WO2021181702A1 - Thermometer characteristic information generation system and thermometer characteristic information generation method - Google Patents

Thermometer characteristic information generation system and thermometer characteristic information generation method Download PDF

Info

Publication number
WO2021181702A1
WO2021181702A1 PCT/JP2020/011272 JP2020011272W WO2021181702A1 WO 2021181702 A1 WO2021181702 A1 WO 2021181702A1 JP 2020011272 W JP2020011272 W JP 2020011272W WO 2021181702 A1 WO2021181702 A1 WO 2021181702A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermometer
pipe
temperature
pressure
characteristic information
Prior art date
Application number
PCT/JP2020/011272
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 安野
桂一郎 小島
Original Assignee
株式会社エー・アンド・デイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エー・アンド・デイ filed Critical 株式会社エー・アンド・デイ
Priority to PCT/JP2020/011272 priority Critical patent/WO2021181702A1/en
Priority to JP2020539870A priority patent/JP6779422B1/en
Publication of WO2021181702A1 publication Critical patent/WO2021181702A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/09Testing internal-combustion engines by monitoring pressure in fluid ducts, e.g. in lubrication or cooling parts

Definitions

  • the present invention relates to a thermometer characteristic information generation system and a thermometer characteristic information generation method, for example, a thermometer characteristic information generation system that generates thermometer characteristic information so that a thermometer can measure a temperature with high response.
  • the present invention relates to a method for generating thermometer characteristic information.
  • an engine test device in which a dynamometer is connected to a specimen such as an engine and various characteristics of the engine are measured by simulation. Further, in an engine test using an engine test device, the temperature inside the cylinder of the engine cylinder and the intake / exhaust temperature are measured and grasped by a high-speed response thermometer.
  • thermometer the "fast response electrode microthermocouple probe (TCFW)" of "Medtherm CORPORATION in the United States” is used as the thermometer.
  • the "fast response electrode fine thermocouple probe” of MEDTHERM CORPORATION is disclosed in Non-Patent Document 1.
  • thermometer In the above-mentioned engine test, even if the temperature inside the cylinder of the engine cylinder and the intake / exhaust temperature are measured by using the thermometer described in Non-Patent Document 1, the thermometer cannot detect the temperature with high response. , Has a technical problem that an accurate temperature may not be obtained. Therefore, in a thermometer used in an environment such as the above-mentioned engine test, a technique capable of measuring temperature with high response is desired.
  • the present invention has been made in view of the above problems, and an object of the present invention is a thermometer characteristic information generation system and a temperature, which generate thermometer characteristic information so that a thermometer can measure temperature with high response.
  • the purpose is to provide a method for generating meter characteristic information.
  • thermometer for measuring the in-cylinder temperature of the engine cylinder of the engine installed in the engine test apparatus, and a pressure gauge for measuring the in-cylinder pressure of the engine cylinder.
  • a thermometer characteristic information generation system including a flow meter for measuring the flow rate of air flowing into the engine cylinder and a measuring device for calculating thermometer characteristic information, wherein the measuring device is the engine test device. The in-cylinder temperature measured by the thermometer, the in-cylinder pressure measured by the pressure gauge, and the in-cylinder pressure measured by the thermometer while air is flowing into the engine cylinder to perform a compression operation without burning the engine.
  • the true value of the temperature inside the engine cylinder using the data acquisition unit that acquires the air flow rate measured by the flow meter, the state equation of the ideal gas stored in advance, and the acquired in-cylinder pressure and air flow rate. It is characterized by having a thermometer characteristic calculation unit that calculates a reference temperature as a reference temperature and calculates a transmission function of the thermometer as the thermometer characteristic information using the reference temperature and the acquired in-cylinder temperature.
  • thermometer characteristic calculation unit performs a Fourier analysis calculation using the reference temperature as an input value and the in-cylinder temperature measured by the thermometer corresponding to the reference temperature as an output value to obtain the transmission characteristics of the thermometer. It is desirable that the transfer function is calculated from the calculated transfer characteristics. Further, the thermometer characteristic calculation unit calculates a regression transfer function from the calculated transfer function, and the measuring device corrects the measured value measured by the thermometer using the regression transfer function. It is desirable to have a temperature compensating unit.
  • thermometer characteristic information transmission function, regression transfer function
  • this temperature can be measured even in a temperature measurement used in an environment such as an engine test.
  • the thermometer characteristic information By correcting the measured value by the thermometer using the meter characteristic information, the temperature can be measured with high response.
  • the first valve and the pipe in which the second valve is installed are provided, pressurized air is supplied to the pipe, and the opening / closing operation of the first and second valves is controlled.
  • a pressure step response device that changes the pressure inside the pipe in a step-like manner, a first thermometer that measures the pressure inside the pipe, a first pressure gauge that measures the pressure inside the pipe, and a pipe wall of the pipe.
  • Thermometer characteristic information generation including a second thermometer for measuring temperature, a third thermometer for measuring outside temperature, a second pressure gauge for measuring outside pressure, and a measuring device for calculating thermometer characteristic information.
  • the measuring device provides dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and flow path resistance of the first and second valves.
  • the simulation condition information including the indicated valve information is stored, and the pressure inside the pipe measured by the first thermometer while the pressure step response device is changing the pressure of the pipe in a stepwise manner.
  • a thermo-fluid model flowing through the pipe is generated by a simulation using the data acquisition unit to be acquired, the simulation condition information, and one-dimensional fluid analysis using the acquired pipe wall temperature, outside temperature, and outside pressure.
  • the fluid analysis processing unit that calculates the reference temperature as the true value of the temperature inside the pipe, the calculated reference temperature, and the acquired pipe interior. It is characterized by having a thermometer characteristic calculation unit that calculates a transmission function of the thermometer as the thermometer characteristic information using temperature.
  • thermometer characteristic information can be obtained by space-saving and simple equipment at a lower cost than in the first aspect. Can be calculated.
  • the pressure step response device wherein a pressurized air supply device for supplying pressurized air to the pipe, the first, and a valve operating device for controlling the opening and closing operation of the second valve, before Symbol first A valve is installed on one end side of the pipe, the second valve is installed on the other end side of the pipe, and the valve operating device controls the open / closed state of the first and second valves.
  • the pressurized air supplied from the pressurized air supply device is confined between the first and second valves, and then the open / closed state of the second valve is controlled to control the pressure of the pressurized air in the pipe. It is desirable that it is changed in steps.
  • thermometer characteristic information it is desirable to measure the temperature inside the pipe / pipe at a point where the flow velocity is close to "0 m / s" (Reynolds number 2000 or less).
  • the pressure step response device includes a pressurized air supply device that supplies pressurized air to the pipe and a valve operating device that controls the opening / closing operation of the first and second valves.
  • a first straight pipe portion extending in the first direction and a second straight pipe portion connected to the other end of the first straight pipe portion and extending in a direction perpendicular to the first straight pipe portion.
  • the first straight pipe portion is provided with a pipe portion, both ends of which are penetrating, one end thereof is connected to the pressurized air supply device, and the other end portion is the other end side of the second straight pipe portion.
  • the second straight pipe portion is connected to the side surface of the above, and one end thereof is a closed surface and the other end portion is open, and the first valve is installed in the first straight pipe portion.
  • the second valve is installed at the other end of the second straight pipe portion so that the opening of the other end portion can be opened and closed, and the thermometer is the second straight pipe portion.
  • the valve operating device is installed near the sealing surface on one end side, and the valve operating device controls the open / closed state of the first and second valves to control the open / closed states of the first and second valves to control the first and second valves and the second straight pipe portion.
  • the pressurized air supplied from the pressurized air supply device is confined in the region formed between the sealing surfaces at one end of the valve, and then the open / closed state of the second valve is controlled to add the piping. It is desirable that the pressure of the pressure air is changed in steps. According to the above configuration, the temperature inside the pipe / pipe can be measured at the point where the flow velocity is close to "0 m / s" (Reynolds number 2000 or less), so that more accurate thermometer characteristic information can be generated. can.
  • a third aspect of the present invention includes a thermometer for measuring the in-cylinder temperature of the engine cylinder of the engine installed in the engine test apparatus, a pressure gauge for measuring the in-cylinder pressure of the engine cylinder, and the engine cylinder.
  • a thermometer characteristic information generation method using a flow meter for measuring the inflowing air flow rate and a measuring device for calculating thermometer characteristic information, wherein the engine test device does not burn the engine. The step of inflowing air into the cylinder to perform the compression operation, and the temperature inside the cylinder measured by the thermometer while the measuring device is injecting air into the engine cylinder to perform the compression operation.
  • the reference temperature is calculated as the true value of the temperature inside the engine cylinder using the flow rate
  • the transmission function of the thermometer is calculated as the thermometer characteristic information using the reference temperature and the acquired in-cylinder temperature. It is characterized by performing steps and.
  • a fourth aspect of the present invention includes a pipe in which a first valve and a second valve are installed, supplies pressurized air to the pipe, and controls the opening / closing operation of the first and second valves.
  • a pressure step response device that changes the pressure inside the pipe in a step-like manner, a first thermometer that measures the pressure inside the pipe, a first pressure gauge that measures the pressure inside the pipe, and a pipe wall of the pipe.
  • the measuring device is provided with dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and flow path resistance of the first and second valves.
  • Simulation condition information including valve information indicating the above is stored, and the pressure step response device changes the pressure in the pipe of the pipe in a step-like manner, and the measuring device measures the pressure in the pipe of the pipe.
  • the pipe wall temperature measured by the first thermometer, the pipe pressure measured by the first pressure gauge, the pipe wall temperature measured by the second thermometer, and the above The step of acquiring the outside temperature measured by the third thermometer and the outside pressure measured by the second pressure gauge, and the measuring device obtains the simulation condition information, the acquired tube wall temperature, the outside temperature, and the outside.
  • thermometer characteristic information generation system and a thermometer characteristic information generation method for generating thermometer characteristic information so that the thermometer can measure temperature with high response.
  • thermometer characteristic information generation system of 1st Embodiment of this invention It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of 1st Embodiment of this invention. It is a flowchart which showed the procedure of the thermometer characteristic information generation processing of the thermometer characteristic information generation system of 1st Embodiment of this invention. It is a schematic diagram which showed the input / output relationship of the transmission characteristic of the thermometer calculated by the thermometer characteristic information generation system of 1st Embodiment of this invention. It is an image diagram for demonstrating the process which the thermometer characteristic information generation system of 1st Embodiment of this invention identifies by fitting a transfer function to the transfer characteristic of a thermometer. It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of 2nd Embodiment of this invention.
  • thermometer characteristic information generation processing of the thermometer characteristic information generation system of the 2nd Embodiment of this invention.
  • thermometer characteristic information generation system of the 2nd Embodiment of this invention It is a schematic diagram which showed the input / output relationship of the transmission characteristic of the thermometer calculated by the thermometer characteristic information generation system of the 2nd Embodiment of this invention. It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of the modification of 2nd Embodiment of this invention.
  • thermometer characteristic information generation system of the embodiment of the present invention (first embodiment, second embodiment) will be described with reference to the drawings.
  • thermometer characteristic information generation system according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is a schematic diagram showing the configuration of the thermometer characteristic information generation system of the first embodiment.
  • FIG. 2 is a flowchart showing a procedure of thermometer characteristic information generation processing of the thermometer characteristic information generation system of the first embodiment.
  • FIG. 3 is a schematic diagram showing the input / output relationship of the transmission characteristics of the thermometer calculated by the thermometer characteristic information generation system of the first embodiment.
  • FIG. 4 is an image diagram for explaining a process of fitting and identifying a transfer function to the transfer characteristics of the thermometer by the thermometer characteristic information generation system of one embodiment.
  • the thermometer characteristic information generation system W1 of the first embodiment has the temperature inside the cylinder of the engine cylinder 11 of the engine E installed on the engine bench (engine test device) 1 (in-cylinder temperature (T). ')), A thermometer 101 that measures the pressure inside the cylinder of the engine cylinder 11 (in-cylinder pressure (P)), and a pressure gauge 102 that measures the air flow rate (n) that flows into the engine cylinder 11.
  • a measuring device that calculates thermometer characteristic information (transmission function, regression transmission function) of the thermometer 101 using the measured values measured by the thermometer 103 and each sensor (thermometer 101, pressure gauge 102, and flow meter 103). Has 110 and.
  • the engine bench 1 is a step of measuring the measured values for calculating the thermometer characteristic information (transmission function, regression transmission function) of the thermometer 101 with each sensor (thermometer 101, pressure gauge 102 and flow meter 103).
  • the engine cylinder 11 is compressed by the dynamo rotation control by flowing air into the engine E without burning the engine E.
  • thermometer 101 the pressure gauge 102, and the flow meter 103 are each connected to the measuring device 110 by wire or wirelessly so that signals can be exchanged between the measuring device 110 and the measuring device 110.
  • thermometer 101 is installed in the cylinder of the engine cylinder 11, measures the in-cylinder temperature (T') of the engine cylinder 11 of the engine E, and measures the in-cylinder temperature (T') in the measuring device 110. ') Is sent.
  • the pressure gauge 102 is installed in the cylinder of the engine cylinder 11, measures the in-cylinder pressure (P) of the engine cylinder 11 of the engine E, and measures the in-cylinder pressure (P) in the measuring device 110. To send.
  • the flow meter 103 is installed in the intake pipe (intake pipe) 5 connected to the intake manifold 3 that sends air to the engine cylinder 11, and measures the air flow rate (n) of the air flowing into the engine E. The measurement is performed, and the measured air flow rate (n) is transmitted to the measuring device 110.
  • thermometer 101 may be any one as long as it is generally used in an engine test or the like, but in the first embodiment, as an example, the above-mentioned non-patented thermometer 101 is used.
  • the thermometer shown in Document 1 is used.
  • reference numeral 7 in the figure indicates a throttle valve, and reference numeral 9 indicates an exhaust pipe for discharging air from the engine E.
  • the measuring device 110 has measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)) transmitted from each sensor (thermometer 101, pressure gauge 102, and flow meter 103). To receive. Further, among the received measured values, the control device 110 includes the in-cylinder pressure (P), the air flow rate (n), and the "ideal gas state equation (hereinafter, simply referred to as” state equation ")" stored in advance. And, the reference temperature (T) is calculated.
  • the measuring device 110 uses the above reference temperature (T) and the in-cylinder temperature (T') obtained from the thermometer 101 to obtain a transfer function (Gx (Gx)) of the thermometer 101. s))) is calculated, and a regression transfer function (Gy (s)) is generated from the transfer function (Gx (s)) and stored. In this way, if the regression transfer function (Gy (s)) of the thermometer 101 is obtained and set in the measuring device 110, the cylinder measured by the thermometer 101 in the subsequent performance test of the engine E or the like. By correcting the internal temperature (T') using the regression transfer function (Gy (s)), an in-cylinder temperature having good responsiveness can be obtained.
  • the engine bench 1 controls the operation of the dynamometer 10 that applies a load to the engine E to be tested, the shaft 15 that connects the rotation shaft of the dynamometer 10 and the rotation shaft of the engine E, and the operation of the dynamometer 10. It includes a dynamo control device 11 and an engine control device (not shown) that controls the operation of the engine. Since the engine bench 1 uses a well-known technique, detailed description thereof will be omitted. Further, since the engine E to be tested has a well-known configuration, only the part directly related to the thermometer characteristic information generation system W1 of the first embodiment is shown in the figure.
  • the measuring device 110 includes a control unit 111, a data acquisition unit 112, a thermometer characteristic calculation unit 113, and a temperature correction unit 114.
  • the hardware configuration of the measuring device 110 is not particularly limited, but the measuring device 110 is, for example, a computer (one or a plurality of computers) having a CPU, an auxiliary storage device, a main storage device, a network interface, and an input / output interface. Can be configured by. In this case, each sensor (thermometer 101, pressure gauge 102, and flow meter 103) is connected to the input / output interface. Further, the auxiliary storage device stores a program for realizing the functions of the "control unit 111, the data acquisition unit 112, the temperature characteristic calculation unit 113, and the temperature correction unit 114". The functions of the "control unit 111, the data acquisition unit 112, the temperature characteristic calculation unit 113, and the temperature correction unit 114" are realized by the CPU loading the program into the main storage device and executing the program.
  • control unit 111 controls the entire operation of the measuring device 110, receives various settings and inputs from the user, and receives an operation request of the thermometer characteristic information generation system W1.
  • the data acquisition unit 112 has measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate) measured by each sensor (thermometer 101, pressure gauge 102, and flow meter 103) at a predetermined measurement timing. (N)) is acquired.
  • the temperature correction unit 114 uses the calculated regression transfer function (Gy (s)) in an engine test or the like separately performed after the regression transfer function (Gy (s)) of the thermometer 101 is calculated. , The in-cylinder temperature (T') of the engine cylinder 11 measured by the thermometer 101 is corrected.
  • thermometer characteristic information generation process performed by the thermometer characteristic information generation system W1 of the first embodiment will be described with reference to FIGS. 1 to 4.
  • the thermometer characteristic information generation system W1 performs a data measurement process (S1).
  • this data measurement process (S1) the engine bench 1 is driven, air flows into the engine E without burning the engine E installed on the engine bench 1, and the inside of the cylinder of the engine cylinder 11 is controlled by the dynamo rotation.
  • the operation of compressing is performed. It can be assumed that the engine cylinder 11 is in a substantially adiabatic state during in-cylinder compression.
  • the data acquisition unit 112 of the measuring device 110 constituting the thermometer characteristic information generation system W1 receives the temperature inside the cylinder of the engine cylinder 11 (T'. ), The in-cylinder pressure (P), and the air flow rate (n) of the air (fluid) flowing into the engine E.
  • the data acquisition unit 112 of the measuring device 110 starts the thermometer 101 installed in the cylinder of the engine cylinder 11 for a predetermined measurement time (monitoring time) at a predetermined measurement timing to the engine cylinder 11.
  • the in-cylinder temperature (T') of the engine cylinder 11 is acquired, and the in-cylinder pressure (P) of the engine cylinder 11 is acquired from the pressure gauge 102 installed in the cylinder of the engine cylinder 11.
  • the air flow rate (n) flowing into the engine E is acquired from the installed flow meter 103.
  • the data acquisition unit 112 stores the acquired measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)) in association with each measurement time (for example, not shown). Memory (stored in the auxiliary storage device and the main storage device of the measuring device 110).
  • thermometer characteristic information generation system W1 performs a reference temperature calculation process (S2).
  • the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 is acquired by the data acquisition unit 112 and stored in association with each measurement time.
  • the measured values in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)
  • "in-cylinder pressure (P) and air flow rate (n)” are calculated by geometric calculation.
  • thermometer characteristic calculation unit 113 "mechanical information (mechanical information such as shape and dimensions) of the engine cylinder 11 and the following (formula 2), (formula 3), (formula 4), (formula 4), (formula 2), (formula 3), (formula 4), Equation 5) and are set.
  • the volume of the engine cylinder 11 (volume (V (V ( ⁇ ))) in the region above the piston 15 (upper in the figure)) is based on the mechanical information of the engine cylinder and the following (Equation 2), ( It is calculated by geometric calculation using the calculation formulas shown in Equation 3), (Equation 4), and (Equation 5).
  • V Cylinder volume [m 3 ]
  • L Connecting rod length [m]
  • R Crank radius [m]
  • Q Total offset length [m]
  • Corrected crank angle [deg ATDC]
  • B Bore diameter [m]
  • CR Compression ratio
  • V Disp Displacement volume [m 3 ]
  • O Pin Piston pin offset with positive thrust direction [m]
  • O Crank Crank offset with positive thrust direction [m]
  • the thermometer characteristic calculation unit 113 performs the following calculation and then sets the equation of state. The air flow rate (n) is substituted for.
  • thermometer characteristic calculation unit 113 multiplies the value [L / s] of air diversion (n) measured by the volumetric flow rate by the density calculated from atmospheric pressure, atmospheric temperature, and humidity. After converting to mass flow rate [g / s], and then converting to air molecular weight (molar mass) 28.966 [g / mol], it is substituted into the state equation.
  • thermometer characteristic information generation system W1 performs a transfer function calculation process (S3).
  • the reference temperature (T) calculated from the state equation by the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 as shown in FIG. Is used as the input value, and the in-cylinder temperature (T') measured by the thermometer 101 at the measurement time corresponding to the reference temperature (T) is used as the output value, and a Fourier analysis calculation is performed to perform the transfer characteristic (Gx'(Gx'(Gx') of the thermometer. s)) is calculated.
  • the gain diagram of FIG. 4 an example of the transfer characteristic (Gx'(s)) obtained by the above Fourier analysis calculation is shown.
  • the temperature characteristic calculation unit 113 fits the calculated transfer characteristic (Gx'(s)) with an arbitrary transfer function (Gx (s)) shown in the following (Equation 6) to obtain "Gx".
  • thermometer characteristic information generation system W1 performs a calculation process of the regression transfer function (S4).
  • the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 uses the transfer function (Gx (s)) calculated in S3.
  • the regression transfer function (Gy (s)) shown in the following (Equation 7) is calculated.
  • the "Lowpass filter” has a characteristic that does not interfere with Gx (s) by using a filter with a cutoff set at a higher frequency than the Gx (s) band.
  • thermometer characteristic calculation unit 113 puts the “transfer characteristic (Gx'(s)) and the transfer function (Gx (s)) calculated in S3 into a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown). ) ”And stored in the regression transfer function (Gy (s)) calculated in S4.
  • thermometer characteristic information generation system W1 of the first embodiment the temperature correction process performed by the thermometer characteristic information generation system W1 of the first embodiment will be described.
  • the data acquisition unit 112 of the measuring device 110 measures the inside of the cylinder measured by the thermometer 101 installed in the cylinder of the engine cylinder 11. Get the temperature (T').
  • the temperature compensation unit 114 of the measuring device 110 reads out the "regression transfer function (Gy (s))" stored in a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown) to acquire data.
  • the in-cylinder temperature (T') measured by the thermometer 101 is corrected in the cylinder. Correct to temperature (Th).
  • thermometer characteristic information generation system W1 of the first embodiment the thermometer characteristic information "transmission function (Gx (s)), regression" for enabling the thermometer to measure the temperature with high response.
  • a transfer function (Gy (s)) can be generated. Therefore, for example, even in temperature measurement in an environment such as an engine test, it is possible to perform temperature measurement with a high response by correcting the measured value by the thermometer 101 using this regression transfer function (Gy (s)). can.
  • thermometer characteristic information generation system according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 7.
  • FIG. 5 is a schematic diagram showing the configuration of the thermometer characteristic information generation system of the second embodiment.
  • FIG. 6 is a flowchart showing a procedure of thermometer characteristic information generation processing of the thermometer characteristic information generation system of the second embodiment.
  • FIG. 7 is a schematic diagram showing the input / output relationship of the transmission characteristics of the thermometer calculated by the thermometer characteristic information generation system of the second embodiment.
  • the same configurations (or equivalent configurations) as those of the first embodiment are designated by the same reference numerals to simplify or omit the description, and are mainly referred to as the first embodiment. The different contents will be explained in detail.
  • the thermometer characteristic information generation system W2 of the second embodiment includes a pipe (circular pipe) 20 and supplies pressurized air to the pipe 20 to step the pressure inside the pipe 20.
  • the pressure step response device Z to be changed, the thermometer (first thermometer) 101 that measures the temperature inside the pipe of the pipe 20 (the temperature inside the pipe (T')), and the pressure inside the pipe 20 (the pressure inside the pipe (P)).
  • 102 a thermometer (second thermometer) 105 for measuring the pipe wall temperature (Tw) of the pipe 20, and a thermometer (third) for measuring the outside temperature (T Albany).
  • the pressure step response device Z includes a pipe (circular pipe) 20 penetrating both ends, a pressurized air supply device 30 that supplies pressurized air to the pipe 20, and one end side of the pipe 20 (flow of pressurized air).
  • the first valve 21 installed in the pipe on the inlet side
  • the second valve 22 installed in the pipe on the other end side (outlet side of the pressurized air) of the pipe 20, and each valve (first and first). It is provided with a valve operating device 40 that controls the opening / closing operation of the two valves 21 and 22).
  • the pressurized air supply device 30 is connected to one end of the pipe 20, and pressurized air of a predetermined pressure flows into the pipe of the pipe 20 from one end of the pipe 20.
  • the pipe 20 has a first straight pipe portion 20a and a first straight pipe portion 20a which are connected to the pressurized air supply device 30 and extend in the first direction (Y direction in the drawing) as well as penetrating both ends. It is formed in a substantially L shape including a second straight pipe portion 20b that bends at a substantially right angle from the pipe and extends in a second direction (X direction in the drawing). Further, the outside of the pipe 20 has an atmospheric pressure.
  • the two valves are provided in the second straight pipe portion 20b extending in the second direction of the pipe 20.
  • the first valve 21 is provided on one end side (pressurized air supply device 30 side) of the second straight pipe portion 20b constituting the pipe 20.
  • the second valve 22 is provided at the other end of the second straight pipe portion 20b constituting the pipe 20, and when the second valve 22 is opened, the opening of the other end of the pipe 20 opens to the outside. Be released.
  • valve operating device 40 transmits an opening / closing control signal to the valves (first and second valves 21 and 22) to control the opening / closing states of the two valves (first and second valves 21 and 22).
  • the pressurized air supplied from the pressurized air supply device 30 is confined between the two valves (first and second valves 21, 22), and then the open / closed state of the second valve 22 is controlled.
  • the pressure of the pressurized air (fluid) of the pipe 20 is changed in steps.
  • the measuring device 120 was measured by the sensors (thermometer 101, pressure gauge 102) while the pressure step response device Z was changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepped manner. Acquire the measured values (in-pipe temperature (T'), in-pipe pressure (P)) in the pipe of the pipe 20. Further, in the measuring device 120, while the pressure step response device Z is changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepped manner, the sensors (thermometer 105, thermometer 106, pressure gauge 107). The measured values (tube wall temperature (Tw), outside temperature (T Albany), outside pressure (P réelle)) measured by the sensor are acquired from.
  • the measuring device 120 uses the simulation condition information described later and the acquired "tube wall temperature (Tw), outside temperature (T Reason), outside pressure (P Reason)" for simulation using one-dimensional fluid analysis (
  • a thermo-fluid model flowing through the pipe 20 is generated by computer simulation), and the true value (reference) of the temperature inside the pipe 20 is used by using the pipe pressure (P) measured by the pressure gauge 101 and the thermo-fluid model generated by the simulation.
  • Temperature (T)) is calculated.
  • the measuring device 110 uses the true value of the temperature inside the pipe 20 calculated by simulation (reference temperature (T)) and the temperature inside the pipe measured by the thermometer 101 (T')) to provide thermometer characteristic information. (Transfer function, regression transfer function) is calculated.
  • the pressure gauge 102 may be installed at a position between two valves (first and second valves 21, 22) in the pipe of the pipe 20. Further, the thermometer 105 is installed on the outer peripheral side surface of the pipe 20 and at a position between the first valve 21 and the second valve 22, and is set so that the pipe wall temperature (Tw) of the pipe 20 can be measured. There is. Further, the thermometer 106 and the pressure gauge 107 are installed at an external position of the pipe 20 (for example, an arbitrary position in the test room where the thermometer characteristic information generation system W2 is installed), and the outside air temperature (T Albany). , It is set so that the outside air pressure (P réelle) can be measured.
  • the measuring device 120 includes a control unit 111, a data acquisition unit 112, a fluid analysis processing unit 121, a thermometer characteristic calculation unit 122, and a temperature correction unit 114. Since the control unit 111 and the temperature correction unit 114 are the same as those in the first embodiment, the description thereof will be omitted.
  • the hardware configuration of the measuring device 120 is not particularly limited, but like the measuring device 110 of the first embodiment, the measuring device 120 includes, for example, a CPU, an auxiliary storage device, a main storage device, a network interface, and an input / output interface. It can be configured by a built-in computer (one or a plurality of computers). In this case, each sensor (thermometer 101, pressure gauge 102, thermometer 105, thermometer 106, pressure gauge 107) is connected to the input / output interface. Further, the auxiliary storage device stores a program for realizing the functions of "control unit 111, data acquisition unit 112, fluid analysis processing unit 121, temperature characteristic calculation unit 122, and temperature correction unit 114". Then, the function of "control unit 111, data acquisition unit 112, fluid analysis processing unit 121, temperature characteristic calculation unit 122 and temperature correction unit 114" is executed by the CPU loading the program into the main storage device. Is realized by.
  • the data acquisition unit 112 has measured values (in-pipe temperature (T'), in-pipe pressure) measured by each sensor (thermometer 101, pressure gauge 102, thermometer 105, thermometer 106, pressure gauge 107) at a predetermined measurement timing. (P), tube wall temperature (Tw), outside temperature (T Albany), outside pressure (P réelle)) are acquired.
  • simulation condition information is set in the processing in the previous stage of the thermometer characteristic information generation processing (in the processing in the previous stage, the measurement device 120 stores the simulation condition information. There is).
  • This simulation condition information includes dimensional information of the pipe 20 (dimensional information such as thickness, length, and diameter), composition information of air flowing into the pipe 20, initial pressure in the pipe 20, and initial pressure. It includes the temperature and valve information indicating the flow path resistance of the valves (first valve 21, second valve 22). The flow path resistance of the above valve is identified from the pressure behavior.
  • the fluid analysis processing unit 121 connects the pipe 20 by simulation by one-dimensional fluid analysis processing using "simulation condition information” and "tube wall temperature (Tw), outside air temperature (T Albany), outside pressure (P réelle)".
  • thermo-fluid model (mathematical thermo-fluid model).
  • the tube wall temperature (Tw), outside air temperature (T Albany), and outside air pressure (P réelle) are used as boundary conditions for the thermo-fluid model.
  • the fluid analysis processing unit 121 uses the “in-pipe pressure (P) measured by the pressure gauge 101” acquired by the data acquisition means 112 and the thermo-fluid model generated by the simulation to be true of the temperature inside the pipe 20. Calculate the value (reference temperature (T)).
  • the function of the fluid analysis processing unit 121 is realized by commercially available "computer simulation software using one-dimensional fluid analysis processing".
  • the function of the fluid analysis processing unit 121 is realized by "GT-POWER" developed by "Gamma Technologies, Inc. of the United States”.
  • GT-POWER developed by "Gamma Technologies, Inc. of the United States”.
  • the function of the fluid analysis processing unit 121 is a well-known technique, detailed description thereof will be omitted, but the calculation is executed by simultaneously using the equations of momentum, energy, etc. using Navier-Stokes as an equation.
  • discretization is performed only in the direction of the fluid flow, and the calculation is performed assuming that physical quantities such as pressure, flow velocity, and temperature are not distributed in the cross section.
  • thermometer characteristic calculation unit 122 uses the reference temperature (T) calculated by the fluid analysis processing unit 121 and the in-pipe temperature (T') acquired by the data acquisition unit 112 to perform a thermometer transfer function (Gx (s). )) Is calculated. Further, the regression transfer function (Gy (s)) is generated and stored from the temperature characteristic calculation unit 113 and its transfer function (Gx (s)).
  • thermometer characteristic information generation process performed by the thermometer characteristic information generation system W2 of the second embodiment will be described with reference to FIGS. 6 to 7.
  • the thermometer characteristic information generation system W2 performs the data measurement process (S11).
  • the pressure step response device Z is driven to change the pressure of the pressurized air (fluid) in the pipe 20 in a stepped manner.
  • the valve operating device 40 of the pressure step response device Z drives the pressurized air supply device 30 with the first valve 21 "open” and the second valve 22 "closed”.
  • the pressurized air is allowed to flow into the pipe 20 for a predetermined time.
  • the valve operating device 40 closes the first valve 21 after a lapse of a predetermined time, and supplies the fluid from the pressurized air supply device 30 between the two valves (first and second valves 21, 22).
  • the valve operating device 40 controls the open / closed state of the second valve 22 to change the pressure of the pressurized air (fluid) in the pipe 20 in steps.
  • the data acquisition unit 112 of the measuring device 120 is changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepwise manner, and the temperature inside the pipe 20 (T') measured by the thermometer 101. And the in-pipe pressure (P) of the pipe 20 measured by the thermometer 102 are acquired.
  • the sensors thermoometer 105, thermometer 106, pressure gauge 107.
  • the sensor measures (tube wall temperature (Tw), outside temperature (T Albany), outside pressure (P réelle)).
  • the data acquisition unit 112 has acquired measured values (tube temperature (T'), tube pressure (P), tube wall temperature (Tw), outside air temperature (T Albany), outside pressure (P réelle)) for each measurement time. (For example, stored in a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown)).
  • thermometer characteristic information generation system W2 performs a reference temperature calculation process (S12).
  • the fluid analysis processing unit 121 of the measuring device 120 performs preset “simulation condition information (dimension information of the pipe 20, composition information of air flowing into the pipe, inside the pipe 20). (Initial pressure and initial temperature, valve information) ”and“ Pipe wall temperature (Tw), outside temperature (T Albany), outside pressure (P réelle) ”acquired in S11 by simulation by one-dimensional fluid analysis processing. A thermo-fluid model flowing through the pipe 20 is generated.
  • the fluid analysis processing unit 121 uses the “in-pipe pressure (P) measured by the pressure gauge 102” acquired by the data acquisition means 112 and the thermo-fluid model generated by the simulation to be true of the temperature inside the pipe 20.
  • the temperature (T) of the thermo-fluid model is calculated as the value (reference temperature (T)).
  • the reason why the temperature (T) of the thermo-fluid model generated by the simulation is used as the true value (reference temperature (T)) of the temperature in the pipe 20 in S12 is as follows.
  • the temperature (T) of the thermo-fluid model generated by the simulation can be treated as the true value (reference temperature (T)) of the temperature inside the pipe 20.
  • thermometer characteristic information generation system W2 performs a transfer function calculation process (S13).
  • the thermometer characteristic calculation unit 122 of the measuring device 120 inputs the reference temperature (T) calculated by using the thermo-fluid model of the simulation in S12 as shown in FIG. Then, a Fourier analysis calculation is performed using the in-tube temperature (T') measured by the thermometer 101 at the measurement time corresponding to the reference temperature (T) as an output value, and the transfer characteristic (Gx'(s)) of the thermometer is obtained. calculate.
  • thermometer characteristic information generation system W2 performs a regression transfer function calculation process in the same procedure as the process of S4 of the first embodiment described above (S14).
  • the thermometer characteristic calculation unit 122 of the measuring device 120 uses the transfer function (Gx (s)) calculated in S13 to generate the regression transfer function (Gy (s)). Calculate (see (Equation 7) shown in the first embodiment).
  • the regression transfer function (Gy (s)) of the thermometer 101 can be obtained as in the first embodiment described above, so that it is similar to the engine test. Even in temperature measurement in such an environment, temperature measurement can be performed with high response by correcting the measured value by the thermometer 101 using this regression transfer function (Gy (s)).
  • thermometer characteristic information generation system W2 of the second embodiment unlike the first embodiment, the pressure in the pipe 20 is pressurized by the pressure step response device Z provided with the pipe 20 without using the actual engine E. A physical environment that changes the pressure of air (fluid) in steps is created, and the temperature (T') and pressure (P) under the physical environment are measured.
  • thermo-fluid model of pressurized air (fluid) flowing through the pipe 20 of the pressure step response device Z is generated by simulation by one-dimensional fluid analysis processing (pipe by computer simulation). (Reproduce the thermo-fluid of pressurized air (fluid) flowing through 20), calculate the temperature of the thermo-fluid model from the measured pressure in the pipe (P) and the thermo-fluid model, and set the temperature to the true value (reference temperature (T)). It is supposed to be. Then, in the second embodiment, the thermometer characteristic information (transfer function, regression transfer function) of the thermometer 101 is calculated using the reference temperature (T) and the actually measured in-pipe temperature (T').
  • thermometer characteristic information can be obtained by using space-saving and simple equipment at a lower cost than in the first embodiment.
  • Transfer function, regression transfer function can be calculated.
  • FIG. 8 is a schematic diagram showing the system configuration of the thermometer characteristic information generation system of the modified example of the second embodiment.
  • the same configurations (or equivalent configurations) as those of the first and second embodiments are designated by the same reference numerals to simplify or omit the description, and mainly, The parts different from the first and second embodiments will be described.
  • thermometer characteristic information generation system W2'of the modified example of the second embodiment is different from that of the second embodiment described above in that the configuration of the pipe 20 is modified and that the valves (first valve 21, second valve 22) are used. The position is changed, and the installation positions of the thermometer 101 and the pressure gauge 102 are changed.
  • the thermometer characteristic information generation system W2'of the modified example of the second embodiment includes a pipe (circular pipe) 20 and supplies pressurized air to the pipe 20.
  • a pressure step response device Z that changes the pressure inside the pipe of the pipe 20 in steps, a thermometer 101 that measures the temperature inside the pipe 20 (inside the pipe (T')), and the pressure inside the pipe 20 (inside the pipe).
  • a pressure meter 102 that measures the pressure (P)
  • a thermometer 105 that measures the tube wall temperature (Tw) of the pipe 20
  • Tw tube wall temperature
  • T thermometer 106 that measures the outside temperature (T
  • P outside pressure
  • It has a pressure meter 107 and a measuring device 120 for calculating thermometer characteristic information (transmission function, regression transfer function) of the thermometer 101.
  • the pipe 20 is connected to the first straight pipe portion 20c extending in the first direction (Y direction in the drawing) and the other end of the first straight pipe portion 20c. Further, it is provided with a second straight pipe portion 20d extending in a second direction (X direction in the drawing) perpendicular to the first straight pipe portion 20c.
  • the first valve 21 is provided in the pipe of the first straight pipe portion 20c constituting the pipe 20. Further, the second valve 22 is provided in the pipe at the other end of the second straight pipe portion 20d constituting the pipe 20, and can open and close the opening at the other end.
  • thermometer 101 is installed in the vicinity of the sealing surface 20d1 on the one end side of the second straight pipe portion 20d (near the wall surface). Further, the pressure gauge 102 is installed on one end side of the second straight pipe portion 20d. The thermometer 101 was installed at such a position in the pipe 20 at a point where the flow velocity is closer to "0 m / s" than in the second embodiment shown in FIG. This is so that the temperature of the can be measured. In the illustrated example, the pressure gauge 102 is installed on one end side of the second straight pipe portion 20d, but this is an example and does not limit the installation position.
  • thermometer characteristic information generation process is performed according to the same procedure as that of the second embodiment of FIG. 6 described above.
  • the pressure of the pressurized air (fluid) in the pipe 20 is changed in steps as follows.
  • the valve operating device 40 of the pressure step response device Z drives the pressurized air supply device 30 with the first valve 21 "open” and the second valve 22 "closed".
  • the pressurized air is allowed to flow into the pipe 20 for a predetermined time.
  • the valve operating device 40 closes the first valve 21 after a lapse of a predetermined time.
  • Pressurized air (fluid) supplied from the pressurized air supply device 30 is confined in the formed region.
  • the valve operating device 40 controls the open / closed state of the second valve 22 to change the pressure of the pressurized air (fluid) in the pipe 20 in steps.
  • the data acquisition unit 112 of the measuring device 120 was measured by the thermometer 101 while the pressure of the pressurized air (fluid) of the pipe 20 was being changed in steps.
  • the pipe temperature (T') of the pipe 20 the pipe pressure (P) of the pipe 20 measured by the pressure gauge 102, the pipe wall temperature (Tw) measured by the thermometer 105, and the outside temperature (Tw) measured by the thermometer 106.
  • T Desi) and the external pressure (P réelle) measured by the thermometer 107 are acquired.
  • the temperature and pressure inside the pipe 20 can be measured at a point where the flow velocity is closer to "0 m / s" as compared with the second embodiment, and therefore, as compared with the second embodiment. Therefore, it is possible to more accurately calculate the thermometer characteristic information (transfer function, regression transfer function) for correcting the measured value (T') measured by the thermometer 101.
  • thermometer characteristic information generation system and the thermometer characteristic information generation system for generating the thermometer characteristic information for enabling the thermometer 101 to measure the temperature with high response.
  • a method for generating thermometer characteristic information can be provided.
  • Thermometer characteristic information generation system 101 ... Thermometer 102 ... Pressure gauge 103 ... Flow meter 105 ... Thermometer 106 ... Thermometer 107 ... Pressure gauge 110, 120 ... Measuring device 111 ... Control unit 112 ... Data Acquisition unit 113 ... Thermometer characteristic calculation unit 114 ... Temperature correction unit 121 ... Fluid analysis processing unit 122 ... Thermometer characteristic calculation unit 1 ... Engine bench 10 ... Dynamometer 11 ... Dynamo control device 15 ... Shaft E ... Engine 3 ... Intake manifold 5 ... Intake pipe (intake pipe) 7 ... Throttle valve 9 ... Discharge pipe 11 ... Engine cylinder Z ...
  • Pressure step response device 20 Piping 20a, 20c ... First straight pipe portion 20b, 20d ... Second straight pipe portion 20d1 ... Sealing surface 21 ... First valve 22 ... Second valve 30 ... Pressurized air supply device 40 ... Valve operating device

Abstract

[Problem] To provide a thermometer characteristic information generation system for generating thermometer characteristic information for allowing a thermometer to measure a temperature with high response. [Solution] A thermometer characteristic information generation system W1 is provided with a measuring device 110 for calculating thermometer characteristic information. The measuring device 110 includes: a data acquisition unit 112 that, while an engine test device 1 introduces air into an engine cylinder 11 to perform a compression operation without burning an engine E, acquires the in-cylinder temperature of the cylinder 11 measured by a thermometer 101, the in-cylinder pressure of the cylinder 11 measured by a pressure gauge 101, and the flow rate of air that flows into the engine 11 measured by a flow meter 103; and a thermometer characteristic calculation unit 112 which calculates a reference temperature as the true value of the temperature inside the engine cylinder 11 by using the ideal gas state equation and the acquired in-cylinder pressure and air flow rate, and calculates the transfer function of the thermometer by using the reference temperature and the acquired in-cylinder temperature.

Description

温度計特性情報生成システム及び温度計特性情報生成方法Thermometer characteristic information generation system and thermometer characteristic information generation method
 本発明は、温度計特性情報生成システム及び温度計特性情報生成方法に関し、例えば、温度計が高応答に温度を計測できるようにするための温度計特性情報を生成する温度計特性情報生成システム及び温度計特性情報生成方法に関する。 The present invention relates to a thermometer characteristic information generation system and a thermometer characteristic information generation method, for example, a thermometer characteristic information generation system that generates thermometer characteristic information so that a thermometer can measure a temperature with high response. The present invention relates to a method for generating thermometer characteristic information.
 従来から、エンジン等の供試体にダイナモメータを接続し、シミュレーションにより、エンジンの各種特性を計測するエンジン試験装置が利用されている。また、エンジン試験装置を用いたエンジン試験においては、高速応答の温度計により、エンジンシリンダの筒内温度や吸排気温度を計測して把握することも行われている。 Conventionally, an engine test device has been used in which a dynamometer is connected to a specimen such as an engine and various characteristics of the engine are measured by simulation. Further, in an engine test using an engine test device, the temperature inside the cylinder of the engine cylinder and the intake / exhaust temperature are measured and grasped by a high-speed response thermometer.
 また、上記のエンジン試験では、温度計に、例えば、「米国のメドサーム社(MEDTHERM CORPORATION)」の「高速応答 電極細熱電対プローブ(TCFW)」が用いられている。なお、メドサーム社(MEDTHERM CORPORATION)の「高速応答 電極細熱電対プローブ」は、非特許文献1に開示されている。 Further, in the above engine test, for example, the "fast response electrode microthermocouple probe (TCFW)" of "Medtherm CORPORATION in the United States" is used as the thermometer. The "fast response electrode fine thermocouple probe" of MEDTHERM CORPORATION is disclosed in Non-Patent Document 1.
 ところで、上述したエンジン試験において、非特許文献1に記載された温度計を用いてエンジンシリンダの筒内温度や吸排気温度を計測したとしても、当該温度計は、高応答に温度を検知できず、正確な温度が取得できないことがあるという技術的課題を有している。そのため、上述したエンジン試験のような環境で用いられる温度計において、高応答に温度を計測できる技術が望まれている。 By the way, in the above-mentioned engine test, even if the temperature inside the cylinder of the engine cylinder and the intake / exhaust temperature are measured by using the thermometer described in Non-Patent Document 1, the thermometer cannot detect the temperature with high response. , Has a technical problem that an accurate temperature may not be obtained. Therefore, in a thermometer used in an environment such as the above-mentioned engine test, a technique capable of measuring temperature with high response is desired.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、温度計が高応答に温度を計測できるようにするための温度計特性情報を生成する温度計特性情報生成システム及び温度計特性情報生成方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is a thermometer characteristic information generation system and a temperature, which generate thermometer characteristic information so that a thermometer can measure temperature with high response. The purpose is to provide a method for generating meter characteristic information.
 上記課題を解決するための本発明の第1態様は、エンジン試験装置に設置されたエンジンのエンジンシリンダの筒内温度を計測する温度計と、前記エンジンシリンダの筒内圧力を計測する圧力計と、前記エンジンシリンダに流入される空気流量を計測する流量計と、温度計特性情報を算出する計測装置とを備えた温度計特性情報生成システムであって、前記計測装置は、前記エンジン試験装置が前記エンジンを燃焼させずに、前記エンジンシリンダに空気を流入して圧縮動作を行わせている最中に、前記温度計が計測した筒内温度、前記圧力計が計測した筒内圧力、及び前記流量計が計測した空気流量を取得するデータ取得部と、予め記憶している理想気体の状態方程式と、前記取得した筒内圧力及び空気流量とを用いて、前記エンジンシリンダ内の温度の真値としてリファレンス温度を算出し、該リファレンス温度及び前記取得した筒内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出する温度計特性算出部とを有することを特徴とする。 The first aspect of the present invention for solving the above problems is a thermometer for measuring the in-cylinder temperature of the engine cylinder of the engine installed in the engine test apparatus, and a pressure gauge for measuring the in-cylinder pressure of the engine cylinder. A thermometer characteristic information generation system including a flow meter for measuring the flow rate of air flowing into the engine cylinder and a measuring device for calculating thermometer characteristic information, wherein the measuring device is the engine test device. The in-cylinder temperature measured by the thermometer, the in-cylinder pressure measured by the pressure gauge, and the in-cylinder pressure measured by the thermometer while air is flowing into the engine cylinder to perform a compression operation without burning the engine. The true value of the temperature inside the engine cylinder using the data acquisition unit that acquires the air flow rate measured by the flow meter, the state equation of the ideal gas stored in advance, and the acquired in-cylinder pressure and air flow rate. It is characterized by having a thermometer characteristic calculation unit that calculates a reference temperature as a reference temperature and calculates a transmission function of the thermometer as the thermometer characteristic information using the reference temperature and the acquired in-cylinder temperature.
 また、前記温度計特性算出部は、前記リファレンス温度を入力値とし、該リファレンス温度に対応する前記温度計が計測した筒内温度を出力値として、フーリエ解析演算を行い前記温度計の伝達特性を算出し、該算出した伝達特性から前記伝達関数を算出するようになっていることが望ましい。
 また、前記温度計特性算出部は、前記算出した伝達関数から回帰伝達関数を算出するようになっており、前記計測装置は、前記回帰伝達関数を用いて前記温度計が計測した計測値を補正する温度補正部を有していることが望ましい。
Further, the thermometer characteristic calculation unit performs a Fourier analysis calculation using the reference temperature as an input value and the in-cylinder temperature measured by the thermometer corresponding to the reference temperature as an output value to obtain the transmission characteristics of the thermometer. It is desirable that the transfer function is calculated from the calculated transfer characteristics.
Further, the thermometer characteristic calculation unit calculates a regression transfer function from the calculated transfer function, and the measuring device corrects the measured value measured by the thermometer using the regression transfer function. It is desirable to have a temperature compensating unit.
 このように、本発明の第1態様によれば、温度計の温度計特性情報(伝達関数、回帰伝達関数)が得られるため、エンジン試験のような環境で用いられる温度計測においても、この温度計特性情報を用いて温度計による計測値を補正することにより、高応答で温度計測を行うことができる。 As described above, according to the first aspect of the present invention, since the thermometer characteristic information (transmission function, regression transfer function) of the thermometer can be obtained, this temperature can be measured even in a temperature measurement used in an environment such as an engine test. By correcting the measured value by the thermometer using the meter characteristic information, the temperature can be measured with high response.
 また、本発明の第2態様は、第1バルブ及び第2バルブが設置された配管を備え且つ該配管に加圧空気を供給すると共に前記第1、第2バルブの開閉動作を制御して該配管の管内の圧力をステップ状に変化させる圧力ステップ応答装置と、該配管の管内温度を計測する第1温度計と、該配管の管内圧力を計測する第1圧力計と、該配管の管壁温度を計測する第2温度計と、外気温を計測する第3温度計と、外気圧を計測する第2圧力計と、温度計特性情報を算出する計測装置とを備えた温度計特性情報生成システムであって、前記計測装置は、前記配管の寸法情報と、前記加圧空気の組成情報と、該配管の管内の初期圧力及び初期温度と、前記第1、第2バルブの流路抵抗を示すバルブ情報とが含まれるシミュレーション条件情報を記憶していると共に、前記圧力ステップ応答装置が前記配管の圧力をステップ状に変化させている最中に、前記第1温度計が計測した管内温度と、前記第1圧力計が計測した管内圧力と、前記第2温度計が計測した管壁温度と、前記第3温度計が計測した外気温と、前記第2圧力計が計測した外気圧とを取得するデータ取得部と、前記シミュレーション条件情報と、前記取得した管壁温度、外気温及び外気圧とを用いた一次元の流体解析を用いたシミュレーションにより前記配管を流れる熱流体モデルを生成し、前記取得した管内圧力と、前記シミュレーションにより生成した熱流体モデルとを用いて、前記配管内の温度の真値としてリファレンス温度を算出する流体解析処理部と、前記算出したリファレンス温度及び前記取得した管内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出する温度計特性算出部とを有することを特徴とする。 Further, in the second aspect of the present invention, the first valve and the pipe in which the second valve is installed are provided, pressurized air is supplied to the pipe, and the opening / closing operation of the first and second valves is controlled. A pressure step response device that changes the pressure inside the pipe in a step-like manner, a first thermometer that measures the pressure inside the pipe, a first pressure gauge that measures the pressure inside the pipe, and a pipe wall of the pipe. Thermometer characteristic information generation including a second thermometer for measuring temperature, a third thermometer for measuring outside temperature, a second pressure gauge for measuring outside pressure, and a measuring device for calculating thermometer characteristic information. In the system, the measuring device provides dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and flow path resistance of the first and second valves. The simulation condition information including the indicated valve information is stored, and the pressure inside the pipe measured by the first thermometer while the pressure step response device is changing the pressure of the pipe in a stepwise manner. , The pressure inside the pipe measured by the first pressure gauge, the pipe wall temperature measured by the second thermometer, the outside temperature measured by the third thermometer, and the outside pressure measured by the second pressure gauge. A thermo-fluid model flowing through the pipe is generated by a simulation using the data acquisition unit to be acquired, the simulation condition information, and one-dimensional fluid analysis using the acquired pipe wall temperature, outside temperature, and outside pressure. Using the acquired pipe pressure and the thermo-fluid model generated by the simulation, the fluid analysis processing unit that calculates the reference temperature as the true value of the temperature inside the pipe, the calculated reference temperature, and the acquired pipe interior. It is characterized by having a thermometer characteristic calculation unit that calculates a transmission function of the thermometer as the thermometer characteristic information using temperature.
 このように、本発明の第2態様によれば、上述した第1態様と同様、温度計の伝達関数が得られるため、伝達関数から算出した回帰伝達関数を用いて、温度計が計測した計測値を補正することにより、高応答で温度計測を行うことができる。さらに、第2態様は、第1態様のようにエンジンを設けて駆動させる必要がないため、第1態様と比べて、コストをかけずに、省スペース且つ簡易な設備により、温度計特性情報を算出することができる。 As described above, according to the second aspect of the present invention, since the transfer function of the thermometer can be obtained as in the first aspect described above, the measurement measured by the thermometer using the transfer function calculated from the transfer function. By correcting the value, the temperature can be measured with high response. Further, in the second aspect, unlike the first aspect, it is not necessary to install and drive an engine, so that the thermometer characteristic information can be obtained by space-saving and simple equipment at a lower cost than in the first aspect. Can be calculated.
 また、前記圧力ステップ応答装置は、前記配管に加圧空気を供給する加圧空気供給装置と、前記第1、第2バルブの開閉動作を制御するバルブ操作装置とを有し、記第1バルブが前記配管の一端部側に設置され、前記第2バルブが前記配管の他端部側に設置され、前記バルブ操作装置は、前記第1、第2バルブの開閉状態を制御することにより、前記第1、第2バルブの間に、前記加圧空気供給装置から供給された加圧空気を閉じ込め、その後、前記第2バルブの開閉状態を制御して、前記配管の加圧空気の圧力をステップ状に変化させるようになっていることが望ましい。
 このように、本発明によれば、比較的に簡易な構成により、配管の管内の圧力をステップ状に変化させる環境を実現させることができる。
 なお、上記の構成において、より正確な温度計特性情報を取得するため、流速が「0m/s」に近いポイント(レイノルズ数2000以下)で、配管・管内の温度計測をすることが望ましい。
Further, the pressure step response device, wherein a pressurized air supply device for supplying pressurized air to the pipe, the first, and a valve operating device for controlling the opening and closing operation of the second valve, before Symbol first A valve is installed on one end side of the pipe, the second valve is installed on the other end side of the pipe, and the valve operating device controls the open / closed state of the first and second valves. The pressurized air supplied from the pressurized air supply device is confined between the first and second valves, and then the open / closed state of the second valve is controlled to control the pressure of the pressurized air in the pipe. It is desirable that it is changed in steps.
As described above, according to the present invention, it is possible to realize an environment in which the pressure in the pipe of the pipe is changed in a stepwise manner by a relatively simple configuration.
In the above configuration, in order to acquire more accurate thermometer characteristic information, it is desirable to measure the temperature inside the pipe / pipe at a point where the flow velocity is close to "0 m / s" (Reynolds number 2000 or less).
 また、前記圧力ステップ応答装置は、前記配管に加圧空気を供給する加圧空気供給装置と、前記第1、第2バルブの開閉動作を制御するバルブ操作装置とを有し、前記配管は、第1方向に延設されている第1直管部と、該第1直管部の他端部に接続され且つ該第1直管部に対して直角方向に延設されている第2直管部とを備え、前記第1直管部は、両端が貫通しており、その一端部が前記加圧空気供給装置に接続され、その他端部が前記第2直管部の他端部側の側面に接続され、前記第2直管部は、一端部が封鎖された封鎖面になっており且つ他端部が開口しており、前記第1バルブは、前記第1直管部に設置され、前記第2バルブは、前記第2直管部の他端部に設置されて、該他端部の開口を開閉できるようになっており、前記温度計は、前記第2直管部の一端部側の封鎖面の近傍に設置されており、前記バルブ操作装置は、前記第1、第2バルブの開閉状態を制御することにより、前記第1、第2バルブ及び前記第2直管部の一端部の封鎖面の間で形成される領域に、前記加圧空気供給装置から供給された加圧空気を閉じ込めて、その後、前記第2バルブの開閉状態を制御して、前記配管の加圧空気の圧力をステップ状に変化させるようになっていることが望ましい。
 上記の構成によれば、流速が「0m/s」に近いポイント(レイノルズ数2000以下)で、配管・管内の温度を計測できるようになるため、より正確な温度計特性情報を生成することができる。
Further, the pressure step response device includes a pressurized air supply device that supplies pressurized air to the pipe and a valve operating device that controls the opening / closing operation of the first and second valves. A first straight pipe portion extending in the first direction and a second straight pipe portion connected to the other end of the first straight pipe portion and extending in a direction perpendicular to the first straight pipe portion. The first straight pipe portion is provided with a pipe portion, both ends of which are penetrating, one end thereof is connected to the pressurized air supply device, and the other end portion is the other end side of the second straight pipe portion. The second straight pipe portion is connected to the side surface of the above, and one end thereof is a closed surface and the other end portion is open, and the first valve is installed in the first straight pipe portion. The second valve is installed at the other end of the second straight pipe portion so that the opening of the other end portion can be opened and closed, and the thermometer is the second straight pipe portion. The valve operating device is installed near the sealing surface on one end side, and the valve operating device controls the open / closed state of the first and second valves to control the open / closed states of the first and second valves to control the first and second valves and the second straight pipe portion. The pressurized air supplied from the pressurized air supply device is confined in the region formed between the sealing surfaces at one end of the valve, and then the open / closed state of the second valve is controlled to add the piping. It is desirable that the pressure of the pressure air is changed in steps.
According to the above configuration, the temperature inside the pipe / pipe can be measured at the point where the flow velocity is close to "0 m / s" (Reynolds number 2000 or less), so that more accurate thermometer characteristic information can be generated. can.
 また、本発明の第3態様は、エンジン試験装置に設置されたエンジンのエンジンシリンダの筒内温度を計測する温度計と、前記エンジンシリンダの筒内圧力を計測する圧力計と、前記エンジンシリンダに流入される空気流量を計測する流量計と、温度計特性情報を算出する計測装置とを用いた温度計特性情報生成方法であって、前記エンジン試験装置が、前記エンジンを燃焼させずに前記エンジンシリンダに空気を流入して圧縮動作を行わせるステップと、前記計測装置が、前記エンジンシリンダに空気を流入して圧縮動作を行わせている最中に、前記温度計が計測した筒内温度、前記圧力計が計測した筒内圧力、及び前記流量計が計測した空気流量を取得するステップと、前記計測装置が、予め記憶している理想気体の状態方程式と、前記取得した筒内圧力及び空気流量とを用いて、前記エンジンシリンダ内の温度の真値としてリファレンス温度を算出し、該リファレンス温度及び前記取得した筒内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出するステップとを実行することを特徴とする。 A third aspect of the present invention includes a thermometer for measuring the in-cylinder temperature of the engine cylinder of the engine installed in the engine test apparatus, a pressure gauge for measuring the in-cylinder pressure of the engine cylinder, and the engine cylinder. A thermometer characteristic information generation method using a flow meter for measuring the inflowing air flow rate and a measuring device for calculating thermometer characteristic information, wherein the engine test device does not burn the engine. The step of inflowing air into the cylinder to perform the compression operation, and the temperature inside the cylinder measured by the thermometer while the measuring device is injecting air into the engine cylinder to perform the compression operation. The step of acquiring the in-cylinder pressure measured by the pressure gauge and the air flow rate measured by the flow meter, the state equation of the ideal gas stored in advance by the measuring device, and the acquired in-cylinder pressure and air. The reference temperature is calculated as the true value of the temperature inside the engine cylinder using the flow rate, and the transmission function of the thermometer is calculated as the thermometer characteristic information using the reference temperature and the acquired in-cylinder temperature. It is characterized by performing steps and.
 また、本発明の第4態様は、第1バルブ及び第2バルブが設置された配管を備え且つ該配管に加圧空気を供給すると共に前記第1、第2バルブの開閉動作を制御して該配管の管内の圧力をステップ状に変化させる圧力ステップ応答装置と、該配管の管内温度を計測する第1温度計と、該配管の管内圧力を計測する第1圧力計と、該配管の管壁温度を計測する第2温度計と、外気温を計測する第3温度計と、外気圧を計測する第2圧力計と、温度計特性情報を算出する計測装置とを用いた温度計特性情報生成方法であって、前記計測装置には、前記配管の寸法情報と、前記加圧空気の組成情報と、該配管の管内の初期圧力及び初期温度と、前記第1、第2バルブの流路抵抗を示すバルブ情報とが含まれるシミュレーション条件情報が記憶されており、前記圧力ステップ応答装置が、前記配管の管内の圧力をステップ状に変化させるステップと、前記計測装置が、前記配管の管内の圧力がステップ状に変化している最中に、前記第1温度計が計測した管内温度と、前記第1圧力計が計測した管内圧力と、前記第2温度計が計測した管壁温度と、前記第3温度計が計測した外気温と、前記第2圧力計が計測した外気圧とを取得するステップと、前記計測装置が、前記シミュレーション条件情報と、前記取得した管壁温度、外気温及び外気圧とを用いた一次元の流体解析を用いたシミュレーションにより前記配管を流れる熱流体モデルを生成し、前記取得した管内圧力と、前記シミュレーションにより生成した熱流体モデルとを用いて、前記配管内の流体の温度の真値としてリファレンス温度を算出するステップと、前記計測装置が、前記算出したリファレンス温度及び前記取得した管内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出するステップとを実行することを特徴とする。 Further, a fourth aspect of the present invention includes a pipe in which a first valve and a second valve are installed, supplies pressurized air to the pipe, and controls the opening / closing operation of the first and second valves. A pressure step response device that changes the pressure inside the pipe in a step-like manner, a first thermometer that measures the pressure inside the pipe, a first pressure gauge that measures the pressure inside the pipe, and a pipe wall of the pipe. Thermometer characteristic information generation using a second thermometer that measures temperature, a third thermometer that measures outside temperature, a second pressure gauge that measures outside pressure, and a measuring device that calculates thermometer characteristic information. According to the method, the measuring device is provided with dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and flow path resistance of the first and second valves. Simulation condition information including valve information indicating the above is stored, and the pressure step response device changes the pressure in the pipe of the pipe in a step-like manner, and the measuring device measures the pressure in the pipe of the pipe. The pipe wall temperature measured by the first thermometer, the pipe pressure measured by the first pressure gauge, the pipe wall temperature measured by the second thermometer, and the above The step of acquiring the outside temperature measured by the third thermometer and the outside pressure measured by the second pressure gauge, and the measuring device obtains the simulation condition information, the acquired tube wall temperature, the outside temperature, and the outside. A thermo-fluid model flowing through the pipe is generated by a simulation using one-dimensional fluid analysis using pressure, and the obtained pipe pressure and the thermo-fluid model generated by the simulation are used to generate a thermo-fluid model in the pipe. A step of calculating the reference temperature as the true value of the fluid temperature, and a step of the measuring device calculating the transmission function of the thermometer as the thermometer characteristic information using the calculated reference temperature and the acquired pipe temperature. It is characterized by executing and.
 本発明によれば、温度計が高応答に温度を計測できるようにするための温度計特性情報を生成する温度計特性情報生成システム及び温度計特性情報生成方法を提供することができる。 According to the present invention, it is possible to provide a thermometer characteristic information generation system and a thermometer characteristic information generation method for generating thermometer characteristic information so that the thermometer can measure temperature with high response.
本発明の第1実施形態の温度計特性情報生成システムの構成を示した模式図である。It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of 1st Embodiment of this invention. 本発明の第1実施形態の温度計特性情報生成システムの温度計特性情報生成処理の手順を示したフローチャートである。It is a flowchart which showed the procedure of the thermometer characteristic information generation processing of the thermometer characteristic information generation system of 1st Embodiment of this invention. 本発明の第1実施形態の温度計特性情報生成システムが算出する温度計の伝達特性の入出力の関係を示した模式図である。It is a schematic diagram which showed the input / output relationship of the transmission characteristic of the thermometer calculated by the thermometer characteristic information generation system of 1st Embodiment of this invention. 本発明の第1実施形態の温度計特性情報生成システムが温度計の伝達特性に伝達関数をフィッテングして同定する処理を説明するためのイメージ図である。It is an image diagram for demonstrating the process which the thermometer characteristic information generation system of 1st Embodiment of this invention identifies by fitting a transfer function to the transfer characteristic of a thermometer. 本発明の第2実施形態の温度計特性情報生成システムの構成を示した模式図である。It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of 2nd Embodiment of this invention. 本発明の第2実施形態の温度計特性情報生成システムの温度計特性情報生成処理の手順を示したフローチャートである。It is a flowchart which showed the procedure of the thermometer characteristic information generation processing of the thermometer characteristic information generation system of the 2nd Embodiment of this invention. 本発明の第2実施形態の温度計特性情報生成システムが算出する温度計の伝達特性の入出力の関係を示した模式図である。It is a schematic diagram which showed the input / output relationship of the transmission characteristic of the thermometer calculated by the thermometer characteristic information generation system of the 2nd Embodiment of this invention. 本発明の第2実施形態の変形例の温度計特性情報生成システムの構成を示した模式図である。It is a schematic diagram which showed the structure of the thermometer characteristic information generation system of the modification of 2nd Embodiment of this invention.
 以下、本発明の実施形態(第1実施形態、第2実施形態)の温度計特性情報生成システムについて図面に基づいて説明する。 Hereinafter, the thermometer characteristic information generation system of the embodiment of the present invention (first embodiment, second embodiment) will be described with reference to the drawings.
《第1実施形態》
 先ず、本発明の第1実施形態の温度計特性情報生成システムの構成について、図1~4を参照しながら説明する。
<< First Embodiment >>
First, the configuration of the thermometer characteristic information generation system according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
 ここで、図1は、第1実施形態の温度計特性情報生成システムの構成を示した模式図である。図2は、第1実施形態の温度計特性情報生成システムの温度計特性情報生成処理の手順を示したフローチャートである。図3は、第1実施形態の温度計特性情報生成システムが算出する温度計の伝達特性の入出力の関係を示した模式図である。図4は、1実施形態の温度計特性情報生成システムが温度計の伝達特性に伝達関数をフィッテングして同定する処理を説明するためのイメージ図である。 Here, FIG. 1 is a schematic diagram showing the configuration of the thermometer characteristic information generation system of the first embodiment. FIG. 2 is a flowchart showing a procedure of thermometer characteristic information generation processing of the thermometer characteristic information generation system of the first embodiment. FIG. 3 is a schematic diagram showing the input / output relationship of the transmission characteristics of the thermometer calculated by the thermometer characteristic information generation system of the first embodiment. FIG. 4 is an image diagram for explaining a process of fitting and identifying a transfer function to the transfer characteristics of the thermometer by the thermometer characteristic information generation system of one embodiment.
 図1に示すように、第1実施形態の温度計特性情報生成システムW1は、エンジンベンチ(エンジン試験装置)1に設置されたエンジンEのエンジンシリンダ11の筒内の温度(筒内温度(T’))を計測する温度計101と、エンジンシリンダ11の筒内の圧力(筒内圧力(P))を計測する圧力計102と、エンジンシリンダ11に流入される空気流量(n)を計測する流量計103と、各センサ(温度計101、圧力計102及び流量計103)が計測した計測値を用いて、温度計101の温度計特性情報(伝達関数、回帰伝達関数)を算出する計測装置110とを有している。
 なお、エンジンベンチ1は、温度計101の温度計特性情報(伝達関数、回帰伝達関数)を算出するための計測値を各センサ(温度計101、圧力計102及び流量計103)で計測する工程において、エンジンEを燃焼させずに、エンジンEに空気を流入してエンジンシリンダ11をダイナモ回転制御によって、圧縮させる動作を行わせるようになっている。
As shown in FIG. 1, the thermometer characteristic information generation system W1 of the first embodiment has the temperature inside the cylinder of the engine cylinder 11 of the engine E installed on the engine bench (engine test device) 1 (in-cylinder temperature (T). ')), A thermometer 101 that measures the pressure inside the cylinder of the engine cylinder 11 (in-cylinder pressure (P)), and a pressure gauge 102 that measures the air flow rate (n) that flows into the engine cylinder 11. A measuring device that calculates thermometer characteristic information (transmission function, regression transmission function) of the thermometer 101 using the measured values measured by the thermometer 103 and each sensor (thermometer 101, pressure gauge 102, and flow meter 103). Has 110 and.
The engine bench 1 is a step of measuring the measured values for calculating the thermometer characteristic information (transmission function, regression transmission function) of the thermometer 101 with each sensor (thermometer 101, pressure gauge 102 and flow meter 103). In the above, the engine cylinder 11 is compressed by the dynamo rotation control by flowing air into the engine E without burning the engine E.
 また、温度計101、圧力計102及び流量計103は、それぞれ、計測装置110と有線或いは無線で接続されており、計測装置110との間で信号の授受が行えるようになっている。
 また、温度計101は、エンジンシリンダ11の筒内に設置されており、エンジンEのエンジンシリンダ11の筒内温度(T’)を計測して、計測装置110に、計測した筒内温度(T’)を送信する。また、圧力計102は、エンジンシリンダ11の筒内に設置されており、エンジンEのエンジンシリンダ11の筒内圧力(P)を計測して、計測装置110に、計測した筒内圧力(P)を送信する。また、流量計103は、エンジンシリンダ11に空気を送り込むインテークマニホールド3に接続されたインテークパイプ(吸気管)5の管内に設置されており、エンジンEに流入される空気の空気流量(n)を計測して、計測装置110に、計測した空気流量(n)を送信する。
Further, the thermometer 101, the pressure gauge 102, and the flow meter 103 are each connected to the measuring device 110 by wire or wirelessly so that signals can be exchanged between the measuring device 110 and the measuring device 110.
Further, the thermometer 101 is installed in the cylinder of the engine cylinder 11, measures the in-cylinder temperature (T') of the engine cylinder 11 of the engine E, and measures the in-cylinder temperature (T') in the measuring device 110. ') Is sent. Further, the pressure gauge 102 is installed in the cylinder of the engine cylinder 11, measures the in-cylinder pressure (P) of the engine cylinder 11 of the engine E, and measures the in-cylinder pressure (P) in the measuring device 110. To send. Further, the flow meter 103 is installed in the intake pipe (intake pipe) 5 connected to the intake manifold 3 that sends air to the engine cylinder 11, and measures the air flow rate (n) of the air flowing into the engine E. The measurement is performed, and the measured air flow rate (n) is transmitted to the measuring device 110.
 なお、温度計101は、エンジン試験等において汎用的に用いられているものであれば、どのようなものでもかまわないが、第1実施形態では、一例として、温度計101に、上述した非特許文献1に示した温度計を用いている。
 また、図中の符号7がスロットルバルブを示し、符号9がエンジンEから空気を排出させる排出管を示している。
The thermometer 101 may be any one as long as it is generally used in an engine test or the like, but in the first embodiment, as an example, the above-mentioned non-patented thermometer 101 is used. The thermometer shown in Document 1 is used.
Further, reference numeral 7 in the figure indicates a throttle valve, and reference numeral 9 indicates an exhaust pipe for discharging air from the engine E.
 計測装置110は、各センサ(温度計101、圧力計102及び流量計103)からそれぞれ送信されてくる計測値(筒内温度(T’)、筒内圧力(P)、空気流量(n))を受信する。また、制御装置110は、受信した計測値のうち、筒内圧力(P)、空気流量(n)と、予め記憶している「理想気体の状態方程式(以下、単に「状態方程式」という)」とを用いて、リファレンス温度(T)を算出する。 The measuring device 110 has measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)) transmitted from each sensor (thermometer 101, pressure gauge 102, and flow meter 103). To receive. Further, among the received measured values, the control device 110 includes the in-cylinder pressure (P), the air flow rate (n), and the "ideal gas state equation (hereinafter, simply referred to as" state equation ")" stored in advance. And, the reference temperature (T) is calculated.
 また、後段で詳細に説明するが、計測装置110は、上記のリファレンス温度(T)と、温度計101から取得した筒内温度(T’)とを用いて温度計101の伝達関数(Gx(s))を算出し、その伝達関数(Gx(s))から回帰伝達関数(Gy(s))を生成して記憶する。このように、温度計101の回帰伝達関数(Gy(s))を求めて、計測装置110に設定しておけば、その後に行う、エンジンEの性能試験等において、温度計101が計測した筒内温度(T’)に対して、回帰伝達関数(Gy(s))を用いて補正することで、応答性が良い筒内温度が得られるようになる。 Further, as will be described in detail later, the measuring device 110 uses the above reference temperature (T) and the in-cylinder temperature (T') obtained from the thermometer 101 to obtain a transfer function (Gx (Gx)) of the thermometer 101. s))) is calculated, and a regression transfer function (Gy (s)) is generated from the transfer function (Gx (s)) and stored. In this way, if the regression transfer function (Gy (s)) of the thermometer 101 is obtained and set in the measuring device 110, the cylinder measured by the thermometer 101 in the subsequent performance test of the engine E or the like. By correcting the internal temperature (T') using the regression transfer function (Gy (s)), an in-cylinder temperature having good responsiveness can be obtained.
 また、エンジンベンチ1は、試験対象であるエンジンEに負荷を与えるダイナモメータ10と、ダイナモメータ10の回転軸とエンジンEの回転軸とを連結するシャフト15と、ダイナモメータ10の動作を制御するダイナモ制御装置11と、エンジンの動作を制御するエンジン制御装置(図示せず)とを備えている。
 なお、エンジンベンチ1は、周知技術のものを用いているため、詳細な説明は省略する。また、試験対象となるエンジンEは、周知の構成のものであるため、図中においては、第1実施形態の温度計特性情報生成システムW1に直接的に関係する部分だけを示している。
Further, the engine bench 1 controls the operation of the dynamometer 10 that applies a load to the engine E to be tested, the shaft 15 that connects the rotation shaft of the dynamometer 10 and the rotation shaft of the engine E, and the operation of the dynamometer 10. It includes a dynamo control device 11 and an engine control device (not shown) that controls the operation of the engine.
Since the engine bench 1 uses a well-known technique, detailed description thereof will be omitted. Further, since the engine E to be tested has a well-known configuration, only the part directly related to the thermometer characteristic information generation system W1 of the first embodiment is shown in the figure.
 次に、第1実施形態の温度計特性情報生成システムW1を構成する計測装置110の機能構成について説明する。
 計測装置110は、制御部111と、データ取得部112と、温度計特性算出部113と、温度補正部114とを有している。
Next, the functional configuration of the measuring device 110 constituting the thermometer characteristic information generation system W1 of the first embodiment will be described.
The measuring device 110 includes a control unit 111, a data acquisition unit 112, a thermometer characteristic calculation unit 113, and a temperature correction unit 114.
 なお、計測装置110のハードウェア構成について特に限定しないが、計測装置110は、例えば、CPU、補助記憶装置、主記憶装置、ネットワークインターフェース及び入出力インターフェースを備えるコンピュータ(1台或いは複数台のコンピュータ)により構成することができる。この場合、入出力インターフェースには、各センサ(温度計101、圧力計102及び流量計103)が接続されている。また、補助記憶装置には、「制御部111、データ取得部112、温度特性算出部113及び温度補正部114」の機能を実現するためのプログラムが記憶されている。そして、「制御部111、データ取得部112、温度特性算出部113及び温度補正部114」の機能は、前記CPUが前記プログラムを前記主記憶装置にロードして実行することにより実現される。 The hardware configuration of the measuring device 110 is not particularly limited, but the measuring device 110 is, for example, a computer (one or a plurality of computers) having a CPU, an auxiliary storage device, a main storage device, a network interface, and an input / output interface. Can be configured by. In this case, each sensor (thermometer 101, pressure gauge 102, and flow meter 103) is connected to the input / output interface. Further, the auxiliary storage device stores a program for realizing the functions of the "control unit 111, the data acquisition unit 112, the temperature characteristic calculation unit 113, and the temperature correction unit 114". The functions of the "control unit 111, the data acquisition unit 112, the temperature characteristic calculation unit 113, and the temperature correction unit 114" are realized by the CPU loading the program into the main storage device and executing the program.
 また、上記の制御部111は、計測装置110の全体の動作を制御するもので、ユーザからの各種設定や入力を受け付けたり、温度計特性情報生成システムW1の操作要求を受け付けたりする。 Further, the control unit 111 controls the entire operation of the measuring device 110, receives various settings and inputs from the user, and receives an operation request of the thermometer characteristic information generation system W1.
 データ取得部112は、所定の計測タイミングで、各センサ(温度計101、圧力計102及び流量計103)が計測した計測値(筒内温度(T’)、筒内圧力(P)、空気流量(n))を取得する。 The data acquisition unit 112 has measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate) measured by each sensor (thermometer 101, pressure gauge 102, and flow meter 103) at a predetermined measurement timing. (N)) is acquired.
 また、温度計特性算出部113には、下記の(式1)に示す状態方程式を記憶している。
〔数1〕
 PV=nRT・・・(式1)
 R:気体定数
 そして、温度計特性算出部113は、データ取得部112が取得した計測値(筒内温度(T’)、筒内圧力(P)、空気流量(n))のうち、「筒内圧力(P)及び空気流量(n)」と、(式1)に示す状態方程式とを用いてリファレンス温度(T)を算出する。
 また、温度計特性算出部113は、算出したリファレンス温度(T)及び筒内温度(T’)を用いて温度計の伝達関数(Gx(s))を算出する。また、温度特性算出部113、その伝達関数(Gx(s))から回帰伝達関数(Gy(s))を生成して記憶する。
Further, the thermometer characteristic calculation unit 113 stores the equation of state shown in the following (Equation 1).
[Number 1]
PV = nRT ... (Equation 1)
R: Gas constant Then, the thermometer characteristic calculation unit 113 uses the “cylinder” of the measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)) acquired by the data acquisition unit 112. The reference temperature (T) is calculated using the internal pressure (P) and the air flow rate (n) ”and the equation of state shown in (Equation 1).
Further, the thermometer characteristic calculation unit 113 calculates the transfer function (Gx (s)) of the thermometer using the calculated reference temperature (T) and the in-cylinder temperature (T'). Further, the regression transfer function (Gy (s)) is generated and stored from the temperature characteristic calculation unit 113 and its transfer function (Gx (s)).
 また、温度補正部114は、温度計101の回帰伝達関数(Gy(s))が算出された後、別途で行うエンジン試験等において、算出された回帰伝達関数(Gy(s))を用いて、温度計101が計測したエンジンシリンダ11の筒内温度(T’)の補正を行う。 Further, the temperature correction unit 114 uses the calculated regression transfer function (Gy (s)) in an engine test or the like separately performed after the regression transfer function (Gy (s)) of the thermometer 101 is calculated. , The in-cylinder temperature (T') of the engine cylinder 11 measured by the thermometer 101 is corrected.
 次に、第1実施形態の温度計特性情報生成システムW1が行う、温度計特性情報生成処理の手順について、図1~図4を参照しながら説明する。 Next, the procedure of the thermometer characteristic information generation process performed by the thermometer characteristic information generation system W1 of the first embodiment will be described with reference to FIGS. 1 to 4.
 図2に示すように、先ず、温度計特性情報生成システムW1は、データ計測処理(S1)を行う。
 このデータ計測処理(S1)では、エンジンベンチ1を駆動させて、エンジンベンチ1に設置されたエンジンEを燃焼させずに、エンジンEに空気を流入してエンジンシリンダ11の筒内をダイナモ回転制御によって圧縮させる動作を行わせる。なお、エンジンシリンダ11の筒内圧縮中は略断熱状態であると仮定できる。
 そして、エンジンシリンダ11の筒内を圧縮させる動作をさせている最中に、温度計特性情報生成システムW1を構成する計測装置110のデータ取得部112が、エンジンシリンダ11の筒内温度(T’)及び筒内圧力(P)と、エンジンEに流入される空気(流体)の空気流量(n)とを取得する。
As shown in FIG. 2, first, the thermometer characteristic information generation system W1 performs a data measurement process (S1).
In this data measurement process (S1), the engine bench 1 is driven, air flows into the engine E without burning the engine E installed on the engine bench 1, and the inside of the cylinder of the engine cylinder 11 is controlled by the dynamo rotation. The operation of compressing is performed. It can be assumed that the engine cylinder 11 is in a substantially adiabatic state during in-cylinder compression.
Then, while the operation of compressing the inside of the cylinder of the engine cylinder 11 is being performed, the data acquisition unit 112 of the measuring device 110 constituting the thermometer characteristic information generation system W1 receives the temperature inside the cylinder of the engine cylinder 11 (T'. ), The in-cylinder pressure (P), and the air flow rate (n) of the air (fluid) flowing into the engine E.
 具体的には、S1では、計測装置110のデータ取得部112が、所定の計測タイミングで、所定の計測時間(モニタリング時間)、エンジンシリンダ11の筒内に設置された温度計101からエンジンシリンダ11の筒内温度(T’)を取得し、エンジンシリンダ11の筒内に設置された圧力計102からエンジンシリンダ11の筒内圧力(P)を取得し、インテークパイプ(吸気管)5の管内に設置された流量計103からエンジンEに流入される空気流量(n)を取得する。
 また、データ取得部112は、計測時間毎に、取得した計測値(筒内温度(T’)、筒内圧力(P)、空気流量(n))を対応付けて記憶する(例えば、図示しないメモリ(計測装置110の補助記憶装置及び主記憶装置)に記憶させる)。
Specifically, in S1, the data acquisition unit 112 of the measuring device 110 starts the thermometer 101 installed in the cylinder of the engine cylinder 11 for a predetermined measurement time (monitoring time) at a predetermined measurement timing to the engine cylinder 11. The in-cylinder temperature (T') of the engine cylinder 11 is acquired, and the in-cylinder pressure (P) of the engine cylinder 11 is acquired from the pressure gauge 102 installed in the cylinder of the engine cylinder 11. The air flow rate (n) flowing into the engine E is acquired from the installed flow meter 103.
Further, the data acquisition unit 112 stores the acquired measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)) in association with each measurement time (for example, not shown). Memory (stored in the auxiliary storage device and the main storage device of the measuring device 110).
 次に、温度計特性情報生成システムW1は、リファレンス温度の算出処理を行う(S2)。
 このリファレンス温度の算出処理(S2)では、温度計特性情報生成システムW1を構成する計測装置110の温度計特性算出部113が、データ取得部112が取得し、計測時間毎に対応付けて記憶している計測値(筒内温度(T’)、筒内圧力(P)、空気流量(n))のうち、「筒内圧力(P)及び空気流量(n)」と、幾何学計算で算出されるエンジンシリンダ11の容積(V)と、上述した状態方程式(PV=nRT)とを用いてリファレンス温度(T)を算出する(リファレンス温度(T)を計測時間毎に算出する)。
Next, the thermometer characteristic information generation system W1 performs a reference temperature calculation process (S2).
In this reference temperature calculation process (S2), the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 is acquired by the data acquisition unit 112 and stored in association with each measurement time. Of the measured values (in-cylinder temperature (T'), in-cylinder pressure (P), air flow rate (n)), "in-cylinder pressure (P) and air flow rate (n)" are calculated by geometric calculation. The reference temperature (T) is calculated using the volume (V) of the engine cylinder 11 to be generated and the above-mentioned equation of state (PV = nRT) (the reference temperature (T) is calculated for each measurement time).
 なお、上述したように、エンジンシリンダ11の筒内圧縮中は略断熱状態になっていると仮定できるため、状態方程式により算出された算出値(T)が真値(リファレンス温度)になると推定している。 As described above, since it can be assumed that the engine cylinder 11 is in a substantially adiabatic state during in-cylinder compression, it is estimated that the calculated value (T) calculated by the equation of state becomes the true value (reference temperature). ing.
 また、温度計特性算出部113には、予め「エンジンシリンダ11の機械的情報(形状、寸法等の機械的情報)と、下記の(式2)、(式3)、(式4)、(式5)とが設定されている。
 そして、エンジンシリンダ11の容積(ピストン15よりも上方(図中における上方)の領域の容積(V(V(θ)))は、エンジンシリンダの機械的情報と、下記の(式2)、(式3)、(式4)、(式5)に示す計算式を用いた幾何学計算により算出される。
〔数2〕
Figure JPOXMLDOC01-appb-I000001
V : シリンダー容積 [m3]
L : コンロッド長 [m]
R : クランク半径 [m]
Q : 全オフセット長 [m]
Θ : 修正クランク角度 [deg ATDC]
B : ボア径[m]
CR : 圧縮比
VDisp : 変位容積[m3]
OPin : スラスト方向を正としたピストンピンオフセット [m]
OCrank : スラスト方向を正としたクランクオフセット [m]
 
 また、データ取得部112が取得した空気流量(n)は、体積流量で計測された値[L/s]であるため、温度計特性算出部113は、以下の計算をした上で、状態方程式に空気流量(n)を代入している。具体的には、温度計特性算出部113は、体積流量で計測された空気流用(n)の値[L/s]に対して、大気圧、大気温度、湿度から算出した密度を乗算することで質量流量[g/s]に変換し、その後、空気の分子量(モル質量) 28.966[g/mol]で変換した上で状態方程式に代入している。
Further, in the thermometer characteristic calculation unit 113, "mechanical information (mechanical information such as shape and dimensions) of the engine cylinder 11 and the following (formula 2), (formula 3), (formula 4), (formula 4), (formula 2), (formula 3), (formula 4), Equation 5) and are set.
The volume of the engine cylinder 11 (volume (V (V (θ))) in the region above the piston 15 (upper in the figure)) is based on the mechanical information of the engine cylinder and the following (Equation 2), ( It is calculated by geometric calculation using the calculation formulas shown in Equation 3), (Equation 4), and (Equation 5).
[Number 2]
Figure JPOXMLDOC01-appb-I000001
V: Cylinder volume [m 3 ]
L: Connecting rod length [m]
R: Crank radius [m]
Q: Total offset length [m]
Θ: Corrected crank angle [deg ATDC]
B: Bore diameter [m]
CR: Compression ratio
V Disp : Displacement volume [m 3 ]
O Pin : Piston pin offset with positive thrust direction [m]
O Crank : Crank offset with positive thrust direction [m]

Further, since the air flow rate (n) acquired by the data acquisition unit 112 is a value [L / s] measured by the volume flow rate, the thermometer characteristic calculation unit 113 performs the following calculation and then sets the equation of state. The air flow rate (n) is substituted for. Specifically, the thermometer characteristic calculation unit 113 multiplies the value [L / s] of air diversion (n) measured by the volumetric flow rate by the density calculated from atmospheric pressure, atmospheric temperature, and humidity. After converting to mass flow rate [g / s], and then converting to air molecular weight (molar mass) 28.966 [g / mol], it is substituted into the state equation.
 次に、温度計特性情報生成システムW1は、伝達関数の算出処理を行う(S3)。
 この伝達関数の算出処理(S3)では、温度計特性情報生成システムW1を構成する計測装置110の温度計特性算出部113が、図3に示すように、状態方程式から算出したリファレンス温度(T)を入力値とし、当該リファレンス温度(T)に対応する計測時間に温度計101が計測した筒内温度(T’)を出力値として、フーリエ解析演算を行い、温度計の伝達特性(Gx’(s))を算出する。
 なお、図4のゲイン図において、上記のフーリエ解析演算により得られた伝達特性(Gx’(s))の一例を示している。
Next, the thermometer characteristic information generation system W1 performs a transfer function calculation process (S3).
In the calculation process (S3) of this transfer function, the reference temperature (T) calculated from the state equation by the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 as shown in FIG. Is used as the input value, and the in-cylinder temperature (T') measured by the thermometer 101 at the measurement time corresponding to the reference temperature (T) is used as the output value, and a Fourier analysis calculation is performed to perform the transfer characteristic (Gx'(Gx'(Gx') of the thermometer. s)) is calculated.
In the gain diagram of FIG. 4, an example of the transfer characteristic (Gx'(s)) obtained by the above Fourier analysis calculation is shown.
 さらに、S3では、温度特性算出部113は、算出した伝達特性(Gx´(s))に、下記の(式6)に示す任意の伝達関数(Gx(s))でフィッテングして、「Gx´(s)=Gx(s)」になるように、(式6)に示すパラメータ(α、β)を同定する(図3参照)。
〔数3〕
Figure JPOXMLDOC01-appb-I000002
Further, in S3, the temperature characteristic calculation unit 113 fits the calculated transfer characteristic (Gx'(s)) with an arbitrary transfer function (Gx (s)) shown in the following (Equation 6) to obtain "Gx". The parameters (α, β) shown in (Equation 6) are identified so that ′ (s) = Gx (s) ”(see FIG. 3).
[Number 3]
Figure JPOXMLDOC01-appb-I000002
 次に、温度計特性情報生成システムW1は、回帰伝達関数の算出処理を行う(S4)。
 この回帰伝達関数の算出処理(S4)では、温度計特性情報生成システムW1を構成する計測装置110の温度計特性算出部113が、S3で算出した伝達関数(Gx(s))を用いて、下記の(式7)に示す回帰伝達関数(Gy(s))を算出する。
 なお、「Lowpassfilter」は、Gx(s)の帯域より、より高周波にカットオフを設定したフィルタを用いることでGx(s)に干渉しない特性とする。
 〔数4〕
Figure JPOXMLDOC01-appb-I000003
 なお、温度計特性算出部113は、図示しないメモリ(計測装置110の補助記憶装置及び主記憶装置)に、S3で算出した「伝達特性(Gx’(s))、伝達関数(Gx(s))」と、S4で算出した回帰伝達関数(Gy(s))に記憶させる。
Next, the thermometer characteristic information generation system W1 performs a calculation process of the regression transfer function (S4).
In the calculation process (S4) of this regression transfer function, the thermometer characteristic calculation unit 113 of the measuring device 110 constituting the thermometer characteristic information generation system W1 uses the transfer function (Gx (s)) calculated in S3. The regression transfer function (Gy (s)) shown in the following (Equation 7) is calculated.
The "Lowpass filter" has a characteristic that does not interfere with Gx (s) by using a filter with a cutoff set at a higher frequency than the Gx (s) band.
[Number 4]
Figure JPOXMLDOC01-appb-I000003
In addition, the thermometer characteristic calculation unit 113 puts the “transfer characteristic (Gx'(s)) and the transfer function (Gx (s)) calculated in S3 into a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown). ) ”And stored in the regression transfer function (Gy (s)) calculated in S4.
 続いて、温度計101の回帰伝達関数(Gy(s))が算出された後、第1実施形態の温度計特性情報生成システムW1が行う、温度補正処理について説明する。 Subsequently, after the regression transfer function (Gy (s)) of the thermometer 101 is calculated, the temperature correction process performed by the thermometer characteristic information generation system W1 of the first embodiment will be described.
 この温度補正処理では、先ず、計測装置110のデータ取得部112が、エンジンベンチ1に設置されたエンジンEの性能試験において、エンジンシリンダ11の筒内に設置された温度計101が計測した筒内温度(T’)を取得する。
 次に、計測装置110の温度補正部114が、図示しないメモリ(計測装置110の補助記憶装置及び主記憶装置)に記憶している「回帰伝達関数(Gy(s))」を読み出し、データ取得部112に取得した筒内温度(T’)に、読み出した「回帰伝達関数(Gy(s))」を印加することにより、温度計101が測定した筒内温度(T’)を補正筒内温度(Th)に補正する。
In this temperature correction process, first, in the performance test of the engine E installed on the engine bench 1, the data acquisition unit 112 of the measuring device 110 measures the inside of the cylinder measured by the thermometer 101 installed in the cylinder of the engine cylinder 11. Get the temperature (T').
Next, the temperature compensation unit 114 of the measuring device 110 reads out the "regression transfer function (Gy (s))" stored in a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown) to acquire data. By applying the read "return transfer function (Gy (s))" to the in-cylinder temperature (T') acquired in the unit 112, the in-cylinder temperature (T') measured by the thermometer 101 is corrected in the cylinder. Correct to temperature (Th).
 このように、第1実施形態の温度計特性情報生成システムW1によれば、温度計が高応答に温度を計測できるようにするための温度計特性情報「伝達関数(Gx(s))、回帰伝達関数(Gy(s))」を生成することができる。そのため、例えば、エンジン試験のような環境における温度計測においても、この回帰伝達関数(Gy(s))を用いて温度計101による計測値を補正することにより、高応答で温度計測を行うことができる。 As described above, according to the thermometer characteristic information generation system W1 of the first embodiment, the thermometer characteristic information "transmission function (Gx (s)), regression" for enabling the thermometer to measure the temperature with high response. A transfer function (Gy (s)) ”can be generated. Therefore, for example, even in temperature measurement in an environment such as an engine test, it is possible to perform temperature measurement with a high response by correcting the measured value by the thermometer 101 using this regression transfer function (Gy (s)). can.
《第2実施形態》
 次に、本発明の第2実施形態の温度計特性情報生成システムの構成について、図5~図7を参照しながら説明する。
<< Second Embodiment >>
Next, the configuration of the thermometer characteristic information generation system according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 7.
 ここで、図5は、第2実施形態の温度計特性情報生成システムの構成を示した模式図である。また、図6は、第2実施形態の温度計特性情報生成システムの温度計特性情報生成処理の手順を示したフローチャートである。図7は、第2実施形態の温度計特性情報生成システムが算出する温度計の伝達特性の入出力の関係を示した模式図である。
 なお、第2実施形態の構成のうち、第1実施形態と同じ構成(或いは相当する構成)には、同じ符号を付して、説明を簡略化或いは省略し、主に、第1実施形態と異なる内容について詳細に説明する。
Here, FIG. 5 is a schematic diagram showing the configuration of the thermometer characteristic information generation system of the second embodiment. Further, FIG. 6 is a flowchart showing a procedure of thermometer characteristic information generation processing of the thermometer characteristic information generation system of the second embodiment. FIG. 7 is a schematic diagram showing the input / output relationship of the transmission characteristics of the thermometer calculated by the thermometer characteristic information generation system of the second embodiment.
Of the configurations of the second embodiment, the same configurations (or equivalent configurations) as those of the first embodiment are designated by the same reference numerals to simplify or omit the description, and are mainly referred to as the first embodiment. The different contents will be explained in detail.
 図5に示すように、第2実施形態の温度計特性情報生成システムW2は、配管(円管)20を備え且つ配管20に加圧空気を供給して配管20の管内の圧力をステップ状に変化させる圧力ステップ応答装置Zと、配管20の管内の温度(管内温度(T’))を計測する温度計(第1温度計)101と、配管20の管内の圧力(管内圧力(P))を計測する圧力計(第1圧力計)102と、配管20の管壁温度(Tw)を計測する温度計(第2温度計)105と、外気温(Tо)を計測する温度計(第3温度計)106と、外気圧(Pо)を計測する圧力計(第2圧力計)107と、温度計101の温度計特性情報(伝達関数、回帰伝達関数)を算出する計測装置120とを有している。 As shown in FIG. 5, the thermometer characteristic information generation system W2 of the second embodiment includes a pipe (circular pipe) 20 and supplies pressurized air to the pipe 20 to step the pressure inside the pipe 20. The pressure step response device Z to be changed, the thermometer (first thermometer) 101 that measures the temperature inside the pipe of the pipe 20 (the temperature inside the pipe (T')), and the pressure inside the pipe 20 (the pressure inside the pipe (P)). 102, a thermometer (second thermometer) 105 for measuring the pipe wall temperature (Tw) of the pipe 20, and a thermometer (third) for measuring the outside temperature (Tо). It has a thermometer) 106, a pressure gauge (second pressure gauge) 107 for measuring the outside pressure (Pо), and a measuring device 120 for calculating the thermometer characteristic information (transmission function, regression transmission function) of the thermometer 101. doing.
 圧力ステップ応答装置Zは、両端が貫通している配管(円管)20と、配管20に加圧空気を供給する加圧空気供給装置30と、配管20の一端部側(加圧空気の流入口側)の管内に設置された第1バルブ21と、配管20の他端部側(加圧空気の流出口側)の管内に設置された第2バルブ22と、各バルブ(第1、第2バルブ21、22)の開閉動作を制御するバルブ操作装置40とを備えている。 The pressure step response device Z includes a pipe (circular pipe) 20 penetrating both ends, a pressurized air supply device 30 that supplies pressurized air to the pipe 20, and one end side of the pipe 20 (flow of pressurized air). The first valve 21 installed in the pipe on the inlet side), the second valve 22 installed in the pipe on the other end side (outlet side of the pressurized air) of the pipe 20, and each valve (first and first). It is provided with a valve operating device 40 that controls the opening / closing operation of the two valves 21 and 22).
 また、加圧空気供給装置30は、配管20の一端部に接続されており、配管20の一端部から配管20の管内に所定圧力の加圧空気を流入する。
 また、配管20は、両端が貫通していると共に、加圧空気供給装置30に接続され且つ第1方向(図中のY方向)に延びる第1直管部20aと、第1直管部20aから略直角に屈曲して第2方向(図中のX方向)に延びる第2直管部20bとを備えた略L字状に形成されている。また、配管20の外部が大気圧になっている。
Further, the pressurized air supply device 30 is connected to one end of the pipe 20, and pressurized air of a predetermined pressure flows into the pipe of the pipe 20 from one end of the pipe 20.
Further, the pipe 20 has a first straight pipe portion 20a and a first straight pipe portion 20a which are connected to the pressurized air supply device 30 and extend in the first direction (Y direction in the drawing) as well as penetrating both ends. It is formed in a substantially L shape including a second straight pipe portion 20b that bends at a substantially right angle from the pipe and extends in a second direction (X direction in the drawing). Further, the outside of the pipe 20 has an atmospheric pressure.
 また、2つのバルブ(第1、第2バルブ21、22)は、配管20のうちの第2方向に延びる第2直管部20bに設けられている。
 具体的には、第1バルブ21は、配管20を構成する第2直管部20bの一端部側(加圧空気供給装置30側)に設けられている。また、第2バルブ22は、配管20を構成する第2直管部20bの他端部に設けられており、第2バルブ22を開状態にすると、配管20の他端部の開口が外部に開放される。
Further, the two valves (first and second valves 21, 22) are provided in the second straight pipe portion 20b extending in the second direction of the pipe 20.
Specifically, the first valve 21 is provided on one end side (pressurized air supply device 30 side) of the second straight pipe portion 20b constituting the pipe 20. Further, the second valve 22 is provided at the other end of the second straight pipe portion 20b constituting the pipe 20, and when the second valve 22 is opened, the opening of the other end of the pipe 20 opens to the outside. Be released.
 また、バルブ操作装置40は、バルブ(第1、第2バルブ21、22)に、開閉制御信号を送信して、2つのバルブ(第1、第2バルブ21、22)の開閉状態を制御することにより、2つのバルブ(第1、第2バルブ21、22)の間に、加圧空気供給装置30から供給された加圧空気を閉じ込め、その後、第2バルブ22の開閉状態を制御して、配管20の加圧空気(流体)の圧力をステップ状に変化させる。 Further, the valve operating device 40 transmits an opening / closing control signal to the valves (first and second valves 21 and 22) to control the opening / closing states of the two valves (first and second valves 21 and 22). As a result, the pressurized air supplied from the pressurized air supply device 30 is confined between the two valves (first and second valves 21, 22), and then the open / closed state of the second valve 22 is controlled. , The pressure of the pressurized air (fluid) of the pipe 20 is changed in steps.
 計測装置120は、圧力ステップ応答装置Zが配管20の加圧空気(流体)の圧力をステップ状に変化させている最中に、センサ(温度計101、圧力計102)から当該センサが計測した配管20の管内の計測値(管内温度(T’)、管内圧力(P))を取得する。また、計測装置120は、圧力ステップ応答装置Zが配管20の加圧空気(流体)の圧力をステップ状に変化させている最中に、センサ(温度計105、温度計106、圧力計107)から当該センサが計測した計測値(管壁温度(Tw)、外気温(Tо)、外気圧(Pо))を取得する。
 また、計測装置120は、後述するシミュレーション条件情報と、取得した「管壁温度(Tw)、外気温(Tо)、外気圧(Pо)」とを用いた一次元の流体解析を用いたシミュレーション(コンピュータシミュレーション)により配管20を流れる熱流体モデルを生成し、圧力計101が計測した管内圧力(P)と、シミュレーションにより生成した熱流体モデルとを用いて、配管20内の温度の真値(リファレンス温度(T))を算出する。また、計測装置110は、シミュレーションにより算出した配管20内の温度の真値(リファレンス温度(T))と、温度計101が計測した管内温度(T’))とを用いて、温度計特性情報(伝達関数、回帰伝達関数)を算出する。
The measuring device 120 was measured by the sensors (thermometer 101, pressure gauge 102) while the pressure step response device Z was changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepped manner. Acquire the measured values (in-pipe temperature (T'), in-pipe pressure (P)) in the pipe of the pipe 20. Further, in the measuring device 120, while the pressure step response device Z is changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepped manner, the sensors (thermometer 105, thermometer 106, pressure gauge 107). The measured values (tube wall temperature (Tw), outside temperature (Tо), outside pressure (Pо)) measured by the sensor are acquired from.
Further, the measuring device 120 uses the simulation condition information described later and the acquired "tube wall temperature (Tw), outside temperature (Tо), outside pressure (Pо)" for simulation using one-dimensional fluid analysis ( A thermo-fluid model flowing through the pipe 20 is generated by computer simulation), and the true value (reference) of the temperature inside the pipe 20 is used by using the pipe pressure (P) measured by the pressure gauge 101 and the thermo-fluid model generated by the simulation. Temperature (T)) is calculated. Further, the measuring device 110 uses the true value of the temperature inside the pipe 20 calculated by simulation (reference temperature (T)) and the temperature inside the pipe measured by the thermometer 101 (T')) to provide thermometer characteristic information. (Transfer function, regression transfer function) is calculated.
 なお、温度計101は、加圧空気の流入口側の第1バルブ21の近傍で且つ配管20の壁・近傍に設置されており、流速が「0(m/s)」付近のポイント(レイノルズ数が2000以下のポイント)の温度が計測できるようになっている。
 このようにするのは、流速が「0(m/s)」付近以外の他のポイントでは、「流速=0(m/s)」と、「流速>0(m/s)」とが混在した計測値になるため、シミュレーションにおいて、高精度に流体解析ができなくなるためである。
 また、図示する例では、圧力計102は、第1バルブの近傍に設置されているが、これは一例に過ぎない。圧力計102は、配管20の管内において、2つのバルブ(第1、第2バルブ21、22)の間の位置に設置されていれば良い。
 また、温度計105は、配管20の外周側面で且つ第1バルブ21と第2バルブ22の間の位置に設置されており、配管20の管壁温度(Tw)を計測できるように設定されている。また、温度計106及び圧力計107は、配管20の外部の位置(例えば、温度計特性情報生成システムW2が設置されている試験室内の任意の位置)に設置されており、外気温(Tо)、外気圧(Pо)を計測できるように設定されている。
The thermometer 101 is installed near the first valve 21 on the inlet side of the pressurized air and near the wall / vicinity of the pipe 20, and the flow velocity is near "0 (m / s)" (Reynolds). It is possible to measure the temperature (points where the number is 2000 or less).
In this way, "flow velocity = 0 (m / s)" and "flow velocity> 0 (m / s)" are mixed at points other than those where the flow velocity is near "0 (m / s)". This is because the measured values are obtained, which makes it impossible to perform fluid analysis with high accuracy in the simulation.
Further, in the illustrated example, the pressure gauge 102 is installed in the vicinity of the first valve, but this is only an example. The pressure gauge 102 may be installed at a position between two valves (first and second valves 21, 22) in the pipe of the pipe 20.
Further, the thermometer 105 is installed on the outer peripheral side surface of the pipe 20 and at a position between the first valve 21 and the second valve 22, and is set so that the pipe wall temperature (Tw) of the pipe 20 can be measured. There is. Further, the thermometer 106 and the pressure gauge 107 are installed at an external position of the pipe 20 (for example, an arbitrary position in the test room where the thermometer characteristic information generation system W2 is installed), and the outside air temperature (Tо). , It is set so that the outside air pressure (Pо) can be measured.
 次に、第2実施形態の温度計特性情報生成システムW2を構成する計測装置120の機能構成について説明する。
 計測装置120は、制御部111と、データ取得部112と、流体解析処理部121と、温度計特性算出部122と、温度補正部114とを有している。
 なお、制御部111及び温度補正部114は、第1実施形態と同じであるため、説明を省略する。
Next, the functional configuration of the measuring device 120 constituting the thermometer characteristic information generation system W2 of the second embodiment will be described.
The measuring device 120 includes a control unit 111, a data acquisition unit 112, a fluid analysis processing unit 121, a thermometer characteristic calculation unit 122, and a temperature correction unit 114.
Since the control unit 111 and the temperature correction unit 114 are the same as those in the first embodiment, the description thereof will be omitted.
 また、計測装置120のハードウェア構成について特に限定しないが、第1実施形態の計測装置110と同様、計測装置120は、例えば、CPU、補助記憶装置、主記憶装置、ネットワークインターフェース及び入出力インターフェースを備えるコンピュータ(1台或いは複数台のコンピュータ)により構成することができる。この場合、入出力インターフェースには、各センサ(温度計101、圧力計102、温度計105、温度計106、圧力計107)が接続されている。また、補助記憶装置には、「制御部111、データ取得部112、流体解析処理部121、温度特性算出部122及び温度補正部114」の機能を実現するためのプログラムが記憶されている。そして、「制御部111、データ取得部112、流体解析処理部121、温度特性算出部122及び温度補正部114」の機能は、前記CPUが前記プログラムを前記主記憶装置にロードして実行することにより実現される。 The hardware configuration of the measuring device 120 is not particularly limited, but like the measuring device 110 of the first embodiment, the measuring device 120 includes, for example, a CPU, an auxiliary storage device, a main storage device, a network interface, and an input / output interface. It can be configured by a built-in computer (one or a plurality of computers). In this case, each sensor (thermometer 101, pressure gauge 102, thermometer 105, thermometer 106, pressure gauge 107) is connected to the input / output interface. Further, the auxiliary storage device stores a program for realizing the functions of "control unit 111, data acquisition unit 112, fluid analysis processing unit 121, temperature characteristic calculation unit 122, and temperature correction unit 114". Then, the function of "control unit 111, data acquisition unit 112, fluid analysis processing unit 121, temperature characteristic calculation unit 122 and temperature correction unit 114" is executed by the CPU loading the program into the main storage device. Is realized by.
 データ取得部112は、所定の計測タイミングで、各センサ(温度計101、圧力計102、温度計105、温度計106、圧力計107)が計測した計測値(管内温度(T’)、管内圧力(P)、管壁温度(Tw)、外気温(Tо)、外気圧(Pо))を取得する。 The data acquisition unit 112 has measured values (in-pipe temperature (T'), in-pipe pressure) measured by each sensor (thermometer 101, pressure gauge 102, thermometer 105, thermometer 106, pressure gauge 107) at a predetermined measurement timing. (P), tube wall temperature (Tw), outside temperature (Tо), outside pressure (Pо)) are acquired.
 また、流体解析処理部121には、温度計特性情報生成処理の前段階の処理において、シミュレーション条件情報が設定されている(前段階の処理において、計測装置120に、シミュレーション条件情報を記憶させている)。
 このシミュレーション条件情報には、配管20の寸法情報(厚さ寸法、長さ寸法、径寸法等の寸法情報)と、配管20に流入される空気の組成情報と、配管20内の初期圧力及び初期温度と、バルブ(第1バルブ21、第2バルブ22)の流路抵抗を示すバルブ情報とが含まれている。なお、上記のバルブの流路抵抗は圧力挙動から同定する。
 そして、流体解析処理部121は、「シミュレーション条件情報」及び「管壁温度(Tw)、外気温(Tо)、外気圧(Pо)」を用いた一次元の流体解析処理によるシミュレーションにより配管20を流れる熱流体モデル(数学的な熱流体モデル)を生成する。なお、管壁温度(Tw)、外気温(Tо)及び外気圧(Pо)は、熱流体モデルの境界条件として使用されている。
 また、流体解析処理部121は、データ取得手段112が取得した「圧力計101が計測した管内圧力(P)」と、シミュレーションにより生成した熱流体モデルとを用いて、配管20内の温度の真値(リファレンス温度(T))を算出する。
Further, in the fluid analysis processing unit 121, simulation condition information is set in the processing in the previous stage of the thermometer characteristic information generation processing (in the processing in the previous stage, the measurement device 120 stores the simulation condition information. There is).
This simulation condition information includes dimensional information of the pipe 20 (dimensional information such as thickness, length, and diameter), composition information of air flowing into the pipe 20, initial pressure in the pipe 20, and initial pressure. It includes the temperature and valve information indicating the flow path resistance of the valves (first valve 21, second valve 22). The flow path resistance of the above valve is identified from the pressure behavior.
Then, the fluid analysis processing unit 121 connects the pipe 20 by simulation by one-dimensional fluid analysis processing using "simulation condition information" and "tube wall temperature (Tw), outside air temperature (Tо), outside pressure (Pо)". Generate a flowing thermo-fluid model (mathematical thermo-fluid model). The tube wall temperature (Tw), outside air temperature (Tо), and outside air pressure (Pо) are used as boundary conditions for the thermo-fluid model.
Further, the fluid analysis processing unit 121 uses the “in-pipe pressure (P) measured by the pressure gauge 101” acquired by the data acquisition means 112 and the thermo-fluid model generated by the simulation to be true of the temperature inside the pipe 20. Calculate the value (reference temperature (T)).
 なお、流体解析処理部121の機能は、市販されている「一次元の流体解析処理を用いたコンピュータシミュレーションソフトウェア」により実現される。例えば、流体解析処理部121の機能は、「米国 Gamma Technologies社」が開発した「GT‐POWER」」により実現される。また、流体解析処理部121の機能は、周知技術であるため、詳細な説明は省略するが、Navier-Stokesを方程式として、運動量、エネルギーの式等を連立して計算を実行している。また、一次元解析として離散化は、流体の流れの方向のみであり、断面内にて圧力、流速、温度などの物理量は分布しないものとして計算を実行するようになっている。 The function of the fluid analysis processing unit 121 is realized by commercially available "computer simulation software using one-dimensional fluid analysis processing". For example, the function of the fluid analysis processing unit 121 is realized by "GT-POWER" developed by "Gamma Technologies, Inc. of the United States". Further, since the function of the fluid analysis processing unit 121 is a well-known technique, detailed description thereof will be omitted, but the calculation is executed by simultaneously using the equations of momentum, energy, etc. using Navier-Stokes as an equation. Further, as a one-dimensional analysis, discretization is performed only in the direction of the fluid flow, and the calculation is performed assuming that physical quantities such as pressure, flow velocity, and temperature are not distributed in the cross section.
 また、温度計特性算出部122は、流体解析処理部121が算出したリファレンス温度(T)と、データ取得部112が取得した管内温度(T’)を用いて温度計の伝達関数(Gx(s))を算出する。また、温度特性算出部113、その伝達関数(Gx(s))から回帰伝達関数(Gy(s))を生成して記憶する。 Further, the thermometer characteristic calculation unit 122 uses the reference temperature (T) calculated by the fluid analysis processing unit 121 and the in-pipe temperature (T') acquired by the data acquisition unit 112 to perform a thermometer transfer function (Gx (s). )) Is calculated. Further, the regression transfer function (Gy (s)) is generated and stored from the temperature characteristic calculation unit 113 and its transfer function (Gx (s)).
 次に、第2実施形態の温度計特性情報生成システムW2が行う、温度計特性情報生成処理の手順について、図6~図7を参照しながら説明する。 Next, the procedure of the thermometer characteristic information generation process performed by the thermometer characteristic information generation system W2 of the second embodiment will be described with reference to FIGS. 6 to 7.
 図6に示すように、先ず、温度計特性情報生成システムW2は、データ計測処理(S11)を行う。
 このデータ計測処理(S11)では、圧力ステップ応答装置Zを駆動させて、配管20の管内の加圧空気(流体)の圧力をステップ状に変化させる。具体的には、圧力ステップ応答装置Zのバルブ操作装置40により、第1バルブ21を「開」にして、第2バルブ22を「閉」にした状態にして、加圧空気供給装置30を駆動させて配管20に、所定時間、加圧空気を流入させる。また、バルブ操作装置40は、所定時間経過すると、第1バルブ21を「閉」にして、2つのバルブ(第1、第2バルブ21、22)の間に、加圧空気供給装置30から供給された加圧空気(流体)を閉じ込める。その後、バルブ操作装置40が、第2バルブ22の開閉状態を制御して、配管20の加圧空気(流体)の圧力をステップ状に変化させる。
 また、計測装置120のデータ取得部112は、配管20の加圧空気(流体)の圧力をステップ状に変化させている最中に、温度計101が計測した配管20の管内温度(T’)と、圧力計102が計測した配管20の管内圧力(P)とを取得する。また、データ取得部112は、圧力ステップ応答装置Zが配管20の加圧空気(流体)の圧力をステップ状に変化させている最中に、センサ(温度計105、温度計106、圧力計107)から当該センサが計測した(管壁温度(Tw)、外気温(Tо)、外気圧(Pо))を取得する。
 なお、データ取得部112は、計測時間毎に、取得した計測値(管内温度(T’)、菅内圧力(P)、管壁温度(Tw)、外気温(Tо)、外気圧(Pо))を対応付けて記憶する(例えば、図示しないメモリ(計測装置110の補助記憶装置及び主記憶装置)に記憶させる)。
As shown in FIG. 6, first, the thermometer characteristic information generation system W2 performs the data measurement process (S11).
In this data measurement process (S11), the pressure step response device Z is driven to change the pressure of the pressurized air (fluid) in the pipe 20 in a stepped manner. Specifically, the valve operating device 40 of the pressure step response device Z drives the pressurized air supply device 30 with the first valve 21 "open" and the second valve 22 "closed". The pressurized air is allowed to flow into the pipe 20 for a predetermined time. Further, the valve operating device 40 closes the first valve 21 after a lapse of a predetermined time, and supplies the fluid from the pressurized air supply device 30 between the two valves (first and second valves 21, 22). Confine the pressurized air (fluid). After that, the valve operating device 40 controls the open / closed state of the second valve 22 to change the pressure of the pressurized air (fluid) in the pipe 20 in steps.
Further, the data acquisition unit 112 of the measuring device 120 is changing the pressure of the pressurized air (fluid) of the pipe 20 in a stepwise manner, and the temperature inside the pipe 20 (T') measured by the thermometer 101. And the in-pipe pressure (P) of the pipe 20 measured by the thermometer 102 are acquired. Further, in the data acquisition unit 112, while the pressure step response device Z is changing the pressure of the pressurized air (fluid) of the pipe 20 in steps, the sensors (thermometer 105, thermometer 106, pressure gauge 107). ), The sensor measures (tube wall temperature (Tw), outside temperature (Tо), outside pressure (Pо)).
The data acquisition unit 112 has acquired measured values (tube temperature (T'), tube pressure (P), tube wall temperature (Tw), outside air temperature (Tо), outside pressure (Pо)) for each measurement time. (For example, stored in a memory (auxiliary storage device and main storage device of the measuring device 110) (not shown)).
 次に、温度計特性情報生成システムW2は、リファレンス温度の算出処理を行う(S12)。
 このリファレンス温度の算出処理(S12)では、計測装置120の流体解析処理部121が、予め設定されている「シミュレーション条件情報(配管20の寸法情報、配管に流入する空気の組成情報、配管20内の初期圧力及び初期温度、バルブ情報)」と、S11で取得した「管壁温度(Tw)、外気温(Tо)、外気圧(Pо)」とを用いた一次元の流体解析処理によるシミュレーションにより配管20を流れる熱流体モデルを生成する。また、流体解析処理部121は、データ取得手段112が取得した「圧力計102が計測した管内圧力(P)」と、シミュレーションにより生成した熱流体モデルとを用いて、配管20内の温度の真値(リファレンス温度(T))として、熱流体モデルの温度(T)を算出する。
Next, the thermometer characteristic information generation system W2 performs a reference temperature calculation process (S12).
In this reference temperature calculation process (S12), the fluid analysis processing unit 121 of the measuring device 120 performs preset “simulation condition information (dimension information of the pipe 20, composition information of air flowing into the pipe, inside the pipe 20). (Initial pressure and initial temperature, valve information) ”and“ Pipe wall temperature (Tw), outside temperature (Tо), outside pressure (Pо) ”acquired in S11 by simulation by one-dimensional fluid analysis processing. A thermo-fluid model flowing through the pipe 20 is generated. Further, the fluid analysis processing unit 121 uses the “in-pipe pressure (P) measured by the pressure gauge 102” acquired by the data acquisition means 112 and the thermo-fluid model generated by the simulation to be true of the temperature inside the pipe 20. The temperature (T) of the thermo-fluid model is calculated as the value (reference temperature (T)).
 なお、S12において、配管20内の温度の真値(リファレンス温度(T))として、シミュレーションで生成した熱流体モデルの温度(T)を用いているのは以下の理由による。
 温度計101及び圧力計102が設置されているは、流速が「0(m/s)」に近いポイント(レイノルズ数が2000以下のポイント)であり、このポイントでの熱伝達率に寄与するヌッセルト数Nuは、円筒状の管内の層流条件におけるヌッセルト数Nu=3.66(Constant(一定))になると推定できる。
 そのため、温度計101が計測する温度の応答性の緩いポイントでヌッセルト数Nuを微調整し熱流体モデルと計測値を合わせる。圧力変化が出ているポイントも同現象のため、ヌッセルト数Nuは同じ値となり、熱伝達率は外挿補間される。すなわち、シミュレーションで生成した熱流体モデルの温度(T)を配管20内の温度の真値(リファレンス温度(T))として取り扱うことができる。
The reason why the temperature (T) of the thermo-fluid model generated by the simulation is used as the true value (reference temperature (T)) of the temperature in the pipe 20 in S12 is as follows.
The thermometer 101 and the pressure gauge 102 are installed at a point where the flow velocity is close to "0 (m / s)" (a point where the Reynolds number is 2000 or less), and Nusselt contributes to the heat transfer coefficient at this point. It can be estimated that the Nusselt number Nu = 3.66 (Constant (constant)) under the laminar flow condition in the cylindrical tube.
Therefore, the Nusselt number Nu is finely adjusted at the point where the temperature responsiveness measured by the thermometer 101 is loose, and the measured value is matched with the thermo-fluid model. Since the same phenomenon occurs at the point where the pressure changes, the Nusselt number Nu becomes the same value, and the heat transfer coefficient is extrapolated. That is, the temperature (T) of the thermo-fluid model generated by the simulation can be treated as the true value (reference temperature (T)) of the temperature inside the pipe 20.
 次に、温度計特性情報生成システムW2は、伝達関数の算出処理を行う(S13)。
 この伝達関数の算出処理(S13)では、計測装置120の温度計特性算出部122が、図7に示すように、S12においてシミュレーションの熱流体モデルを用いて算出したリファレンス温度(T)を入力値とし、当該リファレンス温度(T)に対応する計測時間に温度計101が計測した管内温度(T’)を出力値として、フーリエ解析演算を行い、温度計の伝達特性(Gx’(s))を算出する。また、S13では、温度特性算出部122は、算出した伝達特性(Gx´(s))に、任意の伝達関数(Gx(s))でフィッテングして、「Gx´(s)=Gx(s)」になるように、伝達関数(Gx(s))のパラメータ(α、β)を同定する。
 なお、S13の上記処理は、上述した第1実施形態のS3の処理と同じ手順であるため、詳細な説明を省略する。
Next, the thermometer characteristic information generation system W2 performs a transfer function calculation process (S13).
In the calculation process (S13) of this transfer function, the thermometer characteristic calculation unit 122 of the measuring device 120 inputs the reference temperature (T) calculated by using the thermo-fluid model of the simulation in S12 as shown in FIG. Then, a Fourier analysis calculation is performed using the in-tube temperature (T') measured by the thermometer 101 at the measurement time corresponding to the reference temperature (T) as an output value, and the transfer characteristic (Gx'(s)) of the thermometer is obtained. calculate. Further, in S13, the temperature characteristic calculation unit 122 fits the calculated transfer characteristic (Gx'(s)) with an arbitrary transfer function (Gx (s)), and "Gx'(s) = Gx (s). ) ”, The parameters (α, β) of the transfer function (Gx (s)) are identified.
Since the process of S13 is the same procedure as the process of S3 of the first embodiment described above, detailed description thereof will be omitted.
 次に、温度計特性情報生成システムW2は、上述した第1実施形態のS4の処理と同じ手順で、回帰伝達関数の算出処理を行う(S14)。
 この回帰伝達関数の算出処理(S14)では、計測装置120の温度計特性算出部122が、S13で算出した伝達関数(Gx(s))を用いて、回帰伝達関数(Gy(s))を算出する(第1実施形態で示した(式7)参照)。
Next, the thermometer characteristic information generation system W2 performs a regression transfer function calculation process in the same procedure as the process of S4 of the first embodiment described above (S14).
In the calculation process (S14) of the regression transfer function, the thermometer characteristic calculation unit 122 of the measuring device 120 uses the transfer function (Gx (s)) calculated in S13 to generate the regression transfer function (Gy (s)). Calculate (see (Equation 7) shown in the first embodiment).
 このように、第2実施形態の温度計特性情報生成システムW2においても、上述した第1実施形態と同様、温度計101の回帰伝達関数(Gy(s))が得られるため、エンジン試験のような環境における温度計測においても、この回帰伝達関数(Gy(s))を用いて温度計101による計測値を補正することにより、高応答で温度計測を行うことができる。 As described above, in the thermometer characteristic information generation system W2 of the second embodiment, the regression transfer function (Gy (s)) of the thermometer 101 can be obtained as in the first embodiment described above, so that it is similar to the engine test. Even in temperature measurement in such an environment, temperature measurement can be performed with high response by correcting the measured value by the thermometer 101 using this regression transfer function (Gy (s)).
 さらに、第2実施形態の温度計特性情報生成システムW2では、第1実施形態のように、実際のエンジンEを用いることなく、配管20を備える圧力ステップ応答装置Zにより、配管20内の加圧空気(流体)の圧力をステップ状に変化させる物理環境を作り、その物理環境下の温度(T’)及び圧力(P)を計測している。 Further, in the thermometer characteristic information generation system W2 of the second embodiment, unlike the first embodiment, the pressure in the pipe 20 is pressurized by the pressure step response device Z provided with the pipe 20 without using the actual engine E. A physical environment that changes the pressure of air (fluid) in steps is created, and the temperature (T') and pressure (P) under the physical environment are measured.
 具体的には、第2実施形態では、一次元の流体解析処理によるシミュレーションにより、圧力ステップ応答装置Zの配管20を流れる加圧空気(流体)の熱流体モデルを生成して(コンピュータシミュレーションにより配管20を流れる加圧空気(流体)の熱流体を再現し)、実測した管内圧力(P)及び熱流体モデルから熱流体モデルの温度を算出し、その温度を真値(リファレンス温度(T))としている。そして、第2実施形態では、リファレンス温度(T)及び実測した管内温度(T’)を用いて、温度計101の温度計特性情報(伝達関数、回帰伝達関数)を算出している。
 すなわち、第2実施形態では、第1実施形態のようにエンジンEを用いる必要がないため、第1実施形態と比べて、コストをかけずに、省スペース且つ簡易な設備により、温度計特性情報(伝達関数、回帰伝達関数)を算出することができる。その結果、第2実施形態では、省スペースで実現できる簡易な設備で且つ低コストで、温度計101の温度計測の高応答化が可能になる。
Specifically, in the second embodiment, a thermo-fluid model of pressurized air (fluid) flowing through the pipe 20 of the pressure step response device Z is generated by simulation by one-dimensional fluid analysis processing (pipe by computer simulation). (Reproduce the thermo-fluid of pressurized air (fluid) flowing through 20), calculate the temperature of the thermo-fluid model from the measured pressure in the pipe (P) and the thermo-fluid model, and set the temperature to the true value (reference temperature (T)). It is supposed to be. Then, in the second embodiment, the thermometer characteristic information (transfer function, regression transfer function) of the thermometer 101 is calculated using the reference temperature (T) and the actually measured in-pipe temperature (T').
That is, in the second embodiment, it is not necessary to use the engine E as in the first embodiment, so that the thermometer characteristic information can be obtained by using space-saving and simple equipment at a lower cost than in the first embodiment. (Transfer function, regression transfer function) can be calculated. As a result, in the second embodiment, it is possible to improve the response of the temperature measurement of the thermometer 101 with simple equipment that can be realized in a small space and at low cost.
《第2実施形態の変形例》
 次に、本発明の第2実施形態の温度計特性情報生成システムの変形例の構成について、図8を参照しながら説明する。
<< Modified example of the second embodiment >>
Next, the configuration of a modified example of the thermometer characteristic information generation system of the second embodiment of the present invention will be described with reference to FIG.
 ここで、図8は、第2実施形態の変形例の温度計特性情報生成システムのシステム構成を示した模式図である。
 なお、第2実施形態の変形例の構成のうち、第1、2実施形態と同じ構成(或いは相当する構成)には、同じ符号を付して、説明を簡略化或いは省略し、主に、第1、2実施形態と異なる部分を説明する。
Here, FIG. 8 is a schematic diagram showing the system configuration of the thermometer characteristic information generation system of the modified example of the second embodiment.
Of the configurations of the modified examples of the second embodiment, the same configurations (or equivalent configurations) as those of the first and second embodiments are designated by the same reference numerals to simplify or omit the description, and mainly, The parts different from the first and second embodiments will be described.
 第2実施形態の変形例の温度計特性情報生成システムW2’は、上述した第2実施形態のものから、配管20の構成を変形すると共に、バルブ(第1バルブ21、第2バルブ22)の位置を変更し、温度計101及び圧力計102の設置位置を変更した構成になっている。 The thermometer characteristic information generation system W2'of the modified example of the second embodiment is different from that of the second embodiment described above in that the configuration of the pipe 20 is modified and that the valves (first valve 21, second valve 22) are used. The position is changed, and the installation positions of the thermometer 101 and the pressure gauge 102 are changed.
 具体的には、図8に示すように、第2実施形態の変形例の温度計特性情報生成システムW2’は、配管(円管)20を備え且つ配管20に配管に加圧空気を供給して配管20の管内の圧力をステップ状に変化させる圧力ステップ応答装置Zと、配管20の管内の温度(管内温度(T’))を計測する温度計101と、配管20の管内の圧力(管内圧力(P))を計測する圧力計102と、配管20の管壁温度(Tw)を計測する温度計105と、外気温(Tо)を計測する温度計106と、外気圧(Pо)を計測する圧力計107と、温度計101の温度計特性情報(伝達関数、回帰伝達関数)を算出する計測装置120とを有している。 Specifically, as shown in FIG. 8, the thermometer characteristic information generation system W2'of the modified example of the second embodiment includes a pipe (circular pipe) 20 and supplies pressurized air to the pipe 20. A pressure step response device Z that changes the pressure inside the pipe of the pipe 20 in steps, a thermometer 101 that measures the temperature inside the pipe 20 (inside the pipe (T')), and the pressure inside the pipe 20 (inside the pipe). A pressure meter 102 that measures the pressure (P)), a thermometer 105 that measures the tube wall temperature (Tw) of the pipe 20, a thermometer 106 that measures the outside temperature (Tо), and an outside pressure (Pо). It has a pressure meter 107 and a measuring device 120 for calculating thermometer characteristic information (transmission function, regression transfer function) of the thermometer 101.
 第2実施形態の変形例では、配管20は、第1方向(図中のY方向)に延設されている第1直管部20cと、第1直管部20cの他端部に接続され且つ第1直管部20cに対して直角な第2方向(図中のX方向)に延設されている第2直管部20dとを備えている。 In the modified example of the second embodiment, the pipe 20 is connected to the first straight pipe portion 20c extending in the first direction (Y direction in the drawing) and the other end of the first straight pipe portion 20c. Further, it is provided with a second straight pipe portion 20d extending in a second direction (X direction in the drawing) perpendicular to the first straight pipe portion 20c.
 また、第1直管部20cは、両端が貫通しており、その一端部(図中の下端部)が加圧空気供給装置30に接続され、加圧空気供給装置30から管内に所定圧力の加圧空気が供給されるようになっている。また、第1直管部20cは、その他端部(図中の上端部)が「第2直管部20dの他端部側の側面」に接続されており、第1直管部20cの管内と第2直管部20cの管内とが連通している。
 また、第2直管部20dは、一端部が封鎖された封鎖面20d1になっており、他端部が開口している。そして、加圧空気供給装置30からの加圧空気は、第1直管部20cを経由して、第2直管部20dの管内に流入するようになっている。
Further, both ends of the first straight pipe portion 20c penetrate, and one end portion (lower end portion in the drawing) is connected to the pressurized air supply device 30, and a predetermined pressure is applied from the pressurized air supply device 30 into the pipe. Pressurized air is supplied. Further, the other end portion (upper end portion in the drawing) of the first straight pipe portion 20c is connected to the "side surface on the other end side of the second straight pipe portion 20d", and the inside of the first straight pipe portion 20c. And the inside of the second straight pipe portion 20c communicate with each other.
Further, the second straight pipe portion 20d has a closed surface 20d1 in which one end is closed, and the other end is open. Then, the pressurized air from the pressurized air supply device 30 flows into the pipe of the second straight pipe portion 20d via the first straight pipe portion 20c.
 第1バルブ21は、配管20を構成する第1直管部20cの管内に設けられている。
 また、第2バルブ22は、配管20を構成する第2直管部20dの他端部の管内に設けられており、他端部の開口を開閉できるようになっている。
The first valve 21 is provided in the pipe of the first straight pipe portion 20c constituting the pipe 20.
Further, the second valve 22 is provided in the pipe at the other end of the second straight pipe portion 20d constituting the pipe 20, and can open and close the opening at the other end.
 また、温度計101は、第2直管部20dの一端部側の封鎖面20d1の近傍(壁面の近傍)に設置される。また、圧力計102は、第2直管部20dの一端部側に設置されている。
 このような位置に、温度計101を設置したのは、配管20の管内において、図5に示した第2実施形態よりもさらに、流速が「0m/s」に近いポイントで、配管20の管内の温度を計測できるようにするためである。なお、図示する例では、圧力計102は、第2直管部20dの一端部側に設置されているが、これは一例であり、設置位置を限定するものではない。
Further, the thermometer 101 is installed in the vicinity of the sealing surface 20d1 on the one end side of the second straight pipe portion 20d (near the wall surface). Further, the pressure gauge 102 is installed on one end side of the second straight pipe portion 20d.
The thermometer 101 was installed at such a position in the pipe 20 at a point where the flow velocity is closer to "0 m / s" than in the second embodiment shown in FIG. This is so that the temperature of the can be measured. In the illustrated example, the pressure gauge 102 is installed on one end side of the second straight pipe portion 20d, but this is an example and does not limit the installation position.
 また、第2実施形態の変形例は、上述した図6の第2実施形態と同様の手順にしたがい、温度計特性情報生成処理を行うようになっているため、説明を省略するが、S11のデータ計測処理では、以下のようにして配管20の管内の加圧空気(流体)の圧力をステップ状に変化させる。 Further, in the modified example of the second embodiment, the thermometer characteristic information generation process is performed according to the same procedure as that of the second embodiment of FIG. 6 described above. In the data measurement process, the pressure of the pressurized air (fluid) in the pipe 20 is changed in steps as follows.
 具体的には、圧力ステップ応答装置Zのバルブ操作装置40により、第1バルブ21を「開」にして、第2バルブ22を「閉」にした状態にして、加圧空気供給装置30を駆動させて配管20に、所定時間、加圧空気を流入させる。また、バルブ操作装置40は、所定時間経過すると、第1バルブ21を「閉」にする。これにより、第1直管部20cの第1バルブ11と、第1直管部20dの一端部の封鎖面20d1と、第1直管部20dの他端部の第2バルブ22との間で形成される領域に、加圧空気供給装置30から供給された加圧空気(流体)を閉じ込められる。その後、バルブ操作装置40が、第2バルブ22の開閉状態を制御して、配管20の加圧空気(流体)の圧力をステップ状に変化させる。
 そして、上述した第2実施形態と同様、計測装置120のデータ取得部112は、配管20の加圧空気(流体)の圧力をステップ状に変化させている最中に、温度計101が計測した配管20の管内温度(T’)と、圧力計102が計測した配管20の管内圧力(P)と、温度計105が計測した管壁温度(Tw)と、温度計106が計測した外気温(Tо)と、圧力計107が計測した外気圧(Pо)とを取得する。
Specifically, the valve operating device 40 of the pressure step response device Z drives the pressurized air supply device 30 with the first valve 21 "open" and the second valve 22 "closed". The pressurized air is allowed to flow into the pipe 20 for a predetermined time. Further, the valve operating device 40 closes the first valve 21 after a lapse of a predetermined time. As a result, between the first valve 11 of the first straight pipe portion 20c, the sealing surface 20d1 at one end of the first straight pipe portion 20d, and the second valve 22 at the other end of the first straight pipe portion 20d. Pressurized air (fluid) supplied from the pressurized air supply device 30 is confined in the formed region. After that, the valve operating device 40 controls the open / closed state of the second valve 22 to change the pressure of the pressurized air (fluid) in the pipe 20 in steps.
Then, as in the second embodiment described above, the data acquisition unit 112 of the measuring device 120 was measured by the thermometer 101 while the pressure of the pressurized air (fluid) of the pipe 20 was being changed in steps. The pipe temperature (T') of the pipe 20, the pipe pressure (P) of the pipe 20 measured by the pressure gauge 102, the pipe wall temperature (Tw) measured by the thermometer 105, and the outside temperature (Tw) measured by the thermometer 106. Tо) and the external pressure (Pо) measured by the thermometer 107 are acquired.
 このように、第2実施形態の変形例においても、上述した第2実施形態と同様の作用効果が得られる。
 また、第2実施形態の変形例では、第2実施形態と比べて、流速が「0m/s」に近いポイントで、配管20の管内の温度及び圧力を計測できるため、第2実施形態と比べて、より正確に、温度計101が計測した計測値(T’)を補正するための温度計特性情報(伝達関数、回帰伝達関数)を算出することができる。
As described above, even in the modified example of the second embodiment, the same action and effect as those of the above-described second embodiment can be obtained.
Further, in the modified example of the second embodiment, the temperature and pressure inside the pipe 20 can be measured at a point where the flow velocity is closer to "0 m / s" as compared with the second embodiment, and therefore, as compared with the second embodiment. Therefore, it is possible to more accurately calculate the thermometer characteristic information (transfer function, regression transfer function) for correcting the measured value (T') measured by the thermometer 101.
 以上、説明したように、本発明の実施形態及びその変形例によれば、温度計101が高応答に温度を計測できるようにするための温度計特性情報を生成する温度計特性情報生成システム及び温度計特性情報生成方法を提供することができる。 As described above, according to the embodiment of the present invention and its modification, the thermometer characteristic information generation system and the thermometer characteristic information generation system for generating the thermometer characteristic information for enabling the thermometer 101 to measure the temperature with high response. A method for generating thermometer characteristic information can be provided.
 なお、本発明は、上述した実施形態及びその変形例に限定されるものではなく、その要旨の範囲内において種々の変更が可能である。 The present invention is not limited to the above-described embodiments and modifications thereof, and various modifications can be made within the scope of the gist thereof.
W1、W2、W2’…温度計特性情報生成システム
101…温度計
102…圧力計
103…流量計
105…温度計
106…温度計
107…圧力計
110、120…計測装置
111…制御部
112…データ取得部
113…温度計特性算出部
114…温度補正部
121…流体解析処理部
122…温度計特性算出部
 
1…エンジンベンチ
10…ダイナモメータ
11…ダイナモ制御装置
15…シャフト
 
E…エンジン
3…インテークマニホールド
5…インテークパイプ(吸気管)
7…スロットルバルブ
9…排出管
11…エンジンシリンダ
 
Z…圧力ステップ応答装置
20…配管
20a、20c…第1直管部
20b、20d…第2直管部
20d1…封鎖面
21…第1バルブ
22…第2バルブ
30…加圧空気供給装置
40…バルブ操作装置
W1, W2, W2'... Thermometer characteristic information generation system 101 ... Thermometer 102 ... Pressure gauge 103 ... Flow meter 105 ... Thermometer 106 ... Thermometer 107 ... Pressure gauge 110, 120 ... Measuring device 111 ... Control unit 112 ... Data Acquisition unit 113 ... Thermometer characteristic calculation unit 114 ... Temperature correction unit 121 ... Fluid analysis processing unit 122 ... Thermometer characteristic calculation unit
1 ... Engine bench 10 ... Dynamometer 11 ... Dynamo control device 15 ... Shaft
E ... Engine 3 ... Intake manifold 5 ... Intake pipe (intake pipe)
7 ... Throttle valve 9 ... Discharge pipe 11 ... Engine cylinder
Z ... Pressure step response device 20 ... Piping 20a, 20c ... First straight pipe portion 20b, 20d ... Second straight pipe portion 20d1 ... Sealing surface 21 ... First valve 22 ... Second valve 30 ... Pressurized air supply device 40 ... Valve operating device

Claims (8)

  1.  エンジン試験装置に設置されたエンジンのエンジンシリンダの筒内温度を計測する温度計と、前記エンジンシリンダの筒内圧力を計測する圧力計と、前記エンジンシリンダに流入される空気流量を計測する流量計と、温度計特性情報を算出する計測装置とを備えた温度計特性情報生成システムであって、
     前記計測装置は、
     前記エンジン試験装置が前記エンジンを燃焼させずに、前記エンジンシリンダに空気を流入して圧縮動作を行わせている最中に、前記温度計が計測した筒内温度、前記圧力計が計測した筒内圧力、及び前記流量計が計測した空気流量を取得するデータ取得部と、
     予め記憶している理想気体の状態方程式と、前記取得した筒内圧力及び空気流量とを用いて、前記エンジンシリンダ内の温度の真値としてリファレンス温度を算出し、該リファレンス温度及び前記取得した筒内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出する温度計特性算出部とを有することを特徴とする温度計特性情報生成システム。
    A thermometer that measures the in-cylinder temperature of the engine cylinder of the engine installed in the engine test device, a pressure meter that measures the in-cylinder pressure of the engine cylinder, and a flow meter that measures the flow rate of air flowing into the engine cylinder. And a thermometer characteristic information generation system equipped with a measuring device that calculates thermometer characteristic information.
    The measuring device is
    While the engine test device is performing a compression operation by flowing air into the engine cylinder without burning the engine, the cylinder temperature measured by the thermometer and the cylinder measured by the pressure gauge. A data acquisition unit that acquires the internal pressure and the air flow rate measured by the thermometer,
    Using the ideal gas state equation stored in advance and the acquired in-cylinder pressure and air flow rate, the reference temperature is calculated as the true value of the temperature inside the engine cylinder, and the reference temperature and the acquired cylinder are used. A thermometer characteristic information generation system including a thermometer characteristic calculation unit that calculates a transmission function of the thermometer as the thermometer characteristic information using the internal temperature.
  2.  前記温度計特性算出部は、前記リファレンス温度を入力値とし、該リファレンス温度に対応する前記温度計が計測した筒内温度を出力値として、フーリエ解析演算を行い前記温度計の伝達特性を算出し、該算出した伝達特性から前記伝達関数を算出するようになっていることを特徴とする請求項1に記載の温度計特性情報生成システム。 The thermometer characteristic calculation unit calculates the transmission characteristics of the thermometer by performing a Fourier analysis calculation using the reference temperature as an input value and the in-cylinder temperature measured by the thermometer corresponding to the reference temperature as an output value. The thermometer characteristic information generation system according to claim 1, wherein the transfer function is calculated from the calculated transfer characteristics.
  3.  前記温度計特性算出部は、前記算出した伝達関数から回帰伝達関数を算出するようになっており、
     前記計測装置は、前記回帰伝達関数を用いて前記温度計が計測した計測値を補正する温度補正部を有していることを特徴とする請求項1又は2に記載の温度計特性情報生成システム。
    The thermometer characteristic calculation unit calculates a regression transfer function from the calculated transfer function.
    The thermometer characteristic information generation system according to claim 1 or 2, wherein the measuring device has a temperature compensating unit that corrects a measured value measured by the thermometer using the regression transfer function. ..
  4.  第1バルブ及び第2バルブが設置された配管を備え且つ該配管に加圧空気を供給すると共に前記第1、第2バルブの開閉動作を制御して該配管の管内の圧力をステップ状に変化させる圧力ステップ応答装置と、該配管の管内温度を計測する第1温度計と、該配管の管内圧力を計測する第1圧力計と、該配管の管壁温度を計測する第2温度計と、外気温を計測する第3温度計と、外気圧を計測する第2圧力計と、温度計特性情報を算出する計測装置とを備えた温度計特性情報生成システムであって、
     前記計測装置は、
     前記配管の寸法情報と、前記加圧空気の組成情報と、該配管の管内の初期圧力及び初期温度と、前記第1、第2バルブの流路抵抗を示すバルブ情報とが含まれるシミュレーション条件情報を記憶していると共に、
     前記圧力ステップ応答装置が前記配管の圧力をステップ状に変化させている最中に、前記第1温度計が計測した管内温度と、前記第1圧力計が計測した管内圧力と、前記第2温度計が計測した管壁温度と、前記第3温度計が計測した外気温と、前記第2圧力計が計測した外気圧とを取得するデータ取得部と、
     前記シミュレーション条件情報と、前記取得した管壁温度、外気温及び外気圧とを用いた一次元の流体解析を用いたシミュレーションにより前記配管を流れる熱流体モデルを生成し、前記取得した管内圧力と、前記シミュレーションにより生成した熱流体モデルとを用いて、前記配管内の温度の真値としてリファレンス温度を算出する流体解析処理部と、
     前記算出したリファレンス温度及び前記取得した管内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出する温度計特性算出部とを有することを特徴とする温度計特性情報生成システム。
    A pipe equipped with a first valve and a second valve is provided, and pressurized air is supplied to the pipe, and the opening / closing operation of the first and second valves is controlled to change the pressure in the pipe of the pipe in a stepwise manner. A pressure step response device to be operated, a first thermometer for measuring the pressure inside the pipe, a first pressure gauge for measuring the pressure inside the pipe, and a second thermometer for measuring the pipe wall temperature of the pipe. A thermometer characteristic information generation system including a third thermometer for measuring the outside temperature, a second pressure gauge for measuring the outside pressure, and a measuring device for calculating the thermometer characteristic information.
    The measuring device is
    Simulation condition information including dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and valve information indicating the flow path resistance of the first and second valves. As well as remembering
    While the pressure step response device is changing the pressure of the pipe in a step-like manner, the pipe temperature measured by the first thermometer, the pipe pressure measured by the first thermometer, and the second temperature. A data acquisition unit that acquires the tube wall temperature measured by the meter, the outside temperature measured by the third thermometer, and the outside pressure measured by the second pressure meter.
    A thermo-fluid model flowing through the pipe was generated by a simulation using the simulation condition information and a one-dimensional fluid analysis using the acquired pipe wall temperature, outside temperature, and outside pressure, and the acquired pipe pressure and the pressure inside the pipe were obtained. Using the thermo-fluid model generated by the simulation, a fluid analysis processing unit that calculates the reference temperature as the true value of the temperature inside the pipe, and
    A thermometer characteristic information generation system including a thermometer characteristic calculation unit that calculates a transmission function of the thermometer as the thermometer characteristic information using the calculated reference temperature and the acquired tube temperature.
  5.  前記圧力ステップ応答装置は、前記配管に加圧空気を供給する加圧空気供給装置と、前記第1、第2バルブの開閉動作を制御するバルブ操作装置とを有し、
     前記第1バルブが前記配管の一端部側に設置され、前記第2バルブが前記配管の他端部側に設置され、
     前記バルブ操作装置は、前記第1、第2バルブの開閉状態を制御することにより、前記第1、第2バルブの間に、前記加圧空気供給装置から供給された加圧空気を閉じ込め、その後、前記第2バルブの開閉状態を制御して、前記配管の加圧空気の圧力をステップ状に変化させるようになっていることを特徴とする請求項4に記載の温度特性情報生成システム。
    The pressure step response device includes a pressurized air supply device that supplies pressurized air to the pipe, and a valve operating device that controls the opening / closing operation of the first and second valves.
    The first valve is installed on one end side of the pipe, and the second valve is installed on the other end side of the pipe.
    By controlling the open / closed state of the first and second valves, the valve operating device traps the pressurized air supplied from the pressurized air supply device between the first and second valves, and then traps the pressurized air supplied from the pressurized air supply device. The temperature characteristic information generation system according to claim 4, wherein the open / closed state of the second valve is controlled to change the pressure of the pressurized air in the pipe in a stepwise manner.
  6.  前記圧力ステップ応答装置は、前記配管に加圧空気を供給する加圧空気供給装置と、前記第1、第2バルブの開閉動作を制御するバルブ操作装置とを有し、
     前記配管は、第1方向に延設されている第1直管部と、該第1直管部の他端部に接続され且つ該第1直管部に対して直角方向に延設されている第2直管部とを備え、
     前記第1直管部は、両端が貫通しており、その一端部が前記加圧空気供給装置に接続され、その他端部が前記第2直管部の他端部側の側面に接続され、
     前記第2直管部は、一端部が封鎖された封鎖面になっており且つ他端部が開口しており、
     前記第1バルブは、前記第1直管部に設置され、
     前記第2バルブは、前記第2直管部の他端部に設置されて、該他端部の開口を開閉できるようになっており、
     前記温度計は、前記第2直管部の一端部側の封鎖面の近傍に設置されており、
     前記バルブ操作装置は、前記第1、第2バルブの開閉状態を制御することにより、前記第1、第2バルブ及び前記第2直管部の一端部の封鎖面の間で形成される領域に、前記加圧空気供給装置から供給された加圧空気を閉じ込めて、その後、前記第2バルブの開閉状態を制御して、前記配管の加圧空気の圧力をステップ状に変化させるようになっていることを特徴とする請求項4に記載の温度特性情報生成システム。
    The pressure step response device includes a pressurized air supply device that supplies pressurized air to the pipe, and a valve operating device that controls the opening / closing operation of the first and second valves.
    The pipe is connected to a first straight pipe portion extending in the first direction and the other end of the first straight pipe portion, and extends in a direction perpendicular to the first straight pipe portion. Equipped with a second straight pipe section
    Both ends of the first straight pipe portion penetrate, one end thereof is connected to the pressurized air supply device, and the other end portion is connected to the side surface of the second straight pipe portion on the other end side.
    The second straight pipe portion has a closed surface in which one end is closed and the other end is open.
    The first valve is installed in the first straight pipe portion and is installed.
    The second valve is installed at the other end of the second straight pipe portion so as to be able to open and close the opening of the other end portion.
    The thermometer is installed in the vicinity of the sealing surface on the one end side of the second straight pipe portion.
    The valve operating device controls the open / closed state of the first and second valves to form a region between the first and second valves and the sealing surface of one end of the second straight pipe portion. , The pressurized air supplied from the pressurized air supply device is confined, and then the open / closed state of the second valve is controlled to change the pressure of the pressurized air in the pipe in a stepwise manner. The temperature characteristic information generation system according to claim 4, wherein the temperature characteristic information generation system is provided.
  7.  エンジン試験装置に設置されたエンジンのエンジンシリンダの筒内温度を計測する温度計と、前記エンジンシリンダの筒内圧力を計測する圧力計と、前記エンジンシリンダに流入される空気流量を計測する流量計と、温度計特性情報を算出する計測装置とを用いた温度計特性情報生成方法であって、
     前記エンジン試験装置が、前記エンジンを燃焼させずに前記エンジンシリンダに空気を流入して圧縮動作を行わせるステップと、
     前記計測装置が、前記エンジンシリンダに空気を流入して圧縮動作を行わせている最中に、前記温度計が計測した筒内温度、前記圧力計が計測した筒内圧力、及び前記流量計が計測した空気流量を取得するステップと、
     前記計測装置が、予め記憶している理想気体の状態方程式と、前記取得した筒内圧力及び空気流量とを用いて、前記エンジンシリンダ内の温度の真値としてリファレンス温度を算出し、該リファレンス温度及び前記取得した筒内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出するステップとを実行することを特徴とする温度計特性情報生成方法。
    A thermometer that measures the in-cylinder temperature of the engine cylinder of the engine installed in the engine test device, a pressure meter that measures the in-cylinder pressure of the engine cylinder, and a flow meter that measures the flow rate of air flowing into the engine cylinder. And a thermometer characteristic information generation method using a measuring device that calculates thermometer characteristic information.
    A step in which the engine test device causes air to flow into the engine cylinder to perform a compression operation without burning the engine.
    While the measuring device is causing air to flow into the engine cylinder to perform a compression operation, the in-cylinder temperature measured by the thermometer, the in-cylinder pressure measured by the pressure gauge, and the flow meter Steps to get the measured air flow rate and
    Using the ideal gas state equation stored in advance by the measuring device and the acquired in-cylinder pressure and air flow rate, the reference temperature is calculated as the true value of the temperature inside the engine cylinder, and the reference temperature is calculated. A method for generating thermometer characteristic information, which comprises executing a step of calculating a transmission function of the thermometer as the thermometer characteristic information using the acquired in-cylinder temperature.
  8.  第1バルブ及び第2バルブが設置された配管を備え且つ該配管に加圧空気を供給すると共に前記第1、第2バルブの開閉動作を制御して該配管の管内の圧力をステップ状に変化させる圧力ステップ応答装置と、該配管の管内温度を計測する第1温度計と、該配管の管内圧力を計測する第1圧力計と、該配管の管壁温度を計測する第2温度計と、外気温を計測する第3温度計と、外気圧を計測する第2圧力計と、温度計特性情報を算出する計測装置とを用いた温度計特性情報生成方法であって、
     前記計測装置には、前記配管の寸法情報と、前記加圧空気の組成情報と、該配管の管内の初期圧力及び初期温度と、前記第1、第2バルブの流路抵抗を示すバルブ情報とが含まれるシミュレーション条件情報が記憶されており、
     前記圧力ステップ応答装置が、前記配管の管内の圧力をステップ状に変化させるステップと、
     前記計測装置が、前記配管の管内の圧力がステップ状に変化している最中に、前記第1温度計が計測した管内温度と、前記第1圧力計が計測した管内圧力と、前記第2温度計が計測した管壁温度と、前記第3温度計が計測した外気温と、前記第2圧力計が計測した外気圧とを取得するステップと、
     前記計測装置が、前記シミュレーション条件情報と、前記取得した管壁温度、外気温及び外気圧とを用いた一次元の流体解析を用いたシミュレーションにより前記配管を流れる熱流体モデルを生成し、前記取得した管内圧力と、前記シミュレーションにより生成した熱流体モデルとを用いて、前記配管内の流体の温度の真値としてリファレンス温度を算出するステップと、
     前記計測装置が、前記算出したリファレンス温度及び前記取得した管内温度を用いて前記温度計特性情報として前記温度計の伝達関数を算出するステップとを実行することを特徴とする温度計特性情報生成方法。
     
     
     
    A pipe equipped with a first valve and a second valve is provided, and pressurized air is supplied to the pipe, and the opening / closing operation of the first and second valves is controlled to change the pressure in the pipe of the pipe in a stepwise manner. A pressure step response device to be operated, a first thermometer for measuring the pressure inside the pipe, a first pressure gauge for measuring the pressure inside the pipe, and a second thermometer for measuring the pipe wall temperature of the pipe. It is a thermometer characteristic information generation method using a third thermometer for measuring the outside temperature, a second pressure gauge for measuring the outside pressure, and a measuring device for calculating the thermometer characteristic information.
    The measuring device includes dimensional information of the pipe, composition information of the pressurized air, initial pressure and initial temperature in the pipe of the pipe, and valve information indicating the flow path resistance of the first and second valves. Simulation condition information including is stored,
    A step in which the pressure step response device changes the pressure in the pipe of the pipe in a stepwise manner, and
    While the pressure in the pipe of the pipe is changing in steps, the measuring device has the pipe temperature measured by the first thermometer, the pipe pressure measured by the first thermometer, and the second. A step of acquiring the tube wall temperature measured by the thermometer, the outside air temperature measured by the third thermometer, and the outside atmospheric pressure measured by the second pressure gauge.
    The measuring device generates a thermo-fluid model flowing through the pipe by a simulation using the simulation condition information and a one-dimensional fluid analysis using the acquired pipe wall temperature, outside temperature and outside pressure, and obtains the above. A step of calculating the reference temperature as the true value of the temperature of the fluid in the pipe by using the pressure inside the pipe and the thermo-fluid model generated by the simulation.
    A method for generating thermometer characteristic information, wherein the measuring device executes a step of calculating a transfer function of the thermometer as the thermometer characteristic information using the calculated reference temperature and the acquired tube temperature. ..


PCT/JP2020/011272 2020-03-13 2020-03-13 Thermometer characteristic information generation system and thermometer characteristic information generation method WO2021181702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/011272 WO2021181702A1 (en) 2020-03-13 2020-03-13 Thermometer characteristic information generation system and thermometer characteristic information generation method
JP2020539870A JP6779422B1 (en) 2020-03-13 2020-03-13 Thermometer characteristic information generation system and thermometer characteristic information generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011272 WO2021181702A1 (en) 2020-03-13 2020-03-13 Thermometer characteristic information generation system and thermometer characteristic information generation method

Publications (1)

Publication Number Publication Date
WO2021181702A1 true WO2021181702A1 (en) 2021-09-16

Family

ID=73022412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011272 WO2021181702A1 (en) 2020-03-13 2020-03-13 Thermometer characteristic information generation system and thermometer characteristic information generation method

Country Status (2)

Country Link
JP (1) JP6779422B1 (en)
WO (1) WO2021181702A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318349B2 (en) * 1991-06-19 2002-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Temperature detection method
WO2015016304A1 (en) * 2013-07-31 2015-02-05 いすゞ自動車株式会社 Sensor output value estimation device
JP2019045413A (en) * 2017-09-06 2019-03-22 トヨタ自動車株式会社 Measurement method of gas temperature in cylinder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318349B2 (en) * 1991-06-19 2002-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Temperature detection method
WO2015016304A1 (en) * 2013-07-31 2015-02-05 いすゞ自動車株式会社 Sensor output value estimation device
JP2019045413A (en) * 2017-09-06 2019-03-22 トヨタ自動車株式会社 Measurement method of gas temperature in cylinder

Also Published As

Publication number Publication date
JPWO2021181702A1 (en) 2021-09-16
JP6779422B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US20180128660A1 (en) Flow rate determination method and apparatus
JP6130825B2 (en) Upstream volume mass flow verification system and method
US8763443B2 (en) Method for operating a density measuring device and device for density measurement
US7685871B2 (en) System and method for estimating engine internal residual fraction using single-cylinder simulation and measured cylinder pressure
Kar et al. Instantaneous exhaust temperature measurements using thermocouple compensation techniques
KR101606497B1 (en) Calibration Method for Mass Flow Meter with Imbedded Flow Function
Gatto et al. Mean and fluctuating pressure measurements over a circular cylinder in cross flow using plastic tubing
WO2021181702A1 (en) Thermometer characteristic information generation system and thermometer characteristic information generation method
US20060225482A1 (en) Exhaust volume measurement device
García-Berrocal et al. The Coriolis mass flow meter as a volume meter for the custody transfer in liquid hydrocarbons logistics
JP5569383B2 (en) Pulsating flow measurement method and gas flow measurement device
EP2927465A1 (en) Method for determining the instantaneous mass flow rate of a gas, corresponding device and computer program
Liu et al. A model for on-line monitoring of in-cylinder residual gas fraction (RGF) and mass flowrate in gasoline engines
Marelli et al. Towards the Direct Evaluation of Turbine Isentropic Efficiency in Turbocharger Testing
Dempsey et al. Comparison of cylinder pressure measurements on a heavy-duty diesel engine using a switching adapter
Storm et al. Analysis of cylinder pressure measurement accuracy for internal combustion engine control
JP6922116B1 (en) Airflow sensor characteristic information generation system and engine control system
CN214748328U (en) Meter calibrating device and system
JP2022108481A (en) A/F sensor characteristic information generation system and engine control system
Dowell et al. Accuracy of diesel engine combustion metrics over the full range of engine operating conditions
Venkataraman et al. Analyzing Engine Exhaust Gas Temperature Pulsations and Gas-Dynamics Using Thin-Wire Thermocouples
Brusa et al. Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model
JP2023001641A (en) Air flow calculation system
Pemberton An overview of dynamic pressure measurement considerations
Gandhi et al. Summary of flow metering options for injector characterization

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020539870

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924165

Country of ref document: EP

Kind code of ref document: A1