WO2021179487A1 - 云主机在宿主机上的动态分配方法、电子装置及存储介质 - Google Patents

云主机在宿主机上的动态分配方法、电子装置及存储介质 Download PDF

Info

Publication number
WO2021179487A1
WO2021179487A1 PCT/CN2020/099285 CN2020099285W WO2021179487A1 WO 2021179487 A1 WO2021179487 A1 WO 2021179487A1 CN 2020099285 W CN2020099285 W CN 2020099285W WO 2021179487 A1 WO2021179487 A1 WO 2021179487A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
cloud
original
ratio value
machine
Prior art date
Application number
PCT/CN2020/099285
Other languages
English (en)
French (fr)
Inventor
胥耀
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021179487A1 publication Critical patent/WO2021179487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of cloud computing technology, and in particular to a method for dynamically allocating a cloud host on a host, an electronic device, and a computer-readable storage medium.
  • the cloud platform monitoring products on the market such as the cloud monitoring products of Facebook Cloud, Tencent Cloud, and Huawei Cloud, mostly monitor basic resources (computing, network, storage, etc.) by setting fixed thresholds for indicators.
  • cloud monitoring will generate an alarm event and notify the operation and maintenance personnel of the alarm event.
  • the operation and maintenance personnel are performing actual troubleshooting and so on based on the warning information received.
  • the above-mentioned method is relatively primitive and does not realize the automation of monitoring operation and maintenance. It requires operation and maintenance personnel to locate specific problems of the system according to the alarm message, and the timeliness is low. In the actual production environment, most of the failures are caused by the same reason; for example: a production cluster is dedicated to log storage, disk usage alarms basically come from too many log files, which can be deleted manually The old log files are used to solve the problem; however, each alarm and fault needs to be repaired manually by the operation and maintenance personnel, and the degree of automation of the entire process is relatively low.
  • cloud platform products on the market currently have several default images fixed on the image of the cloud host.
  • most of them can be divided into: computing type, general type, capacity type, and memory type according to the usage scenarios. Wait.
  • the general configuration settings for most cloud platform computing hosts are: 1 core 2G, 2 cores 4G, 4 cores 8G, and 8 cores 16G.
  • General purpose hosts are generally configured as: 1 core 4G, 2 cores 8G, 4 cores 16G, etc.; but these There is no difference in the essence of mirroring, only the difference in configuration. In other words, when assigning images, cloud hosts with different core counts and memory ratios need to be assigned to different hosts.
  • 1 core 2G and 2 core 4G cloud hosts need to be allocated to a 36-core 72G or 72-core 144G host without oversubscription, because the number of cores and memory ratio are both 1:2; if it is in the CPU When the ratio of the number of cores to the memory is determined, this allocation method is better and will not cause a waste of host machine resources.
  • a cloud host with a memory ratio if the user wants to use a 1 core 1G or 1 core 3G cloud host, when the host's resources are allocated, either the number of cores or the remaining memory will be left, and the host's resources will not be used Utilization reaches the maximum; in general commercial cloud computing scenarios, it will cause a large-scale waste of host CPU or memory resources.
  • the inventor realized that the traditional cloud monitoring method and the traditional cloud host allocation method on the host machine cannot meet the needs of customers, so there is an urgent need for a method for dynamic allocation of cloud hosts on the host machine.
  • the above problem is an urgent need for a method for dynamic allocation of cloud hosts on the host machine.
  • This application provides a method, an electronic device, and a computer-readable storage medium for dynamically allocating cloud hosts on a host.
  • the main purpose of the method is to allocate the cloud host based on the original ratio of the cloud host and the original ratio of the host, so that the host computer’s
  • the resource utilization rate is maximized, thereby solving the problem of large-scale host CPU or memory resource waste due to the cloud host with a fixed number of cores and memory ratio used in the existing cloud computing.
  • the present application provides a method for dynamically allocating a cloud host on a host computer, which is applied to an electronic device, and the method includes:
  • the original ratio value of the cloud host According to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host, match the corresponding host for the cloud host and allocate the cloud host to the matching host.
  • this application provides a system for dynamically allocating cloud hosts on a host computer, including:
  • the ratio value acquisition module is used to obtain the original ratio value of each host, the actual resource occupancy ratio value of each host, and the original ratio value of each cloud host;
  • the host state acquisition module is configured to acquire the host state according to the original ratio value of the host machine and the actual resource occupation ratio value;
  • the cloud host allocation module is configured to match the cloud host with the corresponding host and allocate the cloud host to the corresponding host according to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host On the host.
  • the present application also provides an electronic device, which includes a memory and a processor, the memory includes a dynamic allocation program of the cloud host on the host, and the dynamic allocation of the cloud host on the host
  • the allocation program is executed by the processor, the following steps are implemented:
  • the original ratio value of the cloud host According to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host, match the corresponding host for the cloud host and allocate the cloud host to the matching host.
  • this application also provides a computer-readable storage medium, the computer-readable storage medium includes a cloud host dynamic allocation program on the host machine, the cloud host dynamic allocation on the host machine When the program is executed by the processor, any step in the method for dynamically allocating the cloud host on the host computer as described above is realized.
  • the dynamic allocation method, electronic device, and computer-readable storage medium of the cloud host on the host computer proposed in this application.
  • First perform cloud monitoring based on Workflow to discover the problems in the cloud platform, and then use the dynamic allocation method to solve the discovered problems, namely :
  • First perform cloud monitoring based on Workflow, so as to solve the problems of poor efficiency and low automation of existing cloud monitoring operation and maintenance;
  • the resource utilization rate is maximized, thereby solving the problem of large-scale host CPU or memory resource waste caused by the existing cloud computing using cloud hosts with a fixed core number and memory ratio;
  • using the dynamic allocation method of this application users can There is no need to purchase a host with a specified configuration, and there is no need to migrate when the host's memory module and other devices have problems.
  • the cloud host is allocated on the host according to the original ratio of the host and the cloud host, thereby improving the host's resources Utilization;
  • the cloud host can be moved to any host when a host fails, making the allocation of cloud hosts more flexible.
  • FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a method for dynamic allocation of a cloud host on a host according to the application;
  • FIG. 2 is a schematic diagram of modules of a preferred embodiment of a dynamic allocation system for a cloud host on a host according to the application;
  • FIG. 3 is a flowchart of a preferred embodiment of a method for dynamic allocation of a cloud host on a host computer according to the application.
  • This application provides a method for dynamically allocating a cloud host on a host computer, which is applied to an electronic device 1.
  • FIG. 1 it is a schematic diagram of an application environment of a preferred embodiment of a method for dynamic allocation of a cloud host on a host according to this application.
  • the electronic device 1 may be a terminal device with arithmetic function, such as a server, a smart phone, a tablet computer, a portable computer, a desktop computer, and the like.
  • the electronic device 1 includes a processor 12, a memory 11, a network interface 14 and a communication bus 15.
  • the memory 11 includes at least one type of readable storage medium.
  • the at least one type of readable storage medium may be a non-volatile storage medium such as flash memory, hard disk, multimedia card, card-type memory 11, and the like.
  • the readable storage medium may be an internal storage unit of the electronic device 1, such as a hard disk of the electronic device 1.
  • the readable storage medium may also be the external memory 11 of the electronic device 1, such as a plug-in hard disk or a smart memory card (Smart Media Card, SMC) equipped on the electronic device 1. , Secure Digital (SD) card, Flash Card, etc.
  • SD Secure Digital
  • the readable storage medium of the memory 11 is usually used to store the dynamic allocation program 10 of the cloud host installed on the electronic device 1 on the host machine, and the APP (Application, Chinese is a third-party application for mobile phones) and so on.
  • the memory 11 can also be used to temporarily store data that has been output or will be output.
  • the processor 12 may be a central processing unit (Central Processing Unit, CPU), microprocessor or other data processing chip in some embodiments, for running program codes or processing data stored in the memory 11, for example, a cloud host is in the host.
  • the dynamic allocation program on the host computer 10 and so on.
  • the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is generally used to establish a communication connection between the electronic device 1 and other electronic devices.
  • the communication bus 15 is used to realize the connection and communication between these components.
  • FIG. 1 only shows the electronic device 1 with the components 11-15, but it should be understood that it is not required to implement all the illustrated components, and more or fewer components may be implemented instead.
  • the electronic device 1 may further include a calling terminal interface, which may include an input unit such as a keyboard (Keyboard), a voice input device such as a microphone (microphone) and other devices with voice recognition functions, and a voice output device such as audio, Headphones, etc.
  • a calling terminal interface may also include a standard wired interface and a wireless interface.
  • the electronic device 1 may also include a display, and the display may also be referred to as a display screen or a display unit.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an organic light-emitting diode (OLED) touch device, and the like.
  • the display is used to display the information processed in the electronic device 1 and used to display a visualized call terminal interface.
  • the electronic device 1 further includes a touch sensor.
  • the area provided by the touch sensor for the caller to perform a touch operation is called a touch area.
  • the touch sensor described here may be a resistive touch sensor, a capacitive touch sensor, or the like.
  • the touch sensor includes not only a contact type touch sensor, but also a proximity type touch sensor and the like.
  • the touch sensor may be a single sensor, or may be, for example, a plurality of sensors arranged in an array.
  • the area of the display of the electronic device 1 may be the same as or different from the area of the touch sensor.
  • the display and the touch sensor are stacked to form a touch display screen. The device detects the touch operation triggered by the caller based on the touch screen.
  • the electronic device 1 may also include a radio frequency (RF) circuit, a sensor, an audio circuit, etc., which will not be repeated here.
  • RF radio frequency
  • the memory 11 as a computer storage medium may include an operating system and a dynamic allocation program 10 of the cloud host on the host; the processor 12 executes the cloud host stored in the memory 11. The following steps are implemented in the dynamic allocation program 10 on the host computer:
  • the operation and maintenance tool sends a preset instruction to the operation and maintenance entity
  • the operation and maintenance entity executes the preset instruction issued by the operation and maintenance tool
  • the preset instruction includes the dynamic allocation of the cloud host on the host machine, and the specific dynamic allocation method is as follows:
  • the original ratio value of the cloud host According to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host, match the corresponding host for the cloud host and allocate the cloud host to the matching host.
  • the cloud management system initializes the host machine
  • the original host ratio value of each host machine of each host machine is obtained, wherein:
  • the original ratio of the host is the ratio of the CPU of the host to the memory of the host.
  • the actual resource occupancy ratio value of each host machine is obtained according to the used CPU and used memory of the host machine, where:
  • the actual resource occupation ratio value is the ratio of the used CPU to the used memory of the host computer.
  • the ratio of the CPU of the cloud host to the memory of the cloud host is defined as the original ratio of the cloud host.
  • the step of obtaining the status of the host machine according to the original ratio value of the host machine and the actual resource occupancy ratio value includes:
  • the status of the host machine is marked as "0".
  • the cloud host is matched with a corresponding host machine and the cloud host is allocated to the matching host machine.
  • the steps on the host include:
  • the cloud host is allocated to the host whose status is marked as "0".
  • the electronic device 1 proposed in the above embodiment first performs cloud monitoring based on Workflow to discover the problems in the cloud platform, and then uses a dynamic allocation method to solve the discovered problems, that is, first performs cloud monitoring based on Workflow to solve the existing cloud monitoring Problems such as poor operation and maintenance effectiveness and low degree of automation; and then allocate cloud hosts according to the original ratio of cloud hosts and the original ratio of hosts to maximize the resource utilization of the host, thereby solving the existing cloud computing due to the use of A cloud host with a fixed core count and memory ratio in the cloud, causing large-scale host CPU or memory resource waste; using the dynamic allocation method of this application, users do not need to purchase a host with a specified configuration, and do not need to be on the host Memory modules and other devices must be migrated when there is a problem, which can increase the resource utilization of the host according to the original ratio of the host and the cloud host; in addition, the cloud host can be moved to any host when a host fails This makes the allocation of cloud hosts more flexible.
  • this application also provides a dynamic allocation system for cloud hosts on the host.
  • the dynamic allocation system of the cloud host on the host includes: a monitoring data processing module 110, an alarm trigger module 120, an instruction sending module 130, an instruction execution module 140, a proportional value acquisition module 150, and a host state acquisition module 160 and cloud host distribution module 170, of which,
  • the monitoring data processing module 110 is used to process the monitoring data through cloud monitoring
  • the warning trigger module 120 is configured to trigger an alarm when the processed monitoring data reaches a preset alarm threshold and send the triggered alarm information to Workflow, where the Workflow includes: operation and maintenance tools and operation and maintenance entities;
  • the instruction sending module 130 is configured to send a preset instruction to the operation and maintenance entity by the operation and maintenance tool according to the received alarm information;
  • the instruction execution module 140 is configured to execute the preset instruction issued by the operation and maintenance tool by the operation and maintenance entity according to the received instruction;
  • the ratio value obtaining module 150 is used to obtain the original host ratio value of each host machine, the actual resource occupancy ratio value of each host machine, and the original cloud host ratio value of each cloud host;
  • the host state obtaining module 160 is configured to obtain the host state according to the original ratio value of the host machine and the actual resource occupation ratio value;
  • the cloud host allocation module 170 is configured to match the corresponding host to the cloud host and allocate the cloud host to the cloud host according to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host. On the matching host.
  • the original host scale value of each host of each host is obtained, where:
  • the original ratio of the host is the ratio of the CPU of the host to the memory of the host.
  • the actual resource occupancy ratio value of each host machine is obtained according to the used CPU and used memory of the host machine, where:
  • the actual resource occupation ratio value is the ratio of the used CPU to the used memory of the host computer.
  • the ratio value of the CPU of the cloud host and the memory of the cloud host is defined as the original ratio value of the cloud host.
  • the step of acquiring the host state according to the original ratio value of the host machine and the actual resource occupancy ratio value includes:
  • the status of the host machine is marked as "0".
  • the cloud host allocation module 170 according to the original ratio value of the cloud host, the original ratio value of the host machine, and the status of the host machine, match the corresponding host machine for the cloud host and allocate the cloud host.
  • the steps to the matching host machine include:
  • the cloud host is allocated to the host whose status is marked as "0".
  • this application also provides a method for dynamic allocation of cloud hosts on the host.
  • this is a flowchart of a preferred embodiment of a method for dynamic allocation of a cloud host on a host computer according to this application.
  • the method can be executed by a device, and the device can be implemented by software and/or hardware.
  • the dynamic allocation method of the cloud host on the host computer includes: step S110-step S170.
  • S110 Process monitoring data through cloud monitoring equipment
  • the operation and maintenance tool According to the received alarm information, the operation and maintenance tool sends a preset instruction to the operation and maintenance entity;
  • the preset instruction includes the dynamic allocation of the cloud host on the host machine, and the specific dynamic allocation method is as follows:
  • S160 Acquire the host machine status according to the original ratio value of the host machine and the actual resource occupation ratio value
  • S170 According to the original ratio value of the cloud host, the original ratio value of the host machine, and the status of the host machine, match a corresponding host machine for the cloud host and allocate the cloud host to the matching host machine.
  • Workflow-based cloud monitoring is mainly for improving the timeliness and automation of system fault repair.
  • cloud monitoring + operation and maintenance tools + operation and maintenance entities are formed.
  • Such a Workflow system After the monitoring data is pushed to the cloud monitoring device, if the alarm threshold is reached, an alarm will be triggered, and then it will enter the set Worlflow.
  • This process is to send the preset instructions to the operation and maintenance entity through the operation and maintenance tool; then through the cloud
  • the dynamic allocation method of the host on the host can greatly improve the resource utilization of the host of the large-scale cloud computing system; it will also make the allocation of the cloud host more flexible, and it will not cause the need to allocate the cloud host to the host with the specified configuration. Causes cloud host migration failure.
  • the main difference between this application and the traditional monitoring operation and maintenance method is that the current cloud monitoring product is mainly for alarming. If you want to perform subsequent operations, you need to put the alarm event into the message queue for consumption or obtain it through the interface, and then write the program Perform corresponding operation and maintenance operations for alarm events.
  • the Workflow-based process abstracts the alarm events and most of the operation and maintenance operations into separate modules, write the program in advance and set it in the module, no longer need to write the program separately, or even drag and drop directly on the page. Finish.
  • the cloud monitoring device mainly performs data reception, data storage, and data aggregation for the data, and also monitors whether the uploaded data meets the set alarm conditions in real time; the monitoring data collection is mainly through deployment Collect on the client on the host.
  • Cloud monitoring is the equation of security cloud and IT cloud computing, resource virtualization and cloud services.
  • the monitoring industry is in the transitional stage from monitoring data concentration to virtualization and resource utilization.
  • Cloud monitoring uses various fault analysis methods to capture various information when a fault occurs, such as network information, domain name resolution information, etc., to help website owners determine the cause of the fault and quickly locate the problem through the monitoring nodes distributed in various places.
  • the operation and maintenance tool is used to develop predefined commands to the operation and maintenance entity based on the received trigger warning; the operation and maintenance entity is used to execute various pre-defined commands, and the operation and maintenance entity refers to Cloud resources generally refer to cloud hosts.
  • step S110 and step S120 the cloud monitoring device monitors whether the uploaded monitoring data meets the preset alarm conditions in real time, that is, when the monitoring device monitors that the monitoring data meets the alarm threshold, an alarm is triggered and an alarm is issued to the operation and maintenance product.
  • the alarm can be pushed through voice, SMS, email, etc., or it can be pushed to Workflow (namely: designated WebHook, message queue, function calculation, log service) to facilitate the integration of alarm information into operation and maintenance tools.
  • cloud monitoring equipment is a service for monitoring resources and Internet applications. Cloud monitoring can be used to collect monitoring indicators and monitoring data for obtaining resources, detect the availability of Internet services, and set alarms for monitoring data.
  • the alarm function is a function of cloud monitoring equipment.
  • the user can set the threshold to determine the sensitivity of the alarm.
  • Different monitoring items have different threshold ranges.
  • the threshold of the percentage of cloud host disk used can be set to 80%, so that when the disk usage reaches 80%, it will Trigger an alarm. Therefore, the cloud monitoring device monitors the items that need to be monitored in real time. As the monitoring project runs, the monitoring data will change. When the monitoring data slowly reaches the preset alarm threshold, the cloud monitoring device automatically triggers an alarm.
  • the alarm thresholds are set according to the specific items to be monitored and actual needs, and different alarm thresholds are set for different monitoring items.
  • the failure causes of the alarm generated by the host of the same service type can basically be classified into several fixed types. Therefore, through the Workflow system, the alarm event of the host is used as the triggering condition of the Workflow, and then some predetermined operations are performed. instruction.
  • the used space rate of the disk can be used as the trigger condition of Workflow.
  • the disk capacity of the log server becomes less and less and reaches the pre-set alarm threshold, it will automatically trigger the pre-programmed Execution script; Among them, this script is mainly used to clear the oldest log data, so that an automated monitoring operation and maintenance system can be realized. Therefore, scenarios such as the release of cloud host memory and the release of cloud host disk space can all use the above methods.
  • the operation and maintenance tools of Workflow mainly refer to tools for executing instructions, and the commands can be issued to the corresponding cloud host or cloud resource.
  • the execution instructions are preset in the operation and maintenance tool.
  • the operation and maintenance tool receives the alarm information, the operation and maintenance tool will send the preset instruction to the operation and maintenance entity.
  • the operation and maintenance entity can refer to the cloud host, cloud Resources and so on.
  • the alarm event of cloud monitoring is used as the trigger condition.
  • the Workflow system will be automatically run.
  • the Workflow system can be composed of multiple execution events. After detecting that all events have been executed , The entire Workflow is marked as complete.
  • Workflow can be understood as a series of commands that need to be executed; it is mainly realized by operation and maintenance tools, such as automatic log cleaning Workflow. You need to enter the specified directory and then execute the delete command. Workflow is divided into two Two events have a dependency relationship; you must first enter the specified folder before you can execute the delete command.
  • Workflow refers to a collection of executable operations. For example, the log containing a certain field is filtered by the log tool as an execution event, and then the log deleted by the deletion tool is another execution event. These two events can be combined into a Workflow. If the business is more complex, more executable events can be used to form a Workflow.
  • Executing event 1 refers to issuing the command entered in the log directory to the cloud host for execution; refers to executing event 2 to delete the directory of the log file.
  • An execution event must include the issuance of commands and the execution of commands. Executing the command to delete log files must include both the issuance of the command and the execution of the command on the cloud host.
  • the preset instruction is the instruction for the pre-written execution script, where the preset command can be written by the user.
  • the disk is full due to log reasons. An alarm will be issued.
  • the host receives the alarm information, it will issue a command to clear the oldest log data, so that the rm command can be used to delete the log; after receiving the command to clear the log data, the cloud host will execute this command , That is: the script will run automatically to clear the most permanent log.
  • the release of cloud host memory the release of cloud host disk space.
  • the cloud monitoring device, operation and maintenance tool, and operation and maintenance entity are combined to form a Workflow system, thereby solving the problems of poor effectiveness and low degree of automation in the existing cloud monitoring operation and maintenance; using the cloud monitoring method of this application, Without manually logging in to the host or other application systems, it can directly repair some problems intelligently, thus saving the time of operation and maintenance and repairing, making the application system recovery time less and less, which can improve the cloud monitoring operation.
  • the effectiveness of maintenance in addition, when there are problems in some online environments, due to the urgency of time and the complexity of the online environment, the operation and maintenance personnel often make mistakes in the process of performing repairs.
  • the cloud monitoring method of this application is adopted, It can reduce the possibility of errors for operation and maintenance personnel, thereby increasing the degree of automation of monitoring operation and maintenance.
  • the cloud monitoring based on Workflow first finds the problems existing in the cloud platform, and then he solves the problems found by the dynamic allocation method, where the preset instructions include the cloud host on the host Dynamic allocation, the specific dynamic allocation method is as follows:
  • step S150 when the cloud management system initializes the host, the ratio of the host's CPU to the host's memory is obtained, and this value is defined as the "host's original ratio value", for example: the original ratio of a 64-core 128G host The value is 0.5, and the original ratio of a 64-core 64G host is 1.
  • the initialization process of the cloud management system refers to: the cloud management system obtains the ratio of the CPU and memory of each host when the host is managed, and the cloud management system can obtain the host when the host is added to the resource pool.
  • Initialization actually refers to the process of the cloud management software hosting the host for the first time, mainly to obtain the "host original ratio value"; that is, to initialize the host through the cloud management system to obtain the CPU and memory of each host. Scale (the original scale value of the host).
  • the cloud management system is divided into: self-developed cloud management system, OpenStack, CloudStack, etc. according to different cloud platforms.
  • the actual resource occupancy ratio value of each host machine is obtained according to the used CPU and used memory of the host machine, where the actual resource occupancy ratio value is the used CPU and used memory of the host machine That is, the actual resource occupancy ratio is the "used CPU"/"used memory" of the current host.
  • an "actual resource occupancy ratio value" will be generated for each host, that is, the "used CPU”/"used memory” of the current host. It is explained that the acquisition frequency of the actual resource occupancy ratio value of the host machine can be positioned for one or ten minutes, depending on the actual creation frequency of the specific environment.
  • the ratio of the CPU of the cloud host to the memory of the cloud host is defined as the original ratio of the cloud host. That is to say, the image of the cloud host will also have a ratio, which is defined as "the original ratio of the cloud host"; for example: the original ratio of the cloud host of the 1 core 2G cloud host is 0.5, and the value of the 1 core 4G cloud host The original ratio of cloud hosts is 0.25.
  • the user when creating a cloud host, the user will select the number of CPU cores and memory size. The original ratio of the cloud host is actually determined when the creation command is issued.
  • the original ratio of the host is the ratio of the number of CPU cores to the memory. If each machine does not change the hardware, this value is fixed. For example, the original ratio of the 64-core 128G host is 0.5; the original ratio of the cloud host , After the cloud host is created, this value will not change unless the user expands to a different proportion of the cloud host.
  • the calculation method is also the ratio of the number of CPU cores to the memory. For example, the value of a cloud host with 1 core and 2G is 0.5.
  • step S160 this step is the process of determining how to determine the status of the host. According to the original ratio of the host and the actual resource occupancy ratio, the steps of obtaining the status of the host include:
  • Step 1 If the original ratio of the host is greater than the actual resource occupancy ratio, mark the status of the host as "1";
  • Step 2 If the original ratio of the host is less than the actual resource occupancy ratio, the status of the host is marked as "0".
  • the status of the host can be judged through the above process.
  • the current host's The “host original ratio value” is: 0.5
  • the current host “actual resource usage ratio value” is: 0.33
  • every time the “actual resource usage ratio value” is calculated the “host original ratio value” and "Actual resource occupancy ratio value” is compared.
  • step S170 according to the original scale value of the cloud host, the original scale value of the host, and the status of the host, the step of matching the corresponding host for the cloud host and assigning the cloud host to the matching host includes:
  • Step 1 If the original scale value of the cloud host is greater than the original scale value of the host, assign the cloud host to the host whose status is marked as "1";
  • Step 2 If the original scale value of the cloud host is less than the original scale value of the host, the cloud host is assigned to the host whose status is marked as "0".
  • cloud monitoring is performed based on Workflow to discover problems in the cloud platform, and then he uses a dynamic allocation method to solve the discovered problems, namely: first perform cloud monitoring based on Workflow. So as to solve the existing problems of poor efficiency of cloud monitoring operation and maintenance and low degree of automation; and then allocate cloud hosts according to the original ratio of cloud hosts and the original ratio of the host to maximize the resource utilization of the host, thereby solving Existing cloud computing uses cloud hosts with a fixed number of cores and memory ratios, resulting in large-scale host CPU or memory resource waste; using the dynamic allocation method of this application, users do not need to purchase a host with a specified configuration.
  • the cloud host is deployed on the host according to the original ratio of the host and the cloud host, thereby improving the resource utilization of the host; in addition, in a certain When the host fails, the cloud host can be moved to any host, making the allocation of the cloud host more flexible.
  • an embodiment of the present application also proposes a computer-readable storage medium, the computer-readable storage medium includes a cloud host's dynamic allocation program on the host machine, and the cloud host's dynamic allocation program on the host machine is processed When the processor executes, the dynamic allocation program of the cloud host on the host computer implements the following operations when executed by the processor:
  • the operation and maintenance tool sends a preset instruction to the operation and maintenance entity
  • the operation and maintenance entity executes the preset instruction issued by the operation and maintenance tool
  • the preset instruction includes the dynamic allocation of the cloud host on the host machine, and the specific dynamic allocation method is as follows:
  • the original ratio value of the cloud host According to the original ratio value of the cloud host, the original ratio value of the host, and the status of the host, match the corresponding host for the cloud host and allocate the cloud host to the matching host.
  • the specific implementation of the computer-readable storage medium of the present application is substantially the same as the specific implementation of the above-mentioned method for dynamic allocation of the cloud host on the host and the electronic device, and will not be repeated here.
  • the computer-readable storage medium may be non-volatile or volatile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种云主机在宿主机上的动态分配方法、电子装置及计算机可读存储介质,涉及云计算技术领域,其中的方法包括:获取宿主机原始比例值、宿主机的实际资源占用比例值、以及云主机的云主机原始比例值,获取宿主机状态;根据云主机原始比例值、宿主机原始比例值以及宿主机状态,将云主机分配到与其匹配的宿主机上。利用该方法,能够解决现有的云计算由于采用的固定核数和内存比的云主机,造成大规模的宿主机CPU或者内存资源浪费的问题。

Description

云主机在宿主机上的动态分配方法、电子装置及存储介质
本申请要求申请号为2020101748829,申请日为2020年03月13日,发明创造名称为“云主机在宿主机上的动态分配方法、电子装置及存储介质”的中国专利申请的优先权。
技术领域
本申请涉及云计算技术领域,尤其涉及一种云主机在宿主机上的动态分配方法、电子装置及计算机可读存储介质。
背景技术
目前市面上的云平台监控产品,例如阿里云、腾讯云、华为云的云监控产品,对基础资源(计算、网络、存储等)的监控大部分都是通过对指标设定固定阈值,当指标达到设定的阈值时,云监控会产生告警事件,并且将此告警事件通知到运维人员,运维人员根据收到的警告信息,在进行实际故障排除等等。
上述这种方式比较原始,没有实现监控运维的自动化,需要运维人员根据告警消息再去定位系统的具体问题,时效性较低。在实际生产环境中,大部分的故障都是由同样的原因引起的;比如:某一个生产集群专门用来做日志的存储,磁盘使用率的告警基本都来自于日志文件太多,可以手动删除旧日志文件来解决;但是每次告警和故障都需要运维人员手动修复,整个流程的自动化程度也比较低。
同时,目前市面上大部分的云平台产品,在云主机的镜像上都是固定了几种默认的镜像,其中,按照使用场景大部分可以分为:计算型、通用型、容量型、内存型等。大部分云平台计算型主机一般配置设置为:1核2G、2核4G、4核8G、8核16G,通用型主机一般配置为:1核4G、2核8G、4核16G等;但是这些镜像本质上没有差异只是在配置上的不同。也就是说,在分配镜像时,需要将核数和内存比不同的云主机分配到不同的宿主机上。例如:1核2G和2核4G的云主机在不超分的情况下,需要分配到36核72G或72核144G的宿主机上,因为核数和内存比均为1:2;如果在CPU核数和内存的比例确定时,这种分配方法比较好,不会造成宿主机的资源浪费。
鉴于上述原因,用户在采购机器的时候就需要将核数和内存比固定,如果不固定会有旧机器监控和新机器监控的问题;因此在用户发明云主机时就只能发明这些固定核数和内存比的云主机;假如用户想使用1核1G或者1核3G的云主机,在宿主机的资源被分配完时,就会要么剩余核数,要么剩余内存,不会将宿主机的资源利用率达到最大;在一般商用的云计算场景中,会造成大规模的宿主机CPU或者内存资源浪费。
基于上述存在的各种问题,发明人意识到传统的云监控方式以及传统的云主机在宿主机的分配方式不能满足客户的需求,因此亟需一种云主机在宿主机上的动态分配方法解决上述问题。
发明内容
本申请提供一种云主机在宿主机上的动态分配方法、电子装置及计算机可读存储介质,其主要目的在于通过云主机原始比例值、宿主机原始比例值进行分配云主机,将宿主机的资源利用率达到最大,从而解决现有的云计算由于采用的固定核数和内存比的云主机,造成大规模的宿主机CPU或者内存资源浪费的问题。
此外,为实现上述目的,本申请提供一种云主机在宿主机上的动态分配方法,应用于电子装置,所述方法包括:
获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
此外,为实现上述目的,本申请提供一种云主机在宿主机上的动态分配系统,包括:
比例值获取模块,用于获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
宿主机状态获取模块,用于根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
云主机分配模块,用于根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
为实现上述目的,本申请还提供一种电子装置,该电子装置包括:存储器、处理器,所述存储器中包括云主机在宿主机上的动态分配程序,所述云主机在宿主机上的动态分配程序被所述处理器执行时实现如下步骤:
获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中包括云主机在宿主机上的动态分配程序,所述云主机在宿主机上的动态分配程序被处理器执行时,实现如上所述的云主机在宿主机上的动态分配方法中的任意步骤。
本申请提出的云主机在宿主机上的动态分配方法、电子装置及计算机可读存储介质,首先基于Workflow进行云监控发现云平台中存在的问题,然后他通过动态分配方法解决发现的问题,即:首先基于Workflow进行云监控,从而解决现有的云监控运维实效性差、自动化程度低等问题;然后再通过根据云主机原始比例值、宿主机原始比例值进行分配云主机,将宿主机的资源利用率达到最大,从而解决现有的云计算由于采用的固定核数和内存比的云主机,造成大规模的宿主机CPU或者内存资源浪费的问题;采用本申请的动态分配方法,用户可以不用再采购指定配置的宿主机,也不需要在宿主机内存条等设备出问题的时候必须迁移,根据宿主机、云主机的原始比例分配在宿主机上部署云主机,从而提升宿主机的资源利用率;此外,在某个宿主机出故障时云主机可以飘移到任意一宿主机上,使得云主机的分配更为灵活。
附图说明
图1为本申请云主机在宿主机上的动态分配方法较佳实施例的应用环境示意图;
图2为本申请云主机在宿主机上的动态分配系统较佳实施例的模块示意图;
图3为本申请云主机在宿主机上的动态分配方法较佳实施例的流程图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种云主机在宿主机上的动态分配方法,应用于一种电子装置1。参照图1所示,为本申请云主机在宿主机上的动态分配方法较佳实施例的应用环境示意图。
在本实施例中,电子装置1可以是服务器、智能手机、平板电脑、便携计算机、桌上 型计算机等具有运算功能的终端设备。
该电子装置1包括:处理器12、存储器11、网络接口14及通信总线15。
存储器11包括至少一种类型的可读存储介质。所述至少一种类型的可读存储介质可为如闪存、硬盘、多媒体卡、卡型存储器11等的非易失性存储介质。在一些实施例中,所述可读存储介质可以是所述电子装置1的内部存储单元,例如该电子装置1的硬盘。在另一些实施例中,所述可读存储介质也可以是所述电子装置1的外部存储器11,例如所述电子装置1上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
在本实施例中,所述存储器11的可读存储介质通常用于存储安装于所述电子装置1的云主机在宿主机上的动态分配程序10、与二维码相对应的APP(Application,中文为手机的第三方应用程序)等。所述存储器11还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU),微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如云主机在宿主机上的动态分配程序10等。
网络接口14可选地可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该电子装置1与其他电子设备之间建立通信连接。
通信总线15用于实现这些组件之间的连接通信。
图1仅示出了具有组件11-15的电子装置1,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
可选地,该电子装置1还可以包括呼叫端接口,呼叫端接口可以包括输入单元比如键盘(Keyboard)、语音输入装置比如麦克风(microphone)等具有语音识别功能的设备、语音输出装置比如音响、耳机等,可选地呼叫端接口还可以包括标准的有线接口、无线接口。
可选地,该电子装置1还可以包括显示器,显示器也可以称为显示屏或显示单元。在一些实施例中可以是LED显示器、液晶显示器、触控式液晶显示器以及有机发光二极管(Organic Light-Emitting Diode,OLED)触摸器等。显示器用于显示在电子装置1中处理的信息以及用于显示可视化的呼叫端界面。
可选地,该电子装置1还包括触摸传感器。所述触摸传感器所提供的供呼叫端进行触摸操作的区域称为触控区域。此外,这里所述的触摸传感器可以为电阻式触摸传感器、电容式触摸传感器等。而且,所述触摸传感器不仅包括接触式的触摸传感器,也可包括接近式的触摸传感器等。此外,所述触摸传感器可以为单个传感器,也可以为例如阵列布置的多个传感器。
此外,该电子装置1的显示器的面积可以与所述触摸传感器的面积相同,也可以不同。可选地,将显示器与所述触摸传感器层叠设置,以形成触摸显示屏。该装置基于触摸显示屏侦测呼叫端触发的触控操作。
可选地,该电子装置1还可以包括射频(Radio Frequency,RF)电路,传感器、音频电路等等,在此不再赘述。
在图1所示的装置实施例中,作为一种计算机存储介质的存储器11中可以包括操作系统、以及云主机在宿主机上的动态分配程序10;处理器12执行存储器11中存储的云主机在宿主机上的动态分配程序10时实现如下步骤:
通过云监控设备对监控数据进行处理;
当处理的监控数据达到预设的告警阈值时,触发告警并将触发的告警信息发送至Workflow,其中,所述Workflow包括运维工具和运维实体;
根据接收到的告警信息,所述运维工具将预先设定的指令发送给所述运维实体;
根据接收到的指令,所述运维实体执行所述运维工具所下达的预先设定的指令;
其中,所述预先设定的指令包括云主机在宿主机上的动态分配,具体的动态分配方法如下:
获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
优选地,在云管系统初始化所述宿主机时,获取每台宿主机的每台宿主机的宿主机原始比例值,其中,
所述宿主机原始比例值为宿主机的CPU与宿主机的内存的比例值。
优选地,根据所述宿主机的已使用CPU以及已使用内存,获取每台宿主机的实际资源占用比例值,其中,
所述实际资源占用比例值为宿主机的已使用CPU与已使用内存的比值。
优选地,在创建所述云主机时,将云主机的CPU与云主机的内存的比例值定义为所述云主机原始比例值。
优选地,所述根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态的步骤包括:
如果所述宿主机原始比例值大于所述实际资源占用比例值,则将所述宿主机的状态标记为“1”;
如果所述宿主机原始比例值小于所述实际资源占用比例值,则将所述宿主机的状态标记为“0”。
优选地,所述根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上的步骤包括:
如果所述云主机原始比例值大于所述宿主机原始比例值,则将所述云主机分配到状态标记为“1”的宿主机上;
如果所述云主机原始比例值小于所述宿主机原始比例值,则将所述云主机分配到状态标记为“0”的宿主机上。
上述实施例提出的电子装置1,首先基于Workflow进行云监控发现云平台中存在的问题,然后他通过动态分配方法解决发现的问题,即:首先基于Workflow进行云监控,从而解决现有的云监控运维实效性差、自动化程度低等问题;然后再通过根据云主机原始比例值、宿主机原始比例值进行分配云主机,将宿主机的资源利用率达到最大,从而解决现有的云计算由于采用的固定核数和内存比的云主机,造成大规模的宿主机CPU或者内存资源浪费的问题;采用本申请的动态分配方法,用户可以不用再采购指定配置的宿主机,也不需要在宿主机内存条等设备出问题的时候必须迁移,能够按照宿主机、云主机的原始比例,从而提升宿主机的资源利用率;此外,在某个宿主机出故障时云主机可以飘移到任意一宿主机上,使得云主机的分配更为灵活。
在其他实施例中,本申请还提供一种云主机在宿主机上的动态分配系统。参照图2所示,云主机在宿主机上的动态分配系统包括:监控数据处理模块110、警告触发模块120、指令发送模块130、指令执行模块140、比例值获取模块150、宿主机状态获取模块160和云主机分配模块170,其中,
监控数据处理模块110,用于通过云监控对监控数据进行处理;
警告触发模块120,用于当处理的监控数据达到预设的告警阈值时,触发告警并将触发的告警信息发送至Workflow,其中,所述Workflow包括:运维工具和运维实体;
指令发送模块130,用于根据接收到的告警信息,所述运维工具将预先设定的指令发送给所述运维实体;
指令执行模块140,用于根据接收到的指令,所述运维实体执行所述运维工具所下达的预先设定的指令;
比例值获取模块150,用于获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
宿主机状态获取模块160,用于根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
云主机分配模块170,用于根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
在比例值获取模块150中,在云管系统初始化所述宿主机时,获取每台宿主机的每台宿主机的宿主机原始比例值,其中,
所述宿主机原始比例值为宿主机的CPU与宿主机的内存的比例值。
在比例值获取模块150中,根据所述宿主机的已使用CPU以及已使用内存,获取每台宿主机的实际资源占用比例值,其中,
所述实际资源占用比例值为宿主机的已使用CPU与已使用内存的比值。
在比例值获取模块150中,在创建所述云主机时,将云主机的CPU与云主机的内存的比例值定义为所述云主机原始比例值。
在宿主机状态获取模块160中,所述根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态的步骤包括:
如果所述宿主机原始比例值大于所述实际资源占用比例值,则将所述宿主机的状态标记为“1”;
如果所述宿主机原始比例值小于所述实际资源占用比例值,则将所述宿主机的状态标记为“0”。
在云主机分配模块170中,所述根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上的步骤包括:
如果所述云主机原始比例值大于所述宿主机原始比例值,则将所述云主机分配到状态标记为“1”的宿主机上;
如果所述云主机原始比例值小于所述宿主机原始比例值,则将所述云主机分配到状态标记为“0”的宿主机上。
此外,本申请还提供一种云主机在宿主机上的动态分配方法。参照图3所示,为本申请云主机在宿主机上的动态分配方法较佳实施例的流程图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,云主机在宿主机上的动态分配方法,包括:步骤S110-步骤S170。
S110:通过云监控设备对监控数据进行处理;
S120:当处理的监控数据达到预设的告警阈值时,触发告警并将触发的告警信息发送至Workflow,其中,所述Workflow包括:运维工具和运维实体;
S130:根据接收到的告警信息,所述运维工具将预先设定的指令发送给所述运维实体;
S140:根据接收到的指令,所述运维实体执行所述运维工具所下达的预先设定的指令;
其中,所述预先设定的指令包括云主机在宿主机上的动态分配,具体的动态分配方法如下:
S150:获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以 及每台云主机的云主机原始比例值;
S160:根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
S170:根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
在本申请中,基于Workflow的云监控,主要为系统故障修复的提高时效性和自动化,通过将云监控产品和运维工具、运维实体结合起来,形成云监控+运维工具+运维实体这样的Workflow系统。将监控数据推送到云监控设备后,如果达到了告警阈值会触发告警,进而会进入到设置好的Worlflow,这个过程就是通过运维工具将预设的指令下发到运维实体;然后通过云主机在宿主机上的动态分配方法,能够大幅提升大规模云计算系统宿主机的资源利用率;也会让云主机的分配更灵活,不会产生因为需要分配云主机到指定配置的宿主机而导致云主机迁移故障。
本申请与传统的监控运维方式的区别主要在于,现云监控产品主要是进行报警,如果想进行后续的操作需要将告警事件投入到消息队列中进行消费或者通过接口获取,然后在通过写程序告警事件进行相应的运维操作。而基于Workflow的过程,是把告警事件以及大部分运维操作,抽象成单独的模块,提前将程序写好设置在模块中,不用再单独写程序,甚至直接在页面上进行拖拽操作即可完成。
在本申请的实施例中,云监控设备对数据主要进行数据接收、数据存储、数据聚合的工作,同时也会实时监控上传上来的数据是否满足已经设置的告警条件;监控数据的采集主要通过部署在主机上的客户端进行收集。云监控是安防云与IT的云计算划等号、资源虚拟化和云服务,现阶段的监控行业正处于监控数据集中到虚拟化、资源化的过渡阶段。云监控通过分布在各地的监控节点,运用各种故障分析手段,在故障发生时抓取各种信息,例如网络信息、域名解析信息等,帮助网站主判断故障原因,快速定位问题。
在本申请的实施例中,运维工具,用于根据接收到的触发警告,将预定义命令发达给运维实体;运维实体用于执行各种预先定义好的命令,运维实体是指云资源,一般是指云主机。
在步骤S110和步骤S120中,云监控设备实时监控上传上来的监控数据是否满足预先设置的告警条件,即:当监控设备监控到监控数据满足告警阈值时,触发告警,向运维产品发出告警。
其中,告警可通过语音、短信、邮件等方式推送,也可以推送到Workflow(即:指定的WebHook、消息队列、函数计算、日志服务)中,方便将报警信息集成到运维工具中。其中,云监控设备是资源和互联网应用进行监控的服务,云监控可用于收集获取资源的监控指标和监控数据,探测互联网服务可用性,以及针对监控数据设置警报。
其中,需要说明的是,告警功能是云监控设备的一个功能。用户可以自己设定阈值来确定告警的敏感度,不同的监控项会有不同的阈值范围,比如:云主机磁盘已使用百分比的阈值可以设置为80%,这样在磁盘使用率达到80%就会触发告警。因此,云监控设备实时监控需要监控的项目,随着监控项目的运行,监控数据会发生变化,当监控数据慢慢到达到预设的告警阈值时,云监控设备自动触发告警。在实际应用中,根据监控的具体项目以及实际需求设定告警阈值,不同的监控项目,设定不同的告警阈值。
在本申请的实施例中,同一业务类型的主机产生报警的故障原因基本可以归为固定的几种类型,所以通过Workflow系统,将主机的报警事件作为Workflow的触发条件,然后执行一些既定的操作指令。例如:作为日志存储业务的主机,可以将磁盘的已使用空间率作为Workflow的触发条件,当日志服务器的磁盘容量越来越少,达到事先设定的告警阈值时,将会自动触发事先编写好的执行脚本;其中,这段脚本主要是用来清除最久的日志数据,这样就可以实现自动化的监控运维系统。因此,云主机内存的释放、云主机磁盘空间的释放等场景均可以采用上述方式。
在步骤S130和步骤S140中,Workflow的运维工具主要是下指执行指令的工具,可以将命令下发到相应的云主机或者云资源上。执行指令是预先设定在运维工具中的,当运维工具接收到告警信息时,运维工具会将预设设定的指令发给运维实体,其中运维实体可以指云主机、云资源等等。
在本申请的实施例中,云监控的报警事件作为触发条件,一旦报警事件触发,就会自动运行Workflow系统;其中,Workflow系统可以由多个执行事件组成,在检测到所有事件已执行完毕后,则将整个Workflow标记为完成。
其中,需要说明的是,Workflow可以理解为一连串需要执行命令的集合;主要通过运维工具去实现,比如自动清理日志Workflow,需要首先进入到指定的目录然后再执行删除命令,Workflow就分为了两个执行事件,两个事件具有依赖关系;首先必须先进入指定文件夹,然后才能执行删除的命令。
Workflow是指可执行操作的集合,比如说,通过日志工具筛选出包含某字段的日志是一个执行事件,再通过删除工具删除日志是另外一个执行事件,这两个事件可以组合成一个Workflow,如果业务更复杂,就可以用更多的可执行事件组成一个Workflow。执行事件1就是指将进入到在日志目录的命令下发到云主机上进行执行;指执行事件2就是执行删除日志文件的目录。一个执行事件肯定包括命令的下发、命令的执行。执行删除日志文件这个命令,肯定既包含命令的下发,也包含命令在云主机中的执行。
在本申请的一个具体实施例中,预设的指令就是用于预先编写好的执行脚本的指令,其中,预设命令用户可以自己编写,比如说:对于linux系统,磁盘由于日志原因满了,就会发出告警,当主机收到了告警信息后,就会下达清除最久的日志数据的命令,从而可以使用rm命令进行删除日志;收到清除日志数据的指令后,云主机就会执行此命令,即:脚本就会自动运行,以清除最永久的日志。云主机内存的释放、云主机磁盘空间的释放。
此外,某些程序进程堵塞,导致CPU升高,可以使用top命令筛选出资源消耗最高的进程,再用kill命令杀掉堵塞的进程。
上述实施例中,通过云监控设备和运维工具、运维实体结合起来,形成Workflow系统,从而解决现有的云监控运维实效性差、自动化程度低等问题;采用本申请的云监控方法,在不用手动情况下去登录主机或者其他应用系统的情况下,直接能够智能化进行一些问题的修复,从而节省运维修复的时间,使得应用系统恢复的时间越来越少,从而能够提升云监控运维的实效性;此外,在一些线上环境出现问题时,由于时间的紧迫性和线上环境复杂性,导致运维人员在执行修复的过程中经常会出错,采用本申请的云监控方法,能够减轻运维人员出错的可能性,从而提升监控运维的自动化程度。其中,在本申请的实施例中,首先基于Workflow进行云监控发现云平台中存在的问题,然后他通过动态分配方法解决发现的问题,其中,预先设定的指令包括云主机在宿主机上的动态分配,具体的动态分配方法如下:
在步骤S150中,在云管系统初始化宿主机时,取得宿主机的CPU和宿主机的内存的比例,定义此值为“宿主机原始比例值”,比如:64核128G的宿主机的原始比例值为0.5,64核64G的宿主机的原始比例值为1。
其中,云管系统初始化过程是指:云管系统在纳管宿主机的时候就获取每台宿主机的CPU和内存的比例,云管系统在将宿主机加入到资源池时能够获取到宿主机的相关信息。初始化其实是指云管软件第一次纳管宿主机的过程,主要获取到“宿主机原始比例值”;即:通过云管系统对宿主机进行初始化,取得每台宿主机的CPU和内存的比例(宿主机原始比例值)。
在本申请的实施例中,云管系统根据不同云平台使用的方式不同会分为:自研云管系统、OpenStack、CloudStack等等。
在本申请的实施例中,根据宿主机的已使用CPU以及已使用内存,获取每台宿主机 的实际资源占用比例值,其中,实际资源占用比例值为宿主机的已使用CPU与已使用内存的比值;即:实际资源占用比例值就是当前宿主机的“已使用CPU”/“已使用内存”。
具体地,当在一个宿主机上部署云主机时,会对每台宿主机生成一个“实际资源占用比例值”,即当前宿主机的“已使用CPU”/“已使用内存”,其中,需要说明的是,宿主机的实际资源占用比例值的采集频率可以定位一分钟或十分钟,依据具体的环境实际创建频率而定。
其中,如果有用户购买了云主机,云主机需要部署在一台宿主机上。但是,一个资源池有很多台宿主机,怎么决定这台云主机部署在哪台宿主机上,这时候就需要获取这些宿主机当前的资源使用信息,计算出来一个值(即:宿主机的实际资源占用比例值),根据宿主机的实际资源占用比例值和这台宿主机初始化的时候的宿主机原始比例值进行比较,来决定到底分配到哪台宿主机上。
在本申请的实施例中,在创建云主机时,将云主机的CPU与云主机的内存的比例值定义为云主机原始比例值。也就是说,云主机的镜像也会有一个比例,定义此值为“云主机原始比例值”;比如:1核2G的云主机的云主机原始比例值为0.5,1核4G的云主机的云主机原始比例值为0.25。其中,用户在创建云主机的时候,会选择CPU核数和内存大小,在创建命令下发时其实云主机原始比例值就已经确定了。
总之,宿主机原始比例值就是CPU核数和内存的比值,每台机器如果不进行硬件的变动这个值是固定的,比如说64核128G的宿主机原始比例值就是0.5;云主机原始比例值,云主机创建之后,这个值就不会变动,除非用户扩容到不同比例的云主机。计算方式也是CPU核数和内存的比值,比如1核2G的云主机这个值就是0.5。
在步骤S160中,此步骤是如何判断宿主机状态判定的过程,根据宿主机原始比例值与实际资源占用比例值,获取宿主机状态的步骤包括:
步骤一:如果宿主机原始比例值大于实际资源占用比例值,则将宿主机的状态标记为“1”;
步骤二:如果宿主机原始比例值小于实际资源占用比例值,则将宿主机的状态标记为“0”。
通过上述过程可以判断宿主机的状态,在本申请的一个具体的实施例中,当一个64核128G的宿主机上部署了一个1核2G和一个1核4G的云主机时,当前宿主机的“宿主机原始比例值”为:0.5,当前宿主机的“实际资源占用比例值”为:0.33;并且每次计算出“实际资源占用比例值”时,会对“宿主机原始比例值”和“实际资源占用比例值”进行对比,如果“宿主机原始比例值”大于“实际资源占用比例值”,则将此宿主机的状态标记为“1”,反之则标记为“0”,即:如果“宿主机原始比例值”小于“实际资源占用比例值”,则将此宿主机的状态标记为“0”。
在步骤S170中,根据云主机原始比例值、宿主机原始比例值以及宿主机状态,为所述云主机匹配对应的宿主机并将云主机分配到与其匹配的宿主机上的步骤包括:
步骤一:如果云主机原始比例值大于宿主机原始比例值,则将云主机分配到状态标记为“1”的宿主机上;
步骤二:如果云主机原始比例值小于宿主机原始比例值,则将云主机分配到状态标记为“0”的宿主机上。
为了更详细的说明云主机如何分配在哪个宿主机,进一步举例说明,例如:当有一台新的云主机需要进行部署,首先将云主机的“云主机原始比例值”和此区域内宿主机的“宿主机原始比例值”进行对比;如果“云主机原始比例值”大于“宿主机原始比例值”,则将云主机分配到状态标记为“1”的宿主机上,反之则将云主机分配到状态标记为“0”的宿主机上。用这种方式部署云主机,可以动态的调节宿主机CPU和内存的比例,直到达到“宿主机原始比例值”为止,可以大大提高资源的利用率。
上述实施例提出的云主机在宿主机上的动态分配方法,首先基于Workflow进行云监控发现云平台中存在的问题,然后他通过动态分配方法解决发现的问题,即:首先基于Workflow进行云监控,从而解决现有的云监控运维实效性差、自动化程度低等问题;然后再通过根据云主机原始比例值、宿主机原始比例值进行分配云主机,将宿主机的资源利用率达到最大,从而解决现有的云计算由于采用的固定核数和内存比的云主机,造成大规模的宿主机CPU或者内存资源浪费的问题;采用本申请的动态分配方法,用户可以不用再采购指定配置的宿主机,也不需要在宿主机内存条等设备出问题的时候必须迁移,根据宿主机、云主机的原始比例分配在宿主机上部署云主机,从而提升宿主机的资源利用率;此外,在某个宿主机出故障时云主机可以飘移到任意一宿主机上,使得云主机的分配更为灵活。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质中包括云主机在宿主机上的动态分配程序,所述云主机在宿主机上的动态分配程序被处理器执行时,所述云主机在宿主机上的动态分配程序被处理器执行时实现如下操作:
通过云监控设备对监控数据进行处理;
当处理的监控数据达到预设的告警阈值时,触发告警并将触发的告警信息发送至Workflow,其中,所述Workflow包括运维工具和运维实体;
根据接收到的告警信息,所述运维工具将预先设定的指令发送给所述运维实体;
根据接收到的指令,所述运维实体执行所述运维工具所下达的预先设定的指令;
其中,所述预先设定的指令包括云主机在宿主机上的动态分配,具体的动态分配方法如下:
获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
本申请之计算机可读存储介质的具体实施方式与上述云主机在宿主机上的动态分配方法、电子装置的具体实施方式大致相同,在此不再赘述。所述计算机可读存储介质可以是非易失性,也可以是易失性。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种云主机在宿主机上的动态分配方法,应用于电子装置,所述方法包括:
    获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
    根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
    根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
  2. 根据权利要求1所述的云主机在宿主机上的动态分配方法,其中,
    在初始化所述宿主机时,获取每台宿主机的每台宿主机的宿主机原始比例值,其中,
    所述宿主机原始比例值为宿主机的CPU与宿主机的内存的比例值。
  3. 根据权利要求2所述的云主机在宿主机上的动态分配方法,其中,
    所述初始化所述宿主机指:云管系统在将所述宿主机加入到资源池时获取到所述宿主机的CPU和宿主机的内存的比例值。
  4. 根据权利要求1所述的云主机在宿主机上的动态分配方法,其中,
    根据所述宿主机的已使用CPU以及已使用内存,获取每台宿主机的实际资源占用比例值,其中,
    所述实际资源占用比例值为宿主机的已使用CPU与已使用内存的比值。
  5. 根据权利要求4所述的云主机在宿主机上的动态分配方法,其中,
    所述宿主机的实际资源占用比例值的采集频率根据具体的环境进行设定。
  6. 根据权利要求1所述的云主机在宿主机上的动态分配方法,其中,
    在创建所述云主机时,将云主机的CPU与云主机的内存的比例值定义为所述云主机原始比例值。
  7. 根据权利要求6所述的云主机在宿主机上的动态分配方法,其中,
    当所述云主机创建后,则所述云主机原始比例值将固定不变。
  8. 根据权利要求1所述的云主机在宿主机上的动态分配方法,其中,所述根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态的步骤包括:
    如果所述宿主机原始比例值大于所述实际资源占用比例值,则将所述宿主机的状态标记为“1”;
    如果所述宿主机原始比例值小于所述实际资源占用比例值,则将所述宿主机的状态标记为“0”。
  9. 根据权利要求8所述的云主机在宿主机上的动态分配方法,其中,所述根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上的步骤包括:
    如果所述云主机原始比例值大于所述宿主机原始比例值,则将所述云主机分配到状态标记为“1”的宿主机上;
    如果所述云主机原始比例值小于所述宿主机原始比例值,则将所述云主机分配到状态标记为“0”的宿主机上。
  10. 一种云主机在宿主机上的动态分配系统,包括:
    比例值获取模块,用于获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
    宿主机状态获取模块,用于根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
    云主机分配模块,用于根据所述云主机原始比例值、所述宿主机原始比例值以及所述 宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
  11. 一种电子装置,其中,该电子装置包括:存储器、处理器,所述存储器中包括云主机在宿主机上的动态分配程序,所述云主机在宿主机上的动态分配程序被所述处理器执行时实现如下步骤:
    获取每台宿主机的宿主机原始比例值、每台宿主机的实际资源占用比例值、以及每台云主机的云主机原始比例值;
    根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态;
    根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上。
  12. 根据权利要求11所述的电子装置,其中,
    在初始化所述宿主机时,获取每台宿主机的每台宿主机的宿主机原始比例值,其中,
    所述宿主机原始比例值为宿主机的CPU与宿主机的内存的比例值。
  13. 根据权利要求12所述的电子装置,其中,
    所述初始化所述宿主机指:云管系统在将所述宿主机加入到资源池时获取到所述宿主机的CPU和宿主机的内存的比例值。
  14. 根据权利要求11所述的电子装置,其中,
    根据所述宿主机的已使用CPU以及已使用内存,获取每台宿主机的实际资源占用比例值,其中,
    所述实际资源占用比例值为宿主机的已使用CPU与已使用内存的比值。
  15. 根据权利要求14所述的电子装置,其中,
    所述宿主机的实际资源占用比例值的采集频率根据具体的环境进行设定。
  16. 根据权利要求15所述的电子装置,其中,
    在创建所述云主机时,将云主机的CPU与云主机的内存的比例值定义为所述云主机原始比例值。
  17. 根据权利要求16所述的电子装置,其中,
    当所述云主机创建后,则所述云主机原始比例值将固定不变。
  18. 根据权利要求11所述的电子装置,其中,
    所述根据所述宿主机原始比例值与所述实际资源占用比例值,获取宿主机状态的步骤包括:
    如果所述宿主机原始比例值大于所述实际资源占用比例值,则将所述宿主机的状态标记为“1”;
    如果所述宿主机原始比例值小于所述实际资源占用比例值,则将所述宿主机的状态标记为“0”。
  19. 根据权利要求18所述的电子装置,其中,
    所述根据所述云主机原始比例值、所述宿主机原始比例值以及所述宿主机状态,为所述云主机匹配对应的宿主机并将所述云主机分配到与其匹配的宿主机上的步骤包括:
    如果所述云主机原始比例值大于所述宿主机原始比例值,则将所述云主机分配到状态标记为“1”的宿主机上;
    如果所述云主机原始比例值小于所述宿主机原始比例值,则将所述云主机分配到状态标记为“0”的宿主机上。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质中包括云主机在宿主机上的动态分配程序,所述云主机在宿主机上的动态分配程序被处理器执行时,实现如权利要求1至9中任一项所述的云主机在宿主机上的动态分配方法的步骤。
PCT/CN2020/099285 2020-03-13 2020-06-30 云主机在宿主机上的动态分配方法、电子装置及存储介质 WO2021179487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010174882.9 2020-03-13
CN202010174882.9A CN111459660B (zh) 2020-03-13 2020-03-13 云主机在宿主机上的动态分配方法、电子装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021179487A1 true WO2021179487A1 (zh) 2021-09-16

Family

ID=71684467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099285 WO2021179487A1 (zh) 2020-03-13 2020-06-30 云主机在宿主机上的动态分配方法、电子装置及存储介质

Country Status (2)

Country Link
CN (1) CN111459660B (zh)
WO (1) WO2021179487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780537B (zh) * 2020-12-10 2022-10-11 中華電信股份有限公司 智慧化調整監控告警服務的系統、方法及電腦可讀媒介

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872499A (zh) * 2016-09-28 2018-04-03 北京金山云网络技术有限公司 业务创建方法、装置及系统
CN108134842A (zh) * 2018-01-26 2018-06-08 广东睿江云计算股份有限公司 一种云主机根据负载策略进行迁移的系统、方法
CN109495398A (zh) * 2017-09-11 2019-03-19 中国移动通信集团浙江有限公司 一种容器云的资源调度方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106095576A (zh) * 2016-06-14 2016-11-09 上海交通大学 虚拟化多核环境下非一致性i/o访问虚拟机资源迁移方法
CN107295090B (zh) * 2017-06-30 2020-01-21 北京奇艺世纪科技有限公司 一种资源调度的方法和装置
US10691611B2 (en) * 2018-07-13 2020-06-23 Micron Technology, Inc. Isolated performance domains in a memory system
CN109684074A (zh) * 2018-11-12 2019-04-26 平安科技(深圳)有限公司 物理机资源分配方法及终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872499A (zh) * 2016-09-28 2018-04-03 北京金山云网络技术有限公司 业务创建方法、装置及系统
CN109495398A (zh) * 2017-09-11 2019-03-19 中国移动通信集团浙江有限公司 一种容器云的资源调度方法及设备
CN108134842A (zh) * 2018-01-26 2018-06-08 广东睿江云计算股份有限公司 一种云主机根据负载策略进行迁移的系统、方法

Also Published As

Publication number Publication date
CN111459660B (zh) 2023-07-07
CN111459660A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
US10482411B2 (en) Dashboard for dynamic display of distributed transaction data
US11782989B1 (en) Correlating data based on user-specified search criteria
US9514387B2 (en) System and method of monitoring and measuring cluster performance hosted by an IAAS provider by means of outlier detection
WO2021129367A1 (zh) 一种监控分布式存储系统的方法及装置
CN104360878B (zh) 一种应用软件部署的方法及装置
WO2018196559A1 (zh) 应用程序异常处理方法、装置及存储介质
WO2018120721A1 (zh) 用户界面的测试方法、系统、电子装置及计算机可读存储介质
US9495234B1 (en) Detecting anomalous behavior by determining correlations
US10268515B2 (en) Releasing resources from processes in a particular order to provide required resources to start an application
US20160224400A1 (en) Automatic root cause analysis for distributed business transaction
CN103501237B (zh) 设备管理方法、管理平台、设备及系统
US10216601B2 (en) Agent dynamic service
US10929259B2 (en) Testing framework for host computing devices
WO2019169765A1 (zh) 电子装置、集群环境下状态信息的获取方法、系统及存储介质
CN110704097A (zh) 一种数据收集方法、装置及电子设备和存储介质
KR102176028B1 (ko) 실시간 통합 모니터링 시스템 및 그 방법
WO2021179487A1 (zh) 云主机在宿主机上的动态分配方法、电子装置及存储介质
WO2022021850A1 (zh) 一种服务实例部署方法、装置、电子设备和存储介质
US9317354B2 (en) Dynamically determining an external systems management application to report system errors
CN110209497B (zh) 一种主机资源动态扩缩容的方法及系统
US8832715B2 (en) Limiting execution of event-responses with use of policies
CN115580522A (zh) 一种容器云平台运行状态的监控方法及装置
CN110597682B (zh) 一种应用部署方法、装置、计算机设备及存储介质
CN110798347A (zh) 服务状态检测方法、装置、设备及存储介质
US11095501B2 (en) Provisioning and activating hardware resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924909

Country of ref document: EP

Kind code of ref document: A1