WO2021181717A1 - Communication control apparatus, program, flying object, system, and control method - Google Patents

Communication control apparatus, program, flying object, system, and control method Download PDF

Info

Publication number
WO2021181717A1
WO2021181717A1 PCT/JP2020/031337 JP2020031337W WO2021181717A1 WO 2021181717 A1 WO2021181717 A1 WO 2021181717A1 JP 2020031337 W JP2020031337 W JP 2020031337W WO 2021181717 A1 WO2021181717 A1 WO 2021181717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
antenna
target area
position information
attitude
Prior art date
Application number
PCT/JP2020/031337
Other languages
French (fr)
Japanese (ja)
Inventor
亮次 平井
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Publication of WO2021181717A1 publication Critical patent/WO2021181717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to a communication control device, a program, an air vehicle, a system and a control method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-135823
  • a communication control device may control the antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell.
  • the communication control device may include an information storage unit that stores target area position information indicating the position of the target area.
  • the communication control device may include a position information acquisition unit that acquires the vehicle body position information indicating the three-dimensional position of the vehicle body.
  • the communication control device may include an attitude information acquisition unit that acquires attitude information indicating the attitude of the flying object.
  • the communication control device controls the gimbal that supports the antenna so as to maintain the tilt of the antenna based on the attitude information, and covers the target area by the cell based on the target area position information and the vehicle body position information.
  • a control unit that controls the tilt of the antenna may be provided.
  • the control unit may control the tilt of the antenna so as to maintain the entire cover of the target area.
  • the control unit grasps the relative positional relationship between the antenna and the target area based on the target area position information and the flying object position information, and adjusts to the sequentially changing position of the flying object. You may control the tilt of the antenna.
  • the control unit may control the electric tilt of the antenna to cover the target area by the cell based on the target area position information and the flying object position information.
  • the control unit may control the mechanical tilt of the antenna to cover the target area by the cell based on the target area position information and the flying object position information.
  • the air vehicle may fly along a predetermined orbital path, and the communication control device is flying the air vehicle position information and the position indicated by the air vehicle position information.
  • a history storage unit for storing association data in which the attitude information indicating the attitude of the aircraft at the time and the control amount of the gimbal based on the attitude information are associated with each other may be provided, and the control unit may include the history.
  • the gimbal may be controlled based on the association data stored in the storage unit.
  • the control unit controls the gimbal based on the association data when the air vehicle passes the first point in the orbital path and the air vehicle passes the first point in the past.
  • the gimbal may be controlled based on the attitude information.
  • the control unit may control the gimbal according to the control amount of the gimbal included in the association data when the flying object has passed the first point in the past.
  • the control unit has a plurality of the associated data when the flying object passes the first point and the flying object has passed the first point in the past, and the correct answer for the control of the gimbal.
  • the control unit determines that the attitude fluctuation pattern of the flying object has regularity based on the attitude information acquired by the attitude information acquisition unit during a predetermined time, the fluctuation pattern is changed to the fluctuation pattern. If it is determined that there is no regularity to control the gimbal based on the posture information, the gimbal may be controlled based on the posture information.
  • the control unit predicts the vibration that occurs after a predetermined time or the vibration that occurs after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal according to the predicted vibration. good.
  • the air vehicle may fly along a predetermined orbital path, and the communication control device is flying the air vehicle position information and the position indicated by the air vehicle position information. It may be provided with a history storage unit that stores the correspondence data in which the attitude information indicating the attitude of the aircraft at the time and the control amount of the gimbal based on the attitude information are associated with each other.
  • a history storage unit that stores the correspondence data in which the attitude information indicating the attitude of the aircraft at the time and the control amount of the gimbal based on the attitude information are associated with each other.
  • a program for causing the computer to function as the communication control device is provided.
  • an air vehicle is provided.
  • the air vehicle may be equipped with the above communication control device.
  • the system may include the communication control device located on the ground.
  • the system may include the above-mentioned flying object.
  • a control method is provided.
  • the control method is executed by a communication control device that controls an antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell.
  • the control method may include an information acquisition step of acquiring the aircraft body position information indicating the three-dimensional position of the air vehicle and the attitude information indicating the attitude of the air vehicle.
  • the control method controls the gimbal that supports the antenna so as to maintain the tilt of the antenna based on the attitude information, and also by the cell based on the target area position information and the vehicle body position information indicating the position of the target area.
  • a control stage may be provided to control the tilt of the antenna to cover the target area.
  • An example of the system 10 is shown schematically.
  • An example of the arrangement of the SL antenna 122 and the gimbal 126 is shown schematically.
  • An example of the functional configuration of the communication control device 200 is schematically shown.
  • An example of the processing flow by the communication control device 200 is schematically shown.
  • An example of the flow of fluctuation prediction control by the communication control device 200 is schematically shown.
  • An example of the functional configuration of the management system 300 is shown schematically.
  • An example of the hardware configuration of the computer 1200 that functions as the communication control device 200 or is schematically shown.
  • FIG. 1 schematically shows an example of the system 10.
  • the system 10 may include a communication control device 200 mounted on the HAPS 100 and controlling the communication of the HAPS 100.
  • System 10 may include HAPS100.
  • the system 10 may include a management system 300 located on the ground.
  • the management system 300 manages the HAPS 100.
  • the management system 300 may control the communication of the HAPS 100.
  • the management system 300 may be an example of a communication control device arranged on the ground.
  • the HAPS 100 is a flying object having an SL (Service Link) antenna 122 for forming a cell 164 in a target area 40 on the ground by irradiating a beam 162 and providing a wireless communication service to a user terminal 30 in the cell 164. It may be an example.
  • the HAPS 100 includes an airframe 110, a central portion 120, a propeller 130, a pod 140, and a solar cell panel 150.
  • a flight control device 180 and a communication control device 200 (not shown) are arranged in the central portion 120.
  • the electric power generated by the solar cell panel 150 is stored in one or more batteries arranged in at least one of the body 110, the central portion 120, and the pod 140.
  • the electric power stored in the battery is used by each configuration included in the HAPS 100.
  • the flight control device 180 controls the flight of the HAPS 100.
  • the flight control device 180 controls the flight of the HAPS 100 by controlling the rotation of the propeller 130, for example. Further, the flight control device 180 may control the flight of the HAPS 100 by changing the angles of flaps and elevators (not shown).
  • the flight control device 180 manages the position, attitude, moving direction, and moving speed of the HAPS 100 by using information detected by various sensors such as a positioning sensor, a gyro sensor, and an acceleration sensor arranged in various parts of the HAPS 100. You can.
  • the communication control device 200 forms a cell 164 on the ground by irradiating the beam 162 with the SL antenna 122.
  • the communication control device 200 may form a service link with the user terminal 30 on the ground by using the SL antenna 122.
  • the SL antenna may be a multi-beam antenna.
  • Cell 164 may be multi-cell.
  • the communication control device 200 may form a feeder link with the gateway 50 on the ground by using the FL (Feeder Link) antenna 121.
  • the network 20 may be accessed via the communication control device 200 and the gateway 50.
  • the communication control device 200 may communicate with the communication satellite 80 by using the satellite communication antenna 123.
  • the communication control device 200 may access the network 20 via the communication satellite 80 and the satellite communication system 60.
  • the user terminal 30 may be any communication terminal as long as it can communicate with the HAPS 100.
  • the user terminal 30 is a mobile phone such as a smartphone.
  • the user terminal 30 may be a tablet terminal, a PC (Personal Computer), or the like.
  • the user terminal 30 may be a so-called IoT (Internet of Thing) device.
  • the user terminal 30 may include anything corresponding to the so-called IoT (Internet of Everything).
  • the HAPS 100 relays communication between the network 20 and the user terminal 30 via, for example, a feeder link or a communication satellite 80 and a service link.
  • the HAPS 100 may provide a wireless communication service to the user terminal 30 by relaying the communication between the user terminal 30 and the network 20.
  • the network 20 includes a mobile communication network.
  • the mobile communication network complies with any of the 3G (3rd Generation) communication method, the LTE (Long Term Evolution) communication method, the 5G (5th Generation) communication method, and the 6G (6th Generation) communication method or later. May be good.
  • the network 20 may include the Internet.
  • the HAPS 100 transmits, for example, the data received from the user terminal 30 in the cell 164 to the network 20. Further, when the HAPS 100 receives the data addressed to the user terminal 30 in the cell 164 via the network 20, for example, the HAPS 100 transmits the data to the user terminal 30.
  • the management system 300 manages the HAPS 100.
  • the management system 300 may communicate with the HAPS 100 via the network 20 and the gateway 50.
  • the management system 300 may communicate with the HAPS 100 via the network 20, the satellite communication system 60, and the communication satellite 80.
  • the management system 300 controls the HAPS 100 by transmitting an instruction.
  • the management system 300 may fly the HAPS 100 along a predetermined orbital path over the target area 40 so that the cell 164 covers the target area 40 on the ground. It may be described as a fixed point flight that the HAPS 100 flies along a predetermined orbital route above the target area 40 in order to cover the target area 40.
  • the HAPS 100 maintains the feeder link with the gateway 50 by adjusting the directivity direction of the FL antenna 121 while orbiting over the target area 40 in a circular orbit, and adjusts the directivity direction of the SL antenna 122. This keeps the coverage of the target area 40 by cell 164.
  • the airplane-type HAPS100 when providing a wide range of wireless communication services to a certain area, the airplane turns without being able to stand still, so due to changes in attitude (pitch, roll, yaw) due to the turn. Coverage changes accordingly.
  • airplanes may fly against headwinds or be affected by crosswinds, etc., and in this case, vibrations with respect to atmospheric pressure may occur or sudden angle fluctuations may occur, resulting in a stable wireless communication service. It may be necessary to absorb and respond to these in order to provide.
  • the edge of the coverage provided from the service link also fluctuates. ..
  • the HAPS 100 uses a mechanical gimbal and a general antenna and an electric tilt or a mechanical tilt provided in the antenna to simplify the construction and stabilize the area.
  • FIG. 2 schematically shows an example of the arrangement of the SL antenna 122 and the gimbal 126.
  • the gimbal 126 may be located at the bottom of the central portion 120.
  • the gimbal 126 rotatably supports the SL antenna 122.
  • the gimbal 126 may be, for example, a triaxial gimbal.
  • the communication control device 200 absorbs the attitude and direction of the HAPS 100 by the gimbal 126 to maintain the inclination of the SL antenna 122, and controls the cell 164 by using the electric tilt or the mechanical tilt of the SL antenna 122.
  • the communication control device 200 detects the posture of the body 110 and always keeps the inclination of the SL antenna 122 in a physically constant direction. Further, for example, the communication control device 200 corrects the deviation from the machine body 110 to the target area 40 by the electric tilt or the mechanical tilt.
  • FIG. 3 schematically shows an example of the functional configuration of the communication control device 200.
  • the communication control device 200 includes an information storage unit 202, a position information acquisition unit 204, a posture information acquisition unit 206, and a control unit 208.
  • the information storage unit 202 stores various types of information.
  • the information storage unit 202 stores, for example, target area position information indicating the position of the target area 40.
  • the information storage unit 202 may be an example of an area information storage unit.
  • the position information acquisition unit 204 acquires the flying object position information indicating the three-dimensional position of the HAPS 100.
  • the position information acquisition unit 204 may continuously acquire the aircraft body position information.
  • the aircraft position information may include the latitude, longitude, and altitude of the HAPS 100.
  • the position information acquisition unit 204 acquires the flight body position information of the HAPS 100 from, for example, the flight control device 180. Further, the position information acquisition unit 204 may acquire the flight body position information of the HAPS 100 based on the information detected by, for example, the sensor group 125.
  • the sensor group 125 includes a positioning sensor such as a GPS (Global Positioning System) sensor.
  • the sensor group 125 may include an altitude sensor.
  • the sensor group 125 may include an accelerometer.
  • the sensor group 125 may include a gyro sensor.
  • Various sensors included in the sensor group 125 may be installed at each location of the HAPS 100.
  • the posture information acquisition unit 206 acquires posture information indicating the posture of the HAPS 100.
  • the posture information acquisition unit 206 may continuously acquire the posture information.
  • the attitude information may include pitch, roll, and yaw information of the HAPS 100.
  • the attitude information acquisition unit 206 acquires the attitude information of the HAPS 100 from, for example, the flight control device 180. Further, the attitude information acquisition unit 206 may acquire the attitude information of the HAPS 100 based on the information detected by the sensor group 125.
  • the control unit 208 is based on the target area position information stored in the information storage unit 202, the vehicle body position information acquired by the position information acquisition unit 204, and the attitude information acquired by the attitude information acquisition unit 206. , Controls the tilt of the gimbal 126 and SL antenna 122.
  • the control unit 208 controls the gimbal 126 so as to maintain the inclination of the SL antenna 122 based on the attitude information, and the target area 40 by the cell 164 based on the target area position information and the vehicle body position information.
  • the tilt of the SL antenna 122 is controlled to cover the above.
  • the control unit 208 may control the tilt of the SL antenna 122 so as to maintain the entire cover of the target area 40.
  • the control unit 208 grasps the relative positional relationship between the SL antenna 122 and the target area 40 based on the target area position information and the flying object position information, and adjusts to the sequentially changing position of the HAPS 100 according to the change of the position of the SL antenna 122.
  • the tilt may be controlled.
  • the control unit 208 may control the electric tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
  • the control unit 208 may control the mechanical tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
  • the HAPS 100 can fly along a predetermined orbital route with regularity in order to continuously provide a wireless communication service to a predetermined target area 40.
  • the communication control device 200 may predict and control the gimbal 126 by learning the regularity.
  • regularity There can be two types of regularity. The first is regularity that considers time continuously. When observing the attitude change of the HAPS100 when the HAPS100 is in flight, regularity such as a waveform may be seen. The second is the regularity when passing the same point. Since the HAPS 100 repeats the orbiting action in units of tens of minutes, time, and the like, it passes through the same point every cycle. It can be said that there is a high probability of receiving the same vibration when passing through the same point. In particular, when flying in the stratosphere, it can be said that the probability of receiving the same vibration when passing through the same point is particularly high in the stratosphere because the change in wind is smaller than in the vicinity of the ground.
  • the information storage unit 202 may store the history of the aircraft body position information acquired by the position information acquisition unit 204 and the attitude information acquired by the attitude information acquisition unit 206.
  • the information storage unit 202 may be an example of a history storage unit.
  • the information storage unit 202 stores, for example, association data in which the aircraft body position information and the attitude information indicating the attitude of the HAPS 100 when the HAPS 100 is flying at the position indicated by the aircraft body position information are associated with each other.
  • the information storage unit 202 corresponds to the aircraft body position information, the attitude information indicating the attitude of the HAPS 100 when the HAPS 100 is flying at the position indicated by the aircraft body position information, and the control amount of the gimbal 126 based on the attitude information.
  • the attached association data may be stored.
  • the control unit 208 determines that the posture fluctuation pattern of the HAPS 100 has regularity based on the posture information acquired by the posture information acquisition unit 206 during a predetermined time, the gimbal 126 is based on the fluctuation pattern. If it is determined that there is no regularity, the gimbal 126 may be controlled based on the posture information.
  • the control unit 208 predicts the vibration generated after a predetermined time or the vibration generated after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal 126 according to the predicted vibration. good. As a result, it is possible to realize predictive control of the gimbal 126 using the regularity considering the time continuously, and it is possible to improve the stability of the wireless communication service by the HAPS 100.
  • the control unit 208 may control the gimbal 126 based on the association data stored in the information storage unit 202.
  • the control unit 208 determines that, for example, when the HAPS 100 passes through the first point in the circuit path, the control unit 208 controls the gimbal 126 based on the association data when the HAPS 100 has passed the first point in the past. In this case, the gimbal 126 may be controlled based on the association data, and if it is determined that the gimbal 126 is not controlled based on the association data, the gimbal 126 may be controlled based on the attitude information.
  • the control unit 208 may control the gimbal 126 according to the control amount of the gimbal 126 included in the association data when the HAPS 100 has passed the first point in the past. As a result, predictive control of the gimbal 126 using the regularity when passing through the same point can be realized, and the stability of the wireless communication service by the HAPS 100 can be improved.
  • the control unit 208 has a plurality of association data when the HAPS 100 has passed the first point in the past, and the correct answer rate of the control of the gimbal 126 is predetermined. If it is higher than the threshold value, it is determined that the gimbal 126 is controlled based on the associated data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal 126 is not controlled based on the associated data.
  • the information storage unit 202 stores in the association data including result information indicating whether or not the result of controlling the gimbal 126 by the control amount included in the association data is a correct answer.
  • the result information may indicate a correct answer when the posture of the SL antenna 122 is maintained, and may indicate an incorrect answer when the posture cannot be maintained.
  • Whether or not the posture of the SL antenna 122 can be maintained may be determined by whether or not the posture fluctuation of the SL antenna 122 is within a predetermined threshold value.
  • the threshold value may be arbitrarily set.
  • the control unit 208 may calculate the correct answer rate by using the result information of a plurality of associated data when the first point is passed in the past.
  • the control unit 208 may transmit the association data stored in the information storage unit 202 to the management system 300.
  • the management system 300 may transmit the association data received from the first HAPS 100 to the second HAPS 100.
  • the association data can be inherited for the HAPS 100 flying on the same orbital route.
  • FIG. 4 schematically shows an example of the processing flow by the communication control device 200.
  • the communication control device 200 starts executing the process shown in FIG. 4, for example, in response to the HAPS 100 starting the flight of the predetermined orbital route.
  • step 102 (the step may be abbreviated as S) 102
  • the position information acquisition unit 204 acquires the aircraft position information of the HAPS 100
  • the attitude information acquisition unit 206 acquires the attitude information of the HAPS 100.
  • control unit 208 determines whether or not there is past data at the position indicated by the aircraft body position information acquired in S102.
  • the control unit 208 may determine that the past data is present when the association data including the aircraft body position information acquired in S102 is stored in the information storage unit 202, and may determine that there is no past data if there is no past data. If it is determined that there is past data, the process proceeds to S106, and if it is determined that there is no past data, the process proceeds to S108.
  • the control unit 208 executes the fluctuation prediction control. Fluctuation prediction control will be described later.
  • the control unit 208 determines whether or not there is a problem in the posture of the HAPS 100. The control unit 208 determines that there is a problem, for example, when the pitch and roll of the HAPS 100 do not maintain the correct posture. For example, the control unit 208 determines that there is a problem when the pitch and roll of the HAPS 100 are not kept horizontal. Further, the control unit 208 determines that there is a problem, for example, when the yaw of the HAPS 100 does not have a preset angle. The control unit 208 may determine that there is no problem when, for example, the pitch and roll of the HAPS 100 are kept horizontal and the yaw of the HAPS 100 is at a preset angle.
  • the control unit 208 controls the gimbal 126.
  • the control unit 208 controls the gimbal 126 to correct the direction of the SL antenna 122 according to the fluctuation of the pitch and roll of the HAPS 100, thereby causing the SL antenna 122. Maintain the inclination of.
  • the control unit 208 controls the gimbal 126 to correct the direction of the SL antenna 122 according to the fluctuation of the yaw of the HAPS 100.
  • the control unit 208 calculates the tilt required for the SL antenna 122 from the position of the HAPS 100 and the position of the target area 40.
  • the control unit 208 changes the tilt of the SL antenna 122 according to the tilt calculated in S112 and the change value derived from the current value.
  • the information storage unit 202 changes the aircraft position information, the attitude information, the control amount of the gimbal 126 when the gimbal 126 is controlled, and the tilt when the tilt of the SL antenna 122 is changed. Stores the association data associated with the quantity.
  • FIG. 5 schematically shows an example of the flow of fluctuation prediction control by the communication control device 200.
  • the control unit 208 analyzes the tendency of the position and posture of the HAPS 100 from the association data for the past several seconds. The number of seconds may be preset and may be changeable.
  • the control unit 208 determines whether or not there is regularity in the posture fluctuation pattern of the HAPS 100. The control unit 208 can determine whether or not the fluctuation pattern has regularity by using any known technique. If it is determined that there is regularity, the process proceeds to S206, and if it is determined that there is no regularity, the process proceeds to S208.
  • the control unit 208 predicts the attitude change of the HAPS 100 based on the attitude change pattern of the HAPS 100, and assumes the control amount of the SL antenna 122. In S208, the control unit 208 determines whether or not there is a problem in the posture of the HAPS 100. The control unit 208 determines that there is a problem, for example, when the pitch and roll of the HAPS 100 are not kept horizontal. Further, the control unit 208 determines that there is a problem, for example, when the yaw of the HAPS 100 does not have a preset angle. The control unit 208 may determine that there is no problem when the pitch and roll of the HAPS 100 are kept horizontal and the yaw of the HAPS 100 is at a preset angle.
  • the control unit 208 assumes a control amount of the gimbal 126.
  • the control unit 208 gimbals maintain the tilt of the SL antenna 122 by correcting the direction of the SL antenna 122 according to the fluctuation of the pitch and roll of the HAPS 100 when the pitch and roll of the HAPS 100 are not kept horizontal.
  • the control unit 208 assumes a control amount of the gimbal 126 so as to correct the direction of the SL antenna 122 according to the variation of the yaw of the HAPS 100 when the yaw of the HAPS 100 is not at a preset angle.
  • control unit 208 associates the same position as the position of the HAPS 100 (may be described as the first point) in the association data for the last few hours stored in the information storage unit 202. Determine if there is data. The time may be preset and may be changeable. If it is determined to be present, the process proceeds to S216, and if it is determined to be absent, the process proceeds to S222.
  • control unit 208 determines whether or not there is a plurality of associated data at the same position as the first point. If it is determined to be present, the process proceeds to S218, and if it is determined to be absent, the process proceeds to S222.
  • control unit 208 determines whether or not the correct answer rate is equal to or greater than the threshold value. If it is determined that the value is equal to or higher than the threshold value, the process proceeds to S220, and if it is determined that the value is not equal to or higher than the threshold value, the process proceeds to S222.
  • the control unit 208 controls the gimbal 126 with a control amount based on the association data at the same position as the first point.
  • the control unit 208 controls the gimbal 126 with, for example, a control amount included in one association data whose result information indicates a correct answer among a plurality of association data at the same position as the first point.
  • the control unit 208 may control the gimbal 126 with a control amount derived based on a plurality of association data whose result information indicates a correct answer among the plurality of association data at the same position as the first point. ..
  • the control unit 208 controls the gimbal 126 with a control amount obtained by averaging the control amounts included in the plurality of associated data.
  • control unit 208 controls the gimbal 126 with the assumed control amount. Then, the fluctuation prediction control is terminated.
  • FIG. 6 schematically shows an example of the functional configuration of the management system 300.
  • an example of the functional configuration when the management system 300 functions as a communication control device arranged on the ground is shown.
  • the management system 300 includes an air vehicle management unit 310 and an air vehicle control unit 320.
  • the flight body management unit 310 manages a plurality of HAPS 100s.
  • the flight object management unit 310 may manage the plurality of HAPS 100s so that each of the plurality of HAPS 100s covers each of the plurality of target areas 40.
  • the flight body control unit 320 controls each of the plurality of HAPS 100s.
  • the aircraft control unit 320 includes an information storage unit 322, a position information acquisition unit 324, an attitude information acquisition unit 326, and a control unit 328.
  • the information storage unit 322 stores various information for each of the plurality of HAPS100.
  • the information storage unit 322 stores, for example, the target area position information of the HAPS 100 and the associated data of the HAPS 100 in association with the flight object identification information of the HAPS 100.
  • the position information acquisition unit 324 acquires the position information of the flying HAPS100.
  • the position information acquisition unit 324 may continuously acquire the aircraft body position information.
  • the position information acquisition unit 324 may continuously receive the aircraft body position information from the HAPS 100.
  • the attitude information acquisition unit 326 acquires the attitude information of the flying HAPS100.
  • the posture information acquisition unit 326 may continuously acquire the posture information.
  • the posture information acquisition unit 326 may continuously receive the posture information from the HAPS 100.
  • the control unit 328 is based on the target area position information stored in the information storage unit 322, the aircraft position information acquired by the position information acquisition unit 324, and the attitude information acquired by the attitude information acquisition unit 326. , Controls the tilt of the gimbal 126 and SL antenna 122.
  • the control unit 328 may control the gimbal 126 by transmitting a control instruction of the gimbal 126 to the HAPS 100.
  • the control unit 328 may control the tilt of the SL antenna 122 by transmitting a control instruction for tilting the SL antenna 122 to the HAPS 100.
  • the control unit 328 controls the gimbal 326 so as to maintain the inclination of the SL antenna 122 based on the attitude information, and the target area 40 by the cell 164 based on the target area position information and the vehicle body position information.
  • the tilt of the SL antenna 122 is controlled to cover the above.
  • the control unit 328 may control the tilt of the SL antenna 122 so as to maintain the entire cover of the target area 40.
  • the control unit 328 grasps the relative positional relationship between the SL antenna 122 and the target area 40 based on the target area position information and the flying object position information, and the SL antenna 122 changes in accordance with the sequentially changing position of the HAPS 100.
  • the tilt may be controlled.
  • the control unit 328 may control the electric tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
  • the control unit 328 may control the mechanical tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
  • the control unit 328 determines that the posture fluctuation pattern of the HAPS 100 has regularity based on the posture information acquired by the posture information acquisition unit 326 during a predetermined time, the gimbal 126 is based on the fluctuation pattern. If it is determined that there is no regularity, the gimbal 126 may be controlled based on the posture information.
  • the control unit 328 predicts the vibration generated after a predetermined time or the vibration generated after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal 126 according to the predicted vibration. good. As a result, it is possible to realize predictive control of the gimbal 126 using the regularity considering the time continuously, and it is possible to improve the stability of the wireless communication service by the HAPS 100.
  • the control unit 328 may control the gimbal 126 based on the association data stored in the information storage unit 322.
  • the control unit 328 determines that, for example, when the HAPS 100 passes through the first point in the circuit path, the control unit 328 controls the gimbal 126 based on the association data when the HAPS 100 has passed the first point in the past. In this case, the gimbal 126 may be controlled based on the association data, and if it is determined that the gimbal 126 is not controlled based on the association data, the gimbal 126 may be controlled based on the attitude information.
  • the control unit 328 may control the gimbal 126 according to the control amount of the gimbal 126 included in the association data when the HAPS 100 has passed the first point in the past. As a result, predictive control of the gimbal 126 using the regularity when passing through the same point can be realized, and the stability of the wireless communication service by the HAPS 100 can be improved.
  • the control unit 328 has a plurality of association data when the HAPS 100 has passed the first point in the past, and the correct answer rate of the control of the gimbal 126 is predetermined. If it is higher than the threshold value, it is determined that the gimbal 126 is controlled based on the associated data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal 126 is not controlled based on the associated data.
  • the information storage unit 322 stores the association data including the result information indicating whether or not the result of controlling the gimbal 126 by the control amount included in the association data is the correct answer.
  • the result information may indicate a correct answer when the posture of the SL antenna 122 is maintained, and may indicate an incorrect answer when the posture cannot be maintained.
  • Whether or not the posture of the SL antenna 122 can be maintained may be determined by whether or not the posture fluctuation of the SL antenna 122 is within a predetermined threshold value.
  • the threshold value may be arbitrarily set.
  • the control unit 328 may calculate the correct answer rate by using the result information of a plurality of associated data when the first point is passed in the past.
  • FIG. 7 schematically shows an example of a hardware configuration of a computer 1200 that functions as a communication control device 200 or a management device 300.
  • a program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or causes the computer 1200 to perform an operation associated with the device according to the present embodiment or the one or the like.
  • a plurality of "parts" can be executed and / or a computer 1200 can be made to execute a process according to the present embodiment or a stage of the process.
  • Such a program may be run by the CPU 1212 to cause the computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphic controller 1216, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes input / output units such as a communication interface 1222, a storage device 1224, a DVD drive and an IC card drive, which are connected to the host controller 1210 via the input / output controller 1220.
  • the storage device 1224 may be a hard disk drive, a solid state drive, or the like.
  • the computer 1200 also includes a legacy I / O unit such as a ROM 1230 and a keyboard, which are connected to the I / O controller 1220 via an I / O chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphic controller 1216 acquires the image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or itself so that the image data is displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via the network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive reads a program or data from a DVD-ROM or the like and provides it to the storage device 1224.
  • the IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
  • the ROM 1230 stores a boot program or the like executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
  • the input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a USB port, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program is provided by a computer-readable storage medium such as a DVD-ROM or IC card.
  • the program is read from a computer-readable storage medium, installed in a storage device 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above.
  • the device or method may be configured to implement the operation or processing of information according to the use of the computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads the transmission data stored in the transmission buffer area provided in the recording medium such as the RAM 1214, the storage device 1224, the DVD-ROM, or the IC card, and the read transmission data. Is transmitted to the network, or the received data received from the network is written to the reception buffer area or the like provided on the recording medium.
  • the CPU 1212 makes the RAM 1214 read all or necessary parts of the file or the database stored in the external recording medium such as the storage device 1224, the DVD drive (DVD-ROM), the IC card, etc. Various types of processing may be performed on the data. The CPU 1212 may then write back the processed data to an external recording medium.
  • the external recording medium such as the storage device 1224, the DVD drive (DVD-ROM), the IC card, etc.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 is the first of the plurality of entries. The attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the first attribute that satisfies the predetermined condition is selected. You may get the attribute value of the associated second attribute.
  • the program or software module described above may be stored on a computer 1200 or in a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network. offer.
  • the blocks in the flowchart and the block diagram in the present embodiment may represent the stage of the process in which the operation is executed or the "part" of the device having a role of executing the operation.
  • Specific stages and “parts” are supplied with dedicated circuits, programmable circuits supplied with computer-readable instructions stored on computer-readable storage media, and / or computer-readable instructions stored on computer-readable storage media. It may be implemented by the processor.
  • Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits include logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like. , Flip-flops, registers, and reconfigurable hardware circuits, including memory elements.
  • the computer-readable storage medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable storage medium having the instructions stored therein is in a flow chart or block diagram. It will be equipped with a product that contains instructions that can be executed to create means for performing the specified operation.
  • Examples of the computer-readable storage medium may include an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like. More specific examples of computer-readable storage media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM or flash memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Blu-ray® Disc Memory Stick
  • Integrated circuit cards and the like may be included.
  • Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc. Contains either source code or object code written in any combination of one or more programming languages, including languages and traditional procedural programming languages such as the "C" programming language or similar programming languages. good.
  • Computer-readable instructions are used to generate means for a general-purpose computer, a special-purpose computer, or the processor of another programmable data processing device, or a programmable circuit, to perform an operation specified in a flowchart or block diagram.
  • WAN wide area network
  • LAN local area network
  • Internet etc.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided is a communication control apparatus for controlling an antenna of a flying object having the antenna for forming a cell in a target area on the ground by radiating a beam, and providing wireless communication services for user terminals within the cell. The communication control apparatus includes: a location information storage unit for storing target area location information indicating the location of the target area; a location information acquisition unit for acquiring flying object location information indicating the three-dimensional location of the flying object; a posture information acquisition unit for acquiring posture information indicating the posture of the flying object; and a control unit for controlling, on the basis of the posture information, a gimbal that supports the antenna to maintain the inclination of the antenna, and controlling, on the basis of the target area location information and the flying object location information, the tilt of the antenna to cover the target area with the cell.

Description

通信制御装置、プログラム、飛行体、システム及び制御方法Communication control devices, programs, flying objects, systems and control methods
 本発明は、通信制御装置、プログラム、飛行体、システム及び制御方法に関する。 The present invention relates to a communication control device, a program, an air vehicle, a system and a control method.
 地上のゲートウェイとフィーダリンクを確立し、地上の端末とサービスリンクを確立し、ゲートウェイと端末との通信を中継することにより端末に無線通信サービスを提供するHAPS(High Altitude Platform Station)が知られていた(例えば、特許文献1参照)。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2019-135823号公報
HAPS (High Altitude Platform Station), which provides wireless communication services to terminals by establishing a terrestrial gateway and feeder link, establishing a terrestrial terminal and service link, and relaying communication between the gateway and the terminal, is known. (See, for example, Patent Document 1).
[Prior art literature]
[Patent Document]
[Patent Document 1] Japanese Unexamined Patent Publication No. 2019-135823
一般的開示General disclosure
 本発明の第1の態様によれば、通信制御装置が提供される。通信制御装置は、ビームを照射することにより地上の対象エリアにセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体のアンテナを制御してよい。通信制御装置は、対象エリアの位置を示す対象エリア位置情報を格納する情報格納部を備えてよい。通信制御装置は、飛行体の3次元位置を示す飛行体位置情報を取得する位置情報取得部を備えてよい。通信制御装置は、飛行体の姿勢を示す姿勢情報を取得する姿勢情報取得部を備えてよい。通信制御装置は、姿勢情報に基づいて、アンテナの傾きを維持するようにアンテナを支持するジンバルを制御し、かつ、対象エリア位置情報及び飛行体位置情報に基づいて、セルによって対象エリアをカバーすべくアンテナのチルトを制御する制御部を備えてよい。 According to the first aspect of the present invention, a communication control device is provided. The communication control device may control the antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell. The communication control device may include an information storage unit that stores target area position information indicating the position of the target area. The communication control device may include a position information acquisition unit that acquires the vehicle body position information indicating the three-dimensional position of the vehicle body. The communication control device may include an attitude information acquisition unit that acquires attitude information indicating the attitude of the flying object. The communication control device controls the gimbal that supports the antenna so as to maintain the tilt of the antenna based on the attitude information, and covers the target area by the cell based on the target area position information and the vehicle body position information. A control unit that controls the tilt of the antenna may be provided.
 上記制御部は、上記対象エリアの全体のカバーを維持するように、上記アンテナのチルトを制御してよい。上記制御部は、上記対象エリア位置情報と、上記飛行体位置情報とによって、上記アンテナと上記対象エリアとの相対位置関係を把握し、逐次変化する上記飛行体の位置の変化に合わせて、上記アンテナのチルトを制御してよい。上記制御部は、上記対象エリア位置情報及び上記飛行体位置情報に基づいて、上記セルによって上記対象エリアをカバーすべく上記アンテナの電気チルトを制御してよい。上記制御部は、上記対象エリア位置情報及び上記飛行体位置情報に基づいて、上記セルによって上記対象エリアをカバーすべく上記アンテナの機械チルトを制御してよい。 The control unit may control the tilt of the antenna so as to maintain the entire cover of the target area. The control unit grasps the relative positional relationship between the antenna and the target area based on the target area position information and the flying object position information, and adjusts to the sequentially changing position of the flying object. You may control the tilt of the antenna. The control unit may control the electric tilt of the antenna to cover the target area by the cell based on the target area position information and the flying object position information. The control unit may control the mechanical tilt of the antenna to cover the target area by the cell based on the target area position information and the flying object position information.
 上記飛行体は、予め定められた周回経路に沿って飛行してよく、上記通信制御装置は、上記飛行体位置情報と、上記飛行体が上記飛行体位置情報によって示される位置を飛行しているときの上記飛行体の姿勢を示す上記姿勢情報と、上記姿勢情報に基づく上記ジンバルの制御量とを対応付けた対応付けデータを格納する履歴格納部を備えてよく、上記制御部は、上記履歴格納部に格納されている上記対応付けデータに基づいて、上記ジンバルを制御してよい。上記制御部は、上記飛行体が上記周回経路における第1のポイントを通過する場合に、上記飛行体が上記第1のポイントを過去に通過したときの上記対応付けデータに基づいて上記ジンバルを制御すると判定した場合、上記対応付けデータに基づいて上記ジンバルを制御し、上記対応付けデータに基づいて上記ジンバルを制御しないと判定した場合、上記姿勢情報に基づいて上記ジンバルを制御してよい。上記制御部は、上記飛行体が上記第1のポイントを過去に通過したときの上記対応付けデータに含まれる上記ジンバルの制御量に従って、上記ジンバルを制御してよい。上記制御部は、上記飛行体上記が第1のポイントを通過する場合に、上記飛行体が上記第1のポイントを過去に通過したときの上記対応付けデータが複数あり、上記ジンバルの制御の正解率が予め定められた閾値より高い場合、上記対応付けデータに基づいて上記ジンバルを制御すると判定し、上記正解率が上記閾値より低い場合、上記対応付けデータに基づいて上記ジンバルを制御しないと判定してよい。上記制御部は、予め定められた時間の間に上記姿勢情報取得部が取得した上記姿勢情報に基づいて、上記飛行体の姿勢の変動パターンに規則性があると判定した場合、上記変動パターンに基づいて上記ジンバルを制御する、規則性がないと判定した場合、上記姿勢情報に基づいて上記ジンバルを制御してよい。上記制御部は、規則性のある変動パターンによって、予め定められた時間の後に生じる振動又は予め定められた距離進んだ後に生じる振動を予測し、予測した振動に合わせて、上記ジンバルを制御してよい。 The air vehicle may fly along a predetermined orbital path, and the communication control device is flying the air vehicle position information and the position indicated by the air vehicle position information. A history storage unit for storing association data in which the attitude information indicating the attitude of the aircraft at the time and the control amount of the gimbal based on the attitude information are associated with each other may be provided, and the control unit may include the history. The gimbal may be controlled based on the association data stored in the storage unit. The control unit controls the gimbal based on the association data when the air vehicle passes the first point in the orbital path and the air vehicle passes the first point in the past. If it is determined that the gimbal is controlled based on the associated data, and if it is determined that the gimbal is not controlled based on the associated data, the gimbal may be controlled based on the attitude information. The control unit may control the gimbal according to the control amount of the gimbal included in the association data when the flying object has passed the first point in the past. The control unit has a plurality of the associated data when the flying object passes the first point and the flying object has passed the first point in the past, and the correct answer for the control of the gimbal. If the rate is higher than the predetermined threshold value, it is determined that the gimbal is controlled based on the association data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal is not controlled based on the association data. You can do it. When the control unit determines that the attitude fluctuation pattern of the flying object has regularity based on the attitude information acquired by the attitude information acquisition unit during a predetermined time, the fluctuation pattern is changed to the fluctuation pattern. If it is determined that there is no regularity to control the gimbal based on the posture information, the gimbal may be controlled based on the posture information. The control unit predicts the vibration that occurs after a predetermined time or the vibration that occurs after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal according to the predicted vibration. good.
 上記飛行体は、予め定められた周回経路に沿って飛行してよく、上記通信制御装置は、上記飛行体位置情報と、上記飛行体が上記飛行体位置情報によって示される位置を飛行しているときの上記飛行体の姿勢を示す上記姿勢情報と、上記姿勢情報に基づく上記ジンバルの制御量とを対応付けた対応付けデータを格納する履歴格納部を備えてよく、上記制御部は、上記周回経路における第1のポイントを通過する場合に、上記飛行体が上記第1のポイントを過去に通過したときの上記対応付けデータに基づいて上記ジンバルを制御すると判定した場合、上記対応付けデータに基づいて上記ジンバルを制御し、上記対応付けデータに基づいて上記ジンバルを制御しないと判定した場合において、予め定められた時間の間に上記姿勢情報取得部が取得した上記姿勢情報に基づいて上記飛行体の姿勢の変動パターンに規則性があると判定した場合、上記変動パターンに基づいて上記ジンバルを制御し、規則性がないと判定した場合、上記姿勢情報に基づいて上記ジンバルを制御してよい。 The air vehicle may fly along a predetermined orbital path, and the communication control device is flying the air vehicle position information and the position indicated by the air vehicle position information. It may be provided with a history storage unit that stores the correspondence data in which the attitude information indicating the attitude of the aircraft at the time and the control amount of the gimbal based on the attitude information are associated with each other. When it is determined that the aircraft will control the gimbal based on the association data when the aircraft has passed the first point in the past when passing through the first point on the route, it is based on the association data. When the gimbal is controlled and it is determined that the gimbal is not controlled based on the association data, the aircraft is based on the attitude information acquired by the attitude information acquisition unit during a predetermined time. If it is determined that the posture fluctuation pattern has regularity, the gimbal may be controlled based on the fluctuation pattern, and if it is determined that there is no regularity, the gimbal may be controlled based on the posture information.
 本発明の第2の態様によれば、コンピュータを、上記通信制御装置として機能させるためのプログラムが提供される。 According to the second aspect of the present invention, a program for causing the computer to function as the communication control device is provided.
 本発明の第3の態様によれば、飛行体が提供される。飛行体は、上記通信制御装置を搭載してよい。 According to the third aspect of the present invention, an air vehicle is provided. The air vehicle may be equipped with the above communication control device.
 本発明の第4の態様によれば、システムが提供される。システムは、地上に配置された上記通信制御装置を備えてよい。システムは、上記飛行体を備えてよい。 According to the fourth aspect of the present invention, the system is provided. The system may include the communication control device located on the ground. The system may include the above-mentioned flying object.
 本発明の第5の態様によれば、制御方法が提供される。制御方法は、ビームを照射することにより地上の対象エリアにセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体のアンテナを制御する通信制御装置によって実行されてよい。制御方法は、飛行体の3次元位置を示す飛行体位置情報及び飛行体の姿勢を示す姿勢情報を取得する情報取得段階を備えてよい。制御方法は、姿勢情報に基づいて、アンテナの傾きを維持するようにアンテナを支持するジンバルを制御し、かつ、対象エリアの位置を示す対象エリア位置情報及び飛行体位置情報に基づいて、セルによって対象エリアをカバーすべくアンテナのチルトを制御する制御段階を備えてよい。 According to the fifth aspect of the present invention, a control method is provided. The control method is executed by a communication control device that controls an antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell. You can. The control method may include an information acquisition step of acquiring the aircraft body position information indicating the three-dimensional position of the air vehicle and the attitude information indicating the attitude of the air vehicle. The control method controls the gimbal that supports the antenna so as to maintain the tilt of the antenna based on the attitude information, and also by the cell based on the target area position information and the vehicle body position information indicating the position of the target area. A control stage may be provided to control the tilt of the antenna to cover the target area.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The outline of the above invention does not list all the necessary features of the present invention. Sub-combinations of these feature groups can also be inventions.
システム10の一例を概略的に示す。An example of the system 10 is shown schematically. SLアンテナ122及びジンバル126の配置の一例を概略的に示す。An example of the arrangement of the SL antenna 122 and the gimbal 126 is shown schematically. 通信制御装置200の機能構成の一例を概略的に示す。An example of the functional configuration of the communication control device 200 is schematically shown. 通信制御装置200による処理の流れの一例を概略的に示す。An example of the processing flow by the communication control device 200 is schematically shown. 通信制御装置200による変動予測制御の流れの一例を概略的に示す。An example of the flow of fluctuation prediction control by the communication control device 200 is schematically shown. 管理システム300の機能構成の一例を概略的に示す。An example of the functional configuration of the management system 300 is shown schematically. 通信制御装置200又はとして機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。An example of the hardware configuration of the computer 1200 that functions as the communication control device 200 or is schematically shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the inventions claimed. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
 図1は、システム10の一例を概略的に示す。本実施形態に係るシステム10は、HAPS100に搭載され、HAPS100の通信を制御する通信制御装置200を含んでよい。システム10は、HAPS100を含んでもよい。 FIG. 1 schematically shows an example of the system 10. The system 10 according to the present embodiment may include a communication control device 200 mounted on the HAPS 100 and controlling the communication of the HAPS 100. System 10 may include HAPS100.
 システム10は、地上に配置された管理システム300を含んでもよい。管理システム300は、HAPS100を管理する。管理システム300は、HAPS100の通信を制御してもよい。管理システム300は、地上に配置された通信制御装置の一例であってよい。 The system 10 may include a management system 300 located on the ground. The management system 300 manages the HAPS 100. The management system 300 may control the communication of the HAPS 100. The management system 300 may be an example of a communication control device arranged on the ground.
 HAPS100は、ビーム162を照射することにより地上の対象エリア40にセル164を形成してセル164内のユーザ端末30に無線通信サービスを提供するためのSL(Service Link)アンテナ122を有する飛行体の一例であってよい。HAPS100は、機体110、中央部120、プロペラ130、ポッド140、及び太陽電池パネル150を備える。中央部120の中には、不図示の飛行制御装置180及び通信制御装置200が配置される。 The HAPS 100 is a flying object having an SL (Service Link) antenna 122 for forming a cell 164 in a target area 40 on the ground by irradiating a beam 162 and providing a wireless communication service to a user terminal 30 in the cell 164. It may be an example. The HAPS 100 includes an airframe 110, a central portion 120, a propeller 130, a pod 140, and a solar cell panel 150. A flight control device 180 and a communication control device 200 (not shown) are arranged in the central portion 120.
 太陽電池パネル150によって発電された電力は、機体110、中央部120、及びポッド140の少なくともいずれかに配置された1又は複数のバッテリに蓄電される。バッテリに蓄電された電力は、HAPS100が備える各構成によって利用される。 The electric power generated by the solar cell panel 150 is stored in one or more batteries arranged in at least one of the body 110, the central portion 120, and the pod 140. The electric power stored in the battery is used by each configuration included in the HAPS 100.
 飛行制御装置180は、HAPS100の飛行を制御する。飛行制御装置180は、例えば、プロペラ130の回転を制御することによってHAPS100の飛行を制御する。また、飛行制御装置180は、不図示のフラップやエレベータの角度を変更することによってHAPS100の飛行を制御してもよい。飛行制御装置180は、HAPS100の各所に配置された測位センサ、ジャイロセンサ、及び加速度センサ等の各種センサによって検知された情報を用いて、HAPS100の位置、姿勢、移動方向、及び移動速度を管理してよい。 The flight control device 180 controls the flight of the HAPS 100. The flight control device 180 controls the flight of the HAPS 100 by controlling the rotation of the propeller 130, for example. Further, the flight control device 180 may control the flight of the HAPS 100 by changing the angles of flaps and elevators (not shown). The flight control device 180 manages the position, attitude, moving direction, and moving speed of the HAPS 100 by using information detected by various sensors such as a positioning sensor, a gyro sensor, and an acceleration sensor arranged in various parts of the HAPS 100. You can.
 通信制御装置200は、SLアンテナ122を用いて、ビーム162を照射することにより、地上にセル164を形成する。通信制御装置200は、SLアンテナ122を用いて、地上のユーザ端末30とサービスリンクを形成してよい。SLアンテナは、マルチビームアンテナであってもよい。セル164は、マルチセルであってもよい。 The communication control device 200 forms a cell 164 on the ground by irradiating the beam 162 with the SL antenna 122. The communication control device 200 may form a service link with the user terminal 30 on the ground by using the SL antenna 122. The SL antenna may be a multi-beam antenna. Cell 164 may be multi-cell.
 通信制御装置200は、FL(Feeder Link)アンテナ121を用いて、地上のゲートウェイ50との間でフィーダリンクを形成してよい。通信制御装置200、ゲートウェイ50を介して、ネットワーク20にアクセスしてよい。 The communication control device 200 may form a feeder link with the gateway 50 on the ground by using the FL (Feeder Link) antenna 121. The network 20 may be accessed via the communication control device 200 and the gateway 50.
 通信制御装置200は、衛星通信アンテナ123を用いて、通信衛星80と通信してよい。通信制御装置200は、通信衛星80及び衛星通信システム60を介して、ネットワーク20にアクセスしてよい。 The communication control device 200 may communicate with the communication satellite 80 by using the satellite communication antenna 123. The communication control device 200 may access the network 20 via the communication satellite 80 and the satellite communication system 60.
 ユーザ端末30は、HAPS100と通信可能であればどのような通信端末であってもよい。例えば、ユーザ端末30は、スマートフォン等の携帯電話である。ユーザ端末30は、タブレット端末及びPC(Personal Computer)等であってもよい。ユーザ端末30は、いわゆるIoT(Internet of Thing)デバイスであってもよい。ユーザ端末30は、いわゆるIoE(Internet of Everything)に該当するあらゆるものを含み得る。 The user terminal 30 may be any communication terminal as long as it can communicate with the HAPS 100. For example, the user terminal 30 is a mobile phone such as a smartphone. The user terminal 30 may be a tablet terminal, a PC (Personal Computer), or the like. The user terminal 30 may be a so-called IoT (Internet of Thing) device. The user terminal 30 may include anything corresponding to the so-called IoT (Internet of Everything).
 HAPS100は、例えば、フィーダリンク又は通信衛星80と、サービスリンクとを介して、ネットワーク20とユーザ端末30との通信を中継する。HAPS100は、ユーザ端末30とネットワーク20との通信を中継することによって、ユーザ端末30に無線通信サービスを提供してよい。 The HAPS 100 relays communication between the network 20 and the user terminal 30 via, for example, a feeder link or a communication satellite 80 and a service link. The HAPS 100 may provide a wireless communication service to the user terminal 30 by relaying the communication between the user terminal 30 and the network 20.
 ネットワーク20は、移動体通信ネットワークを含む。移動体通信ネットワークは、3G(3rd Generation)通信方式、LTE(Long Term Evolution)通信方式、5G(5th Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。ネットワーク20は、インターネットを含んでもよい。 The network 20 includes a mobile communication network. The mobile communication network complies with any of the 3G (3rd Generation) communication method, the LTE (Long Term Evolution) communication method, the 5G (5th Generation) communication method, and the 6G (6th Generation) communication method or later. May be good. The network 20 may include the Internet.
 HAPS100は、例えば、セル164内のユーザ端末30から受信したデータをネットワーク20に送信する。また、HAPS100は、例えば、ネットワーク20を介して、セル164内のユーザ端末30宛のデータを受信した場合に、当該データをユーザ端末30に送信する。 The HAPS 100 transmits, for example, the data received from the user terminal 30 in the cell 164 to the network 20. Further, when the HAPS 100 receives the data addressed to the user terminal 30 in the cell 164 via the network 20, for example, the HAPS 100 transmits the data to the user terminal 30.
 管理システム300は、HAPS100を管理する。管理システム300は、ネットワーク20及びゲートウェイ50を介して、HAPS100と通信してよい。管理システム300は、ネットワーク20、衛星通信システム60、及び通信衛星80を介して、HAPS100と通信してもよい。 The management system 300 manages the HAPS 100. The management system 300 may communicate with the HAPS 100 via the network 20 and the gateway 50. The management system 300 may communicate with the HAPS 100 via the network 20, the satellite communication system 60, and the communication satellite 80.
 管理システム300は、指示を送信することによってHAPS100を制御する。管理システム300は、セル164によって地上の対象エリア40をカバーさせるべく、HAPS100を、対象エリア40の上空の予め定められた周回経路に沿って飛行させてよい。HAPS100が対象エリア40をカバーすべく、対象エリア40の上空の予め定められた周回経路に沿って飛行することを定点飛行と記載する場合がある。HAPS100は、例えば、対象エリア40上空を円軌道で旋回飛行しつつ、FLアンテナ121の指向方向を調整することによってゲートウェイ50との間のフィーダリンクを維持し、SLアンテナ122の指向方向を調整することによってセル164による対象エリア40のカバーを維持する。 The management system 300 controls the HAPS 100 by transmitting an instruction. The management system 300 may fly the HAPS 100 along a predetermined orbital path over the target area 40 so that the cell 164 covers the target area 40 on the ground. It may be described as a fixed point flight that the HAPS 100 flies along a predetermined orbital route above the target area 40 in order to cover the target area 40. The HAPS 100 maintains the feeder link with the gateway 50 by adjusting the directivity direction of the FL antenna 121 while orbiting over the target area 40 in a circular orbit, and adjusts the directivity direction of the SL antenna 122. This keeps the coverage of the target area 40 by cell 164.
 飛行機型のHAPS100の場合、ある一定のエリアに対して無線通信サービスを広範囲に提供する場合、飛行機は静止できずに旋回を行うため、旋回を行うことによる姿勢(ピッチ、ロール、ヨー)変動によりカバレッジもそれに伴い変化する。また、飛行機は向かい風に対して飛行したり、横風等の影響も受ける場合もあるため、この場合に気圧に対する振動が発生したり、突発的な角度変動が生じたりするため、安定した無線通信サービスを提供するためにはこれらを吸収して対応する必要があり得る。さらに飛行機は停止状態を維持できずに、例えば、円状、D字状、8の字状等半径数kmの範囲で移動するため、サービスリンクから提供しているカバレッジのエッジも変動してしまう。 In the case of the airplane-type HAPS100, when providing a wide range of wireless communication services to a certain area, the airplane turns without being able to stand still, so due to changes in attitude (pitch, roll, yaw) due to the turn. Coverage changes accordingly. In addition, airplanes may fly against headwinds or be affected by crosswinds, etc., and in this case, vibrations with respect to atmospheric pressure may occur or sudden angle fluctuations may occur, resulting in a stable wireless communication service. It may be necessary to absorb and respond to these in order to provide. Furthermore, since the airplane cannot maintain the stopped state and moves within a radius of several kilometers such as a circle, a D shape, and a figure eight, the edge of the coverage provided from the service link also fluctuates. ..
 この解決方法として、多素子アンテナを用いて、ビームフォーミングを行って安定化することもできるが、高重量及び高消費電力が懸念される。HAPS100の場合、太陽電池パネル及びバッテリを具備する必要があり、上空における長期滞在を行うためには、軽量化・低消費電力が望まれるため、別の解決方法も検討が必要である。本実施形態に係るHAPS100は、機械式のジンバルと、一般的なアンテナ及びアンテナに具備されている電気チルト又は機械チルトとを用いて、つくりを簡素化し、エリアの安定性を図る。 As a solution to this, beamforming can be performed to stabilize the device using a multi-element antenna, but there are concerns about high weight and high power consumption. In the case of HAPS100, it is necessary to provide a solar panel and a battery, and in order to stay in the sky for a long period of time, weight reduction and low power consumption are desired. Therefore, another solution needs to be examined. The HAPS 100 according to the present embodiment uses a mechanical gimbal and a general antenna and an electric tilt or a mechanical tilt provided in the antenna to simplify the construction and stabilize the area.
 図2は、SLアンテナ122及びジンバル126の配置の一例を概略的に示す。ジンバル126は、中央部120の底部に配置されてよい。ジンバル126は、SLアンテナ122を回転可能に支持する。ジンバル126は、例えば、3軸ジンバルであってよい。 FIG. 2 schematically shows an example of the arrangement of the SL antenna 122 and the gimbal 126. The gimbal 126 may be located at the bottom of the central portion 120. The gimbal 126 rotatably supports the SL antenna 122. The gimbal 126 may be, for example, a triaxial gimbal.
 通信制御装置200は、ジンバル126によって、HAPS100の姿勢及び方向を吸収し、SLアンテナ122の傾きを維持するようにし、SLアンテナ122の電気チルト又は機械チルトを用いて、セル164のコントロールを行う。例えば、通信制御装置200は、機体110の姿勢を検知し、常にSLアンテナ122の傾きを物理的に一定方向に保つ。また、例えば、通信制御装置200は、電気チルト又は機械チルトによって、機体110から対象エリア40へのずれを補正する。 The communication control device 200 absorbs the attitude and direction of the HAPS 100 by the gimbal 126 to maintain the inclination of the SL antenna 122, and controls the cell 164 by using the electric tilt or the mechanical tilt of the SL antenna 122. For example, the communication control device 200 detects the posture of the body 110 and always keeps the inclination of the SL antenna 122 in a physically constant direction. Further, for example, the communication control device 200 corrects the deviation from the machine body 110 to the target area 40 by the electric tilt or the mechanical tilt.
 図3は、通信制御装置200の機能構成の一例を概略的に示す。通信制御装置200は、情報格納部202、位置情報取得部204、姿勢情報取得部206、及び制御部208を備える。 FIG. 3 schematically shows an example of the functional configuration of the communication control device 200. The communication control device 200 includes an information storage unit 202, a position information acquisition unit 204, a posture information acquisition unit 206, and a control unit 208.
 情報格納部202は、各種情報を格納する。情報格納部202は、例えば、対象エリア40の位置を示す対象エリア位置情報を格納する。情報格納部202は、エリア情報格納部の一例であってよい。 The information storage unit 202 stores various types of information. The information storage unit 202 stores, for example, target area position information indicating the position of the target area 40. The information storage unit 202 may be an example of an area information storage unit.
 位置情報取得部204は、HAPS100の3次元位置を示す飛行体位置情報を取得する。位置情報取得部204は、飛行体位置情報を連続的に取得してよい。飛行体位置情報は、HAPS100の緯度、経度、及び高度を含んでよい。位置情報取得部204は、例えば、飛行制御装置180から、HAPS100の飛行体位置情報を取得する。また、位置情報取得部204は、例えばセンサ群125によって検出された情報に基づいて、HAPS100の飛行体位置情報を取得してもよい。 The position information acquisition unit 204 acquires the flying object position information indicating the three-dimensional position of the HAPS 100. The position information acquisition unit 204 may continuously acquire the aircraft body position information. The aircraft position information may include the latitude, longitude, and altitude of the HAPS 100. The position information acquisition unit 204 acquires the flight body position information of the HAPS 100 from, for example, the flight control device 180. Further, the position information acquisition unit 204 may acquire the flight body position information of the HAPS 100 based on the information detected by, for example, the sensor group 125.
 センサ群125は、GPS(Global Positioning System)センサ等の測位センサを含む。センサ群125は、高度センサを含んでよい。センサ群125は、加速度センサを含んでよい。センサ群125は、ジャイロセンサを含んでよい。センサ群125に含まれる各種センサは、HAPS100の各場所に設置されてよい。 The sensor group 125 includes a positioning sensor such as a GPS (Global Positioning System) sensor. The sensor group 125 may include an altitude sensor. The sensor group 125 may include an accelerometer. The sensor group 125 may include a gyro sensor. Various sensors included in the sensor group 125 may be installed at each location of the HAPS 100.
 姿勢情報取得部206は、HAPS100の姿勢を示す姿勢情報を取得する。姿勢情報取得部206は、姿勢情報を連続的に取得してよい。姿勢情報は、HAPS100のピッチ、ロール、ヨー情報を含んでよい。姿勢情報取得部206は、例えば、飛行制御装置180から、HAPS100の姿勢情報を取得する。また、姿勢情報取得部206は、センサ群125によって検出された情報に基づいて、HAPS100の姿勢情報を取得してもよい。 The posture information acquisition unit 206 acquires posture information indicating the posture of the HAPS 100. The posture information acquisition unit 206 may continuously acquire the posture information. The attitude information may include pitch, roll, and yaw information of the HAPS 100. The attitude information acquisition unit 206 acquires the attitude information of the HAPS 100 from, for example, the flight control device 180. Further, the attitude information acquisition unit 206 may acquire the attitude information of the HAPS 100 based on the information detected by the sensor group 125.
 制御部208は、情報格納部202に格納されている対象エリア位置情報と、位置情報取得部204によって取得された飛行体位置情報と、姿勢情報取得部206によって取得された姿勢情報とに基づいて、ジンバル126及びSLアンテナ122のチルトを制御する。 The control unit 208 is based on the target area position information stored in the information storage unit 202, the vehicle body position information acquired by the position information acquisition unit 204, and the attitude information acquired by the attitude information acquisition unit 206. , Controls the tilt of the gimbal 126 and SL antenna 122.
 制御部208は、例えば、姿勢情報に基づいて、SLアンテナ122の傾きを維持するようにジンバル126を制御し、かつ、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべくSLアンテナ122のチルトを制御する。制御部208は、対象エリア40の全体のカバーを維持するように、SLアンテナ122のチルトを制御してよい。 The control unit 208 controls the gimbal 126 so as to maintain the inclination of the SL antenna 122 based on the attitude information, and the target area 40 by the cell 164 based on the target area position information and the vehicle body position information. The tilt of the SL antenna 122 is controlled to cover the above. The control unit 208 may control the tilt of the SL antenna 122 so as to maintain the entire cover of the target area 40.
 制御部208は、対象エリア位置情報と、飛行体位置情報とによって、SLアンテナ122と対象エリア40との相対位置関係を把握し、逐次変化するHAPS100の位置の変化に合わせて、SLアンテナ122のチルトを制御してよい。制御部208は、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべく、SLアンテナ122の電気チルトを制御してよい。制御部208は、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべく、SLアンテナ122の機械チルトを制御してよい。 The control unit 208 grasps the relative positional relationship between the SL antenna 122 and the target area 40 based on the target area position information and the flying object position information, and adjusts to the sequentially changing position of the HAPS 100 according to the change of the position of the SL antenna 122. The tilt may be controlled. The control unit 208 may control the electric tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information. The control unit 208 may control the mechanical tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
 HAPS100は、予め定められた対象エリア40に対して無線通信サービスを継続的に提供すべく、規則性をもって、予め定められた周回経路に沿って飛行し得る。通信制御装置200は、規則性を学習することにより、予測してジンバル126を制御してもよい。 The HAPS 100 can fly along a predetermined orbital route with regularity in order to continuously provide a wireless communication service to a predetermined target area 40. The communication control device 200 may predict and control the gimbal 126 by learning the regularity.
 なお、規則性には、2つの種類があり得る。1つ目は、時間を連続的に考えた規則性である。HAPS100が飛行しているときのHAPS100の姿勢変動を観測すると、波形のような規則性が見てとれる場合がある。2つ目は、同一ポイント通過時の規則性である。HAPS100は、周回行動を数十分単位及び時間単位等の単位で繰り返しているので、このサイクルごとに同じポイントを通過する。同じポイントを通過するときには同様の振動を受ける確率が高いといえる。特に、成層圏を飛行する場合、成層圏では、地上付近と比較して風の変化が少ないので、同じポイントを通過するときに同様の振動を受ける確率は特に高いといえる。 There can be two types of regularity. The first is regularity that considers time continuously. When observing the attitude change of the HAPS100 when the HAPS100 is in flight, regularity such as a waveform may be seen. The second is the regularity when passing the same point. Since the HAPS 100 repeats the orbiting action in units of tens of minutes, time, and the like, it passes through the same point every cycle. It can be said that there is a high probability of receiving the same vibration when passing through the same point. In particular, when flying in the stratosphere, it can be said that the probability of receiving the same vibration when passing through the same point is particularly high in the stratosphere because the change in wind is smaller than in the vicinity of the ground.
 情報格納部202は、位置情報取得部204が取得した飛行体位置情報及び姿勢情報取得部206が取得した姿勢情報の履歴を格納してよい。情報格納部202は、履歴格納部の一例であってよい。情報格納部202は、例えば、飛行体位置情報と、HAPS100が飛行体位置情報によって示される位置を飛行しているときのHAPS100の姿勢を示す姿勢情報とを対応付けた対応付けデータを格納する。情報格納部202は、飛行体位置情報と、HAPS100が飛行体位置情報によって示される位置を飛行しているときのHAPS100の姿勢を示す姿勢情報と、姿勢情報に基づくジンバル126の制御量とを対応付けた対応付けデータを格納してもよい。 The information storage unit 202 may store the history of the aircraft body position information acquired by the position information acquisition unit 204 and the attitude information acquired by the attitude information acquisition unit 206. The information storage unit 202 may be an example of a history storage unit. The information storage unit 202 stores, for example, association data in which the aircraft body position information and the attitude information indicating the attitude of the HAPS 100 when the HAPS 100 is flying at the position indicated by the aircraft body position information are associated with each other. The information storage unit 202 corresponds to the aircraft body position information, the attitude information indicating the attitude of the HAPS 100 when the HAPS 100 is flying at the position indicated by the aircraft body position information, and the control amount of the gimbal 126 based on the attitude information. The attached association data may be stored.
 制御部208は、予め定められた時間の間に姿勢情報取得部206が取得した姿勢情報に基づいて、HAPS100の姿勢の変動パターンに規則性があると判定した場合、変動パターンに基づいてジンバル126を制御し、規則性がないと判定した場合、姿勢情報に基づいてジンバル126を制御してよい。制御部208は、規則性のある変動パターンによって、予め定められた時間の後に生じる振動又は予め定められた距離進んだ後に生じる振動を予測し、予測した振動に合わせて、ジンバル126を制御してよい。これにより、時間を連続的に考えた規則性を利用したジンバル126の予測制御を実現することができ、HAPS100による無線通信サービスの安定性を向上させることができる。 When the control unit 208 determines that the posture fluctuation pattern of the HAPS 100 has regularity based on the posture information acquired by the posture information acquisition unit 206 during a predetermined time, the gimbal 126 is based on the fluctuation pattern. If it is determined that there is no regularity, the gimbal 126 may be controlled based on the posture information. The control unit 208 predicts the vibration generated after a predetermined time or the vibration generated after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal 126 according to the predicted vibration. good. As a result, it is possible to realize predictive control of the gimbal 126 using the regularity considering the time continuously, and it is possible to improve the stability of the wireless communication service by the HAPS 100.
 制御部208は、情報格納部202に格納されている対応付けデータに基づいて、ジンバル126を制御してよい。制御部208は、例えば、HAPS100が周回経路のうちの第1のポイントを通過する場合に、HAPS100が第1のポイントを過去に通過したときの対応付けデータに基づいてジンバル126を制御すると判定した場合、対応付けデータに基づいてジンバル126を制御し、対応付けデータに基づいて制御しないと判定した場合、姿勢情報に基づいてジンバル126を制御してよい。制御部208は、HAPS100が第1のポイントを過去に通過したときの対応付けデータに含まれるジンバル126の制御量に従って、ジンバル126を制御してよい。これにより、同一ポイント通過時の規則性を利用したジンバル126の予測制御を実現でき、HAPS100による無線通信サービスの安定性を向上させることができる。 The control unit 208 may control the gimbal 126 based on the association data stored in the information storage unit 202. The control unit 208 determines that, for example, when the HAPS 100 passes through the first point in the circuit path, the control unit 208 controls the gimbal 126 based on the association data when the HAPS 100 has passed the first point in the past. In this case, the gimbal 126 may be controlled based on the association data, and if it is determined that the gimbal 126 is not controlled based on the association data, the gimbal 126 may be controlled based on the attitude information. The control unit 208 may control the gimbal 126 according to the control amount of the gimbal 126 included in the association data when the HAPS 100 has passed the first point in the past. As a result, predictive control of the gimbal 126 using the regularity when passing through the same point can be realized, and the stability of the wireless communication service by the HAPS 100 can be improved.
 制御部208は、例えば、HAPS100が第1のポイントを通過する場合に、HAPS100が第1のポイントを過去に通過したときの対応付けデータが複数あり、ジンバル126の制御の正解率が予め定められた閾値より高い場合、対応付けデータに基づいてジンバル126を制御すると判定し、正解率が閾値より低い場合、対応付けデータに基づいてジンバル126を制御しないと判定する。例えば、情報格納部202が、対応付けデータに、当該対応付けデータに含まれる制御量によるジンバル126の制御を行った結果が、正解であったか否かを示す結果情報を含めて格納する。結果情報は、ジンバル126の制御を行った結果、SLアンテナ122の姿勢を保てた場合、正解を示し、姿勢を保てなかった場合、不正解を示してよい。SLアンテナ122の姿勢を保てたか否かは、SLアンテナ122の姿勢変動が予め定められた閾値以内であるか否かによって判定されてよい。当該閾値は任意に設定可能であってよい。制御部208は、第1のポイントを過去に通過したときの複数の対応付けデータの結果情報を用いて、正解率を算出してよい。 For example, when the HAPS 100 passes the first point, the control unit 208 has a plurality of association data when the HAPS 100 has passed the first point in the past, and the correct answer rate of the control of the gimbal 126 is predetermined. If it is higher than the threshold value, it is determined that the gimbal 126 is controlled based on the associated data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal 126 is not controlled based on the associated data. For example, the information storage unit 202 stores in the association data including result information indicating whether or not the result of controlling the gimbal 126 by the control amount included in the association data is a correct answer. As a result of controlling the gimbal 126, the result information may indicate a correct answer when the posture of the SL antenna 122 is maintained, and may indicate an incorrect answer when the posture cannot be maintained. Whether or not the posture of the SL antenna 122 can be maintained may be determined by whether or not the posture fluctuation of the SL antenna 122 is within a predetermined threshold value. The threshold value may be arbitrarily set. The control unit 208 may calculate the correct answer rate by using the result information of a plurality of associated data when the first point is passed in the past.
 制御部208は、情報格納部202に格納されている対応付けデータを、管理システム300に送信してもよい。管理システム300は、例えば、第1のHAPS100を、第2のHAPS100と交代させる場合に、第1のHAPS100から受信した対応付けデータを、第2のHAPS100に送信してもよい。これにより、同じ周回経路を飛行するHAPS100に対して対応付けデータを引き継ぐことができる。 The control unit 208 may transmit the association data stored in the information storage unit 202 to the management system 300. For example, when the first HAPS 100 is replaced with the second HAPS 100, the management system 300 may transmit the association data received from the first HAPS 100 to the second HAPS 100. As a result, the association data can be inherited for the HAPS 100 flying on the same orbital route.
 図4は、通信制御装置200による処理の流れの一例を概略的に示す。通信制御装置200は、例えば、HAPS100が予め定められた周回経路の飛行を開始したことに応じて、図4に示す処理の実行を開始する。 FIG. 4 schematically shows an example of the processing flow by the communication control device 200. The communication control device 200 starts executing the process shown in FIG. 4, for example, in response to the HAPS 100 starting the flight of the predetermined orbital route.
 ステップ(ステップをSと省略して記載する場合がある。)102では、位置情報取得部204がHAPS100の飛行体位置情報を取得し、姿勢情報取得部206が、HAPS100の姿勢情報を取得する。 In step 102 (the step may be abbreviated as S) 102, the position information acquisition unit 204 acquires the aircraft position information of the HAPS 100, and the attitude information acquisition unit 206 acquires the attitude information of the HAPS 100.
 S104では、制御部208が、S102において取得された飛行体位置情報によって示される位置における過去データが有るか否かを判定する。制御部208は、S102において取得した飛行体位置情報を含む対応付けデータが情報格納部202に格納されている場合、過去データ有と判定し、無い場合、過去データ無しと判定してよい。過去データ有と判定した場合、S106に進み、無いと判定した場合、S108に進む。 In S104, the control unit 208 determines whether or not there is past data at the position indicated by the aircraft body position information acquired in S102. The control unit 208 may determine that the past data is present when the association data including the aircraft body position information acquired in S102 is stored in the information storage unit 202, and may determine that there is no past data if there is no past data. If it is determined that there is past data, the process proceeds to S106, and if it is determined that there is no past data, the process proceeds to S108.
 S106では、制御部208が、変動予測制御を実行する。変動予測制御については後述する。S108では、制御部208が、HAPS100の姿勢に問題が有るか否かを判定する。制御部208は、例えば、HAPS100のピッチ及びロールが正しい姿勢を保っていない場合、問題有りと判定する。例えば、制御部208は、HAPS100のピッチ及びロールが水平を保っていない場合、問題有りと判定する。また、制御部208は、例えば、HAPS100のヨーが予め設定された角度となっていない場合、問題有りと判定する。制御部208は、例えば、HAPS100のピッチ及びロールが水平を保っており、HAPS100のヨーが予め設定された角度となっている場合、問題無しと判定してよい。 In S106, the control unit 208 executes the fluctuation prediction control. Fluctuation prediction control will be described later. In S108, the control unit 208 determines whether or not there is a problem in the posture of the HAPS 100. The control unit 208 determines that there is a problem, for example, when the pitch and roll of the HAPS 100 do not maintain the correct posture. For example, the control unit 208 determines that there is a problem when the pitch and roll of the HAPS 100 are not kept horizontal. Further, the control unit 208 determines that there is a problem, for example, when the yaw of the HAPS 100 does not have a preset angle. The control unit 208 may determine that there is no problem when, for example, the pitch and roll of the HAPS 100 are kept horizontal and the yaw of the HAPS 100 is at a preset angle.
 問題有りと判定した場合、S110に進む。S110では、制御部208が、ジンバル126を制御する。制御部208は、HAPS100のピッチ及びロールが水平を保っていない場合、ジンバル126を制御して、HAPS100のピッチおよびロールの変動に合わせて、SLアンテナ122の方向を修正することにより、SLアンテナ122の傾きを維持する。制御部208は、HAPS100のヨーが予め設定された角度となっていない場合、ジンバル126を制御して、HAPS100のヨーの変動に合わせて、SLアンテナ122の方向を修正する。 If it is determined that there is a problem, proceed to S110. In S110, the control unit 208 controls the gimbal 126. When the pitch and roll of the HAPS 100 are not kept horizontal, the control unit 208 controls the gimbal 126 to correct the direction of the SL antenna 122 according to the fluctuation of the pitch and roll of the HAPS 100, thereby causing the SL antenna 122. Maintain the inclination of. When the yaw of the HAPS 100 is not at a preset angle, the control unit 208 controls the gimbal 126 to correct the direction of the SL antenna 122 according to the fluctuation of the yaw of the HAPS 100.
 S108において問題無しと判定した場合、S112に進む。この場合、ジンバル126は現状維持となる。 If it is determined in S108 that there is no problem, the process proceeds to S112. In this case, the gimbal 126 maintains the status quo.
 S112では、制御部208が、HAPS100の位置と対象エリア40の位置とから、SLアンテナ122に必要なチルトを算出する。S114では、S112において算出したチルトと、チルトの現在の値とから、SLアンテナ122のチルトを変更する必要があるか否かを判定する。変更要と判定した場合、S116に進み、変更否と判定した場合、S118に進む。S116では、制御部208が、S112において算出したチルトと、現在の値とから導出した変更値に従って、SLアンテナ122のチルトを変更する。 In S112, the control unit 208 calculates the tilt required for the SL antenna 122 from the position of the HAPS 100 and the position of the target area 40. In S114, it is determined whether or not it is necessary to change the tilt of the SL antenna 122 from the tilt calculated in S112 and the current value of the tilt. If it is determined that the change is necessary, the process proceeds to S116, and if it is determined that the change is not required, the process proceeds to S118. In S116, the control unit 208 changes the tilt of the SL antenna 122 according to the tilt calculated in S112 and the change value derived from the current value.
 S118では、情報格納部202が、飛行体位置情報と、姿勢情報と、ジンバル126が制御された場合にはジンバル126の制御量と、SLアンテナ122のチルトが変更された場合にはチルトの変更量とを対応付けた対応付けデータを格納する。 In S118, the information storage unit 202 changes the aircraft position information, the attitude information, the control amount of the gimbal 126 when the gimbal 126 is controlled, and the tilt when the tilt of the SL antenna 122 is changed. Stores the association data associated with the quantity.
 S120では、制御を終了するか否かを判定する。終了しないと判定した場合、S102に戻り、終了すると判定した場合、処理を終了する。 In S120, it is determined whether or not the control is terminated. If it is determined that the process does not end, the process returns to S102, and if it is determined that the process ends, the process ends.
 図5は、通信制御装置200による変動予測制御の流れの一例を概略的に示す。S202では、制御部208が、過去数秒間の対応付けデータから、HAPS100の位置及び姿勢の傾向を分析する。秒数は予め設定されてよく、変更可能であってよい。S204では、制御部208が、HAPS100の姿勢の変動パターンに規則性が有るか否かを判定する。制御部208は、公知の任意の技術を用いて、変動パターンに規則性が有るか否かを判定し得る。規則性有と判定した場合、S206に進み、規則性無と判定した場合、S208に進む。 FIG. 5 schematically shows an example of the flow of fluctuation prediction control by the communication control device 200. In S202, the control unit 208 analyzes the tendency of the position and posture of the HAPS 100 from the association data for the past several seconds. The number of seconds may be preset and may be changeable. In S204, the control unit 208 determines whether or not there is regularity in the posture fluctuation pattern of the HAPS 100. The control unit 208 can determine whether or not the fluctuation pattern has regularity by using any known technique. If it is determined that there is regularity, the process proceeds to S206, and if it is determined that there is no regularity, the process proceeds to S208.
 S206では、制御部208が、HAPS100の姿勢の変動パターンに基づいて、HAPS100の姿勢変化を予測し、SLアンテナ122の制御量を仮定する。S208では、制御部208が、HAPS100の姿勢に問題が有るか否かを判定する。制御部208は、例えば、HAPS100のピッチ及びロールが水平を保っていない場合、問題有りと判定する。また、制御部208は、例えば、HAPS100のヨーが予め設定された角度となっていない場合、問題有りと判定する。制御部208は、HAPS100のピッチ及びロールが水平を保っており、HAPS100のヨーが予め設定された角度となっている場合、問題無しと判定してよい。 In S206, the control unit 208 predicts the attitude change of the HAPS 100 based on the attitude change pattern of the HAPS 100, and assumes the control amount of the SL antenna 122. In S208, the control unit 208 determines whether or not there is a problem in the posture of the HAPS 100. The control unit 208 determines that there is a problem, for example, when the pitch and roll of the HAPS 100 are not kept horizontal. Further, the control unit 208 determines that there is a problem, for example, when the yaw of the HAPS 100 does not have a preset angle. The control unit 208 may determine that there is no problem when the pitch and roll of the HAPS 100 are kept horizontal and the yaw of the HAPS 100 is at a preset angle.
 問題有りと判定した場合、S210に進む。S210では、制御部208が、ジンバル126の制御量を仮定する。制御部208は、HAPS100のピッチ及びロールが水平を保っていない場合、HAPS100のピッチおよびロールの変動に合わせてSLアンテナ122の方向を修正することによりSLアンテナ122の傾きを維持するように、ジンバル126の制御量を仮定する。制御部208は、HAPS100のヨーが予め設定された角度となっていない場合、HAPS100のヨーの変動に合わせてSLアンテナ122の方向を修正するように、ジンバル126の制御量を仮定する。 If it is determined that there is a problem, proceed to S210. In S210, the control unit 208 assumes a control amount of the gimbal 126. The control unit 208 gimbals maintain the tilt of the SL antenna 122 by correcting the direction of the SL antenna 122 according to the fluctuation of the pitch and roll of the HAPS 100 when the pitch and roll of the HAPS 100 are not kept horizontal. Assume 126 controls. The control unit 208 assumes a control amount of the gimbal 126 so as to correct the direction of the SL antenna 122 according to the variation of the yaw of the HAPS 100 when the yaw of the HAPS 100 is not at a preset angle.
 S208において問題無しと判定した場合、S212に進む。この場合、HAPS100の姿勢は現状維持と仮定する。 If it is determined in S208 that there is no problem, the process proceeds to S212. In this case, it is assumed that the posture of HAPS100 is maintained as it is.
 S214では、制御部208が、情報格納部202に格納されている直近数時間程度の対応付けデータ内に、HAPS100の位置(第1のポイントと記載する場合がある。)と同じ位置の対応付けデータが有るか否かを判定する。当該時間は予め設定されてよく、変更可能であってよい。有ると判定した場合、S216に進み、無いと判定した場合、S222に進む。 In S214, the control unit 208 associates the same position as the position of the HAPS 100 (may be described as the first point) in the association data for the last few hours stored in the information storage unit 202. Determine if there is data. The time may be preset and may be changeable. If it is determined to be present, the process proceeds to S216, and if it is determined to be absent, the process proceeds to S222.
 S216では、制御部208が、第1のポイントと同じ位置の対応付けデータが複数有るか否かを判定する。有ると判定した場合、S218に進み、無いと判定した場合、S222に進む。 In S216, the control unit 208 determines whether or not there is a plurality of associated data at the same position as the first point. If it is determined to be present, the process proceeds to S218, and if it is determined to be absent, the process proceeds to S222.
 S218では、制御部208が、正解率が閾値以上であるか否かを判定する。閾値以上であると判定した場合、S220に進み、閾値以上でないと判定した場合、S222に進む。 In S218, the control unit 208 determines whether or not the correct answer rate is equal to or greater than the threshold value. If it is determined that the value is equal to or higher than the threshold value, the process proceeds to S220, and if it is determined that the value is not equal to or higher than the threshold value, the process proceeds to S222.
 S220では、制御部208が、第1のポイントと同じ位置の対応付けデータに基づく制御量で、ジンバル126を制御する。制御部208は、例えば、第1のポイントと同じ位置の複数の対応付けデータのうち、結果情報が正解を示す一の対応付けデータに含まれる制御量で、ジンバル126を制御する。制御部208は、第1のポイントと同じ位置の複数の対応付けデータのうちの、結果情報が正解を示す複数の対応付けデータに基づいて導出した制御量で、ジンバル126を制御してもよい。例えば、制御部208は、当該複数の対応付けデータに含まれる制御量を平均した制御量で、ジンバル126を制御する。 In S220, the control unit 208 controls the gimbal 126 with a control amount based on the association data at the same position as the first point. The control unit 208 controls the gimbal 126 with, for example, a control amount included in one association data whose result information indicates a correct answer among a plurality of association data at the same position as the first point. The control unit 208 may control the gimbal 126 with a control amount derived based on a plurality of association data whose result information indicates a correct answer among the plurality of association data at the same position as the first point. .. For example, the control unit 208 controls the gimbal 126 with a control amount obtained by averaging the control amounts included in the plurality of associated data.
 S222では、制御部208が、仮定している制御量で、ジンバル126を制御する。そして、変動予測制御を終了する。 In S222, the control unit 208 controls the gimbal 126 with the assumed control amount. Then, the fluctuation prediction control is terminated.
 図6は、管理システム300の機能構成の一例を概略的に示す。ここでは、管理システム300が、地上に配置された通信制御装置として機能する場合の機能構成の一例を示す。 FIG. 6 schematically shows an example of the functional configuration of the management system 300. Here, an example of the functional configuration when the management system 300 functions as a communication control device arranged on the ground is shown.
 管理システム300は、飛行体管理部310及び飛行体制御部320を備える。飛行体管理部310は、複数のHAPS100を管理する。飛行体管理部310は、複数のHAPS100のそれぞれに、複数の対象エリア40のそれぞれをカバーさせるように、複数のHAPS100を管理してよい。 The management system 300 includes an air vehicle management unit 310 and an air vehicle control unit 320. The flight body management unit 310 manages a plurality of HAPS 100s. The flight object management unit 310 may manage the plurality of HAPS 100s so that each of the plurality of HAPS 100s covers each of the plurality of target areas 40.
 飛行体制御部320は、複数のHAPS100のそれぞれを制御する。飛行体制御部320は、情報格納部322、位置情報取得部324、姿勢情報取得部326、及び制御部328を備える。 The flight body control unit 320 controls each of the plurality of HAPS 100s. The aircraft control unit 320 includes an information storage unit 322, a position information acquisition unit 324, an attitude information acquisition unit 326, and a control unit 328.
 情報格納部322は、複数のHAPS100のそれぞれについて、各種情報を格納する。情報格納部322は、例えば、HAPS100の飛行体識別情報と対応付けて、HAPS100の対象エリア位置情報、及びHAPS100の対応付けデータを格納する。 The information storage unit 322 stores various information for each of the plurality of HAPS100. The information storage unit 322 stores, for example, the target area position information of the HAPS 100 and the associated data of the HAPS 100 in association with the flight object identification information of the HAPS 100.
 位置情報取得部324は、飛行しているHAPS100の飛行体位置情報を取得する。位置情報取得部324は、飛行体位置情報を連続的に取得してよい。位置情報取得部324は、HAPS100から、飛行体位置情報を連続的に受信してよい。 The position information acquisition unit 324 acquires the position information of the flying HAPS100. The position information acquisition unit 324 may continuously acquire the aircraft body position information. The position information acquisition unit 324 may continuously receive the aircraft body position information from the HAPS 100.
 姿勢情報取得部326は、飛行しているHAPS100の姿勢情報を取得する。姿勢情報取得部326は、姿勢情報を連続的に取得してよい。姿勢情報取得部326は、HAPS100から、姿勢情報を連続的に受信してよい。 The attitude information acquisition unit 326 acquires the attitude information of the flying HAPS100. The posture information acquisition unit 326 may continuously acquire the posture information. The posture information acquisition unit 326 may continuously receive the posture information from the HAPS 100.
 制御部328は、情報格納部322に格納されている対象エリア位置情報と、位置情報取得部324によって取得された飛行体位置情報と、姿勢情報取得部326によって取得された姿勢情報とに基づいて、ジンバル126及びSLアンテナ122のチルトを制御する。制御部328は、HAPS100に対して、ジンバル126の制御指示を送信することによってジンバル126を制御してよい。制御部328は、HAPS100に対して、SLアンテナ122のチルトの制御指示を送信することによってSLアンテナ122のチルトを制御してよい。 The control unit 328 is based on the target area position information stored in the information storage unit 322, the aircraft position information acquired by the position information acquisition unit 324, and the attitude information acquired by the attitude information acquisition unit 326. , Controls the tilt of the gimbal 126 and SL antenna 122. The control unit 328 may control the gimbal 126 by transmitting a control instruction of the gimbal 126 to the HAPS 100. The control unit 328 may control the tilt of the SL antenna 122 by transmitting a control instruction for tilting the SL antenna 122 to the HAPS 100.
 制御部328は、例えば、姿勢情報に基づいて、SLアンテナ122の傾きを維持するようにジンバル326を制御し、かつ、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべくSLアンテナ122のチルトを制御する。制御部328は、対象エリア40の全体のカバーを維持するように、SLアンテナ122のチルトを制御してよい。 The control unit 328 controls the gimbal 326 so as to maintain the inclination of the SL antenna 122 based on the attitude information, and the target area 40 by the cell 164 based on the target area position information and the vehicle body position information. The tilt of the SL antenna 122 is controlled to cover the above. The control unit 328 may control the tilt of the SL antenna 122 so as to maintain the entire cover of the target area 40.
 制御部328は、対象エリア位置情報と、飛行体位置情報とによって、SLアンテナ122と対象エリア40との相対位置関係を把握し、逐次変化するHAPS100の位置の変化に合わせて、SLアンテナ122のチルトを制御してよい。制御部328は、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべく、SLアンテナ122の電気チルトを制御してよい。制御部328は、対象エリア位置情報及び飛行体位置情報に基づいて、セル164によって対象エリア40をカバーすべく、SLアンテナ122の機械チルトを制御してよい。 The control unit 328 grasps the relative positional relationship between the SL antenna 122 and the target area 40 based on the target area position information and the flying object position information, and the SL antenna 122 changes in accordance with the sequentially changing position of the HAPS 100. The tilt may be controlled. The control unit 328 may control the electric tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information. The control unit 328 may control the mechanical tilt of the SL antenna 122 so that the cell 164 covers the target area 40 based on the target area position information and the vehicle body position information.
 制御部328は、予め定められた時間の間に姿勢情報取得部326が取得した姿勢情報に基づいて、HAPS100の姿勢の変動パターンに規則性があると判定した場合、変動パターンに基づいてジンバル126を制御し、規則性がないと判定した場合、姿勢情報に基づいてジンバル126を制御してよい。制御部328は、規則性のある変動パターンによって、予め定められた時間の後に生じる振動又は予め定められた距離進んだ後に生じる振動を予測し、予測した振動に合わせて、ジンバル126を制御してよい。これにより、時間を連続的に考えた規則性を利用したジンバル126の予測制御を実現することができ、HAPS100による無線通信サービスの安定性を向上させることができる。 When the control unit 328 determines that the posture fluctuation pattern of the HAPS 100 has regularity based on the posture information acquired by the posture information acquisition unit 326 during a predetermined time, the gimbal 126 is based on the fluctuation pattern. If it is determined that there is no regularity, the gimbal 126 may be controlled based on the posture information. The control unit 328 predicts the vibration generated after a predetermined time or the vibration generated after traveling a predetermined distance by a regular fluctuation pattern, and controls the gimbal 126 according to the predicted vibration. good. As a result, it is possible to realize predictive control of the gimbal 126 using the regularity considering the time continuously, and it is possible to improve the stability of the wireless communication service by the HAPS 100.
 制御部328は、情報格納部322に格納されている対応付けデータに基づいて、ジンバル126を制御してよい。制御部328は、例えば、HAPS100が周回経路のうちの第1のポイントを通過する場合に、HAPS100が第1のポイントを過去に通過したときの対応付けデータに基づいてジンバル126を制御すると判定した場合、対応付けデータに基づいてジンバル126を制御し、対応付けデータに基づいて制御しないと判定した場合、姿勢情報に基づいてジンバル126を制御してよい。制御部328は、HAPS100が第1のポイントを過去に通過したときの対応付けデータに含まれるジンバル126の制御量に従って、ジンバル126を制御してよい。これにより、同一ポイント通過時の規則性を利用したジンバル126の予測制御を実現でき、HAPS100による無線通信サービスの安定性を向上させることができる。 The control unit 328 may control the gimbal 126 based on the association data stored in the information storage unit 322. The control unit 328 determines that, for example, when the HAPS 100 passes through the first point in the circuit path, the control unit 328 controls the gimbal 126 based on the association data when the HAPS 100 has passed the first point in the past. In this case, the gimbal 126 may be controlled based on the association data, and if it is determined that the gimbal 126 is not controlled based on the association data, the gimbal 126 may be controlled based on the attitude information. The control unit 328 may control the gimbal 126 according to the control amount of the gimbal 126 included in the association data when the HAPS 100 has passed the first point in the past. As a result, predictive control of the gimbal 126 using the regularity when passing through the same point can be realized, and the stability of the wireless communication service by the HAPS 100 can be improved.
 制御部328は、例えば、HAPS100が第1のポイントを通過する場合に、HAPS100が第1のポイントを過去に通過したときの対応付けデータが複数あり、ジンバル126の制御の正解率が予め定められた閾値より高い場合、対応付けデータに基づいてジンバル126を制御すると判定し、正解率が閾値より低い場合、対応付けデータに基づいてジンバル126を制御しないと判定する。例えば、情報格納部322が、対応付けデータに、当該対応付けデータに含まれる制御量によるジンバル126の制御を行った結果が、正解であったか否かを示す結果情報を含めて格納する。結果情報は、ジンバル126の制御を行った結果、SLアンテナ122の姿勢を保てた場合、正解を示し、姿勢を保てなかった場合、不正解を示してよい。SLアンテナ122の姿勢を保てたか否かは、SLアンテナ122の姿勢変動が予め定められた閾値以内であるか否かによって判定されてよい。当該閾値は任意に設定可能であってよい。制御部328は、第1のポイントを過去に通過したときの複数の対応付けデータの結果情報を用いて、正解率を算出してよい。 For example, when the HAPS 100 passes the first point, the control unit 328 has a plurality of association data when the HAPS 100 has passed the first point in the past, and the correct answer rate of the control of the gimbal 126 is predetermined. If it is higher than the threshold value, it is determined that the gimbal 126 is controlled based on the associated data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal 126 is not controlled based on the associated data. For example, the information storage unit 322 stores the association data including the result information indicating whether or not the result of controlling the gimbal 126 by the control amount included in the association data is the correct answer. As a result of controlling the gimbal 126, the result information may indicate a correct answer when the posture of the SL antenna 122 is maintained, and may indicate an incorrect answer when the posture cannot be maintained. Whether or not the posture of the SL antenna 122 can be maintained may be determined by whether or not the posture fluctuation of the SL antenna 122 is within a predetermined threshold value. The threshold value may be arbitrarily set. The control unit 328 may calculate the correct answer rate by using the result information of a plurality of associated data when the first point is passed in the past.
 図7は、通信制御装置200又は管理装置300として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。 FIG. 7 schematically shows an example of a hardware configuration of a computer 1200 that functions as a communication control device 200 or a management device 300. A program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or causes the computer 1200 to perform an operation associated with the device according to the present embodiment or the one or the like. A plurality of "parts" can be executed and / or a computer 1200 can be made to execute a process according to the present embodiment or a stage of the process. Such a program may be run by the CPU 1212 to cause the computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。 The computer 1200 according to this embodiment includes a CPU 1212, a RAM 1214, and a graphic controller 1216, which are connected to each other by a host controller 1210. The computer 1200 also includes input / output units such as a communication interface 1222, a storage device 1224, a DVD drive and an IC card drive, which are connected to the host controller 1210 via the input / output controller 1220. The storage device 1224 may be a hard disk drive, a solid state drive, or the like. The computer 1200 also includes a legacy I / O unit such as a ROM 1230 and a keyboard, which are connected to the I / O controller 1220 via an I / O chip 1240.
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。 The CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit. The graphic controller 1216 acquires the image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or itself so that the image data is displayed on the display device 1218.
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。 The communication interface 1222 communicates with other electronic devices via the network. The storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200. The DVD drive reads a program or data from a DVD-ROM or the like and provides it to the storage device 1224. The IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。 The ROM 1230 stores a boot program or the like executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200. The input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a USB port, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。 The program is provided by a computer-readable storage medium such as a DVD-ROM or IC card. The program is read from a computer-readable storage medium, installed in a storage device 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212. The information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above. The device or method may be configured to implement the operation or processing of information according to the use of the computer 1200.
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is executed between the computer 1200 and an external device, the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order. Under the control of the CPU 1212, the communication interface 1222 reads the transmission data stored in the transmission buffer area provided in the recording medium such as the RAM 1214, the storage device 1224, the DVD-ROM, or the IC card, and the read transmission data. Is transmitted to the network, or the received data received from the network is written to the reception buffer area or the like provided on the recording medium.
 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 Further, the CPU 1212 makes the RAM 1214 read all or necessary parts of the file or the database stored in the external recording medium such as the storage device 1224, the DVD drive (DVD-ROM), the IC card, etc. Various types of processing may be performed on the data. The CPU 1212 may then write back the processed data to an external recording medium.
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information such as various types of programs, data, tables, and databases may be stored in the recording medium and processed. The CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 is the first of the plurality of entries. The attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the first attribute that satisfies the predetermined condition is selected. You may get the attribute value of the associated second attribute.
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The program or software module described above may be stored on a computer 1200 or in a computer-readable storage medium near the computer 1200. In addition, a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network. offer.
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 The blocks in the flowchart and the block diagram in the present embodiment may represent the stage of the process in which the operation is executed or the "part" of the device having a role of executing the operation. Specific stages and "parts" are supplied with dedicated circuits, programmable circuits supplied with computer-readable instructions stored on computer-readable storage media, and / or computer-readable instructions stored on computer-readable storage media. It may be implemented by the processor. Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits. Programmable circuits include logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like. , Flip-flops, registers, and reconfigurable hardware circuits, including memory elements.
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 The computer-readable storage medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable storage medium having the instructions stored therein is in a flow chart or block diagram. It will be equipped with a product that contains instructions that can be executed to create means for performing the specified operation. Examples of the computer-readable storage medium may include an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like. More specific examples of computer-readable storage media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM or flash memory). , Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-ray® Disc, Memory Stick , Integrated circuit cards and the like may be included.
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。 Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc. Contains either source code or object code written in any combination of one or more programming languages, including languages and traditional procedural programming languages such as the "C" programming language or similar programming languages. good.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 Computer-readable instructions are used to generate means for a general-purpose computer, a special-purpose computer, or the processor of another programmable data processing device, or a programmable circuit, to perform an operation specified in a flowchart or block diagram. General purpose computers, special purpose computers, or other programmable data processing locally or via a wide area network (WAN) such as the local area network (LAN), the Internet, etc., to execute the computer-readable instructions. It may be provided in the processor of the device or in a programmable circuit. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers and the like.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the claims that the form with such modifications or improvements may also be included in the technical scope of the invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process such as operation, procedure, step, and step in the device, system, program, and method shown in the claims, description, and drawings is particularly "before" and "prior to". It should be noted that it can be realized in any order unless the output of the previous process is used in the subsequent process. Even if the claims, the specification, and the operation flow in the drawings are explained using "first", "next", etc. for convenience, it means that it is essential to carry out in this order. is not it.
10 システム、20 ネットワーク、30 ユーザ端末、40 対象エリア、50 ゲートウェイ、60 衛星通信システム、80 通信衛星、100 HAPS、110 機体、120 中央部、121 FLアンテナ、122 SLアンテナ、123 衛星通信アンテナ、125 センサ群、126 ジンバル、130 プロペラ、140 ポッド、150 太陽電池パネル、162 ビーム、164 セル、180 飛行制御装置、200 通信制御装置、202 情報格納部、204 位置情報取得部、206 姿勢情報取得部、208 制御部、300 管理システム、310 飛行体管理部、320 飛行体制御部、322 情報格納部、324 位置情報取得部、326 姿勢情報取得部、328 制御部、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ 10 systems, 20 networks, 30 user terminals, 40 target areas, 50 gateways, 60 satellite communication systems, 80 communication satellites, 100 HAPS, 110 aircraft, 120 central parts, 121 FL antennas, 122 SL antennas, 123 satellite communication antennas, 125 Sensor group, 126 gimbal, 130 propeller, 140 pod, 150 solar cell panel, 162 beam, 164 cells, 180 flight control device, 200 communication control device, 202 information storage unit, 204 position information acquisition unit, 206 attitude information acquisition unit, 208 control unit, 300 management system, 310 air vehicle management unit, 320 air vehicle control unit, 322 information storage unit, 324 position information acquisition unit, 326 attitude information acquisition unit, 328 control unit, 1200 computer, 1210 host controller, 1212 CPU , 1214 RAM, 1216 graphic controller, 1218 display device, 1220 input / output controller, 1222 communication interface, 1224 storage device, 1230 ROM, 1240 input / output chip

Claims (12)

  1.  ビームを照射することにより地上の対象エリアにセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体の前記アンテナを制御する通信制御装置であって、
     前記対象エリアの位置を示す対象エリア位置情報を格納する情報格納部と、
     前記飛行体の3次元位置を示す飛行体位置情報を取得する位置情報取得部と、
     前記飛行体の姿勢を示す姿勢情報を取得する姿勢情報取得部と、
     前記姿勢情報に基づいて、前記アンテナの傾きを維持するように前記アンテナを支持するジンバルを制御し、かつ、前記対象エリア位置情報及び前記飛行体位置情報に基づいて、前記セルによって前記対象エリアをカバーすべく前記アンテナのチルトを制御する制御部と
     を備える通信制御装置。
    A communication control device that controls the antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell.
    An information storage unit that stores target area position information indicating the position of the target area, and
    A position information acquisition unit that acquires air vehicle position information indicating the three-dimensional position of the air vehicle, and a position information acquisition unit.
    An attitude information acquisition unit that acquires attitude information indicating the attitude of the flying object, and an attitude information acquisition unit.
    Based on the attitude information, the gimbal that supports the antenna is controlled so as to maintain the inclination of the antenna, and the target area is controlled by the cell based on the target area position information and the vehicle body position information. A communication control device including a control unit that controls the tilt of the antenna to cover the antenna.
  2.  前記制御部は、前記対象エリア位置情報及び前記飛行体位置情報に基づいて、前記セルによって前記対象エリアをカバーすべく前記アンテナの電気チルトを制御する、請求項1に記載の通信制御装置。 The communication control device according to claim 1, wherein the control unit controls the electric tilt of the antenna so as to cover the target area by the cell based on the target area position information and the flying object position information.
  3.  前記制御部は、前記対象エリア位置情報及び前記飛行体位置情報に基づいて、前記セルによって前記対象エリアをカバーすべく前記アンテナの機械チルトを制御する、請求項1に記載の通信制御装置。 The communication control device according to claim 1, wherein the control unit controls the mechanical tilt of the antenna so as to cover the target area by the cell based on the target area position information and the flying object position information.
  4.  前記飛行体は、予め定められた周回経路に沿って飛行し、
     前記通信制御装置は、前記飛行体位置情報と、前記飛行体が前記飛行体位置情報によって示される位置を飛行しているときの前記飛行体の姿勢を示す前記姿勢情報と、前記姿勢情報に基づく前記ジンバルの制御量とを対応付けた対応付けデータを格納する履歴格納部
     を備え、
     前記制御部は、前記履歴格納部に格納されている前記対応付けデータに基づいて、前記ジンバルを制御する、請求項1から3のいずれか一項に記載の通信制御装置。
    The air vehicle flies along a predetermined orbital path and
    The communication control device is based on the air vehicle position information, the attitude information indicating the attitude of the air vehicle when the air vehicle is flying at the position indicated by the air vehicle position information, and the attitude information. It is provided with a history storage unit that stores the association data associated with the control amount of the gimbal.
    The communication control device according to any one of claims 1 to 3, wherein the control unit controls the gimbal based on the association data stored in the history storage unit.
  5.  前記制御部は、前記飛行体が前記周回経路における第1のポイントを通過する場合に、前記飛行体が前記第1のポイントを過去に通過したときの前記対応付けデータに基づいて前記ジンバルを制御すると判定した場合、前記対応付けデータに基づいて前記ジンバルを制御し、前記対応付けデータに基づいて前記ジンバルを制御しないと判定した場合、前記姿勢情報に基づいて前記ジンバルを制御する、請求項4に記載の通信制御装置。 When the flying object passes the first point in the orbital path, the control unit controls the gimbal based on the associated data when the flying object has passed the first point in the past. 4 The communication control device according to.
  6.  前記制御部は、前記飛行体が前記第1のポイントを通過する場合に、前記飛行体が前記第1のポイントを過去に通過したときの前記対応付けデータが複数あり、前記ジンバルの制御の正解率が予め定められた閾値より高い場合、前記対応付けデータに基づいて前記ジンバルを制御すると判定し、前記正解率が前記閾値より低い場合、前記対応付けデータに基づいて前記ジンバルを制御しないと判定する、請求項5に記載の通信制御装置。 The control unit has a plurality of the associated data when the flying object passes the first point and the flying object has passed the first point in the past, and the correct answer for the control of the gimbal. If the rate is higher than a predetermined threshold value, it is determined that the gimbal is controlled based on the associated data, and if the correct answer rate is lower than the threshold value, it is determined that the gimbal is not controlled based on the associated data. The communication control device according to claim 5.
  7.  前記制御部は、予め定められた時間の間に前記姿勢情報取得部が取得した前記姿勢情報に基づいて、前記飛行体の姿勢の変動パターンに規則性があると判定した場合、前記変動パターンに基づいて前記ジンバルを制御する、規則性がないと判定した場合、前記姿勢情報に基づいて前記ジンバルを制御する、請求項1から3のいずれか一項に記載の通信制御装置。 When the control unit determines that the attitude fluctuation pattern of the flying object has regularity based on the attitude information acquired by the attitude information acquisition unit during a predetermined time, the control unit determines the fluctuation pattern. The communication control device according to any one of claims 1 to 3, wherein the gimbal is controlled based on the gimbal, and when it is determined that there is no regularity, the gimbal is controlled based on the posture information.
  8.  前記飛行体は、予め定められた周回経路に沿って飛行し、
     前記通信制御装置は、前記飛行体位置情報と、前記飛行体が前記飛行体位置情報によって示される位置を飛行しているときの前記飛行体の姿勢を示す前記姿勢情報と、前記姿勢情報に基づく前記ジンバルの制御量とを対応付けた対応付けデータを格納する履歴格納部
     を備え、
     前記制御部は、前記周回経路における第1のポイントを通過する場合に、前記飛行体が前記第1のポイントを過去に通過したときの前記対応付けデータに基づいて前記ジンバルを制御すると判定した場合、前記対応付けデータに基づいて前記ジンバルを制御し、前記対応付けデータに基づいて前記ジンバルを制御しないと判定した場合において、予め定められた時間の間に前記姿勢情報取得部が取得した前記姿勢情報に基づいて前記飛行体の姿勢の変動パターンに規則性があると判定した場合、前記変動パターンに基づいて前記ジンバルを制御し、規則性がないと判定した場合、前記姿勢情報に基づいて前記ジンバルを制御する、請求項1から3のいずれか一項に記載の通信制御装置。
    The air vehicle flies along a predetermined orbital path and
    The communication control device is based on the air vehicle position information, the attitude information indicating the attitude of the air vehicle when the air vehicle is flying at the position indicated by the air vehicle position information, and the attitude information. It is provided with a history storage unit that stores the association data associated with the control amount of the gimbal.
    When the control unit determines that the gimbal is controlled based on the associated data when the air vehicle has passed the first point in the past when passing through the first point in the orbital path. , The posture acquired by the posture information acquisition unit during a predetermined time when the gimbal is controlled based on the association data and it is determined that the gimbal is not controlled based on the association data. When it is determined that the attitude fluctuation pattern of the air vehicle has regularity based on the information, the gimbal is controlled based on the fluctuation pattern, and when it is determined that there is no regularity, the gimbal is controlled based on the attitude information. The communication control device according to any one of claims 1 to 3, which controls the gimbal.
  9.  コンピュータを、請求項1から8のいずれか一項に記載の通信制御装置として機能させるためのプログラム。 A program for making a computer function as a communication control device according to any one of claims 1 to 8.
  10.  前記飛行体であって、請求項1から8のいずれか一項に記載の通信制御装置を搭載した、飛行体。 The flying object, which is equipped with the communication control device according to any one of claims 1 to 8.
  11.  地上に配置された、請求項1から8のいずれか一項に記載の通信制御装置と、
     前記飛行体と
     を備えるシステム。
    The communication control device according to any one of claims 1 to 8, which is arranged on the ground.
    A system including the flying object.
  12.  ビームを照射することにより地上の対象エリアにセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体の前記アンテナを制御する通信制御装置によって実行される制御方法であって、
     前記飛行体の3次元位置を示す飛行体位置情報及び前記飛行体の姿勢を示す姿勢情報を取得する情報取得段階と、
     前記姿勢情報に基づいて、前記アンテナの傾きを維持するように前記アンテナを支持するジンバルを制御し、かつ、前記対象エリアの位置を示す対象エリア位置情報及び前記飛行体位置情報に基づいて、前記セルによって前記対象エリアをカバーすべく前記アンテナのチルトを制御する制御段階と
     を備える制御方法。
    Control performed by a communication control device that controls the antenna of an air vehicle having an antenna for forming a cell in a target area on the ground by irradiating a beam and providing a wireless communication service to a user terminal in the cell. It ’s a method,
    An information acquisition stage for acquiring an air vehicle position information indicating a three-dimensional position of the air vehicle and an attitude information indicating the attitude of the air vehicle, and an information acquisition stage.
    Based on the attitude information, the gimbal that supports the antenna is controlled so as to maintain the inclination of the antenna, and the target area position information indicating the position of the target area and the vehicle body position information are used as the basis. A control method including a control step of controlling the tilt of the antenna so as to cover the target area with a cell.
PCT/JP2020/031337 2020-03-11 2020-08-19 Communication control apparatus, program, flying object, system, and control method WO2021181717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041714A JP7093377B2 (en) 2020-03-11 2020-03-11 Communication control devices, programs, flying objects, systems and control methods
JP2020-041714 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021181717A1 true WO2021181717A1 (en) 2021-09-16

Family

ID=77671514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031337 WO2021181717A1 (en) 2020-03-11 2020-08-19 Communication control apparatus, program, flying object, system, and control method

Country Status (2)

Country Link
JP (1) JP7093377B2 (en)
WO (1) WO2021181717A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223110A (en) * 2001-01-25 2002-08-09 Toshiba Corp Multi-beam antenna system
US20170353960A1 (en) * 2016-06-06 2017-12-07 Google Inc. Systems and methods for dynamically allocating wireless service resources consonant with service demand density
JP2020036070A (en) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Antenna configuration and beamforming control of service link in HAPS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2403280C (en) 2000-04-10 2011-07-12 Aerovironment Inc. Suborbital communications system
JP6692770B2 (en) 2017-05-26 2020-05-13 ソフトバンク株式会社 Antenna control device and air vehicle
US10727949B2 (en) 2018-10-12 2020-07-28 Hughes Network Systems, LLC. Systems and methods for high-altitude radio/optical hybrid platform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223110A (en) * 2001-01-25 2002-08-09 Toshiba Corp Multi-beam antenna system
US20170353960A1 (en) * 2016-06-06 2017-12-07 Google Inc. Systems and methods for dynamically allocating wireless service resources consonant with service demand density
JP2020036070A (en) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Antenna configuration and beamforming control of service link in HAPS

Also Published As

Publication number Publication date
JP2021142820A (en) 2021-09-24
JP7093377B2 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2020195107A1 (en) Wireless communication device, system, program, and control method
JP2021190951A (en) System, unmanned aircraft, management device, program and management method
WO2021181717A1 (en) Communication control apparatus, program, flying object, system, and control method
US20230222667A1 (en) Mask for satellite image data
WO2021181718A1 (en) Management device, program, system, and control method
WO2021106287A1 (en) System, communication control device, program, and control method
JP7249890B2 (en) ANTENNA CONTROL DEVICE, PROGRAM, SYSTEM AND CONTROL METHOD
US20230333573A1 (en) Control device, computer readable storage medium, system, and control method
WO2021065223A1 (en) System, communication device, program, and control method
US12096164B2 (en) Optical communication device, computer-readable storage medium, system, and optical communication method
US20230337195A1 (en) Base station apparatus, computer-readable storage medium, system, and control method
US20230360541A1 (en) Data processing apparatus, computer readable storage medium, and data processing method
JP7541476B2 (en) Management device, program, system, and management method
JP7297173B1 (en) COMMUNICATION CONTROL DEVICE, PROGRAM, AIRCRAFT, AND COMMUNICATION CONTROL METHOD
JP7578854B1 (en) Information processing device, program, and information processing method
JP7076659B1 (en) Information processing equipment, programs, systems, and information processing methods
JP7144583B1 (en) Control device, program, system, and control method
WO2022138394A1 (en) Base station device, program, system, and control method
WO2022130820A1 (en) Management device, program, system, wireless communication terminal, and control method
JP2024129432A (en) Control device, program, and flying object
JP2024132372A (en) Information processing device, program, and flying object
CN116700326A (en) Unmanned aircraft flight state switching method, system and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924409

Country of ref document: EP

Kind code of ref document: A1