WO2021181935A1 - Information processing device, control method, and information processing program - Google Patents

Information processing device, control method, and information processing program Download PDF

Info

Publication number
WO2021181935A1
WO2021181935A1 PCT/JP2021/003200 JP2021003200W WO2021181935A1 WO 2021181935 A1 WO2021181935 A1 WO 2021181935A1 JP 2021003200 W JP2021003200 W JP 2021003200W WO 2021181935 A1 WO2021181935 A1 WO 2021181935A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
observers
display
width
display device
Prior art date
Application number
PCT/JP2021/003200
Other languages
French (fr)
Japanese (ja)
Inventor
優斗 小林
紀晃 高橋
孝明 鈴木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021181935A1 publication Critical patent/WO2021181935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers

Definitions

  • the present invention relates to an information processing device, a control method, and an information processing program.
  • a parallax barrier method and a lenticular lens method are known as a method for displaying a stereoscopic image by the naked eye without using a tool such as eyeglasses.
  • a device for displaying a stereoscopic image such as a parallax barrier or a lenticular lens is superimposed on an image display panel that displays a parallax image for stereoscopic vision, and the binocular parallax is used. Make the observer see the stereoscopic image.
  • the present disclosure proposes an information processing device, a control method, and an information processing program capable of displaying a stereoscopic image to a plurality of observers.
  • the information processing device of one form according to the present disclosure includes a barrier unit in which light-shielding regions and slits are alternately arranged, and a width control unit for controlling the width of the light-shielding region.
  • the width control unit blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device displaying the stereoscopic image. Control the width of the area.
  • FIG. 1 is an explanatory diagram for explaining binocular parallax and motor parallax.
  • an observer observes a lighting fixture O2 which is a three-dimensional object and a sofa O1 which is a three-dimensional object located behind the lighting fixture O2.
  • binocular parallax Since the human eye is attached to the left and right, when a certain object is viewed with both eyes, an image of the object slightly displaced in the horizontal direction is projected on the retinas of the left and right eyes. This deviation is called binocular parallax. Humans perceive an object as a deep three-dimensional object by processing binocular parallax in the brain. In this way, binocular parallax causes stereoscopic perception due to the difference in the appearance of the left and right eyes.
  • the observer when the observer observes the luminaire O2 and the sofa O1 located behind the luminaire O2 from the front direction, the retina of the observer's right eye is in front of the sofa O1.
  • the image G14 in which the lighting fixture O2 is located is projected on the left end.
  • an image G13 in which the position of the lighting fixture O2 is located to the right of the sofa O1 is projected on the retina of the observer's left eye as compared with the image G14.
  • the observer perceives the luminaire O2 and the sofa O1 located behind the luminaire O2 as a three-dimensional object with depth by processing the image G13 of the left eye and the image G14 of the right eye in the brain. ..
  • motion parallax When a moving observer is gazing at an object, an object farther than the gaze object appears to be moving in the same direction as the observer, and an object closer than the gaze object is. , Seems to be moving in the opposite direction to the observer. This is called motor parallax. Humans perceive an object as a deep three-dimensional object by processing motion parallax in the brain. In this way, motion parallax causes stereoscopic perception by moving the positions of the left and right eyes (viewpoint positions).
  • an observer at a position displaced from the front of the display device to the left by a predetermined distance is gazing at the sofa O1, it is closer than the sofa O1 to be gazed at (
  • the luminaire O2 in the foreground) appears to be moving to the right opposite to the observer's moving direction.
  • an image G12 in which the position of the luminaire O2 is located to the right of the sofa O1 is projected on the retina of the observer's right eye as compared with the image G14 of the right eye observed from the front direction.
  • an image G11 in which the position of the luminaire O2 is located to the right of the sofa O1 is projected as compared with the image G13 of the left eye observed from the front direction.
  • an observer at a position displaced from the front of the display device to the right by a predetermined distance is gazing at the sofa O1, it is closer than the sofa O1 to be gazed at (
  • the luminaire O2 in the foreground) appears to be moving to the left, which is opposite to the observer's moving direction.
  • an image G16 in which the position of the luminaire O2 is located to the left of the sofa O1 is projected on the retina of the observer's right eye as compared with the image G14 of the right eye observed from the front direction.
  • an image G15 in which the position of the luminaire O2 is located to the left with respect to the sofa O1 is projected as compared with the image G13 of the left eye observed from the front direction.
  • FIG. 2 is an explanatory diagram for explaining a method of reproducing motion parallax according to the prior art.
  • FIG. 2 describes a method in which a display device (hereinafter, also referred to as a display device) that displays a stereoscopic image by a parallax barrier method reproduces motion parallax.
  • FIG. 2 is a top view of a display device using the parallax barrier method.
  • a display device using the parallax barrier method is composed of a display panel (hereinafter, also referred to as an image panel) for displaying an image for stereoscopic viewing and a parallax barrier.
  • the parallax barrier has a function of blocking the light propagating from the display panel displaying the stereoscopic image to the viewpoint position of the observer.
  • the parallax barrier is a striped pattern in which slits and light-shielding regions (barriers) are alternately arranged.
  • the parallax barrier may be realized by a light-shielding plate in which slits and light-shielding areas are alternately provided.
  • the parallax barrier may be realized by an image.
  • the parallax barrier may be realized by a black striped image corresponding to the shading area.
  • the image display panel has a plurality of vertically long parallax images (for example, a parallax image corresponding to the viewpoint position of the left eye and a parallax image corresponding to the viewpoint position of the right eye) for each of two or more viewpoint positions. It is divided into sliced images, and the sliced images for each divided viewpoint position are displayed alternately side by side.
  • the parallax barrier is placed in front of the image display panel. The observer of the display device observes the display panel through the slit row of the parallax barrier.
  • the display device using the parallax barrier method creates binocular parallax by utilizing the fact that the line-of-sight angle of the observer passing through the slit of the parallax barrier is different between the two eyes, and the viewer can see the parallax. Produces stereoscopic perception.
  • the display device displays a parallax image corresponding to all viewpoint positions so that different stereoscopic images can be visually recognized at the same time from all viewpoint positions included in a visible range (hereinafter, also referred to as a viewing area). Display on the display panel all at once.
  • the viewing range of the display device includes the viewpoint positions for eight viewpoints.
  • the display device displays the parallax images for the eight viewpoints generated by photographing the lighting fixture O2 shown in FIG. 1 and the sofa O1 located at the back of the lighting fixture O2 from different eight viewpoints on the display panel.
  • the display device divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and displays the divided slice images for each viewpoint position alternately on the display panel. For example, as shown in the central portion of the display panel of FIG. 2, the display device displays slice images a to h of the parallax images for eight viewpoints from the left a, b, c, d, e, f, g, h. Display them in order on the display panel.
  • the display device displays a parallax image G24 (the same image as the image G14 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the observer who observes the display device from the front direction on the display panel. indicate. More specifically, the display device divides the parallax image G24 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image d of the parallax image G24 on the display panel.
  • the right eye of the observer who observes the display device from the front side observes the slice image of the parallax image G24 including the slice image d through the slit.
  • the observer's right eye visually recognizes the parallax image G24 by processing the sliced image of the observed parallax image G24 in the brain.
  • the display device displays a parallax image G23 (the same image as the image G13 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from the front direction on the display panel. More specifically, the display device divides the parallax image G23 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image e of the parallax image G23 on the display panel. At this time, the left eye of the observer who observes the display device from the front direction observes the slice image of the parallax image G23 including the slice image e through the slit. The left eye of the observer visually recognizes the parallax image G23 by processing the sliced image of the observed parallax image G23 in the brain.
  • a parallax image G23 the same image as the image G13 shown in FIG. 1
  • the display device divides the parallax image G23 into
  • the display device reproduces the stereoscopic perception by binocular parallax by having the observer simultaneously observe the parallax image G24 of the right eye and the parallax image G23 of the left eye.
  • the display device is a differential image G22 corresponding to the viewpoint position of the right eye of the observer who observes the display device from a position displaced from the front of the display device to the left by a predetermined distance. (The same image as the image G12 shown in FIG. 1) is displayed on the display panel. More specifically, the display device divides the parallax image G22 into a plurality of vertically long slice images, and displays the divided slice images in an arrangement every eight slice images on the display panel. For example, the display device displays the slice image g of the parallax image G22 on the display panel.
  • the right eye of the observer observing the display device from a position displaced from the front of the display device to the left by a predetermined distance observes the slice image of the parallax image G22 including the slice image g through the slit.
  • the observer's right eye visually recognizes the parallax image G22 by processing the sliced image of the observed parallax image G22 in the brain.
  • the display device is a parallax image G21 (same as the image G11 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from a position displaced from the front of the display device to the left by a predetermined distance. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G21 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image h of the parallax image G21 on the display panel.
  • the left eye of the observer observing the display device from a position displaced from the front of the display device to the left by a predetermined distance observes the slice image of the parallax image G21 including the slice image h through the slit.
  • the left eye of the observer visually recognizes the parallax image G21 by processing the sliced image of the observed parallax image G21 in the brain.
  • the display device corresponds to the movement of the viewpoint from the front of the display device to the left with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the left.
  • the display device is a parallax image G26 corresponding to the viewpoint position of the right eye of the observer who observes the display device from a position displaced by a predetermined distance from the front of the display device to the right. (The same image as the image G16 shown in FIG. 1) is displayed on the display panel. More specifically, the display device divides the parallax image G26 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image a of the parallax image G26 on the display panel.
  • the right eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G26 including the slice image a through the slit.
  • the observer's right eye visually recognizes the parallax image G26 by processing the sliced image of the observed parallax image G26 in the brain.
  • the display device is a parallax image G25 (same as the image G15 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G25 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image b of the parallax image G25 on the display panel.
  • the left eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G25 including the slice image b through the slit.
  • the left eye of the observer visually recognizes the parallax image G25 by processing the sliced image of the observed parallax image G25 in the brain.
  • the display device corresponds to the movement of the viewpoint from the front of the display device to the right with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the right.
  • the display device shown in FIG. 2 has a drawback that the number of pixels allocated to one viewpoint is small because the amount of image information displayed at the same time is large. That is, the display device shown in FIG. 2 has a drawback that the resolution per viewpoint visually recognized by the observer is low. In other words, the display device shown in FIG. 2 requires an ultra-high resolution display panel in order to cover the drawback that the resolution per viewpoint viewed by the observer is low.
  • FIG. 3 is an explanatory diagram for explaining a method of reproducing motion parallax according to the prior art.
  • FIG. 3 describes another method in which the display device reproduces motion parallax by the parallax barrier method.
  • the display device shown in FIG. 3 is a display device shown in FIG. 2 in that the parallax image is displayed according to the viewpoint position of the observer instead of simultaneously displaying the parallax image corresponding to all the viewpoint positions included in the visual range. Different from.
  • FIG. 3 is a top view of the display device.
  • the point that the display device is composed of the display panel and the parallax barrier and the point that the parallax barrier is arranged in front of the display panel are the same as those in FIG.
  • the display device shown in FIG. 3 differs from the display device of FIG. 2 in that it includes a tracker for detecting the viewpoint position of the observer.
  • the display device displays the parallax images for the two viewpoints generated by photographing the lighting fixture O2 shown in FIG. 1 and the sofa O1 located behind the lighting fixture O2 from different viewpoints on the display panel.
  • the display device displays on the display panel parallax images for two viewpoints according to the viewpoint position of the observer detected by the tracker. For example, the display device divides the generated parallax image into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images.
  • the display device is a parallax image G33 (image G13 shown in FIG. 1) corresponding to the viewpoint position of the observer's left eye when the observer is located in front of the display device. (Same image as) is displayed on the display panel. More specifically, the display device divides the parallax image G33 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image e of the parallax image G33 on the display panel.
  • the left eye of the observer who observes the display device from the front of the display device observes the slice image of the parallax image G33 including the slice image e through the slit.
  • the left eye of the observer visually recognizes the parallax image G33 by processing the sliced image of the observed parallax image G33 in the brain.
  • the display device when the observer is located in front of the display device, the display device is a parallax image G34 (same as the image G14 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the observer located in front of the display device. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G34 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image d of the parallax image G34 on the display panel.
  • the right eye of the observer who observes the display device from the front of the display device observes the slice image of the parallax image G34 including the slice image d through the slit.
  • the observer's right eye visually recognizes the parallax image G34 by processing the sliced image of the observed parallax image G34 in the brain.
  • the display device when the observer is located in front of the display device, the display device simultaneously displays the parallax image G34 of the right eye and the parallax image G33 of the left eye with respect to the observer located in front of the display device. By observing, stereoscopic perception by binocular parallax is reproduced.
  • the display device when the observer is located at a position displaced by a predetermined distance from the front of the display device to the right, the display device is predetermined from the front of the display device to the right.
  • a parallax image G35 (the same image as the image G15 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer located at a position displaced by a distance is displayed on the display panel. More specifically, the display device divides the parallax image G35 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image b of the parallax image G35 on the display panel.
  • the left eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G35 including the slice image b through the slit.
  • the left eye of the observer visually recognizes the parallax image G35 by processing the sliced image of the observed parallax image G35 in the brain.
  • the display device when the observer is located at a position displaced by a predetermined distance from the front of the display device to the right, the display device is located at a location displaced by a predetermined distance from the front of the display device to the right.
  • a displacement image G36 (the same image as the image G16 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the person is displayed on the display panel.
  • the display device divides the parallax image G36 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image a of the parallax image G36 on the display panel.
  • the right eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G36 including the slice image a through the slit.
  • the observer's right eye visually recognizes the parallax image G36 by processing the sliced image of the observed parallax image G36 in the brain.
  • the display device corresponds to the movement of the viewpoint from the front of the display device to the right with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the right.
  • the display device shown in FIG. 3 does not require an ultra-high resolution display panel because it only needs to display parallax images for two viewpoints corresponding to the viewpoint positions detected by the tracker. Is.
  • the display device shown in FIG. 3 has a drawback that it can reproduce stereoscopic perception by binocular parallax and motion parallax only for one observer.
  • the display device shown in FIG. 3 has a drawback that it cannot simultaneously reproduce stereoscopic perception due to binocular parallax and motion parallax for a plurality of observers.
  • FIG. 4 is an explanatory diagram for explaining an outline of information processing according to the embodiment of the present disclosure.
  • the information processing device 100 shown in FIG. 5 described later controls the width of the parallax barrier based on the viewpoint positions of the two observers (U1 and U2) of the display device.
  • the display device shown in FIG. 4 displays a stereoscopic image by a parallax barrier method.
  • the display device shown in FIG. 4 has a configuration in which two layers of liquid crystal panels are laminated. Of the two-layer liquid crystal panel, one liquid crystal panel (hereinafter, also referred to as an image panel) corresponds to an image for stereoscopic viewing, and the other liquid crystal panel (hereinafter, also referred to as a barrier panel) corresponds to a parallax barrier. Used to display an image.
  • the information processing apparatus 100 displays a barrier for four viewpoints on the barrier panel. Further, the information processing apparatus 100 displays the parallax images for the four viewpoints generated by photographing from the four different viewpoints on the display panel. Specifically, the information processing apparatus 100 calculates the width of the slice image when dividing each parallax image for each viewpoint position into a plurality of vertically long slice images based on the barrier width of the barrier for four viewpoints. do. Subsequently, the information processing device 100 divides the parallax image for each viewpoint position into slice images having a calculated width. Subsequently, the information processing apparatus 100 alternately arranges sliced images for each divided viewpoint position and displays them on the display panel. Here, it is assumed that the image panel has a resolution for four viewpoints, which is sufficient for displaying a slice image divided into long strips for four viewpoints.
  • the information processing device 100 displays the parallax image A corresponding to the viewpoint position of the left eye of the observer U1 located in front of the display device on the display panel. More specifically, the information processing apparatus 100 divides the parallax image A into slice images having a width for a plurality of four viewpoints long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 arranges the slice images A 1 , A 2 , A 3 , A 4 , ... Of the parallax image A every four slice images and displays them on the image panel.
  • the information processing device 100 displays the parallax image B corresponding to the viewpoint position of the right eye of the observer U1 located in front of the display device on the display panel. More specifically, the information processing apparatus 100 divides the parallax image B into slice images having a width for a plurality of four viewpoints that are long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 has sliced images B 1 , B 2 , B 3 , B 4 , ... Of the parallax image B, and slice images A 1 , A 2 , A 3 , A 4 , ... of the parallax image A, respectively. Display them on the image panel side by side on the right.
  • the information processing device 100 displays a parallax image C corresponding to the viewpoint position of the left eye of the observer U2 who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance on the display panel. .. More specifically, the information processing apparatus 100 divides the parallax image C into slice images having a width for a plurality of four viewpoints that are long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 places the slice images C 1 , C 2 , C 3 , ... Of the parallax image C on the right side of each of the slice images B 1 , B 2 , B 3 , B 4, ... of the parallax image B. Display them side by side on the image panel.
  • the information processing device 100 displays a parallax image D corresponding to the viewpoint position of the right eye of the observer U2 who observes the display device from a position displaced to the right by a predetermined distance from the front of the display device on the display panel. .. More specifically, the information processing apparatus 100 divides the parallax image D into slice images having a width for a plurality of four viewpoints long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 arranges the slice images D 1 , D 2 , D 3 , ... Of the parallax image D to the right of the slice images C 1 , C 2 , C 3 , ... of the parallax image C for the image. Display on the panel.
  • the second observer U2 becomes the observer U1.
  • the viewpoint position where different stereoscopic images can be visually recognized is limited.
  • the slice image A 1 of the parallax image A including a slice image A 2, A 2, A 3, A 4 Observe ,.
  • the observer U1 visually recognizes the parallax image A by processing the slice images A 1 , A 2 , A 3 , A 4 , ... Of the observed parallax image A in the brain.
  • the slice image B 1 of the parallax image B including a slice image B 2, B 2, B 3, B 4 Observe ,. Further, the observer U1 visually recognizes the parallax image B by processing the slice images B 1 , B 2 , B 3 , B 4 , ... Of the observed parallax image B in the brain.
  • the viewpoint positions at which the second observer U2 can observe an image different from that of the observer U1 are the slice images C 1 , C 2 , C 3 , ... Of the parallax image C and the slice image D 1 of the parallax image D. It is limited to the viewpoint position where D 2 , D 3, ... Can be observed. Therefore, the viewpoint position of the second observer U2 can observe the slice images C 1 , C 2 , C 3 , ... Of the parallax image C and the slice images D 1 , D 2 , D 3 , ... Of the parallax image D.
  • the information processing apparatus 100 cannot make two observers visually recognize different stereoscopic images with the barrier for four viewpoints and the parallax image for four viewpoints, the barrier and the display image are used for the five viewpoints. Switch.
  • the information processing apparatus 100 displays a barrier for five viewpoints on the barrier panel. Further, the information processing apparatus 100 displays the parallax images for the five viewpoints generated by photographing from the five different viewpoints on the display panel. Specifically, the information processing apparatus 100 calculates the width of the slice image when dividing each parallax image for each viewpoint position into a plurality of vertically long slice images based on the barrier width of the barrier for five viewpoints. do. Subsequently, the information processing device 100 divides the parallax image for each viewpoint position into slice images having a calculated width. Subsequently, the information processing apparatus 100 alternately arranges sliced images for each divided viewpoint position and displays them on the display panel. Here, it is assumed that the image panel has a resolution for five viewpoints, which is sufficient for displaying a sliced image divided into long strips for five viewpoints.
  • the information processing device 100 divides the parallax image E corresponding to the viewpoint position of the left eye of the observer U1 located in front of the display device into slice images having a width for a plurality of five viewpoints long in the vertical direction. Then, the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images E 1 , E 2 , E 3 , ... Of the parallax image E every 5 slice images and displays them on the image panel.
  • the information processing device 100 divides the parallax image F corresponding to the viewpoint position of the right eye of the observer U1 located in front of the display device into a plurality of slice images having a width for five viewpoints long in the vertical direction and divides the image F.
  • the sliced images are arranged every 5 sliced images and displayed on the display panel.
  • the information processing apparatus 100 arranges the slice images F 1 , F 2 , F 3 , ... Of the parallax image F on the right side of each of the slice images E 1 , E 2 , E 3, ... of the parallax image E for the image. Display on the panel.
  • the information processing device 100 has a plurality of vertically long parallax images G corresponding to the first viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images G 1 , G 2 , G 3 , ... Of the parallax image G on the right side of the slice images F 1 , F 2 , F 3 , ... of the parallax image F for the image. Display on the panel.
  • the information processing device 100 has a plurality of vertically long parallax images H corresponding to the second viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images H 1 , H 2 , H 3 , ... Of the parallax image H to the right of each of the slice images G 1 , G 2 , G 3, ... Display on the panel.
  • the information processing device 100 has a plurality of vertically long parallax images I corresponding to the third viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images I 1 , I 2 , I 3 , ... Of the parallax image I on the right side of each of the slice images H 1 , H 2 , H 3, ... of the parallax image H for the image. Display on the panel.
  • the left eye of the viewer U1 observing the display panel through the barrier for five viewpoints from the front of the display device a slice image of the parallax image E containing slice image E 2 E 1, E 2, E 3, E Observe 4 , ... Further, the observer U1 visually recognizes the parallax image E by processing the slice images E 1 , E 2 , E 3 , E 4 , ... Of the observed parallax image E in the brain.
  • slice images F parallax image F comprising slice images F 2 1, F 2, F 3, F 4 Observe ,. Further, the observer U1 visually recognizes the parallax image F by processing the slice images F 1 , F 2 , F 3 , F 4 , ... Of the observed parallax image F in the brain.
  • the viewpoint positions where the second observer U2 can observe an image different from that of the first observer U1 are the slice images C 1 , C 2 , C 3 , of the parallax image C when the parallax image C is for four viewpoints. ... and the slice images D 1 , D 2 , D 3 , ... And the parallax image D from the viewpoint position where (1) the slice images G 1 , G 2 , G 3 , ... And the parallax image H can be observed. Images H 1 , H 2 , H 3 , ..., Or (2) Slice images of parallax image H H 1 , H 2 , H 3 , ...
  • the information processing device 100 controls the barrier width and the displayed image based on the viewpoint positions of the plurality of observers.
  • the information processing apparatus 100 can make a plurality of observers observe different stereoscopic images at the same time.
  • the information processing device 100 can make a plurality of observers observe different stereoscopic images at the same time, for example, it is possible to simultaneously reproduce the motion parallax according to each position for a plurality of observers. can. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
  • the information processing device 100 can display a stereoscopic image to a plurality of observers with the minimum necessary resolution (the number of pixels corresponding to the number of viewpoints corresponding to the number of observers). For example, when there are two observers, the information processing apparatus 100 can reproduce binocular parallax and motion parallax for two people at the same time by using a display panel having a resolution of 4 to 6 viewpoints. Therefore, the information processing apparatus 100 is more efficient for a plurality of observers than the conventional method using a fixed width barrier by controlling the variable width barrier according to the viewpoint positions of the plurality of observers. A stereoscopic image can be displayed.
  • FIG. 5 is a block diagram showing the functions of the information processing apparatus according to the embodiment.
  • the observer position sensing unit shown in FIG. 5 detects the positions (viewpoint positions) of the left and right eyes of each of two or more observers (hereinafter, also referred to as a plurality of observers) of the display device that displays a stereoscopic image. For example, the observer position sensing unit detects the viewpoint position of each of the plurality of observers using a tracker. Subsequently, the observer position sensing unit identifies the left and right eye positions (viewpoint positions) of each of the plurality of observers based on the detection results of detecting the eye positions of the plurality of observers.
  • the observer position sensing unit specifies information such as the eye position of a plurality of observers and the distance from the display device based on the detection result, and the viewpoint position of each of the plurality of observers based on the specified information. To identify. Subsequently, when the observer position sensing unit specifies the viewpoint position of each of the plurality of observers, the observer position sensing unit acquires the position information (viewpoint position information) of the viewpoint position of each of the specified plurality of observers.
  • the slice image drawing unit acquires the viewpoint position information of each of the plurality of observers from the observer position sensing unit. Subsequently, the slice image drawing unit generates a parallax image corresponding to each of the viewpoint positions of the plurality of observers based on the viewpoint position information of each of the plurality of observers. For example, the slice image drawing unit generates a parallax image for the left eye corresponding to the viewpoint position of the left eye of each of the plurality of observers. Further, the slice image drawing unit generates a parallax image for the right eye corresponding to the viewpoint position of the right eye of each of the plurality of observers.
  • the image panel / barrier panel display image calculation unit acquires the viewpoint position information of each of the plurality of observers from the observer position sensing unit. Subsequently, the calculation unit calculates the information of the barrier image displayed by the barrier panel based on the acquired viewpoint position information of each of the plurality of observers. Specifically, the calculation unit controls the width of the barrier displayed by the barrier panel based on the viewpoint position information of each of the plurality of observers. For example, the calculation unit calculates the distance between the two observers based on the viewpoint position information of each of the two observers among the plurality of observers.
  • the calculation unit is based on the minimum value of the observation competition rate for each pitch of the slit regarding the distance between the two observers and whether or not the two observers can visually recognize different stereoscopic images at the same time. , Determine the width of the barrier displayed by the barrier panel. Subsequently, the calculation unit generates a barrier image (hereinafter, also referred to as barrier panel data) corresponding to the barrier having the determined width.
  • a barrier image hereinafter, also referred to as barrier panel data
  • the calculation unit acquires parallax images corresponding to the viewpoint positions of each of the plurality of observers from the slice image drawing unit. Subsequently, the calculation unit calculates the width of the slice image obtained by vertically cutting the parallax image acquired from the slice image drawing unit based on the viewpoint position information of each of the plurality of observers and the determined width of the barrier. .. Further, for example, the calculation unit calculates a display position for displaying the slice image on the image panel based on the viewpoint position information of each of the plurality of observers and the determined width of the barrier.
  • the calculation unit calculates the width and display position of the slice image
  • the image for displaying the parallax image acquired from the slice image drawing unit on the image panel with the calculated width and display position of the slice image (hereinafter, the image panel). (Also called data) is generated.
  • the slice image drawing unit and the image panel / barrier panel display image calculation unit correspond to the generation unit 152 of the information processing device 100, which will be described later.
  • the barrier panel control unit acquires the barrier panel data from the calculation unit. Subsequently, the barrier panel control unit controls to display the barrier panel data on the barrier panel by transmitting the control signal for the barrier panel to the barrier panel when the barrier panel data is acquired.
  • the image panel control unit acquires image panel data from the calculation unit. Subsequently, the image panel control unit controls to display the image panel data on the image panel by transmitting the control signal for the image panel to the image panel when the image panel data is acquired.
  • the image panel control unit displays the sliced images obtained by cutting the parallax image obtained from the sliced image drawing unit in the vertical direction on the display panel side by side.
  • the barrier panel unit displays the barrier panel data under the control of the barrier panel control unit. Further, the image panel unit displays the image panel data under the control of the image panel control unit.
  • the display device 120 displays the barrier panel data on the barrier panel unit and at the same time displays the image panel data on the image panel unit, so that different images (stereoscopic images) can be displayed for a plurality of observers at the same time. Is displayed.
  • the barrier panel unit corresponds to the first display unit 121 of the display device 120, which will be described later. Further, the image panel unit corresponds to the second display unit 122 of the display device 120, which will be described later.
  • FIG. 6 is a block diagram showing a configuration of an information processing device according to an embodiment.
  • the information processing device 100 includes a detection unit 110, a display device 120, a storage unit 130, a communication unit 140, and a control unit 150.
  • the information processing device 100 may have an input unit (for example, a keyboard, a mouse, etc.) that receives various operations from the administrator of the information processing device 100.
  • the detection unit 110 detects the positions (viewpoint positions) of the left and right eyes of each of two or more observers (hereinafter, also referred to as a plurality of observers) of the display device that displays a stereoscopic image.
  • the detection unit 110 includes a tracker (eye tracker).
  • the detection unit 110 is provided on the upper part of the display device 120 so that the positions of the eyes of each of the plurality of observers can be detected.
  • the detection unit 110 detects the positions of the eyes of each of the plurality of observers by, for example, an RGB camera, an IR camera, a depth camera, an ultrasonic sensor, or the like.
  • the detection unit 110 may detect constantly or periodically.
  • the detection unit 110 acquires, for example, information that can identify the positions, distances, etc. of the heads, left and right eyes, etc. of each of the plurality of observers in a space where the display device can be visually recognized. For example, the detection unit 110 acquires an image of a face including the left and right eyes of each of the plurality of observers. Alternatively, the detection unit 110 may detect the positions of the eyes of each of the plurality of observers by detecting the positions of the markers attached to the heads of the plurality of observers, the left and right eyes, and the like in advance.
  • the display device 120 is a stereoscopic image display device that employs a parallax barrier system.
  • the display device 120 is configured by laminating two layers of liquid crystal panels.
  • the display device 120 is configured by laminating a liquid crystal panel that displays a barrier image corresponding to a light-shielding region and a liquid crystal panel that displays an image for stereoscopic viewing.
  • the display device 120 includes a first display unit 121 and a second display unit 122.
  • the first display unit 121 is a liquid crystal panel that displays an image for stereoscopic viewing.
  • the first display unit 121 displays images corresponding to two viewpoints, multiple viewpoints, and the like.
  • the first display unit 121 displays the image panel data generated by the generation unit 152 under the control of the display control unit 154.
  • the second display unit 122 is a liquid crystal panel that displays a barrier image in which light-shielding regions and slits are alternately arranged.
  • the barrier displayed by the second display unit 122 corresponds to a barrier unit in which light-shielding regions and slits are alternately arranged.
  • the second display unit 122 displays the barrier panel data generated by the width control unit 153 under the control of the display control unit 154.
  • the second display unit 122 displays a barrier image corresponding to the parallax barrier.
  • the second display unit 122 displays a black striped image corresponding to the light-shielding region.
  • the second display unit 122 is arranged behind the first display unit 121.
  • the second display unit 122 projects the parallax barrier into the space between the first display unit 121 and the observer by the backlight.
  • the second display unit 122 projects a black striped image corresponding to the light-shielding region into the space between the first display unit 121 and the observer by the backlight.
  • the second display unit 122 may be arranged in front of the first display unit 121.
  • the second display unit 122 may be a transparent liquid crystal panel.
  • the second display unit 122 displays a barrier image corresponding to the parallax barrier on a transparent liquid crystal panel.
  • the second display unit 122 displays a black striped image corresponding to the light-shielding region on a transparent liquid crystal panel.
  • the storage unit 130 is reproduced by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
  • a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory)
  • flash memory Flash Memory
  • storage device such as a hard disk or an optical disk.
  • the communication unit 140 is reproduced by, for example, a NIC (Network Interface Card) or the like. Then, the communication unit 140 may be connected to the network by wire or wirelessly, and may transmit / receive information to / from an external information processing device such as a tracking device.
  • a NIC Network Interface Card
  • the control unit 150 is a controller, and for example, various programs (information processing programs) stored in a storage device inside the information processing device 100 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like. (Corresponding to one example) is reproduced by executing the RAM as a work area. Further, the control unit 150 is a controller, and is reproduced by, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • control unit 150 includes an acquisition unit 151, a generation unit 152, a width control unit 153, and a display control unit 154, and reproduces or executes the information processing operation described below. ..
  • the internal configuration of the control unit 150 is not limited to the configuration shown in FIG. 6, and may be another configuration as long as it is a configuration for performing information processing described later.
  • the acquisition unit 151 acquires the viewpoint position information of each of the two or more observers of the display device that displays the stereoscopic image. Specifically, the acquisition unit 151 acquires the detection result of detecting the position of each eye of the plurality of observers from the detection unit 110. For example, the acquisition unit 151 acquires an image of a face including the left and right eyes of each of the plurality of observers from the detection unit 110.
  • the acquisition unit 151 identifies the positions of the left and right eyes (viewpoint positions) of each of the plurality of observers based on the detection results of detecting the positions of the eyes of each of the plurality of observers. For example, the acquisition unit 151 identifies and specifies information such as the positions of the left and right eyes of each of the plurality of observers and the distance from the display device based on the images of the faces including the left and right eyes of each of the plurality of observers. The positions of the left and right eyes (viewpoint positions) of each of the plurality of observers are specified based on the obtained information. Subsequently, when the acquisition unit 151 specifies the viewpoint position of each of the plurality of observers, the acquisition unit 151 acquires the position information (viewpoint position information) of the viewpoint position of each of the specified plurality of observers.
  • the acquisition unit 151 determines the direction in which the line of sight of the right eye is directed based on, for example, the image of the eyeball of the observer's right eye captured by the detection unit 110 and the positional relationship between the right eye and the right eye. It may be specified. Similarly, the acquisition unit 151 identifies the direction in which the line of sight of the left eye is directed based on the image of the eyeball of the observer's left eye captured by the detection unit 110 and the positional relationship between the left eye and the left eye. You may. Further, the acquisition unit 151 may specify which position of the display device each of the plurality of observers is visually recognizing based on the position of the eyes of each of the plurality of observers.
  • the generation unit 152 acquires the viewpoint position information of each of the two or more observers of the display device 120 that displays the stereoscopic image from the acquisition unit 151.
  • the generation unit 152 draws a parallax image corresponding to each of the viewpoint positions of the plurality of observers based on the acquired viewpoint position information.
  • the generation unit 152 generates parallax images for the left eye corresponding to the viewpoint positions of the left eyes of each of the plurality of observers based on the viewpoint positions of the left eyes of each of the plurality of observers.
  • the generation unit 152 generates parallax images for the right eye corresponding to the viewpoint positions of the right eyes of each of the plurality of observers based on the viewpoint positions of the right eyes of each of the plurality of observers.
  • the width control unit 153 controls the width of the light-shielding region in the barrier unit in which the light-shielding region and the slits are alternately arranged.
  • the width control unit 153 controls the width of the light-shielding region in the barrier unit which is a parallax barrier.
  • the width control unit 153 is a light-shielding region that blocks light propagating from the display device 120 to each of the two or more observer's viewpoint positions based on the viewpoint positions of each of the two or more observers of the display device 120 that displays a stereoscopic image. Control the width.
  • the width control unit 153 relates to the relationship between the distance between two or more observers and the index value for each slit pitch regarding whether or not two or more observers can simultaneously view different stereoscopic images.
  • the width of the shading area is controlled based on.
  • the width control unit 153 acquires the viewpoint position information of each of the two or more observers of the display device that displays the stereoscopic image from the acquisition unit 151.
  • the width control unit 153 calculates the distance between the plurality of observers based on the acquired viewpoint position information.
  • the width control unit 153 calculates the distance between the two observers based on the viewpoint positions of the two observers among the plurality of observers.
  • the width control unit 153 calculates the distance between the two observers, it relates to the distance between the two observers and whether or not the two observers can simultaneously view different stereoscopic images.
  • the width of the light-shielding area is controlled based on the relationship with the index value for each slit pitch. For example, the width control unit 153 controls the width of the light-shielding region based on the relationship between the distance between observers shown in FIG. 8 described later and the minimum value of the observation competition rate for each slit pitch. For example, the width control unit 153 determines the width of the light-shielding region based on the relationship between the distance between observers shown in FIG. 8 described later and the minimum value of the observation competition rate for each slit pitch. Subsequently, the width control unit 153 generates a barrier image (barrier panel data) corresponding to the light-shielding region having the determined width.
  • the display control unit 154 displays a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding area. Specifically, the display control unit 154 acquires a parallax image corresponding to the viewpoint position of each of the two or more observers from the generation unit 152. Subsequently, the display control unit 154 transmits the parallax image acquired from the generation unit 152 to the first display unit 121 based on the viewpoint position information of each of the plurality of observers and the width of the light-shielding region determined by the width control unit 153. indicate.
  • the display control unit 154 divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and divides the slice image for each divided viewpoint position into the viewpoint position and width of each of the two or more observers.
  • the display is displayed on the display device based on the width of the light-shielding area determined by the control unit 153.
  • the display control unit 154 controls the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region determined by the width control unit 153. For example, the display control unit 154 calculates the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region determined by the width control unit 153.
  • the display control unit 154 controls the display position for displaying the slice image on the display device. Specifically, the display control unit 154 calculates the display position of the slice image based on the viewpoint position information of each of the plurality of observers and the width of the light-shielding region determined by the width control unit 153.
  • the display control unit 154 calculates the width and display position of the slice image, the image for displaying the parallax image acquired from the generation unit 152 on the first display unit 121 with the calculated width and display position of the slice image. (Hereinafter, also referred to as image panel data) is generated. Subsequently, the display control unit 154 displays the generated image panel data on the first display unit 121.
  • the display control unit 154 displays the barrier image generated based on the viewpoint positions of each of the two or more observers on the second display unit 122. Specifically, the display control unit 154 acquires the barrier panel data generated by the width control unit 153. Subsequently, the display control unit 154 displays the acquired barrier panel data on the second display unit 122.
  • FIG. 7 is a graph showing the relationship between the distance between observers and the observation competition rate for each slit pitch according to the embodiment.
  • FIG. 7 is a plot of the relationship between the distance between two observers and the observation competition while changing the barrier width.
  • FIG. 7 shows the results of eight types of experiments in which the barrier width was increased by 1 pixel from 9 pixels to 16 pixels while keeping the slit width at 3 pixels. By changing the barrier width while keeping the slit width constant, the slit pitch changes.
  • the horizontal axis X of the graph shown in FIG. 7 indicates the distance between the two observers.
  • the vertical axis Y of the graph indicates the observation competition rate (hereinafter, also referred to as the competition rate). At the viewpoint position where the competition rate is high, the two observers cannot see the separate slice images.
  • the line type of the plot represents the width of the barrier, and the width of the barrier changes the distance at which observation conflict does not occur.
  • FIG. 8 is a graph showing the relationship between the distance between observers according to the embodiment and the minimum value of the observation competition rate for each slit pitch.
  • the graph shown in FIG. 8 illustrates the minimum value in the graph shown in FIG. 7. From the graph shown in FIG. 8, by controlling the width of the barrier between 13 and 19 subpixels, two people at a viewpoint position in a practical range (for example, the distance between observers is 1000 pixels to 9000 pixels). It can be seen that a stereoscopic image corresponding to each viewpoint position of the observer can be presented.
  • the information processing device 100 stores the relationship shown in FIG.
  • the information processing apparatus 100 stores in the storage unit 130 a function that models the relationship shown in FIG.
  • the width control unit 153 uses a look-up table showing the relationship shown in FIG. 8 or a function modeling the relationship shown in FIG. 8 to obtain an optimum barrier according to the viewpoint position of each of the two observers acquired by the tracker. Derivation of width.
  • the display control unit 154 controls the display of the image according to the viewpoint position and the optimum barrier width of each of the two observers.
  • FIG. 9 is a flowchart showing an information processing procedure according to the embodiment.
  • the detection unit 110 acquires the viewpoint position information of a plurality of observers using a tracker (step S101).
  • the generation unit 152 calculates the barrier width and the display image according to the viewpoint position information of a plurality of observers by using a table (graph shown in FIG. 8) or a function prepared in advance (step S102).
  • the width control unit 153 displays the barrier image generated by the generation unit 152 on the first display unit 121.
  • the display control unit 154 displays the slice image generated by the generation unit 152 on the second display unit 122 (step S103).
  • the display panel used for image display is not limited to the liquid crystal panel, and may be an OLED (Organic Light Emitting Diode) or the like. Further, instead of using the display panel, the image may be displayed by projection.
  • the device used as the parallax barrier among the two-layer display panels may be any device as long as it has a light-shielding ability and can control the width of the light-shielding area (barrier).
  • a light-shielding plate having a fixed width of the light-shielding region (barrier) may be rotationally moved or translated.
  • a light-shielding plate using a stretchable material for example, an elastic body such as rubber
  • a stretchable material for example, an elastic body such as rubber
  • FIG. 10 is an explanatory diagram for explaining a modified example according to the embodiment.
  • two types of barriers having different barrier widths are prepared in advance, and the information processing device 100 selects which type of display is displayed according to the viewpoint positions of the two observers U1 and U2. , Show only that. Further, the information processing apparatus 100 synthesizes an optical path with a half mirror M1.
  • the information processing device 100A includes a display device 120A.
  • the display device 120A includes a first display unit 121A that displays a slice image for four viewpoints, a first display unit 121B that displays a slice image for five viewpoints, and a second display unit 122A that displays a barrier image for four viewpoints.
  • a second display unit 122B for displaying a barrier image for five viewpoints is provided.
  • the acquisition unit 151 acquires the viewpoint position information of each of the two observers U1 and U2.
  • the width control unit 153 calculates the distance L between the two observers U1 and U2 based on the viewpoint positions of the two observers U1 and U2 acquired by the acquisition unit 151. Subsequently, when the width control unit 153 calculates the distance L between the two observers U1 and U2, the relationship between the distance between the observers shown in FIG. 8 and the minimum value of the observation competition rate for each slit pitch is established. Based on this, the width of the shading area is controlled. For example, the width control unit 153 is selected from the barriers for 4 viewpoints and the barriers for 5 viewpoints based on the relationship between the distance between observers and the minimum value of the observation competition rate for each slit pitch shown in FIG.
  • the width of the light-shielding area is determined to be the width corresponding to the barrier for four viewpoints. Subsequently, the width control unit 153 selects and displays a barrier corresponding to the width of the determined light-shielding region. For example, the width control unit 153 displays a barrier for four viewpoints on the second display unit 122A. Further, the width control unit 153 turns off the screen of the second display unit 122B.
  • the display control unit 154 acquires a parallax image corresponding to the viewpoint position of each of the two observers U1 and U2 from the generation unit 152. Subsequently, the display control unit 154 first obtains a parallax image acquired from the generation unit 152 based on the viewpoint position information of each of the two observers U1 and U2 and the width of the light-shielding region determined by the width control unit 153. It is displayed on the display unit 121A. For example, the display control unit 154 calculates the width of a slice image obtained by cutting the parallax image acquired from the generation unit 152 in the vertical direction for four viewpoints. In addition, the display control unit 154 calculates the display position of the slice image. Subsequently, the display control unit 154 calculates the width and display position of the sliced image to generate image panel data. Subsequently, the display control unit 154 displays the generated image panel data on the first display unit 121A.
  • the information processing apparatus 100 has a barrier unit in which light-shielding regions and slits are alternately arranged, and a width control unit 153 that controls the width of the light-shielding region. Be prepared.
  • the width control unit 153 determines the width of the light-shielding region that blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device that displays the stereoscopic image. Control.
  • the information processing device 100 allows a plurality of observers to observe different stereoscopic images at the same time. Further, since the information processing device 100 can make a plurality of observers observe different stereoscopic images at the same time, for example, it is possible to simultaneously reproduce the motion parallax according to each position for a plurality of observers. can. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
  • the information processing device 100 can display a stereoscopic image to a plurality of observers with the minimum necessary resolution (the number of pixels corresponding to the number of viewpoints corresponding to the number of observers). For example, when there are two observers, the information processing apparatus 100 can reproduce binocular parallax and motion parallax for two people at the same time by using a display panel having a resolution of 4 to 6 viewpoints. Therefore, the information processing apparatus 100 is more efficient for a plurality of observers than the conventional method using a fixed width barrier by controlling the variable width barrier according to the viewpoint positions of the plurality of observers. A stereoscopic image can be displayed.
  • the width control unit 153 is based on the relationship between the distance between two or more observers and the index value for each slit pitch regarding whether or not two or more observers can simultaneously view different stereoscopic images.
  • the width of the light-shielding area is controlled.
  • the width control unit 153 controls the width of the light-shielding region based on the relationship between the distance between two or more observers and the minimum value of the index value.
  • the information processing apparatus 100 presents a stereoscopic image corresponding to each of a plurality of observer's viewpoint positions in a practical range (for example, a distance between observers is 1000 pixels to 9000 pixels). Can be done.
  • the barrier part is a parallax barrier.
  • the information processing device 100 can display a stereoscopic image to a plurality of observers by the parallax barrier method.
  • the information processing device 100 further includes a display control unit 154.
  • the display control unit 154 displays a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding area. Further, the display control unit 154 divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and the divided slice image for each viewpoint position is shielded from the viewpoint position of each of the two or more observers. Display on the display device based on the width of the area. Further, the display control unit 154 controls the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region. In addition, the display control unit 154 controls the display position for displaying the slice image on the display device.
  • the information processing device 100 can display an appropriate parallax image according to the viewpoint position of each of the plurality of observers. That is, the information processing device 100 can simultaneously display different stereoscopic images according to the viewpoint positions of each of the plurality of observers. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
  • the display device includes a first display unit that displays a parallax image and a second display unit that displays a barrier image corresponding to the barrier unit.
  • the display control unit 154 displays a parallax image on the first display unit based on the viewpoint position of each of the two or more observers and the width of the light-shielding area, and the barrier is based on the viewpoint position of each of the two or more observers. The image is displayed on the second display unit.
  • the information processing apparatus 100 can easily display a slice image corresponding to the variable width barrier.
  • FIG. 11 is a hardware configuration diagram showing an example of a computer 1000 that reproduces the functions of an information processing device such as the information processing device 100.
  • the computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600.
  • Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program that depends on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by the program.
  • the HDD 1400 is a recording medium for recording an information processing program according to the present disclosure, which is an example of program data 1450.
  • the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
  • the media is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk)
  • a magneto-optical recording medium such as an MO (Magneto-Optical disk)
  • a tape medium such as a magnetic tape
  • magnetic recording medium such as a magnetic tape
  • semiconductor memory for example, an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • the CPU 1100 of the computer 1000 reproduces the functions of the control unit 150 and the like by executing the information processing program loaded on the RAM 1200.
  • the information processing program according to the present disclosure and the data in the storage unit 130 are stored in the HDD 1400.
  • the CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
  • the present technology can also have the following configurations.
  • the width control unit The shading region is based on the relationship between the distance between the two or more observers and the index value for each pitch of the slit regarding whether or not the two or more observers can simultaneously view different stereoscopic images. Control the width of The information processing device according to (1) above.
  • the width control unit The width of the shading region is controlled based on the relationship between the distance between the two or more observers and the minimum value of the index value.
  • the barrier part is A parallax barrier, The information processing device according to any one of (1) to (3) above.
  • a display control unit for displaying a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding region is further provided.
  • the information processing device according to any one of (1) to (4) above.
  • the display control unit Each of the parallax images for each viewpoint position is divided into a plurality of vertically long slice images, and the sliced image for each of the divided viewpoint positions is divided into the viewpoint position and the light-shielding region of each of the two or more observers. Displayed on the display device based on the width of The information processing device according to (5) above. (7) The display control unit controls the width of the slice image based on the viewpoint position and the width of the light-shielding region of each of the two or more observers. The information processing device according to (6) above. (8) The display control unit Control the display position of displaying the slice image on the display device. The information processing device according to (7) above.
  • the display device includes a first display unit that displays the parallax image and a second display unit that displays a barrier image corresponding to the barrier unit.
  • the display control unit The parallax image is displayed on the first display unit based on the viewpoint position of each of the two or more observers and the width of the light-shielding region.
  • the barrier image is displayed on the second display unit based on the viewpoint position of each of the two or more observers.
  • the information processing device according to (5) above.
  • the width of the light-shielding region that blocks the light propagating from the display device to the viewpoint position of each of the two or more observers is controlled.
  • Control methods including that.
  • (11) A program for operating a computer of an information processing device having a barrier portion in which light-shielding areas and slits are alternately arranged.
  • Control processing A program for causing the computer to execute.
  • Information processing device 110 Detection unit 120 Display device 121 First display unit 122 Second display unit 130 Storage unit 140 Communication unit 150 Control unit 151 Acquisition unit 152 Generation unit 153 Width control unit 154 Display control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

This information processing device (100) comprises: a barrier unit in which light shielding areas and slits are alternately arrayed; and a width control unit (153) which controls the widths of the light shielding areas. The width control unit (153) controls, on the basis of each of viewpoint positions of two or more observers of a display device 120 for displaying a stereoscopic image, the widths of the light shielding areas which shield light propagating from the display device 120 to each of the viewpoint positions of the two or more observers.

Description

情報処理装置、制御方法及び情報処理プログラムInformation processing device, control method and information processing program
 本発明は、情報処理装置、制御方法及び情報処理プログラムに関する。 The present invention relates to an information processing device, a control method, and an information processing program.
 従来、ディスプレイに立体画像を表示する様々な技術が提案されている。例えば、眼鏡等のツールを使用しない裸眼による立体画像の表示方式として、パララックスバリア方式やレンチキュラーレンズ方式が知られている。これらの方式を採用する立体画像表示装置は、パララックスバリアやレンチキュラーレンズなどの立体画像表示用のデバイスが立体視用の視差画像を表示する画像表示パネルに重畳され、両眼視差を利用して観察者に立体画像を視認させる。 Conventionally, various technologies for displaying a stereoscopic image on a display have been proposed. For example, a parallax barrier method and a lenticular lens method are known as a method for displaying a stereoscopic image by the naked eye without using a tool such as eyeglasses. In a stereoscopic image display device that employs these methods, a device for displaying a stereoscopic image such as a parallax barrier or a lenticular lens is superimposed on an image display panel that displays a parallax image for stereoscopic vision, and the binocular parallax is used. Make the observer see the stereoscopic image.
特開2016-161912号公報Japanese Unexamined Patent Publication No. 2016-161912
 ところで近年、1つのディスプレイを複数の観察者が観察する場合に、各観察者に対して立体視可能に表示することが臨まれている。 By the way, in recent years, when one display is observed by a plurality of observers, it is expected that each observer can see the display stereoscopically.
 そこで、本開示では、複数の観察者に対して立体画像を表示することができる情報処理装置、制御方法及び情報処理プログラムを提案する。 Therefore, the present disclosure proposes an information processing device, a control method, and an information processing program capable of displaying a stereoscopic image to a plurality of observers.
 上記の課題を解決するために、本開示に係る一形態の情報処理装置は、遮光領域とスリットとが交互に配列するバリア部と、前記遮光領域の幅を制御する幅制御部と、を備え、前記幅制御部は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する。 In order to solve the above problems, the information processing device of one form according to the present disclosure includes a barrier unit in which light-shielding regions and slits are alternately arranged, and a width control unit for controlling the width of the light-shielding region. The width control unit blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device displaying the stereoscopic image. Control the width of the area.
両眼視差と運動視差について説明するための説明図である。It is explanatory drawing for demonstrating binocular parallax and motor parallax. 従来技術に係る運動視差の再現方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of reproducing the motion parallax which concerns on the prior art. 従来技術に係る運動視差の再現方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of reproducing the motion parallax which concerns on the prior art. 本開示の実施形態に係る情報処理の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline of information processing which concerns on embodiment of this disclosure. 実施形態に係る情報処理装置の機能を示すブロック図である。It is a block diagram which shows the function of the information processing apparatus which concerns on embodiment. 実施形態に係る情報処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the information processing apparatus which concerns on embodiment. 実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率との関係を示すグラフ図である。It is a graph which shows the relationship between the distance between observers which concerns on embodiment, and the observation competition rate for each pitch of a slit. 実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係を示すグラフ図である。It is a graph which shows the relationship between the distance between observers which concerns on embodiment, and the minimum value of the observation competition rate for each slit pitch. 実施形態に係る情報処理手順を示すフローチャートである。It is a flowchart which shows the information processing procedure which concerns on embodiment. 実施形態に係る変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification which concerns on embodiment. 情報処理装置の機能を再現するコンピュータの一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of the computer which reproduces the function of an information processing apparatus.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each of the following embodiments, the same parts are designated by the same reference numerals, so that duplicate description will be omitted.
 以下に示す項眼順序に従って本開示を説明する。
  1.はじめに
   1-1.両眼視差と運動視差
   1-2.従来技術に係る運動視差の再現方法
    1-2-1.視域の範囲すべての視点に同時に異なる視差画像を表示する方法
    1-2-2.観察者の視点位置に応じて視差画像を切り替える方法
  2.実施形態
   2-1.情報処理の概要
   2-2.情報処理装置の機能
   2-3.情報処理装置の構成
   2-4.観察者間の距離と観察競合率との関係
   2-5.情報処理の手順
   2-6.変形例
  3.本開示に係る効果
  4.ハードウェア構成
The present disclosure will be described according to the order of the items shown below.
1. 1. Introduction 1-1. Binocular parallax and motor parallax 1-2. Method for reproducing motion parallax according to the prior art 1-2-1. Range of view A method of displaying different parallax images at all viewpoints at the same time 1-2-2. How to switch the parallax image according to the viewpoint position of the observer 2. Embodiment 2-1. Outline of information processing 2-2. Information processing device functions 2-3. Configuration of information processing device 2-4. Relationship between distance between observers and observation competition rate 2-5. Information processing procedure 2-6. Modification example 3. Effect of this disclosure 4. Hardware configuration
[1.はじめに]
[1-1.両眼視差と運動視差]
 まず、図1を用いて、両眼視差と運動視差について説明する。図1は、両眼視差と運動視差について説明するための説明図である。図1に示す例では、観察者が、3次元物体である照明器具O2と、照明器具O2の奥に位置する3次元物体であるソファーO1を観察する。
[1. Introduction]
[1-1. Binocular parallax and motor parallax]
First, binocular parallax and motor parallax will be described with reference to FIG. FIG. 1 is an explanatory diagram for explaining binocular parallax and motor parallax. In the example shown in FIG. 1, an observer observes a lighting fixture O2 which is a three-dimensional object and a sofa O1 which is a three-dimensional object located behind the lighting fixture O2.
 まず、両眼視差について説明する。人間の眼は左右に離れて付いているので、ある対象を両眼で見ると、左右の眼の網膜には水平方向に少しずれた対象の画像が投影される。このずれを両眼視差と呼ぶ。人間は、両眼視差を脳内で処理することで、対象を奥行きのある3次元物体として知覚する。このように、両眼視差は、左右の眼の見え方の違いによって、立体知覚を生じさせる。 First, the binocular parallax will be explained. Since the human eye is attached to the left and right, when a certain object is viewed with both eyes, an image of the object slightly displaced in the horizontal direction is projected on the retinas of the left and right eyes. This deviation is called binocular parallax. Humans perceive an object as a deep three-dimensional object by processing binocular parallax in the brain. In this way, binocular parallax causes stereoscopic perception due to the difference in the appearance of the left and right eyes.
 図1の中央に示す例では、観察者が、照明器具O2と照明器具O2の奥に位置するソファーO1を正面方向から観察した場合、観察者の右眼の網膜には、ソファーO1の手前の左端に照明器具O2が位置する画像G14が投影される。また、観察者の左眼の網膜には、画像G14と比べて、照明器具O2の位置がソファーO1に対して右寄りに位置する画像G13が投影される。そして、観察者は、左眼の画像G13と右眼の画像G14を脳内で処理することで、照明器具O2と照明器具O2の奥に位置するソファーO1を奥行きのある3次元物体として知覚する。 In the example shown in the center of FIG. 1, when the observer observes the luminaire O2 and the sofa O1 located behind the luminaire O2 from the front direction, the retina of the observer's right eye is in front of the sofa O1. The image G14 in which the lighting fixture O2 is located is projected on the left end. Further, an image G13 in which the position of the lighting fixture O2 is located to the right of the sofa O1 is projected on the retina of the observer's left eye as compared with the image G14. Then, the observer perceives the luminaire O2 and the sofa O1 located behind the luminaire O2 as a three-dimensional object with depth by processing the image G13 of the left eye and the image G14 of the right eye in the brain. ..
 次に、運動視差について説明する。移動している観察者が、ある対象を注視しているとき、注視対象よりも遠くにある対象は、観察者と同じ方向に移動しているように見え、注視対象よりも近くにある対象は、観察者とは逆方向に動いているように見える。これを運動視差と呼ぶ。人間は、運動視差を脳内で処理することで、対象を奥行きのある3次元物体として知覚する。このように、運動視差は、左右の眼の位置(視点位置)の移動によって、立体知覚を生じさせる。 Next, the motion parallax will be explained. When a moving observer is gazing at an object, an object farther than the gaze object appears to be moving in the same direction as the observer, and an object closer than the gaze object is. , Seems to be moving in the opposite direction to the observer. This is called motor parallax. Humans perceive an object as a deep three-dimensional object by processing motion parallax in the brain. In this way, motion parallax causes stereoscopic perception by moving the positions of the left and right eyes (viewpoint positions).
 また、図1の左側に示す例では、表示装置の正面から左方向へ所定の距離だけ変位した位置にいる観察者がソファーO1を注視しているとき、注視対象であるソファーO1よりも近く(手前)にある照明器具O2は、観察者の移動方向とは逆の右方向へ動いているように見える。例えば、観察者の右眼の網膜には、正面方向から観察した右眼の画像G14と比べて、照明器具O2の位置がソファーO1に対して右寄りに位置する画像G12が投影される。また、観察者の左眼の網膜には、正面方向から観察した左眼の画像G13と比べて、照明器具O2の位置がソファーO1に対して右寄りに位置する画像G11が投影される。 Further, in the example shown on the left side of FIG. 1, when an observer at a position displaced from the front of the display device to the left by a predetermined distance is gazing at the sofa O1, it is closer than the sofa O1 to be gazed at ( The luminaire O2 in the foreground) appears to be moving to the right opposite to the observer's moving direction. For example, an image G12 in which the position of the luminaire O2 is located to the right of the sofa O1 is projected on the retina of the observer's right eye as compared with the image G14 of the right eye observed from the front direction. Further, on the retina of the left eye of the observer, an image G11 in which the position of the luminaire O2 is located to the right of the sofa O1 is projected as compared with the image G13 of the left eye observed from the front direction.
 また、図1の右側に示す例では、表示装置の正面から右方向へ所定の距離だけ変位した位置にいる観察者がソファーO1を注視しているとき、注視対象であるソファーO1よりも近く(手前)にある照明器具O2は、観察者の移動方向とは逆の左方向へ動いているように見える。例えば、観察者の右眼の網膜には、正面方向から観察した右眼の画像G14と比べて、照明器具O2の位置がソファーO1に対して左寄りに位置する画像G16が投影される。また、観察者の左眼の網膜には、正面方向から観察した左眼の画像G13と比べて、照明器具O2の位置がソファーO1に対して左寄りに位置する画像G15が投影される。 Further, in the example shown on the right side of FIG. 1, when an observer at a position displaced from the front of the display device to the right by a predetermined distance is gazing at the sofa O1, it is closer than the sofa O1 to be gazed at ( The luminaire O2 in the foreground) appears to be moving to the left, which is opposite to the observer's moving direction. For example, an image G16 in which the position of the luminaire O2 is located to the left of the sofa O1 is projected on the retina of the observer's right eye as compared with the image G14 of the right eye observed from the front direction. Further, on the retina of the left eye of the observer, an image G15 in which the position of the luminaire O2 is located to the left with respect to the sofa O1 is projected as compared with the image G13 of the left eye observed from the front direction.
 上述したように、人間は、両眼視差だけでなく、視点位置が移動することによって生じる運動視差によっても立体を知覚する。したがって、立体画像の表示方式において、両眼視差による立体知覚だけでなく、運動視差による立体知覚を再現することができれば、より現実に近い立体知覚を観察者に感じさせることができる。そこで、従来から、立体画像の表示方式において、両眼視差に加えて、運動視差を再現する方法が知られている。以下では、従来技術に係る運動視差の再現方法について説明する。 As described above, humans perceive a solid not only by binocular parallax but also by motion parallax caused by the movement of the viewpoint position. Therefore, if the stereoscopic image display method can reproduce not only the stereoscopic perception by binocular parallax but also the stereoscopic perception by motion parallax, the observer can feel the stereoscopic perception closer to reality. Therefore, conventionally, in a stereoscopic image display method, a method of reproducing motion parallax in addition to binocular parallax has been known. Hereinafter, a method for reproducing motion parallax according to the prior art will be described.
[1-2.従来技術に係る運動視差の再現方法]
[1-2-1.視域の範囲すべての視点に同時に異なる視差画像を表示する方法]
 次に、図2を用いて、従来技術に係る運動視差の再現方法について説明する。図2は、従来技術に係る運動視差の再現方法を説明するための説明図である。図2では、パララックスバリア方式によって立体画像を表示する表示装置(以下、表示装置ともいう)が運動視差を再現する方法について説明する。
[1-2. Reproduction method of motion parallax according to the prior art]
[1-2-1. How to display different parallax images at the same time for all viewpoints in the range of the field of view]
Next, a method of reproducing motion parallax according to the prior art will be described with reference to FIG. FIG. 2 is an explanatory diagram for explaining a method of reproducing motion parallax according to the prior art. FIG. 2 describes a method in which a display device (hereinafter, also referred to as a display device) that displays a stereoscopic image by a parallax barrier method reproduces motion parallax.
 図2は、パララックスバリア方式を用いた表示装置を上から見た図である。図2に示すように、パララックスバリア方式を用いた表示装置は、立体視用の画像を表示する表示パネル(以下、画像用パネルともいう)とパララックスバリアとで構成される。 FIG. 2 is a top view of a display device using the parallax barrier method. As shown in FIG. 2, a display device using the parallax barrier method is composed of a display panel (hereinafter, also referred to as an image panel) for displaying an image for stereoscopic viewing and a parallax barrier.
 パララックスバリア(parallax barrier)は、立体視用の画像を表示する表示パネルから観察者の視点位置まで伝搬する光を遮る機能を有する。具体的には、パララックスバリアは、スリットと遮光領域(バリア)が交互に並んだ縞状のパターン(模様)である。より具体的には、パララックスバリアは、スリットと遮光領域とが交互に設けられた遮光板によって実現されもよい。また、パララックスバリアは、画像によって実現されてもよい。例えば、パララックスバリアは、遮光領域に対応する黒い縞模様の画像によって実現されてもよい。 The parallax barrier has a function of blocking the light propagating from the display panel displaying the stereoscopic image to the viewpoint position of the observer. Specifically, the parallax barrier is a striped pattern in which slits and light-shielding regions (barriers) are alternately arranged. More specifically, the parallax barrier may be realized by a light-shielding plate in which slits and light-shielding areas are alternately provided. Moreover, the parallax barrier may be realized by an image. For example, the parallax barrier may be realized by a black striped image corresponding to the shading area.
 また、画像用表示パネルは、2以上の視点位置ごとの視差画像(例えば、左眼の視点位置に対応する視差画像と右眼の視点位置に対応する視差画像)それぞれを垂直方向に長い複数のスライス画像に分割し、分割された視点位置ごとのスライス画像を交互に並べて表示する。パララックスバリアは、画像用表示パネルの手前に配置される。表示装置の観察者は、パララックスバリアのスリット列を通して表示パネルを観察する。すると、スリットを通過する観察者の視線角度が両眼で異なるため、観察者の左眼は左眼用の視差画像のみを観察し、観察者の右眼は右眼用の視差画像のみを観察する。このように、パララックスバリア方式を用いた表示装置は、パララックスバリアのスリットを通過する観察者の視線角度が両眼で異なることを利用して、両眼視差を作り出し、観察者に対して立体知覚を生じさせる。 Further, the image display panel has a plurality of vertically long parallax images (for example, a parallax image corresponding to the viewpoint position of the left eye and a parallax image corresponding to the viewpoint position of the right eye) for each of two or more viewpoint positions. It is divided into sliced images, and the sliced images for each divided viewpoint position are displayed alternately side by side. The parallax barrier is placed in front of the image display panel. The observer of the display device observes the display panel through the slit row of the parallax barrier. Then, since the line-of-sight angle of the observer passing through the slit is different between both eyes, the observer's left eye observes only the parallax image for the left eye, and the observer's right eye observes only the parallax image for the right eye. do. In this way, the display device using the parallax barrier method creates binocular parallax by utilizing the fact that the line-of-sight angle of the observer passing through the slit of the parallax barrier is different between the two eyes, and the viewer can see the parallax. Produces stereoscopic perception.
 図2の説明に戻る。図2では、表示装置は、立体画像を視認可能な範囲(以下、視域ともいう)に含まれるすべての視点位置から同時に異なる立体画像を視認できるよう、すべての視点位置に対応する視差画像を一斉に表示パネルに表示する。図2に示す例では、表示装置の視域に8視点分の視点位置が含まれる。 Return to the explanation in Fig. 2. In FIG. 2, the display device displays a parallax image corresponding to all viewpoint positions so that different stereoscopic images can be visually recognized at the same time from all viewpoint positions included in a visible range (hereinafter, also referred to as a viewing area). Display on the display panel all at once. In the example shown in FIG. 2, the viewing range of the display device includes the viewpoint positions for eight viewpoints.
 また、表示装置は、図1で示した照明器具O2と照明器具O2の奥に位置するソファーO1を異なる8視点から撮影して生成された8視点分の視差画像を表示パネルに表示する。具体的には、表示装置は、視点位置ごとの視差画像それぞれを垂直方向に長い複数のスライス画像に分割し、分割された視点位置ごとのスライス画像を交互に並べて表示パネルに表示する。例えば、図2の表示パネルの中央部分に示すように、表示装置は8視点分の視差画像それぞれのスライス画像a~hを左からa、b、c、d、e、f、g、hの順番で並べて表示パネルに表示する。 Further, the display device displays the parallax images for the eight viewpoints generated by photographing the lighting fixture O2 shown in FIG. 1 and the sofa O1 located at the back of the lighting fixture O2 from different eight viewpoints on the display panel. Specifically, the display device divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and displays the divided slice images for each viewpoint position alternately on the display panel. For example, as shown in the central portion of the display panel of FIG. 2, the display device displays slice images a to h of the parallax images for eight viewpoints from the left a, b, c, d, e, f, g, h. Display them in order on the display panel.
 図2の中央に示す例では、表示装置は、表示装置を正面方向から観察する観察者の右眼の視点位置に対応する視差画像G24(図1に示す画像G14と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G24を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G24のスライス画像dを表示パネルに表示する。このとき、表示装置を正面方向から観察する観察者の右眼は、スリットを通してスライス画像dを含む視差画像G24のスライス画像を観察する。観察者の右眼は、観察した視差画像G24のスライス画像を脳内で処理することで、視差画像G24を視認する。 In the example shown in the center of FIG. 2, the display device displays a parallax image G24 (the same image as the image G14 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the observer who observes the display device from the front direction on the display panel. indicate. More specifically, the display device divides the parallax image G24 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image d of the parallax image G24 on the display panel. At this time, the right eye of the observer who observes the display device from the front side observes the slice image of the parallax image G24 including the slice image d through the slit. The observer's right eye visually recognizes the parallax image G24 by processing the sliced image of the observed parallax image G24 in the brain.
 また、表示装置は、表示装置を正面方向から観察する観察者の左眼の視点位置に対応する視差画像G23(図1に示す画像G13と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G23を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G23のスライス画像eを表示パネルに表示する。このとき、表示装置を正面方向から観察する観察者の左眼は、スリットを通してスライス画像eを含む視差画像G23のスライス画像を観察する。観察者の左眼は、観察した視差画像G23のスライス画像を脳内で処理することで、視差画像G23を視認する。 Further, the display device displays a parallax image G23 (the same image as the image G13 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from the front direction on the display panel. More specifically, the display device divides the parallax image G23 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image e of the parallax image G23 on the display panel. At this time, the left eye of the observer who observes the display device from the front direction observes the slice image of the parallax image G23 including the slice image e through the slit. The left eye of the observer visually recognizes the parallax image G23 by processing the sliced image of the observed parallax image G23 in the brain.
 このように、表示装置は、観察者に対して、右眼の視差画像G24と左眼の視差画像G23を同時に観察させることで、両眼視差による立体知覚を再現する。 In this way, the display device reproduces the stereoscopic perception by binocular parallax by having the observer simultaneously observe the parallax image G24 of the right eye and the parallax image G23 of the left eye.
 また、図2の左側に示す例では、表示装置は、表示装置の正面から左方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の右眼の視点位置に対応する視差画像G22(図1に示す画像G12と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G22を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G22のスライス画像gを表示パネルに表示する。このとき、表示装置の正面から左方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の右眼は、スリットを通してスライス画像gを含む視差画像G22のスライス画像を観察する。観察者の右眼は、観察した視差画像G22のスライス画像を脳内で処理することで、視差画像G22を視認する。 Further, in the example shown on the left side of FIG. 2, the display device is a differential image G22 corresponding to the viewpoint position of the right eye of the observer who observes the display device from a position displaced from the front of the display device to the left by a predetermined distance. (The same image as the image G12 shown in FIG. 1) is displayed on the display panel. More specifically, the display device divides the parallax image G22 into a plurality of vertically long slice images, and displays the divided slice images in an arrangement every eight slice images on the display panel. For example, the display device displays the slice image g of the parallax image G22 on the display panel. At this time, the right eye of the observer observing the display device from a position displaced from the front of the display device to the left by a predetermined distance observes the slice image of the parallax image G22 including the slice image g through the slit. The observer's right eye visually recognizes the parallax image G22 by processing the sliced image of the observed parallax image G22 in the brain.
 また、表示装置は、表示装置の正面から左方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の左眼の視点位置に対応する視差画像G21(図1に示す画像G11と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G21を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G21のスライス画像hを表示パネルに表示する。このとき、表示装置の正面から左方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の左眼は、スリットを通してスライス画像hを含む視差画像G21のスライス画像を観察する。観察者の左眼は、観察した視差画像G21のスライス画像を脳内で処理することで、視差画像G21を視認する。 Further, the display device is a parallax image G21 (same as the image G11 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from a position displaced from the front of the display device to the left by a predetermined distance. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G21 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image h of the parallax image G21 on the display panel. At this time, the left eye of the observer observing the display device from a position displaced from the front of the display device to the left by a predetermined distance observes the slice image of the parallax image G21 including the slice image h through the slit. The left eye of the observer visually recognizes the parallax image G21 by processing the sliced image of the observed parallax image G21 in the brain.
 このように、表示装置は、表示装置の正面から左方向へ所定の距離だけ変位した位置から表示装置を観察する観察者に対して、表示装置の正面から左方向への視点移動に対応する右眼の視差画像G22と左眼の視差画像G21を同時に観察させることで、運動視差による立体知覚を再現する。 In this way, the display device corresponds to the movement of the viewpoint from the front of the display device to the left with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the left. By simultaneously observing the parallax image G22 of the eye and the parallax image G21 of the left eye, stereoscopic perception due to motion parallax is reproduced.
 また、図2の右側に示す例では、表示装置は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の右眼の視点位置に対応する視差画像G26(図1に示す画像G16と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G26を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G26のスライス画像aを表示パネルに表示する。このとき、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の右眼は、スリットを通してスライス画像aを含む視差画像G26のスライス画像を観察する。観察者の右眼は、観察した視差画像G26のスライス画像を脳内で処理することで、視差画像G26を視認する。 Further, in the example shown on the right side of FIG. 2, the display device is a parallax image G26 corresponding to the viewpoint position of the right eye of the observer who observes the display device from a position displaced by a predetermined distance from the front of the display device to the right. (The same image as the image G16 shown in FIG. 1) is displayed on the display panel. More specifically, the display device divides the parallax image G26 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image a of the parallax image G26 on the display panel. At this time, the right eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G26 including the slice image a through the slit. The observer's right eye visually recognizes the parallax image G26 by processing the sliced image of the observed parallax image G26 in the brain.
 また、表示装置は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の左眼の視点位置に対応する視差画像G25(図1に示す画像G15と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G25を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を8スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G25のスライス画像bを表示パネルに表示する。このとき、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の左眼は、スリットを通してスライス画像bを含む視差画像G25のスライス画像を観察する。観察者の左眼は、観察した視差画像G25のスライス画像を脳内で処理することで、視差画像G25を視認する。 Further, the display device is a parallax image G25 (same as the image G15 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G25 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every eight slice images. For example, the display device displays the slice image b of the parallax image G25 on the display panel. At this time, the left eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G25 including the slice image b through the slit. The left eye of the observer visually recognizes the parallax image G25 by processing the sliced image of the observed parallax image G25 in the brain.
 このように、表示装置は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者に対して、表示装置の正面から右方向への視点移動に対応する右眼の視差画像G26と左眼の視差画像G25を同時に観察させることで、運動視差による立体知覚を再現する。 In this way, the display device corresponds to the movement of the viewpoint from the front of the display device to the right with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the right. By simultaneously observing the parallax image G26 of the eye and the parallax image G25 of the left eye, stereoscopic perception by motion parallax is reproduced.
 なお、図2における8視点分の視差画像のうち、残りの2視点分の視差画像については、図示および説明を省略する。 Of the parallax images for the eight viewpoints in FIG. 2, the illustration and description of the parallax images for the remaining two viewpoints will be omitted.
 図2に示す表示装置は、同時に表示する画像情報量が多いため、1視点に割り当てられる画素数が少なくなるという欠点がある。すなわち、図2に示す表示装置は、観察者が視認する1視点当たりの解像度が低くなるという欠点がある。言い換えると、図2に示す表示装置は、観察者が視認する1視点当たりの解像度が低くなるという欠点をカバーするために、超高解像度の表示パネルが必要になる。 The display device shown in FIG. 2 has a drawback that the number of pixels allocated to one viewpoint is small because the amount of image information displayed at the same time is large. That is, the display device shown in FIG. 2 has a drawback that the resolution per viewpoint visually recognized by the observer is low. In other words, the display device shown in FIG. 2 requires an ultra-high resolution display panel in order to cover the drawback that the resolution per viewpoint viewed by the observer is low.
[1-2-2.観察者の視点位置に応じて視差画像を切り替える方法]
 次に、図3を用いて、従来技術に係る運動視差の再現方法について説明する。図3は、従来技術に係る運動視差の再現方法を説明するための説明図である。図3では、パララックスバリア方式によって表示装置が運動視差を再現するもう一つの方法について説明する。図3に示す表示装置は、視域に含まれるすべての視点位置に対応する視差画像を同時に表示する代わりに、観察者の視点位置に応じて視差画像を表示する点が図2に示す表示装置と異なる。
[1-2-2. How to switch the parallax image according to the viewpoint position of the observer]
Next, a method of reproducing motion parallax according to the prior art will be described with reference to FIG. FIG. 3 is an explanatory diagram for explaining a method of reproducing motion parallax according to the prior art. FIG. 3 describes another method in which the display device reproduces motion parallax by the parallax barrier method. The display device shown in FIG. 3 is a display device shown in FIG. 2 in that the parallax image is displayed according to the viewpoint position of the observer instead of simultaneously displaying the parallax image corresponding to all the viewpoint positions included in the visual range. Different from.
 図3は、表示装置を上から見た図である。表示装置が表示パネルとパララックスバリアで構成される点、および表示パネルの手前にパララックスバリアが配置される点は、図2と同じである。図3に示す表示装置は、観察者の視点位置を検出するトラッカーを備える点が図2の表示装置と異なる。 FIG. 3 is a top view of the display device. The point that the display device is composed of the display panel and the parallax barrier and the point that the parallax barrier is arranged in front of the display panel are the same as those in FIG. The display device shown in FIG. 3 differs from the display device of FIG. 2 in that it includes a tracker for detecting the viewpoint position of the observer.
 また、表示装置は、図1で示した照明器具O2と照明器具O2の奥に位置するソファーO1を異なる視点から撮影して生成された2視点分の視差画像を表示パネルに表示する。表示装置は、トラッカーによって検出された観察者の視点位置に応じた2視点分の視差画像を表示パネルに表示する。例えば、表示装置は、生成された視差画像を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を2スライス画像おきに並べて表示パネルに表示する。 Further, the display device displays the parallax images for the two viewpoints generated by photographing the lighting fixture O2 shown in FIG. 1 and the sofa O1 located behind the lighting fixture O2 from different viewpoints on the display panel. The display device displays on the display panel parallax images for two viewpoints according to the viewpoint position of the observer detected by the tracker. For example, the display device divides the generated parallax image into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images.
 例えば、図3の左側に示すように、表示装置は、観察者が表示装置の正面に位置する場合には、観察者の左眼の視点位置に対応する視差画像G33(図1に示す画像G13と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G33を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を2スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G33のスライス画像eを表示パネルに表示する。このとき、表示装置の正面から表示装置を観察する観察者の左眼は、スリットを通してスライス画像eを含む視差画像G33のスライス画像を観察する。観察者の左眼は、観察した視差画像G33のスライス画像を脳内で処理することで、視差画像G33を視認する。 For example, as shown on the left side of FIG. 3, the display device is a parallax image G33 (image G13 shown in FIG. 1) corresponding to the viewpoint position of the observer's left eye when the observer is located in front of the display device. (Same image as) is displayed on the display panel. More specifically, the display device divides the parallax image G33 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image e of the parallax image G33 on the display panel. At this time, the left eye of the observer who observes the display device from the front of the display device observes the slice image of the parallax image G33 including the slice image e through the slit. The left eye of the observer visually recognizes the parallax image G33 by processing the sliced image of the observed parallax image G33 in the brain.
 また、表示装置は、観察者が表示装置の正面に位置する場合には、表示装置の正面に位置する観察者の右眼の視点位置に対応する視差画像G34(図1に示す画像G14と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G34を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を2スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G34のスライス画像dを表示パネルに表示する。このとき、表示装置の正面から表示装置を観察する観察者の右眼は、スリットを通してスライス画像dを含む視差画像G34のスライス画像を観察する。観察者の右眼は、観察した視差画像G34のスライス画像を脳内で処理することで、視差画像G34を視認する。 Further, when the observer is located in front of the display device, the display device is a parallax image G34 (same as the image G14 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the observer located in front of the display device. Image) is displayed on the display panel. More specifically, the display device divides the parallax image G34 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image d of the parallax image G34 on the display panel. At this time, the right eye of the observer who observes the display device from the front of the display device observes the slice image of the parallax image G34 including the slice image d through the slit. The observer's right eye visually recognizes the parallax image G34 by processing the sliced image of the observed parallax image G34 in the brain.
 このように、表示装置は、観察者が表示装置の正面に位置する場合には、表示装置の正面に位置する観察者に対して、右眼の視差画像G34と左眼の視差画像G33を同時に観察させることで、両眼視差による立体知覚を再現する。 As described above, when the observer is located in front of the display device, the display device simultaneously displays the parallax image G34 of the right eye and the parallax image G33 of the left eye with respect to the observer located in front of the display device. By observing, stereoscopic perception by binocular parallax is reproduced.
 一方、図3の右側に示すように、表示装置は、観察者が表示装置の正面から右方向へ所定の距離だけ変位した場所に位置する場合には、表示装置の正面から右方向へ所定の距離だけ変位した場所に位置する観察者の左眼の視点位置に対応する視差画像G35(図1に示す画像G15と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G35を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を2スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G35のスライス画像bを表示パネルに表示する。このとき、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の左眼は、スリットを通してスライス画像bを含む視差画像G35のスライス画像を観察する。観察者の左眼は、観察した視差画像G35のスライス画像を脳内で処理することで、視差画像G35を視認する。 On the other hand, as shown on the right side of FIG. 3, when the observer is located at a position displaced by a predetermined distance from the front of the display device to the right, the display device is predetermined from the front of the display device to the right. A parallax image G35 (the same image as the image G15 shown in FIG. 1) corresponding to the viewpoint position of the left eye of the observer located at a position displaced by a distance is displayed on the display panel. More specifically, the display device divides the parallax image G35 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image b of the parallax image G35 on the display panel. At this time, the left eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G35 including the slice image b through the slit. The left eye of the observer visually recognizes the parallax image G35 by processing the sliced image of the observed parallax image G35 in the brain.
 また、表示装置は、観察者が表示装置の正面から右方向へ所定の距離だけ変位した場所に位置する場合には、表示装置の正面から右方向へ所定の距離だけ変位した場所に位置する観察者の右眼の視点位置に対応する視差画像G36(図1に示す画像G16と同じ画像)を表示パネルに表示する。より具体的には、表示装置は、視差画像G36を垂直方向に長い複数のスライス画像に分割し、分割されたスライス画像を2スライス画像おきに並べて表示パネルに表示する。例えば、表示装置は、視差画像G36のスライス画像aを表示パネルに表示する。このとき、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の右眼は、スリットを通してスライス画像aを含む視差画像G36のスライス画像を観察する。観察者の右眼は、観察した視差画像G36のスライス画像を脳内で処理することで、視差画像G36を視認する。 Further, when the observer is located at a position displaced by a predetermined distance from the front of the display device to the right, the display device is located at a location displaced by a predetermined distance from the front of the display device to the right. A displacement image G36 (the same image as the image G16 shown in FIG. 1) corresponding to the viewpoint position of the right eye of the person is displayed on the display panel. More specifically, the display device divides the parallax image G36 into a plurality of vertically long slice images, and displays the divided slice images on the display panel by arranging them every two slice images. For example, the display device displays the slice image a of the parallax image G36 on the display panel. At this time, the right eye of the observer observing the display device from a position displaced from the front of the display device to the right by a predetermined distance observes the slice image of the parallax image G36 including the slice image a through the slit. The observer's right eye visually recognizes the parallax image G36 by processing the sliced image of the observed parallax image G36 in the brain.
 このように、表示装置は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者に対して、表示装置の正面から右方向への視点移動に対応する右眼の視差画像G36と左眼の視差画像G35を同時に観察させることで、運動視差による立体知覚を再現する。 In this way, the display device corresponds to the movement of the viewpoint from the front of the display device to the right with respect to the observer observing the display device from a position displaced by a predetermined distance from the front of the display device to the right. By simultaneously observing the parallax image G36 of the eye and the parallax image G35 of the left eye, stereoscopic perception by motion parallax is reproduced.
 図3に示す表示装置は、トラッカーによって検出された視点位置に対応する2視点分の視差画像のみを表示すればよいため、図2に示す表示装置とは異なり、超高解像度の表示パネルは不要である。しかしながら、図3に示す表示装置は、1人の観察者に対してしか、両眼視差および運動視差による立体知覚を再現することができないという欠点がある。言い換えると、図3に示す表示装置は、複数の観察者に対して両眼視差および運動視差による立体知覚を同時に再現することができないという欠点がある。 Unlike the display device shown in FIG. 2, the display device shown in FIG. 3 does not require an ultra-high resolution display panel because it only needs to display parallax images for two viewpoints corresponding to the viewpoint positions detected by the tracker. Is. However, the display device shown in FIG. 3 has a drawback that it can reproduce stereoscopic perception by binocular parallax and motion parallax only for one observer. In other words, the display device shown in FIG. 3 has a drawback that it cannot simultaneously reproduce stereoscopic perception due to binocular parallax and motion parallax for a plurality of observers.
[2.実施形態]
[2-1.情報処理の概要]
 次に、図4を用いて、本開示の実施形態に係る情報処理の概要について説明する。図4は、本開示の実施形態に係る情報処理の概要を説明するための説明図である。図4に示す例では、後述する図5に示す情報処理装置100が、表示装置の2人の観察者(U1およびU2)それぞれの視点位置に基づいて、パララックスバリアの幅を制御する。
[2. Embodiment]
[2-1. Information processing overview]
Next, the outline of the information processing according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining an outline of information processing according to the embodiment of the present disclosure. In the example shown in FIG. 4, the information processing device 100 shown in FIG. 5 described later controls the width of the parallax barrier based on the viewpoint positions of the two observers (U1 and U2) of the display device.
 図4に示す表示装置は、パララックスバリア方式によって立体画像を表示する。図4に示す表示装置は、2層の液晶パネルが積層された構成を備える。2層の液晶パネルのうち、一方の液晶パネル(以下、画像用パネルともいう)は立体視用の画像を、もう一方の液晶パネル(以下、バリア用パネルともいう)はパララックスバリアに対応する画像を表示するために用いられる。 The display device shown in FIG. 4 displays a stereoscopic image by a parallax barrier method. The display device shown in FIG. 4 has a configuration in which two layers of liquid crystal panels are laminated. Of the two-layer liquid crystal panel, one liquid crystal panel (hereinafter, also referred to as an image panel) corresponds to an image for stereoscopic viewing, and the other liquid crystal panel (hereinafter, also referred to as a barrier panel) corresponds to a parallax barrier. Used to display an image.
 図4の左側に示す例では、情報処理装置100は、4視点用のバリアをバリア用パネルに表示する。また、情報処理装置100は、異なる4視点から撮影して生成された4視点分の視差画像を表示パネルに表示する。具体的には、情報処理装置100は、4視点用のバリアのバリア幅に基づいて、視点位置ごとの視差画像それぞれを垂直方向に長い複数のスライス画像に分割する際のスライス画像の幅を算出する。続いて、情報処理装置100は、視点位置ごとの視差画像を算出された幅のスライス画像に分割する。続いて、情報処理装置100は、分割された視点位置ごとのスライス画像を交互に並べて表示パネルに表示する。ここで、画像用パネルは、4視点用に細長く分割されたスライス画像を表示するのに十分な、4視点分の解像度を備えているものとする。 In the example shown on the left side of FIG. 4, the information processing apparatus 100 displays a barrier for four viewpoints on the barrier panel. Further, the information processing apparatus 100 displays the parallax images for the four viewpoints generated by photographing from the four different viewpoints on the display panel. Specifically, the information processing apparatus 100 calculates the width of the slice image when dividing each parallax image for each viewpoint position into a plurality of vertically long slice images based on the barrier width of the barrier for four viewpoints. do. Subsequently, the information processing device 100 divides the parallax image for each viewpoint position into slice images having a calculated width. Subsequently, the information processing apparatus 100 alternately arranges sliced images for each divided viewpoint position and displays them on the display panel. Here, it is assumed that the image panel has a resolution for four viewpoints, which is sufficient for displaying a slice image divided into long strips for four viewpoints.
 具体的には、情報処理装置100は、表示装置の正面に位置する観察者U1の左眼の視点位置に対応する視差画像Aを表示パネルに表示する。より具体的には、情報処理装置100は、視差画像Aを垂直方向に長い複数の4視点用の幅のスライス画像に分割し、分割されたスライス画像を4スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Aのスライス画像A、A、A、A、…それぞれを4スライス画像おきに並べて画像用パネルに表示する。 Specifically, the information processing device 100 displays the parallax image A corresponding to the viewpoint position of the left eye of the observer U1 located in front of the display device on the display panel. More specifically, the information processing apparatus 100 divides the parallax image A into slice images having a width for a plurality of four viewpoints long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 arranges the slice images A 1 , A 2 , A 3 , A 4 , ... Of the parallax image A every four slice images and displays them on the image panel.
 また、情報処理装置100は、表示装置の正面に位置する観察者U1の右眼の視点位置に対応する視差画像Bを表示パネルに表示する。より具体的には、情報処理装置100は、視差画像Bを垂直方向に長い複数の4視点用の幅のスライス画像に分割し、分割されたスライス画像を4スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Bのスライス画像B、B、B、B、…それぞれを視差画像Aのスライス画像A、A、A、A、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 displays the parallax image B corresponding to the viewpoint position of the right eye of the observer U1 located in front of the display device on the display panel. More specifically, the information processing apparatus 100 divides the parallax image B into slice images having a width for a plurality of four viewpoints that are long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 has sliced images B 1 , B 2 , B 3 , B 4 , ... Of the parallax image B, and slice images A 1 , A 2 , A 3 , A 4 , ... of the parallax image A, respectively. Display them on the image panel side by side on the right.
 また、情報処理装置100は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者U2の左眼の視点位置に対応する視差画像Cを表示パネルに表示する。より具体的には、情報処理装置100は、視差画像Cを垂直方向に長い複数の4視点用の幅のスライス画像に分割し、分割されたスライス画像を4スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Cのスライス画像C、C、C、…それぞれを視差画像Bのスライス画像B、B、B、B、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 displays a parallax image C corresponding to the viewpoint position of the left eye of the observer U2 who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance on the display panel. .. More specifically, the information processing apparatus 100 divides the parallax image C into slice images having a width for a plurality of four viewpoints that are long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 places the slice images C 1 , C 2 , C 3 , ... Of the parallax image C on the right side of each of the slice images B 1 , B 2 , B 3 , B 4, ... of the parallax image B. Display them side by side on the image panel.
 また、情報処理装置100は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者U2の右眼の視点位置に対応する視差画像Dを表示パネルに表示する。より具体的には、情報処理装置100は、視差画像Dを垂直方向に長い複数の4視点用の幅のスライス画像に分割し、分割されたスライス画像を4スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Dのスライス画像D、D、D、…それぞれを視差画像Cのスライス画像C、C、C、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 displays a parallax image D corresponding to the viewpoint position of the right eye of the observer U2 who observes the display device from a position displaced to the right by a predetermined distance from the front of the display device on the display panel. .. More specifically, the information processing apparatus 100 divides the parallax image D into slice images having a width for a plurality of four viewpoints long in the vertical direction, and displays the divided slice images in the display panel by arranging them every four slice images. do. For example, the information processing apparatus 100 arranges the slice images D 1 , D 2 , D 3 , ... Of the parallax image D to the right of the slice images C 1 , C 2 , C 3 , ... of the parallax image C for the image. Display on the panel.
 ところで、図4の左側に示すように、複数の観察者が同時に表示装置を観察する場合には、1人目の観察者U1の視点位置が決まると、2人目の観察者U2が観察者U1と異なる立体画像を視認できる視点位置が限定されてしまう。 By the way, as shown on the left side of FIG. 4, when a plurality of observers observe the display device at the same time, when the viewpoint position of the first observer U1 is determined, the second observer U2 becomes the observer U1. The viewpoint position where different stereoscopic images can be visually recognized is limited.
 例えば、表示装置の正面方向から4視点用のバリアを通して表示パネルを観察する観察者U1の左眼は、スライス画像Aを含む視差画像Aのスライス画像A、A、A、A、…を観察する。また、観察者U1は、観察した視差画像Aのスライス画像A、A、A、A、…を脳内で処理することで、視差画像Aを視認する。 For example, the left eye of the viewer U1 observing the display panel through the barrier for four viewpoints from the front of the display device, the slice image A 1 of the parallax image A including a slice image A 2, A 2, A 3, A 4 Observe ,. Further, the observer U1 visually recognizes the parallax image A by processing the slice images A 1 , A 2 , A 3 , A 4 , ... Of the observed parallax image A in the brain.
 また、表示装置の正面方向から4視点用のバリアを通して表示パネルを観察する観察者U1の右眼は、スライス画像Bを含む視差画像Bのスライス画像B、B、B、B、…を観察する。また、観察者U1は、観察した視差画像Bのスライス画像B、B、B、B、…を脳内で処理することで、視差画像Bを視認する。 The right eye of the viewer U1 observing the display panel through the barrier for four viewpoints from the front of the display device, the slice image B 1 of the parallax image B including a slice image B 2, B 2, B 3, B 4 Observe ,. Further, the observer U1 visually recognizes the parallax image B by processing the slice images B 1 , B 2 , B 3 , B 4 , ... Of the observed parallax image B in the brain.
 このとき、2人目の観察者U2が観察者U1と異なる画像を観察可能な視点位置は、視差画像Cのスライス画像C、C、C、…および視差画像Dのスライス画像D、D、D、…を観察できる視点位置に限定されてしまう。したがって、2人目の観察者U2の視点位置が、視差画像Cのスライス画像C、C、C、…および視差画像Dのスライス画像D、D、D、…を観察可能な視点位置から外れた場合、情報処理装置100は、2人の観察者に対して異なる立体画像を視認させることが困難になる。そこで、情報処理装置100は、4視点用のバリアと4視点分の視差画像では、2人の観察者に対して異なる立体画像を視認させることができない場合、バリアと表示画像を5視点用に切り替える。 At this time, the viewpoint positions at which the second observer U2 can observe an image different from that of the observer U1 are the slice images C 1 , C 2 , C 3 , ... Of the parallax image C and the slice image D 1 of the parallax image D. It is limited to the viewpoint position where D 2 , D 3, ... Can be observed. Therefore, the viewpoint position of the second observer U2 can observe the slice images C 1 , C 2 , C 3 , ... Of the parallax image C and the slice images D 1 , D 2 , D 3 , ... Of the parallax image D. When it deviates from the viewpoint position, it becomes difficult for the information processing apparatus 100 to visually recognize different stereoscopic images for two observers. Therefore, when the information processing apparatus 100 cannot make two observers visually recognize different stereoscopic images with the barrier for four viewpoints and the parallax image for four viewpoints, the barrier and the display image are used for the five viewpoints. Switch.
 図4の右側に示す例では、情報処理装置100は、5視点用のバリアをバリア用パネルに表示する。また、情報処理装置100は、異なる5視点から撮影して生成された5視点分の視差画像を表示パネルに表示する。具体的には、情報処理装置100は、5視点用のバリアのバリア幅に基づいて、視点位置ごとの視差画像それぞれを垂直方向に長い複数のスライス画像に分割する際のスライス画像の幅を算出する。続いて、情報処理装置100は、視点位置ごとの視差画像を算出された幅のスライス画像に分割する。続いて、情報処理装置100は、分割された視点位置ごとのスライス画像を交互に並べて表示パネルに表示する。ここで、画像用パネルは、5視点用に細長く分割されたスライス画像を表示するのに十分な、5視点分の解像度を備えているものとする。 In the example shown on the right side of FIG. 4, the information processing apparatus 100 displays a barrier for five viewpoints on the barrier panel. Further, the information processing apparatus 100 displays the parallax images for the five viewpoints generated by photographing from the five different viewpoints on the display panel. Specifically, the information processing apparatus 100 calculates the width of the slice image when dividing each parallax image for each viewpoint position into a plurality of vertically long slice images based on the barrier width of the barrier for five viewpoints. do. Subsequently, the information processing device 100 divides the parallax image for each viewpoint position into slice images having a calculated width. Subsequently, the information processing apparatus 100 alternately arranges sliced images for each divided viewpoint position and displays them on the display panel. Here, it is assumed that the image panel has a resolution for five viewpoints, which is sufficient for displaying a sliced image divided into long strips for five viewpoints.
 具体的には、情報処理装置100は、表示装置の正面に位置する観察者U1の左眼の視点位置に対応する視差画像Eを垂直方向に長い複数の5視点用の幅のスライス画像に分割し、分割されたスライス画像を5スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Eのスライス画像E、E、E、…それぞれを5スライス画像おきに並べて画像用パネルに表示する。 Specifically, the information processing device 100 divides the parallax image E corresponding to the viewpoint position of the left eye of the observer U1 located in front of the display device into slice images having a width for a plurality of five viewpoints long in the vertical direction. Then, the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images E 1 , E 2 , E 3 , ... Of the parallax image E every 5 slice images and displays them on the image panel.
 また、情報処理装置100は、表示装置の正面に位置する観察者U1の右眼の視点位置に対応する視差画像Fを垂直方向に長い複数の5視点用の幅のスライス画像に分割し、分割されたスライス画像を5スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Fのスライス画像F、F、F、…それぞれを視差画像Eのスライス画像E、E、E、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 divides the parallax image F corresponding to the viewpoint position of the right eye of the observer U1 located in front of the display device into a plurality of slice images having a width for five viewpoints long in the vertical direction and divides the image F. The sliced images are arranged every 5 sliced images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images F 1 , F 2 , F 3 , ... Of the parallax image F on the right side of each of the slice images E 1 , E 2 , E 3, ... of the parallax image E for the image. Display on the panel.
 また、情報処理装置100は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の第1の視点位置に対応する視差画像Gを垂直方向に長い複数の5視点用の幅のスライス画像に分割し、分割されたスライス画像を5スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Gのスライス画像G、G、G、…それぞれを視差画像Fのスライス画像F、F、F、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 has a plurality of vertically long parallax images G corresponding to the first viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images G 1 , G 2 , G 3 , ... Of the parallax image G on the right side of the slice images F 1 , F 2 , F 3 , ... of the parallax image F for the image. Display on the panel.
 また、情報処理装置100は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の第2の視点位置に対応する視差画像Hを垂直方向に長い複数の5視点用の幅のスライス画像に分割し、分割されたスライス画像を5スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Hのスライス画像H、H、H、…それぞれを視差画像Gのスライス画像G、G、G、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 has a plurality of vertically long parallax images H corresponding to the second viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images H 1 , H 2 , H 3 , ... Of the parallax image H to the right of each of the slice images G 1 , G 2 , G 3, ... Display on the panel.
 また、情報処理装置100は、表示装置の正面から右方向へ所定の距離だけ変位した位置から表示装置を観察する観察者の第3の視点位置に対応する視差画像Iを垂直方向に長い複数の5視点用の幅のスライス画像に分割し、分割されたスライス画像を5スライス画像おきに並べて表示パネルに表示する。例えば、情報処理装置100は、視差画像Iのスライス画像I、I、I、…それぞれを視差画像Hのスライス画像H、H、H、…それぞれの右隣に並べて画像用パネルに表示する。 Further, the information processing device 100 has a plurality of vertically long parallax images I corresponding to the third viewpoint position of the observer who observes the display device from a position displaced from the front of the display device to the right by a predetermined distance. It is divided into slice images with a width of 5 viewpoints, and the divided slice images are arranged every 5 slice images and displayed on the display panel. For example, the information processing apparatus 100 arranges the slice images I 1 , I 2 , I 3 , ... Of the parallax image I on the right side of each of the slice images H 1 , H 2 , H 3, ... of the parallax image H for the image. Display on the panel.
 ここで、表示装置の正面方向から5視点用のバリアを通して表示パネルを観察する観察者U1の左眼は、スライス画像Eを含む視差画像Eのスライス画像E、E、E、E、…を観察する。また、観察者U1は、観察した視差画像Eのスライス画像E、E、E、E、…を脳内で処理することで、視差画像Eを視認する。 Here, the left eye of the viewer U1 observing the display panel through the barrier for five viewpoints from the front of the display device, a slice image of the parallax image E containing slice image E 2 E 1, E 2, E 3, E Observe 4 , ... Further, the observer U1 visually recognizes the parallax image E by processing the slice images E 1 , E 2 , E 3 , E 4 , ... Of the observed parallax image E in the brain.
 また、表示装置の正面方向から5視点用のバリアを通して表示パネルを観察する観察者U1の右眼は、スライス画像Fを含む視差画像Fのスライス画像F、F、F、F、…を観察する。また、観察者U1は、観察した視差画像Fのスライス画像F、F、F、F、…を脳内で処理することで、視差画像Fを視認する。 The right eye of the viewer U1 observing the display panel through the barrier for five viewpoints from the front of the display device, slice images F parallax image F comprising slice images F 2 1, F 2, F 3, F 4 Observe ,. Further, the observer U1 visually recognizes the parallax image F by processing the slice images F 1 , F 2 , F 3 , F 4 , ... Of the observed parallax image F in the brain.
 このとき、2人目の観察者U2が1人目の観察者U1と異なる画像を観察可能な視点位置は、4視点用だった場合の、視差画像Cのスライス画像C、C、C、…および視差画像Dのスライス画像D、D、D、…を観察できる視点位置から、(1)視差画像Gのスライス画像G、G、G、…および視差画像Hのスライス画像H、H、H、…、または、(2)視差画像Hのスライス画像H、H、H、…および視差画像Iのスライス画像I、I、I、…を観察できる視点位置へと変化する。すなわち、情報処理装置100がバリアと表示画像を4視点用から5視点用に切り替えたことにより、2人目の観察者U2が1人目の観察者U1と異なる画像を観察可能な視点位置が増加したことがわかる。 At this time, the viewpoint positions where the second observer U2 can observe an image different from that of the first observer U1 are the slice images C 1 , C 2 , C 3 , of the parallax image C when the parallax image C is for four viewpoints. ... and the slice images D 1 , D 2 , D 3 , ... And the parallax image D from the viewpoint position where (1) the slice images G 1 , G 2 , G 3 , ... And the parallax image H can be observed. Images H 1 , H 2 , H 3 , ..., Or (2) Slice images of parallax image H H 1 , H 2 , H 3 , ... And slice images of parallax image I I 1 , I 2 , I 3 , ... It changes to the viewpoint position where you can observe. That is, as the information processing apparatus 100 switches the barrier and the display image from the four viewpoints to the five viewpoints, the viewpoint positions where the second observer U2 can observe an image different from that of the first observer U1 have increased. You can see that.
 このように、情報処理装置100は、複数の観察者の視点位置に基づいて、バリア幅および表示画像を制御する。これにより、情報処理装置100は、複数の観察者に対して同時に異なる立体画像を観察させることができる。また、情報処理装置100は、複数の観察者に対して同時に異なる立体画像を観察させることができるので、例えば、複数の観察者に対してそれぞれの位置に応じた運動視差を同時に再現することができる。したがって、情報処理装置100は、複数の観察者に対して立体画像を表示することができる。 In this way, the information processing device 100 controls the barrier width and the displayed image based on the viewpoint positions of the plurality of observers. As a result, the information processing apparatus 100 can make a plurality of observers observe different stereoscopic images at the same time. Further, since the information processing device 100 can make a plurality of observers observe different stereoscopic images at the same time, for example, it is possible to simultaneously reproduce the motion parallax according to each position for a plurality of observers. can. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
 また、情報処理装置100は、必要最低限の解像度(観察者の人数分の視点の数に対応する画素数)で、複数の観察者に対して立体画像を表示することができる。例えば、観察者が2人の場合、情報処理装置100は、4~6視点分の解像度の表示パネルを用いれば、2人に対して同時に両眼視差および運動視差を再現することができる。したがって、情報処理装置100は、複数の観察者の視点位置に合わせて可変幅のバリアを制御することにより、固定幅のバリアを用いる従来手法と比較して、複数の観察者に対してより効率的に立体画像を表示することができる。 Further, the information processing device 100 can display a stereoscopic image to a plurality of observers with the minimum necessary resolution (the number of pixels corresponding to the number of viewpoints corresponding to the number of observers). For example, when there are two observers, the information processing apparatus 100 can reproduce binocular parallax and motion parallax for two people at the same time by using a display panel having a resolution of 4 to 6 viewpoints. Therefore, the information processing apparatus 100 is more efficient for a plurality of observers than the conventional method using a fixed width barrier by controlling the variable width barrier according to the viewpoint positions of the plurality of observers. A stereoscopic image can be displayed.
[2-2.情報処理装置の機能]
 次に、図5を用いて、実施形態に係る情報処理装置の機能について説明する。図5は、実施形態に係る情報処理装置の機能を示すブロック図である。
[2-2. Information processing device functions]
Next, the function of the information processing apparatus according to the embodiment will be described with reference to FIG. FIG. 5 is a block diagram showing the functions of the information processing apparatus according to the embodiment.
 図5に示す観察者位置センシング部は、立体画像を表示する表示装置の2以上の観察者(以下、複数の観察者ともいう)それぞれの左右の眼の位置(視点位置)を検出する。例えば、観察者位置センシング部は、トラッカーを用いて複数の観察者それぞれの視点位置を検出する。続いて、観察者位置センシング部は、複数の観察者それぞれの眼の位置を検出した検出結果に基づいて、複数の観察者それぞれの左右の眼の位置(視点位置)を特定する。例えば、観察者位置センシング部は、検出結果に基づいて、複数の観察者の眼の位置及び表示装置からの距離等の情報を特定し、特定した情報に基づいて複数の観察者それぞれの視点位置を特定する。続いて、観察者位置センシング部は、複数の観察者それぞれの視点位置を特定すると、特定した複数の観察者それぞれの視点位置の位置情報(視点位置情報)を取得する。 The observer position sensing unit shown in FIG. 5 detects the positions (viewpoint positions) of the left and right eyes of each of two or more observers (hereinafter, also referred to as a plurality of observers) of the display device that displays a stereoscopic image. For example, the observer position sensing unit detects the viewpoint position of each of the plurality of observers using a tracker. Subsequently, the observer position sensing unit identifies the left and right eye positions (viewpoint positions) of each of the plurality of observers based on the detection results of detecting the eye positions of the plurality of observers. For example, the observer position sensing unit specifies information such as the eye position of a plurality of observers and the distance from the display device based on the detection result, and the viewpoint position of each of the plurality of observers based on the specified information. To identify. Subsequently, when the observer position sensing unit specifies the viewpoint position of each of the plurality of observers, the observer position sensing unit acquires the position information (viewpoint position information) of the viewpoint position of each of the specified plurality of observers.
 スライス画像描画部は、複数の観察者それぞれの視点位置情報を観察者位置センシング部から取得する。続いて、スライス画像描画部は、複数の観察者それぞれの視点位置情報に基づいて、複数の観察者それぞれの視点位置に対応する視差画像を生成する。例えば、スライス画像描画部は、複数の観察者それぞれの左眼の視点位置に対応する左眼用の視差画像を生成する。また、スライス画像描画部は、複数の観察者それぞれの右眼の視点位置に対応する右眼用の視差画像を生成する。 The slice image drawing unit acquires the viewpoint position information of each of the plurality of observers from the observer position sensing unit. Subsequently, the slice image drawing unit generates a parallax image corresponding to each of the viewpoint positions of the plurality of observers based on the viewpoint position information of each of the plurality of observers. For example, the slice image drawing unit generates a parallax image for the left eye corresponding to the viewpoint position of the left eye of each of the plurality of observers. Further, the slice image drawing unit generates a parallax image for the right eye corresponding to the viewpoint position of the right eye of each of the plurality of observers.
 画像用パネル・バリア用パネル表示画像算出部(以下、算出部ともいう)は、複数の観察者それぞれの視点位置情報を観察者位置センシング部から取得する。続いて、算出部は、取得した複数の観察者それぞれの視点位置情報に基づいて、バリア用パネルが表示するバリア画像の情報を算出する。具体的には、算出部は、複数の観察者それぞれの視点位置情報に基づいて、バリア用パネルが表示するバリアの幅を制御する。例えば、算出部は、複数の観察者のうち2人の観察者それぞれの視点位置情報に基づいて、2人の観察者間の距離を算出する。続いて、算出部は、2人の観察者間の距離と2人の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関するスリットのピッチごとの観察競合率の最小値に基づいて、バリア用パネルが表示するバリアの幅を決定する。続いて、算出部は、決定した幅のバリアに対応するバリア画像(以下、バリア用パネルデータともいう)を生成する。 The image panel / barrier panel display image calculation unit (hereinafter, also referred to as the calculation unit) acquires the viewpoint position information of each of the plurality of observers from the observer position sensing unit. Subsequently, the calculation unit calculates the information of the barrier image displayed by the barrier panel based on the acquired viewpoint position information of each of the plurality of observers. Specifically, the calculation unit controls the width of the barrier displayed by the barrier panel based on the viewpoint position information of each of the plurality of observers. For example, the calculation unit calculates the distance between the two observers based on the viewpoint position information of each of the two observers among the plurality of observers. Subsequently, the calculation unit is based on the minimum value of the observation competition rate for each pitch of the slit regarding the distance between the two observers and whether or not the two observers can visually recognize different stereoscopic images at the same time. , Determine the width of the barrier displayed by the barrier panel. Subsequently, the calculation unit generates a barrier image (hereinafter, also referred to as barrier panel data) corresponding to the barrier having the determined width.
 また、算出部は、複数の観察者それぞれの視点位置に対応する視差画像をスライス画像描画部から取得する。続いて、算出部は、複数の観察者それぞれの視点位置情報および決定したバリアの幅に基づいて、スライス画像描画部から取得した視差画像が垂直方向に細長く切断されたスライス画像の幅を算出する。また、例えば、算出部は、複数の観察者それぞれの視点位置情報および決定したバリアの幅に基づいて、スライス画像を画像用パネルに表示する表示位置を算出する。算出部は、スライス画像の幅および表示位置を算出すると、スライス画像描画部から取得した視差画像を算出したスライス画像の幅および表示位置で画像用パネルに表示するための画像(以下、画像用パネルデータともいう)を生成する。 In addition, the calculation unit acquires parallax images corresponding to the viewpoint positions of each of the plurality of observers from the slice image drawing unit. Subsequently, the calculation unit calculates the width of the slice image obtained by vertically cutting the parallax image acquired from the slice image drawing unit based on the viewpoint position information of each of the plurality of observers and the determined width of the barrier. .. Further, for example, the calculation unit calculates a display position for displaying the slice image on the image panel based on the viewpoint position information of each of the plurality of observers and the determined width of the barrier. When the calculation unit calculates the width and display position of the slice image, the image for displaying the parallax image acquired from the slice image drawing unit on the image panel with the calculated width and display position of the slice image (hereinafter, the image panel). (Also called data) is generated.
 なお、スライス画像描画部と画像用パネル・バリア用パネル表示画像算出部は、後述する情報処理装置100の生成部152に対応する。 The slice image drawing unit and the image panel / barrier panel display image calculation unit correspond to the generation unit 152 of the information processing device 100, which will be described later.
 バリア用パネル制御部は、バリア用パネルデータを算出部から取得する。続いて、バリア用パネル制御部は、バリア用パネルデータを取得すると、バリア用パネルに対する制御信号をバリア用パネルに送信することで、バリア用パネルデータをバリア用パネルに表示する制御を行う。 The barrier panel control unit acquires the barrier panel data from the calculation unit. Subsequently, the barrier panel control unit controls to display the barrier panel data on the barrier panel by transmitting the control signal for the barrier panel to the barrier panel when the barrier panel data is acquired.
 画像用パネル制御部は、画像用パネルデータを算出部から取得する。続いて、画像用パネル制御部は、画像用パネルデータを取得すると、画像用パネルに対する制御信号を画像用パネルに送信することで、画像用パネルデータを画像用パネルに表示する制御を行う。画像用パネル制御部は、スライス画像描画部から取得した視差画像が垂直方向に細長く切断されたスライス画像を並べて表示パネルに表示する。 The image panel control unit acquires image panel data from the calculation unit. Subsequently, the image panel control unit controls to display the image panel data on the image panel by transmitting the control signal for the image panel to the image panel when the image panel data is acquired. The image panel control unit displays the sliced images obtained by cutting the parallax image obtained from the sliced image drawing unit in the vertical direction on the display panel side by side.
 バリア用パネル部は、バリア用パネル制御部の制御に従って、バリア用パネルデータを表示する。また、画像用パネル部は、画像用パネル制御部の制御に従って、画像用パネルデータを表示する。表示装置120は、バリア用パネル部にバリア用パネルデータを表示するのと同時に、画像用パネル部に画像用パネルデータを表示することで、複数の観察者に対して同時に異なる画像(立体画像)を表示する。 The barrier panel unit displays the barrier panel data under the control of the barrier panel control unit. Further, the image panel unit displays the image panel data under the control of the image panel control unit. The display device 120 displays the barrier panel data on the barrier panel unit and at the same time displays the image panel data on the image panel unit, so that different images (stereoscopic images) can be displayed for a plurality of observers at the same time. Is displayed.
 なお、バリア用パネル部は、後述する表示装置120の第1表示部121に対応する。また、画像用パネル部は、後述する表示装置120の第2表示部122に対応する。 The barrier panel unit corresponds to the first display unit 121 of the display device 120, which will be described later. Further, the image panel unit corresponds to the second display unit 122 of the display device 120, which will be described later.
[2-3.情報処理装置の構成]
 次に、図6を用いて、実施形態に係る情報処理装置の構成について説明する。図6は、実施形態に係る情報処理装置の構成を示すブロック図である。図6に示すように、情報処理装置100は、検出部110、表示装置120、記憶部130、通信部140、制御部150を備える。なお、情報処理装置100は、情報処理装置100の管理者等から各種操作を受け付ける入力部(例えば、キーボードやマウス等)を有してもよい。
[2-3. Information processing device configuration]
Next, the configuration of the information processing apparatus according to the embodiment will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration of an information processing device according to an embodiment. As shown in FIG. 6, the information processing device 100 includes a detection unit 110, a display device 120, a storage unit 130, a communication unit 140, and a control unit 150. The information processing device 100 may have an input unit (for example, a keyboard, a mouse, etc.) that receives various operations from the administrator of the information processing device 100.
(検出部110)
 検出部110は、立体画像を表示する表示装置の2以上の観察者(以下、複数の観察者ともいう)それぞれの左右の眼の位置(視点位置)を検出する。例えば、検出部110は、トラッカー(アイトラッカー)を備える。例えば、検出部110は、複数の観察者それぞれの眼の位置等を検出可能なように、表示装置120の上部に設けられる。検出部110は、例えば、RGBカメラ、IRカメラ、深度カメラ、超音波センサ等によって、複数の観察者それぞれの眼の位置を検出する。検出部110は、常時検出してもよいし、定期的に検出してもよい。
(Detection unit 110)
The detection unit 110 detects the positions (viewpoint positions) of the left and right eyes of each of two or more observers (hereinafter, also referred to as a plurality of observers) of the display device that displays a stereoscopic image. For example, the detection unit 110 includes a tracker (eye tracker). For example, the detection unit 110 is provided on the upper part of the display device 120 so that the positions of the eyes of each of the plurality of observers can be detected. The detection unit 110 detects the positions of the eyes of each of the plurality of observers by, for example, an RGB camera, an IR camera, a depth camera, an ultrasonic sensor, or the like. The detection unit 110 may detect constantly or periodically.
 検出部110は、例えば、表示装置を視認可能な空間における複数の観察者それぞれの頭部、左右の眼等の位置、距離等を識別可能な情報を取得する。例えば、検出部110は、複数の観察者それぞれの左右の眼を含む顔の画像を取得する。あるいは、検出部110は、あらかじめ複数の観察者それぞれの頭部、左右の眼等に装着されたマーカーの位置を検出することによって、複数の観察者それぞれの眼の位置を検出してもよい。 The detection unit 110 acquires, for example, information that can identify the positions, distances, etc. of the heads, left and right eyes, etc. of each of the plurality of observers in a space where the display device can be visually recognized. For example, the detection unit 110 acquires an image of a face including the left and right eyes of each of the plurality of observers. Alternatively, the detection unit 110 may detect the positions of the eyes of each of the plurality of observers by detecting the positions of the markers attached to the heads of the plurality of observers, the left and right eyes, and the like in advance.
(表示装置120)
 表示装置120は、パララックスバリア方式を採用する立体画像表示装置である。表示装置120は、2層の液晶パネルを積層させて構成される。表示装置120は、遮光領域に対応するバリア画像を表示する液晶パネルと、立体視用の画像を表示する液晶パネルを積層させて構成される。
(Display device 120)
The display device 120 is a stereoscopic image display device that employs a parallax barrier system. The display device 120 is configured by laminating two layers of liquid crystal panels. The display device 120 is configured by laminating a liquid crystal panel that displays a barrier image corresponding to a light-shielding region and a liquid crystal panel that displays an image for stereoscopic viewing.
 図6に示すように、表示装置120は、第1表示部121と、第2表示部122とを備える。 As shown in FIG. 6, the display device 120 includes a first display unit 121 and a second display unit 122.
(第1表示部121)
 第1表示部121は、立体視用の画像を表示する液晶パネルである。第1表示部121は、2視点、多視点等に応じた画像を表示する。第1表示部121は、表示制御部154の制御に従って、生成部152によって生成された画像用パネルデータを表示する。
(1st display unit 121)
The first display unit 121 is a liquid crystal panel that displays an image for stereoscopic viewing. The first display unit 121 displays images corresponding to two viewpoints, multiple viewpoints, and the like. The first display unit 121 displays the image panel data generated by the generation unit 152 under the control of the display control unit 154.
(第2表示部122)
 第2表示部122は、遮光領域とスリットとが交互に配列するバリア画像を表示する液晶パネルである。第2表示部122によって表示されるバリアは、遮光領域とスリットとが交互に配列するバリア部に相当する。具体的には、第2表示部122は、表示制御部154の制御に従って、幅制御部153によって生成されたバリア用パネルデータを表示する。第2表示部122は、パララックスバリアに対応するバリア画像を表示する。例えば、第2表示部122は、遮光領域に対応する黒い縞模様の画像を表示する。
(Second display unit 122)
The second display unit 122 is a liquid crystal panel that displays a barrier image in which light-shielding regions and slits are alternately arranged. The barrier displayed by the second display unit 122 corresponds to a barrier unit in which light-shielding regions and slits are alternately arranged. Specifically, the second display unit 122 displays the barrier panel data generated by the width control unit 153 under the control of the display control unit 154. The second display unit 122 displays a barrier image corresponding to the parallax barrier. For example, the second display unit 122 displays a black striped image corresponding to the light-shielding region.
 第2表示部122は、第1表示部121の後方に配置される。第2表示部122は、バックライトによって、第1表示部121と観察者の間の空間にパララックスバリアを投影する。例えば、第2表示部122は、バックライトによって、第1表示部121と観察者の間の空間に遮光領域に対応する黒い縞模様の画像を投影する。 The second display unit 122 is arranged behind the first display unit 121. The second display unit 122 projects the parallax barrier into the space between the first display unit 121 and the observer by the backlight. For example, the second display unit 122 projects a black striped image corresponding to the light-shielding region into the space between the first display unit 121 and the observer by the backlight.
 なお、第2表示部122は、第1表示部121の前方に配置されてもよい。第2表示部122が第1表示部121の前方に配置される場合、第2表示部122は、透過性のある液晶パネルであってよい。例えば、第2表示部122は、パララックスバリアに対応するバリア画像を透過性のある液晶パネルに表示する。例えば、第2表示部122は、遮光領域に対応する黒い縞模様の画像を透過性のある液晶パネル表示する。 The second display unit 122 may be arranged in front of the first display unit 121. When the second display unit 122 is arranged in front of the first display unit 121, the second display unit 122 may be a transparent liquid crystal panel. For example, the second display unit 122 displays a barrier image corresponding to the parallax barrier on a transparent liquid crystal panel. For example, the second display unit 122 displays a black striped image corresponding to the light-shielding region on a transparent liquid crystal panel.
(記憶部130)
 記憶部130は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって再現される。
(Storage unit 130)
The storage unit 130 is reproduced by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
(通信部140)
 通信部140は、例えば、NIC(Network Interface Card)等によって再現される。そして、通信部140は、ネットワークと有線または無線で接続され、例えば、トラッキング装置等の外部の情報処理装置との間で情報の送受信を行ってもよい。
(Communication unit 140)
The communication unit 140 is reproduced by, for example, a NIC (Network Interface Card) or the like. Then, the communication unit 140 may be connected to the network by wire or wirelessly, and may transmit / receive information to / from an external information processing device such as a tracking device.
(制御部150)
 制御部150は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、情報処理装置100内部の記憶装置に記憶されている各種プログラム(情報処理プログラムの一例に相当)がRAMを作業領域として実行されることにより再現される。また、制御部150は、コントローラであり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により再現される。
(Control unit 150)
The control unit 150 is a controller, and for example, various programs (information processing programs) stored in a storage device inside the information processing device 100 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like. (Corresponding to one example) is reproduced by executing the RAM as a work area. Further, the control unit 150 is a controller, and is reproduced by, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 図6に示すように、制御部150は、取得部151と、生成部152と、幅制御部153と、表示制御部154とを有し、以下に説明する情報処理の作用を再現または実行する。なお、制御部150の内部構成は、図6に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。 As shown in FIG. 6, the control unit 150 includes an acquisition unit 151, a generation unit 152, a width control unit 153, and a display control unit 154, and reproduces or executes the information processing operation described below. .. The internal configuration of the control unit 150 is not limited to the configuration shown in FIG. 6, and may be another configuration as long as it is a configuration for performing information processing described later.
(取得部151)
 取得部151は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置情報を取得する。具体的には、取得部151は、複数の観察者それぞれの眼の位置を検出した検出結果を検出部110から取得する。例えば、取得部151は、複数の観察者それぞれの左右の眼を含む顔の画像を検出部110から取得する。
(Acquisition unit 151)
The acquisition unit 151 acquires the viewpoint position information of each of the two or more observers of the display device that displays the stereoscopic image. Specifically, the acquisition unit 151 acquires the detection result of detecting the position of each eye of the plurality of observers from the detection unit 110. For example, the acquisition unit 151 acquires an image of a face including the left and right eyes of each of the plurality of observers from the detection unit 110.
 続いて、取得部151は、複数の観察者それぞれの眼の位置を検出した検出結果に基づいて、複数の観察者それぞれの左右の眼の位置(視点位置)を特定する。例えば、取得部151は、複数の観察者それぞれの左右の眼を含む顔の画像に基づいて、複数の観察者それぞれの左右の眼の位置及び表示装置からの距離等の情報を特定し、特定した情報に基づいて複数の観察者それぞれの左右の眼の位置(視点位置)を特定する。続いて、取得部151は、複数の観察者それぞれの視点位置を特定すると、特定した複数の観察者それぞれの視点位置の位置情報(視点位置情報)を取得する。 Subsequently, the acquisition unit 151 identifies the positions of the left and right eyes (viewpoint positions) of each of the plurality of observers based on the detection results of detecting the positions of the eyes of each of the plurality of observers. For example, the acquisition unit 151 identifies and specifies information such as the positions of the left and right eyes of each of the plurality of observers and the distance from the display device based on the images of the faces including the left and right eyes of each of the plurality of observers. The positions of the left and right eyes (viewpoint positions) of each of the plurality of observers are specified based on the obtained information. Subsequently, when the acquisition unit 151 specifies the viewpoint position of each of the plurality of observers, the acquisition unit 151 acquires the position information (viewpoint position information) of the viewpoint position of each of the specified plurality of observers.
 また、取得部151は、例えば、検出部110によって撮像された観察者の右眼の眼球の画像と、右眼との間の位置関係とに基づいて、右眼の視線が向いている方向を特定してもよい。同様に、取得部151は、検出部110によって撮像された観察者の左眼の眼球の画像と、左眼との間の位置関係とに基づいて、左眼の視線が向いている方向を特定してもよい。また、取得部151は、複数の観察者それぞれの眼の位置に基づいて、複数の観察者それぞれが表示装置のどの位置を視認しているかを特定してもよい。 Further, the acquisition unit 151 determines the direction in which the line of sight of the right eye is directed based on, for example, the image of the eyeball of the observer's right eye captured by the detection unit 110 and the positional relationship between the right eye and the right eye. It may be specified. Similarly, the acquisition unit 151 identifies the direction in which the line of sight of the left eye is directed based on the image of the eyeball of the observer's left eye captured by the detection unit 110 and the positional relationship between the left eye and the left eye. You may. Further, the acquisition unit 151 may specify which position of the display device each of the plurality of observers is visually recognizing based on the position of the eyes of each of the plurality of observers.
(生成部152)
 生成部152は、立体画像を表示する表示装置120の2以上の観察者それぞれの視点位置情報を取得部151から取得する。生成部152は、複数の観察者それぞれの視点位置情報を取得すると、取得した視点位置情報に基づいて、複数の観察者それぞれの視点位置に対応する視差画像を描画する。具体的には、生成部152は、複数の観察者それぞれの左眼の視点位置に基づいて、複数の観察者それぞれの左眼の視点位置に対応する左眼用の視差画像をそれぞれ生成する。また、例えば、生成部152は、複数の観察者それぞれの右眼の視点位置に基づいて、複数の観察者それぞれの右眼の視点位置に対応する右眼用の視差画像をそれぞれ生成する。
(Generator 152)
The generation unit 152 acquires the viewpoint position information of each of the two or more observers of the display device 120 that displays the stereoscopic image from the acquisition unit 151. When the generation unit 152 acquires the viewpoint position information of each of the plurality of observers, the generation unit 152 draws a parallax image corresponding to each of the viewpoint positions of the plurality of observers based on the acquired viewpoint position information. Specifically, the generation unit 152 generates parallax images for the left eye corresponding to the viewpoint positions of the left eyes of each of the plurality of observers based on the viewpoint positions of the left eyes of each of the plurality of observers. Further, for example, the generation unit 152 generates parallax images for the right eye corresponding to the viewpoint positions of the right eyes of each of the plurality of observers based on the viewpoint positions of the right eyes of each of the plurality of observers.
(幅制御部153)
 幅制御部153は、遮光領域とスリットとが交互に配列するバリア部における遮光領域の幅を制御する。幅制御部153は、パララックスバリアであるバリア部における遮光領域の幅を制御する。幅制御部153は、立体画像を表示する表示装置120の2以上の観察者それぞれの視点位置に基づいて、表示装置120から2以上の観察者それぞれの視点位置まで伝搬する光を遮る遮光領域の幅を制御する。
(Width control unit 153)
The width control unit 153 controls the width of the light-shielding region in the barrier unit in which the light-shielding region and the slits are alternately arranged. The width control unit 153 controls the width of the light-shielding region in the barrier unit which is a parallax barrier. The width control unit 153 is a light-shielding region that blocks light propagating from the display device 120 to each of the two or more observer's viewpoint positions based on the viewpoint positions of each of the two or more observers of the display device 120 that displays a stereoscopic image. Control the width.
 具体的には、幅制御部153は、2以上の観察者間の距離と2以上の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関するスリットのピッチごとの指標値との関係に基づいて、遮光領域の幅を制御する。例えば、幅制御部153は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置情報を取得部151から取得する。続いて、幅制御部153は、複数の観察者それぞれの視点位置情報を取得すると、取得した視点位置情報に基づいて、複数の観察者間の距離を算出する。例えば、幅制御部153は、複数の観察者のうち2人の観察者それぞれの視点位置に基づいて2人の観察者間の距離を算出する。 Specifically, the width control unit 153 relates to the relationship between the distance between two or more observers and the index value for each slit pitch regarding whether or not two or more observers can simultaneously view different stereoscopic images. The width of the shading area is controlled based on. For example, the width control unit 153 acquires the viewpoint position information of each of the two or more observers of the display device that displays the stereoscopic image from the acquisition unit 151. Subsequently, when the width control unit 153 acquires the viewpoint position information of each of the plurality of observers, the width control unit 153 calculates the distance between the plurality of observers based on the acquired viewpoint position information. For example, the width control unit 153 calculates the distance between the two observers based on the viewpoint positions of the two observers among the plurality of observers.
 続いて、幅制御部153は、2人の観察者間の距離を算出すると、2人の観察者間の距離と2人の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関するスリットのピッチごとの指標値との関係に基づいて、遮光領域の幅を制御する。例えば、幅制御部153は、後述する図8に示す観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係に基づいて、遮光領域の幅を制御する。例えば、幅制御部153は、後述する図8に示す観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係に基づいて、遮光領域の幅を決定する。続いて、幅制御部153は、決定した幅の遮光領域に対応するバリア画像(バリア用パネルデータ)を生成する。 Subsequently, when the width control unit 153 calculates the distance between the two observers, it relates to the distance between the two observers and whether or not the two observers can simultaneously view different stereoscopic images. The width of the light-shielding area is controlled based on the relationship with the index value for each slit pitch. For example, the width control unit 153 controls the width of the light-shielding region based on the relationship between the distance between observers shown in FIG. 8 described later and the minimum value of the observation competition rate for each slit pitch. For example, the width control unit 153 determines the width of the light-shielding region based on the relationship between the distance between observers shown in FIG. 8 described later and the minimum value of the observation competition rate for each slit pitch. Subsequently, the width control unit 153 generates a barrier image (barrier panel data) corresponding to the light-shielding region having the determined width.
(表示制御部154)
 表示制御部154は、2以上の観察者それぞれの視点位置と遮光領域の幅とに基づいて、2以上の観察者それぞれの視点位置に応じた視差画像を表示装置に表示する。具体的には、表示制御部154は、2以上の観察者それぞれの視点位置に対応する視差画像を生成部152から取得する。続いて、表示制御部154は、複数の観察者それぞれの視点位置情報および幅制御部153によって決定された遮光領域の幅に基づいて、生成部152から取得した視差画像を第1表示部121に表示する。
(Display control unit 154)
The display control unit 154 displays a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding area. Specifically, the display control unit 154 acquires a parallax image corresponding to the viewpoint position of each of the two or more observers from the generation unit 152. Subsequently, the display control unit 154 transmits the parallax image acquired from the generation unit 152 to the first display unit 121 based on the viewpoint position information of each of the plurality of observers and the width of the light-shielding region determined by the width control unit 153. indicate.
 また、表示制御部154は、視点位置ごとの視差画像それぞれを垂直方向に長い複数のスライス画像に分割し、分割された視点位置ごとのスライス画像を、2以上の観察者それぞれの視点位置と幅制御部153によって決定された遮光領域の幅とに基づいて、表示装置に表示する。 Further, the display control unit 154 divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and divides the slice image for each divided viewpoint position into the viewpoint position and width of each of the two or more observers. The display is displayed on the display device based on the width of the light-shielding area determined by the control unit 153.
 具体的には、表示制御部154は、2以上の観察者それぞれの視点位置と幅制御部153によって決定された遮光領域の幅とに基づいて、スライス画像の幅を制御する。例えば、表示制御部154は、2以上の観察者それぞれの視点位置と幅制御部153によって決定された遮光領域の幅とに基づいて、スライス画像の幅を算出する。 Specifically, the display control unit 154 controls the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region determined by the width control unit 153. For example, the display control unit 154 calculates the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region determined by the width control unit 153.
 また、表示制御部154は、スライス画像を表示装置に表示する表示位置を制御する。具体的には、表示制御部154は、複数の観察者それぞれの視点位置情報および幅制御部153によって決定された遮光領域の幅に基づいて、スライス画像の表示位置を算出する。 Further, the display control unit 154 controls the display position for displaying the slice image on the display device. Specifically, the display control unit 154 calculates the display position of the slice image based on the viewpoint position information of each of the plurality of observers and the width of the light-shielding region determined by the width control unit 153.
 続いて、表示制御部154は、スライス画像の幅および表示位置を算出すると、生成部152から取得した視差画像を算出したスライス画像の幅および表示位置で第1表示部121に表示するための画像(以下、画像用パネルデータともいう)を生成する。続いて、表示制御部154は、生成した画像用パネルデータを第1表示部121に表示する。 Subsequently, when the display control unit 154 calculates the width and display position of the slice image, the image for displaying the parallax image acquired from the generation unit 152 on the first display unit 121 with the calculated width and display position of the slice image. (Hereinafter, also referred to as image panel data) is generated. Subsequently, the display control unit 154 displays the generated image panel data on the first display unit 121.
 また、表示制御部154は、2以上の観察者それぞれの視点位置に基づいて生成されたバリア画像を第2表示部122に表示する。具体的には、表示制御部154は、幅制御部153によって生成されたバリア用パネルデータを取得する。続いて、表示制御部154は、取得したバリア用パネルデータを第2表示部122に表示する。 Further, the display control unit 154 displays the barrier image generated based on the viewpoint positions of each of the two or more observers on the second display unit 122. Specifically, the display control unit 154 acquires the barrier panel data generated by the width control unit 153. Subsequently, the display control unit 154 displays the acquired barrier panel data on the second display unit 122.
[2-4.観察者間の距離と観察競合率との関係]
 次に、図7を用いて、実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率との関係について説明する。図7は、実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率との関係を示すグラフ図である。図7は、観察者2人の距離と観察競合の関係を、バリア幅を変えながらプロットしたものである。図7は、スリットの幅を3ピクセルに保ったまま、バリア幅を9ピクセル~16ピクセルまで1ピクセルずつ増加させた8種類の実験結果を示す。なお、スリットの幅を一定に保ってバリア幅を変更することにより、スリットのピッチが変化する。図7に示すグラフの横軸Xは、観察者2人の距離を示す。また、グラフの縦軸Yは、観察競合率(以下、競合率ともいう)を示す。競合率が大きい視点位置では、2人の観察者が別々のスライス画像を見ることができない。プロットの線の種類がバリアの幅を表しており、バリアの幅によって観察競合が起こらない距離が変わる。
[2-4. Relationship between distance between observers and observation competition rate]
Next, with reference to FIG. 7, the relationship between the distance between observers and the observation competition rate for each slit pitch according to the embodiment will be described. FIG. 7 is a graph showing the relationship between the distance between observers and the observation competition rate for each slit pitch according to the embodiment. FIG. 7 is a plot of the relationship between the distance between two observers and the observation competition while changing the barrier width. FIG. 7 shows the results of eight types of experiments in which the barrier width was increased by 1 pixel from 9 pixels to 16 pixels while keeping the slit width at 3 pixels. By changing the barrier width while keeping the slit width constant, the slit pitch changes. The horizontal axis X of the graph shown in FIG. 7 indicates the distance between the two observers. Further, the vertical axis Y of the graph indicates the observation competition rate (hereinafter, also referred to as the competition rate). At the viewpoint position where the competition rate is high, the two observers cannot see the separate slice images. The line type of the plot represents the width of the barrier, and the width of the barrier changes the distance at which observation conflict does not occur.
 次に、図8を用いて、実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係について説明する。図8は、実施形態に係る観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係を示すグラフ図である。図8に示すグラフは、図7に示したグラフにおける最小値を図示したものである。図8に示すグラフから、バリアの幅を13~19サブピクセルの間で制御することによって、実用的な範囲(例えば、観察者間の距離が1000ピクセル~9000ピクセル)の視点位置において、2人の観察者それぞれの視点位置に対応する立体画像を提示できることがわかる。情報処理装置100は、図8に示す関係をルックアップテーブルとして記憶部130に記憶する。または、情報処理装置100は、図8に示す関係をモデル化した関数を記憶部130に記憶する。幅制御部153は、図8に示す関係を示すルックアップテーブルまたは図8に示す関係をモデル化した関数を用いて、トラッカーによって取得した2人の観察者それぞれの視点位置に応じた最適なバリア幅を導出する。また、表示制御部154は、2人の観察者それぞれの視点位置および最適なバリア幅に応じて、画像の表示を制御する。 Next, with reference to FIG. 8, the relationship between the distance between observers and the minimum value of the observation competition rate for each slit pitch according to the embodiment will be described. FIG. 8 is a graph showing the relationship between the distance between observers according to the embodiment and the minimum value of the observation competition rate for each slit pitch. The graph shown in FIG. 8 illustrates the minimum value in the graph shown in FIG. 7. From the graph shown in FIG. 8, by controlling the width of the barrier between 13 and 19 subpixels, two people at a viewpoint position in a practical range (for example, the distance between observers is 1000 pixels to 9000 pixels). It can be seen that a stereoscopic image corresponding to each viewpoint position of the observer can be presented. The information processing device 100 stores the relationship shown in FIG. 8 as a look-up table in the storage unit 130. Alternatively, the information processing apparatus 100 stores in the storage unit 130 a function that models the relationship shown in FIG. The width control unit 153 uses a look-up table showing the relationship shown in FIG. 8 or a function modeling the relationship shown in FIG. 8 to obtain an optimum barrier according to the viewpoint position of each of the two observers acquired by the tracker. Derivation of width. Further, the display control unit 154 controls the display of the image according to the viewpoint position and the optimum barrier width of each of the two observers.
[2-5.情報処理の手順]
 次に、図9を用いて、実施形態に係る情報処理手順について説明する。図9は、実施形態に係る情報処理手順を示すフローチャートである。
[2-5. Information processing procedure]
Next, the information processing procedure according to the embodiment will be described with reference to FIG. FIG. 9 is a flowchart showing an information processing procedure according to the embodiment.
 図9に示す例では、検出部110は、トラッカーを用いて複数の観察者の視点位置情報を取得する(ステップS101)。生成部152は、事前に用意したテーブル(図8に示すグラフ)もしくは関数を用いて、複数の観察者の視点位置情報に応じたバリア幅と表示画像を算出する(ステップS102)。幅制御部153は、生成部152によって生成されたバリア画像を第1表示部121に表示する。また、表示制御部154は、生成部152によって生成されたスライス画像を第2表示部122に表示する(ステップS103)。 In the example shown in FIG. 9, the detection unit 110 acquires the viewpoint position information of a plurality of observers using a tracker (step S101). The generation unit 152 calculates the barrier width and the display image according to the viewpoint position information of a plurality of observers by using a table (graph shown in FIG. 8) or a function prepared in advance (step S102). The width control unit 153 displays the barrier image generated by the generation unit 152 on the first display unit 121. Further, the display control unit 154 displays the slice image generated by the generation unit 152 on the second display unit 122 (step S103).
[2-6.変形例]
 上述した実施形態では、表示装置120が2層の液晶パネルを積層させて構成される例について説明したが、これに限られない。具体的には、2層の表示パネルのうち画像表示に用いられる表示パネルは、液晶パネルに限らず、OLED(Organic Light Emitting Diode)等であってもよい。また、表示パネルを用いる代わりに、プロジェクションによって画像を表示してもよい。
[2-6. Modification example]
In the above-described embodiment, an example in which the display device 120 is configured by laminating two layers of liquid crystal panels has been described, but the present invention is not limited to this. Specifically, among the two-layer display panels, the display panel used for image display is not limited to the liquid crystal panel, and may be an OLED (Organic Light Emitting Diode) or the like. Further, instead of using the display panel, the image may be displayed by projection.
 また、2層の表示パネルのうちパララックスバリアとして用いる装置は、遮光能力があり、遮光領域(バリア)の幅を制御できるものであればどのような装置であってもよい。例えば、パララックスバリアとして、遮光領域(バリア)の幅が固定された遮光板を回転移動または平行移動させたものを用いてもよい。また、パララックスバリアとして、遮光領域(バリア)に伸縮可能な素材(例えば、ゴム等の弾性体)を用いた遮光板を用いてもよい。 Further, the device used as the parallax barrier among the two-layer display panels may be any device as long as it has a light-shielding ability and can control the width of the light-shielding area (barrier). For example, as the parallax barrier, a light-shielding plate having a fixed width of the light-shielding region (barrier) may be rotationally moved or translated. Further, as the parallax barrier, a light-shielding plate using a stretchable material (for example, an elastic body such as rubber) may be used in the light-shielding region (barrier).
 次に、図10を用いて、実施形態に係る変形例について説明する。図10は、実施形態に係る変形例を説明するための説明図である。図10では、あらかじめバリア幅が異なる2種類のバリアを用意しておき、情報処理装置100が、2人の観察者U1およびU2それぞれの視点位置に応じてどの種類のディスプレイを表示するか選択し、それのみを表示する。また、情報処理装置100は、光路をハーフミラーM1で合成する。 Next, a modified example according to the embodiment will be described with reference to FIG. FIG. 10 is an explanatory diagram for explaining a modified example according to the embodiment. In FIG. 10, two types of barriers having different barrier widths are prepared in advance, and the information processing device 100 selects which type of display is displayed according to the viewpoint positions of the two observers U1 and U2. , Show only that. Further, the information processing apparatus 100 synthesizes an optical path with a half mirror M1.
 図10では、あらかじめ4視点用のバリアと5視点用のバリアを用意する。図示は省略するが、変形例に係る情報処理装置100Aは、表示装置120Aを備える。表示装置120Aは、4視点用のスライス画像を表示する第1表示部121A、5視点用のスライス画像を表示する第1表示部121B、4視点用のバリア画像を表示する第2表示部122A、および5視点用のバリア画像を表示する第2表示部122Bを備える。 In FIG. 10, a barrier for 4 viewpoints and a barrier for 5 viewpoints are prepared in advance. Although not shown, the information processing device 100A according to the modified example includes a display device 120A. The display device 120A includes a first display unit 121A that displays a slice image for four viewpoints, a first display unit 121B that displays a slice image for five viewpoints, and a second display unit 122A that displays a barrier image for four viewpoints. A second display unit 122B for displaying a barrier image for five viewpoints is provided.
 取得部151は、2人の観察者U1およびU2それぞれの視点位置情報を取得する。幅制御部153は、取得部151が取得した2人の観察者U1およびU2それぞれの視点位置に基づいて2人の観察者U1およびU2間の距離Lを算出する。続いて、幅制御部153は、2人の観察者U1およびU2間の距離Lを算出すると、図8に示す観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係に基づいて、遮光領域の幅を制御する。例えば、幅制御部153は、図8に示す観察者間の距離とスリットのピッチごとの観察競合率の最小値との関係に基づいて、4視点用のバリアと5視点用のバリアの中から、遮光領域の幅を4視点用のバリアに相当する幅に決定する。続いて、幅制御部153は、決定した遮光領域の幅に対応するバリアを選択して表示する。例えば、幅制御部153は、4視点用のバリアを第2表示部122Aに表示する。また、幅制御部153は、第2表示部122Bの画面をOFFにする。 The acquisition unit 151 acquires the viewpoint position information of each of the two observers U1 and U2. The width control unit 153 calculates the distance L between the two observers U1 and U2 based on the viewpoint positions of the two observers U1 and U2 acquired by the acquisition unit 151. Subsequently, when the width control unit 153 calculates the distance L between the two observers U1 and U2, the relationship between the distance between the observers shown in FIG. 8 and the minimum value of the observation competition rate for each slit pitch is established. Based on this, the width of the shading area is controlled. For example, the width control unit 153 is selected from the barriers for 4 viewpoints and the barriers for 5 viewpoints based on the relationship between the distance between observers and the minimum value of the observation competition rate for each slit pitch shown in FIG. , The width of the light-shielding area is determined to be the width corresponding to the barrier for four viewpoints. Subsequently, the width control unit 153 selects and displays a barrier corresponding to the width of the determined light-shielding region. For example, the width control unit 153 displays a barrier for four viewpoints on the second display unit 122A. Further, the width control unit 153 turns off the screen of the second display unit 122B.
 また、表示制御部154は、2人の観察者U1およびU2それぞれの視点位置に対応する視差画像を生成部152から取得する。続いて、表示制御部154は、2人の観察者U1およびU2それぞれの視点位置情報および幅制御部153によって決定された遮光領域の幅に基づいて、生成部152から取得した視差画像を第1表示部121Aに表示する。例えば、表示制御部154は、生成部152から取得した視差画像が4視点用に垂直方向に細長く切断されたスライス画像の幅を算出する。また、表示制御部154は、スライス画像の表示位置を算出する。続いて、表示制御部154は、スライス画像の幅および表示位置を算出すると、画像用パネルデータを生成する。続いて、表示制御部154は、生成した画像用パネルデータを第1表示部121Aに表示する。 Further, the display control unit 154 acquires a parallax image corresponding to the viewpoint position of each of the two observers U1 and U2 from the generation unit 152. Subsequently, the display control unit 154 first obtains a parallax image acquired from the generation unit 152 based on the viewpoint position information of each of the two observers U1 and U2 and the width of the light-shielding region determined by the width control unit 153. It is displayed on the display unit 121A. For example, the display control unit 154 calculates the width of a slice image obtained by cutting the parallax image acquired from the generation unit 152 in the vertical direction for four viewpoints. In addition, the display control unit 154 calculates the display position of the slice image. Subsequently, the display control unit 154 calculates the width and display position of the sliced image to generate image panel data. Subsequently, the display control unit 154 displays the generated image panel data on the first display unit 121A.
[3.本開示に係る効果]
 上述のように、本開示の実施形態又はその変形例に係る情報処理装置100は、遮光領域とスリットとが交互に配列するバリア部と、遮光領域の幅を制御する幅制御部153と、を備える。幅制御部153は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、表示装置から2以上の観察者それぞれの視点位置まで伝搬する光を遮る遮光領域の幅を制御する。
[3. Effect of this disclosure]
As described above, the information processing apparatus 100 according to the embodiment of the present disclosure or a modification thereof has a barrier unit in which light-shielding regions and slits are alternately arranged, and a width control unit 153 that controls the width of the light-shielding region. Be prepared. The width control unit 153 determines the width of the light-shielding region that blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device that displays the stereoscopic image. Control.
 これにより、情報処理装置100は、複数の観察者に対して同時に異なる立体画像を観察させることができる。また、情報処理装置100は、複数の観察者に対して同時に異なる立体画像を観察させることができるので、例えば、複数の観察者に対してそれぞれの位置に応じた運動視差を同時に再現することができる。したがって、情報処理装置100は、複数の観察者に対して立体画像を表示することができる。 As a result, the information processing device 100 allows a plurality of observers to observe different stereoscopic images at the same time. Further, since the information processing device 100 can make a plurality of observers observe different stereoscopic images at the same time, for example, it is possible to simultaneously reproduce the motion parallax according to each position for a plurality of observers. can. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
 また、情報処理装置100は、必要最低限の解像度(観察者の人数分の視点の数に対応する画素数)で、複数の観察者に対して立体画像を表示することができる。例えば、観察者が2人の場合、情報処理装置100は、4~6視点分の解像度の表示パネルを用いれば、2人に対して同時に両眼視差および運動視差を再現することができる。したがって、情報処理装置100は、複数の観察者の視点位置に合わせて可変幅のバリアを制御することにより、固定幅のバリアを用いる従来手法と比較して、複数の観察者に対してより効率的に立体画像を表示することができる。 Further, the information processing device 100 can display a stereoscopic image to a plurality of observers with the minimum necessary resolution (the number of pixels corresponding to the number of viewpoints corresponding to the number of observers). For example, when there are two observers, the information processing apparatus 100 can reproduce binocular parallax and motion parallax for two people at the same time by using a display panel having a resolution of 4 to 6 viewpoints. Therefore, the information processing apparatus 100 is more efficient for a plurality of observers than the conventional method using a fixed width barrier by controlling the variable width barrier according to the viewpoint positions of the plurality of observers. A stereoscopic image can be displayed.
 また、幅制御部153は、2以上の観察者間の距離と、2以上の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関するスリットのピッチごとの指標値との関係に基づいて、遮光領域の幅を制御する。また、幅制御部153は、2以上の観察者間の距離と指標値の最小値との関係に基づいて、遮光領域の幅を制御する。 Further, the width control unit 153 is based on the relationship between the distance between two or more observers and the index value for each slit pitch regarding whether or not two or more observers can simultaneously view different stereoscopic images. The width of the light-shielding area is controlled. Further, the width control unit 153 controls the width of the light-shielding region based on the relationship between the distance between two or more observers and the minimum value of the index value.
 これにより、情報処理装置100は、実用的な範囲(例えば、観察者間の距離が1000ピクセル~9000ピクセル)の視点位置において、複数の観察者それぞれの視点位置に対応する立体画像を提示することができる。 As a result, the information processing apparatus 100 presents a stereoscopic image corresponding to each of a plurality of observer's viewpoint positions in a practical range (for example, a distance between observers is 1000 pixels to 9000 pixels). Can be done.
 また、バリア部は、パララックスバリアである。 Also, the barrier part is a parallax barrier.
 これにより、情報処理装置100は、複数の観察者に対してパララックスバリア方式によって立体画像を表示することができる。 As a result, the information processing device 100 can display a stereoscopic image to a plurality of observers by the parallax barrier method.
 また、情報処理装置100は、表示制御部154をさらに備える。表示制御部154は、2以上の観察者それぞれの視点位置と遮光領域の幅とに基づいて、2以上の観察者それぞれの視点位置に応じた視差画像を表示装置に表示する。また、表示制御部154は、視点位置ごとの視差画像それぞれを垂直方向に長い複数のスライス画像に分割し、分割された視点位置ごとのスライス画像を、2以上の観察者それぞれの視点位置と遮光領域の幅とに基づいて、表示装置に表示する。また、表示制御部154は、2以上の観察者それぞれの視点位置と遮光領域の幅とに基づいて、スライス画像の幅を制御する。また、表示制御部154は、スライス画像を表示装置に表示する表示位置を制御する。 Further, the information processing device 100 further includes a display control unit 154. The display control unit 154 displays a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding area. Further, the display control unit 154 divides each parallax image for each viewpoint position into a plurality of vertically long slice images, and the divided slice image for each viewpoint position is shielded from the viewpoint position of each of the two or more observers. Display on the display device based on the width of the area. Further, the display control unit 154 controls the width of the slice image based on the viewpoint position of each of the two or more observers and the width of the light-shielding region. In addition, the display control unit 154 controls the display position for displaying the slice image on the display device.
 これにより、情報処理装置100は、複数の観察者それぞれの視点位置に応じて適切な視差画像を表示することができる。すなわち、情報処理装置100は、複数の観察者それぞれの視点位置に応じて同時に異なる立体画像を表示することができる。したがって、情報処理装置100は、複数の観察者に対して立体画像を表示することができる。 As a result, the information processing device 100 can display an appropriate parallax image according to the viewpoint position of each of the plurality of observers. That is, the information processing device 100 can simultaneously display different stereoscopic images according to the viewpoint positions of each of the plurality of observers. Therefore, the information processing device 100 can display a stereoscopic image to a plurality of observers.
 また、表示装置は、視差画像を表示する第1表示部と、バリア部に対応するバリア画像を表示する第2表示部とを備える。表示制御部154は、2以上の観察者それぞれの視点位置と遮光領域の幅とに基づいて、視差画像を第1表示部に表示し、2以上の観察者それぞれの視点位置に基づいて、バリア画像を第2表示部に表示する。 Further, the display device includes a first display unit that displays a parallax image and a second display unit that displays a barrier image corresponding to the barrier unit. The display control unit 154 displays a parallax image on the first display unit based on the viewpoint position of each of the two or more observers and the width of the light-shielding area, and the barrier is based on the viewpoint position of each of the two or more observers. The image is displayed on the second display unit.
 これにより、情報処理装置100は、複数の観察者の視点位置に合わせて可変幅のバリアを制御することがより容易になる。また、情報処理装置100は、可変幅のバリアに応じたスライス画像を表示することが容易になる。 This makes it easier for the information processing apparatus 100 to control the variable width barrier according to the viewpoint positions of a plurality of observers. Further, the information processing apparatus 100 can easily display a slice image corresponding to the variable width barrier.
[4.ハードウェア構成]
 上述してきた実施形態や変形例に係る情報処理装置100等の情報機器は、例えば図11に示すような構成のコンピュータ1000によって再現される。図11は、情報処理装置100等の情報処理装置の機能を再現するコンピュータ1000の一例を示すハードウェア構成図である。以下、実施形態に係る情報処理装置100を例に挙げて説明する。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
[4. Hardware configuration]
Information devices such as the information processing device 100 according to the above-described embodiments and modifications are reproduced by, for example, a computer 1000 having a configuration as shown in FIG. FIG. 11 is a hardware configuration diagram showing an example of a computer 1000 that reproduces the functions of an information processing device such as the information processing device 100. Hereinafter, the information processing apparatus 100 according to the embodiment will be described as an example. The computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processing corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program that depends on the hardware of the computer 1000, and the like.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る情報処理プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by the program. Specifically, the HDD 1400 is a recording medium for recording an information processing program according to the present disclosure, which is an example of program data 1450.
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet). For example, the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media). The media is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. Is.
 例えば、コンピュータ1000が実施形態に係る情報処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた情報処理プログラムを実行することにより、制御部150等の機能を再現する。また、HDD1400には、本開示に係る情報処理プログラムや、記憶部130内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the information processing device 100 according to the embodiment, the CPU 1100 of the computer 1000 reproduces the functions of the control unit 150 and the like by executing the information processing program loaded on the RAM 1200. Further, the information processing program according to the present disclosure and the data in the storage unit 130 are stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
 なお、本技術は以下のような構成も取ることができる。
(1)
 遮光領域とスリットとが交互に配列するバリア部と、
 前記遮光領域の幅を制御する幅制御部と、
 を備え、
 前記幅制御部は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する、
 情報処理装置。
(2)
 前記幅制御部は、
 前記2以上の観察者間の距離と、前記2以上の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関する前記スリットのピッチごとの指標値との関係に基づいて、前記遮光領域の幅を制御する、
 前記(1)に記載の情報処理装置。
(3)
 前記幅制御部は、
 前記2以上の観察者間の距離と前記指標値の最小値との関係に基づいて、前記遮光領域の幅を制御する、
 前記(2)に記載の情報処理装置。
(4)
 前記バリア部は、
 パララックスバリアである、
 前記(1)~(3)のいずれか1つに記載の情報処理装置。
(5)
 前記2以上の観察者それぞれの視点位置と前記遮光領域の幅とに基づいて、前記2以上の観察者それぞれの視点位置に応じた視差画像を前記表示装置に表示する表示制御部をさらに備える、
 前記(1)~(4)のいずれか1つに記載の情報処理装置。
(6)
 前記表示制御部は、
 前記視点位置ごとの前記視差画像それぞれを垂直方向に長い複数のスライス画像に分割し、分割された前記視点位置ごとの前記スライス画像を、前記2以上の観察者それぞれの前記視点位置と前記遮光領域の幅とに基づいて、前記表示装置に表示する、
 前記(5)に記載の情報処理装置。
(7)
 前記表示制御部は、前記2以上の観察者それぞれの前記視点位置と前記遮光領域の幅とに基づいて、前記スライス画像の幅を制御する、
 前記(6)に記載の情報処理装置。
(8)
 前記表示制御部は、
 前記スライス画像を前記表示装置に表示する表示位置を制御する、
 前記(7)に記載の情報処理装置。
(9)
 前記表示装置は、前記視差画像を表示する第1表示部と、前記バリア部に対応するバリア画像を表示する第2表示部とを備え、
 前記表示制御部は、
 前記2以上の観察者それぞれの視点位置と前記遮光領域の幅とに基づいて、前記視差画像を前記第1表示部に表示し、
 前記2以上の観察者それぞれの視点位置に基づいて、前記バリア画像を前記第2表示部に表示する、
 前記(5)に記載の情報処理装置。
(10)
 遮光領域とスリットとが交互に配列するバリア部を制御するための制御方法であって、
 立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する、
 ことを含む制御方法。
(11)
 遮光領域とスリットとが交互に配列するバリア部を備える情報処理装置のコンピュータを機能させるためのプログラムであって、
 立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する幅制御処理、
 を前記コンピュータに実行させるためのプログラム。
The present technology can also have the following configurations.
(1)
A barrier section where light-shielding areas and slits are arranged alternately,
A width control unit that controls the width of the light-shielding region,
With
The width control unit blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device displaying the stereoscopic image. Control the width of
Information processing device.
(2)
The width control unit
The shading region is based on the relationship between the distance between the two or more observers and the index value for each pitch of the slit regarding whether or not the two or more observers can simultaneously view different stereoscopic images. Control the width of
The information processing device according to (1) above.
(3)
The width control unit
The width of the shading region is controlled based on the relationship between the distance between the two or more observers and the minimum value of the index value.
The information processing device according to (2) above.
(4)
The barrier part is
A parallax barrier,
The information processing device according to any one of (1) to (3) above.
(5)
A display control unit for displaying a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding region is further provided.
The information processing device according to any one of (1) to (4) above.
(6)
The display control unit
Each of the parallax images for each viewpoint position is divided into a plurality of vertically long slice images, and the sliced image for each of the divided viewpoint positions is divided into the viewpoint position and the light-shielding region of each of the two or more observers. Displayed on the display device based on the width of
The information processing device according to (5) above.
(7)
The display control unit controls the width of the slice image based on the viewpoint position and the width of the light-shielding region of each of the two or more observers.
The information processing device according to (6) above.
(8)
The display control unit
Control the display position of displaying the slice image on the display device.
The information processing device according to (7) above.
(9)
The display device includes a first display unit that displays the parallax image and a second display unit that displays a barrier image corresponding to the barrier unit.
The display control unit
The parallax image is displayed on the first display unit based on the viewpoint position of each of the two or more observers and the width of the light-shielding region.
The barrier image is displayed on the second display unit based on the viewpoint position of each of the two or more observers.
The information processing device according to (5) above.
(10)
It is a control method for controlling a barrier portion in which light-shielding areas and slits are alternately arranged.
Based on the viewpoint position of each of the two or more observers of the display device for displaying the stereoscopic image, the width of the light-shielding region that blocks the light propagating from the display device to the viewpoint position of each of the two or more observers is controlled.
Control methods including that.
(11)
A program for operating a computer of an information processing device having a barrier portion in which light-shielding areas and slits are alternately arranged.
A width that controls the width of the light-shielding region that blocks light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of each of the two or more observers of the display device that displays a stereoscopic image. Control processing,
A program for causing the computer to execute.
 100  情報処理装置
 110  検出部
 120  表示装置
 121  第1表示部
 122  第2表示部
 130  記憶部
 140  通信部
 150  制御部
 151  取得部
 152  生成部
 153  幅制御部
 154  表示制御部
100 Information processing device 110 Detection unit 120 Display device 121 First display unit 122 Second display unit 130 Storage unit 140 Communication unit 150 Control unit 151 Acquisition unit 152 Generation unit 153 Width control unit 154 Display control unit

Claims (11)

  1.  遮光領域とスリットとが交互に配列するバリア部と、
     前記遮光領域の幅を制御する幅制御部と、
     を備え、
     前記幅制御部は、立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する、
     情報処理装置。
    A barrier section where light-shielding areas and slits are arranged alternately,
    A width control unit that controls the width of the light-shielding region,
    With
    The width control unit blocks the light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of the two or more observers of the display device displaying the stereoscopic image. Control the width of
    Information processing device.
  2.  前記幅制御部は、
     前記2以上の観察者間の距離と、前記2以上の観察者がそれぞれ異なる立体画像を同時に視認可能であるか否かに関する前記スリットのピッチごとの指標値との関係に基づいて、前記遮光領域の幅を制御する、
     請求項1に記載の情報処理装置。
    The width control unit
    The shading region is based on the relationship between the distance between the two or more observers and the index value for each pitch of the slit regarding whether or not the two or more observers can simultaneously view different stereoscopic images. Control the width of
    The information processing device according to claim 1.
  3.  前記幅制御部は、
     前記2以上の観察者間の距離と前記指標値の最小値との関係に基づいて、前記遮光領域の幅を制御する、
     請求項2に記載の情報処理装置。
    The width control unit
    The width of the shading region is controlled based on the relationship between the distance between the two or more observers and the minimum value of the index value.
    The information processing device according to claim 2.
  4.  前記バリア部は、
     パララックスバリアである、
     請求項1に記載の情報処理装置。
    The barrier part is
    A parallax barrier,
    The information processing device according to claim 1.
  5.  前記2以上の観察者それぞれの視点位置と前記遮光領域の幅とに基づいて、前記2以上の観察者それぞれの視点位置に応じた視差画像を前記表示装置に表示する表示制御部をさらに備える、
     請求項1に記載の情報処理装置。
    A display control unit for displaying a parallax image corresponding to the viewpoint position of each of the two or more observers on the display device based on the viewpoint position of each of the two or more observers and the width of the light-shielding region is further provided.
    The information processing device according to claim 1.
  6.  前記表示制御部は、
     前記視点位置ごとの前記視差画像それぞれを垂直方向に長い複数のスライス画像に分割し、分割された前記視点位置ごとの前記スライス画像を、前記2以上の観察者それぞれの前記視点位置と前記遮光領域の幅とに基づいて、前記表示装置に表示する、
     請求項5に記載の情報処理装置。
    The display control unit
    Each of the parallax images for each viewpoint position is divided into a plurality of vertically long slice images, and the sliced image for each of the divided viewpoint positions is divided into the viewpoint position and the light-shielding region of each of the two or more observers. Displayed on the display device based on the width of
    The information processing device according to claim 5.
  7.  前記表示制御部は、前記2以上の観察者それぞれの前記視点位置と前記遮光領域の幅とに基づいて、前記スライス画像の幅を制御する、
     請求項6に記載の情報処理装置。
    The display control unit controls the width of the slice image based on the viewpoint position and the width of the light-shielding region of each of the two or more observers.
    The information processing device according to claim 6.
  8.  前記表示制御部は、
     前記スライス画像を前記表示装置に表示する表示位置を制御する、
     請求項7に記載の情報処理装置。
    The display control unit
    Control the display position of displaying the slice image on the display device.
    The information processing device according to claim 7.
  9.  前記表示装置は、前記視差画像を表示する第1表示部と、前記バリア部に対応するバリア画像を表示する第2表示部とを備え、
     前記表示制御部は、
     前記2以上の観察者それぞれの視点位置と前記遮光領域の幅とに基づいて、前記視差画像を前記第1表示部に表示し、
     前記2以上の観察者それぞれの視点位置に基づいて、前記バリア画像を前記第2表示部に表示する、
     請求項5に記載の情報処理装置。
    The display device includes a first display unit that displays the parallax image and a second display unit that displays a barrier image corresponding to the barrier unit.
    The display control unit
    The parallax image is displayed on the first display unit based on the viewpoint position of each of the two or more observers and the width of the light-shielding region.
    The barrier image is displayed on the second display unit based on the viewpoint position of each of the two or more observers.
    The information processing device according to claim 5.
  10.  遮光領域とスリットとが交互に配列するバリア部を制御するための制御方法であって、
     立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する、
     ことを含む制御方法。
    It is a control method for controlling a barrier portion in which light-shielding areas and slits are alternately arranged.
    Based on the viewpoint position of each of the two or more observers of the display device for displaying the stereoscopic image, the width of the light-shielding region that blocks the light propagating from the display device to the viewpoint position of each of the two or more observers is controlled.
    Control methods including that.
  11.  遮光領域とスリットとが交互に配列するバリア部を備える情報処理装置のコンピュータを機能させるためのプログラムであって、
     立体画像を表示する表示装置の2以上の観察者それぞれの視点位置に基づいて、前記表示装置から前記2以上の観察者それぞれの視点位置まで伝搬する光を遮る前記遮光領域の幅を制御する幅制御処理、
     を前記コンピュータに実行させるための情報処理プログラム。
    A program for operating a computer of an information processing device having a barrier portion in which light-shielding areas and slits are alternately arranged.
    A width that controls the width of the light-shielding region that blocks light propagating from the display device to the viewpoint positions of the two or more observers based on the viewpoint positions of each of the two or more observers of the display device that displays a stereoscopic image. Control processing,
    An information processing program for causing the computer to execute.
PCT/JP2021/003200 2020-03-10 2021-01-29 Information processing device, control method, and information processing program WO2021181935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040950 2020-03-10
JP2020040950 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021181935A1 true WO2021181935A1 (en) 2021-09-16

Family

ID=77671385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003200 WO2021181935A1 (en) 2020-03-10 2021-01-29 Information processing device, control method, and information processing program

Country Status (1)

Country Link
WO (1) WO2021181935A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142556A (en) * 1996-11-11 1998-05-29 Fujitsu Ltd Picture display device and method therefor
WO2003013153A1 (en) * 2001-07-27 2003-02-13 Koninklijke Philips Electronics N.V. Autostereoscopic image display with observer tracking system
JP2007240656A (en) * 2006-03-06 2007-09-20 Epson Imaging Devices Corp Image display device
US20100090940A1 (en) * 2008-10-15 2010-04-15 Samsung Electronics Co., Ltd. Image display apparatus and method
US20130307948A1 (en) * 2012-05-16 2013-11-21 Samsung Display Co., Ltd. 3-dimensional image display device and display method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142556A (en) * 1996-11-11 1998-05-29 Fujitsu Ltd Picture display device and method therefor
WO2003013153A1 (en) * 2001-07-27 2003-02-13 Koninklijke Philips Electronics N.V. Autostereoscopic image display with observer tracking system
JP2007240656A (en) * 2006-03-06 2007-09-20 Epson Imaging Devices Corp Image display device
US20100090940A1 (en) * 2008-10-15 2010-04-15 Samsung Electronics Co., Ltd. Image display apparatus and method
US20130307948A1 (en) * 2012-05-16 2013-11-21 Samsung Display Co., Ltd. 3-dimensional image display device and display method thereof

Similar Documents

Publication Publication Date Title
KR102415502B1 (en) Method and apparatus of light filed rendering for plurality of user
US10241329B2 (en) Varifocal aberration compensation for near-eye displays
KR101651441B1 (en) A three dimensional display system
KR100913933B1 (en) Image display device and image display method
WO2010084724A1 (en) Image processing device, program, image processing method, recording method, and recording medium
US8564647B2 (en) Color management of autostereoscopic 3D displays
KR20160016468A (en) Method for generating real 3 dimensional image and the apparatus thereof
US20220270217A1 (en) Reprojection and wobulation at head-mounted display device
JP7335233B2 (en) A system and method for displaying two-viewpoint autostereoscopic images on an N-viewpoint autostereoscopic display screen and a method for controlling the display on such a display screen
WO2013132601A1 (en) 3d image display device and program
KR102221773B1 (en) Three dimensional image display device
JP5396877B2 (en) Image processing apparatus, program, image processing method, and recording method
US10567744B1 (en) Camera-based display method and system for simulators
KR102279816B1 (en) Autostereoscopic 3d display device
WO2021178397A1 (en) Multiview autostereoscopic display using lenticular-based steerable backlighting
KR20120093693A (en) Stereoscopic 3d display device and method of driving the same
WO2021181935A1 (en) Information processing device, control method, and information processing program
JPH08334730A (en) Stereoscopic picture reproducing device
Minami et al. Portrait and landscape mode convertible stereoscopic display using parallax barrier
EP2408217A2 (en) Method of virtual 3d image presentation and apparatus for virtual 3d image presentation
JP2002330452A (en) Stereoscopic image display device
JP2001218231A (en) Device and method for displaying stereoscopic image
KR20180062953A (en) Display apparatus and method of displaying using context display and projectors
CA3018454C (en) Camera-based display method and system for simulators
JP7140954B2 (en) 3D display device, 3D display method, and 3D display program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP