WO2021179334A1 - Procédé de test intégré pour la fracturation, le relâchement de pression et le drainage combinés de multiples veines de charbon - Google Patents
Procédé de test intégré pour la fracturation, le relâchement de pression et le drainage combinés de multiples veines de charbon Download PDFInfo
- Publication number
- WO2021179334A1 WO2021179334A1 PCT/CN2020/079419 CN2020079419W WO2021179334A1 WO 2021179334 A1 WO2021179334 A1 WO 2021179334A1 CN 2020079419 W CN2020079419 W CN 2020079419W WO 2021179334 A1 WO2021179334 A1 WO 2021179334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- fracturing
- drainage
- coal
- pressure
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 95
- 238000010998 test method Methods 0.000 title claims abstract description 13
- 239000011435 rock Substances 0.000 claims abstract description 42
- 239000002131 composite material Substances 0.000 claims abstract description 38
- 238000012360 testing method Methods 0.000 claims abstract description 34
- 238000000605 extraction Methods 0.000 claims description 18
- 229920002379 silicone rubber Polymers 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 238000007789 sealing Methods 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000004945 silicone rubber Substances 0.000 claims description 10
- 239000003822 epoxy resin Substances 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000000565 sealant Substances 0.000 claims description 6
- 239000004944 Liquid Silicone Rubber Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 230000001680 brushing effect Effects 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 8
- 239000004576 sand Substances 0.000 abstract 1
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F7/00—Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/36—Embedding or analogous mounting of samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/36—Embedding or analogous mounting of samples
- G01N2001/366—Moulds; Demoulding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0048—Hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
Definitions
- the invention belongs to the technical field of coal seam mining simulation test methods, and specifically relates to a simulation test method for fracturing and extracting a composite coal roof under true three-dimensional stress.
- the combined mining of multiple coal seams has become a development trend.
- the upper coal seam is wetted while the upper coal seam is wetted and the upper coal seam has the effect of depressurization and permeability enhancement, so that the inner part of the upper coal seam is produced.
- the fissures are conducive to the analysis of internal gas, improve the extraction efficiency, and enhance the safety of coal seam mining.
- the present invention intends to provide a multi-coal joint fracturing, pressure relief, and drainage integrated test method, which is used to study the best technical parameters of multi-coal joint mining under true triaxial high stress, and to scientifically select relevant processes in engineering practice The parameters provide a scientific basis.
- the technical solution adopted by the present invention is: an integrated test method for combined fracturing, pressure relief, and drainage of multiple coal seams, which includes the following steps:
- the sample is coated with high-strength epoxy resin adhesive to compactly fit the top and bottom of the sandstone sample.
- the central blind hole at the top is used as a drainage hole, and the central blind hole at the bottom is used as a fracturing hole;
- Step 2 The sample is installed on the test device of the true triaxial test
- the true three-axis test device includes a host, a host support component, a slide rail, a slide rail support component, and a servo cylinder.
- the lower part extends forward and backward, and after passing through the mainframe, it is supported on the ground by the sliding rail support assembly.
- the mainframe includes a cast-shaped integral ring frame.
- the outer side is equipped with a cover plate.
- the integral ring frame and cover plate enclose the main body shell.
- the inner cavity of the main body is used to place the composite coal and rock samples.
- Each is equipped with sample pads, and a sample moving bracket that can move forward and backward on the slide rail is set under the sample pad on the lower side; the servo cylinders on the front and rear sides are both set to move forward and backward on the slide rail.
- the cylinder moving bracket, the cover plate can move together with the servo cylinders on the corresponding side.
- the servo cylinders on the upper, lower, left, and right sides are fixed on the corresponding sides of the integral ring frame, and the front end of the piston rod of the servo cylinder is provided with a load sensor at the center position , A pressure head is installed after the front end of the load sensor passes through the main casing;
- a suction pipe facing the extraction hole is fixed under the upper pressure head, and a fracturing pipe facing the fracturing hole is fixed above the lower pressure head, and the outer walls of the suction pipe and the fracturing pipe are evenly coated
- silicone rubber first install the sample gasket on the lower indenter and insert the fracturing tube into the fracturing hole to bond and seal, and then control the upper indenter to move down so that the upper indenter is in contact with the upper surface of the sample gasket.
- the extraction tube is inserted into the extraction hole to be glued and sealed, and finally the front, back, left and right four indenters are controlled to move so that the corresponding indenters are attached to the corresponding surfaces of the sample gasket;
- Step 3 Apply triaxial stress
- Step 5 Gas drainage for the first time
- Step Six Fracture of the lower coal seam
- step 4 then open the fracturing hole for high-pressure water injection to allow high-pressure water to enter the lower coal sample for hydraulic fracturing. After the water pressure is reduced by 50%, close the fracturing hole to stop fracturing, and record the front and back of the process , Left, right, upper and lower six pressure head pressure and displacement changes;
- Step 7 Secondary gas drainage
- Step Nine organize the test data.
- the composite coal and rock sample is a cube
- the size of the composite coal and rock sample is 200 ⁇ 200 ⁇ 200mm
- the size of the raw coal sample is 200 ⁇ 200 ⁇ 70mm
- the size of the sandstone sample is 200 ⁇ 200 ⁇ 60mm .
- suction hole and the fracturing hole are equal in size, with a diameter of 10 mm and a depth of 40 mm; the length of the suction pipe and the fracturing pipe is 30 mm.
- the new true triaxial test test device is adopted. Compared with the traditional cavity structure enclosed by the inner and outer frames, the main body of the test device is only provided with a cast-shaped integral ring frame.
- the sample spacer block encloses a sample gasket to contain the sample, thereby omitting the separate pressure-resistant cavity formed between the traditional inner and outer layers.
- the indenter directly touches the sample pad on the corresponding side after passing through the main chassis. On the block, it can free up more space to arrange the overall ring frame with larger size and thickness, so that the cavity can withstand greater pressure and can meet the simulation test of more complex environments;
- the servo cylinder directly exerts force on each surface of the sample without passing through the pressure chamber.
- dynamic sealing needs to be considered, thus simplifying the structure and reducing The cost and reliability are higher.
- the traditional inner frame is thinner than the outer frame, the inner frame is prone to expansion and deformation when the pressure is high, which further affects the sealing between the inner frame and the servo cylinder;
- Figure 1 is a schematic diagram of the structure of the true triaxial test device used in the present invention (including two states of sample loading and removal).
- Figure 2 is a left side view of the host and the host supporting assembly in Figure 1;
- Figure 3 is a perspective view of a sample gasket surrounded by six sample gaskets.
- Fig. 4 is a front view of the cross-sectional state of Fig. 3.
- Figure 5 shows the state after the edge seal of the sample pad is cured with silicone rubber.
- An integrated test method for combined fracturing, pressure relief, and drainage of multiple coal seams including the following steps:
- the sandstone sample Place the sandstone sample in the middle, and evenly apply high-strength epoxy resin adhesive on its upper and lower surfaces. In addition, apply high-strength epoxy resin evenly on the opposite sides of the two raw coal samples with the central blind hole, and then apply the raw coal separately.
- the sample is coated with high-strength epoxy resin adhesive to compactly fit the top and bottom of the sandstone sample.
- the central blind hole at the top is used as the drainage hole 15, and the central blind hole at the bottom is used as the fracturing hole 16.
- the composite coal and rock sample is a cube
- the size of the composite coal and rock sample is 200 ⁇ 200 ⁇ 200mm, among which the size of the raw coal sample is 200 ⁇ 200 ⁇ 700mm
- the size of the sandstone sample is 200 ⁇ 200 ⁇ 60mm.
- the mining hole 15 and the fracturing hole 16 are equal in size, with a diameter of 10 mm and a depth of 40 mm, but they are not limited to this.
- Step 2 The sample is installed on the test device of the true triaxial test
- the true three-axis test device is mainly composed of the main engine A, the main engine support component B, the slide rail C, the slide rail support component D and the servo cylinder E.
- the host A is supported on the ground by the host support assembly B, and six sets of servo cylinders E are arranged in the up and down, left and right, and front and rear directions outside the host A (namely, the three directions of XYZ).
- the slide rail C extends forward and backward below the host A, and the slide rail C passes through the host A and is supported on the ground by the slide rail support assembly D.
- the integral annular frame 1 is formed by casting.
- the integral annular frame 1 has holes on the front and rear sides, and a cover plate 2 is provided on the outside of each hole position.
- the integral ring frame 1 and the two cover plates 2 jointly enclose the main frame.
- the internal cavity of the main engine is used to place the composite coal and rock sample 3.
- the upper, lower, left, right, front and rear sides of the composite coal and rock sample 3 are equipped with sample pads 4, and a total of six sample pads are required. 4.
- a sample moving bracket 5 that can move back and forth on the slide rail C is provided under the sample pad 4 on the lower side.
- the front and rear servo cylinders E are arranged outside the cover plate 2 on the corresponding side, and the front and rear servo cylinders E are equipped with cylinder moving brackets 6 that can move back and forth on the slide rail C.
- the cover plate 2 can follow the corresponding side Servo cylinder E moves together.
- the servo cylinders E on the upper, lower, left and right sides are arranged outside the corresponding sides of the integral ring frame.
- a load sensor 8 is provided at the center of the front end of the piston rod 7 of the servo cylinder E, and the load sensor 8 is preferably embedded in installation.
- the front end of the load sensor 8 is provided with an indenter 9, and the front end of the load sensor 8 passes through the main casing and is installed with an indenter 9.
- the indenter 9 directly abuts the sample pad 4 on the corresponding side.
- the servo cylinder E is provided with a cylinder displacement sensor 10, the upper, lower, left and right sides of the servo cylinders E are fixedly installed on the integral ring frame 1 through the end cover 11, and the front and rear servo cylinders E are fixedly installed on the integral ring through the cover plate 2.
- the piston rods 7 are provided with bushings at the positions where the piston rods 7 pass through the main casing to ensure the airtightness of the inner cavity of the main body.
- the sample deformation displacement sensor 12 is provided in pairs, and the sample deformation displacement sensor 12 is installed on the sample through the extension rod 13 of the displacement sensor. Outside the edge of the cushion block 4, and a pair of sample deformation displacement sensors 12 in the same direction are arranged diagonally staggered, which can realize the measurement of unbalanced and uneven deformation under true triaxial conditions.
- the control high-pressure valve in the electro-hydraulic servo booster is greater than the pressure of the highest output of the booster, in order to ensure high reliability and long service life.
- the hydraulic pressure source is also equipped with an axial piston pump hydraulic pressure source, and the hydraulic pressure source has high and low pressure conversion, which is convenient for the smooth switching of high and low pressure during the test.
- a suction pipe facing the extraction hole 15 is fixedly arranged below the upper pressure head 9, and a fracturing pipe facing the fracturing hole 16 is fixed above the lower pressure head 9, respectively.
- Spread the silicone rubber uniformly first install the sample gasket on the lower indenter 9 and insert the fracturing tube into the fracturing hole 16 for adhesion and sealing, and then control the upper indenter 9 to move down so that the upper indenter 9 is sealed with the sample While the upper surface of the pad is attached, the extraction tube is inserted into the extraction hole 15 to be glued and sealed. Finally, the four indenters 9 in the front, rear, left and right are controlled to move so that the corresponding indenters 9 are attached to the sample gasket. The corresponding surface.
- the length of the extraction pipe and the fracturing pipe are 30 mm, and the outer ends of the extraction hole 15 and the fracturing hole 16 are equipped with a universal sealing joint 17.
- Step 3 Apply triaxial stress
- the stress is applied to the composite coal and rock sample to a predetermined value through the six indenters 9 at the front, rear, left, right, upper and lower sides.
- Gas is injected into the composite coal and rock sample simultaneously through the extraction hole 15 and the fracturing hole 16, so that the gas pressure reaches a predetermined value and remains stable for 24 ⁇ 4 hours.
- Step 5 Gas drainage for the first time
- Step Six Fracture of the lower coal seam
- step 4 then open the fracturing hole 16 for high-pressure water injection, so that high-pressure water enters the lower raw coal sample for hydraulic fracturing. After the water pressure is reduced by 50%, close the fracturing hole 16 to stop fracturing, and record the previous , Back, left, right, up and down six pressure head pressure and displacement changes.
- Step 7 Secondary gas drainage
- Step Nine organize the test data.
- the following table shows the recorded data during the test.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Remote Sensing (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Fluid Mechanics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
L'invention concerne un procédé de test intégré pour la fracturation, le relâchement de pression et le drainage combinés de multiples veines de charbon, comprenant : la préparation d'un échantillon de roche de charbon composite (3), et le placement d'un échantillon de roche de sable entre deux échantillons de charbon brut pour former un échantillon de roche de charbon composite ayant un trou de fracturation (16) et un trou de drainage (15) ; le montage de l'échantillon sur un vrai dispositif d'essai triaxial ; l'application d'une contrainte triaxiale ; l'ajout d'une pression de gaz ; la réalisation d'un drainage de gaz primaire ; la fracturation d'une ligne de charbon inférieure ; et la réalisation d'un drainage de gaz secondaire et équivalents en un total de neuf étapes. Dans le procédé de test, l'échantillon de roche de charbon composite est placé dans le dispositif d'essai triaxial lui-même, et la commande efficace de drainage primaire, de fracturation et de drainage secondaire est combinée, de telle sorte que l'influence du réglage de paramètres techniques pour l'exploitation combinée de multiples veines de charbon sur l'efficacité de drainage de gaz peut être reproduite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010158913.1A CN111323307B (zh) | 2020-03-09 | 2020-03-09 | 多煤层联合压裂、卸压、抽采一体化试验方法 |
CN202010158913.1 | 2020-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179334A1 true WO2021179334A1 (fr) | 2021-09-16 |
Family
ID=71173217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/079419 WO2021179334A1 (fr) | 2020-03-09 | 2020-03-15 | Procédé de test intégré pour la fracturation, le relâchement de pression et le drainage combinés de multiples veines de charbon |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111323307B (fr) |
WO (1) | WO2021179334A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114562208A (zh) * | 2022-02-17 | 2022-05-31 | 重庆交通大学 | 一种煤层自进式水射流破煤岩钻进成孔动态测试系统及方法 |
CN114778401A (zh) * | 2022-02-25 | 2022-07-22 | 西安科技大学 | 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法 |
CN114837646A (zh) * | 2022-05-05 | 2022-08-02 | 中联煤层气国家工程研究中心有限责任公司 | 一种用于煤层气开采的多层共采装置 |
CN115615778A (zh) * | 2022-09-27 | 2023-01-17 | 河海大学 | 对变粒径砾石与黏土的混合物进行卧式单轴拉伸的方法 |
CN116087457B (zh) * | 2022-12-23 | 2023-08-29 | 重庆大学 | 分级动荷载作用诱发煤与瓦斯突出试验方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114166649B (zh) * | 2021-12-08 | 2024-03-12 | 中南大学 | 模拟原位深层页岩钻进与水力压裂的实验装置及实验方法 |
CN114414331B (zh) * | 2021-12-30 | 2024-08-09 | 煤炭科学技术研究院有限公司 | 煤岩样制作装置和制作方法 |
CN115950746B (zh) * | 2022-12-23 | 2023-09-26 | 平顶山天安煤业股份有限公司 | 真实地应力环境中多煤层沿空留巷的护巷方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796091A (en) * | 1972-10-02 | 1974-03-12 | S Serata | Borehole stress-property measuring system |
CN201464331U (zh) * | 2009-08-12 | 2010-05-12 | 重庆大学 | 含瓦斯煤热流固耦合三轴伺服渗流试验轴向加载装置 |
CN102735547A (zh) * | 2012-07-05 | 2012-10-17 | 重庆大学 | 真三轴状态下煤岩水压致裂试验方法 |
CN104655495A (zh) * | 2015-02-13 | 2015-05-27 | 太原理工大学 | 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法 |
CN105021457A (zh) * | 2015-07-02 | 2015-11-04 | 山东科技大学 | 一种用于深部坚硬顶板煤层冲击倾向性的测试与评估方法 |
CN108333050A (zh) * | 2017-12-29 | 2018-07-27 | 中国海洋石油集团有限公司 | 一种真三轴状态下煤岩二次水力压裂试验方法 |
US20190033198A1 (en) * | 2017-10-02 | 2019-01-31 | Amirkabir University of Technology | Reservoir depletion/injection simulation under true triaxial stress conditions |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2833118B1 (fr) * | 2012-03-31 | 2016-07-20 | China University Of Mining & Technology (Beijing) | Appareil pour expérience d'éclatement de roche de type impact simulé |
CN104295292B (zh) * | 2014-08-14 | 2016-10-26 | 中国矿业大学 | 多层叠置煤层气系统开采井设计方法 |
CN104832148A (zh) * | 2015-04-28 | 2015-08-12 | 安徽理工大学 | 一种柱状煤体三向应力下水力压裂实验装置及方法 |
CN105334090B (zh) * | 2015-11-02 | 2018-07-17 | 中国石油大学(北京) | 一种含煤产层组压裂物模试样的制备方法 |
CN106018105B (zh) * | 2016-05-17 | 2019-02-05 | 重庆大学 | 煤岩工程多功能物理模拟试验系统及煤岩模型试验方法 |
CN108871968B (zh) * | 2017-05-11 | 2024-01-26 | 中国矿业大学(北京) | 一种压裂过程应力冻结实验装置 |
CN109187761A (zh) * | 2018-09-12 | 2019-01-11 | 中国矿业大学 | 一种气固热耦合的煤岩体滞弹性各向异性探测装置及方法 |
CN109211668B (zh) * | 2018-09-20 | 2021-07-16 | 中国矿业大学 | 一种煤岩组合体开采卸荷试验装置及方法 |
CN109386270B (zh) * | 2018-11-21 | 2021-02-23 | 山东大学 | 煤岩层瓦斯动力增透渗流与驱替模拟试验系统与试验方法 |
CN109490482B (zh) * | 2018-12-05 | 2019-08-06 | 重庆大学 | 一种模拟煤矿深部开采复合型动力灾害的装置及方法 |
CN109707435A (zh) * | 2019-01-10 | 2019-05-03 | 陕西煤业化工技术研究院有限责任公司 | 一种声场与水力压裂复合技术提高煤层瓦斯抽采系统及方法 |
-
2020
- 2020-03-09 CN CN202010158913.1A patent/CN111323307B/zh active Active
- 2020-03-15 WO PCT/CN2020/079419 patent/WO2021179334A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796091A (en) * | 1972-10-02 | 1974-03-12 | S Serata | Borehole stress-property measuring system |
CN201464331U (zh) * | 2009-08-12 | 2010-05-12 | 重庆大学 | 含瓦斯煤热流固耦合三轴伺服渗流试验轴向加载装置 |
CN102735547A (zh) * | 2012-07-05 | 2012-10-17 | 重庆大学 | 真三轴状态下煤岩水压致裂试验方法 |
CN104655495A (zh) * | 2015-02-13 | 2015-05-27 | 太原理工大学 | 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法 |
CN105021457A (zh) * | 2015-07-02 | 2015-11-04 | 山东科技大学 | 一种用于深部坚硬顶板煤层冲击倾向性的测试与评估方法 |
US20190033198A1 (en) * | 2017-10-02 | 2019-01-31 | Amirkabir University of Technology | Reservoir depletion/injection simulation under true triaxial stress conditions |
CN108333050A (zh) * | 2017-12-29 | 2018-07-27 | 中国海洋石油集团有限公司 | 一种真三轴状态下煤岩二次水力压裂试验方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114562208A (zh) * | 2022-02-17 | 2022-05-31 | 重庆交通大学 | 一种煤层自进式水射流破煤岩钻进成孔动态测试系统及方法 |
CN114778401A (zh) * | 2022-02-25 | 2022-07-22 | 西安科技大学 | 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法 |
CN114778401B (zh) * | 2022-02-25 | 2024-05-10 | 西安科技大学 | 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法 |
CN114837646A (zh) * | 2022-05-05 | 2022-08-02 | 中联煤层气国家工程研究中心有限责任公司 | 一种用于煤层气开采的多层共采装置 |
CN114837646B (zh) * | 2022-05-05 | 2023-11-24 | 中联煤层气国家工程研究中心有限责任公司 | 一种用于煤层气开采的多层共采装置 |
CN115615778A (zh) * | 2022-09-27 | 2023-01-17 | 河海大学 | 对变粒径砾石与黏土的混合物进行卧式单轴拉伸的方法 |
CN115615778B (zh) * | 2022-09-27 | 2024-05-28 | 河海大学 | 对变粒径砾石与黏土的混合物进行卧式单轴拉伸的方法 |
CN116087457B (zh) * | 2022-12-23 | 2023-08-29 | 重庆大学 | 分级动荷载作用诱发煤与瓦斯突出试验方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111323307B (zh) | 2021-06-25 |
CN111323307A (zh) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179334A1 (fr) | Procédé de test intégré pour la fracturation, le relâchement de pression et le drainage combinés de multiples veines de charbon | |
WO2021179337A1 (fr) | Procédé d'essai de prévention de coups de charge et de relâchement de pression, à base de mouillage par infusion d'eau sous vraie contrainte tridimensionnelle | |
CN109386270B (zh) | 煤岩层瓦斯动力增透渗流与驱替模拟试验系统与试验方法 | |
WO2021179335A1 (fr) | Procédé de tests de propagation de fissures dans une masse de charbon causée par un mouillage par injection d'eau à haute température sous contrainte tridimensionnelle réelle | |
CN109870349B (zh) | 一种高温高压水压致裂夹持器及其试验方法 | |
CN111175470B (zh) | 一种模拟真三轴应力下煤体自燃及失稳的试验方法 | |
WO2021179336A1 (fr) | Procédé de test permettant de mesurer avec précision la plage de mouillage à l'aide d'une atténuation de vitesse d'onde | |
CN111366472B (zh) | 用于可变岩心尺寸的真三轴水力压裂物理模拟设备及方法 | |
CN112012729B (zh) | 一种多功能油气井井壁仿真实验装置及应用 | |
US12066424B1 (en) | Deep rock in situ environment reconstruction and integrated three-dimensional mechanical- thermo-acousto-seismic-flow testing method | |
CN113418852A (zh) | 超声波脉冲致裂含瓦斯煤体渗流实验装置及方法 | |
CN113959853A (zh) | 一种高温条件下岩层压裂和径向渗流的实验模拟装置 | |
CN111189687B (zh) | 一种模拟注入流体作用下裂隙岩体滑移失稳的试验方法 | |
CN109490482A (zh) | 一种模拟煤矿深部开采复合型动力灾害的装置及方法 | |
CN111272633B (zh) | 钻孔变形影响煤层渗透性与润湿效果的试验方法 | |
CN116429588A (zh) | 一种煤岩体压裂改性及其效果评价试验系统与方法 | |
CN209945858U (zh) | 高温高压水压致裂夹持器 | |
Geng et al. | Development and application of triaxial seepage test system for gas-water two-phase in coal rock | |
CN110646292A (zh) | 一种模拟静水压力条件下巴西圆盘劈裂试验装置及方法 | |
CN110082220A (zh) | 一种真三轴多孔导向压裂实验装置 | |
CN111323557B (zh) | 真三维应力下复合煤岩顶板压裂抽采模拟试验方法 | |
CN111141599B (zh) | 一种可调节压裂孔方向的真三轴水力压裂试验方法 | |
CN110806353B (zh) | 深部煤岩三轴应力和饱气条件下在线光谱测试装置及方法 | |
CN111175467B (zh) | 真三轴应力下负压抽采、增润一体化试验方法 | |
CN206957677U (zh) | 一种低渗透油藏注水动态裂缝的物理测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924287 Country of ref document: EP Kind code of ref document: A1 |