WO2021181993A1 - Inhaler and method for manufacturing inhaler - Google Patents

Inhaler and method for manufacturing inhaler Download PDF

Info

Publication number
WO2021181993A1
WO2021181993A1 PCT/JP2021/005000 JP2021005000W WO2021181993A1 WO 2021181993 A1 WO2021181993 A1 WO 2021181993A1 JP 2021005000 W JP2021005000 W JP 2021005000W WO 2021181993 A1 WO2021181993 A1 WO 2021181993A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
voltage
supplied
threshold value
comparator
Prior art date
Application number
PCT/JP2021/005000
Other languages
French (fr)
Japanese (ja)
Inventor
啓司 丸橋
貴司 藤木
創 藤田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2022505852A priority Critical patent/JP7345629B2/en
Publication of WO2021181993A1 publication Critical patent/WO2021181993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention relates to an aspirator and a method for manufacturing the aspirator.
  • Patent Document 1 describes a technique for adjusting the electrical energy supplied to the heater in order to keep the actual operating temperature of the heater lower than a predetermined maximum operating temperature.
  • Patent Document 2 describes a technique for controlling on / off of energization of a heater based on a change in the resistance value of a heater that heats a molded product of a flavor raw material.
  • Patent Document 3 describes a technique for changing the temperature of a heater according to a temperature profile.
  • An object of the present invention is to provide an advantageous technique for accurately controlling the temperature of a heater of an aspirator.
  • a voltage regulator that produces a voltage to power the heater to heat the aerosol source
  • a resistor connected in series with the heater and the voltage regulator
  • a transistor that switches the amount of power supplied to the heater
  • An operational amplifier having a non-inverting input terminal connected to the first end of the heater and an inverting input terminal connected to the second end of the heater in order to measure the heater voltage applied to the heater.
  • a drive circuit connected between the output terminal of the operational amplifier and the control terminal of the transistor is provided. The drive circuit When the output signal of the operational amplifier is larger than the threshold value, the off signal is continuously supplied to the control terminal until the output signal becomes smaller than the threshold value. When the output signal is smaller than the threshold value, the on signal is continuously supplied to the control terminal until the output signal becomes larger than the threshold value.
  • An aspirator is provided.
  • the drive circuit compares the output signal converted into a digital format with the threshold value stored in the memory, and supplies an on signal or an off signal to the control terminal based on the comparison result. To judge whether The aspirator according to the first configuration is provided.
  • a voltage generator that generates a voltage to power the heater to heat the aerosol source, A resistor connected between the heater and the voltage generation circuit, A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
  • a suction device is provided.
  • the control circuit converts the threshold value stored in the memory into an analog format, and determines the magnitude relationship by comparing the threshold value in the analog format with the heater voltage being monitored.
  • the aspirator according to the third configuration is provided.
  • the threshold value is equal to the value of the heater voltage in a state where the heater is supplied with power from the voltage generation circuit so that the temperature of the heater is included in the range in which the aerosol can be generated from the suction device.
  • the aerosol source is removable from the aspirator with the heater coupled to the aspirator.
  • the threshold value is the value of the heater voltage at the time of new product in a state where power is supplied to the heater from the voltage generation circuit so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. equal,
  • the aspirator according to the fourth configuration is provided.
  • the control circuit When the heater voltage under monitoring is smaller than the threshold value, a first amount of electric power is continuously supplied to the heater until the heater voltage under monitoring reaches the threshold value. When the heater voltage under monitoring is greater than the threshold value, the power supplied to the heater is maintained at a second amount lower than the first amount until the heater voltage under monitoring drops to the threshold value.
  • the control circuit has one of the third configuration to the seventh configuration in which the supply of electric power to the heater is stopped when the heater voltage under monitoring exceeds an upper limit value higher than the threshold value.
  • the described aspirator is provided.
  • the aspirator includes a recess into which an aerosol generating article having an aerosol substrate holding the aerosol source can be inserted and removed.
  • the heater is configured to be capable of heating the aerosol-generating article inserted in the recess.
  • the control circuit provides the suction device according to the ninth configuration, which switches the threshold value to another value based on the usage status of the suction device while the heater is heating the aerosol-generating article.
  • the aspirator according to the tenth configuration is provided, wherein the usage situation includes at least one of a number of suctions, a length of suction, and an amount of suction.
  • control circuit provides the aspirator according to any one of the third to eleventh configurations, which gradually decreases or gradually increases the threshold value in order to change the temperature change rate of the heater.
  • the control circuit A transistor connected between the heater and the voltage generation circuit is provided. If the heater voltage is less than the threshold, turn on the transistor and turn it on. If the heater voltage is greater than the threshold, the transistor is turned off.
  • the aspirator according to the third configuration is provided.
  • the resistor is the first resistor and The control circuit
  • the first resistor and the first transistor connected in series between the voltage generation circuit and the first end of the heater,
  • a second resistor and a second transistor connected in series between the voltage generation circuit and the first end of the heater,
  • a first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater.
  • the resistance value of the second resistor is higher than the resistance value of the first resistor.
  • the output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
  • the suction device according to the fourteenth configuration is provided in which the output of the second comparator is supplied to the control terminal of the second transistor.
  • the resistor is the first resistor and The control circuit With the first resistor and the first transistor connected in series to the second end of the heater, A second resistor and a second transistor connected in series with the second end of the heater, A first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater. Includes a non-inverting input terminal connected to the first end of the heater and a second comparator having an inverting input terminal to which the threshold is supplied.
  • the resistance value of the second resistor is higher than the resistance value of the first resistor.
  • the output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
  • the suction device according to the fourteenth configuration is provided in which the output of the second comparator is supplied to the control terminal of the second transistor.
  • the control circuit includes a microcontroller that converts the threshold value stored in the memory in a digital format into an analog format and supplies the threshold value in the analog format to the first comparator and the second comparator.
  • the memory stores a first threshold value and a second threshold value smaller than the first threshold value.
  • the microcontroller The first threshold value is supplied to the first comparator as the threshold value, and the first threshold value is supplied to the first comparator.
  • the second threshold value is supplied to the second comparator as the threshold value, and the second threshold value is supplied to the second comparator.
  • the control circuit further includes a third transistor and a fourth transistor.
  • the first threshold is supplied from the microcontroller to the first comparator through the third transistor.
  • the second threshold is supplied from the microcontroller to the second comparator through the fourth transistor.
  • the output of the first comparator is further supplied to the control terminal of the third transistor.
  • the suction device according to the fifteenth configuration or the sixteenth configuration is provided in which the output of the second comparator is further supplied to the control terminal
  • the fifteenth configuration to the control circuit further includes a square wave generation circuit that converts a voltage input to the non-inverting input terminal of the first comparator or a voltage output from an output terminal of the first comparator into a square wave.
  • the aspirator according to any one of the 17 configurations is provided.
  • control circuit further includes a bypass circuit that can be switched to a path that bypasses the square wave generation circuit.
  • An aspirator is provided in which the threshold is different from the threshold of another aspirator having each component of the aspirator.
  • a suction device is provided.
  • the above means provides an advantageous technique for accurately controlling the temperature of the heater of the aspirator.
  • the figure explaining the control circuit of the 3rd structural example of this invention The figure explaining the control circuit of the 4th structural example of this invention.
  • the figure explaining the control circuit of the 5th structural example of this invention The figure explaining the control circuit of the 6th structural example of this invention.
  • the figure explaining the example of gradual increase and gradual decrease of the target value of this invention The figure explaining the control circuit of the 7th structural example of this invention.
  • the figure explaining the control circuit of the 8th structural example of this invention The figure explaining the example of the method of determining the target value of the heater voltage of this invention.
  • FIG. 1A schematically shows the configuration of the aspirator 100 of one embodiment.
  • the suction device 100 may be configured to provide the user with a gas containing an aerosol or a gas containing an aerosol and a flavoring substance through the mouthpiece 130 according to the suction operation by the user.
  • the aspirator 100 may include a controller 102 and an atomizer 104.
  • the suction device 100 may include a holding unit 103 that holds the atomizer 104 in a removable state.
  • the controller 102 may be understood as a controller for an aspirator.
  • the atomizer 104 may be configured to atomize the aerosol source.
  • the aerosol source can be, for example, a liquid such as a polyhydric alcohol such as glycerin or propylene glycol. Alternatively, the aerosol source may include a drug.
  • the aerosol source may be a liquid, a solid, or a mixture of a liquid and a solid.
  • a vapor source such as water may be used instead
  • the aspirator 100 may further include a capsule 106 containing a flavor source 131, and the atomizer 104 may include a capsule holder 105 that holds the capsule 106 in a removable state.
  • the flavor source 131 may be, for example, a molded product obtained by molding a tobacco material. Alternatively, the flavor source 131 may be composed of plants other than tobacco (eg, mint, herbs, Chinese herbs, coffee beans, etc.). A fragrance such as menthol may be added to the flavor source. The flavor source 131 may be added to the aerosol source.
  • the capsule holder 105 may be provided on the controller 102 instead of the atomizer 104.
  • the controller 102 may include an electrical component 110.
  • the electrical component 110 may include a user interface 116.
  • the controller 102 may be understood to include the electrical components 110 and the user interface 116.
  • the user interface 116 is, for example, a display unit DISP (for example, a light emitting element such as an LED and / or an image display such as an LCD) and / or an operation unit OP (for example, a switch such as a button switch and / or). , Touch display) can be included.
  • DISP for example, a light emitting element such as an LED and / or an image display such as an LCD
  • an operation unit OP for example, a switch such as a button switch and / or
  • Touch display can be included.
  • the holding unit 103 of the controller 102 may include a first electrical contact 111 and a second electrical contact 112.
  • the first electric contact 111 of the holding unit 103 is in contact with the third electric contact 113 of the atomizer 104, and the second electric contact 112 of the holding unit 103.
  • the controller 102 may supply power to the atomizer 104 through the first electrical contact 111 and the second electrical contact 112.
  • the atomizer 104 may include the above-mentioned third electrical contact 113 and fourth electrical contact 114. Further, the atomizer 104 includes a heater 127 for heating the aerosol source, a container 125 for holding the liquid aerosol source, and a transport unit 126 for transporting the aerosol source held by the container 125 to the heating region by the heater 127. Can include. The transport unit 126 may also be called a wick. At least a portion of the heating region of the heater 127 may be located in the flow path 128 provided in the atomizer 104. The first electric contact 111, the third electric contact 113, the heater 127, the fourth electric contact 114, and the second electric contact 112 form a current path for passing a current through the heater 127.
  • the transport unit 126 may be made of, for example, a fibrous material or a porous material.
  • the atomizer 104 can include a capsule holder 105 that detachably holds the capsule 106, as described above.
  • the capsule holder 105 may house a portion of the capsule 106 in the capsule holder 105 or in the atomizer 104 and hold the capsule 106 so as to expose the other portion.
  • the user can suck the gas containing the aerosol by holding the mouthpiece 130 with his mouth.
  • the removable capsule 106 includes a mouthpiece 130 to keep the suction cup 100 clean.
  • FIG. 1B schematically shows the configuration of the aspirator 150 of another embodiment.
  • the aspirator 150 may be configured to provide the user with a gas containing an aerosol or a gas containing an aerosol and a flavoring substance through the mouthpiece 130, depending on the suction operation by the user.
  • the aspirator 150 may include a controller 102 and an aerosol generating article 151.
  • the suction device 150 may include a holding portion 152 that holds the aerosol-generating article 151 in a removable state.
  • the controller 102 may be understood as a controller for an aspirator.
  • the aerosol-generating article 151 may include an aerosol substrate 153 holding an aerosol source and a filter 154.
  • an aerosol source and a flavor source can be mixed.
  • the flavor source may function as an aerosol substrate 153.
  • the flavor source can be, for example, a molded product obtained by molding a tobacco material.
  • the flavor source may be composed of plants other than tobacco (eg, mint, herbs, Chinese herbs, coffee beans, etc.).
  • a fragrance such as menthol may be added to the flavor source.
  • the aerosol-generating article 151 may have a rod-like shape.
  • the heater 127 has a protruding shape (for example, a needle shape or a blade shape).
  • the holding portion 152 forms a recess.
  • the heater 127 is inserted into the aerosol base material 153 of the aerosol-generating article 151.
  • the heater 127 is in a state where the aerosol source in the aerosol base material 153 can be heated.
  • the used aerosol-generating article 151 can be removed from the aspirator 150 with the heater 127 coupled to the aspirator 150. In this way, the aerosol-generating article 151 can be inserted and removed from the recess of the aspirator.
  • the heater 127 is coupled to the controller 102, and power is supplied from the controller 102.
  • the user grabs the mouthpiece 130 and performs a suction operation, as illustrated by the arrow, air flows into the aerosol base material 153, and the aerosol generated by the heater 127 heating the aerosol source is flavored by the air. It is transported together with the substance toward the mouthpiece 130.
  • the heater 127 of the aerosol-generating article 151 heats the aerosol-generating article 151 from the inside.
  • the heater 127 may have a structure for heating the aerosol-generating article 151 from the outside.
  • the heater 127 has a ring shape, and the aerosol-generating article 151 may be inserted into the ring.
  • the heater 127 may be one or may be separated into a plurality of heaters 127. When the heater 127 is separated into a plurality of parts, a part of the heater 127 may heat the aerosol-generating article 151 from the inside, and the remainder of the heater 127 may heat the aerosol-generating article 151 from the outside.
  • FIG. 2 shows an example of the temperature profile of the target temperature of the heater 127.
  • the distribution of the aerosol source inside the aerosol-generating article 151 can change depending on the usage conditions.
  • the controller 102 controls the temperature of the heater 127 to an appropriate value in response to this change.
  • Graph 200 in FIG. 2 shows an example of the temperature profile of the heater 127.
  • the horizontal axis of the graph 200 shows the elapsed time from the start of suction, and the vertical axis of the graph 200 shows the temperature of the heater 127.
  • time t0 it is assumed that the heater 127 is at room temperature.
  • the controller 102 rapidly heats the heater 127 so that the temperature of the heater 127 reaches the target temperature T Target1. From time t1 to t2, the controller 102 maintains the temperature of the heater 127 at the target temperature T Target1. If the aerosol source is sufficiently heated, then the amount of aerosol generated may be excessive. Therefore, the controller 102 lowers the temperature of the heater 127 from time t2 to t3 so that the temperature of the heater 127 becomes the target temperature T Target2. The target temperature T Target2 is lower than the target temperature T Target1. From time t3 to t4, the controller 102 maintains the temperature of the heater 127 at the target temperature T Target 2.
  • the controller 102 raises the temperature of the heater 127 after the time t4.
  • the rate of change in temperature rise after time t4 is lower than the rate of change in temperature rise from time t0 to t1.
  • the controller 102 controls the temperature of the heater 127 by appropriately switching the target temperature of the heater 127.
  • the temperature profile of the heater 127 is not limited to that shown in the graph 200, and may vary depending on the configuration of the heater 127 and the type of aerosol source. Further, when the heater 127 is separated into a plurality of heaters, a temperature profile may be set for each individual heater.
  • FIG. 3 shows a configuration example of the electric component 110.
  • the electrical component 110 may include a power source (eg, a battery) 301, a voltage generation circuit 302 that generates electric power to supply the heater 127, and a control circuit 303 that controls the electric power supplied to the heater 127.
  • the resistance value R HTR of the heater 127 changes depending on the temperature of the heater 127. For example, the resistance value R HTR of the heater 127 has a positive correlation with the temperature of the heater 127.
  • the voltage generation circuit 302 can include, for example, a voltage converter (voltage regulator) 321 that converts the power supply voltage Vbat supplied from the power supply 301 into the heater drive voltage Vout. Further, the voltage generation circuit 302 may include a voltage conversion circuit 322 such as an LDO (Low DropOut) that converts the power supply voltage Vbat into a voltage Vmcu for an MCU (microcontroller unit) in the control circuit 303.
  • a voltage converter voltage regulator
  • LDO Low DropOut
  • the control circuit 303 controls the electrical component 110 as a whole. As part of such control, the control circuit 303 performs feedback control so that the temperature of the heater 127 while heating the aerosol source approaches the target temperature. Specifically, the target value calculation unit 331 of the control circuit 303 calculates a target value of a physical quantity having a correlation with the temperature of the heater 127 and stores it in the memory before the user starts using the suction device 100. .. As will be described later, this physical quantity may be a voltage (also referred to as a heater voltage) applied to the heater 127. This target value is set so that the temperature of the heater 127 during heating of the aerosol source becomes the target temperature.
  • the power supply control unit 332 of the control circuit 303 monitors this physical quantity while the user is using the suction device 100, and supplies the heater 127 from the voltage generation circuit 302 so that the physical quantity being monitored approaches the target value. Control the power generated. As the target temperature of the heater 127 changes, the target value of the physical quantity that correlates with the temperature of the heater 127 may also change.
  • the electric component 110 may further include a temperature sensor 304 that detects the temperature of a predetermined portion of the electric component 110, and a puff sensor (for example, a pressure sensor) 305 that detects the puff operation of the user.
  • the temperature sensor 304 may be incorporated in the puff sensor 305 or the power supply 301.
  • FIG. 4A and FIG. 4B show the operation of the aspirator 100. This operation is controlled by the control circuit 303.
  • the control circuit 303 includes a memory for storing the program and a processor that operates according to the program. The operations of FIGS. 4A and 4B may be processed by the processor executing a program in memory.
  • step S401 the control circuit 303 waits for the atomization request to be received, and when the atomization request is received, the control circuit 303 executes step S402.
  • the atomization requirement is a requirement to generate an aerosol from an aerosol source, more specifically to control the heater 127 within a target temperature range to generate an aerosol from the aerosol source.
  • the atomization request may be an operation in which the puff sensor 305 detects that the user has performed a suction operation (puff operation) through the mouthpiece 130, and the puff sensor 305 notifies the control circuit 303 of the detection.
  • the atomization request may be an operation in which the operation unit OP notifies the control circuit 303 that the user has operated the operation unit OP.
  • step S402 the control circuit 303 acquires the power supply voltage Vbat from a power supply management circuit (not shown), and determines whether or not the power supply voltage Vbat exceeds the discharge cutoff voltage Vend (for example, 3.2V).
  • the discharge cutoff voltage Vend for example, 3.2V.
  • the control circuit 303 uses the display unit DISP of the user interface 116 to notify the power supply 301 to be charged. This notification may be to light the LED in red when the display DISP includes the LED.
  • the control circuit 303 can notify that normal operation is possible by using the display unit DISP of the user interface 116. This notification may be to light the LED in blue when the display DISP includes the LED.
  • step S404 the control circuit 303 starts power supply control for the heater 127.
  • the power supply control for the heater 127 includes a temperature control for controlling the heater 127 within a target temperature range. The details of this temperature control will be described later.
  • step S405 the control circuit 303 resets the suction time TL to 0, and then in step S406, the control circuit 303 adds ⁇ t to the suction time TL.
  • ⁇ t corresponds to the time interval between the execution of step S406 and the execution of the next step S406.
  • step S407 the control circuit 303 determines whether or not the atomization request is completed, and if the atomization request is completed, in step S409, the control circuit 303 controls the power supply to the heater 127. Stop. On the other hand, when the atomization request is not completed, in step S408, the control circuit 303 determines whether or not the suction time TL (for example, 2.0 to 2.5 sec) has reached the upper limit time, and determines whether the suction time has reached the upper limit time. If the TL has not reached the upper limit time, the process returns to step S406.
  • the suction time TL for example, 2.0 to 2.5 sec
  • step S410 the control circuit 303 turns off the LED that was lit in blue. Then, in step S411, the control circuit 303 updates the integration time T A. More specifically, in step S411, it adds the suction time T L the accumulated time T A at the moment. Accumulated time T A is the accumulated time used for the capsule 106 is aspirated, in other words, be a cumulative time the aerosol is aspirated through the flavor source 131 of the capsule 106.
  • step S412 the control circuit 303 determines the accumulated time T A suction time (e.g., 120 sec) whether or not exceed. If the accumulated time T A has not exceeded the respirable time means that the capsule 106 can be still provided a flavoring substance, in this case, the flow returns to step S401. If the accumulated time T A exceeds the respirable time, in step S413, the control circuit 303 waits for occurrence of the atomization required. Then, when the atomization request occurs, in step S414, the control circuit 303 waits for the atomization request to continue for a predetermined time, and then in step S416, the control circuit 303 prohibits power supply control to the heater 127. .. Note that step S414 may be omitted.
  • T A suction time e.g. 120 sec
  • step S416 the control circuit 303 uses the display unit DISP of the user interface 116 to notify the replacement of consumables (capsule 106 of the aspirator 100 and aerosol-generating article 151 of the aspirator 150).
  • This notification may be to blink the LED in blue (repeatedly turning on and off) when the display unit DISP includes an LED.
  • the user can replace the consumables.
  • one atomizer 104 and a plurality (eg, 5) capsules 106 may be sold as a set. In such an example, after one set of atomizers 104 and all capsules 106 have been consumed, the consumed set of atomizers 104 and the last capsule 106 are new sets of atomizers. Can be replaced with 104 and capsule 106.
  • step S417 the control circuit 303 waits for the replacement of consumables (capsule 106 of the aspirator 100 and aerosol generating article 151 of the aspirator 150) to be completed, and in step S418, the control circuit 303 supplies power to the heater 127. The prohibition of control is released, and the process returns to step S401.
  • the control circuit 303 may include an MCU 501, switches SW1 and SW2, shunt resistors R shunt1 and R shunt2, and an operational amplifier 502.
  • the MCU 501 may include a memory 511, a switch drive unit 512, a target value calculation unit 331, a comparison unit 513, and an ADC (analog-to-digital converter) 415.
  • the switch drive unit 512, the target value calculation unit 331, and the comparison unit 513 may be realized by a general-purpose processor, a dedicated circuit, or a combination of both.
  • the power supply control unit 332 is configured by the switches SW1 and SW2, the shunt resistors R shunt1 and R shunt2 , the switch drive unit 512, and the comparison unit 513.
  • the switch SW1 and the shunt resistor R shunt1 are connected in series between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127.
  • the resistance value of the shunt resistor R shunt 1 is marked as R shunt 1 in the same manner as its code. The same applies to the other resistors described below.
  • the shunt resistor R Shunt1 is connected between the switch SW1 and the heater 127. Instead of this, the switch SW1 may be connected between the shunt resistor R Shunt1 and the heater 127.
  • the switch SW1 may be composed of, for example, a transistor, specifically a FET (field effect transistor) IGBT (insulated gate bipolar transistor).
  • FET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the control signal SWC1 is supplied from the switch drive unit 512 to the control terminal of the switch SW1 (for example, the gate of the FET).
  • the switch SW1 switches on / off according to the value of the control signal SWC1.
  • the control signal that turns on the switch SW1 (that is, the conducting state) is called an on signal
  • the control signal that turns off the switch SW1 that is, the non-conducting state
  • the on signal is, for example, high level
  • the off signal is, for example, low level. The same applies to the control signals of other switches described below.
  • the switch SW2 and the shunt resistor R shunt2 are connected in series between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127.
  • the resistance value of the shunt resistor R Shunt2 is sufficiently larger than the resistance value of the shunt resistor R shunt1.
  • the shunt resistor R Shunt2 is connected between the switch SW2 and the heater 127.
  • the switch SW2 may be connected between the shunt resistor R Shunt2 and the heater 127.
  • the switch SW2 may be composed of, for example, a transistor, specifically an FET or an IGBT.
  • a control signal SWC2 is supplied from the switch drive unit 512 to the control terminal of the switch SW2 (for example, the gate of the FET). The switch SW2 switches on / off according to the value of the control signal SWC2.
  • the operational amplifier (differential amplifier) 502 has a non-inverting input terminal, an inverting input terminal, and an output terminal.
  • the non-inverting input terminal of the operational amplifier 502 is connected to one end of the heater 127 (specifically, the third electric contact 113).
  • the inverting input terminal of the operational amplifier 502 is connected to another end (specifically, the fourth electrical contact 114) of the heater 127.
  • the output terminal of the operational amplifier 502 is connected to the input terminal of the ADC 415. In this way, the operational amplifier 502 supplies the voltage V HTR applied to the heater 127 to the ADC 415.
  • the control circuit 303 monitors the output of the operational amplifier 502, that is, the voltage V HTR as a physical quantity having a correlation with the temperature of the heater.
  • the control circuit 303 controls the power supplied to the heater 127 so that the voltage V HTR approaches the target value.
  • the switch drive unit 512 may supply a control signal to a switch (transistor) other than the switch SW1 and the switch SW2.
  • a switch for example, control of a switch (transistor) built in a voltage converter (voltage regulator) 321 or a switch (transistor) (not shown) provided between the heater 127 and the ground or in the supply line of the heater drive voltage Vout.
  • a control signal may be supplied to the terminal from the switch drive unit 512.
  • the control circuit 303 may perform an operation of determining the target value V Target in a state where the heater 127 is not heated, for example, before step S404 in FIG. 4A.
  • the determination of the target value V Target may be performed when the heater 127 is new.
  • the new heater 127 may be, for example, a state before the user starts using the heater 127 to suck the aerosol.
  • the period during which the heater 127 is new may include the time of manufacture of the aspirators 100, 150. Further, the control circuit 303 may determine the target value V Target when the heater 127 is not in a new state.
  • step S1601 the target value calculation unit 331 measures the current temperature of the heater 127, and sets this temperature as the reference temperature T Ref .
  • the reference temperature T Ref may be determined based on the temperature at an arbitrary location in the aspirator 100 (for example, the temperature detected by the temperature sensor 304) or the room temperature.
  • step S1602 the target value calculation unit 331 turns off the switch SW1 and turns on the switch SW2. As a result, a current flows from the supply line of the heater drive voltage Vout to the ground via the switch SW2, the shunt resistor R shunt2, and the heater 127.
  • the target value calculation unit 331 receives the voltage V HTR applied to the heater 127 from the ADC 415 in digital form.
  • the target value calculation unit 331 calculates the reference resistance value R Ref by applying this voltage V HTR to the following equation (1).
  • Vout and R Shunt2 are specified values. These values are written to memory 511 at the time of manufacture.
  • step S1603 the target value calculation unit 331 calculates the target value V Target according to the equation (2), and stores the target value V Target in the memory 511 in the digital format in step S1604.
  • ⁇ and T Target are specified values. These values are written to memory 511 at the time of manufacture.
  • is the temperature coefficient [ppm / ° C.] of the heater 127.
  • is a value determined by the material and size of the heater 127.
  • T Target is the target temperature of the heater 127 during heating of the aerosol source.
  • the target temperature T Target is set, for example, at the time of manufacture.
  • the target value V Target corresponds to the voltage V HTR at the time when the temperature of the heater 127 is the target temperature T Target.
  • the target value V Target is the heater 127 in a state where the voltage generation circuit 302 supplies power to the heater 127 so that the temperature of the heater 127 is within the range in which aerosols can be generated from the aspirators 100 and 150.
  • the target temperature T Target is set to be in the range of 210 ° C. or higher and lower than 230 ° C., for example, 220 ° C.
  • the circuit characteristics of the control circuit 303 may differ from one suction device to another depending on the product tolerances of the elements constituting the control circuit 303 and the like. Therefore, the target value V Target determined as described above may differ from product to product. In other words, the target value V Target of one aspirator can be different from the target value V Target of another aspirator having the same components as this aspirator.
  • the target value V Target is calculated by dividing into the equations (1) and (2).
  • the target value calculation unit 331 may calculate the target value V Target according to the formula in which these formulas are integrated.
  • the target temperature T Target of the heater 127 can have a plurality of values. Therefore, the target value calculation unit 331 determines a target value V Target for each of the plurality of target temperatures T Target, may be stored in memory 511.
  • the control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B).
  • step S601 the comparison unit 513 reads the target value V Target of the initial value in the digital format from the memory 511. After that, the comparison unit 513 compares the read digital target value V Target with the voltage V HTR received from the ADC 415 in the digital format, and continues to supply these comparison results to the switch drive unit 512. In this way, the comparison unit 513 monitors the voltage V HTR applied to the heater 127. In the example of FIG. 2, a heater voltage corresponding to the target temperature T Target1 is read as a target value V Target.
  • step S602 the switch drive unit 512 turns off the switch SW1 by supplying an off signal as the control signal SWC1, and turns on the switch SW2 by supplying an on signal as the control signal SWC2.
  • the switch drive unit 512 determines whether the voltage V HTR is lower than the target value V Target based on the output from the comparison unit 513. When this condition is satisfied (“YES” in step S602), the switch drive unit 512 transitions the process to step S603, and in other cases (“NO” in step S602), the switch drive unit 512 steps the process. Transition to S604.
  • step S603 the switch drive unit 512 turns on the switch SW1 by supplying an on signal as the control signal SWC1, and turns off the switch SW2 by supplying an off signal as the control signal SWC2.
  • the switch drive unit 512 maintains the state when the switch SW1 has already been supplied with the on signal, and maintains the state when the switch SW2 has already been supplied with the off signal. This state is maintained until the comparison result by the comparison unit 513 changes.
  • the switch SW1 from the supply line of the heater driving voltage Vout, the switch SW1, a current flows to the ground via the shunt resistor R Shunt1 and heater 127. On the other hand, no current flows in the path passing through the switch SW2.
  • the shunt resistor R Shunt1 has a resistance value for passing a current capable of raising the temperature of the heater 127.
  • step S604 the switch drive unit 512 turns off the switch SW1 by supplying an off signal as the control signal SWC1, and turns on the switch SW2 by supplying an on signal as the control signal SWC2.
  • the switch drive unit 512 maintains the state when the switch SW2 has already been supplied with the on signal, and maintains the state when the switch SW1 has already been supplied with the off signal. This state is maintained until the comparison result by the comparison unit 513 changes. As a result, a current flows from the supply line of the heater drive voltage Vout to the ground via the switch SW2, the shunt resistor R shunt2, and the heater 127. On the other hand, no current flows in the path passing through the switch SW1.
  • the shunt resistor R Shunt2 Since the shunt resistor R Shunt2 is sufficiently large, not supplied power required to heat the heater 127, the temperature of the heater 127 is lowered. That is, the shunt resistor R shunt 2 has a resistance value for passing a current capable of lowering the temperature of the heater 127. The amount of power current is supplied to the heater 127 when flowing through the shunt resistor R Shunt2 is lower than the amount of power supplied to the heater 127 when a current flows through the shunt resistor R shunt1. When the resistance value of the shunt resistor R Shunt2 is sufficiently large, the power supplied to the heater 127 is substantially zero.
  • step S605 the switch drive unit 512 determines whether or not the target value switching condition is satisfied. When this condition is satisfied (“YES” in step S605), the switch drive unit 512 transitions the process to step S606, and in other cases (“NO” in step S605), the switch drive unit 512 steps the process. Transition to S602.
  • the target value switching condition may be based on the usage status of the aspirators 100 and 150.
  • This usage may include at least one of the number of suctions, the length of suction, and the amount of suction.
  • the comparison unit 513 may measure the elapsed time from the start of suction with a timer and switch the target value according to the elapse of a predetermined time from the start of suction. Further, the comparison unit 513 may include a counter that counts the number of times the user has performed suction, and may switch the target value when the value of this counter reaches a predetermined value.
  • the suction devices 100 and 150 further include a sensor for measuring the amount of suction by the user, and the comparison unit 513 switches the target value according to the amount of suction detected by this sensor reaching a predetermined value. You may.
  • the comparison unit 513 measures the elapsed time from the start of supplying electric power to the heater 127 with a timer, and sets a target value according to the elapse of a predetermined time after starting to supply electric power to the heater 127. May be switched.
  • step S606 the comparison unit 513 reads out the target value V Target of the initial value after switching from the memory 511. After that, the comparison unit 513 compares the read digital target value V Target with the voltage V HTR received from the ADC 415 in the digital format, and continues to supply these comparison results to the switch drive unit 512.
  • a heater voltage corresponding to the target temperature T Target2 is read as a target value V Target. After the target value V Target is switched, the heater voltage is controlled so as to approach the new target value V Target.
  • step S607 the switch drive unit 512 determines whether or not to end the heat treatment. When this condition is satisfied (“YES” in step S607), the switch drive unit 512 ends the process, and in other cases (“NO” in step S607), the switch drive unit 512 shifts the process to step S602. do.
  • the condition for terminating the heat treatment is the condition for transitioning to step S409 in FIG. 4B described above.
  • the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target. Specifically, the control circuit 303 switches the amount of power supplied from the voltage generation circuit 302 to the heater 127 based on the comparison result between the monitored voltage V HTR and the target value V Target. As described above, since the target value V Target is set so that the temperature of the heater 127 becomes the target temperature T Target , this feedback control brings the temperature of the heater 127 while heating the aerosol source to a desired range. Be maintained. In steps S604 and S605 described above, when the equal sign is satisfied, the branch is branched to NO, but the branch may be changed to YES instead. Further, the control circuit 303 directly compares the monitored voltage V HTR with the target value V Target without converting it into another value, and performs feedback control. Therefore, the followability in the feedback control is improved.
  • a second configuration example of the control circuit 303 for feedback control of the heater 127 will be described.
  • the feedback control executed by the MCU 501 in the first configuration example of FIG. 5 is executed by the analog circuit.
  • the differences from the first configuration example will be mainly described.
  • the control circuit 303 of the second configuration example further includes a comparator CMP and an inverter 702 for logic inversion as compared with the control circuit 303 of the first configuration example.
  • the MCU 501 of the second configuration example does not include the switch drive unit 512 and the comparison unit 513, but includes a DAC (digital-to-analog converter) 701.
  • the inverting input terminal of the comparator CMP is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP.
  • An analog-type target value V Target is supplied from the MCU 501 (specifically, DAC701) to the non-inverting input terminal of the comparator CMP. Therefore, the comparator CMP outputs the comparison result between the voltage V HTR and the target value V Target. That is, the comparator CMP monitors the voltage V HTR as a physical quantity that correlates with the temperature of the heater 127.
  • the output signal from the comparator CMP is supplied to the control terminal of the switch SW1 via the voltage divider circuit. Further, the output signal from the comparator CMP is supplied to the control terminal of the switch SW2 via the inverter 702 and the voltage dividing circuit. Both or one of these voltage divider circuits may be omitted.
  • the DAC 701 reads the target value V Target in digital format from the memory 511, converts it into an analog format, and supplies it to the comparator CMP.
  • the method of determining the target value V Target is the same as that of the first configuration example, and thus the description thereof will be omitted.
  • the feedback control of the temperature of the heater 127 in the second configuration example will be described.
  • the control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B).
  • the MCU 501 may perform the same processing as in steps S601, S605 and S606 of FIG. 6 to switch the target value V Target.
  • the DAC701 In order to start supplying power to the heater 127, the DAC701 reads the target value V Target from the memory 511, converts it into an analog format, and continues to supply it to the comparator CMP. Immediately after suction, the temperature of the heater 127 is low, and therefore the voltage V HTR is also low, so that the comparator CMP outputs a high level as a comparison result. As a result, a high level is supplied to the control terminal of the switch SW1, and the switch SW1 is turned on. Further, the low level logically inverted by the inverter 702 is supplied to the control terminal of the switch SW2, and the switch SW2 is turned off. As a result, a current flows through the heater 127 and the temperature of the heater 127 rises as in the first configuration example.
  • the comparator CMP When the temperature of the heater 127 rises and the voltage V HTR exceeds the target value V Target , the comparator CMP outputs a low level as a comparison result. As a result, a low level is supplied to the control terminal of the switch SW1, and the switch SW1 is turned off. Further, a high level logically inverted by the inverter 702 is supplied to the control terminal of the switch SW2, and the switch SW2 is turned on. As a result, a current flows as in the first configuration example, and the temperature of the heater 127 drops. After that, when the voltage V HTR falls below the target value V Target , electric power is supplied to the heater 127 so that the temperature of the heater 127 rises.
  • the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target.
  • the magnitude comparison of the voltage V HTR and the target value V Target is performed by an analog circuit (specifically, the comparator CMP) not included in the MCU 501, the power is controlled without being bound by the operating clock of the MCU 501. Can be done. Therefore, even higher speed control becomes possible. Further, since the MCU 501 does not compare the size, the processing load of the MCU 501 is reduced.
  • FIG. 8 a third configuration example of the control circuit 303 for feedback control of the heater 127 will be described.
  • the second configuration example of FIG. 7 has one comparator system, whereas the third configuration example has two comparator systems.
  • the differences from the second configuration example will be mainly described.
  • the control circuit 303 of the third configuration example does not include the comparator CMP and the inverter 702, but includes the comparators CMP1 and CMP2 and the switches SW3 and SW4 as compared with the control circuit 303 of the second configuration example.
  • the MCU 501 of the third configuration example does not include the DAC 701, but includes the DACs 801 and 802.
  • the inverting input terminal of the comparator CMP1 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP1.
  • An analog-type target value V Target is supplied to the non-inverting input terminal of the comparator CMP1. Therefore, the comparator CMP1 outputs a comparison result between the voltage V HTR and the target value V Target.
  • the output signal from the comparator CMP1 is supplied to the control terminal of the switch SW1 via the voltage divider circuit.
  • the non-inverting input terminal of the comparator CMP2 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the non-inverting input terminal of the comparator CMP2.
  • An analog-type target value V Target is supplied to the inverting input terminal of the comparator CMP2. Therefore, the comparator CMP2 outputs the comparison result between the voltage V HTR and the target value V Target.
  • the output signal from the comparator CMP2 is supplied to the control terminal of the switch SW2 via the voltage divider circuit.
  • the comparator CMP1 and the comparator CMP2 configured as described above output signals of different levels from each other.
  • the DAC 801 reads the target value V Target 1 in the digital format from the memory 511, converts it into the analog format, and supplies it to the comparators CMP1 and CMP2 via the switch SW3.
  • the DAC 802 reads the target value V Target 2 in the digital format from the memory 511, converts it into the analog format, and supplies it to the comparators CMP1 and CMP2 via the switch SW4. Since the comparator CMP1 and the comparator CMP2 output signals of different levels, only one of the switches SW3 and SW4 is turned on. Therefore, when the switch SW3 is on (that is, the switch SW4 is off), the target value V Target1 is supplied to the comparators CMP1 and CMP2 as the target value V Target. Switch SW4 is turned on (i.e., the switch SW3 is turned off) when the target value V Target2 is supplied to the comparator CMP1 and CMP2 as the target value V Target.
  • the target value V Target1 is a target value of the voltage V HTR when the switch SW1 is on and the switch SW2 is off.
  • the target value V Target2 is a target value of the voltage V HTR when the switch SW1 is off and the switch SW2 is on.
  • the target value calculation unit 331 calculates these target values according to the above equation (1) and the following equations (3) and (4), and stores them in the memory 511.
  • ⁇ , Vout, R Shunt1 and R Shunt2 are specified values and are written to the memory 511 at the time of manufacture, for example.
  • the target temperature T Target is as described above for equation (2). Since R Shunt1 > R Shunt2 , V Target1 ⁇ V Target2 .
  • the target value calculation unit 331 calculates the reference resistance value R Ref according to the equation (1), and applies this value to the equations (3) and (4) to obtain the target value V Target1. And the target value V Target2 is calculated.
  • the target temperature T Target there are multiple, for each of a plurality of target temperatures T Target, target value V Target1 and the target value V Target2 is calculated.
  • the feedback control of the temperature of the heater 127 in the third configuration example will be described.
  • the control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B).
  • the MCU 501 may perform the same processing as in steps S601, S605 and S606 of FIG. 6 to switch between the target value V Target 1 and the target value V Target 2.
  • the DAC 801 In order to start supplying power to the heater 127, the DAC 801 reads the target value V Target1 from the memory 511, converts it into an analog format, and continues to supply it to the switch SW3. Further, the DAC 802 reads the target value V Target 2 from the memory 511, converts it into an analog format, and continues to supply it to the switch SW4. At this point, it is assumed that the switch SW3 is on and the switch SW4 is off. Therefore, the target value V Target1 is supplied to the comparators CMP1 and CMP2 as the target value V Target.
  • the temperature of the heater 127 is low, and therefore the voltage V HTR is also low, so that the comparator CMP1 outputs a high level as a comparison result, and the comparator CMP2 outputs a low level as a comparison result.
  • a high level is supplied to the control terminal of the switch SW1 and the control terminal of the switch SW3, and the switches SW1 and SW3 are turned on.
  • a low level is supplied to the control terminal of the switch SW2 and the control terminal of the switch SW4, and the switches SW2 and SW4 are turned off.
  • a current flows through the heater 127 and the temperature of the heater 127 rises as in the first configuration example.
  • the target value V Target1 continues to be supplied to the comparators CMP1 and CMP2 as the target value V Target.
  • the comparator CMP1 When the temperature of the heater 127 rises and the voltage V HTR exceeds the target value V Target , the comparator CMP1 outputs a low level as a comparison result, and the comparator CMP2 outputs a high level as a comparison result. As a result, a low level is supplied to the control terminal of the switch SW1 and the control terminal of the switch SW3, and the switches SW1 and SW3 are turned off. Further, a high level is supplied to the control terminal of the switch SW2 and the control terminal of the switch SW4, and the switches SW2 and SW4 are turned on. As a result, a current flows through the heater 127 and the temperature of the heater 127 drops as in the first configuration example.
  • the target value V Target2 is supplied to the comparators CMP1 and CMP2 as the target value V Target. After that, when the voltage V HTR falls below the target value V Target , electric power is supplied to the heater 127 so that the temperature of the heater 127 rises.
  • the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target.
  • the target value V Target value is switched according to whether the temperature of the heater 127 is rising or falling, more detailed feedback control can be performed.
  • the fourth configuration example further includes delay circuits 901 and 902 as compared to the third configuration example.
  • delay circuits 901 and 902 as compared to the third configuration example.
  • the delay circuit 901 is connected to a node between the output terminal of the comparator CMP1 and the control terminal of the switch SW1.
  • the delay circuit 902 is connected to a node between the output terminal of the comparator CMP2 and the control terminal of the switch SW2.
  • the delay circuits 901 and 902 can adjust the speed of switching. As a result, the temperature change of the heater 127 can be smoothed, and the life of the switch SW1 and the switch SW2 can be extended.
  • the fifth configuration example further includes capacitors CP1 and CP2 and switches SW5 and SW6 as compared with the third configuration example.
  • the differences from the third configuration example will be mainly described.
  • the capacitor CP1 is connected to a node between the microcontroller 501 (specifically, DAC801) and the switch SW3.
  • the switch SW5 is connected in parallel to the capacitor CP1.
  • the capacitor CP1 can hold the target value V Target1 in the analog format output by the DAC801. Therefore, MCU501 sets the target value V Target1 the DAC801 is output after the capacitor CP1 is held, can be stopped DAC801.
  • the MCU 501 resets the value held in the capacitor CP1 by turning on the switch SW5, and then holds the updated target value V Target1 in the capacitor CP1. Let me.
  • the capacitor CP2 is connected to a node between the microcontroller 501 (specifically, DAC802) and the switch SW4.
  • the switch SW6 is connected in parallel to the capacitor CP2.
  • the capacitor CP2 can hold the target value V Target 2 in the analog format output by the DAC 802.
  • the other functions of the capacitor CP2 are the same as those of the capacitor CP1. According to the fifth configuration example, the involvement of the MCU 501 in the feedback control can be further reduced, and the burden on the MCU 501 is further reduced.
  • the sixth configuration example further includes a comparator CMP3 and DAC1101 as compared with the third configuration example.
  • the differences from the third configuration example will be mainly described.
  • the inverting input terminal of the comparator CMP3 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP3.
  • An analog upper limit value V Upper is supplied to the non-inverting input terminal of the comparator CMP3. Therefore, the comparator CMP3 outputs the comparison result between the voltage V HTR and the upper limit value V Upper.
  • the output signal from the comparator CMP3 is supplied to the control terminal of the switch SW2 via the voltage divider circuit.
  • the voltage divider circuit connected to the control terminal of the switch SW2 supplies a low level to the control terminal of the switch SW2 when at least one of the output of the comparator CMP2 and the output of the comparator CMP3 is low level, and the output of the comparator CMP2 and the comparator When both the output of the CMP3 and the output of the CMP3 are high level, the high level is supplied to the control terminal of the switch SW2.
  • the upper limit value V Upper is set to be equal to the voltage V HTR when the temperature of the heater 127 is 230 ° C. or higher, and is stored in the memory 511.
  • the upper limit value V Upper is a value higher than any of the above-mentioned target values V Target.
  • the output signal of the comparator CMP3 becomes high level. In this case, electric power is supplied to the heater 127 in the same manner as in the third configuration example.
  • the temperature rise rate of the heater 127 immediately after the start of suction and the temperature rise rate during suction are different from each other.
  • the temperature rise rate not only the temperature rise rate but also the temperature drop rate may be different. Therefore, a method of changing the temperature change rate of the heater 127 will be described below.
  • Graph 1200 in FIG. 12 shows an example of a temperature change of the heater 127.
  • the horizontal axis of the graph 200 shows the time, and the vertical axis of the graph 200 shows the temperature of the heater 127.
  • the target temperature is switched from TGT1 to TGT2 at time t0.
  • the temperature of the heater 127 becomes the temperature TGT2 at time t1.
  • the target temperature gradually increases in five stages. Therefore, the time for switching the temperature of the heater 127 from TGT1 to TGT2 (t4-t3) is longer than the time for directly switching the target temperature (t1-t0).
  • the control circuit 303 gradually increases the above-mentioned target value V Target (that is, increases in a plurality of stages) when it is desired to reduce the temperature rise rate of the heater 127. Further, the control circuit 303 gradually reduces the above-mentioned target value V Target (that is, decreases in a plurality of stages) when it is desired to reduce the temperature drop rate of the heater 127. This method can be applied to any of the above-mentioned configuration examples.
  • the temperature rise rate of the heater 127 is changed by switching the electric power supplied to the heater 127 in order to raise the temperature of the heater 127.
  • the seventh configuration example further includes a square wave generation circuit 1300 as compared with the third configuration example.
  • the square wave generation circuit 1300 is a circuit that outputs an input signal (for example, a voltage signal) as a square wave.
  • the square wave generation circuit 1300 is connected to the non-inverting input terminal of the comparator CMP1. Therefore, the target value V Target supplied from the switch SW3 is input to the non-inverting input terminal of the comparator CMP1 via the square wave generation circuit 1300.
  • a specific circuit configuration of the square wave generation circuit 1300 is shown with reference to FIG.
  • the square wave generation circuit 1300 has a configuration as shown in FIG.
  • the target value V Target input to the square wave generation circuit 1300 is output as a square wave as shown in the graph 1400. Therefore, even when the heater voltage V HTR is lower than the target value V Target , the switch SW1 is not maintained on and is switched on and off periodically. Correspondingly, the amount of electric power supplied to the heater 127 decreases, so that the temperature rise rate of the heater 127 decreases.
  • the control circuit 303 may further include a bypass circuit 1401 that can be switched to a path that bypasses the square wave generation circuit 1300.
  • the bypass circuit 1401 is composed of, for example, a switch SW7.
  • the switch SW7 When the switch SW7 is turned on, the target value V Target continues to be supplied to the non-inverting input terminal of the comparator CMP1. Therefore, as compared with the case where the switch SW7 is turned off (that is, a square wave is supplied), the amount of electric power supplied to the heater 127 increases, and the temperature rise rate of the heater 127 increases. In this way, the control circuit 303 can change the temperature rise rate of the heater 127 by switching the switch SW7 on and off.
  • the square wave generation circuit 1300 may be connected to the output terminal of the comparator CMP1 (for example, the position of the node 1301 in FIG. 13) instead of being connected to the non-inverting input terminal of the comparator CMP1. Even in this case, the temperature rise rate of the heater 127 can be changed in the same manner as described with reference to FIG.
  • control circuit 303 for feedback control of the heater 127
  • the control circuit 303 can change the temperature rise rate of the heater 127.
  • the eighth configuration example further includes the switch SW8 as compared with the third configuration example.
  • the voltage generation circuit 302 can generate two types of constant voltages, Vout1 and Vout2. Here, it is assumed that the voltage Vout1 is larger than the voltage Vout2.
  • the control circuit 303 supplies electric power from the voltage Vout1 to the heater 127 when it is desired to set the temperature rise rate of the heater 127 to the higher value.
  • the control circuit 303 supplies electric power from the voltage Vout2 to the heater 127 when it is desired to set the temperature rise rate of the heater 127 to the lower value. In this way, the control circuit 303 can change the temperature rise rate of the heater 127.
  • the temperature change rate of the heater 127 may be changed at any time. For example, it may be performed at the same time as the change of the target temperature, or may be performed while the temperature of the heater 127 is changing toward the target temperature.
  • the switch SW1, the switch SW2, and the shunt resistor R are located between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127.
  • Shunt1, shunt resistor R Shunt2 is provided.
  • the switch SW1, the switch SW2, shunt resistor R Shunt1 may be provided a shunt resistor R shunt2.

Abstract

An inhaler comprising: a voltage regulator for generating voltage to supply power to a heater for heating an aerosol source; a resistor connected to the heater and the voltage regulator in series; a transistor for switching the amount of power to be supplied to the heater; an operational amplifier including an uninverted input terminal connected to a first end of the heater and an inverted input terminal connected to a second end of the heater for measuring a heater voltage applied to the heater; and a drive circuit connected between an output terminal of the operational amplifier and a control terminal of the transistor. The drive circuit continuously supplies an off-signal to the control terminal until an output signal of the operational amplifier becomes smaller than a threshold when the output signal is larger than the threshold, and continuously supplies an on-signal to the control terminal until the output signal becomes larger than the threshold when the output signal is smaller than the threshold.

Description

吸引器と吸引器の製造方法Aspirator and manufacturing method of aspirator
 本発明は、吸引器と吸引器の製造方法に関する。 The present invention relates to an aspirator and a method for manufacturing the aspirator.
 電子たばこ等の吸引器のヒータの温度を制御するために様々な方法が提案されている。特許文献1には、ヒータの実際の作動温度を所定の最高作動温度よりも低く保つために、ヒータに供給される電気エネルギーを調節する技術が記載されている。特許文献2には、香味原料の成形体を加熱するヒータの抵抗値の変化に基づいて、ヒータへの通電のオン・オフを制御する技術が記載されている。特許文献3には、温度プロファイルに従ってヒータの温度を変更する技術が記載されている。 Various methods have been proposed to control the temperature of the heater of an aspirator for electronic cigarettes and the like. Patent Document 1 describes a technique for adjusting the electrical energy supplied to the heater in order to keep the actual operating temperature of the heater lower than a predetermined maximum operating temperature. Patent Document 2 describes a technique for controlling on / off of energization of a heater based on a change in the resistance value of a heater that heats a molded product of a flavor raw material. Patent Document 3 describes a technique for changing the temperature of a heater according to a temperature profile.
特許第5739800号公報Japanese Patent No. 5739800 特開2000-041654号公報Japanese Unexamined Patent Publication No. 2000-041654 特許第6125008号公報Japanese Patent No. 6125008
 吸引器から排出される気体の香喫味を意図したものにするために、ヒータの温度を意図したとおりに制御することが望ましい。本発明は、吸引器のヒータの温度を精度良く制御するために有利な技術を提供することを目的とする。 It is desirable to control the temperature of the heater as intended in order to achieve the intended flavor of the gas discharged from the aspirator. An object of the present invention is to provide an advantageous technique for accurately controlling the temperature of a heater of an aspirator.
 上記課題に鑑みて、第1構成によれば、
 エアロゾル源を加熱するためのヒータに電力を供給するための電圧を生成する電圧レギュレータと、
 前記ヒータと前記電圧レギュレータに直列に接続された抵抗と、
 前記ヒータへの電力の供給量を切り替えるトランジスタと、
 前記ヒータに印加されるヒータ電圧を測定するために、前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
 前記オペアンプの出力端子と前記トランジスタの制御端子との間に接続された駆動回路と、を備え、
 前記駆動回路は、
  前記オペアンプの出力信号が閾値よりも大きい場合に、前記出力信号が前記閾値よりも小さくなるまで前記制御端子にオフ信号を供給し続け、
  前記出力信号が前記閾値よりも小さい場合に、前記出力信号が前記閾値よりも大きくなるまで前記制御端子にオン信号を供給し続ける、
吸引器が提供される。
In view of the above issues, according to the first configuration,
A voltage regulator that produces a voltage to power the heater to heat the aerosol source,
A resistor connected in series with the heater and the voltage regulator,
A transistor that switches the amount of power supplied to the heater,
An operational amplifier having a non-inverting input terminal connected to the first end of the heater and an inverting input terminal connected to the second end of the heater in order to measure the heater voltage applied to the heater.
A drive circuit connected between the output terminal of the operational amplifier and the control terminal of the transistor is provided.
The drive circuit
When the output signal of the operational amplifier is larger than the threshold value, the off signal is continuously supplied to the control terminal until the output signal becomes smaller than the threshold value.
When the output signal is smaller than the threshold value, the on signal is continuously supplied to the control terminal until the output signal becomes larger than the threshold value.
An aspirator is provided.
 第2構成によれば、
 前記閾値をデジタル形式で格納するメモリをさらに備え、
 前記駆動回路は、デジタル形式に変換された前記出力信号と、前記メモリに格納された前記閾値とを比較し、比較結果に基づいて、前記制御端子にオン信号を供給するかオフ信号を供給するかを判定する、
第1構成に記載の吸引器が提供される。
According to the second configuration
Further equipped with a memory for storing the threshold value in a digital format,
The drive circuit compares the output signal converted into a digital format with the threshold value stored in the memory, and supplies an on signal or an off signal to the control terminal based on the comparison result. To judge whether
The aspirator according to the first configuration is provided.
 第3構成によれば、
 エアロゾル源を加熱するためのヒータに電力を供給するための電圧を生成する電圧生成回路と、
 前記ヒータと前記電圧生成回路との間に接続された抵抗と、
 前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
を備える吸引器が提供される。
According to the third configuration
A voltage generator that generates a voltage to power the heater to heat the aerosol source,
A resistor connected between the heater and the voltage generation circuit,
A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
A suction device is provided.
 第4構成によれば、
 前記閾値をデジタル形式で格納するメモリをさらに備え、
 前記制御回路は、前記メモリに格納された前記閾値をアナログ形式に変換し、アナログ形式の前記閾値と前記監視中のヒータ電圧とを比較することによって前記大小関係を判定する、
第3構成に記載の吸引器が提供される。
According to the fourth configuration
Further equipped with a memory for storing the threshold value in a digital format,
The control circuit converts the threshold value stored in the memory into an analog format, and determines the magnitude relationship by comparing the threshold value in the analog format with the heater voltage being monitored.
The aspirator according to the third configuration is provided.
 第5構成によれば、
 前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における前記ヒータ電圧の値に等しい、第4構成に記載の吸引器が提供される。
According to the fifth configuration
The threshold value is equal to the value of the heater voltage in a state where the heater is supplied with power from the voltage generation circuit so that the temperature of the heater is included in the range in which the aerosol can be generated from the suction device. The aspirator described in the configuration is provided.
 第6構成によれば、
 前記エアロゾル源は、前記ヒータが前記吸引器に結合した状態で前記吸引器から取り外し可能であり、
 前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における、新品時の前記ヒータ電圧の値に等しい、
第4構成に記載の吸引器が提供される。
According to the sixth configuration
The aerosol source is removable from the aspirator with the heater coupled to the aspirator.
The threshold value is the value of the heater voltage at the time of new product in a state where power is supplied to the heater from the voltage generation circuit so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. equal,
The aspirator according to the fourth configuration is provided.
 第7構成によれば、
 前記制御回路は、
  前記監視中のヒータ電圧が前記閾値より小さい場合に、前記監視中のヒータ電圧が前記閾値に達するまで第1量の電力を前記ヒータに供給し続け、
  前記監視中のヒータ電圧が前記閾値より大きい場合に、前記監視中のヒータ電圧が前記閾値に下がるまで、前記ヒータに供給される電力を前記第1量よりも低い第2量に維持する、
第3構成乃至第6構成の何れか1つに記載の吸引器が提供される。
According to the seventh configuration
The control circuit
When the heater voltage under monitoring is smaller than the threshold value, a first amount of electric power is continuously supplied to the heater until the heater voltage under monitoring reaches the threshold value.
When the heater voltage under monitoring is greater than the threshold value, the power supplied to the heater is maintained at a second amount lower than the first amount until the heater voltage under monitoring drops to the threshold value.
The aspirator according to any one of the third to sixth configurations is provided.
 第8構成によれば、
 前記制御回路は、前記監視中のヒータ電圧が、前記閾値よりも高い上限値を超えた場合に、前記ヒータへの電力の供給を停止する、第3構成乃至第7構成の何れか1つに記載の吸引器が提供される。
According to the eighth configuration
The control circuit has one of the third configuration to the seventh configuration in which the supply of electric power to the heater is stopped when the heater voltage under monitoring exceeds an upper limit value higher than the threshold value. The described aspirator is provided.
 第9構成によれば、
 前記吸引器は、前記エアロゾル源を保持するエアロゾル基材を有するエアロゾル発生物品を挿抜可能な凹部を含み、
 前記ヒータは、前記凹部に挿入された前記エアロゾル発生物品を加熱可能なように構成される、
第3構成乃至第8構成の何れか1つに記載の吸引器が提供される。
According to the ninth configuration
The aspirator includes a recess into which an aerosol generating article having an aerosol substrate holding the aerosol source can be inserted and removed.
The heater is configured to be capable of heating the aerosol-generating article inserted in the recess.
The aspirator according to any one of the third to eighth configurations is provided.
 第10構成によれば、
 前記制御回路は、前記ヒータが前記エアロゾル発生物品を加熱している間に、吸引器の使用状況に基づいて前記閾値を別の値に切り替える、第9構成に記載の吸引器が提供される。
According to the tenth configuration
The control circuit provides the suction device according to the ninth configuration, which switches the threshold value to another value based on the usage status of the suction device while the heater is heating the aerosol-generating article.
 第11構成によれば、
 前記使用状況は、吸引の回数と、吸引の長さと、吸引の量とのうちの少なくとも1つを含む、第10構成に記載の吸引器が提供される。
According to the eleventh configuration
The aspirator according to the tenth configuration is provided, wherein the usage situation includes at least one of a number of suctions, a length of suction, and an amount of suction.
 第12構成によれば、
 前記制御回路は、前記ヒータの温度変化率を変化させるために、前記電圧生成回路が生成する前記電圧の値を別の値に切り替える、第3構成乃至第11構成の何れか1つに記載の吸引器が提供される。
According to the twelfth configuration
The control circuit according to any one of the third to eleventh configurations, wherein the voltage value generated by the voltage generation circuit is switched to another value in order to change the temperature change rate of the heater. Aspirators are provided.
 第13構成によれば、
 前記制御回路は、前記ヒータの温度変化率を変化させるために、前記閾値を漸減または漸増する、第3構成乃至第11構成の何れか1つに記載の吸引器が提供される。
According to the thirteenth configuration
The control circuit provides the aspirator according to any one of the third to eleventh configurations, which gradually decreases or gradually increases the threshold value in order to change the temperature change rate of the heater.
 第14構成によれば、
 前記制御回路は、
  前記ヒータと前記電圧生成回路との間に接続されたトランジスタを備え、
  前記ヒータ電圧が前記閾値より小さい場合、前記トランジスタをオンにし、
  前記ヒータ電圧が前記閾値より大きい場合、前記トランジスタをオフにする、
第3構成に記載の吸引器が提供される。
According to the 14th configuration
The control circuit
A transistor connected between the heater and the voltage generation circuit is provided.
If the heater voltage is less than the threshold, turn on the transistor and turn it on.
If the heater voltage is greater than the threshold, the transistor is turned off.
The aspirator according to the third configuration is provided.
 第15構成によれば、
 前記抵抗は第1抵抗であり、
 前記制御回路は、
  前記電圧生成回路と前記ヒータの第1端との間に直列に接続された前記第1抵抗および第1トランジスタと、
  前記電圧生成回路と前記ヒータの前記第1端との間に直列に接続された第2抵抗および第2トランジスタと、
  前記閾値が供給される非反転入力端子と、前記ヒータの前記第1端に接続された反転入力端子とを有する第1コンパレータと、
  前記ヒータの前記第1端に接続された非反転入力端子と、前記閾値が供給される反転入力端子とを有する第2コンパレータと、を含み、
 前記第2抵抗の抵抗値は、前記第1抵抗の抵抗値よりも高く、
 前記第1コンパレータの出力は、前記第1トランジスタの制御端子に供給され、
 前記第2コンパレータの出力は、前記第2トランジスタの制御端子に供給される、第14構成に記載の吸引器が提供される。
According to the fifteenth configuration
The resistor is the first resistor and
The control circuit
The first resistor and the first transistor connected in series between the voltage generation circuit and the first end of the heater,
A second resistor and a second transistor connected in series between the voltage generation circuit and the first end of the heater,
A first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater.
Includes a non-inverting input terminal connected to the first end of the heater and a second comparator having an inverting input terminal to which the threshold is supplied.
The resistance value of the second resistor is higher than the resistance value of the first resistor.
The output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
The suction device according to the fourteenth configuration is provided in which the output of the second comparator is supplied to the control terminal of the second transistor.
 第16構成によれば、
 前記抵抗は第1抵抗であり、
 前記制御回路は、
  前記ヒータの第2端に直列に接続された前記第1抵抗および第1トランジスタと、
  前記ヒータの前記第2端に直列に接続された第2抵抗および第2トランジスタと、
  前記閾値が供給される非反転入力端子と、前記ヒータの第1端に接続された反転入力端子とを有する第1コンパレータと、
  前記ヒータの前記第1端に接続された非反転入力端子と、前記閾値が供給される反転入力端子とを有する第2コンパレータと、を含み、
 前記第2抵抗の抵抗値は、前記第1抵抗の抵抗値よりも高く、
 前記第1コンパレータの出力は、前記第1トランジスタの制御端子に供給され、
 前記第2コンパレータの出力は、前記第2トランジスタの制御端子に供給される、第14構成に記載の吸引器が提供される。
According to the 16th configuration
The resistor is the first resistor and
The control circuit
With the first resistor and the first transistor connected in series to the second end of the heater,
A second resistor and a second transistor connected in series with the second end of the heater,
A first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater.
Includes a non-inverting input terminal connected to the first end of the heater and a second comparator having an inverting input terminal to which the threshold is supplied.
The resistance value of the second resistor is higher than the resistance value of the first resistor.
The output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
The suction device according to the fourteenth configuration is provided in which the output of the second comparator is supplied to the control terminal of the second transistor.
 第17構成によれば、
 前記制御回路は、デジタル形式でメモリに格納された前記閾値をアナログ形式に変換し、アナログ形式の前記閾値を前記第1コンパレータおよび前記第2コンパレータに供給するマイクロコントローラを含み、
 前記メモリは、第1閾値と、前記第1閾値よりも小さい第2閾値とを格納し、
 前記マイクロコントローラは、
  前記閾値として前記第1閾値を前記第1コンパレータに供給し、
  前記閾値として前記第2閾値を前記第2コンパレータに供給し、
 前記制御回路は、第3トランジスタおよび第4トランジスタをさらに含み、
 前記第1閾値は、前記第3トランジスタを通じて前記マイクロコントローラから前記第1コンパレータに供給され、
 前記第2閾値は、前記第4トランジスタを通じて前記マイクロコントローラから前記第2コンパレータに供給され、
 前記第1コンパレータの出力は、前記第3トランジスタの制御端子にさらに供給され、
 前記第2コンパレータの出力は、前記第4トランジスタの制御端子にさらに供給される、第15構成または第16構成に記載の吸引器が提供される。
According to the 17th configuration
The control circuit includes a microcontroller that converts the threshold value stored in the memory in a digital format into an analog format and supplies the threshold value in the analog format to the first comparator and the second comparator.
The memory stores a first threshold value and a second threshold value smaller than the first threshold value.
The microcontroller
The first threshold value is supplied to the first comparator as the threshold value, and the first threshold value is supplied to the first comparator.
The second threshold value is supplied to the second comparator as the threshold value, and the second threshold value is supplied to the second comparator.
The control circuit further includes a third transistor and a fourth transistor.
The first threshold is supplied from the microcontroller to the first comparator through the third transistor.
The second threshold is supplied from the microcontroller to the second comparator through the fourth transistor.
The output of the first comparator is further supplied to the control terminal of the third transistor.
The suction device according to the fifteenth configuration or the sixteenth configuration is provided in which the output of the second comparator is further supplied to the control terminal of the fourth transistor.
 第18構成によれば、
 前記制御回路は、前記第1コンパレータの非反転入力端子へ入力される電圧または前記第1コンパレータの出力端子から出力される電圧を方形波にする方形波発生回路をさらに含む、第15構成乃至第17構成の何れか1つに記載の吸引器が提供される。
According to the eighteenth configuration
The fifteenth configuration to the control circuit further includes a square wave generation circuit that converts a voltage input to the non-inverting input terminal of the first comparator or a voltage output from an output terminal of the first comparator into a square wave. The aspirator according to any one of the 17 configurations is provided.
 第19構成によれば、
 前記制御回路は、前記方形波発生回路をバイパスする経路に切り替え可能なパイパス回路をさらに含む、第18構成に記載の吸引器が提供される。
According to the 19th configuration
The suction device according to the eighteenth configuration is provided, wherein the control circuit further includes a bypass circuit that can be switched to a path that bypasses the square wave generation circuit.
 第20構成によれば、
 エアロゾル源を加熱するためのヒータと、
 前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
 前記ヒータと前記電圧生成回路との間に接続された抵抗と、
 閾値を格納するメモリと、
 前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
を備える吸引器の製造方法であって、
 前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における、新品時の前記ヒータ電圧の値を決定する工程と、
 前記決定された値を前記閾値として前記メモリに格納する工程と、
を有する、製造方法が提供される。
According to the 20th configuration
A heater for heating the aerosol source and
A voltage generation circuit that generates a voltage to supply electric power to the heater,
A resistor connected between the heater and the voltage generation circuit,
Memory to store the threshold and
A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
It is a manufacturing method of an aspirator equipped with
A step of determining the value of the heater voltage at the time of a new product in a state where electric power is supplied from the voltage generation circuit to the heater so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. ,
A step of storing the determined value as the threshold value in the memory, and
A manufacturing method is provided.
 第21構成によれば、
 エアロゾル源を加熱するためのヒータと、
 前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
 前記ヒータと前記電圧生成回路との間に接続された抵抗と、
 閾値を格納するメモリと、
 前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
を備える吸引器であって、
 前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における前記ヒータ電圧の値に等しく、
 前記閾値は、前記吸引器の各構成要素を有する他の吸引器の前記閾値と異なる、吸引器が提供される。
According to the 21st configuration
A heater for heating the aerosol source and
A voltage generation circuit that generates a voltage to supply electric power to the heater,
A resistor connected between the heater and the voltage generation circuit,
Memory to store the threshold and
A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
It is a suction device equipped with
The threshold is equal to the value of the heater voltage in a state where power is being supplied to the heater from the voltage generation circuit so that the temperature of the heater is within a range in which an aerosol can be generated from the aspirator.
An aspirator is provided in which the threshold is different from the threshold of another aspirator having each component of the aspirator.
 第22構成によれば、
 エアロゾル源を加熱するためのヒータと、
 前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
 前記ヒータと前記電圧生成回路との間に接続された抵抗と、
 閾値を格納するメモリと、
 前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
を備える吸引器が提供される。
According to the 22nd configuration
A heater for heating the aerosol source and
A voltage generation circuit that generates a voltage to supply electric power to the heater,
A resistor connected between the heater and the voltage generation circuit,
Memory to store the threshold and
A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
A suction device is provided.
 上記手段により、吸引器のヒータの温度を精度良く制御するために有利な技術が提供される。 The above means provides an advantageous technique for accurately controlling the temperature of the heater of the aspirator.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will be clarified by the following description with reference to the accompanying drawings. In the attached drawings, the same or similar configurations are given the same reference numbers.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態の吸引器の構成例を説明する図。 本発明の実施形態の吸引器の構成例を説明する図。 本発明の実施形態のヒータの温度プロファイル例を説明する図。 本発明の実施形態の電気部品の構成例を説明する図。 本発明の実施形態の電気部品の動作例を説明する図。 本発明の実施形態の電気部品の動作例を説明する図。 本発明の第1構成例の制御回路を説明する図。 本発明の第1構成例の制御回路の動作を説明する図。 本発明の第2構成例の制御回路を説明する図。 本発明の第3構成例の制御回路を説明する図。 本発明の第4構成例の制御回路を説明する図。 本発明の第5構成例の制御回路を説明する図。 本発明の第6構成例の制御回路を説明する図。 本発明の目標値の漸増および漸減の例を説明する図。 本発明の第7構成例の制御回路を説明する図。 本発明の方形波発生回路の構成例を説明する図。 本発明の第8構成例の制御回路を説明する図。 本発明のヒータ電圧の目標値の決定方法例を説明する図。
The accompanying drawings are included in the specification and are used to form a part thereof, show embodiments of the present invention, and explain the principles of the present invention together with the description thereof.
The figure explaining the structural example of the aspirator of embodiment of this invention. The figure explaining the structural example of the aspirator of embodiment of this invention. The figure explaining the temperature profile example of the heater of embodiment of this invention. The figure explaining the structural example of the electric component of embodiment of this invention. The figure explaining the operation example of the electric component of embodiment of this invention. The figure explaining the operation example of the electric component of embodiment of this invention. The figure explaining the control circuit of the 1st configuration example of this invention. The figure explaining the operation of the control circuit of the 1st configuration example of this invention. The figure explaining the control circuit of the 2nd structural example of this invention. The figure explaining the control circuit of the 3rd structural example of this invention. The figure explaining the control circuit of the 4th structural example of this invention. The figure explaining the control circuit of the 5th structural example of this invention. The figure explaining the control circuit of the 6th structural example of this invention. The figure explaining the example of gradual increase and gradual decrease of the target value of this invention. The figure explaining the control circuit of the 7th structural example of this invention. The figure explaining the structural example of the square wave generation circuit of this invention. The figure explaining the control circuit of the 8th structural example of this invention. The figure explaining the example of the method of determining the target value of the heater voltage of this invention.
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the attached drawings. The following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the plurality of features described in the embodiments may be arbitrarily combined. In addition, the same or similar configuration will be given the same reference number, and duplicated explanations will be omitted.
 図1Aには、一実施形態の吸引器100の構成が模式的に示されている。吸引器100は、ユーザによる吸引動作に応じて、エアロゾルを含む気体、または、エアロゾルおよび香味物質を含む気体を吸口部130を通してユーザに提供するように構成されうる。吸引器100は、コントローラ102と、霧化器104とを備えうる。吸引器100は、霧化器104を取り外し可能な状態で保持する保持部103を備えうる。コントローラ102は、吸引器用コントローラとして理解されてもよい。霧化器104は、エアロゾル源を霧化するように構成されうる。エアロゾル源は、例えば、グリセリンまたはプロピレングリコール等の多価アルコール等の液体でありうる。あるいは、エアロゾル源は、薬剤を含んでもよい。エアロゾル源は、液体であってもよいし、固体であってもよいし、液体および固体の混合物であってもよい。エアロゾル源に代えて、水等の蒸気源が用いられてもよい。 FIG. 1A schematically shows the configuration of the aspirator 100 of one embodiment. The suction device 100 may be configured to provide the user with a gas containing an aerosol or a gas containing an aerosol and a flavoring substance through the mouthpiece 130 according to the suction operation by the user. The aspirator 100 may include a controller 102 and an atomizer 104. The suction device 100 may include a holding unit 103 that holds the atomizer 104 in a removable state. The controller 102 may be understood as a controller for an aspirator. The atomizer 104 may be configured to atomize the aerosol source. The aerosol source can be, for example, a liquid such as a polyhydric alcohol such as glycerin or propylene glycol. Alternatively, the aerosol source may include a drug. The aerosol source may be a liquid, a solid, or a mixture of a liquid and a solid. A vapor source such as water may be used instead of the aerosol source.
 吸引器100は、香味源131を含むカプセル106を更に備えてもよく、霧化器104は、カプセル106を取り外し可能な状態で保持するカプセルホルダ105を含みうる。香味源131は、例えば、たばこ材料を成形した成形体でありうる。あるいは、香味源131は、たばこ以外の植物(例えば、ミント、ハーブ、漢方、コーヒー豆等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。香味源131は、エアロゾル源に添加されてもよい。なお、カプセルホルダ105は、霧化器104ではなくコントローラ102に設けられていてもよい。 The aspirator 100 may further include a capsule 106 containing a flavor source 131, and the atomizer 104 may include a capsule holder 105 that holds the capsule 106 in a removable state. The flavor source 131 may be, for example, a molded product obtained by molding a tobacco material. Alternatively, the flavor source 131 may be composed of plants other than tobacco (eg, mint, herbs, Chinese herbs, coffee beans, etc.). A fragrance such as menthol may be added to the flavor source. The flavor source 131 may be added to the aerosol source. The capsule holder 105 may be provided on the controller 102 instead of the atomizer 104.
 コントローラ102は、電気部品110を含みうる。電気部品110は、ユーザインターフェース116を含みうる。あるいは、コントローラ102は、電気部品110およびユーザインターフェース116を含むものとして理解されてもよい。ユーザインターフェース116は、例えば、表示部DISP(例えば、LED等の発光素子、および/または、LCD等の画像表示器)、および/または、操作部OP(例えば、ボタンスイッチ等のスイッチ、および/または、タッチディスプレイ)を含みうる。 The controller 102 may include an electrical component 110. The electrical component 110 may include a user interface 116. Alternatively, the controller 102 may be understood to include the electrical components 110 and the user interface 116. The user interface 116 is, for example, a display unit DISP (for example, a light emitting element such as an LED and / or an image display such as an LCD) and / or an operation unit OP (for example, a switch such as a button switch and / or). , Touch display) can be included.
 コントローラ102の保持部103は、第1電気接点111および第2電気接点112を含みうる。保持部103によって霧化器104が保持された状態において、保持部103の第1電気接点111は、霧化器104の第3電気接点113に接し、また、保持部103の第2電気接点112は、霧化器104の第4電気接点114に接しうる。コントローラ102は、第1電気接点111および第2電気接点112を通して霧化器104に電力を供給しうる。 The holding unit 103 of the controller 102 may include a first electrical contact 111 and a second electrical contact 112. In a state where the atomizer 104 is held by the holding unit 103, the first electric contact 111 of the holding unit 103 is in contact with the third electric contact 113 of the atomizer 104, and the second electric contact 112 of the holding unit 103. Can contact the fourth electrical contact 114 of the atomizer 104. The controller 102 may supply power to the atomizer 104 through the first electrical contact 111 and the second electrical contact 112.
 霧化器104は、前述の第3電気接点113および第4電気接点114を含みうる。また、霧化器104は、エアロゾル源を加熱するヒータ127と、液体のエアロゾル源を保持する容器125と、容器125によって保持されたエアロゾル源をヒータ127による加熱領域に輸送する輸送部126とを含みうる。輸送部126は、ウィックとも呼ばれうる。ヒータ127の加熱領域の少なくとも一部は、霧化器104内に設けられた流路128に配置されうる。第1電気接点111、第3電気接点113、ヒータ127、第4電気接点114および第2電気接点112は、ヒータ127に電流を流すための電流経路を形成する。輸送部126は、例えば、繊維素材または多孔質素材で構成されうる。 The atomizer 104 may include the above-mentioned third electrical contact 113 and fourth electrical contact 114. Further, the atomizer 104 includes a heater 127 for heating the aerosol source, a container 125 for holding the liquid aerosol source, and a transport unit 126 for transporting the aerosol source held by the container 125 to the heating region by the heater 127. Can include. The transport unit 126 may also be called a wick. At least a portion of the heating region of the heater 127 may be located in the flow path 128 provided in the atomizer 104. The first electric contact 111, the third electric contact 113, the heater 127, the fourth electric contact 114, and the second electric contact 112 form a current path for passing a current through the heater 127. The transport unit 126 may be made of, for example, a fibrous material or a porous material.
 霧化器104は、前述のように、カプセル106を取り外し可能に保持するカプセルホルダ105を含むことができる。カプセルホルダ105は、一例において、カプセル106の一部をカプセルホルダ105内または霧化器104内に収容し、他の一部を露出させるようにカプセル106を保持しうる。ユーザは、吸口部130を口で銜えて、エアロゾルを含有する気体を吸引することができる。取り外し可能なカプセル106が吸口部130を備えることで、吸引器100を清潔に保つことができる。 The atomizer 104 can include a capsule holder 105 that detachably holds the capsule 106, as described above. In one example, the capsule holder 105 may house a portion of the capsule 106 in the capsule holder 105 or in the atomizer 104 and hold the capsule 106 so as to expose the other portion. The user can suck the gas containing the aerosol by holding the mouthpiece 130 with his mouth. The removable capsule 106 includes a mouthpiece 130 to keep the suction cup 100 clean.
 ユーザが吸口部130を銜えて吸引動作を行うと、矢印で例示されるように、霧化器104の流路128に空気が流入し、ヒータ127がエアロゾル源を加熱することによって発生するエアロゾルがその空気によって吸口部130に向けて輸送される。そして、香味源131が配置されている構成においては、そのエアロゾルに香味源131が発生する香味物質が添加されて吸口部130に輸送され、ユーザの口に吸い込まれる。 When the user grabs the mouthpiece 130 and performs a suction operation, as illustrated by the arrow, air flows into the flow path 128 of the atomizer 104, and the aerosol generated by the heater 127 heating the aerosol source is generated. It is transported toward the mouthpiece 130 by the air. Then, in the configuration in which the flavor source 131 is arranged, the flavor substance generated by the flavor source 131 is added to the aerosol, transported to the mouthpiece 130, and sucked into the user's mouth.
 図1Bには、別の実施形態の吸引器150の構成が模式的に示されている。以下では、吸引器150のうち吸引器100と同様の構成要素については同一の参照符号を付し、その説明を省略する。吸引器150は、ユーザによる吸引動作に応じて、エアロゾルを含む気体、または、エアロゾルおよび香味物質を含む気体を吸口部130を通してユーザに提供するように構成されうる。 FIG. 1B schematically shows the configuration of the aspirator 150 of another embodiment. In the following, the same reference numerals will be given to the components of the aspirator 150 similar to those of the aspirator 100, and the description thereof will be omitted. The aspirator 150 may be configured to provide the user with a gas containing an aerosol or a gas containing an aerosol and a flavoring substance through the mouthpiece 130, depending on the suction operation by the user.
 吸引器150は、コントローラ102と、エアロゾル発生物品151とを備えうる。吸引器150は、エアロゾル発生物品151を取り外し可能な状態で保持する保持部152を備えうる。コントローラ102は、吸引器用コントローラとして理解されてもよい。エアロゾル発生物品151は、エアロゾル源を保持するエアロゾル基材153と、フィルタ154とを含んでもよい。エアロゾル基材153には、エアロゾル源と、香味源とが混在しうる。一例として、香味源がエアロゾル基材153として機能してもよい。香味源は、例えば、たばこ材料を成形した成形体でありうる。あるいは、香味源は、たばこ以外の植物(例えば、ミント、ハーブ、漢方、コーヒー豆等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。 The aspirator 150 may include a controller 102 and an aerosol generating article 151. The suction device 150 may include a holding portion 152 that holds the aerosol-generating article 151 in a removable state. The controller 102 may be understood as a controller for an aspirator. The aerosol-generating article 151 may include an aerosol substrate 153 holding an aerosol source and a filter 154. In the aerosol base material 153, an aerosol source and a flavor source can be mixed. As an example, the flavor source may function as an aerosol substrate 153. The flavor source can be, for example, a molded product obtained by molding a tobacco material. Alternatively, the flavor source may be composed of plants other than tobacco (eg, mint, herbs, Chinese herbs, coffee beans, etc.). A fragrance such as menthol may be added to the flavor source.
 エアロゾル発生物品151は、棒状の形状を有しうる。ヒータ127は突起状(例えば、針状やブレード状)の形状を有している。保持部152は凹部を形成している。保持部152の凹部にエアロゾル発生物品151を挿入することによって、エアロゾル発生物品151のエアロゾル基材153にヒータ127が差し込まれる。これによって、ヒータ127がエアロゾル基材153内のエアロゾル源を加熱可能な状態となる。使用し終わったエアロゾル発生物品151は、ヒータ127が吸引器150に結合した状態で吸引器150から取り外し可能である。このように、エアロゾル発生物品151は、吸引器の凹部に挿抜可能である。 The aerosol-generating article 151 may have a rod-like shape. The heater 127 has a protruding shape (for example, a needle shape or a blade shape). The holding portion 152 forms a recess. By inserting the aerosol-generating article 151 into the recess of the holding portion 152, the heater 127 is inserted into the aerosol base material 153 of the aerosol-generating article 151. As a result, the heater 127 is in a state where the aerosol source in the aerosol base material 153 can be heated. The used aerosol-generating article 151 can be removed from the aspirator 150 with the heater 127 coupled to the aspirator 150. In this way, the aerosol-generating article 151 can be inserted and removed from the recess of the aspirator.
 ヒータ127はコントローラ102に結合しており、コントローラ102から電力が供給される。ユーザが吸口部130を銜えて吸引動作を行うと、矢印で例示されるように、エアロゾル基材153に空気が流入し、ヒータ127がエアロゾル源を加熱することによって発生するエアロゾルがその空気によって香味物質とともに吸口部130に向けて輸送される。 The heater 127 is coupled to the controller 102, and power is supplied from the controller 102. When the user grabs the mouthpiece 130 and performs a suction operation, as illustrated by the arrow, air flows into the aerosol base material 153, and the aerosol generated by the heater 127 heating the aerosol source is flavored by the air. It is transported together with the substance toward the mouthpiece 130.
 エアロゾル発生物品151のヒータ127は、エアロゾル発生物品151を内側から加熱する。これにかえて、ヒータ127は、エアロゾル発生物品151を外側から加熱するような構造を有していてもよい。例えば、ヒータ127はリング状の形状を有し、このリング内にエアロゾル発生物品151が挿入されてもよい。さらに、ヒータ127は1つであってもよいし、複数に分離されていてもよい。ヒータ127が複数に分離される場合は、ヒータ127の一部がエアロゾル発生物品151を内部から加熱し、ヒータ127の残余がエアロゾル発生物品151を外側から加熱するようにしてもよい。 The heater 127 of the aerosol-generating article 151 heats the aerosol-generating article 151 from the inside. Instead, the heater 127 may have a structure for heating the aerosol-generating article 151 from the outside. For example, the heater 127 has a ring shape, and the aerosol-generating article 151 may be inserted into the ring. Further, the heater 127 may be one or may be separated into a plurality of heaters 127. When the heater 127 is separated into a plurality of parts, a part of the heater 127 may heat the aerosol-generating article 151 from the inside, and the remainder of the heater 127 may heat the aerosol-generating article 151 from the outside.
 図2には、ヒータ127の目標温度の温度プロファイルの例が示されている。例えば吸引器150において、エアロゾル発生物品151内部のエアロゾル源の分布は使用状況に応じて変化しうる。一部の実施形態で、コントローラ102は、この変化に応じて、適切な値となるようにヒータ127の温度を制御する。 FIG. 2 shows an example of the temperature profile of the target temperature of the heater 127. For example, in the aspirator 150, the distribution of the aerosol source inside the aerosol-generating article 151 can change depending on the usage conditions. In some embodiments, the controller 102 controls the temperature of the heater 127 to an appropriate value in response to this change.
 図2のグラフ200は、ヒータ127の温度プロファイルの一例を示す。グラフ200の横軸は吸引開始からの経過時間を示し、グラフ200の縦軸はヒータ127の温度を示す。時刻t0において、ヒータ127は室温であるとする。 Graph 200 in FIG. 2 shows an example of the temperature profile of the heater 127. The horizontal axis of the graph 200 shows the elapsed time from the start of suction, and the vertical axis of the graph 200 shows the temperature of the heater 127. At time t0, it is assumed that the heater 127 is at room temperature.
 時刻t0で、コントローラ102は、ヒータ127の温度が目標温度TTarget1となるようにヒータ127を急速に加熱する。時刻t1からt2にかけて、コントローラ102は、ヒータ127の温度を目標温度TTarget1に維持する。エアロゾル源が十分に加熱されると、今度はエアロゾルの発生量が過剰になる恐れがある。そこで、コントローラ102は、時刻t2からt3にかけて、ヒータ127の温度が目標温度TTarget2となるようにヒータ127の温度を低下させる。目標温度TTarget2は、目標温度TTarget1よりも低い値である。時刻t3からt4にかけて、コントローラ102は、ヒータ127の温度を目標温度TTarget2に維持する。 At time t0, the controller 102 rapidly heats the heater 127 so that the temperature of the heater 127 reaches the target temperature T Target1. From time t1 to t2, the controller 102 maintains the temperature of the heater 127 at the target temperature T Target1. If the aerosol source is sufficiently heated, then the amount of aerosol generated may be excessive. Therefore, the controller 102 lowers the temperature of the heater 127 from time t2 to t3 so that the temperature of the heater 127 becomes the target temperature T Target2. The target temperature T Target2 is lower than the target temperature T Target1. From time t3 to t4, the controller 102 maintains the temperature of the heater 127 at the target temperature T Target 2.
 エアロゾルの生成開始からある程度時間が経過すると、ヒータ127の周囲のエアロゾル源の量が減少するため、ヒータ127から遠い位置にあるエアロゾル源を加熱することになる。そこで、コントローラ102は、時刻t4以降、ヒータ127の温度を上昇させる。時刻t4以降の温度上昇の変化率は、時刻t0からt1にかけての温度上昇の変化率よりも低い。 After a certain amount of time has passed from the start of aerosol generation, the amount of aerosol source around the heater 127 decreases, so that the aerosol source located far from the heater 127 is heated. Therefore, the controller 102 raises the temperature of the heater 127 after the time t4. The rate of change in temperature rise after time t4 is lower than the rate of change in temperature rise from time t0 to t1.
 このように、コントローラ102は、ヒータ127の目標温度を適宜切り替えてヒータ127の温度を制御する。ヒータ127の温度プロファイルはグラフ200に示すものに限られず、ヒータ127の構成やエアロゾル源の種類によって変わりうる。また、ヒータ127が複数に分離されている場合に、個別のヒータごとに温度プロファイルが設定されてもよい。 In this way, the controller 102 controls the temperature of the heater 127 by appropriately switching the target temperature of the heater 127. The temperature profile of the heater 127 is not limited to that shown in the graph 200, and may vary depending on the configuration of the heater 127 and the type of aerosol source. Further, when the heater 127 is separated into a plurality of heaters, a temperature profile may be set for each individual heater.
 図3には、電気部品110の構成例が示されている。電気部品110は、電源(例えば、バッテリー)301と、ヒータ127に供給するための電力を生成する電圧生成回路302と、ヒータ127に供給される電力を制御する制御回路303とを備えうる。ヒータ127の抵抗値RHTRは、ヒータ127の温度によって変化する。例えば、ヒータ127の抵抗値RHTRは、ヒータ127の温度と正の相関を有する。 FIG. 3 shows a configuration example of the electric component 110. The electrical component 110 may include a power source (eg, a battery) 301, a voltage generation circuit 302 that generates electric power to supply the heater 127, and a control circuit 303 that controls the electric power supplied to the heater 127. The resistance value R HTR of the heater 127 changes depending on the temperature of the heater 127. For example, the resistance value R HTR of the heater 127 has a positive correlation with the temperature of the heater 127.
 電圧生成回路302は、例えば、電源301から供給される電源電圧Vbatをヒータ駆動電圧Voutに変換する電圧変換器(電圧レギュレータ)321を含むことができる。さらに、電圧生成回路302は、電源電圧Vbatを制御回路303内のMCU(マイクロコントローラユニット)用の電圧Vmcuに変換するLDO(Low DropOut)等の電圧変換回路322を含んでもよい。 The voltage generation circuit 302 can include, for example, a voltage converter (voltage regulator) 321 that converts the power supply voltage Vbat supplied from the power supply 301 into the heater drive voltage Vout. Further, the voltage generation circuit 302 may include a voltage conversion circuit 322 such as an LDO (Low DropOut) that converts the power supply voltage Vbat into a voltage Vmcu for an MCU (microcontroller unit) in the control circuit 303.
 制御回路303は、電気部品110の全体的な制御を行う。このような制御の一部として、制御回路303は、エアロゾル源を加熱中のヒータ127の温度が目標温度に近づくようにフィードバック制御を行う。具体的に、制御回路303の目標値算出部331は、ユーザが吸引器100の使用を開始する前に、ヒータ127の温度に相関を有する物理量の目標値を算出し、メモリに格納しておく。この物理量は、後述するように、ヒータ127に印加されている電圧(ヒータ電圧とも称される)であってもよい。この目標値は、エアロゾル源を加熱中のヒータ127の温度が目標温度となるように設定される。その後、制御回路303の供給電力制御部332は、ユーザが吸引器100を使用中に、この物理量を監視し、監視中の物理量が目標値に近づくように、電圧生成回路302からヒータ127に供給される電力を制御する。ヒータ127の目標温度の変化に伴い、ヒータ127の温度に相関を有する物理量の目標値も変わりうる。 The control circuit 303 controls the electrical component 110 as a whole. As part of such control, the control circuit 303 performs feedback control so that the temperature of the heater 127 while heating the aerosol source approaches the target temperature. Specifically, the target value calculation unit 331 of the control circuit 303 calculates a target value of a physical quantity having a correlation with the temperature of the heater 127 and stores it in the memory before the user starts using the suction device 100. .. As will be described later, this physical quantity may be a voltage (also referred to as a heater voltage) applied to the heater 127. This target value is set so that the temperature of the heater 127 during heating of the aerosol source becomes the target temperature. After that, the power supply control unit 332 of the control circuit 303 monitors this physical quantity while the user is using the suction device 100, and supplies the heater 127 from the voltage generation circuit 302 so that the physical quantity being monitored approaches the target value. Control the power generated. As the target temperature of the heater 127 changes, the target value of the physical quantity that correlates with the temperature of the heater 127 may also change.
 電気部品110は、電気部品110の所定箇所の温度を検出する温度センサ304と、ユーザのパフ動作を検出するパフセンサ(例えば、圧力センサ)305とをさらに含んでもよい。温度センサ304は、パフセンサ305または電源301に組み込まれていてもよい。 The electric component 110 may further include a temperature sensor 304 that detects the temperature of a predetermined portion of the electric component 110, and a puff sensor (for example, a pressure sensor) 305 that detects the puff operation of the user. The temperature sensor 304 may be incorporated in the puff sensor 305 or the power supply 301.
 図4A及び図4Bには、吸引器100の動作が示されている。この動作は、制御回路303によって制御される。制御回路303は、プログラムを格納したメモリと、該プログラムに従って動作するプロセッサとを含む。図4A及び図4Bの動作は、プロセッサがメモリ内のプログラムを実行することによって処理されてもよい。 FIG. 4A and FIG. 4B show the operation of the aspirator 100. This operation is controlled by the control circuit 303. The control circuit 303 includes a memory for storing the program and a processor that operates according to the program. The operations of FIGS. 4A and 4B may be processed by the processor executing a program in memory.
 ステップS401で、制御回路303は、霧化要求を受けることを待ち、霧化要求を受けたら、ステップS402を実行する。霧化要求は、エアロゾル源からエアロゾルを発生させること、より詳しくは、エアロゾル源からエアロゾルを発生させるようにヒータ127を目標温度範囲内に制御することの要求である。霧化要求は、ユーザが吸口部130を通して吸引動作(パフ動作)を行ったことをパフセンサ305が検出し、その検出をパフセンサ305が制御回路303に通知する動作でありうる。あるいは、霧化要求は、ユーザが操作部OPを操作したことを操作部OPが制御回路303に通知する動作でありうる。 In step S401, the control circuit 303 waits for the atomization request to be received, and when the atomization request is received, the control circuit 303 executes step S402. The atomization requirement is a requirement to generate an aerosol from an aerosol source, more specifically to control the heater 127 within a target temperature range to generate an aerosol from the aerosol source. The atomization request may be an operation in which the puff sensor 305 detects that the user has performed a suction operation (puff operation) through the mouthpiece 130, and the puff sensor 305 notifies the control circuit 303 of the detection. Alternatively, the atomization request may be an operation in which the operation unit OP notifies the control circuit 303 that the user has operated the operation unit OP.
 ステップS402で、制御回路303は、電源電圧Vbatを不図示の電源管理回路から取得し、電源電圧Vbatが放電終止電圧Vend(例えば3.2V)を上回っているかどうかを判定する。電源電圧Vbatが放電終止電圧Vend以下ということは、電源301の放電可能残量が十分ではないことを意味する。そこで、電源電圧Vbatが放電終止電圧Vend以下である場合は、ステップS419において、制御回路303は、ユーザインターフェース116の表示部DISPを使って、電源301の充電を促す報知を行う。この報知は、表示部DISPがLEDを含む場合において、該LEDを赤色で点灯させることでありうる。電源電圧Vbatが放電終止電圧Vendを上回っている場合、ステップS403において、制御回路303は、ユーザインターフェース116の表示部DISPを使って、正常動作が可能であることを報知しうる。この報知は、表示部DISPがLEDを含む場合において、該LEDを青色で点灯させることでありうる。 In step S402, the control circuit 303 acquires the power supply voltage Vbat from a power supply management circuit (not shown), and determines whether or not the power supply voltage Vbat exceeds the discharge cutoff voltage Vend (for example, 3.2V). When the power supply voltage Vbat is equal to or lower than the discharge end voltage Vend, it means that the remaining dischargeable amount of the power supply 301 is not sufficient. Therefore, when the power supply voltage Vbat is equal to or lower than the discharge end voltage Vend, in step S419, the control circuit 303 uses the display unit DISP of the user interface 116 to notify the power supply 301 to be charged. This notification may be to light the LED in red when the display DISP includes the LED. When the power supply voltage Vbat exceeds the discharge end voltage Vend, in step S403, the control circuit 303 can notify that normal operation is possible by using the display unit DISP of the user interface 116. This notification may be to light the LED in blue when the display DISP includes the LED.
 ステップS403に次いで、ステップS404で、制御回路303は、ヒータ127に対する給電制御を開始する。ヒータ127に対する給電制御は、ヒータ127を目標温度範囲内に制御する温度制御を含む。この温度制御の詳細は後述する。 Following step S403, in step S404, the control circuit 303 starts power supply control for the heater 127. The power supply control for the heater 127 includes a temperature control for controlling the heater 127 within a target temperature range. The details of this temperature control will be described later.
 次いで、ステップS405で、制御回路303は、吸引時間Tを0にリセットし、その後、ステップS406で、制御回路303は、吸引時間TにΔtを加算する。Δtは、ステップS406の実行と次のステップS406の実行との時間間隔に相当する。 Then, in step S405, the control circuit 303 resets the suction time TL to 0, and then in step S406, the control circuit 303 adds Δt to the suction time TL. Δt corresponds to the time interval between the execution of step S406 and the execution of the next step S406.
 次いで、ステップS407で、制御回路303は、霧化要求が終了しているかどうかを判定し、霧化要求が終了している場合は、ステップS409において、制御回路303は、ヒータ127に対する給電制御を停止する。一方、霧化要求が終了していない場合は、ステップS408において、制御回路303は、吸引時間T(例えば2.0~2.5sec)が上限時間に達したかどうかを判定し、吸引時間Tが上限時間に達していない場合は、ステップS406に戻る。 Next, in step S407, the control circuit 303 determines whether or not the atomization request is completed, and if the atomization request is completed, in step S409, the control circuit 303 controls the power supply to the heater 127. Stop. On the other hand, when the atomization request is not completed, in step S408, the control circuit 303 determines whether or not the suction time TL (for example, 2.0 to 2.5 sec) has reached the upper limit time, and determines whether the suction time has reached the upper limit time. If the TL has not reached the upper limit time, the process returns to step S406.
 ステップS409に次いで、ステップS410で、制御回路303は、青色で点灯させていたLEDを消灯させる。次いで、ステップS411で、制御回路303は、積算時間Tを更新する。より具体的には、ステップS411で、現時点での積算時間Tに吸引時間Tを加算する。積算時間Tは、カプセル106が吸引のために使用された積算時間、換言すると、カプセル106の香味源131を通してエアロゾルが吸引された積算時間でありうる。 Following step S409, in step S410, the control circuit 303 turns off the LED that was lit in blue. Then, in step S411, the control circuit 303 updates the integration time T A. More specifically, in step S411, it adds the suction time T L the accumulated time T A at the moment. Accumulated time T A is the accumulated time used for the capsule 106 is aspirated, in other words, be a cumulative time the aerosol is aspirated through the flavor source 131 of the capsule 106.
 ステップS412で、制御回路303は、積算時間Tが吸引可能時間(例えば、120sec)を超えていないかどうかを判定する。積算時間Tが吸引可能時間を超えていない場合は、カプセル106が未だ香味物質を提供可能であることを意味し、この場合は、ステップS401に戻る。積算時間Tが吸引可能時間を超えている場合は、ステップS413において、制御回路303は、霧化要求の発生を待つ。そして、霧化要求が発生したら、ステップS414において、制御回路303は、霧化要求が所定時間にわたって継続するのを待ち、その後、ステップS416において、制御回路303は、ヒータ127に対する給電制御を禁止する。なお、ステップS414は省略されてもよい。 In step S412, the control circuit 303 determines the accumulated time T A suction time (e.g., 120 sec) whether or not exceed. If the accumulated time T A has not exceeded the respirable time means that the capsule 106 can be still provided a flavoring substance, in this case, the flow returns to step S401. If the accumulated time T A exceeds the respirable time, in step S413, the control circuit 303 waits for occurrence of the atomization required. Then, when the atomization request occurs, in step S414, the control circuit 303 waits for the atomization request to continue for a predetermined time, and then in step S416, the control circuit 303 prohibits power supply control to the heater 127. .. Note that step S414 may be omitted.
 次いで、ステップS416では、制御回路303は、ユーザインターフェース116の表示部DISPを使って、消耗品(吸引器100のカプセル106や吸引器150のエアロゾル発生物品151)の交換を促す報知を行う。この報知は、表示部DISPがLEDを含む場合において、該LEDを青色で点滅(点灯、消灯の繰り返し)させることでありうる。これを受けて、ユーザは、消耗品を交換しうる。一例において、1個の霧化器104と複数個(例えば、5個)のカプセル106とが1個のセットとして販売されうる。このような例では、1個のセットの1個の霧化器104および全てのカプセル106が消費された後、消費されたセットの霧化器104と最後のカプセル106が新しいセットの霧化器104およびカプセル106に交換されうる。 Next, in step S416, the control circuit 303 uses the display unit DISP of the user interface 116 to notify the replacement of consumables (capsule 106 of the aspirator 100 and aerosol-generating article 151 of the aspirator 150). This notification may be to blink the LED in blue (repeatedly turning on and off) when the display unit DISP includes an LED. In response, the user can replace the consumables. In one example, one atomizer 104 and a plurality (eg, 5) capsules 106 may be sold as a set. In such an example, after one set of atomizers 104 and all capsules 106 have been consumed, the consumed set of atomizers 104 and the last capsule 106 are new sets of atomizers. Can be replaced with 104 and capsule 106.
 ステップS417で、制御回路303は、消耗品(吸引器100のカプセル106や吸引器150のエアロゾル発生物品151)の交換が完了するのを待ち、ステップS418で、制御回路303は、ヒータ127に対する給電制御の禁止を解除し、ステップS401に戻る。 In step S417, the control circuit 303 waits for the replacement of consumables (capsule 106 of the aspirator 100 and aerosol generating article 151 of the aspirator 150) to be completed, and in step S418, the control circuit 303 supplies power to the heater 127. The prohibition of control is released, and the process returns to step S401.
 続いて、図5を参照して、ヒータ127をフィードバック制御するための制御回路303の第1構成例について説明する。制御回路303は、MCU501と、スイッチSW1およびSW2と、シャント抵抗Rshunt1およびRshunt2と、オペアンプ502とを含みうる。MCU501は、メモリ511と、スイッチ駆動部512と、目標値算出部331と、比較部513と、ADC(アナログデジタル変換器)415とを含みうる。スイッチ駆動部512と、目標値算出部331と、比較部513とは、汎用プロセッサによって実現されてもよいし、専用回路によって実現されてもよいし、両者の組み合わせによって実現されてもよい。スイッチSW1およびSW2と、シャント抵抗Rshunt1およびRshunt2と、スイッチ駆動部512と、比較部513とによって、供給電力制御部332が構成される。 Subsequently, with reference to FIG. 5, a first configuration example of the control circuit 303 for feedback control of the heater 127 will be described. The control circuit 303 may include an MCU 501, switches SW1 and SW2, shunt resistors R shunt1 and R shunt2, and an operational amplifier 502. The MCU 501 may include a memory 511, a switch drive unit 512, a target value calculation unit 331, a comparison unit 513, and an ADC (analog-to-digital converter) 415. The switch drive unit 512, the target value calculation unit 331, and the comparison unit 513 may be realized by a general-purpose processor, a dedicated circuit, or a combination of both. The power supply control unit 332 is configured by the switches SW1 and SW2, the shunt resistors R shunt1 and R shunt2 , the switch drive unit 512, and the comparison unit 513.
 スイッチSW1およびシャント抵抗Rshunt1は、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に直列に接続されている。シャント抵抗Rshunt1の抵抗値をその符号と同様にRshunt1と標記する。以下に説明する他の抵抗についても同様である。図5の例では、スイッチSW1とヒータ127との間にシャント抵抗Rshunt1が接続されている。これにかえて、シャント抵抗Rshunt1とヒータ127との間にスイッチSW1が接続されてもよい。 The switch SW1 and the shunt resistor R shunt1 are connected in series between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127. The resistance value of the shunt resistor R shunt 1 is marked as R shunt 1 in the same manner as its code. The same applies to the other resistors described below. In the example of FIG. 5, the shunt resistor R Shunt1 is connected between the switch SW1 and the heater 127. Instead of this, the switch SW1 may be connected between the shunt resistor R Shunt1 and the heater 127.
 スイッチSW1は、例えばトランジスタ、具体的にFET(電界効果トランジスタ)IGBT(絶縁ゲート型バイポーラ・トランジスタ)によって構成されてもよい。以下ではスイッチSW1などの様々なスイッチがFETによって構成される場合について説明するが、FETはIGBTや他のスイッチで構成されてもよい。スイッチSW1の制御端子(例えば、FETのゲート)に、スイッチ駆動部512から制御信号SWC1が供給される。スイッチSW1は、制御信号SWC1の値に応じて、オン・オフを切り替える。スイッチSW1をオン(すなわち、導通状態)にする制御信号をオン信号と呼び、スイッチSW1をオフ(すなわち、非導通状態)にする制御信号をオフ信号と呼ぶ。オン信号は例えばハイレベルであり、オフ信号は例えばローレベルである。以下に説明する他のスイッチの制御信号についても同様である。 The switch SW1 may be composed of, for example, a transistor, specifically a FET (field effect transistor) IGBT (insulated gate bipolar transistor). Hereinafter, the case where various switches such as the switch SW1 are composed of FETs will be described, but the FETs may be composed of IGBTs or other switches. The control signal SWC1 is supplied from the switch drive unit 512 to the control terminal of the switch SW1 (for example, the gate of the FET). The switch SW1 switches on / off according to the value of the control signal SWC1. The control signal that turns on the switch SW1 (that is, the conducting state) is called an on signal, and the control signal that turns off the switch SW1 (that is, the non-conducting state) is called an off signal. The on signal is, for example, high level, and the off signal is, for example, low level. The same applies to the control signals of other switches described below.
 スイッチSW2およびシャント抵抗Rshunt2は、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に直列に接続されている。シャント抵抗Rshunt2の抵抗値は、シャント抵抗Rshunt1の抵抗値よりも十分に大きい。図5の例では、スイッチSW2とヒータ127との間にシャント抵抗Rshunt2が接続されている。これにかえて、シャント抵抗Rshunt2とヒータ127との間にスイッチSW2が接続されてもよい。スイッチSW2は、例えばトランジスタ、具体的にFETやIGBTによって構成されてもよい。スイッチSW2の制御端子(例えば、FETのゲート)には、スイッチ駆動部512から制御信号SWC2が供給される。スイッチSW2は、制御信号SWC2の値に応じて、オン・オフを切り替える。 The switch SW2 and the shunt resistor R shunt2 are connected in series between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127. The resistance value of the shunt resistor R Shunt2 is sufficiently larger than the resistance value of the shunt resistor R shunt1. In the example of FIG. 5, the shunt resistor R Shunt2 is connected between the switch SW2 and the heater 127. Instead of this, the switch SW2 may be connected between the shunt resistor R Shunt2 and the heater 127. The switch SW2 may be composed of, for example, a transistor, specifically an FET or an IGBT. A control signal SWC2 is supplied from the switch drive unit 512 to the control terminal of the switch SW2 (for example, the gate of the FET). The switch SW2 switches on / off according to the value of the control signal SWC2.
 オペアンプ(差動増幅器)502は、非反転入力端子、反転入力端子および出力端子を有する。オペアンプ502の非反転入力端子は、ヒータ127の一端(具体的に、第3電気接点113)に接続されている。オペアンプ502の反転入力端子は、ヒータ127の別の一端(具体的に、第4電気接点114)に接続されている。オペアンプ502の出力端子は、ADC415の入力端子に接続されている。このように、オペアンプ502は、ヒータ127に印加されている電圧VHTRをADC415に供給する。図5の第1構成例で、制御回路303は、ヒータの温度に相関を有する物理量として、オペアンプ502の出力、すなわち電圧VHTRを監視する。制御回路303は、電圧VHTRが目標値に近づくように、ヒータ127に供給される電力を制御する。 The operational amplifier (differential amplifier) 502 has a non-inverting input terminal, an inverting input terminal, and an output terminal. The non-inverting input terminal of the operational amplifier 502 is connected to one end of the heater 127 (specifically, the third electric contact 113). The inverting input terminal of the operational amplifier 502 is connected to another end (specifically, the fourth electrical contact 114) of the heater 127. The output terminal of the operational amplifier 502 is connected to the input terminal of the ADC 415. In this way, the operational amplifier 502 supplies the voltage V HTR applied to the heater 127 to the ADC 415. In the first configuration example of FIG. 5, the control circuit 303 monitors the output of the operational amplifier 502, that is, the voltage V HTR as a physical quantity having a correlation with the temperature of the heater. The control circuit 303 controls the power supplied to the heater 127 so that the voltage V HTR approaches the target value.
 スイッチ駆動部512は、制御信号をスイッチSW1とスイッチSW2以外のスイッチ(トランジスタ)に供給してもよい。例えば、電圧変換器(電圧レギュレータ)321に内蔵されたスイッチ(トランジスタ)の制御端子、又は、ヒータ127と接地の間やヒータ駆動電圧Voutの供給ラインに設けられる不図示のスイッチ(トランジスタ)の制御端子に、スイッチ駆動部512から制御信号が供給されてもよい。 The switch drive unit 512 may supply a control signal to a switch (transistor) other than the switch SW1 and the switch SW2. For example, control of a switch (transistor) built in a voltage converter (voltage regulator) 321 or a switch (transistor) (not shown) provided between the heater 127 and the ground or in the supply line of the heater drive voltage Vout. A control signal may be supplied to the terminal from the switch drive unit 512.
 図16を参照して、電圧VHTRの目標値VTargetの決定方法について説明する。後述するように、目標値VTargetは、監視中の電圧VHTRとの比較対象として使用される。そのため、目標値VTargetは、閾値と称されてもよい。制御回路303は、ヒータ127が加熱されていない状態、例えば、図4AのステップS404よりも前に、目標値VTargetを決定する動作を行ってもよい。目標値VTargetの決定は、ヒータ127が新品時の状態で実行されてもよい。ヒータ127が新品であるとは、例えばユーザがエアロゾルを吸引するためにヒータ127の使用を開始する前の状態であってもよい。ヒータ127が新品である期間に、吸引器100、150の製造時が含まれてもよい。さらに、制御回路303は、ヒータ127が新品時の状態ではない場合に、目標値VTargetを決定してもよい。 A method of determining the target value V Target of the voltage V HTR will be described with reference to FIG. As will be described later, the target value V Target is used as a comparison target with the voltage V HTR being monitored. Therefore, the target value V Target may be referred to as a threshold value. The control circuit 303 may perform an operation of determining the target value V Target in a state where the heater 127 is not heated, for example, before step S404 in FIG. 4A. The determination of the target value V Target may be performed when the heater 127 is new. The new heater 127 may be, for example, a state before the user starts using the heater 127 to suck the aerosol. The period during which the heater 127 is new may include the time of manufacture of the aspirators 100, 150. Further, the control circuit 303 may determine the target value V Target when the heater 127 is not in a new state.
 ステップS1601で、目標値算出部331は、現時点のヒータ127の温度を測定し、この温度を基準温度TRefとする。基準温度TRefは、吸引器100内の任意箇所の温度(例えば、温度センサ304によって検出される温度)や、室温に基づいて決定されてもよい。 In step S1601, the target value calculation unit 331 measures the current temperature of the heater 127, and sets this temperature as the reference temperature T Ref . The reference temperature T Ref may be determined based on the temperature at an arbitrary location in the aspirator 100 (for example, the temperature detected by the temperature sensor 304) or the room temperature.
 ステップS1602で、目標値算出部331は、スイッチSW1をオフにし、スイッチSW2をオンにする。これによって、ヒータ駆動電圧Voutの供給ラインから、スイッチSW2、シャント抵抗Rshunt2およびヒータ127を経由して接地まで電流が流れる。目標値算出部331は、ヒータ127に印加されている電圧VHTRをデジタル形式でADC415から受け取る。目標値算出部331は、この電圧VHTRを以下の式(1)に当てはめることによって、基準抵抗値RRefを算出する。 In step S1602, the target value calculation unit 331 turns off the switch SW1 and turns on the switch SW2. As a result, a current flows from the supply line of the heater drive voltage Vout to the ground via the switch SW2, the shunt resistor R shunt2, and the heater 127. The target value calculation unit 331 receives the voltage V HTR applied to the heater 127 from the ADC 415 in digital form. The target value calculation unit 331 calculates the reference resistance value R Ref by applying this voltage V HTR to the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、VoutおよびRShunt2は規定値である。これらの値は、製造時にメモリ511に書き込まれる。 In the formula (1), Vout and R Shunt2 are specified values. These values are written to memory 511 at the time of manufacture.
 ステップS1603で、目標値算出部331は、式(2)に従って目標値VTargetを算出し、ステップS1604で目標値VTargetをデジタル形式でメモリ511に格納する。 In step S1603, the target value calculation unit 331 calculates the target value V Target according to the equation (2), and stores the target value V Target in the memory 511 in the digital format in step S1604.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、α、TTargetは規定値である。これらの値は、製造時にメモリ511に書き込まれる。αは、ヒータ127の温度係数[ppm/℃]である。αは、ヒータ127の材質やサイズによって定まる値である。 In the formula (2), α and T Target are specified values. These values are written to memory 511 at the time of manufacture. α is the temperature coefficient [ppm / ° C.] of the heater 127. α is a value determined by the material and size of the heater 127.
 TTargetは、エアロゾル源を加熱中のヒータ127の目標温度である。目標温度TTargetは、例えば製造時に設定される。目標値VTargetは、ヒータ127の温度が目標温度TTargetである時点の電圧VHTRに相当する。言い換えると、目標値VTargetは、ヒータ127の温度が吸引器100、150からエアロゾルを生成可能な範囲に含まれるように電圧生成回路302からヒータ127に電力が供給されている状態におけるヒータ127の電圧VHTRの値に等しい。吸引器100において、目標温度TTargetは、210℃以上且つ230℃未満の範囲内、例えば220℃となるように設定される。電圧VHTRが目標値VTargetに近づくようにフィードバック制御を行うことによって、ヒータ127の温度も目標温度TTargetに近づくように変動する。 T Target is the target temperature of the heater 127 during heating of the aerosol source. The target temperature T Target is set, for example, at the time of manufacture. The target value V Target corresponds to the voltage V HTR at the time when the temperature of the heater 127 is the target temperature T Target. In other words, the target value V Target is the heater 127 in a state where the voltage generation circuit 302 supplies power to the heater 127 so that the temperature of the heater 127 is within the range in which aerosols can be generated from the aspirators 100 and 150. Equal to the value of voltage V HTR. In the aspirator 100, the target temperature T Target is set to be in the range of 210 ° C. or higher and lower than 230 ° C., for example, 220 ° C. By performing feedback control so that the voltage V HTR approaches the target value V Target , the temperature of the heater 127 also fluctuates so as to approach the target temperature T Target.
 制御回路303の回路特性は、制御回路303を構成する素子の製品公差などにより吸引器ごとに異なりうる。そのため、上述のように決定された目標値VTargetは、製品ごとに異なりうる。言い換えると、1つの吸引器の目標値VTargetは、この吸引器と同じ構成要素を有する他の吸引器の目標値VTargetと異なりうる。 The circuit characteristics of the control circuit 303 may differ from one suction device to another depending on the product tolerances of the elements constituting the control circuit 303 and the like. Therefore, the target value V Target determined as described above may differ from product to product. In other words, the target value V Target of one aspirator can be different from the target value V Target of another aspirator having the same components as this aspirator.
 上述の例では、式(1)および(2)に分けて目標値VTargetを算出するように説明している。しかし、目標値算出部331は、これらの式を統合した式に従って目標値VTargetを算出してもよい。 In the above example, it is explained that the target value V Target is calculated by dividing into the equations (1) and (2). However, the target value calculation unit 331 may calculate the target value V Target according to the formula in which these formulas are integrated.
 図2を用いて上述したように、ヒータ127の目標温度TTargetは、複数の値を有しうる。そのため、目標値算出部331は、複数の目標温度TTargetのそれぞれについて目標値VTargetを決定し、メモリ511に格納してもよい。 As described above with reference to FIG. 2, the target temperature T Target of the heater 127 can have a plurality of values. Therefore, the target value calculation unit 331 determines a target value V Target for each of the plurality of target temperatures T Target, may be stored in memory 511.
 続いて、図6を参照して、ヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、図4A及び図4BのステップS404~S409の間)に実行する。 Subsequently, with reference to FIG. 6, the feedback control of the temperature of the heater 127 will be described. The control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B).
 ステップS601で、比較部513は、メモリ511からデジタル形式の初期値の目標値VTargetを読み出す。その後、比較部513は、読み出したデジタル形式の目標値VTargetと、デジタル形式でADC415から受け取った電圧VHTRとを比較し、これらの比較結果をスイッチ駆動部512に供給し続ける。このように、比較部513は、ヒータ127に印加されている電圧VHTRを監視する。図2の例では、目標温度TTarget1に相当するヒータ電圧が目標値VTargetとして読み出される。 In step S601, the comparison unit 513 reads the target value V Target of the initial value in the digital format from the memory 511. After that, the comparison unit 513 compares the read digital target value V Target with the voltage V HTR received from the ADC 415 in the digital format, and continues to supply these comparison results to the switch drive unit 512. In this way, the comparison unit 513 monitors the voltage V HTR applied to the heater 127. In the example of FIG. 2, a heater voltage corresponding to the target temperature T Target1 is read as a target value V Target.
 ステップS602で、スイッチ駆動部512は、制御信号SWC1としてオフ信号を供給することによってスイッチSW1をオフにし、制御信号SWC2としてオン信号を供給することによってスイッチSW2をオンにする。その後、スイッチ駆動部512は、比較部513からの出力に基づいて、電圧VHTRが目標値VTargetよりも低いどうかを判定する。この条件を満たす場合(ステップS602で「YES」)に、スイッチ駆動部512は処理をステップS603に遷移し、それ以外の場合(ステップS602で「NO」)に、スイッチ駆動部512は処理をステップS604に遷移する。 In step S602, the switch drive unit 512 turns off the switch SW1 by supplying an off signal as the control signal SWC1, and turns on the switch SW2 by supplying an on signal as the control signal SWC2. After that, the switch drive unit 512 determines whether the voltage V HTR is lower than the target value V Target based on the output from the comparison unit 513. When this condition is satisfied (“YES” in step S602), the switch drive unit 512 transitions the process to step S603, and in other cases (“NO” in step S602), the switch drive unit 512 steps the process. Transition to S604.
 ステップS603で、スイッチ駆動部512は、制御信号SWC1としてオン信号を供給することによってスイッチSW1をオンにし、制御信号SWC2としてオフ信号を供給することによってスイッチSW2をオフにする。スイッチ駆動部512は、スイッチSW1にすでにオン信号を供給している場合にその状態を維持し、スイッチSW2にすでにオフ信号を供給している場合にその状態を維持する。この状態は、比較部513による比較結果が変化するまで維持される。これにより、ヒータ駆動電圧Voutの供給ラインから、スイッチSW1、シャント抵抗Rshunt1およびヒータ127を経由して接地まで電流が流れる。一方、スイッチSW2を経由する経路には電流が流れない。ヒータ127にシャント抵抗Rshunt1経由で電流が流れることによって、ヒータ127の加熱に必要な電力が供給され、ヒータ127の温度が上昇する。シャント抵抗Rshunt1は、ヒータ127の温度を上昇可能な電流を流す抵抗値を有する。 In step S603, the switch drive unit 512 turns on the switch SW1 by supplying an on signal as the control signal SWC1, and turns off the switch SW2 by supplying an off signal as the control signal SWC2. The switch drive unit 512 maintains the state when the switch SW1 has already been supplied with the on signal, and maintains the state when the switch SW2 has already been supplied with the off signal. This state is maintained until the comparison result by the comparison unit 513 changes. Thus, from the supply line of the heater driving voltage Vout, the switch SW1, a current flows to the ground via the shunt resistor R Shunt1 and heater 127. On the other hand, no current flows in the path passing through the switch SW2. By current flows through shunt resistor R Shunt1 the heater 127, the power required to heat the heater 127 is supplied, the temperature of the heater 127 is increased. The shunt resistor R shunt 1 has a resistance value for passing a current capable of raising the temperature of the heater 127.
 ステップS604で、スイッチ駆動部512は、制御信号SWC1としてオフ信号を供給することによってスイッチSW1をオフにし、制御信号SWC2としてオン信号を供給することによってスイッチSW2をオンにする。スイッチ駆動部512は、スイッチSW2にすでにオン信号を供給している場合にその状態を維持し、スイッチSW1にすでにオフ信号を供給している場合にその状態を維持する。この状態は、比較部513による比較結果が変化するまで維持される。これにより、ヒータ駆動電圧Voutの供給ラインから、スイッチSW2、シャント抵抗Rshunt2およびヒータ127を経由して接地まで電流が流れる。一方、スイッチSW1を経由する経路には電流が流れない。シャント抵抗Rshunt2は十分に大きいため、ヒータ127の加熱に必要な電力が供給されず、ヒータ127の温度が下降する。すなわち、シャント抵抗Rshunt2は、ヒータ127の温度を下降可能な電流を流す抵抗値を有する。電流がシャント抵抗Rshunt2を流れる場合にヒータ127に供給される電力の量は、電流がシャント抵抗Rshunt1を流れる場合にヒータ127に供給される電力の量よりも低い。シャント抵抗Rshunt2の抵抗値が十分に大きい場合に、ヒータ127に供給される電力は実質的にゼロとなる。 In step S604, the switch drive unit 512 turns off the switch SW1 by supplying an off signal as the control signal SWC1, and turns on the switch SW2 by supplying an on signal as the control signal SWC2. The switch drive unit 512 maintains the state when the switch SW2 has already been supplied with the on signal, and maintains the state when the switch SW1 has already been supplied with the off signal. This state is maintained until the comparison result by the comparison unit 513 changes. As a result, a current flows from the supply line of the heater drive voltage Vout to the ground via the switch SW2, the shunt resistor R shunt2, and the heater 127. On the other hand, no current flows in the path passing through the switch SW1. Since the shunt resistor R Shunt2 is sufficiently large, not supplied power required to heat the heater 127, the temperature of the heater 127 is lowered. That is, the shunt resistor R shunt 2 has a resistance value for passing a current capable of lowering the temperature of the heater 127. The amount of power current is supplied to the heater 127 when flowing through the shunt resistor R Shunt2 is lower than the amount of power supplied to the heater 127 when a current flows through the shunt resistor R shunt1. When the resistance value of the shunt resistor R Shunt2 is sufficiently large, the power supplied to the heater 127 is substantially zero.
 ステップS605で、スイッチ駆動部512は、目標値の切り替え条件を満たすかどうかを判定する。この条件を満たす場合(ステップS605で「YES」)に、スイッチ駆動部512は処理をステップS606に遷移し、それ以外の場合(ステップS605で「NO」)に、スイッチ駆動部512は処理をステップS602に遷移する。 In step S605, the switch drive unit 512 determines whether or not the target value switching condition is satisfied. When this condition is satisfied (“YES” in step S605), the switch drive unit 512 transitions the process to step S606, and in other cases (“NO” in step S605), the switch drive unit 512 steps the process. Transition to S602.
 目標値の切り替え条件は、吸引器100、150の使用状況に基づいてもよい。この使用状況は、吸引の回数と、吸引の長さと、吸引の量とのうちの少なくとも1つを含んでもよい。例えば、比較部513は、吸引開始からの経過時間をタイマーで測定し、吸引開始から所定の時間が経過したことに応じて目的値を切り替えてもよい。また、比較部513は、ユーザが吸引を行った回数をカウントするカウンタを含んでもよく、このカウンタの値が所定値に到達したことに応じて目的値を切り替えてもよい。さらに、吸引器100、150は、ユーザによる吸引の量を測定するセンサをさらに備え、比較部513は、このセンサによって検出された吸引の量が所定値に到達したことに応じて目的値を切り替えてもよい。なお、比較部513は、ヒータ127へ電力の供給を開始してからの経過時間をタイマーで測定し、ヒータ127へ電力の供給を開始してから所定の時間が経過したことに応じて目的値を切り替えてもよい。 The target value switching condition may be based on the usage status of the aspirators 100 and 150. This usage may include at least one of the number of suctions, the length of suction, and the amount of suction. For example, the comparison unit 513 may measure the elapsed time from the start of suction with a timer and switch the target value according to the elapse of a predetermined time from the start of suction. Further, the comparison unit 513 may include a counter that counts the number of times the user has performed suction, and may switch the target value when the value of this counter reaches a predetermined value. Further, the suction devices 100 and 150 further include a sensor for measuring the amount of suction by the user, and the comparison unit 513 switches the target value according to the amount of suction detected by this sensor reaching a predetermined value. You may. The comparison unit 513 measures the elapsed time from the start of supplying electric power to the heater 127 with a timer, and sets a target value according to the elapse of a predetermined time after starting to supply electric power to the heater 127. May be switched.
 ステップS606で、比較部513は、メモリ511から切り替え後の初期値の目標値VTargetを読み出す。その後、比較部513は、読み出したデジタル形式の目標値VTargetと、デジタル形式でADC415から受け取った電圧VHTRとを比較し、これらの比較結果をスイッチ駆動部512に供給し続ける。図2の例では、目標温度TTarget2に相当するヒータ電圧が目標値VTargetとして読み出される。目標値VTargetが切り替えられた後は、新たな目標値VTargetに近づくようにヒータ電圧が制御される。 In step S606, the comparison unit 513 reads out the target value V Target of the initial value after switching from the memory 511. After that, the comparison unit 513 compares the read digital target value V Target with the voltage V HTR received from the ADC 415 in the digital format, and continues to supply these comparison results to the switch drive unit 512. In the example of FIG. 2, a heater voltage corresponding to the target temperature T Target2 is read as a target value V Target. After the target value V Target is switched, the heater voltage is controlled so as to approach the new target value V Target.
 ステップS607で、スイッチ駆動部512は、加熱処理を終了するかどうかを判定する。この条件を満たす場合(ステップS607で「YES」)に、スイッチ駆動部512は処理を終了し、それ以外の場合(ステップS607で「NO」)に、スイッチ駆動部512は処理をステップS602に遷移する。加熱処理を終了するための条件は、上述の図4BのステップS409に遷移するための条件である。 In step S607, the switch drive unit 512 determines whether or not to end the heat treatment. When this condition is satisfied (“YES” in step S607), the switch drive unit 512 ends the process, and in other cases (“NO” in step S607), the switch drive unit 512 shifts the process to step S602. do. The condition for terminating the heat treatment is the condition for transitioning to step S409 in FIG. 4B described above.
 以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。具体的に、制御回路303は、監視中の電圧VHTRと目標値VTargetとの比較結果に基づいて、電圧生成回路302からヒータ127への電力の供給量を切り替える。上述のように、目標値VTargetは、ヒータ127の温度が目標温度TTargetとなるように設定されているため、このフィードバック制御によって、エアロゾル源を加熱中のヒータ127の温度が所望の範囲に維持される。上述のステップS604およびS605において、等号が成立する場合にNOに分岐するが、これにかえてYESに分岐してもよい。また、制御回路303は、監視中の電圧VHTRを他の値に変換することなく、直接、目標値VTargetと比較し、フィードバック制御を行う。そのため、フィードバック制御における追従性が高まる。 As described above, the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target. Specifically, the control circuit 303 switches the amount of power supplied from the voltage generation circuit 302 to the heater 127 based on the comparison result between the monitored voltage V HTR and the target value V Target. As described above, since the target value V Target is set so that the temperature of the heater 127 becomes the target temperature T Target , this feedback control brings the temperature of the heater 127 while heating the aerosol source to a desired range. Be maintained. In steps S604 and S605 described above, when the equal sign is satisfied, the branch is branched to NO, but the branch may be changed to YES instead. Further, the control circuit 303 directly compares the monitored voltage V HTR with the target value V Target without converting it into another value, and performs feedback control. Therefore, the followability in the feedback control is improved.
 続いて、図7を参照して、ヒータ127をフィードバック制御するための制御回路303の第2構成例について説明する。第2構成例では、図5の第1構成例においてMCU501が実行していたフィードバック制御をアナログ回路によって実行する。以下、第1構成例との相違点について主に説明する。 Subsequently, with reference to FIG. 7, a second configuration example of the control circuit 303 for feedback control of the heater 127 will be described. In the second configuration example, the feedback control executed by the MCU 501 in the first configuration example of FIG. 5 is executed by the analog circuit. Hereinafter, the differences from the first configuration example will be mainly described.
 第2構成例の制御回路303は、第1構成例の制御回路303と比較して、コンパレータCMPおよび論理反転のためのインバータ702をさらに有する。また、第2構成例のMCU501は、スイッチ駆動部512および比較部513を含まず、DAC(デジタルアナログ変換器)701を含む。 The control circuit 303 of the second configuration example further includes a comparator CMP and an inverter 702 for logic inversion as compared with the control circuit 303 of the first configuration example. Further, the MCU 501 of the second configuration example does not include the switch drive unit 512 and the comparison unit 513, but includes a DAC (digital-to-analog converter) 701.
 コンパレータCMPの反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMPの反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMPの非反転入力端子には、MCU501(具体的に、DAC701)からアナログ形式の目標値VTargetが供給される。したがって、コンパレータCMPは、電圧VHTRと目標値VTargetとの比較結果を出力する。すなわち、コンパレータCMPは、ヒータ127の温度に相関を有する物理量として、電圧VHTRを監視する。 The inverting input terminal of the comparator CMP is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP. An analog-type target value V Target is supplied from the MCU 501 (specifically, DAC701) to the non-inverting input terminal of the comparator CMP. Therefore, the comparator CMP outputs the comparison result between the voltage V HTR and the target value V Target. That is, the comparator CMP monitors the voltage V HTR as a physical quantity that correlates with the temperature of the heater 127.
 コンパレータCMPからの出力信号は、分圧回路を経由してスイッチSW1の制御端子に供給される。また、コンパレータCMPからの出力信号は、インバータ702および分圧回路を経由してスイッチSW2の制御端子に供給される。なお、これら分圧回路の双方または一方は省略されてもよい。DAC701は、メモリ511からデジタル形式の目標値VTargetを読み出し、アナログ形式に変換してコンパレータCMPに供給する。 The output signal from the comparator CMP is supplied to the control terminal of the switch SW1 via the voltage divider circuit. Further, the output signal from the comparator CMP is supplied to the control terminal of the switch SW2 via the inverter 702 and the voltage dividing circuit. Both or one of these voltage divider circuits may be omitted. The DAC 701 reads the target value V Target in digital format from the memory 511, converts it into an analog format, and supplies it to the comparator CMP.
 第2構成例において、目標値VTargetの決定方法は第1構成例と同じであるため、説明を省略する。第2構成例におけるヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、図4A及び図4BのステップS404~S409の間)に実行する。このフィードバック制御中に、MCU501は、図6のステップS601、S605およびS606と同様の処理を行って、目標値VTargetを切り替えてもよい。 In the second configuration example, the method of determining the target value V Target is the same as that of the first configuration example, and thus the description thereof will be omitted. The feedback control of the temperature of the heater 127 in the second configuration example will be described. The control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B). During this feedback control, the MCU 501 may perform the same processing as in steps S601, S605 and S606 of FIG. 6 to switch the target value V Target.
 ヒータ127への電力供給を開始するために、DAC701は、メモリ511から目標値VTargetを読み出し、アナログ形式に変換してコンパレータCMPに供給し続ける。吸引直後はヒータ127の温度が低く、それゆえ電圧VHTRも低いため、コンパレータCMPは、比較結果としてハイレベルを出力する。その結果、スイッチSW1の制御端子にハイレベルが供給され、スイッチSW1がオンになる。また、スイッチSW2の制御端子に、インバータ702によって論理反転されたローレベルが供給され、スイッチSW2がオフになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が上昇する。 In order to start supplying power to the heater 127, the DAC701 reads the target value V Target from the memory 511, converts it into an analog format, and continues to supply it to the comparator CMP. Immediately after suction, the temperature of the heater 127 is low, and therefore the voltage V HTR is also low, so that the comparator CMP outputs a high level as a comparison result. As a result, a high level is supplied to the control terminal of the switch SW1, and the switch SW1 is turned on. Further, the low level logically inverted by the inverter 702 is supplied to the control terminal of the switch SW2, and the switch SW2 is turned off. As a result, a current flows through the heater 127 and the temperature of the heater 127 rises as in the first configuration example.
 ヒータ127の温度が上昇し、電圧VHTRが目標値VTargetを上回ると、コンパレータCMPは、比較結果としてローレベルを出力する。その結果、スイッチSW1の制御端子にローレベルが供給され、スイッチSW1がオフになる。また、スイッチSW2の制御端子に、インバータ702によって論理反転されたハイレベルが供給され、スイッチSW2がオンになる。これにより、第1構成例と同様に電流が流れ、ヒータ127の温度が下降する。その後、電圧VHTRが目標値VTargetを下回ると、ヒータ127の温度が上昇するようにヒータ127に電力が供給される。 When the temperature of the heater 127 rises and the voltage V HTR exceeds the target value V Target , the comparator CMP outputs a low level as a comparison result. As a result, a low level is supplied to the control terminal of the switch SW1, and the switch SW1 is turned off. Further, a high level logically inverted by the inverter 702 is supplied to the control terminal of the switch SW2, and the switch SW2 is turned on. As a result, a current flows as in the first configuration example, and the temperature of the heater 127 drops. After that, when the voltage V HTR falls below the target value V Target , electric power is supplied to the heater 127 so that the temperature of the heater 127 rises.
 以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。第2構成例では、MCU501に含まれないアナログ回路(具体的に、コンパレータCMP)によって電圧VHTRおよび目標値VTargetの大小比較を行っているため、MCU501の動作クロックに束縛されずに電力制御を行える。そのため、いっそう高速な制御が可能となる。また、MCU501が大小比較を行わないため、MCU501の処理負担が軽減する。 As described above, the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target. In the second configuration example, since the magnitude comparison of the voltage V HTR and the target value V Target is performed by an analog circuit (specifically, the comparator CMP) not included in the MCU 501, the power is controlled without being bound by the operating clock of the MCU 501. Can be done. Therefore, even higher speed control becomes possible. Further, since the MCU 501 does not compare the size, the processing load of the MCU 501 is reduced.
 続いて、図8を参照して、ヒータ127をフィードバック制御するための制御回路303の第3構成例について説明する。図7の第2構成例ではコンパレータを1系統有していたのに対して、第3構成例では、コンパレータを2系統有する。以下、第2構成例との相違点について主に説明する。 Subsequently, with reference to FIG. 8, a third configuration example of the control circuit 303 for feedback control of the heater 127 will be described. The second configuration example of FIG. 7 has one comparator system, whereas the third configuration example has two comparator systems. Hereinafter, the differences from the second configuration example will be mainly described.
 第3構成例の制御回路303は、第2構成例の制御回路303と比較して、コンパレータCMPおよびインバータ702を含まず、コンパレータCMP1およびCMP2ならびにスイッチSW3およびSW4を含む。また、第3構成例のMCU501は、DAC701を含まず、DAC801および802を含む。 The control circuit 303 of the third configuration example does not include the comparator CMP and the inverter 702, but includes the comparators CMP1 and CMP2 and the switches SW3 and SW4 as compared with the control circuit 303 of the second configuration example. Further, the MCU 501 of the third configuration example does not include the DAC 701, but includes the DACs 801 and 802.
 コンパレータCMP1の反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP1の反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP1の非反転入力端子には、アナログ形式の目標値VTargetが供給される。したがって、コンパレータCMP1は、電圧VHTRと目標値VTargetとの比較結果を出力する。コンパレータCMP1からの出力信号は、分圧回路を経由してスイッチSW1の制御端子に供給される。 The inverting input terminal of the comparator CMP1 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP1. An analog-type target value V Target is supplied to the non-inverting input terminal of the comparator CMP1. Therefore, the comparator CMP1 outputs a comparison result between the voltage V HTR and the target value V Target. The output signal from the comparator CMP1 is supplied to the control terminal of the switch SW1 via the voltage divider circuit.
 コンパレータCMP2の非反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP2の非反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP2の反転入力端子には、アナログ形式の目標値VTargetが供給される。したがって、コンパレータCMP2は、電圧VHTRと目標値VTargetとの比較結果を出力する。コンパレータCMP2からの出力信号は、分圧回路を経由してスイッチSW2の制御端子に供給される。以上のように構成されたコンパレータCMP1とコンパレータCMP2とは、互いに異なるレベルの信号を出力する。 The non-inverting input terminal of the comparator CMP2 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the non-inverting input terminal of the comparator CMP2. An analog-type target value V Target is supplied to the inverting input terminal of the comparator CMP2. Therefore, the comparator CMP2 outputs the comparison result between the voltage V HTR and the target value V Target. The output signal from the comparator CMP2 is supplied to the control terminal of the switch SW2 via the voltage divider circuit. The comparator CMP1 and the comparator CMP2 configured as described above output signals of different levels from each other.
 DAC801は、メモリ511からデジタル形式の目標値VTarget1を読み出し、アナログ形式に変換し、スイッチSW3を介してコンパレータCMP1およびCMP2に供給する。DAC802は、メモリ511からデジタル形式の目標値VTarget2を読み出し、アナログ形式に変換し、スイッチSW4を介してコンパレータCMP1およびCMP2に供給する。コンパレータCMP1とコンパレータCMP2とが互いに異なるレベルの信号を出力するため、スイッチSW3およびSW4は、一方のみがオンになる。そのため、スイッチSW3がオン(すなわち、スイッチSW4がオフ)の場合に、目標値VTarget1が目標値VTargetとしてコンパレータCMP1およびCMP2に供給される。スイッチSW4がオン(すなわち、スイッチSW3がオフ)の場合に、目標値VTarget2が目標値VTargetとしてコンパレータCMP1およびCMP2に供給される。 The DAC 801 reads the target value V Target 1 in the digital format from the memory 511, converts it into the analog format, and supplies it to the comparators CMP1 and CMP2 via the switch SW3. The DAC 802 reads the target value V Target 2 in the digital format from the memory 511, converts it into the analog format, and supplies it to the comparators CMP1 and CMP2 via the switch SW4. Since the comparator CMP1 and the comparator CMP2 output signals of different levels, only one of the switches SW3 and SW4 is turned on. Therefore, when the switch SW3 is on (that is, the switch SW4 is off), the target value V Target1 is supplied to the comparators CMP1 and CMP2 as the target value V Target. Switch SW4 is turned on (i.e., the switch SW3 is turned off) when the target value V Target2 is supplied to the comparator CMP1 and CMP2 as the target value V Target.
 目標値VTarget1は、スイッチSW1がオン且つスイッチSW2がオフの場合の電圧VHTRの目標値である。目標値VTarget2は、スイッチSW1がオフ且つスイッチSW2がオンの場合の電圧VHTRの目標値である。目標値算出部331は、上述の式(1)ならびに以下の式(3)および(4)に従ってこれらの目標値を算出し、メモリ511に格納する。 The target value V Target1 is a target value of the voltage V HTR when the switch SW1 is on and the switch SW2 is off. The target value V Target2 is a target value of the voltage V HTR when the switch SW1 is off and the switch SW2 is on. The target value calculation unit 331 calculates these target values according to the above equation (1) and the following equations (3) and (4), and stores them in the memory 511.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)および式(4)において、α、Vout、RShunt1およびRShunt2は規定値であり、例えば製造時にメモリ511に書き込まれる。目標温度TTargetは、式(2)について上述したとおりである。RShunt1>RShunt2であるため、VTarget1<VTarget2となる。 In the formulas (3) and (4), α, Vout, R Shunt1 and R Shunt2 are specified values and are written to the memory 511 at the time of manufacture, for example. The target temperature T Target is as described above for equation (2). Since R Shunt1 > R Shunt2 , V Target1 <V Target2 .
 第1構成例と同様にして、目標値算出部331は、式(1)に従って基準抵抗値RRefを算出し、この値を式(3)および式(4)に当てはめることによって目標値VTarget1および目標値VTarget2を算出する。目標温度TTargetが複数ある場合に、複数の目標温度TTargetのそれぞれについて、目標値VTarget1および目標値VTarget2が算出される。 In the same manner as in the first configuration example, the target value calculation unit 331 calculates the reference resistance value R Ref according to the equation (1), and applies this value to the equations (3) and (4) to obtain the target value V Target1. And the target value V Target2 is calculated. When the target temperature T Target there are multiple, for each of a plurality of target temperatures T Target, target value V Target1 and the target value V Target2 is calculated.
 第3構成例におけるヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、図4A及び図4BのステップS404~S409の間)に実行する。このフィードバック制御中に、MCU501は、図6のステップS601、S605およびS606と同様の処理を行って、目標値VTarget1および目標値VTarget2を切り替えてもよい。 The feedback control of the temperature of the heater 127 in the third configuration example will be described. The control circuit 303 executes this feedback control during suction by the user (for example, between steps S404 and S409 in FIGS. 4A and 4B). During this feedback control, the MCU 501 may perform the same processing as in steps S601, S605 and S606 of FIG. 6 to switch between the target value V Target 1 and the target value V Target 2.
 ヒータ127への電力供給を開始するために、DAC801は、メモリ511から目標値VTarget1を読み出し、アナログ形式に変換してスイッチSW3に供給し続ける。また、DAC802は、メモリ511から目標値VTarget2を読み出し、アナログ形式に変換してスイッチSW4に供給し続ける。この時点で、スイッチSW3がオンであり、スイッチSW4がオフであるとする。そのため、目標値VTargetとして目標値VTarget1がコンパレータCMP1およびCMP2に供給される。 In order to start supplying power to the heater 127, the DAC 801 reads the target value V Target1 from the memory 511, converts it into an analog format, and continues to supply it to the switch SW3. Further, the DAC 802 reads the target value V Target 2 from the memory 511, converts it into an analog format, and continues to supply it to the switch SW4. At this point, it is assumed that the switch SW3 is on and the switch SW4 is off. Therefore, the target value V Target1 is supplied to the comparators CMP1 and CMP2 as the target value V Target.
 吸引直後はヒータ127の温度が低く、それゆえ電圧VHTRも低いため、コンパレータCMP1は比較結果としてハイレベルを出力し、コンパレータCMP2は比較結果としてローレベルを出力する。その結果、スイッチSW1の制御端子およびスイッチSW3の制御端子にハイレベルが供給され、スイッチSW1およびSW3がオンになる。また、スイッチSW2の制御端子およびスイッチSW4の制御端子にローレベルが供給され、スイッチSW2およびSW4がオフになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が上昇する。また、目標値VTargetとして目標値VTarget1がコンパレータCMP1およびCMP2に供給され続ける。 Immediately after suction, the temperature of the heater 127 is low, and therefore the voltage V HTR is also low, so that the comparator CMP1 outputs a high level as a comparison result, and the comparator CMP2 outputs a low level as a comparison result. As a result, a high level is supplied to the control terminal of the switch SW1 and the control terminal of the switch SW3, and the switches SW1 and SW3 are turned on. Further, a low level is supplied to the control terminal of the switch SW2 and the control terminal of the switch SW4, and the switches SW2 and SW4 are turned off. As a result, a current flows through the heater 127 and the temperature of the heater 127 rises as in the first configuration example. Further, the target value V Target1 continues to be supplied to the comparators CMP1 and CMP2 as the target value V Target.
 ヒータ127の温度が上昇し、電圧VHTRが目標値VTargetを上回ると、コンパレータCMP1は、比較結果としてローレベルを出力し、コンパレータCMP2は、比較結果としてハイレベルを出力する。その結果、スイッチSW1の制御端子およびスイッチSW3の制御端子にローレベルが供給され、スイッチSW1およびSW3がオフになる。また、スイッチSW2の制御端子およびスイッチSW4の制御端子にハイレベルが供給され、スイッチSW2およびSW4がオンになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が下降する。また、目標値VTargetとして目標値VTarget2がコンパレータCMP1およびCMP2に供給されるようになる。その後、電圧VHTRが目標値VTargetを下回ると、ヒータ127の温度が上昇するようにヒータ127に電力が供給される。 When the temperature of the heater 127 rises and the voltage V HTR exceeds the target value V Target , the comparator CMP1 outputs a low level as a comparison result, and the comparator CMP2 outputs a high level as a comparison result. As a result, a low level is supplied to the control terminal of the switch SW1 and the control terminal of the switch SW3, and the switches SW1 and SW3 are turned off. Further, a high level is supplied to the control terminal of the switch SW2 and the control terminal of the switch SW4, and the switches SW2 and SW4 are turned on. As a result, a current flows through the heater 127 and the temperature of the heater 127 drops as in the first configuration example. Further, the target value V Target2 is supplied to the comparators CMP1 and CMP2 as the target value V Target. After that, when the voltage V HTR falls below the target value V Target , electric power is supplied to the heater 127 so that the temperature of the heater 127 rises.
 以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。第3構成例では、ヒータ127の温度が上昇中であるか下降中であるかに応じて目標値VTargetの値を切り替えるため、一層細やかなフィードバック制御が行える。 As described above, the control circuit 303 controls the electric power supplied to the heater 127 so that the voltage V HTR approaches the target value V Target. In the third configuration example, since the target value V Target value is switched according to whether the temperature of the heater 127 is rising or falling, more detailed feedback control can be performed.
 続いて、図9を参照して、ヒータ127をフィードバック制御するための制御回路303の第4構成例について説明する。第4構成例は、第3構成例と比較して、遅延回路901および902をさらに有する。以下、第3構成例との相違点について主に説明する。 Subsequently, with reference to FIG. 9, a fourth configuration example of the control circuit 303 for feedback control of the heater 127 will be described. The fourth configuration example further includes delay circuits 901 and 902 as compared to the third configuration example. Hereinafter, the differences from the third configuration example will be mainly described.
 遅延回路901は、コンパレータCMP1の出力端子とスイッチSW1の制御端子との間のノードに接続されている。遅延回路902は、コンパレータCMP2の出力端子とスイッチSW2の制御端子との間のノードに接続されている。遅延回路901および902によって、切り替えの速度を調整できる。これにより、ヒータ127の温度変化を滑らかにしたり、スイッチSW1とスイッチSW2の寿命を延長したりすることができる。 The delay circuit 901 is connected to a node between the output terminal of the comparator CMP1 and the control terminal of the switch SW1. The delay circuit 902 is connected to a node between the output terminal of the comparator CMP2 and the control terminal of the switch SW2. The delay circuits 901 and 902 can adjust the speed of switching. As a result, the temperature change of the heater 127 can be smoothed, and the life of the switch SW1 and the switch SW2 can be extended.
 続いて、図10を参照して、ヒータ127をフィードバック制御するための制御回路303の第5構成例について説明する。第5構成例は、第3構成例と比較して、コンデンサCP1およびCP2と、スイッチSW5およびSW6をさらに有する。以下、第3構成例との相違点について主に説明する。 Subsequently, with reference to FIG. 10, a fifth configuration example of the control circuit 303 for feedback control of the heater 127 will be described. The fifth configuration example further includes capacitors CP1 and CP2 and switches SW5 and SW6 as compared with the third configuration example. Hereinafter, the differences from the third configuration example will be mainly described.
 コンデンサCP1は、マイクロコントローラ501(具体的に、DAC801)とスイッチSW3との間のノードに接続されている。スイッチSW5は、コンデンサCP1に並列に接続されている。コンデンサCP1は、DAC801が出力したアナログ形式の目標値VTarget1を保持できる。そのため、MCU501は、DAC801が出力した目標値VTarget1をコンデンサCP1が保持した後、DAC801を停止できる。目標値VTarget1の値が更新された場合に、MCU501は、スイッチSW5をオンにすることによって、コンデンサCP1に保持された値をリセットし、その後、更新後の目標値VTarget1をコンデンサCP1に保持させる。 The capacitor CP1 is connected to a node between the microcontroller 501 (specifically, DAC801) and the switch SW3. The switch SW5 is connected in parallel to the capacitor CP1. The capacitor CP1 can hold the target value V Target1 in the analog format output by the DAC801. Therefore, MCU501 sets the target value V Target1 the DAC801 is output after the capacitor CP1 is held, can be stopped DAC801. When the value of the target value V Target1 is updated, the MCU 501 resets the value held in the capacitor CP1 by turning on the switch SW5, and then holds the updated target value V Target1 in the capacitor CP1. Let me.
 コンデンサCP2は、マイクロコントローラ501(具体的に、DAC802)とスイッチSW4との間のノードに接続されている。スイッチSW6は、コンデンサCP2に並列に接続されている。コンデンサCP2は、DAC802が出力したアナログ形式の目標値VTarget2を保持できる。その他のコンデンサCP2の機能についてはコンデンサCP1の機能と同様である。第5構成例によれば、フィードバック制御におけるMCU501の関与を一層軽減でき、MCU501の負担が一層軽減する。 The capacitor CP2 is connected to a node between the microcontroller 501 (specifically, DAC802) and the switch SW4. The switch SW6 is connected in parallel to the capacitor CP2. The capacitor CP2 can hold the target value V Target 2 in the analog format output by the DAC 802. The other functions of the capacitor CP2 are the same as those of the capacitor CP1. According to the fifth configuration example, the involvement of the MCU 501 in the feedback control can be further reduced, and the burden on the MCU 501 is further reduced.
 続いて、図11を参照して、ヒータ127をフィードバック制御するための制御回路303の第6構成例について説明する。第6構成例は、第3構成例と比較して、コンパレータCMP3およびDAC1101をさらに有する。以下、第3構成例との相違点について主に説明する。 Subsequently, with reference to FIG. 11, a sixth configuration example of the control circuit 303 for feedback control of the heater 127 will be described. The sixth configuration example further includes a comparator CMP3 and DAC1101 as compared with the third configuration example. Hereinafter, the differences from the third configuration example will be mainly described.
 コンパレータCMP3の反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP3の反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP3の非反転入力端子には、アナログ形式の上限値VUpperが供給される。したがって、コンパレータCMP3は、電圧VHTRと上限値VUpperとの比較結果を出力する。コンパレータCMP3からの出力信号は、分圧回路を経由してスイッチSW2の制御端子に供給される。スイッチSW2の制御端子につながる分圧回路は、コンパレータCMP2の出力とコンパレータCMP3の出力との少なくとも一方がローレベルである場合にスイッチSW2の制御端子にローレベルが供給され、コンパレータCMP2の出力とコンパレータCMP3の出力との両方がハイレベルである場合にスイッチSW2の制御端子にハイレベルが供給されるように構成される。 The inverting input terminal of the comparator CMP3 is connected to the end of the heater 127 on the supply line side of the heater drive voltage Vout (that is, the third electrical contact 113). Therefore, the voltage V HTR applied to the heater 127 is supplied to the inverting input terminal of the comparator CMP3. An analog upper limit value V Upper is supplied to the non-inverting input terminal of the comparator CMP3. Therefore, the comparator CMP3 outputs the comparison result between the voltage V HTR and the upper limit value V Upper. The output signal from the comparator CMP3 is supplied to the control terminal of the switch SW2 via the voltage divider circuit. The voltage divider circuit connected to the control terminal of the switch SW2 supplies a low level to the control terminal of the switch SW2 when at least one of the output of the comparator CMP2 and the output of the comparator CMP3 is low level, and the output of the comparator CMP2 and the comparator When both the output of the CMP3 and the output of the CMP3 are high level, the high level is supplied to the control terminal of the switch SW2.
 上限値VUpperは、ヒータ127の温度が230℃以上である場合の電圧VHTRと等しくなるように設定され、メモリ511に格納される。上限値VUpperは、上述のいずれの目標値VTargetよりも高い値となる。監視中の電圧VHTRが上限値VUpper未満である場合に、コンパレータCMP3の出力信号はハイレベルとなる。この場合に、第3構成例と同様にして、ヒータ127に電力が供給される。 The upper limit value V Upper is set to be equal to the voltage V HTR when the temperature of the heater 127 is 230 ° C. or higher, and is stored in the memory 511. The upper limit value V Upper is a value higher than any of the above-mentioned target values V Target. When the monitored voltage V HTR is less than the upper limit V Upper , the output signal of the comparator CMP3 becomes high level. In this case, electric power is supplied to the heater 127 in the same manner as in the third configuration example.
 監視中の電圧VHTRが上限値VUpperに達すると、スイッチSW1の制御端子へローレベルが供給されるとともに、スイッチSW2の制御端子へもローレベルが供給される。そのため、電圧生成回路302からヒータ127への電力の供給が停止する。このように、第6構成例によれば、ヒータ127の過熱が抑制される。 When the monitored voltage V HTR reaches the upper limit value V Upper , the low level is supplied to the control terminal of the switch SW1 and the low level is also supplied to the control terminal of the switch SW2. Therefore, the supply of electric power from the voltage generation circuit 302 to the heater 127 is stopped. In this way, according to the sixth configuration example, overheating of the heater 127 is suppressed.
 図2を用いて上述したように、吸引開始直後のヒータ127の温度上昇率と、吸引中の温度上昇率とは互いに異なっている。要求される温度プロファイルによっては、温度上昇率の場合だけでなく、温度降下率を異ならせる場合もある。そこで、ヒータ127の温度変化率を変更する方法を以下に説明する。 As described above with reference to FIG. 2, the temperature rise rate of the heater 127 immediately after the start of suction and the temperature rise rate during suction are different from each other. Depending on the required temperature profile, not only the temperature rise rate but also the temperature drop rate may be different. Therefore, a method of changing the temperature change rate of the heater 127 will be described below.
 図12のグラフ1200は、ヒータ127の温度変化の一例を示す。グラフ200の横軸は時間を示し、グラフ200の縦軸はヒータ127の温度を示す。時刻t0で目標温度がTGT1からTGT2に切り替わったとする。この場合に、ヒータ127の温度は、時刻t1に温度TGT2となる。一方、時刻t3から時刻t4にかけて、目標温度が5段階に漸増している。そのため、ヒータ127の温度がTGT1からTGT2まで切り替わる時間(t4-t3)は、目標温度を直接切り替えた場合の時間(t1-t0)よりも長くなる。そこで、制御回路303は、ヒータ127の温度上昇率を低減したい場合に、上述の目標値VTargetを漸増する(すなわち、複数段階に分けて増加する)。また、制御回路303は、ヒータ127の温度降下率を低減したい場合に、上述の目標値VTargetを漸減する(すなわち、複数段階に分けて減少する)。この方法は、上述の構成例に何れについても適用可能である。 Graph 1200 in FIG. 12 shows an example of a temperature change of the heater 127. The horizontal axis of the graph 200 shows the time, and the vertical axis of the graph 200 shows the temperature of the heater 127. It is assumed that the target temperature is switched from TGT1 to TGT2 at time t0. In this case, the temperature of the heater 127 becomes the temperature TGT2 at time t1. On the other hand, from time t3 to time t4, the target temperature gradually increases in five stages. Therefore, the time for switching the temperature of the heater 127 from TGT1 to TGT2 (t4-t3) is longer than the time for directly switching the target temperature (t1-t0). Therefore, the control circuit 303 gradually increases the above-mentioned target value V Target (that is, increases in a plurality of stages) when it is desired to reduce the temperature rise rate of the heater 127. Further, the control circuit 303 gradually reduces the above-mentioned target value V Target (that is, decreases in a plurality of stages) when it is desired to reduce the temperature drop rate of the heater 127. This method can be applied to any of the above-mentioned configuration examples.
 ヒータ127の温度変化率を変更する別の方法を以下に説明する。以下に説明する方法では、ヒータ127の温度の上昇させるためにヒータ127に供給する電力を切り替えることによって、ヒータ127の温度上昇率を変更する。 Another method for changing the temperature change rate of the heater 127 will be described below. In the method described below, the temperature rise rate of the heater 127 is changed by switching the electric power supplied to the heater 127 in order to raise the temperature of the heater 127.
 図13を参照して、ヒータ127をフィードバック制御するための制御回路303の第7構成例について説明する。この構成例で、制御回路303は、ヒータ127の温度上昇率を変更可能である。第7構成例は、第3構成例と比較して、方形波発生回路1300をさらに含む。方形波発生回路1300は、入力された信号(例えば、電圧信号)を方形波にして出力する回路である。方形波発生回路1300は、コンパレータCMP1の非反転入力端子に接続されている。そのため、スイッチSW3から供給される目標値VTargetは、方形波発生回路1300を介してコンパレータCMP1の非反転入力端子に入力される。 A seventh configuration example of the control circuit 303 for feedback control of the heater 127 will be described with reference to FIG. In this configuration example, the control circuit 303 can change the temperature rise rate of the heater 127. The seventh configuration example further includes a square wave generation circuit 1300 as compared with the third configuration example. The square wave generation circuit 1300 is a circuit that outputs an input signal (for example, a voltage signal) as a square wave. The square wave generation circuit 1300 is connected to the non-inverting input terminal of the comparator CMP1. Therefore, the target value V Target supplied from the switch SW3 is input to the non-inverting input terminal of the comparator CMP1 via the square wave generation circuit 1300.
 図14を参照して、方形波発生回路1300の具体的な回路構成を示す。方形波発生回路1300は、図14に示すような構成を有する。方形波発生回路1300に入力された目標値VTargetは、グラフ1400に示すような方形波として出力される。そのため、ヒータ電圧VHTRが目標値VTargetよりも低い場合であっても、スイッチSW1は、オンに維持されるわけではなく、オン・オフが周期的に切り替わる。これに応じて、ヒータ127に供給される電力量が低下するため、ヒータ127の温度上昇率が低減する。 A specific circuit configuration of the square wave generation circuit 1300 is shown with reference to FIG. The square wave generation circuit 1300 has a configuration as shown in FIG. The target value V Target input to the square wave generation circuit 1300 is output as a square wave as shown in the graph 1400. Therefore, even when the heater voltage V HTR is lower than the target value V Target , the switch SW1 is not maintained on and is switched on and off periodically. Correspondingly, the amount of electric power supplied to the heater 127 decreases, so that the temperature rise rate of the heater 127 decreases.
 制御回路303は、方形波発生回路1300をバイパスする経路に切り替え可能なパイパス回路1401をさらに含んでもよい。パイパス回路1401は、例えばスイッチSW7で構成される。スイッチSW7がオンになると、コンパレータCMP1の非反転入力端子に目標値VTargetが供給され続ける。そのため、スイッチSW7がオフ(すなわち、方形波が供給される)場合と比較して、ヒータ127に供給される電力量が多くなり、ヒータ127の温度上昇率が増加する。このように、制御回路303は、スイッチSW7のオン・オフを切り替えることによって、ヒータ127の温度上昇率を変化させることが可能になる。 The control circuit 303 may further include a bypass circuit 1401 that can be switched to a path that bypasses the square wave generation circuit 1300. The bypass circuit 1401 is composed of, for example, a switch SW7. When the switch SW7 is turned on, the target value V Target continues to be supplied to the non-inverting input terminal of the comparator CMP1. Therefore, as compared with the case where the switch SW7 is turned off (that is, a square wave is supplied), the amount of electric power supplied to the heater 127 increases, and the temperature rise rate of the heater 127 increases. In this way, the control circuit 303 can change the temperature rise rate of the heater 127 by switching the switch SW7 on and off.
 方形波発生回路1300は、コンパレータCMP1の非反転入力端子に接続されるかわりに、コンパレータCMP1の出力端子(例えば、図13のノード1301の位置)に接続されてもよい。この場合であっても、図14で説明したのと同様にして、ヒータ127の温度上昇率を変化させることが可能になる。 The square wave generation circuit 1300 may be connected to the output terminal of the comparator CMP1 (for example, the position of the node 1301 in FIG. 13) instead of being connected to the non-inverting input terminal of the comparator CMP1. Even in this case, the temperature rise rate of the heater 127 can be changed in the same manner as described with reference to FIG.
 図15を参照して、ヒータ127をフィードバック制御するための制御回路303の第8構成例について説明する。この構成例で、制御回路303は、ヒータ127の温度上昇率を変更可能である。第8構成例は、第3構成例と比較して、スイッチSW8をさらに含む。また、電圧生成回路302は、Vout1およびVout2の2種類の定電圧を生成可能である。ここで、電圧Vout1が電圧Vout2よりも大きいとする。 An eighth configuration example of the control circuit 303 for feedback control of the heater 127 will be described with reference to FIG. In this configuration example, the control circuit 303 can change the temperature rise rate of the heater 127. The eighth configuration example further includes the switch SW8 as compared with the third configuration example. Further, the voltage generation circuit 302 can generate two types of constant voltages, Vout1 and Vout2. Here, it is assumed that the voltage Vout1 is larger than the voltage Vout2.
 制御回路303は、ヒータ127の温度上昇率を高い方の値にしたい場合に、電圧Vout1からヒータ127に電力を供給する。制御回路303は、ヒータ127の温度上昇率を低い方の値にしたい場合に、電圧Vout2からヒータ127に電力を供給する。このようにして、制御回路303は、ヒータ127の温度上昇率を変化させることが可能になる。 The control circuit 303 supplies electric power from the voltage Vout1 to the heater 127 when it is desired to set the temperature rise rate of the heater 127 to the higher value. The control circuit 303 supplies electric power from the voltage Vout2 to the heater 127 when it is desired to set the temperature rise rate of the heater 127 to the lower value. In this way, the control circuit 303 can change the temperature rise rate of the heater 127.
 ヒータ127の温度変化率の変更はどのタイミングで行われてもよい。例えば、目標温度の変更と同時に行われてもよいし、目標温度に向かってヒータ127の温度が変化している途中に行われてもよい。 The temperature change rate of the heater 127 may be changed at any time. For example, it may be performed at the same time as the change of the target temperature, or may be performed while the temperature of the heater 127 is changing toward the target temperature.
 本発明の第1構成例から第8構成例のいずれの制御回路においても、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に、スイッチSW1、スイッチSW2、シャント抵抗Rshunt1、シャント抵抗Rshunt2が設けられている。これに代えて、接地とヒータ127との間に、スイッチSW1、スイッチSW2、シャント抵抗Rshunt1、シャント抵抗Rshunt2を設けてもよい。 In any of the control circuits of the first to eighth configurations of the present invention, the switch SW1, the switch SW2, and the shunt resistor R are located between the supply line of the heater drive voltage Vout from the voltage generation circuit 302 and the heater 127. Shunt1, shunt resistor R Shunt2 is provided. Alternatively, between the ground and the heater 127, the switch SW1, the switch SW2, shunt resistor R Shunt1, may be provided a shunt resistor R shunt2.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiment, and various modifications and changes can be made within the scope of the gist of the invention.
 本願は、2020年3月12日提出の日本国特許出願特願2020-043279を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2020-043279 submitted on March 12, 2020, and all the contents thereof are incorporated herein by reference.

Claims (22)

  1.  エアロゾル源を加熱するためのヒータに電力を供給するための電圧を生成する電圧レギュレータと、
     前記ヒータと前記電圧レギュレータに直列に接続された抵抗と、
     前記ヒータへの電力の供給量を切り替えるトランジスタと、
     前記ヒータに印加されるヒータ電圧を測定するために、前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
     前記オペアンプの出力端子と前記トランジスタの制御端子との間に接続された駆動回路と、を備え、
     前記駆動回路は、
      前記オペアンプの出力信号が閾値よりも大きい場合に、前記出力信号が前記閾値よりも小さくなるまで前記制御端子にオフ信号を供給し続け、
      前記出力信号が前記閾値よりも小さい場合に、前記出力信号が前記閾値よりも大きくなるまで前記制御端子にオン信号を供給し続ける、
    吸引器。
    A voltage regulator that produces a voltage to power the heater to heat the aerosol source,
    A resistor connected in series with the heater and the voltage regulator,
    A transistor that switches the amount of power supplied to the heater,
    An operational amplifier having a non-inverting input terminal connected to the first end of the heater and an inverting input terminal connected to the second end of the heater in order to measure the heater voltage applied to the heater.
    A drive circuit connected between the output terminal of the operational amplifier and the control terminal of the transistor is provided.
    The drive circuit
    When the output signal of the operational amplifier is larger than the threshold value, the off signal is continuously supplied to the control terminal until the output signal becomes smaller than the threshold value.
    When the output signal is smaller than the threshold value, the on signal is continuously supplied to the control terminal until the output signal becomes larger than the threshold value.
    Aspirator.
  2.  前記閾値をデジタル形式で格納するメモリをさらに備え、
     前記駆動回路は、デジタル形式に変換された前記出力信号と、前記メモリに格納された前記閾値とを比較し、比較結果に基づいて、前記制御端子にオン信号を供給するかオフ信号を供給するかを判定する、
    請求項1に記載の吸引器。
    Further equipped with a memory for storing the threshold value in a digital format,
    The drive circuit compares the output signal converted into a digital format with the threshold value stored in the memory, and supplies an on signal or an off signal to the control terminal based on the comparison result. To judge whether
    The aspirator according to claim 1.
  3.  エアロゾル源を加熱するためのヒータに電力を供給するための電圧を生成する電圧生成回路と、
     前記ヒータと前記電圧生成回路との間に接続された抵抗と、
     前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
    を備える吸引器。
    A voltage generator that generates a voltage to power the heater to heat the aerosol source,
    A resistor connected between the heater and the voltage generation circuit,
    A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
    Aspirator equipped with.
  4.  前記閾値をデジタル形式で格納するメモリをさらに備え、
     前記制御回路は、前記メモリに格納された前記閾値をアナログ形式に変換し、アナログ形式の前記閾値と前記監視中のヒータ電圧とを比較することによって前記大小関係を判定する、
    請求項3に記載の吸引器。
    Further equipped with a memory for storing the threshold value in a digital format,
    The control circuit converts the threshold value stored in the memory into an analog format, and determines the magnitude relationship by comparing the threshold value in the analog format with the heater voltage being monitored.
    The aspirator according to claim 3.
  5.  前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における前記ヒータ電圧の値に等しい、請求項4に記載の吸引器。 The threshold is equal to the value of the heater voltage in a state where power is being supplied to the heater from the voltage generation circuit so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. 4. The aspirator according to 4.
  6.  前記エアロゾル源は、前記ヒータが前記吸引器に結合した状態で前記吸引器から取り外し可能であり、
     前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における、新品時の前記ヒータ電圧の値に等しい、
    請求項4に記載の吸引器。
    The aerosol source is removable from the aspirator with the heater coupled to the aspirator.
    The threshold value is the value of the heater voltage at the time of new product in a state where power is supplied to the heater from the voltage generation circuit so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. equal,
    The aspirator according to claim 4.
  7.  前記制御回路は、
      前記監視中のヒータ電圧が前記閾値より小さい場合に、前記監視中のヒータ電圧が前記閾値に達するまで第1量の電力を前記ヒータに供給し続け、
      前記監視中のヒータ電圧が前記閾値より大きい場合に、前記監視中のヒータ電圧が前記閾値に下がるまで、前記ヒータに供給される電力を前記第1量よりも低い第2量に維持する、
    請求項3乃至6の何れか1項に記載の吸引器。
    The control circuit
    When the heater voltage under monitoring is smaller than the threshold value, a first amount of electric power is continuously supplied to the heater until the heater voltage under monitoring reaches the threshold value.
    When the heater voltage under monitoring is greater than the threshold value, the power supplied to the heater is maintained at a second amount lower than the first amount until the heater voltage under monitoring drops to the threshold value.
    The aspirator according to any one of claims 3 to 6.
  8.  前記制御回路は、前記監視中のヒータ電圧が、前記閾値よりも高い上限値を超えた場合に、前記ヒータへの電力の供給を停止する、請求項3乃至7の何れか1項に記載の吸引器。 The control circuit according to any one of claims 3 to 7, wherein the control circuit stops supplying electric power to the heater when the heater voltage under monitoring exceeds an upper limit value higher than the threshold value. Aspirator.
  9.  前記吸引器は、前記エアロゾル源を保持するエアロゾル基材を有するエアロゾル発生物品を挿抜可能な凹部を含み、
     前記ヒータは、前記凹部に挿入された前記エアロゾル発生物品を加熱可能なように構成される、
    請求項3乃至8の何れか1項に記載の吸引器。
    The aspirator includes a recess into which an aerosol generating article having an aerosol substrate holding the aerosol source can be inserted and removed.
    The heater is configured to be capable of heating the aerosol-generating article inserted in the recess.
    The aspirator according to any one of claims 3 to 8.
  10.  前記制御回路は、前記ヒータが前記エアロゾル発生物品を加熱している間に、吸引器の使用状況に基づいて前記閾値を別の値に切り替える、請求項9に記載の吸引器。 The suction device according to claim 9, wherein the control circuit switches the threshold value to another value based on the usage status of the suction device while the heater is heating the aerosol-generating article.
  11.  前記使用状況は、吸引の回数と、吸引の長さと、吸引の量とのうちの少なくとも1つを含む、請求項10に記載の吸引器。 The suction device according to claim 10, wherein the usage state includes at least one of the number of suctions, the length of suction, and the amount of suction.
  12.  前記制御回路は、前記ヒータの温度変化率を変化させるために、前記電圧生成回路が生成する前記電圧の値を別の値に切り替える、請求項3乃至11の何れか1項に記載の吸引器。 The aspirator according to any one of claims 3 to 11, wherein the control circuit switches the value of the voltage generated by the voltage generation circuit to another value in order to change the temperature change rate of the heater. ..
  13.  前記制御回路は、前記ヒータの温度変化率を変化させるために、前記閾値を漸減または漸増する、請求項3乃至11の何れか1項に記載の吸引器。 The aspirator according to any one of claims 3 to 11, wherein the control circuit gradually decreases or gradually increases the threshold value in order to change the temperature change rate of the heater.
  14.  前記制御回路は、
      前記ヒータと前記電圧生成回路との間に接続されたトランジスタを備え、
      前記ヒータ電圧が前記閾値より小さい場合、前記トランジスタをオンにし、
      前記ヒータ電圧が前記閾値より大きい場合、前記トランジスタをオフにする、
    請求項3に記載の吸引器。
    The control circuit
    A transistor connected between the heater and the voltage generation circuit is provided.
    If the heater voltage is less than the threshold, turn on the transistor and turn it on.
    If the heater voltage is greater than the threshold, the transistor is turned off.
    The aspirator according to claim 3.
  15.  前記抵抗は第1抵抗であり、
     前記制御回路は、
      前記電圧生成回路と前記ヒータの第1端との間に直列に接続された前記第1抵抗および第1トランジスタと、
      前記電圧生成回路と前記ヒータの前記第1端との間に直列に接続された第2抵抗および第2トランジスタと、
      前記閾値が供給される非反転入力端子と、前記ヒータの前記第1端に接続された反転入力端子とを有する第1コンパレータと、
      前記ヒータの前記第1端に接続された非反転入力端子と、前記閾値が供給される反転入力端子とを有する第2コンパレータと、を含み、
     前記第2抵抗の抵抗値は、前記第1抵抗の抵抗値よりも高く、
     前記第1コンパレータの出力は、前記第1トランジスタの制御端子に供給され、
     前記第2コンパレータの出力は、前記第2トランジスタの制御端子に供給される、請求項14に記載の吸引器。
    The resistor is the first resistor and
    The control circuit
    The first resistor and the first transistor connected in series between the voltage generation circuit and the first end of the heater,
    A second resistor and a second transistor connected in series between the voltage generation circuit and the first end of the heater,
    A first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater.
    Includes a non-inverting input terminal connected to the first end of the heater and a second comparator having an inverting input terminal to which the threshold is supplied.
    The resistance value of the second resistor is higher than the resistance value of the first resistor.
    The output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
    The suction device according to claim 14, wherein the output of the second comparator is supplied to the control terminal of the second transistor.
  16.  前記抵抗は第1抵抗であり、
     前記制御回路は、
      前記ヒータの第2端に直列に接続された前記第1抵抗および第1トランジスタと、
      前記ヒータの前記第2端に直列に接続された第2抵抗および第2トランジスタと、
      前記閾値が供給される非反転入力端子と、前記ヒータの第1端に接続された反転入力端子とを有する第1コンパレータと、
      前記ヒータの前記第1端に接続された非反転入力端子と、前記閾値が供給される反転入力端子とを有する第2コンパレータと、を含み、
     前記第2抵抗の抵抗値は、前記第1抵抗の抵抗値よりも高く、
     前記第1コンパレータの出力は、前記第1トランジスタの制御端子に供給され、
     前記第2コンパレータの出力は、前記第2トランジスタの制御端子に供給される、請求項14に記載の吸引器。
    The resistor is the first resistor and
    The control circuit
    With the first resistor and the first transistor connected in series to the second end of the heater,
    A second resistor and a second transistor connected in series with the second end of the heater,
    A first comparator having a non-inverting input terminal to which the threshold value is supplied and an inverting input terminal connected to the first end of the heater.
    Includes a non-inverting input terminal connected to the first end of the heater and a second comparator having an inverting input terminal to which the threshold is supplied.
    The resistance value of the second resistor is higher than the resistance value of the first resistor.
    The output of the first comparator is supplied to the control terminal of the first transistor, and is supplied to the control terminal of the first transistor.
    The suction device according to claim 14, wherein the output of the second comparator is supplied to the control terminal of the second transistor.
  17.  前記制御回路は、デジタル形式でメモリに格納された前記閾値をアナログ形式に変換し、アナログ形式の前記閾値を前記第1コンパレータおよび前記第2コンパレータに供給するマイクロコントローラを含み、
     前記メモリは、第1閾値と、前記第1閾値よりも小さい第2閾値とを格納し、
     前記マイクロコントローラは、
      前記閾値として前記第1閾値を前記第1コンパレータに供給し、
      前記閾値として前記第2閾値を前記第2コンパレータに供給し、
     前記制御回路は、第3トランジスタおよび第4トランジスタをさらに含み、
     前記第1閾値は、前記第3トランジスタを通じて前記マイクロコントローラから前記第1コンパレータに供給され、
     前記第2閾値は、前記第4トランジスタを通じて前記マイクロコントローラから前記第2コンパレータに供給され、
     前記第1コンパレータの出力は、前記第3トランジスタの制御端子にさらに供給され、
     前記第2コンパレータの出力は、前記第4トランジスタの制御端子にさらに供給される、請求項15または16に記載の吸引器。
    The control circuit includes a microcontroller that converts the threshold value stored in the memory in a digital format into an analog format and supplies the threshold value in the analog format to the first comparator and the second comparator.
    The memory stores a first threshold value and a second threshold value smaller than the first threshold value.
    The microcontroller
    The first threshold value is supplied to the first comparator as the threshold value, and the first threshold value is supplied to the first comparator.
    The second threshold value is supplied to the second comparator as the threshold value, and the second threshold value is supplied to the second comparator.
    The control circuit further includes a third transistor and a fourth transistor.
    The first threshold is supplied from the microcontroller to the first comparator through the third transistor.
    The second threshold is supplied from the microcontroller to the second comparator through the fourth transistor.
    The output of the first comparator is further supplied to the control terminal of the third transistor.
    The suction device according to claim 15 or 16, wherein the output of the second comparator is further supplied to the control terminal of the fourth transistor.
  18.  前記制御回路は、前記第1コンパレータの非反転入力端子へ入力される電圧または前記第1コンパレータの出力端子から出力される電圧を方形波にする方形波発生回路をさらに含む、請求項15乃至17の何れか1項に記載の吸引器。 The control circuit further includes a square wave generation circuit that converts a voltage input to the non-inverting input terminal of the first comparator or a voltage output from an output terminal of the first comparator into a square wave, according to claims 15 to 17. The aspirator according to any one of the above items.
  19.  前記制御回路は、前記方形波発生回路をバイパスする経路に切り替え可能なパイパス回路をさらに含む、請求項18に記載の吸引器。 The suction device according to claim 18, wherein the control circuit further includes a bypass circuit that can be switched to a path that bypasses the square wave generation circuit.
  20.  エアロゾル源を加熱するためのヒータと、
     前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
     前記ヒータと前記電圧生成回路との間に接続された抵抗と、
     閾値を格納するメモリと、
     前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
    を備える吸引器の製造方法であって、
     前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における、新品時の前記ヒータ電圧の値を決定する工程と、
     前記決定された値を前記閾値として前記メモリに格納する工程と、
    を有する、製造方法。
    A heater for heating the aerosol source and
    A voltage generation circuit that generates a voltage to supply electric power to the heater,
    A resistor connected between the heater and the voltage generation circuit,
    Memory to store the threshold and
    A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the monitored heater voltage and the threshold value.
    It is a manufacturing method of an aspirator equipped with
    A step of determining the value of the heater voltage at the time of a new product in a state where electric power is supplied from the voltage generation circuit to the heater so that the temperature of the heater is included in a range in which an aerosol can be generated from the suction device. ,
    A step of storing the determined value as the threshold value in the memory, and
    A manufacturing method.
  21.  エアロゾル源を加熱するためのヒータと、
     前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
     前記ヒータと前記電圧生成回路との間に接続された抵抗と、
     閾値を格納するメモリと、
     前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
    を備える吸引器であって、
     前記閾値は、前記ヒータの温度が前記吸引器からエアロゾルを生成可能な範囲に含まれるように前記電圧生成回路から前記ヒータに電力が供給されている状態における前記ヒータ電圧の値に等しく、
     前記閾値は、前記吸引器の各構成要素を有する他の吸引器の前記閾値と異なる、吸引器。
    A heater for heating the aerosol source and
    A voltage generation circuit that generates a voltage to supply electric power to the heater,
    A resistor connected between the heater and the voltage generation circuit,
    Memory to store the threshold and
    A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
    It is a suction device equipped with
    The threshold is equal to the value of the heater voltage in a state where power is being supplied to the heater from the voltage generation circuit so that the temperature of the heater is within a range in which an aerosol can be generated from the aspirator.
    The aspirator, wherein the threshold is different from the threshold of another aspirator having each component of the aspirator.
  22.  エアロゾル源を加熱するためのヒータと、
     前記ヒータに電力を供給するための電圧を生成する電圧生成回路と、
     前記ヒータと前記電圧生成回路との間に接続された抵抗と、
     閾値を格納するメモリと、
     前記ヒータに印加されているヒータ電圧を監視し、監視中のヒータ電圧と前記閾値との大小関係に基づいて、前記電圧生成回路から前記ヒータに供給される電力を制御する制御回路と、
    を備える吸引器。
    A heater for heating the aerosol source and
    A voltage generation circuit that generates a voltage to supply electric power to the heater,
    A resistor connected between the heater and the voltage generation circuit,
    Memory to store the threshold and
    A control circuit that monitors the heater voltage applied to the heater and controls the power supplied from the voltage generation circuit to the heater based on the magnitude relationship between the heater voltage being monitored and the threshold value.
    Aspirator equipped with.
PCT/JP2021/005000 2020-03-12 2021-02-10 Inhaler and method for manufacturing inhaler WO2021181993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505852A JP7345629B2 (en) 2020-03-12 2021-02-10 Suction device and suction device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-043279 2020-03-12
JP2020043279 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021181993A1 true WO2021181993A1 (en) 2021-09-16

Family

ID=77671545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005000 WO2021181993A1 (en) 2020-03-12 2021-02-10 Inhaler and method for manufacturing inhaler

Country Status (2)

Country Link
JP (1) JP7345629B2 (en)
WO (1) WO2021181993A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925228A (en) * 2021-10-26 2022-01-14 陕西亚成微电子股份有限公司 Electronic atomizer control system and method and electronic atomizer
CN114158790A (en) * 2022-01-14 2022-03-11 成都允芯中微科技有限公司 Electronic cigarette chip circuit capable of setting output

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524835A (en) * 2010-04-30 2013-06-20 ブレック、エルエルシー Electronic smoking equipment
JP2016517270A (en) * 2013-03-15 2016-06-16 アール・ジエイ・レイノルズ・タバコ・カンパニー Heating control arrangement for electronic smoking articles and related systems and methods
US20160360786A1 (en) * 2015-06-10 2016-12-15 Evolv, Llc Electronic vaporizer having reduced particle size
JP2018505696A (en) * 2015-01-22 2018-03-01 卓尓悦(常州)電子科技有限公司 Temperature control system, control method therefor, and electronic cigarette provided with temperature control system
JP2019000105A (en) * 2017-06-14 2019-01-10 研能科技股▲ふん▼有限公司 Electronic cigarette driving module
JP2019524069A (en) * 2016-06-29 2019-09-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム An electrically operated aerosol generation system with a rechargeable power source
JP6613008B1 (en) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 Control device for aerosol inhaler and aerosol inhaler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524835A (en) * 2010-04-30 2013-06-20 ブレック、エルエルシー Electronic smoking equipment
JP2016517270A (en) * 2013-03-15 2016-06-16 アール・ジエイ・レイノルズ・タバコ・カンパニー Heating control arrangement for electronic smoking articles and related systems and methods
JP2018505696A (en) * 2015-01-22 2018-03-01 卓尓悦(常州)電子科技有限公司 Temperature control system, control method therefor, and electronic cigarette provided with temperature control system
US20160360786A1 (en) * 2015-06-10 2016-12-15 Evolv, Llc Electronic vaporizer having reduced particle size
JP2019524069A (en) * 2016-06-29 2019-09-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム An electrically operated aerosol generation system with a rechargeable power source
JP2019000105A (en) * 2017-06-14 2019-01-10 研能科技股▲ふん▼有限公司 Electronic cigarette driving module
JP6613008B1 (en) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 Control device for aerosol inhaler and aerosol inhaler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925228A (en) * 2021-10-26 2022-01-14 陕西亚成微电子股份有限公司 Electronic atomizer control system and method and electronic atomizer
CN114158790A (en) * 2022-01-14 2022-03-11 成都允芯中微科技有限公司 Electronic cigarette chip circuit capable of setting output
CN114158790B (en) * 2022-01-14 2023-10-20 成都允芯中微科技有限公司 Electronic cigarette chip circuit capable of setting output

Also Published As

Publication number Publication date
JPWO2021181993A1 (en) 2021-09-16
JP7345629B2 (en) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2021181993A1 (en) Inhaler and method for manufacturing inhaler
KR102317154B1 (en) Power supply unit for aerosol inhaler and aerosol inhaler
JP6792907B2 (en) Aerosol generator and method and program to operate it
US11116256B1 (en) Inhalation device controller
CN113508933B (en) Aerosol inhaler and power supply unit for aerosol inhaler
JP2020195295A (en) Control device for aerosol suction device and aerosol suction device
EP3979456B1 (en) Power supply unit for aerosol generation device
JP6795271B2 (en) Aerosol generator and method and program to operate it
JP6869436B2 (en) Aerosol generator and method and program to operate it
JP6957775B2 (en) Controller for aspirator
EP3871518B1 (en) Power supply unit for aerosol inhaler and aerosol inhaler
JP6869411B1 (en) Controller for aspirator
JP6813701B2 (en) Control device for aerosol aspirator
TWI744466B (en) Aerosol generating device, and method for manufacturing the same
JP2021065201A (en) Control device for aerosol suction tool
KR102503546B1 (en) A portable electronic device operated by discharge of a battery and a method for preventing deterioration of battery performance of the portable electronic device
JP6855611B1 (en) Controller for aspirator
TWI739992B (en) Aerosol generating device, and method and computer program product for activating the same
EP3979457A1 (en) Power supply unit for aerosol generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767612

Country of ref document: EP

Kind code of ref document: A1