WO2021179685A1 - 直流多微电网系统及控制方法 - Google Patents
直流多微电网系统及控制方法 Download PDFInfo
- Publication number
- WO2021179685A1 WO2021179685A1 PCT/CN2020/131689 CN2020131689W WO2021179685A1 WO 2021179685 A1 WO2021179685 A1 WO 2021179685A1 CN 2020131689 W CN2020131689 W CN 2020131689W WO 2021179685 A1 WO2021179685 A1 WO 2021179685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- direct current
- output
- phase
- router
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/12—Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/14—Balancing the load in a network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J4/00—Circuit arrangements for mains or distribution networks not specified as ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J5/00—Circuit arrangements for transfer of electric power between ac networks and dc networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- This application relates to the field of microgrid technology, and in particular to a DC multi-microgrid system and control method.
- AC microgrid is the main application at present.
- the energy system of the microgrid is established through photovoltaics, energy storage, diesel generators, etc., and the system achieves AC power supply through inverters.
- the DC system has a relatively large advantage, it does not need to consider the control of frequency, phase, etc.
- the DC direct drive effectively improves the system efficiency.
- a DC multi-microgrid system includes:
- a total energy router The input ends of the total energy router are used to obtain three-phase alternating current and single-phase alternating current, respectively, and the total energy router is used to convert the three-phase alternating current and/or the single-phase alternating current into a first direct current And a second direct current, and output the three-phase alternating current, the single-phase alternating current, the first direct current and the second direct current;
- a plurality of sub-center energy routers each of the sub-center energy routers is electrically connected to the output end of the total energy router, the sub-center energy router is provided with multiple sets of output interfaces, and each set of the output interfaces is used for Output the three-phase alternating current or the single-phase alternating current, the first direct current and the second direct current;
- a plurality of household-level routers each of the household-level routers is electrically connected to a set of the output interfaces, the output end of the household-level router is used to electrically connect a load, and the household-level router is used to obtain the three-phase alternating current Or the single-phase alternating current, the first direct current and the second direct current;
- the household router includes a control device, a photovoltaic power generation device, and an energy storage device.
- the control device controls the photovoltaic power generation device, the energy storage device, the three-phase AC power or the single-phase AC power, according to preset rules, The first direct current power and the second direct current power bidding output so as to make the load operate normally;
- the sub-center energy router is also used to coordinate the flow of electric energy among the household-level routers.
- control device is configured to preferentially control the photovoltaic power generation device and/or the energy storage device to supply power to the load, and determine the power supply of the photovoltaic power generation device and the energy storage device Whether it meets the power demand of the load;
- control device controls the three-phase alternating current or the single-phase alternating current, the first direct current and the The second direct current bidding output is used to make the load operate normally.
- the source of the first direct current received by the household-level router is the first direct current directly output by the sub-center energy router or the first direct current output by other household-level routers ;
- the source of the second direct current received by the household-level router is the second direct current directly output by the sub-center energy router or the second direct current output by other household-level routers.
- control device is electrically connected to the photovoltaic power generation device, the energy storage device, and the sub-center energy router, and the control device is also used to obtain the remaining power of the energy storage device , And determine whether to control the energy storage device to discharge based on the power setting threshold.
- control device is configured to compare the remaining power with the power setting threshold, and if the remaining power is greater than the power setting threshold, the control device controls the storage The energy storage device discharges, and if the remaining power is less than or equal to the set threshold of power, the control device controls the energy storage device not to discharge.
- the output interface includes an alternating current output interface, a first direct current output interface, and a second direct current output interface, and the alternating current output interface, the first direct current output interface, and the second direct current output interface are in A switch device is provided, and each switch device is used to control the on and off of the alternating current output interface or the first direct current output interface or the second direct current output interface, respectively.
- the sub-center energy router includes:
- the sub-center control device is electrically connected to a plurality of the switching devices and a plurality of the control devices, and is used for controlling the on and off of each of the switching devices, and is also used for coordinating each of the switching devices through the switching devices.
- the total energy router includes:
- the first power grid input interface is used to obtain the three-phase alternating current
- the second power grid input interface is used to obtain the single-phase AC power
- a three-phase AC/DC conversion device the input end of the three-phase AC/DC conversion device is electrically connected to the first power grid input interface, and the output end of the three-phase AC/DC conversion device is connected to a plurality of the sub-centers
- the energy router is electrically connected to convert the three-phase alternating current into the first direct current
- a single-phase AC/DC conversion device the input end of the single-phase AC/DC conversion device is electrically connected to the second power grid input interface, and the output end of the single-phase AC/DC conversion device is connected to a plurality of the sub-centers
- An energy router is electrically connected to convert the single-phase alternating current into the second direct current
- a DC/DC conversion device the first end of the DC/DC conversion device is electrically connected to the output end of the three-phase AC/DC conversion device, and the second end of the DC/DC conversion device is connected to the single-phase AC
- the output end of the DC/DC conversion device is electrically connected to convert the first DC power into the second DC power, or convert the second DC power into the first DC power.
- the total energy router further includes:
- the photovoltaic power distribution interface is electrically connected to the output terminal of the three-phase AC/DC conversion device
- the energy storage and power distribution interface is electrically connected to the output terminal of the single-phase AC/DC conversion device
- the first power grid output interface is used to output the three-phase alternating current
- the second power grid output interface is used to output the single-phase alternating current.
- the voltages of the first direct current and the second direct current are different.
- the output end of the household-level router is also provided with a metering device for collecting electricity consumption information.
- a control method of a DC multi-micro grid system which is applied to the DC multi-micro grid system according to any one of the above embodiments, and the method includes:
- the three-phase alternating current or the single-phase alternating current, the first direct current and the second direct current are controlled. Output to make the load operate normally.
- control device controls the photovoltaic power generation device and/or the energy storage device to supply power to the load, and determines whether the photovoltaic power generation device and the energy storage device are adequately powered
- the steps include:
- the output voltage of the photovoltaic power generation device does not meet the power demand of the load, obtain the remaining power of the energy storage device, and determine whether to control the energy storage device to supply power to the load based on the power setting threshold ;
- control the energy storage device to supply power to the load, and determine whether the power supply of the photovoltaic power generation device and the energy storage device meets the power demand of the load .
- the above-mentioned DC multi-microgrid system and control method convert three-phase AC power and/or single-phase AC power into first DC power and second DC power through the total energy router, and output three-phase AC power, single-phase AC power,
- the first direct current and the second direct current are sent to a plurality of sub-center energy routers.
- Each sub-center energy router outputs three-phase alternating current or single-phase alternating current, first direct current and second direct current to each of the household-level routers through multiple sets of output interfaces, so that one sub-center energy router can realize multiple household-level DC micro Network access.
- the control device in each household-level router controls the photovoltaic power generation device, energy storage device, three-phase AC or single-phase AC, the first DC power and the second DC power output according to preset rules to make the load run normally, and share it with each other.
- the central energy router cooperates with the sub-central energy router to coordinate the flow of electric energy between the household-level routers, so as to realize the orderly sharing of energy between the DC microgrid, avoid the problem of redundancy and uneconomical problems in the system, and improve the efficiency of the DC microgrid. Stability and reliability of power supply.
- Fig. 1 is a structural block diagram of a DC multi-microgrid system provided by an embodiment of the application.
- Fig. 2 is a schematic structural diagram of a household router provided by an embodiment of the application.
- Fig. 3 is a schematic structural diagram of a sub-center energy router provided by an embodiment of the application.
- Figure 4 is a schematic structural diagram of a total energy router provided by an embodiment of the application.
- Fig. 5 is a flowchart of a control method of a DC multi-microgrid system provided by an embodiment of the application.
- an embodiment of the present application provides a DC multi-microgrid system 10, including: a total energy router 100, multiple sub-center energy routers 200, and multiple household-level routers 300.
- the input ends of the total energy router 100 are used to obtain three-phase AC power 101 and single-phase AC power 102 respectively.
- the total energy router 100 is used to convert the three-phase AC power 101 and/or the single-phase AC power 102 into a first DC power and a second DC power, and output the three-phase AC power 101, the single-phase AC power 102, The first direct current and the second direct current.
- Each of the sub-center energy routers 200 is electrically connected to the output end of the total energy router 100.
- the sub-center energy router 200 is provided with multiple sets of output interfaces. Each group of output interfaces is used to output the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power.
- Each household-level router 300 is electrically connected to a set of output interfaces. The output terminal of the household router 300 is used to electrically connect the load 301.
- the household router 300 is used to obtain the three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the second direct current.
- the household router 300 includes a control device 310, a photovoltaic power generation device 320, and an energy storage device 330.
- the control device 310 is used to control the photovoltaic power generation device 320, the energy storage device 330, the three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the second direct current Make the load 301 operate normally.
- the sub-center energy router 200 is also used to coordinate the flow of electric energy among the household-level routers 300.
- the specific structure of the total energy router 100 is not limited, as long as it can convert the three-phase AC power 101 and/or the single-phase AC power 102 into a first DC power and a second DC power, and output the three-phase AC power.
- the functions of the alternating current 101, the single-phase alternating current 102, the first direct current and the second direct current are sufficient.
- the total energy router 100 may be composed of a three-phase AC/DC converter, a single-phase AC/DC converter, and an air switch.
- the total energy router 100 may also be composed of a three-phase AC/DC converter, a DC/DC converter, a single-phase AC/DC converter, and a voltage detection device.
- the specific voltage of the three-phase alternating current 101 may be 380V alternating current.
- the specific voltage of the single-phase alternating current 102 may be 220V alternating current.
- the total energy router 100 is used to convert the three-phase alternating current 101 and/or the single-phase alternating current 102 into the first direct current and the second direct current means: the total energy router 100 can convert The three-phase AC power 101 is converted into the first DC power, and then the first DC power is converted into the second DC power; the total energy router 100 may also convert the single-phase AC power 102 into the first DC power Second direct current, and then convert the second direct current into the first direct current. The total energy router 100 may also convert the three-phase AC power 101 into the first DC power, and convert the single-phase AC power 102 into the second DC power.
- the total energy router 100 no matter which conversion method is adopted by the total energy router 100, it only needs to ensure that the total energy router 100 can output the three-phase AC power 101, the single-phase AC power 102, the first DC power, and the first DC power. Two direct current is sufficient.
- the voltages of the first direct current and the second direct current are different.
- the voltage of the first direct current can be selected according to actual requirements.
- the voltage range of the first direct current may be 600V-750V.
- the voltage of the second direct current can also be selected according to actual requirements.
- the voltage range of the second direct current may be 375-400V.
- the total energy router 100 also has a function of detecting whether the DC power parameters such as voltage, current, power, and power of each output port are normal.
- the total energy router 100 is provided with a controller.
- the output end of the total energy router 100 is provided with the three-phase alternating current 101 output port, the single-phase alternating current 102 output port, the first direct current output port, and the second direct current output port. All are equipped with voltage detection devices.
- the voltage of each port is detected by the voltage detection device, and the detected voltage of each port is sent to the controller.
- the controller compares the voltage of each port with their respective output voltage thresholds, so as to determine whether the voltage of the respective output port is normal based on the respective comparison results, thereby avoiding undervoltage and other phenomena, and ensuring the reliability of power supply.
- the above-mentioned voltage detection device can also be replaced with other direct current parameter detection devices (such as current detection devices, power detection devices, power detection devices, etc.).
- the controller monitors the total energy router 100 and provides power consumption information of the router, thereby providing power consumption information for the dispatch of the microgrid system.
- the specific structure of the sub-center energy router 200 is not limited, as long as it has the function of coordinating the flow of electric energy among the household-level routers 300.
- the sub-center energy router 200 may be composed of a sub-center controller, an AC/DC converter, and a plurality of contactors in conjunction with power transmission lines.
- the sub-center energy router 200 may also be composed of a sub-center controller, an AC/DC converter, a plurality of micro-break switches, and a plurality of contactors in conjunction with power transmission lines.
- the sub-center energy router 200 is provided with a power distribution input interface.
- the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power output by the total energy router 100 are received through a power distribution input interface.
- the three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the second direct current are respectively separated from multiple common bus power distribution interfaces, and multiple sets of output interfaces are formed.
- each group of the output interfaces includes a first direct current public bus distribution interface, a second direct current public bus distribution interface, and an alternating current public bus distribution interface, so that each group of the output interfaces can output The three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the second direct current.
- a micro-break switch is provided on each common bus.
- the micro switch may be an air switch.
- each of the micro switches is turned on by default.
- Each household-level router 300 is electrically connected to a set of output interfaces. That is, each of the sub-center energy routers 200 can realize the access of multiple household-level DC microgrids (that is, the household-level routers 300). Through the loop control of the sub-center controller in the sub-center router 200, ring network scenarios of different household-level DC microgrids can be realized. For example, the household-level DC microgrid can choose pure AC access, or AC/DC access, or Can choose to connect with other household-level DC microgrids to achieve DC ring network access.
- control device 310 is not limited, as long as it can control the photovoltaic power generation device 320, the energy storage device 330, the three-phase AC power 101 or the single-phase AC power 102, the first The functions of direct current and the second direct current bidding output to enable the load 301 to operate normally are sufficient.
- the control device 310 may be a single-chip microcomputer. In an embodiment, the control device 310 may also be a control chip. In one embodiment, the control device 310 is electrically connected to the photovoltaic power generation device 320, the energy storage device 330, and the sub-center energy router 200, respectively.
- the specific structure of the photovoltaic power generation device 320 is not limited, as long as it has a photovoltaic power generation function.
- the photovoltaic power generation device 320 may be composed of solar panels and DC/DC.
- the photovoltaic power generation device 320 may also be composed of solar panels and an AC/DC coordinated controller.
- the energy storage device 330 may be an energy storage battery.
- the control device 310 is used to control the photovoltaic power generation device 320, the energy storage device 330, the three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the The second direct current bidding output to enable the load 301 to operate normally means that the control device 310 is configured to first control the photovoltaic power generation device 320 to supply power to the load 301.
- the control device 310 can control KM6, KM9, KM3, KM10 and KM11 to conduct (at this time KM1, KM2, KM4, KM5, KM7 and KM8 are in the disconnected state), that is, the photovoltaic
- the power generation device 320 supplies power to the load 301.
- control device 310 is used to control the on and off of KM1, KM2, KM3, KM4, KM5, KM6, KM7, KM8, KM9, KM10, and KM11, respectively.
- KM1, KM2, KM3, KM4, KM5, KM6, KM7, KM8, KM9, KM10 and KM11 are all controllable switching devices.
- the control device 310 monitors in real time whether the output voltage of the photovoltaic power generation device 320 meets the power demand of the load 301. Specifically, the control device 310 may monitor whether the output voltage of the photovoltaic power generation device 320 meets the power demand of the load 301 through the DC/DC on the power supply branch of the photovoltaic power generation device 320. In an embodiment, the control device 310 may compare the output voltage of the photovoltaic power generation device 320 with the load voltage of the load 301. If the output voltage of the photovoltaic power generation device 320 is greater than or equal to the load voltage, it is determined that the output voltage of the photovoltaic power generation device 320 can meet the power demand of the load 301 at this time.
- the control device 310 can determine the remaining power of the energy storage device 330. Specifically, the control device 310 may obtain the remaining power of the energy storage device 330 through DC/DC on the power supply branch of the energy storage device 330, and compare the remaining power with a set threshold of power.
- control device 310 controls the energy storage device 330 to discharge (that is, controls the KM7 to turn on) to make the load 301 operate normally, so that the household router 300 It can realize internal power supply (ie self-sufficiency).
- the control device 310 controls the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power bidding output to make the load 301 operate normally.
- the control device 310 may control the three-phase alternating current 101 or the single-phase alternating current 102, the first direct current and the first direct current through various controllable switching devices (KM1, KM2, KM4, KM5, and KM8). Two direct current bidding outputs to enable the load 301 to operate normally.
- the control device 310 may also realize the power supply of the three-phase alternating current 101 and/or the first direct current and/or the second direct current through various controllable switching devices.
- the control device 310 can control KM1, KM2, and KM9 to be turned on.
- the control device 310 can control the conduction of KM4, KM5 and KM9.
- the control device 310 can control the KM8 to be turned on.
- the above three power supply modes can be powered in any combination. That is to say, the load 301 can be powered by the three-phase alternating current 101 and/or the first direct current and/or the second direct current at the same time.
- the control device 310 determines whether the remaining power of the energy storage device 330 is less than or equal to the power. If the threshold is set, the control device 310 controls the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power for bidding output so that the load 301 can operate normally.
- control device 310 may also prioritize determining whether the remaining power of the energy storage device 330 meets the discharge demand; if the discharge demand is met, the control device 310 preferentially controls the energy storage device 330 to discharge (Ie, supply power to the load 301); if the discharge requirement is not met, the control device 310 controls the photovoltaic power generation device 320 to supply power to the load 301.
- the control device 310 is also used to send the electricity demand to the sub-center controller in the sub-center energy router 200, and use the sub-center controller to detect whether other household-level routers 300 have excess Electrical energy.
- the branch center controller may perform data communication with the control device 310 in the other household-level routers 300 to determine whether the other household-level routers 300 have excess power. If other household-level routers 300 have surplus power, the sub-center controller can cooperate with the switch in the household-level router 300 to connect the household-level router 300 with other household-level routers with surplus power.
- the household-level router 300 is electrically connected, that is, the current household-level router 300 is provided with power support through other household-level routers 300 with excess power, so that the load 301 can operate normally.
- the function of coordinating the flow of electric energy between the household-level routers 300 through the sub-center energy router 200 can be realized, so as to realize the orderly sharing of energy between the DC microgrid (that is, the household-level router 300) , To avoid the redundancy and uneconomical problems of the DC multi-microgrid system 10, and improve the power supply stability and reliability of the DC microgrid.
- the output terminals of the other household-level routers 300 output the first direct current or the The second direct current.
- the source of the first direct current received by the household router 300 may be the first direct current directly output by the sub-center energy router 200, or may be output by other household routers 300.
- the source of the second direct current received by the household-level router 300 may be the second direct current directly output by the sub-center energy router 200, or the source of the second direct current output by other household-level routers 300.
- the second direct current may be the source of the first direct current directly output by the sub-center energy router 200, or the source of the second direct current output by other household-level routers 300.
- control device 310 is also used to determine whether the DC power parameters such as voltage, current, power, and power of each power supply branch are normal. Specifically, the control device 310 may detect the DC power parameters of the respective power supply branches through the DC power parameter detection devices (ET/QT in FIG. 2) on each power supply branch, and respectively detect the DC power parameters of each power supply branch. It is compared with the DC power parameter thresholds of the respective branches, so as to determine whether the DC power parameters of the respective output power supply branches are normal based on the respective comparison results, thereby ensuring the reliability of power supply.
- a layered and hierarchical output of voltage can be realized through DC/DC, for example, from DC 750V to DC 400V to DC 48V and finally output to the load 301.
- the total energy router 100 converts three-phase alternating current 101 and/or single-phase alternating current 102 into first direct current and second direct current, and outputs three-phase alternating current, single-phase alternating current, first direct current and second direct current at most A sub-center energy router 200.
- Each sub-center energy router 200 outputs three-phase alternating current or single-phase alternating current, first direct current, and second direct current to each of the household-level routers through multiple sets of output interfaces, so that one sub-center energy router 200 can realize multiple household-level routers.
- DC microgrid access is the total energy router 100 converting three-phase alternating current 101 and/or single-phase alternating current 102 into first direct current and second direct current, and outputs three-phase alternating current, single-phase alternating current, first direct current and second direct current at most A sub-center energy router 200.
- Each sub-center energy router 200 outputs three-phase alternating current or single-phase alternating current, first direct current, and second direct current to each of the household-level routers
- the control device 310 in each household-level router 300 controls the photovoltaic power generation device 320, the energy storage device 330, three-phase alternating current or single-phase alternating current, the first direct current and the second direct current electric bidding output according to preset rules to make the load operate normally. , And coordinate the flow of electric energy between each household-level router 300 through the sub-center energy router 200, realize the orderly sharing of energy between the DC microgrid, and improve the power supply stability and reliability of the DC microgrid.
- the preset rule includes: the control device 310 controls the photovoltaic power generation device 320 and/or the energy storage device 330 to supply power to the load 301, and determines that the photovoltaic power generation device 320 and Whether the power supply of the energy storage device 330 meets the power demand of the load 301. If it is determined that the power supply of the photovoltaic power generation device 320 and the energy storage device 330 does not meet the power demand of the load 301, the control device 310 controls the three-phase AC power 101 or the single-phase AC power 102, the The first direct current and the second direct current are competitively output to enable the load 301 to operate normally.
- control device 310 is also used to obtain the remaining power of the energy storage device 330 and determine whether to control the energy storage device 330 to discharge based on a threshold value set for the power. Specifically, the control device 310 may compare the remaining power with the power set threshold; if the remaining power is greater than the power set threshold, then the control device 310 may control the power storage at this time. The device 330 can discharge. If the remaining power is less than or equal to the power setting threshold, the control device 310 controls the energy storage device 330 not to discharge at this time.
- the output end of the household router 300 is also provided with a metering device 302 for collecting electricity usage information.
- the metering device 302 is an electric meter. The metering device 302 collects power consumption information in real time to facilitate subsequent power statistics and predictions.
- the output interface includes an alternating current output interface 201, a first direct current output interface 202, and a second direct current output interface 203.
- the alternating current output interface 201, the first direct current output interface 202, and the second direct current output interface 203 are all provided with a switching device 204.
- Each of the switching devices 204 is used to control the on and off of the alternating current output interface 201 or the first direct current output interface 202 or the second direct current output interface 203 respectively.
- the switching device 204 may be a contactor.
- the AC power output interface 201, the first DC power output interface 202, and the second DC power output interface 203 are all provided with a switching device 204, which means that the AC power output interface 201 is provided with a switch 204.
- a switching device 204 is provided in the first direct current output interface 202, and the switching device 204 is also provided in the second direct current output interface 203.
- each interface corresponds to a branch.
- Each branch is also provided with a micro-break switch, through the cooperation of the micro-break switch and the switching device 204, the conduction and disconnection of the branch is controlled.
- the sub-center energy router 200 is also provided with an AC/DC converter.
- the AC/DC converter is used to convert the three-phase AC power 101 or the single-phase AC power 102 received by the power distribution input interface into the first DC power, and pass the first DC power through the first DC power.
- the direct current output interface 202 outputs.
- the sub-center energy router 200 includes: a sub-center control device 210.
- the sub-center control device 210 is electrically connected to a plurality of the switching devices 204 and a plurality of the control devices 310 respectively.
- the sub-center control device 210 is used to control the on and off of each of the switching devices 204.
- the sub-center control device 210 is also used for coordinating the flow of electric energy among the household routers 300 through the switching device 204.
- the specific structure of the sub-center control device 210 is not limited, and only has the ability to control the on and off of each of the switching devices 204, and to coordinate each of the household routers through the switching device 204 The function of electric energy flow between 300 can be.
- the sub-center control device 210 may be an MCU (micro control unit).
- the sub-center control device 210 may be a control chip.
- each of the switching devices 204 when the electrical energy received by the power distribution input interface of the sub-center control device 210 (that is, the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power) When sufficient, each of the switching devices 204 is in a conducting state. In one embodiment, the sub-center control device 210 can coordinate the communication between the household routers 300 through the switching device 204 according to the power request of the control device 310 in each household router 300. Electric energy flows to ensure the normal operation of the load 301 electrically connected to the output end of each household-level router 300.
- the total energy router 100 includes: a first power grid input interface 110, a second power grid input interface 120, a three-phase AC/DC conversion device 130, and a single-phase AC/DC conversion device 140 ⁇ DC/DC conversion device 150.
- the first power grid input interface 110 is used to obtain the three-phase AC power 101.
- the second power grid input interface 120 is used to obtain the single-phase AC power 102.
- the input end of the three-phase AC/DC conversion device 130 is electrically connected to the first power grid input interface 110.
- the output end of the three-phase AC/DC conversion device 130 is electrically connected to a plurality of the sub-center energy routers 200.
- the three-phase AC/DC conversion device 130 is used to convert the three-phase AC power 101 into the first DC power.
- the input end of the single-phase AC/DC conversion device 140 is electrically connected to the second power grid input interface 120.
- the output end of the single-phase AC/DC conversion device 140 is electrically connected to a plurality of the sub-center energy routers 200.
- the single-phase AC/DC conversion device 140 is used to convert the single-phase AC power 102 into the second DC power.
- the first end of the DC/DC conversion device 150 is electrically connected to the output end of the three-phase AC/DC conversion device 130.
- the second end of the DC/DC conversion device 150 is electrically connected to the output end of the single-phase AC/DC conversion device 140.
- the DC/DC conversion device 150 is used to convert the first DC power into the second DC power, or convert the second DC power into the first DC power.
- the total energy router 100 further includes: a photovoltaic power distribution interface 160, an energy storage and power distribution interface 170, a first power grid output interface 180, and a second power grid output interface 190.
- the photovoltaic power distribution interface 160 is electrically connected to the output terminal of the three-phase AC/DC conversion device 130.
- the energy storage and power distribution interface 170 is electrically connected to the output end of the single-phase AC/DC conversion device 140.
- the first power grid output interface 180 is used to output the three-phase alternating current 101.
- the second power grid output interface 190 is used to output the single-phase AC power 102.
- the photovoltaic power distribution interface 160 may be used to electrically connect an external photovoltaic power generation device, and provide electrical energy to the total energy router 100 through the photovoltaic power generation device.
- the energy storage and power distribution interface 170 can be used to electrically connect an external energy storage battery, and provide electrical energy to the total energy router 100 through the energy storage battery.
- an embodiment of the present application provides a control method of a DC multi-microgrid system, which is applied to the DC multi-microgrid system 10 described in any one of the above embodiments.
- the method includes:
- S102 Control the photovoltaic power generation device 320 and/or the energy storage device 330 to supply power to the load 301 through the control device 310, and determine whether the power supply of the photovoltaic power generation device 320 and the energy storage device 330 meets the requirements The power demand of the load 301.
- the specific structures of the control device 310, the photovoltaic power generation device 320, and the energy storage device 330 may adopt the structures described in the foregoing embodiment, and the description is not repeated here. Determining by the control device 310 whether the power supply of the photovoltaic power generation device 320 and the energy storage device 330 meets the power demand of the load 301 means: the control device 310 can obtain the information of the photovoltaic power generation device 320 The output voltage is compared with the load voltage of the load 301, and the output voltage of the photovoltaic power generation device 320 is compared with the load voltage.
- step S104 is executed at this time.
- the three-phase AC power 101 or the single-phase AC power 102, the first DC power and the second DC power output can be controlled by the control device 310 to make the load 301 operate normally.
- the three-phase alternating current 101 or the single-phase alternating current 102 and the first control device 310 can be controlled by each controllable switch device (KM1, KM2, KM4, KM5, and KM8) of the control device 310.
- a direct current power and the second direct current power are competitively output to enable the load 301 to operate normally.
- the control device 310 may also realize the power supply of the three-phase alternating current 101 and/or the first direct current and/or the second direct current through various controllable switching devices.
- the control device 310 can control KM1, KM2, and KM9 to be turned on.
- the control device 310 can control the conduction of KM4, KM5 and KM9.
- the control device 310 can control the KM8 to be turned on.
- the above three power supply modes can be powered in any combination. That is to say, the load 301 can be powered by the three-phase alternating current 101 and/or the first direct current and/or the second direct current at the same time.
- control device 310 may also send the electricity demand to the sub-center controller in the sub-center energy router 200, and the sub-center controller may detect other household routers 300. Whether there is excess power. If it is detected that other household-level routers 300 have surplus power, the sub-center controller can coordinate to switch the surplus power of other household-level routers 300 to the current household-level router 300 through the switch to provide power. Support, so that the load 301 can operate normally. That is, the function of coordinating the flow of electric energy between the household-level routers 300 through the sub-center energy router 200 is realized, thereby realizing the orderly sharing of energy between the DC microgrid (that is, the household-level router 300), and avoiding excessive direct current.
- the microgrid system 10 has the problem of redundancy and uneconomical, which improves the power supply stability and reliability of the DC microgrid.
- step S102 includes: controlling the photovoltaic power generation device 320 to supply power to the load 301 through the control device 310, and determining whether the output voltage of the photovoltaic power generation device 320 meets the power consumption of the load 301 need. If it is determined that the output voltage of the photovoltaic power generation device 320 does not meet the power demand of the load 301, the remaining power of the energy storage device 330 is obtained, and based on the power setting threshold, it is determined whether to control the energy storage device 330 to provide power.
- the load 301 supplies power.
- the energy storage device 330 is controlled to supply power to the load 301, and it is determined whether the power supply of the photovoltaic power generation device 320 and the energy storage device 330 meets the load 301's electricity demand.
- determining whether the output voltage of the photovoltaic power generation device 320 meets the power demand of the load 301 by the control device 310 is specifically: the control device 310 can be powered by the photovoltaic power generation device 320 The DC/DC on the road obtains the output voltage of the photovoltaic power generation device 320 and compares it with the load voltage of the load 301. If the output voltage of the photovoltaic power generation device 320 is greater than or equal to the load voltage, it is determined that the output voltage of the photovoltaic power generation device 320 can meet the power demand of the load 301 at this time, and vice versa.
- acquiring the remaining power of the energy storage device 330 and determining whether to control the energy storage device 330 to supply power to the load 301 based on the threshold value of the power The DC/DC on the power supply branch of the energy storage device 330 obtains the remaining power of the energy storage device 330, and compares the remaining power with a set threshold of power. If the remaining power is greater than the power set threshold, the control device 310 determines to control the energy storage device 330 to discharge (that is, to the load 301), otherwise, it does not discharge.
- this application uses the total energy router 100 to convert the three-phase AC power 101 and/or the single-phase AC power 102 into the first DC power and the second DC power, and output the three-phase AC power, the single-phase AC power, the first DC power and the second DC power.
- Direct current to multiple sub-center energy routers 200 Each sub-center energy router 200 outputs three-phase alternating current or single-phase alternating current, first direct current, and second direct current to each of the household-level routers through multiple sets of output interfaces, so that one sub-center energy router 200 can realize multiple household-level routers.
- DC microgrid access is provided to convert the three-phase AC power 101 and/or the single-phase AC power 102 into the first DC power and the second DC power, and output the three-phase AC power, the single-phase AC power, the first DC power and the second DC power.
- the control device 310 in each household-level router 300 controls the photovoltaic power generation device 320, the energy storage device 330, three-phase alternating current or single-phase alternating current, the first direct current and the second direct current electric bidding output according to preset rules to make the load operate normally. , And coordinate the flow of electric energy between each household-level router 300 through the sub-center energy router 200, realize the orderly sharing of energy between the DC microgrid, and improve the power supply stability and reliability of the DC microgrid.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种直流多微电网系统及控制方法,包括总能源路由器(100)、多个分中心能源路由器(200)和多个户级路由器(300)。总能源路由器(100)用于将三相交流电(101)和/或单相交流电(102)转换为第一直流电和第二直流电,并输出三相交流电、单相交流电、第一直流电和第二直流电。每个分中心能源路由器(200)均与总能源路由器(100)电连接。分中心能源路由器(200)设置有多组用于输出三相交流电或单相交流电、第一直流电和第二直流电的输出接口。每个户级路由器(300)均电连接一组输出接口。户级路由器(300)内的控制装置按照预设规则控制光伏发电装置(320)、储能装置(330)、三相交流电(101)或单相交流电(102)、第一直流电和第二直流电竞价输出以使负载正常运行。分中心能源路由器(200)还用于协调各个户级路由器(300)之间的电能流动。
Description
相关申请
本申请要求2020年03月13日申请的,申请号为202010175097.5,名称为“直流多微电网系统及控制方法”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请涉及微电网技术领域,特别是涉及一种直流多微电网系统及控制方法。
在微电网中,目前主要以交流微网应用为主,通过光伏、储能、柴油发电机等实现微电网的能源系统建立,系统通过逆变器实现交流供电。与交流系统比较,直流系统有比较大的优势,其不用考虑频率、相位等控制。同时通过直流直驱,有效提升系统效率。
目前公开关于直流微电网的方案,主要是通过高压母线建立直流,同时通过两路环网实现本身系统的供电保障,但这种方式使得本身系统存在冗余、不经济等问题。
发明内容
基于此,有必要针对传统直流微电网系统因通过高压母线建立直流,并通过两路环网实现本身系统的供电保障,使得本身系统存在冗余、不经济等问题,提供一种直流多微电网系统及控制方法。
一种直流多微电网系统,包括:
总能源路由器,所述总能源路由器的输入端分别用于获取三相交流电和单相交流电,所述总能源路由器用于将所述三相交流电和/或所述单相交流电转换为第一直流电和第二直流电,并输出所述三相交流电、所述单相交流电、所述第一直流电和所述第二直流电;
多个分中心能源路由器,每个所述分中心能源路由器均与所述总能源路由器的输出端电连接,所述分中心能源路由器设置有多组输出接口,每组所述输出接口均用于输出所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电;以及
多个户级路由器,每个所述户级路由器均电连接一组所述输出接口,所述户级路由器的输出端用于电连接负载,所述户级路由器用于获取所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电;
所述户级路由器包括控制装置、光伏发电装置、储能装置,所述控制装置按照预设规则控制所述光伏发电装置、所述储能装置、所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行;
所述分中心能源路由器还用于协调各个所述户级路由器之间的电能流动。
在其中一个实施例中,所述控制装置被配置为优先控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求;
若确定所述光伏发电装置和所述储能装置供电未满足所述负载的用电需求,则所述控制装置控制所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行。
在其中一个实施例中,所述户级路由器接受的所述第一直流电的来源为所述分中心能源路由器直接输出的所述第一直流电或其它所述户级路由器输出的所述第一直流电;
所述户级路由器接受的所述第二直流电的来源为所述分中心能源路由器直接输出的所述第二直流电或其它所述户级路由器输出的所述第二直流电。
在其中一个实施例中,所述控制装置分别与所述光伏发电装置、所述储能装置和所述分中心能源路由器电连接,所述控制装置还用于获取所述储能装置的剩余电量,并基于电量设定阈值确定是否控制所述储能装置放电。
在其中一个实施例中,所述控制装置用于将所述剩余电量与所述电量设定阈值进行比较,若所述剩余电量大于所述电量设定阈值,则所述控制装置控制所述储能装置放电,若所述剩余电量小于或等于所述电量设定阈值,则所述控制装置控制所述储能装置不放电。
在其中一个实施例中,所述输出接口包括交流电输出接口、第一直流电输出接口和第二直流电输出接口,所述交流电输出接口、所述第一直流电输出接口和所述第二直流电输出接口内均设置有开关器件,各个所述开关器件分别用于控制所述交流电输出接口或所述第一直流电输出接口或所述第二直流电输出接口的导通与断开。
在其中一个实施例中,所述分中心能源路由器包括:
分中心控制装置,分别与多个所述开关器件和多个所述控制装置电连接,用于控制各个所述开关器件的导通与断开,还用于通过所述开关器件协调各个所述户级路由器之间的电能流动。
在其中一个实施例中,所述总能源路由器包括:
第一电网输入接口,用于获取所述三相交流电;
第二电网输入接口,用于获取所述单相交流电;
三相交流/直流转换器件,所述三相交流/直流转换器件的输入端与所述第一电网输入接口电连接,所述三相交流/直流转换器件的输出端与多个所述分中心能源路由器电连接,用于将所述三相交流电转换为所述第一直流电;
单相交流/直流转换器件,所述单相交流/直流转换器件的输入端与所述第二电网输入接口电连接,所述单相交流/直流转换器件的输出端与多个所述分中心能源路由器电连接,用于将所述单相交流电转换为所述第二直流电;以及
直流/直流转换器件,所述直流/直流转换器件的第一端与所述三相交流/直流转换器件的输出端电连接,所述直流/直流转换器件的第二端与所述单相交流/直流转换器件的输出端电连接,用于将所述第一直流电转换为所述第二直流电,或者将所述第二直流电转换为所述第一直流电。
在其中一个实施例中,所述总能源路由器还包括:
光伏配电接口,与所述三相交流/直流转换器件的输出端电连接;
储能配电接口,与所述单相交流/直流转换器件的输出端电连接;
第一电网输出接口,用于输出所述三相交流电;以及
第二电网输出接口,用于输出所述单相交流电。
在其中一个实施例中,所述第一直流电和所述第二直流电的电压不相同。
在其中一个实施例中,所述户级路由器的输出端还设置有用于采集用电信息的计量设备。
一种直流多微电网系统的控制方法,应用于上述任一项实施例所述的直流多微电网系统,所述方法包括:
通过所述控制装置控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求;
若确定所述光伏发电装置和所述储能装置供电未满足所述负载的用电需求,则控制所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行。
在其中一个实施例中,通过所述控制装置控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否充足的步骤包括:
通过所述控制装置控制所述光伏发电装置给所述负载供电,并确定所述光伏发电装置的输出电压是否满足所述负载的用电需求;
若确定所述光伏发电装置的输出电压未满足所述负载的用电需求,则获取所述储能装置的剩余电量,并基于电量设定阈值确定是否控制所述储能装置给所述负载供电;
若所述剩余电量大于所述电量设定阈值,则控制所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求。
与传统技术相比,上述直流多微电网系统及控制方法,通过总能源路由器将三相交流电和/或单相交流电转换为第一直流电和第二直流电,并输出三相交流电、单相交流电、第一直流电和第二直流电至多个分中心能源路由器。各个分中心能源路由器通过多组输出接口将三相交流电或单相交流电、第一直流电和第二直流电输出至各个所述户级路由器,从而实现一个分中心能源路由器可以实现多个户级直流微网接入。同时各个户级路由器内的所述控制装置按照预设规则控制光伏发电装置、储能装置、三相交流电或单相交流电、第一直流电和第二直流电竞价输出以使负载正常运行,并与分中心能源路由器配合,通过分中心能源路由器协调各个所述户级路由器之间的电能流动,实现直流微电网间能量的有序共享,避免系统存在冗余、不经济的问题,提高直流微网的供电稳定性及可靠性。
图1为本申请一实施例提供的直流多微电网系统的结构框图。
图2为本申请一实施例提供的户级路由器的结构示意图。
图3为本申请一实施例提供的分中心能源路由器的结构示意图。
图4为本申请一实施例提供的总能源路由器的结构示意图。
图5为本申请一实施例提供的直流多微电网系统的控制方法的流程图。
10-直流多微电网系统;
100-总能源路由器;
101-三相交流电;
102-单相交流电;
110-第一电网输入接口;
120-第二电网输入接口;
130-三相交流/直流转换器件;
140-单相交流/直流转换器件;
150-直流/直流转换器件;
160-光伏配电接口;
170-储能配电接口;
180-第一电网输出接口;
190-第二电网输出接口;
200-分中心能源路由器;
201-交流电输出接口;
202-第一直流电输出接口;
203-第二直流电输出接口;
204-开关器件;
210-分中心控制装置;
300-户级路由器;
301-负载;
302-计量设备;
310-控制装置;
320-光伏发电装置;
330-储能装置。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,本申请一实施例提供一种直流多微电网系统10,包括:总能源路由器100、多个分中心能源路由器200和多个户级路由器300。所述总能源路由器100的输入端分别用于获取三相交流电101和单相交流电102。所述总能源路由器100用于将所述三相交流电101和/或所述单相交流电102转换为第一直流电和第二直流电,并输出所述三相交流电101、所述单相交流电102、所述第一直流电和所述第二直流电。
每个所述分中心能源路由器200均与所述总能源路由器100的输出端电连接。所述分 中心能源路由器200设置有多组输出接口。每组所述输出接口均用于输出所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电。每个所述户级路由器300均电连接一组所述输出接口。所述户级路由器300的输出端用于电连接负载301。所述户级路由器300用于获取所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电。
所述户级路由器300包括控制装置310、光伏发电装置320、储能装置330。所述控制装置310用于控制所述光伏发电装置320、所述储能装置330、所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。所述分中心能源路由器200还用于协调各个所述户级路由器300之间的电能流动。
可以理解,所述总能源路由器100的具体结构不做限制,只要具有将所述三相交流电101和/或所述单相交流电102转换为第一直流电和第二直流电,并输出所述三相交流电101、所述单相交流电102、所述第一直流电和所述第二直流电的功能即可。在一个实施例中,所述总能源路由器100可以由三相交流/直流转换器、单相交流/直流转换器以及空气开关搭建组成。所述总能源路由器100也可以由三相交流/直流转换器、直流/直流转换器、单相交流/直流转换器以及电压检测器件搭建组成。在一个实施例中,所述三相交流电101的具体电压可以是380V交流电。在一个实施例中,所述单相交流电102的具体电压可以是220V交流电。
在一个实施例中,所述总能源路由器100用于将所述三相交流电101和/或所述单相交流电102转换为第一直流电和第二直流电是指:所述总能源路由器100可以将所述三相交流电101转换为所述第一直流电,然后再将所述第一直流电转换为所述第二直流电;所述总能源路由器100也可以将所述单相交流电102转换为所述第二直流电,然后再将所述第二直流电转换为所述第一直流电。所述总能源路由器100还可以将所述三相交流电101转换为所述第一直流电,将所述单相交流电102转换为所述第二直流电。即所述总能源路由器100无论采用上述哪一种转换方式,只需要保证所述总能源路由器100能够输出所述三相交流电101、所述单相交流电102、所述第一直流电和所述第二直流电即可。
在一个实施例中,所述第一直流电和所述第二直流电的电压不相同。具体的,所述第一直流电的电压可以根据实际需求进行选择。例如,所述第一直流电的电压范围可以是600V-750V。所述第二直流电的电压也可以根据实际需求进行选择。例如,所述第二直流电的电压范围可以是375-400V。
在一个实施例中,所述总能源路由器100还具有检测每个输出端口的电压、电流、功率、电量等直流电参量是否正常的功能。具体的,所述总能源路由器100内设置有控制器。 所述总能源路由器100的输出端设置有所述三相交流电101输出端口、所述单相交流电102输出端口、所述第一直流电输出端口和所述第二直流电输出端口,每个输出端口内均设置有电压检测器件。通过电压检测器件检测各自端口电压,并将检测到的各个端口电压发送至控制器。然后通过控制器将各个端口电压分别与各自的输出电压阈值进行比较,从而基于各自的比较结果确定各自的输出端口电压是否正常,进而避免出现欠压等现象,保证供电的可靠性。
在一个实施例中,上述电压检测器件也可以替换为其它直流电参量检测器件(如电流检测器件、功率检测器件、电量检测器件等)。通过控制器监控所述总能源路由器100,提供该路由器的用电信息,从而为微电网系统的调度提供用电信息。
可以理解,所述分中心能源路由器200的具体结构不做限制,只要具有协调各个所述户级路由器300之间的电能流动的功能即可。在一个实施例中,所述分中心能源路由器200可以由分中心控制器、交流/直流转换器和多个接触器配合输电线构成。在一个实施例中,所述分中心能源路由器200也可以由分中心控制器、交流/直流转换器、多个微断开关和多个接触器配合输电线构成。
在一个实施例中,所述分中心能源路由器200设置有配电输入接口。通过配电输入接口接受所述总能源路由器100输出的所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电。然后分别将三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电各自分出多路公共母线配电接口,并形成多组输出接口。其中,每组所述输出接口均包括一个第一直流电公共母线配电接口、一个第二直流电公共母线配电接口和一个交流电公共母线配电接口,从而可使得每组所述输出接口均能输出所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电。在一个实施例中,每路公共母线上均设置有微断开关。所述微断开关可以是空气开关。在一个实施例中,各个所述微断开关默认为开启状态。
每个所述户级路由器300均电连接一组所述输出接口。即每个所述分中心能源路由器200均可以实现多个户级直流微网(即所述户级路由器300)接入。通过所述分中心路由器200内分中心控制器的环路控制,可以实现不同户级直流微网的环网场景,如户级直流微网可选择纯交流接入、或交直流接入、或可选择与其他户级直流微网实现直流环网接入。
可以理解,所述控制装置310的具体结构不做限制,只要具有控制所述光伏发电装置320、所述储能装置330、所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行的功能即可。在一个实施例中,所述控制装置310可以是单片机。在一个实施例中,所述控制装置310也可以是控制芯片。在 一个实施例中,所述控制装置310分别与所述光伏发电装置320、所述储能装置330和所述分中心能源路由器200电连接。
可以理解,所述光伏发电装置320的具体结构不做限制,只要具有光伏发电的功能即可。在一个实施例中,所述光伏发电装置320可以由太阳电池板和DC/DC组成。在一个实施例中,所述光伏发电装置320也可以由太阳电池板、AC/DC配合控制器组成。在一个实施例中,所述储能装置330可以是储能电池。
在一个实施例中,所述控制装置310用于控制所述光伏发电装置320、所述储能装置330、所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行是指:所述控制装置310被配置为首先控制所述光伏发电装置320给所述负载301供电。如图2所示,此时所述控制装置310可控制KM6、KM9、KM3、KM10和KM11导通(此时KM1、KM2、KM4、KM5、KM7和KM8处于断开状态),即所述光伏发电装置320给所述负载301供电。
在一个实施例中,所述控制装置310用于分别控制KM1、KM2、KM3、KM4、KM5、KM6、KM7、KM8、KM9、KM10和KM11的导通与断开。KM1、KM2、KM3、KM4、KM5、KM6、KM7、KM8、KM9、KM10和KM11均为可控开关器件。
在供电的过程中,所述控制装置310实时监测所述光伏发电装置320的输出电压是否满足所述负载301的用电需求。具体的,所述控制装置310可通过所述光伏发电装置320供电支路上的DC/DC监测所述光伏发电装置320的输出电压是否满足所述负载301的用电需求。在一个实施例中,所述控制装置310可将所述光伏发电装置320的输出电压与所述负载301的负载电压进行比较。若所述光伏发电装置320的输出电压大于或等于所述负载电压,则确定此时所述光伏发电装置320的输出电压能够满足所述负载301的用电需求。
若所述光伏发电装置320的输出电压小于所述负载电压,则确定此时所述光伏发电装置320的输出电压未满足所述负载301的用电需求。此时所述控制装置310可确定所述储能装置330的剩余电量。具体的,所述控制装置310可通过所述储能装置330供电支路上的DC/DC获取所述储能装置330的剩余电量,并将所述剩余电量与电量设定阈值进行比较。如若所述剩余电量大于电量设定阈值,则所述控制装置310控制所述储能装置330进行放电(即控制KM7导通)以使所述负载301正常运行,从而使得所述户级路由器300可实现内部供电(即自给自足)。
在一个实施例中,如若所述光伏发电装置320和所述储能装置330均正常供电时,所述光伏发电装置320和所述储能装置330的供电还不能满足所述负载301的用电需求,则所述控制装置310控制所述三相交流电101或所述单相交流电102、所述第一直流电和所 述第二直流电竞价输出以使所述负载301正常运行。具体的,所述控制装置310可通过各个可控开关器件(KM1、KM2、KM4、KM5和KM8)控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。在一个实施例中,所述控制装置310也可通过各个可控开关器件实现所述三相交流电101和/或所述第一直流电和/或所述第二直流电供电。
例如,当需要所述三相交流电101供电时,可通过所述控制装置310控制KM1、KM2和KM9导通。当需要所述所述第一直流电供电时,可通过所述控制装置310控制KM4、KM5和KM9导通。当需要所述所述第二直流电供电时,可通过所述控制装置310控制KM8导通。同时上述三种供电方式可以任意组合的模式供电。也就是说,可同时通过所述三相交流电101和/或所述第一直流电和/或所述第二直流电给所述负载301供电。
在一个实施例中,如若所述光伏发电装置320的输出电压未满足所述负载301的用电需求,且所述控制装置310检测到所述储能装置330的剩余电量小于或等于所述电量设定阈值,则所述控制装置310控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。
在一个实施例中,所述控制装置310也可以优先确定所述储能装置330的剩余电量是否满足放电需求;如若满足放电需求,则所述控制装置310优先控制所述储能装置330进行放电(即给所述负载301供电);如若未满足放电需求,则所述控制装置310控制所述光伏发电装置320给所述负载301供电。
在一个实施例中,如若所述光伏发电装置320和所述储能装置330均正常供电时,所述光伏发电装置320和所述储能装置330的供电还不能满足所述负载301的用电需求,则所述控制装置310还用于将用电需求发送至所述分中心能源路由器200内的分中心控制器,并通过所述分中心控制器检测其它所述户级路由器300是否有多余电能。
具体的,所述分中心控制器可与其它所述户级路由器300内的所述控制装置310进行数据通信,以确定其它所述户级路由器300是否有多余电能。如若其它所述户级路由器300有多余电能,则所述分中心控制器可通过接触器和所述户级路由器300内的切换开关配合,将所述户级路由器300与有多余电能的其它所述户级路由器300电连接,即通过有多余电能的其它所述户级路由器300给当前所述户级路由器300提供电能支撑,以使所述负载301正常运行。通过上述方式即可实现通过所述分中心能源路由器200协调各个所述户级路由器300之间的电能流动的功能,从而实现直流微电网(即所述户级路由器300)间能量的有序共享,避免直流多微电网系统10存在冗余、不经济的问题,提高直流微网的供电稳定性及可靠性。
在一个实施例中,有多余电能的其它所述户级路由器300给当前所述户级路由器300提供电能支撑时,其它所述户级路由器300的输出端输出的为所述第一直流电或所述第二直流电。由上述内容可知,所述户级路由器300接受的所述第一直流电的来源可以是所述分中心能源路由器200直接输出的所述第一直流电,也可以是其它所述户级路由器300输出的所述第一直流电。同样的,所述户级路由器300接受的所述第二直流电的来源可以是所述分中心能源路由器200直接输出的所述第二直流电,也可以是其它所述户级路由器300输出的所述第二直流电。
在一个实施例中,所述控制装置310还用于确定各个供电支路的电压、电流、功率、电量等直流电参量是否正常。具体的,所述控制装置310可通过各个供电支路上的直流电参量检测器件(图2中的ET/QT)检测各自供电支路的直流电参量,并将检测到的各个供电支路上的直流电参量分别与各自支路的直流电参量阈值进行比较,从而基于各自的比较结果确定各自的输出供电支路的直流电参量是否正常,进而保证供电的可靠性。在一个实施例中,在所述直流多微电网系统10内,可通过DC/DC实现电压的分层分级输出,如从直流750V到直流400V再到直流48V最后输出给所述负载301。
本实施例中,通过总能源路由器100将三相交流电101和/或单相交流电102转换为第一直流电和第二直流电,并输出三相交流电、单相交流电、第一直流电和第二直流电至多个分中心能源路由器200。各个分中心能源路由器200通过多组输出接口将三相交流电或单相交流电、第一直流电和第二直流电输出至各个所述户级路由器,从而实现一个分中心能源路由器200可以实现多个户级直流微网接入。同时各个户级路由器300内的所述控制装置310按照预设规则控制光伏发电装置320、储能装置330、三相交流电或单相交流电、第一直流电和第二直流电竞价输出以使负载正常运行,并通过分中心能源路由器200协调各个户级路由器300之间的电能流动,实现直流微电网间能量的有序共享,提高直流微网的供电稳定性及可靠性。
在一个实施例中,所述预设规则包括:所述控制装置310控制所述光伏发电装置320和/或所述储能装置330给所述负载301供电,并确定所述光伏发电装置320和所述储能装置330的供电是否满足所述负载301的用电需求。若确定所述光伏发电装置320和所述储能装置330供电未满足所述负载301的用电需求,则所述控制装置310控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。
在一个实施例中,所述控制装置310还用于获取所述储能装置330的剩余电量,并基于电量设定阈值确定是否控制所述储能装置330放电。具体的,所述控制装置310可将所 述剩余电量与所述电量设定阈值进行比较;若所述剩余电量大于所述电量设定阈值,则此时所述控制装置310可控制所述储能装置330放电。若所述剩余电量小于或等于所述电量设定阈值,则此时所述控制装置310控制所述储能装置330不放电。
在一个实施例中,所述户级路由器300的输出端还设置有用于采集用电信息的计量设备302。在一个实施例中,所述计量设备302为电表。通过所述计量设备302实时采集用电信息,以便于后续电量统计及预测。
请参见图3,在一个实施例中,所述输出接口包括交流电输出接口201、第一直流电输出接口202和第二直流电输出接口203。所述交流电输出接口201、所述第一直流电输出接口202和所述第二直流电输出接口203内均设置有开关器件204。各个所述开关器件204分别用于控制所述交流电输出接口201或所述第一直流电输出接口202或所述第二直流电输出接口203的导通与断开。
在一个实施例中,所述开关器件204可以是接触器。在一个实施例中,所述交流电输出接口201、所述第一直流电输出接口202和所述第二直流电输出接口203内均设置有开关器件204是指:所述交流电输出接口201内设置有所述开关器件204,所述第一直流电输出接口202内设置有开关器件204,所述第二直流电输出接口203内也设置有所述开关器件204。在一个实施例中,每个接口对应一条支路。每个支路还设置有微断开关,通过微断开关和开关器件204配合,控制该条支路的导通与断开。
在一个实施例中,所述分中心能源路由器200内还设置有交流/直流转换器。所述交流/直流转换器用于将所述配电输入接口接受的所述三相交流电101或所述单相交流电102转换为所述第一直流电,并将所述第一直流电通过所述第一直流电输出接口202输出。
在一个实施例中,所述分中心能源路由器200包括:分中心控制装置210。所述分中心控制装置210分别与多个所述开关器件204和多个所述控制装置310电连接。所述分中心控制装置210用于控制各个所述开关器件204的导通与断开。所述分中心控制装置210还用于通过所述开关器件204协调各个所述户级路由器300之间的电能流动。
在一个实施例中,所述分中心控制装置210的具体结构不做限制,只有具有控制各个所述开关器件204的导通与断开,以及通过所述开关器件204协调各个所述户级路由器300之间的电能流动的功能即可。在一个实施例中,所述分中心控制装置210可以是MCU(微控制单元)。在一个实施例中,所述分中心控制装置210可以是控制芯片。
在一个实施例中,当所述分中心控制装置210的配电输入接口接收的电能(即所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电)充足时,各个所述开关器件204均是导通状态。在一个实施例中,所述分中心控制装置210可根据各个 所述户级路由器300内所述控制装置310的用电请求,通过所述开关器件204协调各个所述户级路由器300之间的电能流动,以保证各个所述户级路由器300输出端电连接的所述负载301的正常运行。
请参见图4,在一个实施例中,所述总能源路由器100包括:第一电网输入接口110、第二电网输入接口120、三相交流/直流转换器件130、单相交流/直流转换器件140和直流/直流转换器件150。所述第一电网输入接口110用于获取所述三相交流电101。所述第二电网输入接口120用于获取所述单相交流电102。所述三相交流/直流转换器件130的输入端与所述第一电网输入接口110电连接。所述三相交流/直流转换器件130的输出端与多个所述分中心能源路由器200电连接。所述三相交流/直流转换器件130用于将所述三相交流电101转换为所述第一直流电。
所述单相交流/直流转换器件140的输入端与所述第二电网输入接口120电连接。所述单相交流/直流转换器件140的输出端与多个所述分中心能源路由器200电连接。所述单相交流/直流转换器件140用于将所述单相交流电102转换为所述第二直流电。所述直流/直流转换器件150的第一端与所述三相交流/直流转换器件130的输出端电连接。所述直流/直流转换器件150的第二端与所述单相交流/直流转换器件140的输出端电连接。所述直流/直流转换器件150用于将所述第一直流电转换为所述第二直流电,或者将所述第二直流电转换为所述第一直流电。
在一个实施例中,所述总能源路由器100还包括:光伏配电接口160、储能配电接口170、第一电网输出接口180以及第二电网输出接口190。所述光伏配电接口160与所述三相交流/直流转换器件130的输出端电连接。所述储能配电接口170与所述单相交流/直流转换器件140的输出端电连接。所述第一电网输出接口180用于输出所述三相交流电101。所述第二电网输出接口190用于输出所述单相交流电102。
在一个实施例中,所述光伏配电接口160可用于电连接外部的光伏放发电设备,并通过所述光伏放发电设备给所述总能源路由器100提供电能。同样的,所述储能配电接口170可用于电连接外部的储能电池,并通过储能电池给所述总能源路由器100提供电能。通过上述方式可以保证所述直流多微电网系统10供电的稳定性和可靠性。
请参见图5,本申请一实施例提供一种直流多微电网系统的控制方法,应用于上述任一项实施例所述的直流多微电网系统10。所述方法包括:
S102:通过所述控制装置310控制所述光伏发电装置320和/或所述储能装置330给所述负载301供电,并确定所述光伏发电装置320和所述储能装置330的供电是否满足所述负载301的用电需求。
在一个实施例中,所述控制装置310、所述光伏发电装置320和所述储能装置330的具体结构可采用上述实施例所述的结构,此处不重复描述。通过所述控制装置310确定所述光伏发电装置320和所述储能装置330的供电是否满足所述负载301的用电需求是指:可通过所述控制装置310获取所述光伏发电装置320的输出电压与所述负载301的负载电压,并将所述光伏发电装置320的输出电压与所述负载电压进行比较。
若所述光伏发电装置320的输出电压大于或等于所述负载电压,则确定此时所述光伏发电装置320的输出电压能够满足所述负载301的用电需求。若所述光伏发电装置320的输出电压小于所述负载电压,则确定此时所述光伏发电装置320的输出电压未满足所述负载301的用电需求,此时执行步骤S104。
S104:若确定所述光伏发电装置320和所述储能装置330供电未满足所述负载301的用电需求,则控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。
在一个实施例中,可通过所述控制装置310控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。具体的,如图2所示,可通过所述控制装置310各个可控开关器件(KM1、KM2、KM4、KM5和KM8)控制所述三相交流电101或所述单相交流电102、所述第一直流电和所述第二直流电竞价输出以使所述负载301正常运行。在一个实施例中,所述控制装置310也可通过各个可控开关器件实现所述三相交流电101和/或所述第一直流电和/或所述第二直流电供电。
例如,当需要所述三相交流电101供电时,可通过所述控制装置310控制KM1、KM2和KM9导通。当需要所述所述第一直流电供电时,可通过所述控制装置310控制KM4、KM5和KM9导通。当需要所述所述第二直流电供电时,可通过所述控制装置310控制KM8导通。同时上述三种供电方式可以任意组合的模式供电。也就是说,可同时通过所述三相交流电101和/或所述第一直流电和/或所述第二直流电给所述负载301供电。
在一个实施例中,还可通过所述控制装置310将用电需求发送至所述分中心能源路由器200内的分中心控制器,并通过所述分中心控制器检测其它所述户级路由器300是否有多余电能。如若检测到其它所述户级路由器300有多余电能,则可通过所述分中心控制器协调将其它所述户级路由器300的多余电能通切换开关切换给当前所述户级路由器300以提供电能支撑,从而使所述负载301正常运行。即实现通过所述分中心能源路由器200协调各个所述户级路由器300之间的电能流动的功能,从而实现直流微电网(即所述户级路由器300)间能量的有序共享,避免直流多微电网系统10存在冗余、不经济的问题,提高直流微网的供电稳定性及可靠性。
在一个实施例中,步骤S102包括:通过所述控制装置310控制所述光伏发电装置320给所述负载301供电,并确定所述光伏发电装置320的输出电压是否满足所述负载301的用电需求。若确定所述光伏发电装置320的输出电压未满足所述负载301的用电需求,则获取所述储能装置330的剩余电量,并基于电量设定阈值确定是否控制所述储能装置330给所述负载301供电。若所述剩余电量大于所述电量设定阈值,则控制所述储能装置330给所述负载301供电,并确定所述光伏发电装置320和所述储能装置330的供电是否满足所述负载301的用电需求。
在一个实施例中,通过所述控制装置310确定所述光伏发电装置320的输出电压是否满足所述负载301的用电需求具体为:所述控制装置310可通过所述光伏发电装置320供电支路上的DC/DC获取所述光伏发电装置320的输出电压,并将其与所述负载301的负载电压进行比较。若所述光伏发电装置320的输出电压大于或等于所述负载电压,则确定此时所述光伏发电装置320的输出电压能够满足所述负载301的用电需求,反之不满足需求。
在一个实施例中,获取所述储能装置330的剩余电量,并基于电量设定阈值确定是否控制所述储能装置330给所述负载301供电是指:所述控制装置310可通过所述储能装置330供电支路上的DC/DC获取所述储能装置330的剩余电量,并将所述剩余电量与电量设定阈值进行比较。如若所述剩余电量大于电量设定阈值,则所述控制装置310确定控制所述储能装置330进行放电(即给所述负载301),反之不放电。
综上所述,本申请通过总能源路由器100将三相交流电101和/或单相交流电102转换为第一直流电和第二直流电,并输出三相交流电、单相交流电、第一直流电和第二直流电至多个分中心能源路由器200。各个分中心能源路由器200通过多组输出接口将三相交流电或单相交流电、第一直流电和第二直流电输出至各个所述户级路由器,从而实现一个分中心能源路由器200可以实现多个户级直流微网接入。同时各个户级路由器300内的所述控制装置310按照预设规则控制光伏发电装置320、储能装置330、三相交流电或单相交流电、第一直流电和第二直流电竞价输出以使负载正常运行,并通过分中心能源路由器200协调各个户级路由器300之间的电能流动,实现直流微电网间能量的有序共享,提高直流微网的供电稳定性及可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能 因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (13)
- 一种直流多微电网系统,其特征在于,包括:总能源路由器,所述总能源路由器的输入端分别用于获取三相交流电和单相交流电,所述总能源路由器用于将所述三相交流电和/或所述单相交流电转换为第一直流电和第二直流电,并输出所述三相交流电、所述单相交流电、所述第一直流电和所述第二直流电;多个分中心能源路由器,每个所述分中心能源路由器均与所述总能源路由器的输出端电连接,所述分中心能源路由器设置有多组输出接口,每组所述输出接口均用于输出所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电;以及多个户级路由器,每个所述户级路由器均电连接一组所述输出接口,所述户级路由器的输出端用于电连接负载,所述户级路由器用于获取所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电;所述户级路由器包括控制装置、光伏发电装置、储能装置,所述控制装置用于控制所述光伏发电装置、所述储能装置、所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行;所述分中心能源路由器还用于协调各个所述户级路由器之间的电能流动。
- 根据权利要求1所述的直流多微电网系统,其特征在于,所述控制装置被配置为优先控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求;若确定所述光伏发电装置和所述储能装置供电未满足所述负载的用电需求,则所述控制装置控制所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行。
- 根据权利要求2所述的直流多微电网系统,其特征在于,所述户级路由器接受的所述第一直流电的来源为所述分中心能源路由器直接输出的所述第一直流电或其它所述户级路由器输出的所述第一直流电;所述户级路由器接受的所述第二直流电的来源为所述分中心能源路由器直接输出的所述第二直流电或其它所述户级路由器输出的所述第二直流电。
- 根据权利要求1所述的直流多微电网系统,其特征在于,所述控制装置分别与所述光伏发电装置、所述储能装置和所述分中心能源路由器电连接,所述控制装置还用于获取所述储能装置的剩余电量,并基于电量设定阈值确定是否控制所述储能装置放电。
- 根据权利要求4所述的直流多微电网系统,其特征在于,所述控制装置用于将所述剩余电量与所述电量设定阈值进行比较,若所述剩余电量大于所述电量设定阈值,则所述控制装置控制所述储能装置放电,若所述剩余电量小于或等于所述电量设定阈值,则所述控制装置控制所述储能装置不放电。
- 根据权利要求1所述的直流多微电网系统,其特征在于,所述输出接口包括交流电输出接口、第一直流电输出接口和第二直流电输出接口,所述交流电输出接口、所述第一直流电输出接口和所述第二直流电输出接口内均设置有开关器件,各个所述开关器件分别用于控制所述交流电输出接口或所述第一直流电输出接口或所述第二直流电输出接口的导通与断开。
- 根据权利要求6所述的直流多微电网系统,其特征在于,所述分中心能源路由器包括:分中心控制装置,分别与多个所述开关器件和多个所述控制装置电连接,用于控制各个所述开关器件的导通与断开,还用于通过所述开关器件协调各个所述户级路由器之间的电能流动。
- 根据权利要求1所述的直流多微电网系统,其特征在于,总能源路由器包括:第一电网输入接口,用于获取所述三相交流电;第二电网输入接口,用于获取所述单相交流电;三相交流/直流转换器件,所述三相交流/直流转换器件的输入端与所述第一电网输入接口电连接,所述三相交流/直流转换器件的输出端与多个所述分中心能源路由器电连接,用于将所述三相交流电转换为所述第一直流电;单相交流/直流转换器件,所述单相交流/直流转换器件的输入端与所述第二电网输入接口电连接,所述单相交流/直流转换器件的输出端与多个所述分中心能源路由器电连接,用于将所述单相交流电转换为所述第二直流电;以及直流/直流转换器件,所述直流/直流转换器件的第一端与所述三相交流/直流转换器件的输出端电连接,所述直流/直流转换器件的第二端与所述单相交流/直流转换器件的输出端电连接,用于将所述第一直流电转换为所述第二直流电,或者将所述第二直流电转换为所述第一直流电。
- 根据权利要求8所述的直流多微电网系统,其特征在于,所述总能源路由器还包括:光伏配电接口,与所述三相交流/直流转换器件的输出端电连接;储能配电接口,与所述单相交流/直流转换器件的输出端电连接;第一电网输出接口,用于输出所述三相交流电;以及第二电网输出接口,用于输出所述单相交流电。
- 根据权利要求1-9任一项所述的直流多微电网系统,其特征在于,所述第一直流电和所述第二直流电的电压不相同。
- 根据权利要求10所述的直流多微电网系统,其特征在于,所述户级路由器的输出端还设置有用于采集用电信息的计量设备。
- 一种直流多微电网系统的控制方法,其特征在于,应用于如权利要求1-9任一项所述的直流多微电网系统,所述方法包括:通过所述控制装置控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求;若确定所述光伏发电装置和所述储能装置供电未满足所述负载的用电需求,则控制所述三相交流电或所述单相交流电、所述第一直流电和所述第二直流电竞价输出以使所述负载正常运行。
- 根据权利要求12所述的直流多微电网系统的控制方法,其特征在于,通过所述控制装置控制所述光伏发电装置和/或所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否充足的步骤包括:通过所述控制装置控制所述光伏发电装置给所述负载供电,并确定所述光伏发电装置的输出电压是否满足所述负载的用电需求;若确定所述光伏发电装置的输出电压未满足所述负载的用电需求,则获取所述储能装置的剩余电量,并基于电量设定阈值确定是否控制所述储能装置给所述负载供电;若所述剩余电量大于所述电量设定阈值,则控制所述储能装置给所述负载供电,并确定所述光伏发电装置和所述储能装置的供电是否满足所述负载的用电需求。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010175097.5 | 2020-03-13 | ||
CN202010175097.5A CN111224402A (zh) | 2020-03-13 | 2020-03-13 | 直流多微电网系统及控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179685A1 true WO2021179685A1 (zh) | 2021-09-16 |
Family
ID=70832698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131689 WO2021179685A1 (zh) | 2020-03-13 | 2020-11-26 | 直流多微电网系统及控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111224402A (zh) |
WO (1) | WO2021179685A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972675A (zh) * | 2021-10-26 | 2022-01-25 | 湖南能创科技有限责任公司 | 小型工商业用能源管理系统 |
CN114294734A (zh) * | 2021-11-30 | 2022-04-08 | 青岛海尔空调器有限总公司 | 新能源空调及其控制方法、电子设备和存储介质 |
CN115882516A (zh) * | 2023-03-08 | 2023-03-31 | 杭州欣美成套电器制造有限公司 | 高效光伏充电控制的光伏并网控制装置及方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111224402A (zh) * | 2020-03-13 | 2020-06-02 | 珠海格力电器股份有限公司 | 直流多微电网系统及控制方法 |
CN111934308A (zh) * | 2020-07-30 | 2020-11-13 | 广东电网有限责任公司 | 直流楼宇微电网及其控制方法 |
CN112787332A (zh) * | 2021-03-04 | 2021-05-11 | 张晓光 | 点式自发自用电相互馈电系统 |
CN113595159A (zh) * | 2021-08-10 | 2021-11-02 | 江西清华泰豪三波电机有限公司 | 一种多源车载供电系统 |
CN113890164A (zh) * | 2021-09-30 | 2022-01-04 | 嘉兴学院 | 一种光伏储能供电控制系统 |
CN114530854A (zh) * | 2021-12-28 | 2022-05-24 | 国网浙江省电力有限公司平湖市供电公司 | 一种多级能量路由器协同系统及方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130088084A1 (en) * | 2011-10-06 | 2013-04-11 | GCCA Inc. | Networklized DC Power System |
CN104993988A (zh) * | 2015-07-03 | 2015-10-21 | 清华大学 | 一种能源互联网调度与控制方法 |
CN205622226U (zh) * | 2015-10-19 | 2016-10-05 | 华南理工大学 | 一种含单三相的混联结构光储型多微网系统 |
CN106655267A (zh) * | 2016-12-26 | 2017-05-10 | 上海电力学院 | 一种考虑多微网互动的能源局域网及控制方法 |
CN107147146A (zh) * | 2017-06-15 | 2017-09-08 | 东北大学 | 一种基于联合多微网的分布式能量管理优化方法及装置 |
CN107394826A (zh) * | 2017-09-21 | 2017-11-24 | 北京工业大学 | 一种基于多个能源路由器的城市用电系统 |
CN107707025A (zh) * | 2017-10-12 | 2018-02-16 | 珠海格力电器股份有限公司 | 需求侧能源互联系统、能源互联控制系统 |
CN107910892A (zh) * | 2017-11-15 | 2018-04-13 | 国家电网公司 | 一种应用于智能型分布式能源网络的能源路由器装置 |
CN109120010A (zh) * | 2018-09-21 | 2019-01-01 | 无锡美凯能源科技有限公司 | 一种应用于通信基站领域的交直流混合串联型微电网 |
CN109995012A (zh) * | 2019-03-13 | 2019-07-09 | 中国科学院电工研究所 | 直流配电系统及其控制方法 |
CN111224402A (zh) * | 2020-03-13 | 2020-06-02 | 珠海格力电器股份有限公司 | 直流多微电网系统及控制方法 |
CN211480931U (zh) * | 2020-03-13 | 2020-09-11 | 珠海格力电器股份有限公司 | 直流多微电网系统 |
-
2020
- 2020-03-13 CN CN202010175097.5A patent/CN111224402A/zh active Pending
- 2020-11-26 WO PCT/CN2020/131689 patent/WO2021179685A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130088084A1 (en) * | 2011-10-06 | 2013-04-11 | GCCA Inc. | Networklized DC Power System |
CN104993988A (zh) * | 2015-07-03 | 2015-10-21 | 清华大学 | 一种能源互联网调度与控制方法 |
CN205622226U (zh) * | 2015-10-19 | 2016-10-05 | 华南理工大学 | 一种含单三相的混联结构光储型多微网系统 |
CN106655267A (zh) * | 2016-12-26 | 2017-05-10 | 上海电力学院 | 一种考虑多微网互动的能源局域网及控制方法 |
CN107147146A (zh) * | 2017-06-15 | 2017-09-08 | 东北大学 | 一种基于联合多微网的分布式能量管理优化方法及装置 |
CN107394826A (zh) * | 2017-09-21 | 2017-11-24 | 北京工业大学 | 一种基于多个能源路由器的城市用电系统 |
CN107707025A (zh) * | 2017-10-12 | 2018-02-16 | 珠海格力电器股份有限公司 | 需求侧能源互联系统、能源互联控制系统 |
CN107910892A (zh) * | 2017-11-15 | 2018-04-13 | 国家电网公司 | 一种应用于智能型分布式能源网络的能源路由器装置 |
CN109120010A (zh) * | 2018-09-21 | 2019-01-01 | 无锡美凯能源科技有限公司 | 一种应用于通信基站领域的交直流混合串联型微电网 |
CN109995012A (zh) * | 2019-03-13 | 2019-07-09 | 中国科学院电工研究所 | 直流配电系统及其控制方法 |
CN111224402A (zh) * | 2020-03-13 | 2020-06-02 | 珠海格力电器股份有限公司 | 直流多微电网系统及控制方法 |
CN211480931U (zh) * | 2020-03-13 | 2020-09-11 | 珠海格力电器股份有限公司 | 直流多微电网系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972675A (zh) * | 2021-10-26 | 2022-01-25 | 湖南能创科技有限责任公司 | 小型工商业用能源管理系统 |
CN114294734A (zh) * | 2021-11-30 | 2022-04-08 | 青岛海尔空调器有限总公司 | 新能源空调及其控制方法、电子设备和存储介质 |
CN115882516A (zh) * | 2023-03-08 | 2023-03-31 | 杭州欣美成套电器制造有限公司 | 高效光伏充电控制的光伏并网控制装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111224402A (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179685A1 (zh) | 直流多微电网系统及控制方法 | |
TWI437791B (zh) | 網路化直流供電系統 | |
WO2018076554A1 (zh) | 一种交直流智能家庭微网协同系统及其运行方法 | |
CN108123497B (zh) | 一种交直流混合供电的配电柜及交直流混合供电系统 | |
CN103595071A (zh) | 一种微网能源系统 | |
CN103606943A (zh) | 一种微网镍氢电池储能系统 | |
CN109120010A (zh) | 一种应用于通信基站领域的交直流混合串联型微电网 | |
CN104682431A (zh) | 一种储能变流器的自启动方法及其自启动系统 | |
CN102810909A (zh) | 一种可实现分布式电源与负载匹配的能量管理方法 | |
CN102593832A (zh) | 一种适用于现代楼宇的三线制直流微网系统及其控制方法 | |
CN105337306A (zh) | 一种光储一体化发电系统 | |
TW201914146A (zh) | 整合式供電系統 | |
CN106786755A (zh) | 一种储能系统及控制方法 | |
CN207320834U (zh) | 一种交直流混合配用电系统的电路拓扑结构 | |
CN106160181A (zh) | 一种不间断供电系统 | |
CN113783196A (zh) | 一种智慧能源站供电系统 | |
CN211480931U (zh) | 直流多微电网系统 | |
CN204441905U (zh) | 一种储能变流器的自启动系统 | |
CN203722249U (zh) | 一种分布式光伏并网发电系统 | |
CN106786732B (zh) | 一种交直流微网群运行控制测试系统 | |
CN109088435A (zh) | 一种应用于通信基站领域的交直流混合并联型微电网 | |
CN202817886U (zh) | 不间断电源 | |
CN115514237A (zh) | 一种能量路由器低损耗待机方法 | |
CN107769211A (zh) | 一种双电压等级交直流混合配用电系统 | |
CN205791517U (zh) | 一种不间断供电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924407 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924407 Country of ref document: EP Kind code of ref document: A1 |