1電流の値I1に基づいて所定割合にするように電流制限値Itbを設定する。この電力変換装置101は、定電流制御中には第1電源104からの出力電流の値I1と第2電源106からの出力電流の値I2とを所定割合に保ちやすくなる。そして、定電流制御中に「所定の降下状態」が生じた場合には、電力変換装置101は、上記所定割合に保ち続けることよりも出力電流を増加させることを迅速に優先させることができる。 The in-power supply control unit 32 (driving unit) sets the ratio between the first current value I1 and the current limit value Itb to a predetermined ratio based on the first current value I1 during constant current control. To set. The power conversion device 101 can easily keep the value I1 of the output current from the first power supply 104 and the value I2 of the output current from the second power supply 106 at a predetermined ratio during the constant current control. Then, when a "predetermined drop state" occurs during constant current control, the power conversion device 101 can quickly prioritize increasing the output current rather than maintaining the predetermined ratio.
 第2電源106は、定電流制御中には第1電源104との通信によって電流制限値Itbを設定することができる。そして、定電流制御中に「所定の降下状態」が生じた場合には、第2電源106は、自身の判定及び駆動によって電流増加制御に迅速に切り替えることができる。 The second power supply 106 can set the current limit value Itb by communicating with the first power supply 104 during the constant current control. Then, when a "predetermined drop state" occurs during the constant current control, the second power supply 106 can quickly switch to the current increase control by its own determination and drive.
 電力変換装置101は、定電流制御中には第1電源104で実際に検出された検出値(第1電流の値I1)に基づき、第1電源104からの出力電流の値I1と第2電源106からの出力電流の値I2とをより正確に所定割合に保ちやすくなる。 The power conversion device 101 has an output current value I1 from the first power supply 104 and a second power supply based on the detection value (first current value I1) actually detected by the first power supply 104 during constant current control. It becomes easier to keep the value I2 of the output current from 106 more accurately at a predetermined ratio.
 電力変換装置101は、第1電源104の定格電流値よりも第2電源106の定格電流値のほうが小さい。この電力変換装置101は、第2電源106の定格電流値を相対的に抑えることができ、定格電流値の抑えられた第2電源106によって特徴的な動作を行うことができる。 In the power converter 101, the rated current value of the second power supply 106 is smaller than the rated current value of the first power supply 104. The power conversion device 101 can relatively suppress the rated current value of the second power supply 106, and can perform a characteristic operation by the second power supply 106 in which the rated current value is suppressed.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described by the above description and drawings. For example, the features of the embodiments described above or below can be combined in any combination within a consistent range. Further, any of the features of the above-mentioned or later-described embodiments may be omitted unless it is clearly stated as essential. Further, the above-described embodiment may be modified as follows.
 上記実施形態では、第1電源104が当該第1電源104の電流値I1を指令値として第2電源106に送信し、第2電源106がこの指令値に基づいて電流制限値を設定するがこの例に限定されない。例えば、第1電源104が自身の電流値I1に基づいて電流値I1と電流制限値Itbとが所定割合となるように電流制限値Itbを算出し、この電流制限値Itbを指令値として第2電源106に送信してもよい。或いは、制御部108が、第1電源104から取得した第1電源104の電流値I1を指令値として第2電源106に送信してもよい。或いは、制御部108が電流値I1に基づいて電流値I1と電流制限値Itbとが所定割合となるように電流制限値Itbを算出し、この電流制限値Itbを指令値として第2電源に送信してもよい。或いは、制御部108が、第1電源104から取得した第1電源104の電流値I1と第2電源106から取得した第2電源106の電流値I2との和(総電流値Is)を第2電源106に送信してもよい。或いは、制御部108が、上記総電流値Isの所定割合の値を電流制限値Itbとして第2電源106に送信してもよい。 In the above embodiment, the first power supply 104 transmits the current value I1 of the first power supply 104 to the second power supply 106 as a command value, and the second power supply 106 sets the current limit value based on this command value. Not limited to the example. For example, the first power supply 104 calculates the current limit value Itb so that the current value I1 and the current limit value Itb are in a predetermined ratio based on its own current value I1, and the second power supply 104 uses this current limit value Itb as a command value. It may be transmitted to the power source 106. Alternatively, the control unit 108 may transmit the current value I1 of the first power supply 104 acquired from the first power supply 104 to the second power supply 106 as a command value. Alternatively, the control unit 108 calculates the current limit value Itb so that the current value I1 and the current limit value Itb become a predetermined ratio based on the current value I1, and transmits this current limit value Itb as a command value to the second power source. You may. Alternatively, the control unit 108 seconds the sum (total current value Is) of the current value I1 of the first power supply 104 acquired from the first power supply 104 and the current value I2 of the second power supply 106 acquired from the second power supply 106. It may be transmitted to the power source 106. Alternatively, the control unit 108 may transmit the value of a predetermined ratio of the total current value Is as the current limit value Itb to the second power supply 106.
 上記実施形態は、電源内制御部32(駆動部)が、定電流制御中に第1電流値I1と電流制限値Itbとの割合を第1電流値I1に基づいて所定割合にするように電流制限値Itbを設定するが、この例に限定されない。電源内制御部32(駆動部)は、定電流制御中に第1電流値I1と電流制限値Itbとの割合を制御部108から取得する総電流値Is(I1+I2)に基づいて総電流値Isの所定割合にするように電流制限値Itbを設定してもよい。この場合、総電流値Isが指令値の一例に相当する。この場合、制御部108が、総電流値Is(第1電流値I1と第2電流値I2との和)を継続的に監視し、最新の総電流値Isを短い時間間隔で第2電源106に送信すればよい。また、これらの例に限定されるわけではなく、電源内制御部32(駆動部)は、第1電流値I1を指令値とするとともに第1電流値I1と電流制限値Itbとを変数とする所定演算式を用い、第1電流値I1に応じて電流制限値Itbを決定してもよい。或いは、電源内制御部32(駆動部)は、上記総電流値Isを指令値とするとともに上記総電流値Isと電流制限値Itbとを変数とする所定演算式を用い、上記総電流値Isに応じて電流制限値Itbを決定してもよい。 In the above embodiment, the in-power supply control unit 32 (driving unit) sets the ratio of the first current value I1 and the current limit value Itb to a predetermined ratio based on the first current value I1 during constant current control. A limit value Itb is set, but the present invention is not limited to this example. The in-power supply control unit 32 (drive unit) obtains the ratio of the first current value I1 and the current limit value Itb from the control unit 108 during constant current control, and the total current value Is (I1 + I2). The current limit value Itb may be set so as to have a predetermined ratio of. In this case, the total current value Is corresponds to an example of the command value. In this case, the control unit 108 continuously monitors the total current value Is (the sum of the first current value I1 and the second current value I2), and updates the latest total current value Is at short time intervals in the second power supply 106. You can send it to. Further, the control unit 32 (driving unit) in the power supply is not limited to these examples, and the first current value I1 is used as a command value and the first current value I1 and the current limit value Itb are used as variables. The current limit value Itb may be determined according to the first current value I1 by using a predetermined calculation formula. Alternatively, the in-power supply control unit 32 (driving unit) uses a predetermined arithmetic expression in which the total current value Is is a command value and the total current value Is and the current limit value Itb are variables, and the total current value Is is. The current limit value Itb may be determined accordingly.
 上記実施形態では、「所定の降下状態」は、第2電源の出力電圧が判定値未満となった場合であったが、例えば、第2電源の出力電圧の低下率(単位時間当たりの出力電圧の低下糧)が所定値を超えた場合であってもよい。 In the above embodiment, the "predetermined drop state" is a case where the output voltage of the second power supply is less than the determination value. For example, the rate of decrease of the output voltage of the second power supply (output voltage per unit time). It may be the case that the voltage drop of) exceeds a predetermined value.
 上記実施形態では、電力変換装置101が制御部108を含む装置であったが、上記制御部108のような制御を含まない装置が電力変換装置とされてもよい。例えば、電力変換装置101から上記制御部108を除いた部分が電力変換装置とされてもよい。 In the above embodiment, the power conversion device 101 is a device including the control unit 108, but a device such as the control unit 108 that does not include control may be used as the power conversion device. For example, the portion of the power conversion device 101 excluding the control unit 108 may be the power conversion device.
 上記実施形態では、電力変換装置101が第1電源104を含む装置であったが、第1電源を含まない装置が電力変換装置とされてもよい。例えば、電力変換装置101から第1電源104を除いた部分が電力変換装置とされてもよく、電力変換装置101から第1電源104及び制御部108を除いた部分が電力変換装置とされてもよい。 In the above embodiment, the power conversion device 101 is a device including the first power supply 104, but a device not including the first power supply may be a power conversion device. For example, the portion of the power converter 101 excluding the first power supply 104 may be the power converter, or the portion of the power converter 101 excluding the first power supply 104 and the control unit 108 may be the power converter. good.
 上記実施形態では、第1電力変換部21及び第2電力変換部22の具体的構成として、図3、図4のような絶縁型DCDCコンバータが例示されたが、図3、図4の構成以外のDCDCコンバータが用いられてもよい。 In the above embodiment, the isolated DCDC converter as shown in FIGS. 3 and 4 is exemplified as a specific configuration of the first power conversion unit 21 and the second power conversion unit 22, but the configurations other than those shown in FIGS. DCDC converter may be used.
 上記実施形態では、電源システム100が電気自動車などの車両に搭載されるが、これに限定されない。電源システム100は、これら以外の種類の車両、例えば、PHEV(Plug-in Hybrid Electric Vehicle)、HEV(Hybrid Electric Vehicle)に搭載されてもよく、車両以外の装置に搭載されてもよい。 In the above embodiment, the power supply system 100 is mounted on a vehicle such as an electric vehicle, but the present invention is not limited to this. The power supply system 100 may be mounted on a vehicle of a type other than these, for example, a PHEV (Plug-in Hybrid Electric Vehicle) or a HEV (Hybrid Electric Vehicle), or may be mounted on a device other than the vehicle.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is an example in all respects and is not restrictive. The scope of the present invention is not limited to the embodiments disclosed here, and includes all modifications within the scope indicated by the claims or within the scope equivalent to the claims. Is intended.
11   :第1導電路
12   :第2導電路
13A  :導電路
13B  :導電路
13C  :導電路
13D  :導電路
21   :第1電力変換部
21A  :半導体スイッチ素子
21B  :半導体スイッチ素子
21C  :半導体スイッチ素子
21D  :半導体スイッチ素子
21E  :コンデンサ
21F  :一次側コイル
21G  :二次側コイル
21H  :二次側コイル
21J  :ダイオード
21K  :ダイオード
21L  :インダクタ
21M  :コンデンサ
21X  :入力回路部
21Y  :トランス部
21Z  :出力回路部
22   :第2電力変換部
22A  :半導体スイッチ素子
22B  :半導体スイッチ素子
22C  :半導体スイッチ素子
22D  :半導体スイッチ素子
22E  :コンデンサ
22F  :一次側コイル
22G  :二次側コイル
22H  :二次側コイル
22J  :ダイオード
22K  :ダイオード
22L  :インダクタ
22M  :コンデンサ
22X  :入力回路部
22Y  :トランス部
22Z  :出力回路部
31   :電源内制御部
32   :電源内制御部
32A  :目標値設定部
32B  :定電流モード演算部
32C  :定電圧モード演算部
32D  :調停部
32E  :PWM信号生成部
41   :第1電圧値検出部
42   :第2電圧値検出部
51   :第1電流値検出部
52   :第2電流値検出部
61   :インタフェース部
62   :インタフェース部
71   :第1入力路
72   :第2入力路
81   :第1出力路
82   :第2出力路
100  :電源システム
101  :電力変換装置
102  :バッテリ
104  :第1電源
106  :第2電源
108  :制御部
110  :負荷
120  :CPU
122  :メモリ
124  :IF部
126  :バス
11: First conductive path 12: Second conductive path 13A: Conductive path 13B: Conductive path 13C: Conductive path 13D: Conductive path 21: First power conversion unit 21A: Semiconductor switch element 21B: Semiconductor switch element 21C: Semiconductor switch element 21D: Semiconductor switch element 21E: Condenser 21F: Primary side coil 21G: Secondary side coil 21H: Secondary side coil 21J: Diode 21K: Diode 21L: Incubator 21M: Condenser 21X: Input circuit section 21Y: Transformer section 21Z: Output circuit Part 22: Second power conversion unit 22A: Semiconductor switch element 22B: Semiconductor switch element 22C: Semiconductor switch element 22D: Semiconductor switch element 22E: Condenser 22F: Primary side coil 22G: Secondary side coil 22H: Secondary side coil 22J: Diode 22K: Diode 22L: inductor 22M: Condenser 22X: Input circuit unit 22Y: Transformer unit 22Z: Output circuit unit 31: Power supply internal control unit 32: Power supply internal control unit 32A: Target value setting unit 32B: Constant current mode calculation unit 32C : Constant voltage mode calculation unit 32D: Mediation unit 32E: PWM signal generation unit 41: First voltage value detection unit 42: Second voltage value detection unit 51: First current value detection unit 52: Second current value detection unit 61: Interface unit 62: Interface unit 71: First input path 72: Second input path 81: First output path 82: Second output path 100: Power supply system 101: Power conversion device 102: Battery 104: First power supply 106: First 2 Power supply 108: Control unit 110: Load 120: CPU
122: Memory 124: IF unit 126: Bus

Claims (8)

  1.  第1導電路と第2導電路との間に設けられるとともに前記第2導電路に定電圧を出力する第1電源を備えた電源システムに用いられ、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換装置であって、
     前記第1電源に対して並列に接続される第2電源を備え、
     前記第2電源は、前記第1導電路と前記第2導電路との間で電力変換を行う電力変換部と、前記電力変換部を駆動する駆動部と、を有し、
     前記駆動部は、前記電力変換部を電流制限値に基づいて定電流モードで動作させる定電流制御と、前記電力変換部に前記電流制限値よりも大きい出力電流を出力させる電流増加制御と、を行い、
     前記駆動部は、前記定電流制御中に前記電力変換部の出力電圧が所定の降下状態となった場合に前記定電流制御から前記電流増加制御に切り替える電力変換装置。
    It is used in a power supply system provided between a first conductive path and a second conductive path and provided with a first power source that outputs a constant voltage to the second conductive path, and is used for the first conductive path and the second conductive path. It is a power conversion device that converts power between and
    A second power supply connected in parallel to the first power supply is provided.
    The second power source includes a power conversion unit that performs power conversion between the first conductive path and the second conductive path, and a drive unit that drives the power conversion unit.
    The drive unit provides constant current control for operating the power conversion unit in a constant current mode based on a current limit value, and current increase control for causing the power conversion unit to output an output current larger than the current limit value. Do,
    The drive unit is a power conversion device that switches from the constant current control to the current increase control when the output voltage of the power conversion unit falls into a predetermined drop state during the constant current control.
  2.  前記駆動部は、前記電流増加制御中に前記出力電圧が閾値に達した場合に前記定電流制御に切り替える請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the drive unit switches to the constant current control when the output voltage reaches a threshold value during the current increase control.
  3.  前記閾値は、前記第1電源が出力する前記定電圧以上の値である請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein the threshold value is a value equal to or higher than the constant voltage output by the first power supply.
  4.  前記駆動部は、前記定電流制御中に前記電力変換部の前記出力電圧が判定値未満となった場合に前記定電流制御から前記電流増加制御に切り替え、前記電流増加制御中に前記出力電圧が前記判定値よりも大きい前記閾値に達した場合に前記定電流制御に切り替える請求項2又は請求項3に記載の電力変換装置。 When the output voltage of the power conversion unit becomes less than the determination value during the constant current control, the drive unit switches from the constant current control to the current increase control, and the output voltage changes during the current increase control. The power conversion device according to claim 2 or 3, wherein the constant current control is switched to when the threshold value larger than the determination value is reached.
  5.  前記第2電源は、前記第2電源の外部の装置から指令値を受信する受信部を有し、
     前記駆動部は、前記定電流制御を行う場合に前記受信部が受信した前記指令値に基づいて前記電流制限値を設定する請求項1から請求項4のいずれか一項に記載の電力変換装置。
    The second power supply has a receiving unit that receives a command value from an external device of the second power supply.
    The power conversion device according to any one of claims 1 to 4, wherein the drive unit sets the current limit value based on the command value received by the receiver when performing the constant current control. ..
  6.  前記指令値は、前記電源システムが供給する総電流値又は前記第1電源が供給する第1電流の値に応じた値であり、
     前記駆動部は、前記定電流制御を行う場合に前記指令値に基づいて前記総電流値又は前記第1電流の値に応じた前記電流制限値を設定する請求項5に記載の電力変換装置。
    The command value is a value corresponding to the total current value supplied by the power supply system or the value of the first current supplied by the first power supply.
    The power conversion device according to claim 5, wherein the drive unit sets the current limit value according to the total current value or the value of the first current based on the command value when performing the constant current control.
  7.  前記駆動部は、前記定電流制御中に前記第1電流の値と前記電流制限値との割合を前記総電流値又は前記第1電流の値に基づいて所定割合にするように前記電流制限値を設定する請求項6に記載の電力変換装置。 The drive unit sets the ratio between the value of the first current and the current limit value to a predetermined ratio based on the total current value or the value of the first current during the constant current control. The power conversion device according to claim 6.
  8.  前記第1電源と、
     前記第1電源及び前記第2電源を制御する制御部と、
     を含み、
     前記第1電源又は前記制御部が前記指令値を送信する請求項5から請求項7のいずれか一項に記載の電力変換装置。
    With the first power supply
    A control unit that controls the first power supply and the second power supply,
    Including
    The power conversion device according to any one of claims 5 to 7, wherein the first power supply or the control unit transmits the command value.
PCT/JP2021/007015 2020-03-11 2021-02-25 Power conversion device WO2021182114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041458 2020-03-11
JP2020041458A JP2021145428A (en) 2020-03-11 2020-03-11 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021182114A1 true WO2021182114A1 (en) 2021-09-16

Family

ID=77670632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007015 WO2021182114A1 (en) 2020-03-11 2021-02-25 Power conversion device

Country Status (2)

Country Link
JP (1) JP2021145428A (en)
WO (1) WO2021182114A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181847A1 (en) * 2014-05-27 2015-12-03 富士電機株式会社 Battery charger
JP2018117454A (en) * 2017-01-18 2018-07-26 株式会社Soken Control device of power conversion system
WO2019142318A1 (en) * 2018-01-19 2019-07-25 新電元工業株式会社 Dc/dc converter control method and control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181847A1 (en) * 2014-05-27 2015-12-03 富士電機株式会社 Battery charger
JP2018117454A (en) * 2017-01-18 2018-07-26 株式会社Soken Control device of power conversion system
WO2019142318A1 (en) * 2018-01-19 2019-07-25 新電元工業株式会社 Dc/dc converter control method and control device

Also Published As

Publication number Publication date
JP2021145428A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US10749217B2 (en) Power source device
CN108282081B (en) Drive unit, vehicle, and control method for drive unit
WO2019188077A1 (en) Power control device for vehicle and power control system for vehicle
JP2012182894A (en) Power conversion apparatus and power control method
JP2005151770A (en) Abnormality monitoring device in load driving circuit
US20150137592A1 (en) Power conversion system suppressing reduction in conversion efficiency
WO2021182448A1 (en) Power conversion device
US9871480B2 (en) Power supply control apparatus, vehicle and method of controlling power supply
JP6572823B2 (en) Power system
JP2009118723A (en) Power supply apparatus, vehicle provided with the same, control method for the power supply apparatus, and computer-readable recording medium recording program for making computer execute control method therefor
US8339074B2 (en) Power converter control apparatus
JP4193777B2 (en) Power generation control device and power generation system
JP6187180B2 (en) Power conversion system
JP2021064982A (en) Voltage converter
CN111391665A (en) Charging system
WO2021182114A1 (en) Power conversion device
WO2021182363A1 (en) Power conversion device
JP2004229461A (en) Charge controller and vehicle
CN111497617A (en) Power supply system for vehicle
JP5645679B2 (en) Voltage converter
WO2021261230A1 (en) Power conversion device
US9358889B2 (en) Power conversion apparatus and method
JP6958408B2 (en) Boost converter device
WO2021182447A1 (en) Power conversion device
JP6862960B2 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768997

Country of ref document: EP

Kind code of ref document: A1