WO2021179451A1 - 一种基于储能的充电站配电变压器过载保护方法及系统 - Google Patents

一种基于储能的充电站配电变压器过载保护方法及系统 Download PDF

Info

Publication number
WO2021179451A1
WO2021179451A1 PCT/CN2020/094634 CN2020094634W WO2021179451A1 WO 2021179451 A1 WO2021179451 A1 WO 2021179451A1 CN 2020094634 W CN2020094634 W CN 2020094634W WO 2021179451 A1 WO2021179451 A1 WO 2021179451A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time
transformer
power
energy storage
Prior art date
Application number
PCT/CN2020/094634
Other languages
English (en)
French (fr)
Inventor
文安
吴铭
马俊杰
杜金峰
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Publication of WO2021179451A1 publication Critical patent/WO2021179451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the invention relates to the technical field of charging pile coordinated charging control, in particular to a method and system for overload protection of a power distribution transformer of a charging station based on energy storage.
  • the purpose of the present invention is to provide a method and system for overload protection of a charging station distribution transformer based on energy storage to solve one or more technical problems existing in the prior art, and at least provide a beneficial choice or create conditions.
  • the present invention provides an overload protection method for a distribution transformer of a charging station based on energy storage, including:
  • the energy storage parameters include energy storage rated power S storage (rated) and energy storage real-time power S storage (real-time) ;
  • the transformer parameters include transformer real-time power S change ( Real-time) , transformer rated power S change (rated) ;
  • the charging station parameters include the real-time power S station of the charging station under the control of the transformer (real-time) , the number of charging piles inside the charging station, and the real-time power S piles of each charging pile (real-time) ) ;
  • controlling each charging pile to reduce the real-time output power to protect the transformer against overload includes:
  • transformer overload S1 transformer real-time power S change (real time) -transformer rated power S change (rated) ;
  • the method further includes: when the transformer overload S1 ⁇ 0, controlling each charging pile to output according to the real-time power S pile (real-time).
  • the method further includes: judging whether the transformer is overloaded at a set time interval, and the value range of the set time interval is 1-10 minutes.
  • the present invention also provides a charging station power distribution transformer overload protection system based on energy storage, the system includes: a cloud platform, energy storage, a transformer, and a charging station;
  • the cloud platform is respectively connected in communication with energy storage, transformer and charging station, and the transformer is connected with energy storage and charging station respectively;
  • the energy storage is used to report energy storage parameters to the cloud platform, and the energy storage parameters include energy storage rated power storage (rated) and energy storage real-time power storage (real-time) ;
  • the transformer is used to report transformer parameters to the cloud platform, and the transformer parameters include real-time transformer power S- transformation (real-time) and transformer rated power S- transformation (rated) ;
  • the charging station is used to report charging station parameters to the cloud platform.
  • the charging station parameters include the real-time power S station (real-time) of the charging station under the control of the transformer, the number of charging piles inside the charging station, and the real-time power S of each charging pile Pile (real time) ;
  • the cloud platform includes a memory, a processor, and a program that is stored on the memory and can run on the processor.
  • the program is executed by the processor, the above-mentioned energy storage-based program is implemented.
  • the present invention discloses a method and system for overload protection of a power distribution transformer in a charging station based on energy storage. Whether the real-time power S- change (real-time) is greater than the transformer rated power S- change (rated) to determine whether the transformer is overloaded; when the transformer is overloaded, control each charging pile to reduce the real-time output power to protect the transformer from overload.
  • the invention can protect the transformer from overload when the charging pile is charged at the same time on a large scale.
  • FIG. 1 is a schematic flowchart of a method for overload protection of a distribution transformer in a charging station based on energy storage according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of step S300 in FIG. 1 according to an embodiment of the present invention
  • Fig. 3 is a structural block diagram of a charging station power distribution transformer overload protection system based on energy storage according to an embodiment of the present invention.
  • Figure 1 shows a method for overload protection of power distribution transformers in charging stations based on energy storage, which includes the following steps:
  • Step S100 reading energy storage parameters, transformer parameters, and charging station parameters
  • the energy storage parameters include energy storage rated power S storage (rated) and energy storage real-time power S storage (real-time) ;
  • the transformer parameters include transformer real-time power S change (real-time) , transformer rated power S change (rated) ;
  • the charging station includes a charging station parameter real time power stations S (in real time) under the control of a transformer, the number of charging post inside the charging station, charging each of the real-time power S pile the pile (in real time).
  • Step S200 Determine whether the transformer is overloaded by judging whether the real-time power S of the transformer (real-time) is greater than the rated power S of the transformer (rated).
  • Step S300 When the transformer is overloaded, control each charging pile to reduce the real-time output power to protect the transformer from overload.
  • the energy storage parameters, transformer parameters, and various charging pile parameters are first read to initially obtain the power parameters of the charging system, and then by judging whether the transformer real-time power S variable (real-time) is greater than the transformer rated power S variable (rated) , To judge whether the transformer is overloaded; when the transformer is overloaded, control each charging pile to reduce the real-time output power to protect the transformer from overload.
  • each charging pile is reasonably and effectively controlled to reduce the real-time output power.
  • step S300 is specifically:
  • Step S320 Determine whether the transformer overload S1 is greater than 0, if not, skip to step S390, if yes, perform the following steps;
  • Step S330 Determine the size of the real-time power storage (real-time) of the energy storage.
  • execute step S340 executes step S340, and when the real-time energy storage power S- storage (real-time) > 0, execute step S340.
  • S350 when the real-time energy storage power Sstorage (real-time) ⁇ 0, execute step S380;
  • the overload amount S1 as the reduction amount of the real-time power S pile (real-time) , obtains the final output power P1, so as to achieve the purpose of suppressing the power distribution overload.
  • Step S350 Compare the transformer overload S1 with the energy storage rated power S storage (rated) . If S1 ⁇ S storage (rated) , perform step S360; if S1> S storage (rated) , perform step S370.
  • Step S360 controlling each charging pile to adopt energy storage real-time power storage (real-time) output
  • transformer overload S1 energy storage real-time power S storage (real-time)
  • S2 transformer overload S1-energy storage real-time power S storage (real-time) , which is proportional to G Coefficient, adjust the transformer overload S2, as the reduction of the real-time power S pile (real-time) , obtain the final output power P2, so as to achieve the purpose of suppressing the power distribution overload.
  • Step S380 When the energy storage is charged through the remaining load of the transformer, if the real-time power of the charging station S station (real-time) ⁇ the transformer overload S1, control each charging pile to output power P2, otherwise, stop charging the energy storage. And control each charging pile to use power P1 to output.
  • the charging of the energy storage is provided by the remaining load of the transformer.
  • the load of the transformer comes from the load of the cell, and the load of the energy storage charging and the charging station load, then the remaining load of the transformer comes from the load of the cell And charging station load, during the peak period of power consumption, if the real-time power S station (real-time) of the charging station under the transformer is less than the transformer overload capacity S1, the charging of the energy storage will affect the overload regulation capacity of the transformer, and the overload capacity of the transformer It is relatively large, so it is necessary to turn off and charge the energy storage at this time.
  • Step S390 Control each charging pile to output according to the real-time power S pile (real-time).
  • this embodiment maximizes the use of available energy storage capacity and transformer capacity to meet more requirements without replacing the transformer and without affecting the normal operation of other electrical loads of the transformer. Users need to charge, and through the real-time adjustment and algorithm of energy storage, the transformer can always be overloaded, which improves the economic benefits of electric vehicle charging stations and the reliability of safe charging.
  • the method further includes: judging whether the transformer is overloaded at a set time interval, and the value range of the set time interval is 1-10 minutes.
  • step S300 is executed to ensure that the transformer is not replaced and the normal operation of other electrical loads is not affected. It can achieve that the transformer is not overloaded and satisfy the user's safe charging.
  • an embodiment of the present invention also provides an overload protection system for a power distribution transformer of a charging station based on energy storage.
  • the system includes: a cloud platform 100, an energy storage 200, a transformer 300, and a charging station 400;
  • the cloud platform 100 is in communication connection with the energy storage 200, the transformer 300, and the charging station 400, and the transformer 300 is electrically connected with the energy storage 200 and the charging station 400, respectively;
  • the accumulator 200, the platform 100 for reporting to the cloud storage parameters, the parameter storage reservoir comprises a tank S rated power (nominal) and the storage reservoir real power S (real-time);
  • the transformer 300 is configured to report transformer parameters to the cloud platform 100, and the transformer parameters include the transformer real-time power S- transformation (real-time) and the transformer rated power S- transformation (rated) ;
  • the charging station 400 is used to report charging station parameters to the cloud platform.
  • the charging station parameters include the real-time power S station (real-time) of the charging station under the control of the transformer, the number of charging piles inside the charging station, and the real-time power of each charging pile S pile (real-time) ;
  • the cloud platform 100 includes a memory, a processor, and a program that is stored on the memory and can run on the processor. When the program is executed by the processor, the above-mentioned storage-based program is implemented. The steps of the overload protection method for the power distribution transformer of the charging station.
  • the processor may be a central processing unit (Central-Processing-Unit, CPU), other general-purpose processors, digital signal processors (Digital-Signal-Processor, DSP), application-specific integrated circuits (Application-Specific- Integrated-Circuit, ASIC), Field-Programmable-Gate-Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor is the control center of the energy storage-based charging station distribution transformer overload protection system, using various interfaces and The line connects all parts of the overload protection system of the distribution transformer of the entire charging station.
  • the memory may be used to store the computer program and/or module, and the processor can implement the computer program and/or module stored in the memory by running or executing the computer program and/or module stored in the memory and calling data stored in the memory to implement the Various functions of the overload protection system of the distribution transformer of the energy storage charging station.
  • the memory may mainly include a program storage area and a data storage area.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as a hard disk, a memory, a plug-in hard disk, and a smart memory card (Smart-Media- Card, SMC), Secure-Digital (SD) card, Flash-Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • Smart-Media- Card SMC
  • SD Secure-Digital

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及电动汽车充电桩协调充电控制技术领域,具体涉及一种利用储能抑制充电站配电变压器过载的保护方法,所述方法为:首先读取储能参数、变压器参数和充电站参数,然后通过判断变压器实时功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载;当变压器过载时,通过协调控制储能的输出功率和各个充电桩的输出功率,来降低变压器的负荷,以对变压器进行过载保护,本发明能够在充电桩大规模同时充电时,利用储能和充电站的协调控制来抑制变压器过载,同时最大限度满足用户的充电需求。

Description

一种基于储能的充电站配电变压器过载保护方法及系统 技术领域
本发明涉及充电桩协调充电控制技术领域,具体涉及一种基于储能的充电站配电变压器过载保护方法及系统。
背景技术
中国电动汽车行业发展迅速,其迅速扩张需要足够多的充电设施与之配套,但以前的电力系统规划并没有考虑到电动汽车充电站的负荷需求。但现有配电网,特别在密集城区,难以支撑如此大规模各个充电桩的同时并网运行,相应的升级扩容难度大且投资巨大。
为了在电力负荷有限,充电需求旺盛的情况下,最大限度地满足社会车辆的充电需求。需要研究充电站有序充电,目前国内在充电站有序充电的研究上有了很大的进步与突破,但大多停留在理论阶段,实际的系统应用范围小且功能不完善,现有技术中,尚未解决在电动汽车大规模同时充电时,能做到实时抑制变压器配变过负荷,最大化减少电动汽车充电桩对电网所造成的影响,同时最大限度满足用户充电的需求。
发明内容
本发明目的在于提供一种基于储能的充电站配电变压器过载保护方法及系统,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
为了实现上述目的,本发明提供以下技术方案:
一方面,本发明提供一种基于储能的充电站配电变压器过载保护方法,包括:
读取储能参数、变压器参数和充电站参数,所述储能参数包括储能额定功率S 储(额定)和储能实时功率S 储(实时);所述变压器参数包括变压器实时功率S 变(实时)、变压器额定功率S 变(额定);所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
通过判断变压器实时功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载;
当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护。
优选的,所述当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护,包括:
计算变压器过载量S1,其中,变压器过载量S1=变压器实时功率S 变(实时)-变压器额定功率S 变(额定)
当储能实时功率S 储(实时)=0时,控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P1输出,其中,P1=S 桩(实时)-S1*S 桩(实时)/S 站(实时)
当储能实时功率S 储(实时)>0时,比较变压器过载量S1与储能额定功率S 储(额定)的大小;
若S1≤S 储(额定),则控制各个充电桩采用储能实时功率S 储(实时)输出;
若S1>S 储(额定),则控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P2输出,其中,P2=S 桩(实时)-(S1-S 储(实时))*S 桩(实时)/S 站(实时)
当储能实时功率S 储(实时)<0时,若通过变压器的剩余负荷对储能充电,且充电站实时功率S 站(实时)≥变压器过载量S1时,则控制各个充电桩采用功率P2输出,否则,停止对储能进行充电,并控制各个充电桩采用功率P1输出。
进一步,所述方法还包括:当变压器过载量S1≤0时,控制各个充电桩按实时功率S (实时)输出。
进一步,所述方法还包括:以设定时间间隔判断变压器是否过载,所述设定时间间隔的取值范围为1~10分钟。
另一方面,本发明还提供一种基于储能的充电站配电变压器过载保护系统,所述系统包括:云平台、储能、变压器和充电站;
所述云平台分别与储能、变压器和充电站通信连接,所述变压器分别与储能和充电站连接;
所述储能,用于向云平台上报储能参数,所述储能参数包括储能额定功率S 储(额定)和储能实时功率S 储(实时)
所述变压器,用于向云平台上报变压器参数,所述变压器参数包括变压器实时功率S (实时)、变压器额定功率S 变(额定)
所述充电站,用于向云平台上报充电站参数,所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
所述云平台,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述任一项所述的基于储能的充电站配电变压器过载保护方法的步骤。
本发明的有益效果是:本发明公开一种基于储能的充电站配电变压器过载保护方法及系统,所述方法为:首先读取储能参数、变压器参数和充电站参数,接着通过判断变压器实时 功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载;当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护。本发明能够在充电桩大规模同时充电时,对变压器进行过载保护。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一种基于储能的充电站配电变压器过载保护方法的流程示意图;
图2是本发明实施例图1中步骤S300的流程示意图;
图3是本发明实施例一种基于储能的充电站配电变压器过载保护系统的结构框图。
具体实施方式
以下将结合实施例和附图对本公开的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本公开的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参考图1,如图1所示为一种基于储能的充电站配电变压器过载保护方法,包括以下步骤:
步骤S100、读取储能参数、变压器参数和充电站参数;
其中,所述储能参数包括储能额定功率S 储(额定)和储能实时功率S 储(实时);所述变压器参数包括变压器实时功率S 变(实时)、变压器额定功率S 变(额定);所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
步骤S200、通过判断变压器实时功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载。
步骤S300、当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护。
本实施例中,首先读取储能参数、变压器参数和各个充电桩参数,初步获取充电系统的电力参数,接着通过判断变压器实时功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载;当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护。本实施例在不更换变压器和不影响该变压器其他用电负荷正常工作的情况下,根据变压器的实时功率,合理有效的控制各个充电桩降低实时输出功率,在充电桩大规模同 时充电时,对变压器进行过载保护。
参考图2,在一个改进的实施例中,步骤S300具体为:
步骤S310、计算变压器过载量S1;其中,变压器过载量S1=变压器实时功率S 变(实时)-变压器额定功率S 变(额定)
步骤S320、判断变压器过载量S1是否大于0,若否,跳转到步骤S390,若是,执行以下步骤;
步骤S330、判断储能实时功率S 储(实时)的大小,当储能实时功率S 储(实时)=0时,执行步骤S340,当储能实时功率S 储(实时)>0时,执行步骤S350,当储能实时功率S 储(实时)<0时,执行步骤S380;
步骤S340、控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P1输出,其中,P1=S 桩(实时)-S1*S 桩(实时)/S 站(实时)
本实施例中,将各个充电桩实时功率占充电站功率百分比G表示为:G=S 桩(实时)/S (实时),由于储能的存在,按G的大小作为比例系数,调节变压器过载量S1,作为实时功率S 桩(实时)的降低量,得出最终的输出功率P1,从而达到抑制配电过载的目的。
步骤S350、比较变压器过载量S1与储能额定功率S 储(额定)的大小,若S1≤S 储(额定),执行步骤S360,若S1>S 储(额定),执行步骤S370。
步骤S360、控制各个充电桩采用储能实时功率S 储(实时)输出;
步骤S370、控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P2输出,其中,P2=S 桩(实时)-(S1-S 储(实时))*S 桩(实时)/S 站(实时);从而达到抑制配电过载的目的。
本实施例中,将变压器过载量S1和储能实时功率S 储(实时)的差值表示为S2,S2=变压器过载量S1-储能实时功率S 储(实时),按G的大小作为比例系数,调节变压器过载量S2,作为实时功率S 桩(实时)的降低量,得出最终的输出功率P2,从而达到抑制配电过载的目的。
步骤S380、当通过变压器的剩余负荷对储能充电时,若充电站实时功率S 站(实时)≥变压器过载量S1,则控制各个充电桩采用功率P2输出,否则,停止对储能进行充电,并控制各个充电桩采用功率P1输出。
本步骤中,储能的充电由该变压器的剩余负荷提供,在一个具体的实施例中,变压器的负荷来源于小区负荷,储能充电负荷和充电站负荷,则变压器的剩余负荷来源于小区负荷和充电站负荷,当用电高峰期时,若该变压器下的充电站实时功率S站(实时)小于变压器过载量S1,此时储能的充电会影响变压器的过载调节能力,变压器的过载量比较大,所以要关闭此时对储能充电。
步骤S390、控制各个充电桩按实时功率S 桩(实时)输出。
本实施例根据变压器实时负荷状态和储能的充放电状态,在不更换变压器和不影响该变压器其他用电负荷正常工作的情况下,最大化利用可用储能容量和变压器容量来满足更多的用户充电需求,并通过储能的实时调节和算法使变压器能够始终不过载,提高电动汽车充电站的经济效益和安全充电可靠性。
进一步,所述方法还包括:以设定时间间隔判断变压器是否过载,所述设定时间间隔的取值范围为1~10分钟。
示例性的,通过实时读取储能参数,每5分钟判断一次变压器是否过载,当变压器过载时,执行步骤S300,从而保证了在不更换变压器和不影响其他用电负荷正常工作的情况下,能够达到变压器不过载并满足用户安全充电。
参考图3,本发明实施例还提供一种基于储能的充电站配电变压器过载保护系统,所述系统包括:云平台100、储能200、变压器300和充电站400;
所述云平台100分别与储能200、变压器300和充电站400通信连接,所述变压器300分别与储能200和充电站400电连接;
所述储能200,用于向云平台100上报储能参数,所述储能参数包括储能额定功率S 储(额 定)和储能实时功率S 储(实时)
所述变压器300,用于向云平台100上报变压器参数,所述变压器参数包括变压器实时功率S 变(实时)、变压器额定功率S 变(额定)
所述充电站400,用于向云平台上报充电站参数,所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
所述云平台100,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述任一项所述的基于储能的充电站配电变压器过载保护方法的步骤。
可见,上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件的实现方式,以软件的形式加载到处理器中,以有效利用读取的储能参数,进行充电站配电变压器的过载保护。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来。
所述处理器可以是中央处理单元(Central-Processing-Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital-Signal-Processor,DSP)、专用集成电路(Applicat ion-Specific-Integrated-Circuit,ASIC)、现场可编程门阵列(Field-Programmable-Gate-Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述基于储能的充电站配电变压器过载保护系统的控制中心,利用各种接口和线路连接整个充电站配电变压器过载保护系统的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述基于储能的充电站配电变压器过载保护系统的各种功能。所述存储器可主要包括存储程序区和存储数据区,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart-Media-Card,SMC),安全数字(Secure-Digital,SD)卡,闪存卡(Flash-Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
尽管本公开的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,而是应当将其视作是通过参考所附权利要求,考虑到现有技术为这些权利要求提供广义的可能性解释,从而有效地涵盖本公开的预定范围。此外,上文以发明人可预见的实施例对本公开进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本公开的非实质性改动仍可代表本公开的等效改动。

Claims (5)

  1. 一种基于储能的充电站配电变压器过载保护方法,其特征在于,包括:
    读取储能参数、变压器参数和充电站参数,所述储能参数包括储能额定功率S 储(额定)和储能实时功率S 储(实时);所述变压器参数包括变压器实时功率S 变(实时)、变压器额定功率S 变(额定);所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
    通过判断变压器实时功率S 变(实时)是否大于变压器额定功率S 变(额定),以判断变压器是否过载;
    当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护。
  2. 根据权利要求1所述的一种基于储能的充电站配电变压器过载保护方法,其特征在于,所述当变压器过载时,控制各个充电桩降低实时输出功率,以对变压器进行过载保护,包括:
    计算变压器过载量S1,其中,变压器过载量S1=变压器实时功率S 变(实时)-变压器额定功率S 变(额定)
    当储能实时功率S 储(实时)=0时,控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P1输出,其中,P1=S 桩(实时)-S1*S 桩(实时)/S 站(实时)
    当储能实时功率S 储(实时)>0时,比较变压器过载量S1与储能额定功率S 储(额定)的大小;
    若S1≤S 储(额定),则控制各个充电桩采用储能实时功率S 储(实时)输出;
    若S1>S 储(额定),则控制各个充电桩采用按比例降低实时功率S 桩(实时)后的功率P2输出,其中,P2=S 桩(实时)-(S1-S 储(实时))*S 桩(实时)/S 站(实时)
    当储能实时功率S 储(实时)<0时,若通过变压器的剩余负荷对储能充电,且充电站实时功率S 站(实时)≥变压器过载量S1时,则控制各个充电桩采用功率P2输出,否则,停止对储能进行充电,并控制各个充电桩采用功率P1输出。
  3. 根据权利要求2所述的一种基于储能的充电站配电变压器过载保护方法,其特征在于,所述方法还包括:
    当变压器过载量S1≤0时,控制各个充电桩按实时功率S 桩(实时)输出。
  4. 根据权利要求1所述的一种基于储能的充电站配电变压器过载保护方法,其特征在于,所述方法还包括:以设定时间间隔判断变压器是否过载,所述设定时间间隔的取值范围为1~10分钟。
  5. 一种基于储能的充电站配电变压器过载保护系统,其特征在于,所述系统包括:云平台、储能、变压器和充电站;
    所述云平台分别与储能、变压器和充电站通信连接,所述变压器分别与储能和充电站连接;
    所述储能,用于向云平台上报储能参数,所述储能参数包括储能额定功率S 储(额定)和储能实时功率S 储(实时)
    所述变压器,用于向云平台上报变压器参数,所述变压器参数包括变压器实时功率S (实时)、变压器额定功率S 变(额定)
    所述充电站,用于向云平台上报充电站参数,所述充电站参数包括变压器控制下的充电站实时功率S 站(实时),充电站内部的充电桩数量,各个充电桩的实时功率S 桩(实时)
    所述云平台,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至4中任一项所述的基于储能的充电站配电变压器过载保护方法的步骤。
PCT/CN2020/094634 2020-03-11 2020-06-05 一种基于储能的充电站配电变压器过载保护方法及系统 WO2021179451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010164629.5A CN111342481B (zh) 2020-03-11 2020-03-11 一种基于储能的充电站配电变压器过载保护方法及系统
CN202010164629.5 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021179451A1 true WO2021179451A1 (zh) 2021-09-16

Family

ID=71187921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094634 WO2021179451A1 (zh) 2020-03-11 2020-06-05 一种基于储能的充电站配电变压器过载保护方法及系统

Country Status (2)

Country Link
CN (1) CN111342481B (zh)
WO (1) WO2021179451A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614558A (zh) * 2022-03-18 2022-06-10 国网伊犁伊河供电有限责任公司 用于备自投装置过负荷定值的自适应获取方法及装置
CN116154769A (zh) * 2023-04-17 2023-05-23 西安领充创享新能源科技有限公司 台区变压器过载处理方法、柔性台区系统及存储介质
CN116968581A (zh) * 2023-07-20 2023-10-31 一能充电科技(深圳)股份有限公司 一种以智能融合终端为核心的充电调控系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248865B (zh) * 2020-09-18 2022-03-22 佛山科学技术学院 一种电动车充电站充电控制方法、装置及系统
CN113067370B (zh) * 2021-03-15 2023-07-18 远景智能国际私人投资有限公司 V2g充电站的充电控制方法、装置、服务器及存储介质
CN114142500A (zh) * 2021-10-19 2022-03-04 威胜信息技术股份有限公司 一种适用于交流充电桩的有序充电控制方法及装置
CN114447961A (zh) * 2021-12-27 2022-05-06 广州市奔流电力科技有限公司 一种考虑单相交流桩和三相直流桩充电功率分配的控制方法和系统
CN117901690A (zh) * 2022-10-10 2024-04-19 奥动新能源汽车科技有限公司 换电站充电的控制方法、系统、设备及存储介质
CN117584790B (zh) * 2023-11-23 2024-06-18 北京海蓝云联技术有限公司 一种无增容充电桩控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515083A (zh) * 2015-08-20 2016-04-20 樊朝晖 一种支持安全动态增容的电动汽车群充电微网控制方法
CN107528313A (zh) * 2017-07-20 2017-12-29 深圳奥特迅电力设备股份有限公司 一种充电站的功率监控方法、装置及系统
CN108075536A (zh) * 2017-11-10 2018-05-25 深圳供电局有限公司 充电桩的柔性充电调控方法及充电桩系统
CN109361245A (zh) * 2018-09-18 2019-02-19 深圳市车电网络有限公司 充电站的功率调配方法、装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989750A (zh) * 2009-07-31 2011-03-23 严本信 蓄电池储能式智能快速电动汽车充电站
CN105515027B (zh) * 2015-08-06 2017-03-29 樊朝晖 一种负荷曲线可配置的储能微网控制方法
CN108334991B (zh) * 2018-02-12 2020-06-09 清华大学 一种电动汽车充电站规划方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515083A (zh) * 2015-08-20 2016-04-20 樊朝晖 一种支持安全动态增容的电动汽车群充电微网控制方法
CN107528313A (zh) * 2017-07-20 2017-12-29 深圳奥特迅电力设备股份有限公司 一种充电站的功率监控方法、装置及系统
CN108075536A (zh) * 2017-11-10 2018-05-25 深圳供电局有限公司 充电桩的柔性充电调控方法及充电桩系统
CN109361245A (zh) * 2018-09-18 2019-02-19 深圳市车电网络有限公司 充电站的功率调配方法、装置及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614558A (zh) * 2022-03-18 2022-06-10 国网伊犁伊河供电有限责任公司 用于备自投装置过负荷定值的自适应获取方法及装置
CN116154769A (zh) * 2023-04-17 2023-05-23 西安领充创享新能源科技有限公司 台区变压器过载处理方法、柔性台区系统及存储介质
CN116968581A (zh) * 2023-07-20 2023-10-31 一能充电科技(深圳)股份有限公司 一种以智能融合终端为核心的充电调控系统
CN116968581B (zh) * 2023-07-20 2024-06-04 一能充电科技(深圳)股份有限公司 一种以智能融合终端为核心的充电调控系统

Also Published As

Publication number Publication date
CN111342481B (zh) 2021-01-26
CN111342481A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021179451A1 (zh) 一种基于储能的充电站配电变压器过载保护方法及系统
CN111516543B (zh) 充电设备功率分配方法、存储介质及系统
CN111697604B (zh) 多站合一的配置方法、系统及设备
CN109927583A (zh) 充电桩控制方法、装置、电动汽车充电系统和存储介质
CN112865082B (zh) 一种聚合多类型电动汽车的虚拟电厂日前调度方法
CN116331051B (zh) 基于区域供电网格的功率调度方法及相关装置
CN110571838A (zh) 一种储能电池早高峰负荷削减控制方法和装置
CN106598738A (zh) 一种计算机集群系统及其并行计算方法
CN108879704A (zh) 用电负荷调度方法、装置与负荷调度控制器
CN117681716A (zh) 一种充电桩动态调度系统及方法
CN110854916A (zh) 一种基于用户储能的能量平衡控制方法及装置
CN112248865B (zh) 一种电动车充电站充电控制方法、装置及系统
CN116404683A (zh) 一种柔直互联系统的能量调控方法、装置、终端和介质
CN110175728A (zh) 基于梯度投影退化型内点法的电动汽车充电站调度装置
CN110137985A (zh) 一种换相开关控制方法及相关装置
US20150051747A1 (en) Method for Multiple Energy Storage Management in Microgrids
CN107612006A (zh) 充电控制方法和装置、存储介质和处理器
CN114389258A (zh) 辐射供电线路负荷承载的优化方法及装置
CN110429627B (zh) 一种基于负荷自适应的储能晚高峰负荷削减方法
CN114709832A (zh) 牵引供电系统和飞轮储能装置联用的控制方法及装置
CN208241321U (zh) 一种用于抑制并联电容器合闸涌流的装置和系统
CN110112761B (zh) 适用于电厂储能辅助调频的储能定容方法、装置及设备
CN117543708B (zh) 储能系统的控制方法、处理器、储能系统及存储介质
CN111605429A (zh) 一种充电站及供电方法
CN116001626B (zh) 一种充电站的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924179

Country of ref document: EP

Kind code of ref document: A1